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Chapter 1

Introduction

1.1 Related work
Consider the smooth convex optimization problem

min{f(x) | x ∈ Ω} (1.1.1)

where Ω is a compact and convex subset of Rn, f is a continuously differentiable
convex function, and we define X∗ ⊂ Ω as the set of solutions.
Among many first order algorithms to solve this problem the FW algorithm, first
introduced in 1956 by Marguerite Frank and Philip Wolfe [21], has recently been the
subject of renewed interest.
There are two main properties of this algorithm that make it more suitable for many
smooth convex optimization problems than other first order optimization methods.
Let {xk}k∈N be the sequence generated by the FW method. The first property is
that xk is the convex combination of at most k "elementary" points, and for many
problems this means that the FW method can find efficiently e.g. low rank and sparse
solutions. The second property is that the main computational cost of each iteration
comes from solving a problem with linear objective to compute the search direction,
that is

dFWk = y − xk with y ∈ argmin{(∇f(xk), y) | y ∈ Ω} (1.1.2)
When Ω is a polytope computing dFWk becomes a LP problem, which is often cheaper
than projecting on Ω. FW like algorithms have been successfully applied to optimiza-
tion over polyhedral sets in submodular function optimization [1], structured SVM
learning [35] and variational inference problems [31]. For these problems the feasible
region is represented as the convex hull of a finite set of points. However, FW like
algorithms have also been applied to smooth optimization over non polyhedral sets
for instance in matrix completion [22] and metric learning [14] problems.
The main thread of the thesis is proving convergence properties for some popular
variations of the classic FW method. The theoretical analysis of FW like algorithms
is currently a very active area of research, where much work has been done to prove
that FW variants can match the convergence rate of other first order methods. In
this thesis we prove not only general convergence rates for the value of the objective
function, but also results about active set complexity.
We now discuss the convergence results for FW like algorithms most relevant to the
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thesis, while we refer the reader to [23] for a more detailed summary.
One of the drawbacks of the classic FW algorithm is its slow theoretical convergence
rate on convex compact sets of O(1/k) [21], which can be tight even for polytopes
and quadratic objective functions when the solution is on the boundary [13].
The slow convergence rate of the FW algorithm when the solutions are a subset of
the boundary is due to the fact that as the algorithm approaches the boundary the
search directions can become almost orthogonal to the gradient, and the sequence
{xk}k∈N then forms a slow converging zig-zag pattern. To address this problem Wolfe
[42] formulated the away step FW (AFW), which at every step choses between the
classic FW direction given by (2.5.68) and an alternative search direction

dAWk = xk − y with y ∈ argmax{(∇f(xk), u) | u ∈ Sk} (1.1.3)

where Sk ⊂ Ω is such that xk ∈ conv(Sk) and |Sk| ≤ k. It was proved only recently
([33], [34]) that the AFW has a linear convergence rate on polytopes for µ - strongly
convex objectives with L− Lipschitz differential. This rate depends from the condi-
tion number of the objective µ

L
and from a certain parameter PdirW(Ω) determined

by the polytope. This result was then extended to other FW variants and also for
objective of the form f(x) = g(Ax) + (b, x) with g strongly convex [3]. Later [39]
several equivalent characterization for PdirW(Ω) were proved.
As for non polyhedral sets, a convergence rate of O( 1

k2 ) was proved for the classic
FW method applied to strongly convex functions on strongly convex sets [23]. In
order to interpolate between the convergence rate in the general convex case and the
convergence rate of the strongly convex one the Holderian error bound condition

f(x)− f ∗ ≥ γdist(x,X∗)p (1.1.4)

was used in the recent works [44], [30] where γ > 0, p ≥ 1 and f ∗ is the minimum
of f |Ω. Finally, for non convex smooth functions a convergence rate of O( 1√

k
) was

proved [32] for the FW gap

gFW (xk) = (∇f(xk), xk)−min{y ∈ Ω | (∇f(xk), y)} (1.1.5)

The active set identification problem (AS identification problem) is broadly speaking
identifying the manifold containing the set of minimizers or more in general a certain
subset of stationary points. In this thesis we focus on a geometric definition for the
AS identification problem. Given x̄ ∈ X∗ we say that the manifold containing x̄ is
the face EΩ(−∇f(x̄)) of Ω exposed by −∇f(x):

EΩ(−∇f(x̄)) = {x ∈ Ω | (−∇f(x̄), x− x̄) = 0} (1.1.6)

The set EΩ(−∇f(x̄)) is a face of Ω since by first order optimality conditions

(−∇f(x̄), x− x̄) ≤ 0 ∀ x ∈ Ω (1.1.7)

When f is convex it is not difficult to see that EΩ(−∇f(x)) does not depend on the
particular x ∈ X∗, so that we can define the support of X∗ as AΩ

f = EΩ(−∇f(x)) for
any x ∈ X∗. A sequence generated by a certain method identifies a support if the
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sequence generated by the method is definitely in the support.
The projected gradient algorithm applied to convex functions on polytopes identifies
AfΩ in finite time ([11], [12]). An analogous result was recently proved for the AFW
and the PFW [9] using hypotheses on f weaker than strong convexity but which
are not implied by convexity alone (and conversely). Another possible approach to
identify a support is to combine a first order method with an AS strategy which can
identify the support of a solution once the sequence is close enough to that solution,
improving the value of the objective at the same time. Such a strategy was recently
defined on the simplex [18] and can be generalized to polytopes when combined with
an affine invariant method like the FW or the AFW methods.

1.2 Contributions
We now describe the original contributions of this thesis chapter by chapter.

Chapter 2. We analyze the FW method with in face directions (FDFW), which was origi-
nally introduced for polyhedral sets [27], but which we apply to general convex
sets. A variation of this method was recently applied to matrix completion
problems, with numerical results showing that it outperforms other FW vari-
ants [22]. For every k the algorithm choses its search direction between the FW
one and another feasible for the minimal face of Ω containing xk. Our main rea-
son for choosing this method is that the AFW linear convergence rate property
does not seem to extend to non polyhedral sets, as observed by Lacoste-Julien
and Jaggi in their article proving linear convergence for the AFW on polytopes
[34]. Instead we prove that the FDFW has a linear convergence rate not only
on polytopes, but also on a class of strictly convex sets. As for the AFW, this
linear convergence rate depends on the condition number of f and on a param-
eter determined by the geometry of the feasible set Ω, which we call NW(Ω).
In particular when f is strongly convex with Lipschitz gradient we have lin-
ear convergence whenever NW(Ω) > 0. The idea behind the proof is basically
that NW(Ω) is designed to ensure that the slope along the direction computed
by the FDFW is at least a fraction depending on NW(Ω) of the highest slope
possible among all feasible descent directions. These properties of slopes then
translate to a linear convergence rate because f(xk)−f(x∗) and f(xk)−f(xk+1)
can be upper and lower bounded proportionally to the slope of −∇f(xk) along
x∗ − xk and xk+1 − xk respectively for x∗ ∈ X∗. We prove that for polytopes
NW(Ω) ≥ PdirW(Ω)

2D with D = diam(Ω) applying the alternative characterization
of PdirW(Ω) recently proved in [39]. Then we prove NW(Ω) > 0 also for some
strictly convex sets including those whose boundary looks locally like a sphere.
We do this by giving a lower bound on NW(Ω) with an expression involving
the variation of

lΩ,x̄(d) = max{λ ∈ R≥0 | x̄+ λd ∈ Ω} (1.2.1)

for a fixed x̄ ∈ ∂Ω as a function of dist(d, TΩ(x̄)c), where TΩ(x̄) is the tangent
cone to Ω in the point x̄ and d can vary in ∂B(0, 1).
In the convergence analysis we assume the Holderian error bound condition
(1.1.4) to interpolate between the O( 1

k
) and the O(e−λk) rates of the general
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and strongly convex case respectively.
The main drawback of the FDFW is that even its "simplest" variant needs
oracles for maximal feasible step sizes and linear optimization in the minimal
face containing the current iterate. These oracles may be very expensive when
Ω is represented as the convex hull of a finite number of points. In this setting
we show how at least in theory computing these oracles can be reduced to other
well known optimization problems.

Chapter 3. We first prove the equivalence between the geometric definition of support in-
troduced in section 1 and an algebraic one based on non zero Lagrangian mul-
tipliers in some KKT like optimality conditions. Then we prove several AS
related results for first order algorithms. First, we give a new proof for the
projected gradient method finite time AS identification with explicit estimates
using a property of polyhedral cones, that is the bijection between faces of a
cone and faces of the dual cone given by the orthogonality mapping. Our proof
however still needs the Moreau-Yosida lemma used in the original proof. We
then prove finite time AS identification for non convex objectives for the AFW
and the PFW methods assuming convergence to a subset of X∗ with constant
support.

Chapter 4. In this chapter we give explicit estimates for the AS identification complexity
of the AFW on polytopes. We work considering as feasible region the simplex
and then prove analogous results for generic polytopes mainly using the affine
invariance of the AFW. With respect to the recent work done on AFW com-
plexity [9] our main improvement is removing the additional assumptions on
f , which in our work can be any function with Lipschitz gradient. We also
give explicit bounds for the AS radius as a function of the Lipschitz constant
of ∇f(x) and the value of Lagrangian multipliers. This AS radius is the radius
of a ball centered on a point x∗ ∈ X∗ inside which the AFW identifies "quickly"
the support of x∗. We give a lower bound for the AS radius by approximating
the optimal value of a related linear programming problem. As in [9], we make
an additional assumption on the set of accumulation points for {xk}k∈N which
generalizes convergence to a strict minimum. Finally, we obtain a general AS
complexity bound that we combine to AFW converge rates for both strongly
convex and non convex objectives to prove more explicit AS complexity bounds
in these particular settings.
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Chapter 2

A FW like algorithm with linear
convergence on non polyhedra

The classic Frank Wolfe algorithm has a theoretical convergence rate of O(1/t)
for convex functions on convex sets. This rate is known to be tight on polytopes.
At the same time, many variants of the Frank Wolfe algorithm have recently been
shown to have a global linear convergence property on polytopes for strongly convex
objectives. However, there are not many results concerning FW-like algorithms on
non polytopes that give faster convergence rates using only the condition number of
the objective and the geometry of the set.
In this chapter we analyze an algorithm which at each step chooses between the
classic FW direction and an alternative direction in the minimal face containing the
current iterate. We prove that our algorithm has global linear convergence rate for
strongly convex objectives not only on polytopes, but also on a class of convex sets
including strictly convex sets whose boundary locally looks like a sphere.

2.1 Introduction
The main focus of this chapter is to study the convergence rate of the in face

directions FW method (FDFW) not only on polytopes, but also on a class of strictly
convex sets. Following the techniques already used in [34], [39] and [33] for polytopes,
we prove a linear convergence rate for strongly convex objectives. This rate depends
on a parameter which we call normalized width resembling the pyramidal width
defined for the first time in [33]. In [23] a convergence rate of O(1/t2) was proved
for the classic FW algorithm on strongly convex sets for strongly convex functions.
Our results can be viewed as an improvement of the convergence rate for a FW like
algorithm on a class of strictly convex sets.
In section 2.2 we describe the FDFW algorithm and analyze several way to choose the
in face directions. In section 2.3 we recall a few key definitions and basic properties
of Holderian error bounds. In section 2.4 we give bounds for the normalized width
on polytopes and a class of strictly convex sets. In section 2.5 we compute the
convergence rate of the FDFW as a function of the Holderian error bound on the
objective. In the appendix we recall a few useful theorems and definitions concerning
convex sets and generalize part of our analysis to reflexive Banach spaces.
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2.1.1 Notation
In the rest of the thesis Ω will be a compact and convex set unless specified

otherwise, f ∈ C1(Ω) a convex function with min f |Ω = f ∗ and argminf |Ω = X,
ĉ = c/‖c‖ for c ∈ RN/{0}, ·̂ will always denote a vector in the unit euclidean ball;
for x̄ ∈ Ω we define TΩ(x̄) as the tangent cone to Ω in x̄ (see subsection 5.1 of the
appendix for some useful properties), and we also define F(x) as the minimal face of
Ω containing x. We will indicate with ∆n the n− dimensional simplex ∆n = {x ∈
Rn
≥0 | ‖x‖1 = 1}. Finally, for a convex set C and a vector r ∈ Rn we define π(C, r)

as the projection of r on C.

2.2 FW method with in face directions
The in face direction FW method (FDFW) was introduced for the first time in

[27] for polytopes represented as Ω = {x ∈ Rn \ {0} | Ax = b, x ≥ 0}. Thanks to a
simple geometric interpretation relying on the concept of minimial face it can easily
be extended to generic compact convex sets. It is a FW method in the sense that its
most expensive component (at least on polytopes) is the linear minimization oracle

LMOC(r) ∈ argminx∈C(r, x) (2.2.1)

where C can vary among the faces of Ω.
However, it also needs a stepsize oracle

αmax(x̄, d) = max{α ∈ R | x̄+ αd ∈ Ω} (2.2.2)

for x̄ ∈ Ω, d ∈ Rn. This oracle gives the maximal feasible step in the direction d from
x̄. Notice that if Ω = {x ∈ Rn | Ax ≤ b} then

αmax(x̄, d) = min{bi − Aix̄
Aid

| Aid > 0} (2.2.3)

The FDFW, with new strategies to select the in face direction, was recently applied
in [22] to the matrix completion problem. Some variants of the algorithm performed
significantly better than the FW and the away step FWmethods on the test problems.

Table 1: FW method with in face directions
1. Let x0 ∈ Ω
2. for k = 0...T do
3. Let sk := LMOΩ(∇f(xk)) and dFWk := sk − xk
4. Select dAk such that xk + dAk ∈ aff(F(xk)) and (∇f(xk), dAk ) ≤ 0
5. if gFWk := (−∇f(xk), dFWk ) ≤ ε then return xk
6. Choose dk ∈ {dAk , dFWk } using a suitable criterion.
7. if dk = dFWk then αmax := 1
8. else αmax := max{α ∈ R | xk + αdAk ∈ Ω} = αmax(xk, dk)
9. end if
10. Choose αk ∈ [0, αmax] using e.g. line search.
11. Update xk+1 := xk + αkdk
12. end for
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In table 1 a general scheme for the FDFW is described. In steps 3 and 4 the classical
FW directions and the facial direction are computed respectively. In step 5 we have
the stopping criterion with ε representing the desired precision on the objective:
indeed it follows immediately from the properties of convex functions that

gFWk = (−∇f(xk), dFWk ) ≥ f(xk)− f ∗ (2.2.4)

In step 6 the algorithm chooses between the facial direction and the classic FW
direction according to a suitable criterion, while in step 7 to 10 the algorithm defines
the step size which of course must never be greater than the maximal feasible step.
It remains to specify how to select dAk and how to choose between dFWk and dAk .
Broadly speaking, there are two possible reasons to look for an alternative direction
dAk . The first is that the classical FW direction can be almost orthogonal to the
gradient, so that a line search along the alternative direction dAk can guarantee a
greater decrease of the objective function. The second reason is that since xk + dAk
is in F(xk) a maximal step along dAk always decreases the dimension of the minimal
face containing the current iterate. This is particularly useful whenever the solution
x̄ lies in a low dimensional face, since in this setting a FDFW method can hopefully
identify F(x̄) in a finite number of steps.
We now describe three ways to define dAk . The first is

dAk = xk − xA with xA ∈ argmax{(∇f(xk), x) | x ∈ F(xk)} (2.2.5)

This choice is strictly related to the away direction selected by the AFW method.
Indeed, if we further impose that dAk = qk − xk with qk a vertex of F(xk), then dAk is
an away direction with respect to the active set of atoms formed by all the vertexes
in F(xk).
Finally, one can always select the steepest descent direction possible in F(xk), which
is

dAk = xp − xk with xp = πaff(F(xk))(xk −∇f(xk)) (2.2.6)
This can be convenient when it is possible to compute the projection on aff(F(xk))
quickly, for instance when F(xk) has low codimension.
As for the criterion to choose between dAk and dFWk , one can either compare the slopes

if (−∇f(xk),
dFWk
‖dFWk ‖

) ≥ (−∇f(xk),
dAk
‖dAk ‖

) then dk = dFWk , else dk = dAk (2.2.7)

or even without normalizing

if (−∇f(xk), dFWk ) ≥ (−∇f(xk), dAk ) then dk = dFWk , else dk = dAk (2.2.8)

with no significant differences in the theoretical analysis. To try and decrease quickly
the dimension of F(xk) a more aggressive strategy can be

if f(xk + αmax(xk, dAk )dAk ) ≤ f(xk) then dk = dAk , xk+1 = xk + αmax(xk, dAk )dAk
(2.2.9)

followed by (2.2.7) or (2.2.8) whenever the condition f(xk +αmax(xk, dAk )dAk ) ≤ f(xk)
is not satisfied.
As for the step size, we need a strategy that guarantees either a maximal step or a
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decrease of the objective function proportional to the square of the slope along the
descent direction. To this aim we can either use linesearch or compute the step size
with the formula

αk = min((−∇f(xk), dk)
‖dk‖2L

, αmax) (2.2.10)

2.3 Error bounds
A very common hypothesis used in convex optimization to obtain faster conver-

gence results is strong convexity. However, this hypothesis leaves a gap between the
slow convergence rate of the general convex case and the fast convergence rate of
the strongly convex one. In order to interpolate between these convergence rates one
possibility is to use Holderian error bounds [8]. We now recall that for y ∈ Rn and
A ⊂ Rn the point set distance dist(y, A) is defined as

dist(y, A) = inf{‖y − z‖ | z ∈ A} (2.3.1)

A continuous function g : Rn → R is said to satisfy an error bound condition on the
set Ω if it has minimum g∗ with nonempty set of minimizers S and

w(g(x)− g∗) ≥ dist(x, S) (2.3.2)

for every x ∈ Ω for some increasing w : R→ R with w(0) = 0. When w(x) = βxθ so
that

β(g(x)− g∗)θ ≥ dist(x, S) (2.3.3)
with 0 ≤ θ < 1, β > 0 the error bound is said to be Holderian. When θ > 0 this
condition is sometimes written as

g(x)− g∗ ≥ γdist(x, S)p (2.3.4)

for some γ > 0 and p = 1/θ. In the recent work [30] the Holderian error bound hy-
pothesis was applied to the analysis of an AFW variant on polytopes. Convergence
rates of O(1/k

1−θ
1−2θ ) for 0 ≤ θ < 1/2 and O(e−Ck) for θ = 1/2 were proved. These

results, which can also be proven for the classic AFW with the same techniques,
interpolate between the already well known O(1/k) rate in the general convex case
and the linear rate of the strongly convex one. Analogously, in [44] Holderian error
bounds were used to interpolate between the classic FW method O(1/k) rate for gen-
eral convex functions and the O(1/k2) rate for strongly convex functions on strongly
convex sets.
We now recall a few relevant facts about error bounds. For a more exhaustive refer-
ence with many examples of applications we refer the reader to [8].
A very important class of functions satisfying error bounds is that of semialgebraic
functions, for which the Łojasiewicz’s inequality implies an Holderian error bound
condition.

Theorem 2.3.1 (Łojasiewicz’s inequality). Let Ω be a closed and bounded semi-
algebraic set, f and g two continuous semialgebraic functions from Ω to R such that
f−1(0) ⊂ g−1(0). Then there exists an integer N > 0 and a constant c ∈ R such that
|g|N ≤ c|f | on Ω.
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This is a classical result and a reference is for instance [7], Corollary 2.6.7. We
have the following corollary:

Corollary 2.3.2. Let Ω be a compact semialgebraic set and f : Ω → R a semialge-
braic continuous function. Let S = argminf and f ∗ = min f . Then for some N ∈ N
and γ0 > 0

γ0dist(x, S)N ≤ f(x)− f ∗ (2.3.5)

for every x ∈ Ω.

Proof. Since S is a semialgebraic set dist(x, S) : Ω → R is a semialgebraic function.
Now let f̄ = f(x) − f ∗. We have dist(x, S)−1(0) = S = f̄−1(0). We can then apply
Łojasiewicz’s inequality to dist(x, S) and f̄(x) and obtain (2.3.5) with γ0 for instance
equal to 1

c+1 .

When f is a convex piecewise polynomial we have the following Holderian error
bound condition on sublevel sets:

Theorem 2.3.3. ([8], Proposition 8) Let f : Rn → R be a piecewise convex polyno-
mial with degree d. Suppose that argminf 6= ∅. Then, for any r ≥ inf f there exists
γr > 0 such that

γrdist(x, argminf)N ≤ f(x)− f ∗

for every x ∈ Ωr = {x | f(x) ≤ r} and for N = (deg(f)− 1)n+1 + 1.

In order to study the connection between error bounds and ∇f |Ω we need to
introduce the restriction fΩ : Rn → (−∞,∞] of f to Ω given by

fΩ(x) = f(x) + iΩ(x) (2.3.6)

where iΩ is the indicator function of Ω:

iΩ(x) =

0 if x ∈ Ω
+∞ if x /∈ Ω

(2.3.7)

The function fΩ(x) is of course not differentiable in Rn even when f is, but we can
still relate its subgradient to error bounds using the subgradient norm:

Definition 2.3.4. For every x ∈ Ω the norm of the subgradient ∂fΩ(x) is defined as

‖∂fΩ(x)‖ = min
y∈∂fΩ(x)

‖y‖ (2.3.8)

The following proposition relates ‖∂fΩ(x)‖ to −∇f(x) using the tangent cone
TΩ(x) to Ω.

Proposition 2.3.5. For every x ∈ ∂Ω we have

‖∂fΩ(x)‖ = ‖π(TΩ(x),−∇f(x))‖ (2.3.9)
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Proof. Since ∂iΩ(x) is equal to the normal cone NΩ(x) and fΩ(x) = i(x) + f(x) we
have, by the calculus rules for the subdifferential, ∂fΩ(x) = ∂i(x) +∇f(x) so that

∂fΩ(x) = NΩ(x) +∇f(x) = NΩ(x)− (−∇f(x))

Thus ‖∂fΩ(x)‖ = miny∈NΩ(x) ‖y−(−∇f(x))‖ = dist(NΩ(x),−∇f(x)). Since TΩ(x) =
NΩ(x)d the conclusion follows from Lemma 5.1.10.

We can now prove an important relation between Holderian error bounds and a
condition on ∇f(x).

Proposition 2.3.6. Let 0 < θ ≤ 1.
For every x ∈ Ω if dist(x, argminf |Ω) ≤M(f(x)− f ∗)θ then

‖π(TΩ(x),−∇f(x))‖ ≥ (f(x)− f ∗)1−θ

M

Proof. Let x∗ be the projection of x in argminf |Ω so that ‖x−x∗‖ = dist(x, argminf |Ω)
and f(x∗) = f ∗. Then on the one hand by Lemma 5.1.10 we have

(−∇f(x), x∗ − x)
‖x∗ − x‖

≤ ‖π(TΩ(x),−∇f(x))‖ (2.3.10)

where by the definition of x∗

(−∇f(x), x∗ − x)
‖x∗ − x‖

= (−∇f(x), x∗ − x)
dist(x, argminf |Ω) (2.3.11)

On the other hand by convexity

(−∇f(x), x∗ − x) ≥ f(x)− f(x∗) = f(x)− f ∗ (2.3.12)

so that
(−∇f(x), x∗ − x)
dist(x, argminf |Ω) ≥

f(x)− f ∗
dist(x, argminf |Ω) (2.3.13)

Applying the error bound hypothesis we obtain

f(x)− f ∗
dist(x, argminf |Ω) ≥

(f(x)− f ∗)1−θ

M
(2.3.14)

The conclusion follows concatenating all the inequalities we proved from (2.3.14) to
(2.3.11) with the exception of (2.3.12).

The proposition above will allow us to use error bounds to prove converge rates
for the FDFW under some assumptions on Ω.
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2.4 The normalized width NW(Ω)

2.4.1 Motivation
For both step size strategies described in section 2.2 if the step k of a FDFW

method is non maximal it is easy to prove using the standard descent lemma

f(xk)− f(xk+1) ≥ 1
2L(−∇f(xk),

dk
‖dk‖

)2 (2.4.1)

In the unconstrained case the choice that maximizes the right hand side is the gradient
descent one, dk = −∇f(xk). Instead if we are constrained to pick feasible directions
we have

sup
y∈Ω

(−∇f(xk), y − xk)
‖y − xk‖

= ‖π(TΩ(xk),−∇f(xk))‖ (2.4.2)

(see Lemma 5.1.10 for a proof), and therefore

(−∇f(xk),
dk
‖dk‖

) ≤ ‖π(TΩ(xk),−∇f(xk))‖ (2.4.3)

For the directions selected by the FDFW we want to prove that

(−∇f(xk),
dk
‖dk‖

) ≥ h̄‖π(TΩ(xk),−∇f(x))‖ (2.4.4)

for some fixed 0 < h̄ ≤ 1 and for every xk ∈ Ω. Since by Lemma 2.3.6

‖π(TΩ(xk),−∇f(x))‖ ≥ (f(x)− f ∗)1−θ

M

under the Holderian error bound condition (2.3.3) we can then use (2.4.4) to give a
lower bound for the decrease of the objective function at every step.
This motivates the definition of normalized width.

2.4.2 The normalized width.
We will first define a parameter NWf (Ω) depending on f,Ω such that inequality

(2.4.4) holds with h̄ = NWf (Ω) for the FDFW with away directions. We will then
eliminate the dependence from f and define the normalized width NW(Ω) depending
only on the geometry of the set. This normalized width NW(Ω) will be a lower bound
for NWf (Ω), or in other words NWf (Ω) ≥ NW(Ω) for every convex f differentiable
in Ω.
Let

mr = argmax{(r, v) | v ∈ Ω}
and

Mr(x̄) = argmin{(r, v) | v ∈ F(x̄)}
Let

σ∗r(x̄) = inf{ (r, s− q)
‖s− x‖+ ‖q − x‖ | s ∈ mr, q ∈Mr(x̄)} (2.4.5)
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Let πx̄(r) be the norm of the projection of r on the tangent cone to Ω in x̄:

πx̄(r) = max(0, sup
h∈Ω/{x̄}

(r, h− x̄
‖h− x̄‖

)) = ‖π(TΩ(x̄), r)‖

If πx̄(r) 6= 0 we define the directional normalized width of Ω in x̄ as

dirNW(Ω, x̄, r) = σ∗r(x̄)
πx̄(r)

Notice that when πx̄(r) 6= 0 we have x̄ /∈ mr by first order optimality conditions so
that the term ‖s− x‖ is bounded away from zero in (2.4.5). Therefore by continuity
and compactness the inf is actually a min and there exists s∗r ∈ mr, q∗r ∈Mr(x̄) such
that

(r, s∗r − q∗r)
‖s∗r − x‖+ ‖q∗r − x‖

= inf{ (r, s− q)
‖s− x‖+ ‖q − x‖ | s ∈ mr, q ∈Mr(x̄)} (2.4.6)

Finally we define NWf (Ω) as

NWf (Ω) = inf
x̄∈Ω\X

dirNW(Ω, x̄,−∇f(x̄)) (2.4.7)

and
NW(Ω) = inf

x̄∈Ω,
r:πx̄(r)6=0

dirNW(Ω, x̄, r) (2.4.8)

As anticipated NW(Ω) is a lower bound for NWf (Ω):

Proposition 2.4.1. For any convex f ∈ C1(Ω)

NWf (Ω) ≥ NW(Ω) (2.4.9)

Proof. By first order optimality conditions

π(−∇f(x̄), TΩ(x)) = 0 ⇐⇒ x̄ ∈ X (2.4.10)

so that

NWf (Ω) = inf
x̄∈Ω\X

dirNW(Ω, x̄,−∇f(x̄)) = inf
x̄∈Ω,

π(−∇f(x̄),TΩ(x̄)) 6=0

dirNW(Ω, x̄,−∇f(x̄))

≤ inf
x̄∈Ω

inf
r∈Rn,

π(r,TΩ(x̄))6=0

dirNW(Ω, ¯̄x, r) = NW(Ω)

As we will see later in this section NW(Ω) is greater than 0 not only for polytopes
but also for strictly convex sets satisfying a certain condition for every vertex. This
condition fundamentally imposes a bound on the variation of the width of Ω measured
from a vertex along directions at a fixed distance from the boundary of the tangent
cone. This boundedness property holds for instance for all sets whose boundary looks
locally like a sphere.
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This is interesting because when NW(Ω) > 0 using the same technique employed in
[33] for the AFW it is possible to prove linear convergence for the FDFW with away
directions for strongly convex functions with Lipschitz gradient.
Unfortunately there exists strongly convex sets with NW(Ω) = 0 even in R2. Building
a strongly convex set for which there actually is no linear convergence for the FDFW
seems more complicated.

Remark 2.4.2. the main properties of NW(Ω) still hold if we only consider the
vertexes maximizing or minimizing the linear function r.

2.4.3 Bounds for NW(Ω) on polytopes
We now prove a lower bound for NW(Ω) using the facial distance Φ(Ω) studied

in [39], which is also equal to the pyramidal width PWidth(Ω) studied in [34] (see
Theorem 2, [39]). Before proving the lower bound on NW(Ω) we briefly recall the
definition of the facial distance Φ(Ω).
Let A = [a1, ..., am] ∈ Rn×m a matrix with m columns; with a slight abuse of notation
we use A also to denote the set {a1, ..., am} ⊂ Rn . For x ∈ ∆n−1, we define I(x) as
the set of indexes greater than 0:

I(x) = {i ∈ {1, ..., n} : xi > 0} (2.4.11)

and
S(x) = {ai : i ∈ I(x)} (2.4.12)

For x, z ∈ ∆n−1 such that A(x − z) 6= 0 let d = A(x − z)/‖A(x − z)‖. We finally
define

Φ(A, x, z) = min
p∈Rm:(p,d)=1

max
s∈S(x),a∈A

(p, s− a), (2.4.13)

and
Φ(A) = min

x,z∈∆m−1:A(x−z)6=0
Φ(A, x, z) (2.4.14)

The analogy between dirNW(Ω, x, r) and Φ(A, x, z) is evident: in both definitions
x is used as a "center" from which we compute a certain minimum considering all
directions r with π(TΩ(x), r) 6= 0 and p with (p, d) = 1 for some d respectively.
We now prove an inequality relating these two quantities whenever Ω = conv(A).

Proposition 2.4.3. Let Ω = conv(A), where A = {a1, ..., am} is a finite set of vectors
in Rn, and assume diam(Ω) = D.
Then NW(Ω) ≥ Φ(A)

2D .

We begin with the following lemma:

Lemma 2.4.4. Under the hypotheses of proposition (2.4.3) for every x ∈ ∆m−1,
p ∈ Rn \ {0} there exists z ∈ ∆m−1 such that

(p,A(x− z)) > 0 (2.4.15)

if and only if
π(TΩ(Ax),−p) 6= 0 (2.4.16)

16



Proof. By Lemma 5.1.10 for every p ∈ Rn \ {0} we have

π(TΩ(Ax),−p) = max(0, sup
h∈Ω\{Ax}

(−p, h− Ax)
‖h− Ax‖

) = max(0, sup
z∈∆m−1:
A(x−z)6=0

(−p,A(z − x))
‖A(z − x)‖ )

(2.4.17)
where we used Ω = conv(A) to apply the substitution h = Az in the last equality.
The right hand side of (2.4.17) is greater than 0 if and only if (2.4.15) holds for some
z ∈ ∆m−1, from which the desired equivalence follows.

We now prove the result reported in Proposition 2.4.3.

Proof. In the rest of this proof

d = A(x− z)
‖A(x− z)‖ (2.4.18)

with x, z ∈ ∆m−1 and A(x− z) 6= 0. We have

Φ(A, x, z) def= min
p∈Rm:(p,d)=1

max
q∈S(x),s∈A

(p, q − s) = min
p∈Rm:(p,d)>0

max
q∈S(x),s∈A

(p, q − s)
(p, d)

Now Ω = conv(A) by hypothesis and S(x) ⊆ F(Ax) because Ax is a proper combi-
nation of the elements in S(x), which therefore are all in the minimal face of conv(A)
containing Ax. We then have

max
q∈S(x),s∈A

(p, q − s)
(p, d) ≤ max

q∈F(Ax),s∈Ω

(p, q − s)
(p, d) = (p, q−p − s−p)

(p, d) (2.4.19)

for any q−p ∈ argmax{(p, q) | q ∈ F(Ax)}, s−p ∈ argmin{(p, s) | s ∈ Ω}. Here we
are considering −p instead of p to keep the notation consistent with the one used in
the definition of NW(Ω) as it will be apparent later in the proof. Let ΠAx be the set
defined by

ΠAx = {r ∈ Rn \ {0} | ∃z ∈ ∆m−1 such that (r, Az − Ax) > 0}

By Lemma 2.4.15 we have

ΠAx = {p ∈ Rn \ {0} | π(TΩ(Ax),−p) 6= 0} (2.4.20)

We now rewrite Φ(A) switching two minimization operators.

Φ(A) = min
x,z∈∆m−1:
A(x−z) 6=0

Φ(A, x, z) = min
x,z∈∆m−1:
A(x−z) 6=0

min
p∈Rm:
(p,d)>0

(p, s−p − q−p)
(p, d)

= min
x∈∆m−1,
p∈ΠAx

min
z∈∆m−1:
(p,d)>0

(p, s−p − q−p)
(p, d) = min

x∈∆m−1
p∈ΠAx

min
z∈∆m−1:
(p,d)>0

(p, s−p − q−p)
(−p,−d)

(2.4.21)

We are now going to eliminate ∆m−1 from this expression. First we observe that
since Ω = conv(A)

{d ∈ Rn | d = A(x− z)
‖A(x− z)‖ , z ∈ ∆m−1} = { h− Ax

‖h− Ax‖
| h ∈ Ω, h 6= Ax}
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Then

min
x∈∆m−1
p∈ΠAx

min
z∈∆m−1:
(p,d)>0

(p, s−p − q−p)
(−p,−d) = min

x̄∈Ω
p∈Πx̄

min
h∈Ω,

(−p,h−x̄)>0

(p, s−p − q−p)‖h− x̄‖
(−p, h− x̄)

= min
x̄∈Ω

r:π(TΩ(x̄),r)6=0

min
h∈Ω, (r,h−x̄)>0

(r, qr − sr)‖h− x̄‖
(r, h− x̄)

(2.4.22)

where we used Ω = conv(A) to apply the substitution d = Ax−Az
‖Ax−Az‖ = x̄−h

‖x−h‖ in the
first equality. Now as a direct consequence of Lemma 5.1.10

min
h∈Ω\{Ax}

‖h− Ax‖
(r, h− Ax) = 1/ max

h∈Ω\{Ax}

(r, h− Ax)
‖h− Ax‖

= 1
‖π(TΩ(Ax), r)‖ (2.4.23)

for every r such that ‖π(TΩ(Ax), r)‖ 6= 0.
Therefore

min
x̄∈Ω

r:π(TΩ(x),r) 6=0

min
h∈Ω,

(r,h−Ax)>0

(r, qr − sr)‖h− x̄‖
(r, h− x̄) = min

x̄∈Ω
min

r:π(TΩ(x̄),r) 6=0

(r, qr − sr)
‖π(TΩ(x̄), r)‖ ≤

≤ min
x̄∈Ω

2DdirNW(Ω, x̄, r)
(2.4.24)

where the last inequality follows immediately from the definition of dirNW(Ω, x̄, r)
and D = diam(Ω):

2DdirNW(Ω, x̄, r) ≥ dirNW(Ω, x̄, r)(‖q∗r−x̄‖+‖s∗r−x̄‖) = (r, q∗r − s∗r)
‖π(TΩ(x̄), r)‖ = (r, qr − sr)

‖π(TΩ(x̄), r)‖
(2.4.25)

Concatenating (2.4.21), (2.4.22), (2.4.24) we get

Φ(A) ≤ min
x̄∈Ω

2DdirNW(Ω, x̄, r) = 2DNW(Ω) (2.4.26)

We now give a lower bound for NW(Ω) on polytopes as a function of simple
geometric properties of the polytope, using a result proved in [39] for Φ(A).

Corollary 2.4.5. Assume Ω = conv(A) with A = {a1, ..., am} ⊂ Rn, m ≥ 2 and let
D = diam(Ω). Then

NW(Ω) ≥ min
F∈faces(conv(A))
∅(F(conv(A)

dist(F, conv(A \ F ))/2D (2.4.27)

Furthermore, if F ∈ faces(conv(A)) minimizes the right hand side, then there exists
h ∈ conv(S), with S ⊂ A \ F , x̄ ∈ F such that

h ∈ argmaxy∈conv(S)(h− x̄, y), x̄ ∈ argminy∈Ω(h− x̄, y) (2.4.28)

and
NW(Ω) ≥ ‖h− x̄‖2D (2.4.29)
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Proof. By [39], Theorem 1 the right hand side in (2.4.27) is equal to Φ(A), so that
(2.4.27) is equivalent to Proposition 2.4.3 we just proved.
Again by [39], Theorem 1 there exists x, z ∈ ∆m−1 such that Az ∈ F , Ax ∈ conv(A \
F ) and

Φ(A) = max
s∈S(x)

a∈conv(A)

(p, s− a) = ‖Ax− Az‖ (2.4.30)

where p = A(x−z)
‖A(x−z)‖ . Let h = Az and x̄ = Ax, so that

p = x̄− h
‖x̄− h‖

(2.4.31)

We can then write

max
y∈conv(S)

(p, y)−min
a∈Ω

(p, a) = max
y∈conv(S)

a∈Ω

(p, y−a) = Φ(A) = (p,Ax−Az) = (p, x̄−h) = (p, x̄)−(p, h)

(2.4.32)
Since x̄ ∈ conv(S) and h ∈ Ω equating the first and the last term of (2.4.32) it follows
necessarily (2.4.28). Finally

‖h− x̄‖
2D = ‖Ax− Az‖2D = Φ(A)

2D ≤ NW(Ω) (2.4.33)

2.4.4 Bounds for NW(Ω) on strictly convex sets
In this section we define sufficient conditions for NW(Ω) to be greater than 0 on

strictly convex sets. In particular we will prove that NW(Ω) is greater than 0 on sets
whose boundary looks locally like a sphere. Remarkably, this particular hypothesis
on the boundary has already been used in a weaker form in [20] to prove linear
convergence for the classic FW method with the additional assumption of a unique
non singular minimum. This result together with the work in [19] about perturbations
on the feasible set provided a theoretical justification for the effectiveness of the FW
algorithm in highly constrained problems.
When computing NW(Ω) one can always assume that Ω is full dimensional. This is
not restrictive since NW(Ω) does not depend on the dimension of the space containing
Ω, as a corollary of the following proposition:

Proposition 2.4.6. Assume that T : aff(Ω) → Rdim(aff(Ω)) is an isometry. Then
NW(Ω) = NW(T (Ω)).

Proof. For a fixed x̄ in Ω and for every r ∈ Rn we have (r, z−x̄) = (π(aff(Ω), r), z−x̄)
for every z ∈ Ω, so that dirNW(Ω, x̄, r) = dirNW(Ω, x̄, π(aff(Ω), r)).Therefore in the
definition of NW the inf is taken on the same sets for Ω and T (Ω).

We now introduce the directional length function

Definition 2.4.7. For x̄ ∈ Ω we define lΩ,x̄ : TΩ(x̄)→ R≥0 as

lΩ,x̄(c) = sup{k ∈ R | x̄+ kc ∈ Ω} (2.4.34)
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This function is the fundamental block to define bounds for the NW(Ω) on strictly
convex sets. A few of its properties are proved in the appendix. Most notably, in the
interior of TΩ(x̄) it is the pointwise inverse of the Minkowski functional of Ω − {x̄}.
We remark that since we are assuming Ω compact the sup in (2.4.34) is actually a
max for c 6= 0.
The most general result in this section is that we can give a lower bound on NW(Ω)
using another geometric parameter which is possible to compute knowing the local
behaviour of Ω. Before stating the result it is convenient to define the main building
blocks of this parameter.

Definition 2.4.8. Let Ω be a compact strictly convex set and x̄ ∈ ∂Ω. We define
the following for 0 ≤ β ≤ δ ≤ 1.

lBΩ,x̄(β, δ) = sup{lΩ,x̄(ĉ) | β ≤ dist(ĉ, TΩ(x̄)c) ≤ δ}
lbΩ,x̄(β, δ) = inf{lΩ,x̄(ĉ) | β ≤ dist(ĉ, TΩ(x̄)c) ≤ δ}

(2.4.35)

Finally, for 0 < k ≤ 1 we define:

RΩ,x̄(k) = inf
0<δ≤1

lbΩ,x̄(kδ, δ)
lBΩ,x̄(0, δ)

(2.4.36)

Some motivation and properties of these functions are reported in the appendix.
We can now state the main theorem:

Theorem 2.4.9. Let Ω be a strictly convex set and let k = α/D, with α > 0 such
that there exists a ball of radius α contained in Ω. Assume that:

inf
x̄∈Ω

RΩ,x̄(k) = M > 0 (2.4.37)

for some k ≤ α/4D.
Then if Ω has width W and diameter D

NW(Ω) ≥ min{W2D,
M

2 }

We now introduce some notation to present an outline of the proof. We fix x̄ ∈ Ω
so that for simplicity we can write C instead of TΩ(x̄) and l instead of lΩ,x̄. We will
always use c to represent a generic vector in Rn/Cd, with {s(c)} = argmax{(c, y) | y ∈
Ω} and {q(c)} = argmin{(c, y) | y ∈ Ω}, where the argmax and the argmin are
singletons for the strict convexity of Ω. Since dirNW(Ω, x̄, c) does not change if we
multiply c by a positive scalar we can always consider ĉ instead of c. The point
p ∈ C \ {0} will be the projection of ĉ on C.
Even if the proof is rather long and technical, the main ideas are quite simple. In
order to bound NW(Ω) we need to bound dirNW(Ω, x̄, c) for every x̄ ∈ Ω and c such
that π(TΩ(x̄), c) 6= 0. We will distinguish two cases according to whether x̄ ∈ Ω◦ or
x̄ ∈ ∂Ω. In the first case it is rather straightforward to prove dirNW(Ω, x̄, c) ≥ W/2D
without using the hypothesis on RΩ,x̄. When x̄ ∈ ∂Ω the proof is more technical. In
this case the expression for dirNW(Ω, x̄, c) simplifies as

dirNW(Ω, x̄, c) = (c, s(c)− x̄)
‖p‖‖x̄− s(c)‖ (2.4.38)
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In order to give a lower bound to this quantity we first give an upper bound on
‖x̄ − s(c)‖ in terms of lB using a property of cones; then we give a lower bound on
(c,s(c)−x̄)
‖p‖ in terms of lb identifying a point s̃ in the form of x̄+ zl(z) such that

(c, (x̄ + zl(z)) − x̄) = (c, zl(z)) is "large enough". The theorem will finally follow
applying hypothesis (2.4.37).
In the rest of the proof δ∗(x̄) = max{dist(d̂, TΩ(x̄)c)/{0} | d ∈ TΩ(x̄) \ {0}} is the

Figure 2.1: Configuration of the proof when x̄ is on ∂Ω.

maximum distance of a unitary vector in TΩ(x̄) from the border of the cone. We will
use δ∗ instead of δ∗(x̄) when x̄ will be obvious from the context.

Proof. Since Ω contains a ball of radius α we haveW > 2α by monotony of the width
function.
Furthermore, if q + x̄ ∈ Ω such that B(q + x̄, α) ⊂ Ω then B(q, α) ⊂ Ω − {x} ⊂ C
and as a consequence

δ∗ ≥ dist(q̂, Cc) = 1
‖q‖

dist(q, Cc) ≥ 1
D
dist(q, Cc) ≥ dist(q, (Ω− {x})c)

D
≥ α

D
(2.4.39)

We now distinguish two cases according to the position of x̄.
Case 1: x̄ ∈ Ω◦. Under this hypothesis (c, s(c) − q(c)) is simply the directional
width of Ω with respect to c, which is at most ‖c‖W . We also have πx̄(c) = ‖c‖ since
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x̄ ∈ Ω◦. Putting together these properties we can conclude

dirNW(Ω, x̄, c) = (c, s(c)− q(c))
πx̄(c)(‖s(c)− x̄‖+ ‖q(c)− x̄‖) ≥

W‖c‖
‖c‖(‖s(c)− x̄‖+ ‖q(c)− x̄‖) ≥

W

2D
(2.4.40)

Case 2: x̄ ∈ ∂Ω. Let δ = dist(ĉ, Cd) and s be the point maximizing c in Ω. Then
(c, s − x̄) > 0 so that by Proposition 5.1.4 ĉ ∈ Cd

δ implies that s − x̄ is not in C−δ
which means dist(ĉ, Cc) < δ. Therefore

‖s− x̄‖ ≤ max{l(ŵ) | dist(ŵ, Cc) < δ} (2.4.41)

We now recall that p is the projection of ĉ in C, so that ‖p‖ = δ by Lemma 5.1.2.
By Proposition 5.2.3 there exists v̂ ∈ C ∩ −Cd such that dist(v̂, Cc) = δ∗. Consider
the point

z = (1− δ

4)p̂+ δ

4 v̂

We want to show that (c, ·) decreases enough along the ray x̄+ λz, λ ≥ 0 before the
ray reaches the boundary of Ω.
By the concavity of Cc

dist(z, Cc) = dist((1− δ

4)p̂+ δ

4 v̂, C
c) ≥ (1− δ

4)dist(p̂, Cc) + δ

4dist(v̂, C
c) = δ∗δ/4

(2.4.42)
and by convexity of the norm

‖z‖ ≤ (1− δ

4)‖p̂‖+ δ

4‖v̂‖ ≤ 1 (2.4.43)

We can now use (2.4.42) and (2.4.43) to give a lower bound for dist(ẑ, Cc)

dist(ẑ, Cc) = dist(z, Cc)/‖z‖ ≥ δ∗δ/4 (2.4.44)

Again by convexity

dist(z, conv(0, p̂)) = dist((1− δ

4)p̂+ δ

4 v̂, conv({0, p̂}) ≤ δ

4dist(v̂, conv({0, p̂})) ≤ δ

4
(2.4.45)

By Proposition 5.2.3 we have (p, v) ≥ 0 so that

‖z‖ ≥ ‖(1− δ

4)p̂+ δ

4 v̂‖ ≥ ((1− δ

4)2 + (δ4)2) 1
2 ≥ 1√

2
>

1
2 (2.4.46)

and therefore

dist(ẑ, Cc) = dist(z, Cc)/‖z‖ < 2dist(z, Cc) ≤ 2dist(z, conv(0, p̂)) ≤ δ

2 (2.4.47)

where the second inequality is justified by 0, p̂ ∈ ∂C and we used (2.4.45) in the last
inequality.
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Now since p is the projection of ĉ on the cone C we have ĉ = p+p⊥, with (p⊥, p) = 0.
We apply this to bound (ĉ, ẑ):

(ĉ, ẑ) = 1
‖z‖

(ĉ, z) = 1
‖z‖

(ĉ, p̂+ δ

4(v̂ − p̂)) = 1
‖z‖

((p+ p⊥, p̂) + δ

4(ĉ, v̂ − p̂)) ≥

≥ 1
‖z‖

(‖p‖ − δ

4‖p̂− v̂‖) = 1
‖z‖

(δ − δ

4‖p̂− v̂‖) ≥
1
‖z‖

(δ − 2δ4) ≥ δ

2‖z‖ ≥
δ

2
(2.4.48)

By equations (2.4.47) and (2.4.44) we have

δ∗
δ

4 ≤ dist(ẑ, Cc) ≤ δ

2 (2.4.49)

which implies
l(ẑ) ≥ min{l(ŵ) | δδ∗/4 ≤ dist(ŵ, Cc) ≤ δ/2}

We give a lower bound for (s− x̄, ĉ) considering the point x̄+ zl(z) = x̄+ ẑl(ẑ) ∈ Ω:

(s− x̄, ĉ) = max
y∈Ω

(y − x̄, ĉ) ≥ (l(ẑ)ẑ, ĉ) ≥ δ

2 l(ẑ) (2.4.50)

where we applied (2.4.48) to bound (ẑ, ĉ) in the last inequality.
Notice that with these relations together with (2.4.41) we have lower and upper
bounds for every term appearing in the computation of dirNW(Ω, x̄, c).
Indeed, we can write

dirNW(Ω, x̄, c) = (ĉ, (q − x̄))
(‖p‖‖q − x̄‖) ≥

δ/2l(ẑ)
δ‖q − x̄‖

≥ 1
2

min{l(ŵ) | δ∗δ/4 ≤ dist(ŵ, Cc) ≤ δ/2}
max{l(ŵ) | dist(ŵ, Cc) ≤ δ}

≥

≥1
2

min{l(ŵ) | δ∗δ/4 ≤ dist(ŵ, Cc) ≤ δ}
max{l(ŵ) | dist(ŵ, Cc) ≤ δ}

≥ 1
2RΩ,x̄(δ∗/4)

(2.4.51)
and since RΩ,x̄ is monotone increasing with δ∗/4 ≥ α/4D by (2.4.39)

1
2RΩ,x̄(δ∗/4) ≥ 1

2RΩ,x̄(α/4D) (2.4.52)

We can now prove the thesis for x̄ ∈ ∂Ω taking the inf on both sides of inequality
(2.4.51)

inf
x̄∈∂Ω

c:π(TΩ(x̄),c)6=0

dirNW(Ω, x̄, c) ≥ inf
x̄∈∂Ω

1
2RΩ,x̄(δ∗(x̄)/4) ≥

≥1
2 inf
x̄∈∂Ω

RΩ,x̄(α/4D) ≥ 1
2 inf
x̄∈∂Ω

RΩ,x̄(k) ≥ M

2

(2.4.53)

where we used hypothesis (2.4.37) in the last inequality. Combining (2.4.53) with
inequality (2.4.40) we proved for case 1 we can finish the proof

NW(Ω) = inf
x̄∈Ω

c:π(TΩ(x̄),c) 6=0

dirNW(Ω, x̄, c) ≥ min(M2 ,
W

2D ) (2.4.54)
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Remark 2.4.10. A possibly weaker hypothesis alternative to (2.4.37) can be inf RΩ,x̄(δ∗(x̄)/4) =
M > 0.

Remark 2.4.11. In the proof above the largest possible α is the inradius of Ω, which
is the sup among the radii of the balls contained in Ω. As proved for instance in [26],
there always exists a ball inscribed in Ω with radius equal to the inradius of Ω.

Remark 2.4.12. As anticipated in the introduction, there exists strongly convex
subsets of R2 with NW(Ω) = 0. When Ω is not strictly convex, we conjecture that
if there exists a face F of Ω of dimension ≤ dim(Ω) − 2 such that around that face
Ω is strictly convex, then NW(Ω) = 0. The intuition behind this claim comes from
considering small directions orthogonal to F .

We now want to show that if Ω locally looks like a sphere, meaning that its second
fundamental form is positive definite, we have NW(Ω) > 0. We will assume that Ω
is smooth so that for every x ∈ Ω the tangent cone is a semi space, and there exists
a unique tangent plane TxΩ. To analyze the local behaviour of Ω we will intersect it
with compact cylinders Cx

r,ε contained in TΩ(x) with base TxΩ ∩ B(x, r) and height
ε. More explicitly, if πx is the projection on TxΩ

Cx
r,ε = {y ∈ TΩ(x) | ‖πx(y)− x‖ ≤ r, ‖y − πx(y)‖ ≤ ε} (2.4.55)

Having introduced this key elements we can state the main result of this section.

Theorem 2.4.13. Let r, ε, h > 0 be with the following property: for every x ∈ Ω the
set ∂Ω∩Cx

r,ε is the graph of a function f : B̄(x, ε)→ R≥0 with respect to TxΩ∩B̄(x, ε)
with f such that Lxh‖y‖2 ≤ f(y) ≤ Lx‖y‖2 for every y ∈ B̄(0, ε) and for some Lx > 0.
Then NW(Ω) > 0.

To prove the theorem we first need to bound the width diameter ratio RΩ,x̄ us-
ing the parameters we introduced. This is possible because thanks to the regularity
conditions we imposed on Ω we can give a lower and an upper bound of Ω in the
sense of inclusion. The lower and the upper bound on Ω will then translate in lower
and upper bound for the length of Ω measured along a fixed direction from a vertex.
Thanks to the radial symmetry of the bounds on Ω the upper and lower estimates for
this kind of directional length depend only on the angle between the direction and
the plane TxΩ. Therefore, we can use these estimates to bound RΩ,x̄.
In the rest of this section we use lx(c), lbx(δ) and lBx (δ) as shorthands for lΩ,x(c), lbΩ,x(δ, δ)
and lBΩ,x(δ, δ) respectively.

Lemma 2.4.14. Let D be the diameter of Ω, x̄ ∈ ∂Ω. Under the hypotheses intro-
duced in theorem 2.4.13:

1. For every 0 < δ ≤ 1:

lbx̄(δ) ≥


δ

Lx̄(1−δ2) for δ√
1−δ2 ≤ rLx̄h

min(r, ε, δ√
1−δ2 ) for δ

Lx̄(1−δ2) > rLx̄h
(2.4.56)

2. For δ such that

lBx̄ (δ) ≤


δ

Lx̄h(1−δ2) for δ√
1−δ2 ≤ rLx̄h

D for δ√
1−δ2 > rLx̄h

(2.4.57)
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Figure 2.2: ∂Ω behaves locally like the boundary of a sphere. The limit case of Lemma
2.4.14 with dist(ĉ, T0Ω) = s−1(hL0r) is represented.

3. Let s : [0, 1) → R≥0 be defined by s(δ) = δ√
1−δ2 , δ∗ = s−1(rLx̄h). For every

0 < k ≤ 1
RΩ,x̄(k) ≥ min( r

D
,
ε

D
,

kδ∗
Lx̄(1− k2δ2

∗)
,
kh(1− δ∗)

1− kδ∗
) (2.4.58)

Proof. Let ĉ be in the semispace TΩ(x̄) with δ = dist(ĉ, Tx̄Ω) ∈ (0, 1) ≤ δ. For λ > 0
small enough x̄+λĉ is in Ω◦ by property 5.1.9 of tangent cones. Therefore there exists
a unique λ̄ > 0 be such that x̄+ λ̄ĉ ∈ ∂Ω by strict convexity. We also have lx̄(ĉ) = λ̄.
Since the quantities involved in this theorem are invariant by isometry we can assume
without loss of generality Tx̄Ω = {x ∈ Rn | xn = 0} and x̄ = 0. In particular, our
original hypotheses imply in this setting that there exists f(x) : B̄(0, r)→ [0, ε] such
that

∂Ω ∩ C0
r,ε = graph(f) (2.4.59)

We now want to prove that
δ√

1− δ2
≤ rL0h (2.4.60)

implies λ̄ĉ ∈ C0
r,ε, or in other words that when (2.4.60) holds the second intersection

between the ray {λĉ | λ ≥ 0} and ∂Ω is in C0
r,ε. In order to show this it suffices to

prove that the second intersection λC ĉ of the ray {λĉ | λ ≥ 0} with ∂C0
r,ε is a point

below graphf . Indeed we then have λĉ ∈ Ω◦ ∩C0
r,ε for λ small enough, λC ĉ ∈ C0

r,ε \Ω
so that necessarily λ̄ĉ ∈ C0

r,ε ∩ ∂Ω with λ̄ ∈ (0, λC ] by convexity.
Let ĉ = (xc, yc) ∈ Rn−1×R so that ‖xc‖ =

√
1− δ2 and yc = δ. Then r√

1−δ2 ĉ = (x, y)
with ‖x‖ = r, y = r δ√

1−δ2 , and in particular f(x) ≥ r2L0h ≥ y by (2.4.60). Hence
(x, y) ∈ ∂C0

r,ε lies below graph(f) and by the above reasoning λ̄ ∈ (0, r√
1−δ2 ] with

λ̄ĉ ∈ C0
r,ε.

We can now use this fact to prove the estimates (2.4.56), (2.4.57).
1. If λ̄ĉ is not in C0

r,ε then

λ̄ = ‖λ̄ĉ‖ ≥ dist(0,Ω \ C0
r,ε) ≥ dist(0, TΩ(0) \ C0

r,ε) ≥ min(r, ε) (2.4.61)

It remains to consider the case λ̄ĉ ∈ C0
r,ε. In this setting we have by hypothesis

∂Ω ∩ C0
r,ε = graph(f), so that λ̄ĉ ∈ ∂Ω ∩ C0

r,ε = graph(f). Then if λ̄ĉ = (y, f(y)) we
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have
f(y)
‖y‖

= λ̄‖yc‖
λ̄‖xc‖

= ‖yc‖
‖xc‖

= δ√
1− δ2

(2.4.62)

and since f(y) ≤ L0‖y‖2 we deduce

δ√
1− δ2

‖y‖ = f(y) ≤ L0‖y‖2 ⇒ δ√
1− δ2L0

≤ ‖y‖ (2.4.63)

From this inequality together with (2.4.62) we can finally estimate

lx̄(ĉ) = λ̄ = ‖λ̄ĉ‖ = ‖(y, f(y))‖ = (‖f(y)‖2 + ‖y‖2) 1
2 ≥ ‖y‖√

1− δ2
≥ δ

L0(1− δ2)
(2.4.64)

Now if δ√
1−δ2 ≤ rL0h we proved that λ̄ĉ ∈ C0

r,ε. Therefore

lb0(δ) = min{l0(ĉ) | dist(ĉ, TxΩ) = δ} ≥ δ

L0(1− δ2) (2.4.65)

where we used (2.4.64) in the inequality. This proves the first case of (2.4.56).
In the other case, that is δ√

1−δ2 > rL0h, if λ̄ĉ is not in C0
r,ε we have l0(ĉ) ≥ min(r, ε)

by (2.4.61). If λ̄ĉ is in C0
r,ε then again l0(ĉ) ≥ δ

L0(1−δ2) . Putting together these two
bounds we get the second part of (2.4.56)

lb0(δ) = min{l0(ĉ) | dist(ĉ, TxΩ) = δ} ≥ min(ε, r, δ

L0(1− δ2)) (2.4.66)

2. If λ̄ĉ is not in C0
r,ε we can give the very rough bound

l0(ĉ) = λ̄ ≤ D

Otherwise again λ̄ĉ = (y, f(y)) with

δ√
1− δ2

= f(y)
‖y‖

≥ L0h‖y‖2

‖y‖
= L0h‖y‖ (2.4.67)

which implies

l0(ĉ) = λ̄ = ‖(y, f(y))‖ = (‖y‖2 + ‖f(y)‖2) 1
2 = (‖y‖+ δ2

1− δ2‖y‖
2) 1

2 ≤ δ

L0h(1− δ2)
(2.4.68)

We can now prove the bound (2.4.57). If δ√
1−δ2 ≤ rL0h then λ̄ĉ ∈ C0

r,ε so that

lB0 (δ) = min{l0(ĉ) | dist(ĉ, T0Ω) = δ} ≤ δ

L0h(1− δ2) (2.4.69)

If δ√
1−δ2 > rL0h then the bound

lB0 (δ) ≤ D (2.4.70)
is trivial.
3. It is straightforward to check that the bounds given in point 1. and 2. are
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increasing in δ. From this observation together with (2.4.56), (2.4.57) we get that if
δ√

1−δ2 > rL0h or equivalently δ > s−1(rL0h) = δ∗ then

lb0(kδ, δ)
lB0 (0, δ) = min{l0(ĉ) | kδ ≤ dist(ĉ, T0Ω) ≤ δ}

max{l0(ĉ) | 0 ≤ dist(ĉ, T0Ω) ≤ δ}
= min{lb0(τ) | kδ ≤ τ ≤ δ}

max{lB0 (τ) | 0 ≤ τ ≤ δ}
≥

≥min(r, ε, kδ/L0(1− k2δ2))
D

≥ min(r, ε, kδ∗/L0(1− k2δ2
∗))

D
(2.4.71)

If δ ≤ δ∗ then with the same reasoning
lb0(kδ, δ)
lB0 (0, δ) ≥

kδ/(L0(1− k2δ2))
δ/(L0h(1− δ2)) =

= kh(1− δ2)
1− k2δ2 ≥

kh(1− δ)
(1− kδ) ≥

kh(1− δ∗)
(1− kδ∗)

(2.4.72)

where in the last inequality we used that the term on the left is decreasing in δ and
that δ ≤ δ∗.
Recall that

RΩ,x̄(k) = inf
0<δ≤1

lbx̄(kδ, δ)
lBx̄ (0, δ) (2.4.73)

and since (2.4.71) together with (2.4.72) give a lower bound on the ratio independent
of δ and x̄ also point 3 follows putting together these two results.

This lemma allows us to easily prove the main theorem as a consequence of crite-
rion 2.4.9.

Proof. We first show that for any fixed k ∈ (0, 1] there exists Mk such that

inf
x̄∈Ω

RΩ,x̄(k) > Mk > 0 (2.4.74)

By (2.4.58) we haveRΩ,x̄(k) ≥ min1≤i≤4(ai(x̄)) where ai(x̄) is the i−th term appearing
in the min argument of (2.4.58). Then 1 ≤ i ≤ 4 it suffices to show that there exists
a lower bound M i

k > 0 for ai(x̄) independent from x̄. This is obvious for i = 1, 2.
We now show that Lx̄ is upper bounded. It follows immediately from the definitions
hLx̄r

2 ≤ ε ≤ D: indeed in the setting introduced in Lemma 2.4.58, which is not
restrictive with respect to the general case, we have hLx̄r2 ≤ min‖x‖=r f(x) ≤ ε
and ε ≤ D otherwise the distance between 0 ∈ Ω and the second intersection of
{λen | λ ≥ 0} with Ω would be greater than D. As a consequence, rLx̄h is bounded
so that δ∗(x̄) = s−1(rLx̄h) < m < 1 for every x̄ since s : (0, 1) → R>0 is a strictly
increasing bijection. Hence

a4(x̄) = kh
(1− δ∗(x̄))
1− kδ∗(x̄) ≥ kh(1− δ∗(x̄)) ≥ kh(1−m) = M4

k

As for i = 3 we have

a3(x̄) = kδ∗(x̄)
DLx̄(1− k2δ∗(x̄)2) ≥

kδ∗(x̄)
DLx̄

= krhδ∗(x̄)
s(δ∗(x̄)) =

= krh
√

1− δ∗(x̄)2 ≥ krh
√

1−m2 = M3
k

(2.4.75)

Since (2.4.74) holds with Mk = min1≤i≤4{M i
k}, we have all the hypotheses to apply

Theorem (2.4.36) and conclude NW(Ω) > 0.
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Remark 2.4.15. We spend a few words to illustrate how the bound conditions are
equivalent, under a few additional regularity assumptions, to the positive definiteness
of the second fundamental form of Ω.
Let f̃ : B̄(0, r) → R be the function whose graph locally represent ∂Ω with respect
to a tangent plane in a fixed point x̄.
When ∂Ω is a smooth submanifold of Rn, f̃ is smooth, so the bound condition
hLx̄‖x‖2 ≤ f(x) ≤ L‖x‖2 translate to a condition on the Taylor series of f̃ . We
will have, by the definition of tangent plane f̃(x) = 1

2x
TH(0)x + o(‖x‖2) with H(x̄)

the Hessian of f . Then the bound conditions hold if and only if the Hessian H(x̄)
is positive definite in 0. If this condition holds for every x̄ ∈ ∂Ω, then the second
fundamental form of Ω is positive definite. However, it should be noted that our
theorem requires also some uniformity condition on o(x).

Remark 2.4.16. Under the same hypotheses an analogous lemma to 2.4.14 holds if
hL‖x‖α ≤ f(x) ≤ L‖x‖α with α > 1. This seems to suggest that the bound we gave
for NW(Ω) could be adapted also for sets with a few "singular points" where different
bound conditions hold.
As an example, it is easy to check that the unit ball in every dimension respects the
quadratic bound conditions uniformly, so that NW(B(0, 1)) > 0. By the theorem
on polytopes, NW(Ω) > 0 also for the `1 and `∞ balls. However, it is not yet clear
whether NW(Ω) > 0 for every `α ball, α ≥ 1.

2.5 Convergence theorem
In this section we analyze the convergence rate of a FDFW method using away

directions as described in Table 2. In the appendix we explain how to extended the
analysis for other variations.
Before stating the converge theorem we prove a straightforward lemma which will
help us estimate the convergence rates:

Lemma 2.5.1. Let h0 > 0, 0 < β < 1, 1 ≤ r ≤ 2 and {hk}k∈N be a sequence
satisfying

hk − hk+1 ≥ βhrk (2.5.1)

Then

hk ≤

(1− β)kh0 if r = 1
( p
β
)pk−p if 1 < r ≤ 2

(2.5.2)

where p = 1
r−1 .

Proof. In the case r = 1 inequality (2.5.1) can be rewritten as

hk+1 ≤ (1− β)hk (2.5.3)

and the result follows by induction.
For 1 < r ≤ 2 let Hr(x) = ( p

β
)px−p with p = 1

r−1 . We have for every x > 0

H ′r(x) = −p( p
β

)px−p−1 = −β( p
β

)p+1x−p−1 = −βHr(x)r (2.5.4)
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By convexity

Hr(x+ 1) ≥ Hr(x) + (x+ 1− x)H ′r(x) = Hr(x) +H ′r(x) (2.5.5)

and applying (2.5.4) to the right hand side of (2.5.5) we get

Hr(x+ 1) ≥ Hr(x) +H ′r(x) = Hr(x)− βHr(x)r (2.5.6)

Let k0 = h0
β

−1/p so that Hr(k0) = h0. We will now prove by induction

hk ≤ Hr(k0 + k) (2.5.7)

for every k ∈ N0. For k = 0 equation (2.5.7) follows by the definition of k0. Assume
we have hk ≤ Hr(k+k0) for some k ∈ N, so that in particular hk = Hr(k+k0 +∆) for
some ∆ > 0 since Hr : R>0 → R>0 is decreasing and a bijection. Applying hypothesis
(2.5.1) we get

hk+1 ≤ hk − βhrk = Hr(k + k0 + ∆)− βHr(k + k0 + ∆)r (2.5.8)

and applying (2.5.6) to the RHS with x = k0 + k + ∆ we get

Hr(k + k0 + ∆)− βHr(k + k0 + ∆)r ≤ Hr(k0 + k + ∆ + 1) ≤ Hr(k0 + k + 1) (2.5.9)

where the last inequality follows from the fact that Hr is decreasing. Concatenating
(2.5.8) and (2.5.9) the inductive step is proved. We thus have for every k ∈ N

hk ≤ Hr(k0 + k) ≤ Hr(k) = ( p
β

)pk−p (2.5.10)

We assume here that f(x) has Lipschitz gradient

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ∀ x, y ∈ Ω (2.5.11)

and that it satisfies the Holder error bound condition

M(f(x)− f ∗)θ ≥ dist(x,X) ∀ x ∈ Ω \X (2.5.12)

where 0 < θ ≤ 1 and we recall that X is the set of minimizers for f .

Table 2: FDFW using the away directions
1. Let x0 ∈ Ω
2. for k = 0...T do
3. Let sk := LMOΩ(∇f(xk)) and dFWk := sk − xk
4. Let vk := LMOF(xk)(−∇f(xk)) and dAk := xk − vk
5. if gFWk := (−∇f(xk), dFWk ) ≤ ε then return xk
6. if (−∇f(xk), dFWk )‖dAk ‖ ≥ (−∇f(xk), dAk )‖dFWk ‖ then
7. dk := dFWk and αmax := 1
8. else
9. dk := dAk and αmax := max{α ∈ R | xk + αdAk ∈ Ω}
10. end if
11. αk = min( (−∇f(xk),dk)

‖dk‖2L
, αmax) minimize the upper bound of f

12. Update xk+1 := xk + αkdk
13. end for
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By Proposition 2.3.6 equation (2.5.12) implies

‖π(TΩ(x),−∇f(x))‖ ≥ (f(x)− f ∗)1−θ

M
∀ x ∈ Ω \X (2.5.13)

In our convergence rate estimates we will use only (2.5.13) and not (2.5.12) directly,
so that we could only assume (2.5.13) and prove the same convergence properties.
However, for θ > 0

M

θ
(f(x)− f ∗)θ ≥ dist(x,X) ∀ x ∈ Ω \X (2.5.14)

whenever (2.5.13) holds, so that the error bound conditions are actually necessary in
our convergence proof, up to the constant θ. For θ = 0 the error bound condition is
trivially satisfied by every continuous function f with M = diam(Ω).
If f is µ - strongly convex than for every x̄ ∈ X, x ∈ Ω

f(x)− f ∗ = f(x)− f(x̄) ≥ f(x) + (x− x̄,∇f(x̄)) + µ

2‖x− x̄‖
2 ≥ µ

2‖x− x̄‖
2 (2.5.15)

were in the last inequality we used (x − x̄,∇f(x̄)) ≥ 0 by first order optimality
conditions. We can rewrite (2.5.15) as√

2
µ

(f(x)− f ∗) 1
2 ≥ ‖x− x̄‖ ≥ dist(x,X) (2.5.16)

so that we retrieve the Holder error bound condition with θ = 1/2 and M = ( 2
µ
) 1

2 .
In the statement of the convergence theorem we will use

dim2(Ω) = max
F is a face of Ω

F(Ω

dim(F)

Theorem 2.5.2. Assume that f satisfies the error bound condition (2.5.12), that it
has L− Lipschitz gradient and that NWf (Ω) > 0. Then for the sequence generated
by the FDFW in Table 2:

f(xk)− f ∗ ≤

max( h0
2q(k) , ( 2pLM2

NWf (Ω)2 )pq(k)−p) for 0 ≤ θ < 1
2

max(1
2 , (1−

NWf (Ω)2

2M2L
))2q(k)h0 for θ = 1

2

(2.5.17)

for p = 1
1−2θ and q(k) = b k

2(dim2(Ω)+2)c. If
1
2 < θ ≤ 1 then hk = O( 1

2q(k) ).

The proof roughly follows the same steps of [39], Theorem 4 which proves linear
convergence for the AFW method on polytopes in the strongly convex case. We will
study how the decrease of the objective function f(xk)−f(xk+1) relates to the current
gap f(xk) − f ∗ in 3 possible cases. When αk < αmax the decrease can be related to
the square of the slope of −∇f(xk) along the descent direction dk. In turns this slope
can be related to the current gap using the error bound condition and the hypothesis
NWf (Ω) > 0. When dk = dFWk and αk = αmax = 1 the Lipschitz condition on the
gradient alone implies f(xk)− f(xk+1) ≥ 1

2(f(xk)− f ∗). Finally, when the algorithm
makes a maximal away step we cannot control how much f decreases because we can’t
give a lower bound on the size of the step. However, since under these conditions
F(xk+1) < F(xk) we can bound the number of maximal away steps as a fraction of
the total steps.
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Proof. Let hk = f(xk)− f ∗, rk = −∇f(xk) and pk = ‖π(TΩ(xk),−∇f(xk))‖. Let

mk = argmin{(∇f(xk), v) | v ∈ Ω}
Mk = argmax{(∇f(xk), s) | s ∈ F(xk)}

(2.5.18)

so that for the sk and vk selected by the minimization oracle we have sk ∈ mk and
vk ∈ Mk respectively. We divide our analysis in 3 cases, and for i = 1, 2, 3 introduce
the functions ni(k) giving the number of times that case i occurs in the first k steps.
We will assume from now on xk /∈ mk, otherwise gFWk = 0 and the algorithm stops
with f(xk) = f ∗ by first order optimality conditions.
Case 1: αk < αmax. Then the error bound condition (2.5.12) implies condition
(2.5.13) so that

h1−θ
k ≤Mpk (2.5.19)

Moreover by the standard descent lemma (see [6], proposition 6.1.2)

f(xk + αdk) ≤ f(xk) + α(∇f(xk), dk) + α2L

2 ‖dk‖
2 (2.5.20)

Minimizing the right hand side with respect to α we have that for α = αk

f(xk+1) = f(xk + αkdk) ≤ f(xk)−
1

2L‖dk‖2 (rk, dk)2 (2.5.21)

which bringing f(xk) on the left hand side becomes

hk − hk+1 ≥
1

2L‖dk‖2 (rk, dk)2 = 1
2L(rk,

dk
‖dk‖

)2 (2.5.22)

where we used hk − hk+1 = (f(xk) − f ∗) − (f(xk+1) − f ∗) = f(xk) − f(xk+1). Now
by definition

dirNW(Ω, xk, rk) = inf
s∈mk
v∈Mk

(s− v, rk)
(‖v − xk‖+ ‖s− xk‖)pk

= inf
s∈mk
v∈Mk

(s− xk − (v − xk), rk)
(‖v − xk‖+ ‖s− xk‖)pk

≤

≤ (sk − xk − (xk − vk), rk)
pk(‖vk − xk‖+ ‖sk − xk‖)

(2.5.23)
We now distinguish two cases. If dAk = 0 then dk = dFWk = sk − xk and

(sk − xk − (vk − xk), rk)
pk(‖vk − xk‖+ ‖sk − xk‖)

= (sk − xk, rk)
pk‖sk − vk‖

= (dk, rk)
pk‖dk‖

(2.5.24)

If dAk 6= 0 then

(rk,
dk
‖dk‖

) = max((rk,
dFWk
‖dFWk ‖

), (rk,
dAk
‖dAk ‖

)) (2.5.25)

and
1
pk

((sk − xk) + (xk − vk), rk)
‖sk − xk‖+ ‖vk − xk‖

= 1
pk

(dAk + dFWk , rk)
‖dAk ‖+ ‖dFWk ‖

≤

≤ 1
pk

max((rk,
dFWk
‖dFWk ‖

), (rk,
dAk
‖dAk ‖

)) = 1
pk

(rk,
dk
‖dk‖

)
(2.5.26)
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Now the left hand side of equations (2.5.24) and (2.5.26) is also an upper bound for
dirNW(Ω, xk, rk) by (2.5.23). Hence in both cases we have

dirNW(Ω, xk, rk) ≤
1
pk

(rk,
dk
‖dk‖

) (2.5.27)

and isolating the scalar product

pkdirNW(Ω, xk, rk) ≤ (rk,
dk
‖dk‖

) (2.5.28)

Since by definition NWf (Ω) ≤ dirNW(Ω, xk, rk)

pkNWf (Ω) ≤ (rk,
dk
‖dk‖

) (2.5.29)

We finally have

hk − hk+1 ≥
1

2L(rk,
dk
‖dk‖

)2 ≥ 1
2Lp

2
kNWf (Ω)2 ≥ NWf (Ω)2

2LM2 h2−2θ
k (2.5.30)

were we used (2.5.22) in the first inequality, (2.5.29) in the second inequality and
(2.5.19) in the third one respectively.

Case 2: αk = αmax = 1, dk = dFWk . First, notice that for any x∗ ∈ X

hk = f(xk)− f(x∗) ≤ (−∇f(xk), x∗ − xk) (2.5.31)

Now since by hypothesis dk = dFWk = sk − xk with sk ∈ mk = argminx∈Ω(∇f(xk), x)
we have (∇f(xk), x∗) ≥ (∇f(xk), sk) so that

(∇f(xk), xk − x∗) ≤ (∇f(xk), xk − sk) = (−∇f(xk), dk)

Combining this equation with (2.5.31) we obtain

hk ≤ (−∇f(xk), dk) (2.5.32)

Again by the standard descent lemma applied to f with center xk and α = 1

f(xk+1) = f(xk + dk) ≤ f(xk) + (∇f(xk), dk) + L

2 ‖dk‖
2

Since by the case 2 condition min( (−∇f(xk),dk)
‖dk‖2L

, 1) = αk = 1 we have

(−∇f(xk), dk)
‖dk‖2L

≥ 1⇒ −L‖dk‖2 ≥ (∇f(xk), dk) (2.5.33)

so that

hk−hk+1 ≥ f(xk)− f(xk+1) ≥ (−∇f(xk), dk) + L

2 ‖dk‖
2 ≥ −1

2(∇f(xk), dk) (2.5.34)

Concatenating (2.5.32) multiplied by 1/2 to this inequality we get hk − hk+1 ≥ 1
2hk.
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Case 3: αk = αmax, dk = dAk . Let DΩ(x̄) = dim(F(x̄)). Then since xk+1 = xk+dk
lies on the boundary of F(xk), we have DΩ(xk+1) ≤ DΩ(xk) − 1. Thanks to this
relation it is easy to see that there can not be dim2(Ω) + 2 consecutive case 3 steps.
Indeed, an easy induction shows that if the algorithm does j case 3 consecutive steps
from the iteration k to the iteration k + j − 1, then it produces a center xk+j such
that dim(F(xk+j)) ≤ dim2(Ω)− j + 1.

The analysis of case 3 proves that among dim2(Ω) + 2 consecutive steps there
must be at least one not in case 3, so that necessarily

n1(k) + n2(k) ≥ b k

dim2(Ω) + 2c (2.5.35)

In particular
max(n1(k), n2(k)) ≥ 1

2b
k

dim2(Ω) + 2c ≥ q(k) (2.5.36)

Let i(n) be the n−th index for which the step size is not maximal, or in other words
respecting the conditions of case 1. Notice that i(·) is defined on a subset I of N such
that |I| is the number of case 1 steps.
Using i(n) we can rewrite the number of case 1 step in the first k iterations as

n1(k) = max(n ∈ N0 | i(n) < k) (2.5.37)

Then
i(n1(k)) = i(max(n ∈ N0 | i(n) < k)) < k

i(n1(k) + 1) = i(max(n ∈ N0 | i(n) < k) + 1) ≥ k
(2.5.38)

We define j(n) analogously for case 2, so that

j(n2(k)) = j(max(n ∈ N0 | j(n) < k)) < k

j(n2(k) + 1) = j(max(n ∈ N0 | j(n) < k) + 1) ≥ k
(2.5.39)

By (2.5.36) at least one between n1(k) and n2(k) is greater than or equal to q(k).
If n1(k) ≥ q(k) then i(q(k)) ≤ i(n1(k)) < k, so that by monotonicity hk ≤ hi(q(k)).
Analogously if n2(k) ≥ q(k) then hk ≤ h(j(q(k))). Summarizing

hk ≤ max(hi(qk), hj(q(k))) (2.5.40)

We now examine what happens for θ varying in [0, 1).

0 ≤ θ < 1
2 . Then the sequence {ln}n∈I = {hi(n)}n∈I satisfies the hypotheses of

Lemma 2.5.1 with r = 2− 2θ and β = NWf (Ω)2

2LM2 . Indeed

ln+1 = hi(n+1) ≤ hi(n)+1 ≤ hi(n) −
NWf (Ω)2

2LM2 h2−2θ
i(n) = ln −

NWf (Ω)2

2LM2 l2−2θ
n (2.5.41)

by equation (2.5.30). Hence by Lemma 2.5.1

hi(qk) = lq(k) ≤ ( 2pLM2

N f (Ω)2 )pq(k)−p (2.5.42)
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with p = 1
1−2θ . Analogously since hj(q(k+1)) ≤ 1

2hj(q(k)) we have

hj(q(k)) ≤
1

2q(k)h0 (2.5.43)

Now using (4.6.3) and (4.6.10) to bound the right hand side of (2.5.40) we get exactly
the thesis for θ ∈ [0, 1

2).

θ = 1
2 . Let Ci be the set of indexes for which the method does a case i step, for

i = 1, 2. For every n ∈ C1 we have

hn+1 ≤ (1− NWf (Ω)2

2M2L
)hn (2.5.44)

and for every n ∈ C2

hn+1 ≤
1
2hn (2.5.45)

Since equations (2.5.44) and (2.5.45) hold for n1(k) and n2(k) distinct values of n
smaller than k respectively we get by induction

hk ≤ h0(1− NWf (Ω)
2M2L

)n1(k)(1
2)n2(k) ≤ h0 max(1

2 , (1−
NWf (Ω)
2M2L

))n1(k)+n2(k) ≤

≤ h0 max(1
2 , (1−

NWf (Ω)
2M2L

))2q(k)

(2.5.46)
1
2 < θ < 1. Let β = NWf (Ω)2

2LM2 and r = 2 − 2θ. Exactly as in the case 0 ≤ θ < 1
2 we

get equation (2.5.41)
ln+1 ≤ ln − βlrn (2.5.47)

We want to show that the sequence {ln}n∈I has at most (N−f ∗)/(β1/(1−r))+1 terms,
where N = supx∈Ω f(x). Since r < 1 we have ln − βlrn ≤ 0 for ln ≤ β1/(1−r).
For every n ∈ I different from sup I we have ln > β1/(1−r), otherwise ln+1 would be
≤ 0, contradicting the strict positivity of the sequence. Thus

ln+1 ≤ ln − βlrn ≤ ln − β
1

1−r (2.5.48)

for every n ∈ I \ sup I. By induction

0 ≤ ln+1 ≤ l1 − nβ
1

1−r ≤ N − f ∗ − nβ
1

1−r (2.5.49)

where we used l1 ≤ h0 = f(x0)− f ∗ ≤ N − f ∗. From (2.5.49) it follows immediately

n ≤ N − f ∗

β
1

1−r

and the uniform bound on the length of {ln}n∈I is proved.
We therefore have

n1(k) ≤ N − f ∗

β
1

1−r
= Nf,θ (2.5.50)

for every k ∈ N so that
n2(k) ≥ 2q(k)−Nf,θ (2.5.51)
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by (2.5.35) and consequently

hk ≤
h0

2n2(k) ≤
h02Nf,θ
22q(k) = O( 1

22q(k) ) (2.5.52)

When we start the algorithm from a vertex of Ω, we get the following result:

Corollary 2.5.3. If the algorithm in Table 2 starts from a vertex of Ω, then the same
results hold with

q(k) = k

2(dim2(Ω) + 2)

Proof. We will use the notation introduced in the proof of the main theorem. Since
the algorithm start from a vertex the first step must in the FW direction dFW0 , and in
particular not a case 3 step. Since there can be at most dim2(Ω)+1 case 3 consecutive
steps.

n1(k) + n2(k) ≥ 1 + b k − 1
dim2(Ω) + 2c ≥

k

dim2(Ω) + 2
The conclusion follows as in the main theorem.

If Ω is strictly convex then dim2(Ω) = 0 so we get the following:

Corollary 2.5.4. Assume Ω is strictly convex. Then the results of the main theorem
hold with q(k) = bk/4c.

For the simplex ∆n the estimate can be improved with an argument equiva-
lent to the one used originally in [34] for the AFW method: it is easy to see
that dim(F(xk+1)) ≤ dim(F(xk)) + 1 in case 1 and 2. As a consequence, when-
ever the algorithm starts from a vertex dimF(xk) = n1(k) + n2(k) − n3(k) so that
n1(k) + n2(k) ≥ n3(k) and the corollary below follows:

Corollary 2.5.5. Assume Ω = ∆n and that algorithm 1 start from a vertex. Then
the same results of the main theorem hold with q(k) = k/2.

2.5.1 Inexact oracles
. When dealing with inexact oracles the main obstacle to generalize Theorem

2.5.2 is that the approximated solution of the linear subproblem may be far from the
actual set of minimizers. As a consequence the slope along the approximated search
direction may be arbitrarily smaller than the slope along the actual search direction,
even for solvers with small error on the objective. Using more explicit equations, if
d̃k is the approximated search direction then (−∇f(xk), d̃k) ≈ (−∇f(xk), d̃k) does
not imply in general d̃k ≈ dk. Since ensuring that (−∇f(xk), d̃k

‖d̃k‖
) is large enough

is fundamental in the proof of Theorem (2.5.2), it becomes necessary to add the
assumption that xk + d̃k is close enough to the set of minimizers as a property of the
oracle. For this reason we will use an approximating oracle LMOC(r, δ, µ) ∈ C such
that

(r,LMOC(r, δ, µ))−min{(r, x) | x ∈ Ω} ≤ δ (2.5.53)
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and
dist(LMOC(r, δ, µ), argmin{(r, x) | x ∈ Ω}) ≤ µ (2.5.54)

for every r ∈ Rn, δ, µ > 0 and C varying among the faces of Ω. Before stating the
convergence theorem we show a couple of examples when this oracle may be possible
to build starting from "simpler" oracles.
Example 1. Assume that Ω is a polytope represented as {x ∈ Rn | Ax ≤ b}, and
that the linear minimization oracle can correctly identify the set of active constraints
I related to the problem min{(r, x) | x ∈ F} for every face F of Ω. Assume also that
the error in solving the corresponding linear system AIx = bI is at most ε, where
ε could be some function of the machine precision and the dimension of the prob-
lem. In other words assume that for every possible I representing a vertex we have
‖x̃−A−1

I bI‖ ≤ ε, where x̃ is the solution computed by the minimization oracle. Then
the error on the objective is at most (r, x̃)− (r, A−1

I bI) ≤ ‖r‖ε. If r = ±∇f(x) then
‖r‖ε = ‖∇f(x)‖ε ≤ Mε with M = maxx∈Ω ‖∇f(x)‖. In conclusion, if the approxi-
mated solutions of the linear system of active constraints are in Ω we have an oracle
LMOΩ(r, δ, µ) for every µ ≤ ε and δ ≤Mε.

Example 2. Assume that Ω is a strictly convex set, and assume that we have an
upper bound oracle

LMOu
Ω(r, δ) ∈ Ω, (2.5.55)

Then (see Proposition 5.5.1 of the appendix) there exists δ > 0 and a strictly increas-
ing function mΩ : [0, τ ]→ R≥0 such that mΩ(0) = 0 and

mΩ(δ) ≥ max
r∈Rn\{0}

dist(LMOu
Ω(r, δ‖r‖), argminx∈Ω(r, x)) (2.5.56)

for every δ ∈ [0, τ ].

Table 3: FDFW with approximated oracle
1. Let x0 ∈ Ω, (δ0, µ0) ∈ (0, 1)2, D > 0
2. for k = 0...T do
3. if (∇f(xk),LMOΩ(r, ε,D)) ≥ (∇f(xk), xk) then return xk
4. Set (d̃FWk , δk+1, µk+1) = ApDirections(∇f(xk), δk, µk, xk, Ω)
5. if (−∇f(xk),LMOF(xk)(−∇f(xk), ε,D)) ≥ (−∇f(xk), xk) then
6. Set (−d̃Ak , δ0, µ0) = ApDirections(−∇f(xk), δ0, µ0, xk, F(xk))
7. else: go to step 10
8. end if
9. if (−∇f(xk), d̃FWk

‖d̃FW
k
‖) ≥ (−∇f(xk), d̃Ak

‖d̃A
k
‖) then

10. d̃k := d̃FWk and αmax := 1
11. else
13. d̃k := d̃Ak and αmax := max{α ∈ R | xk + αd̃Ak ∈ Ω}
14. end if
15. αk = min( (−∇f(xk),d̃k)

‖d̃k‖2L
, αmax)

16. Update xk+1 := xk + αkd̃k
17. end for
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Table 4: procedure ApDirections (r, δ, µ, x, C)
1. Let d := 0, (ρ, β) ∈ (0, 1)2.
2. if δ < β(d, r) and µ < β‖d‖ return (d, δ, µ)
3. else:
4. δ := ρδ, µ := ρµ
5. d := LMOC(r, δ, µ)− x
6. Go to step 2.

This function mΩ gives an upper bound on the distance of LMOu
Ω(r, δ) from the

set of actual minimizers given the approximation error on the objective. We then
have an oracle

LMOu
Ω(r, δ, µ) = LMOu

Ω(r, δ)

for every µ ≥ m( δ
‖r‖), since by equation (2.5.56)

dist(LMOu
Ω(r, δ), argminx∈Ω(r, x)) ≤ m( δ

‖r‖
) (2.5.57)

In the algorithm described in Table 2 we use the procedure ApDirections which
guarantees

(−∇f(xk),
d̃k

‖d̃k‖
) ≥ β̄(−∇f(xk),

dk
‖dk‖

) (2.5.58)

whenever both the classical and the away FW directions are computed with β̄ ∈ (0, 1)
some function of the algorithm’s parameters. Notice that with respect to Table 2 we
anticipated the stopping criterion to step 3 and also inserted a preliminary condition
before computing the away step. These modifications are necessary to ensure finite
termination of the procedure ApDirections.

Lemma 2.5.6. If ε > 0, the procedure ApDirections terminates in a finite number of
iterations when called by the algorithm in Table 3.

Proof. We distinguish two cases. If (∇f(xk), xk) − miny∈Ω(∇f(xk), y) ≤ ε then the
algorithm in Table 3 returns xk at step 3 and does not call Apdirections. Otherwise,
let i be the number of cycles performed by an ApDirections instance called in step 4,
and let δ′i, d′i, µ′i be the values of δ, d, µ in cycle i. Then we clearly have δ′i = ρiδ′0 → 0
for i→∞. But then since r = ∇f(xk)

β(d′i, r) = (LMOC(∇f(xk), δ′i, µ′i)− xk,∇f(xk)) ≥
≥(∇f(xk), xk)−min

y∈Ω
(∇f(xk), y)− δ′i ≥ ε− δ′i > δ′i

(2.5.59)

where the last inequality holds for i large enough. The analysis for the instances
called by step 6 is completely analogous.

We can now prove a converge theorem analogous to the one proved for exact
oracles:
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Theorem 2.5.7. Assume that in the algorithm of Table 3 ε > 0. Then under the
hypotheses of Theorem 2.5.2 the algorithm stops after a finite number of iterations
M , and for 0 ≤ θ ≤ 1

2 it has the same convergence rate with

˜NWf (Ω) = 1− β
2 + 2βNW

f (Ω) (2.5.60)

instead of NWf (Ω) and 1+2β
2(1+β) instead of 1

2 as base of the exponential term.

Proof. First we have by Lemma 2.5.6 that the procedure ApDirections always termi-
nate in a finite number of iterations. We now claim that

(−∇f(xk), d̃FWk ) ≥ (−∇f(xk), dFWk )
1 + β

(2.5.61)

Indeed the return condition in the procedure ApDirections dictates

δk+1 ≤ β(d̃FWk ,−∇f(xk)) (2.5.62)

with
d̃FWk = LMOC(∇f(xk), δk+1, µk+1) (2.5.63)

But then

(−∇f(xk), dFWk ) = (∇f(xk), xk)−min{(∇f(xk), y) | y ∈ Ω} ≤
≤ (∇f(xk), xk − LMOC(∇f(xk), δk+1, µk+1,Ω)) + δk+1 ≤
≤ (∇f(xk), xk − LMOC(∇f(xk), δk+1, µk+1,Ω)) + β(−∇f(xk), d̃k) =
= (1 + β)(−∇f(xk), d̃k)

(2.5.64)
where we applied (2.5.62) and (2.5.63) in the last inequality and in the last equality
respectively.
With the same proof We also have

(−∇f(xk), d̃AWk ) ≥ (−∇f(xk), dAWk )
1 + β

(2.5.65)

whenever the condition in step 5 is satisfied.
As for dFWk , the return condition on Apdirections implies that there exists yk ∈
argmin{y ∈ Ω | (∇f(xk), y)} such that

‖xk + d̃FWk − yk‖ < β‖d̃FWk ‖ (2.5.66)

We can assume dFWk = yk − xk since the proof of Theorem 2.5.2 does not depend on
a particular oracle. Then equation (2.5.66) can be rewritten as

‖d̃FWk − dFWk ‖ < β‖dFWk ‖ (2.5.67)

which implies
1

‖d̃FWk ‖
≥ 1− β
‖dFWk ‖

(2.5.68)
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Again with the same proof
1

‖d̃AWk ‖
≥ 1− β
‖dAWk ‖

(2.5.69)

whenever the condition in step 5 is satisfied. To conclude we analyze a few details
about how the analysis of the 3 cases done in Theorem (2.5.2) adapts for this ap-
proximated algorithm.
Case 1: αk < αmax. Multiplying (2.5.61) by (2.5.68) we get

(−∇f(xk),
d̃FWk
‖d̃FWk ‖

) ≥ 1− β
1 + β

(−∇f(xk),
dFWk
‖dFWk ‖

) (2.5.70)

Whenever the condition in step 5 is satisfied reasoning analogously on d̃AWk and
passing to the max we get the same inequality relating d̃k with dk. Then by equation
(2.5.28) (we recall that rk = −∇f(xk)):

(rk,
d̃k

‖d̃k‖
) ≥ 1− β

1 + β
(rk,

dk
‖dk‖

) ≥ 1− β
1 + β

pkNWf (Ω) (2.5.71)

It remains to analyze what happens when the condition in step 5 is not satisfied. In
this setting we have (−∇f(xk), dFWk ) ≥ ε and (−∇f(xk), dAWk ) < ε. Then

(rk, dFWk + dAWk ) ≤ 2(rk, dFWk )

and we can apply this to bound (d̃FWk , rk) in terms of NWf (Ω) as we’ve already done
for the exact algorithm

NWf (Ω) ≤ dirNW(Ω, xk, rk) = (rk, q∗(rk)− s∗(rk))
‖pk‖(‖q∗(rk)− xk‖+ ‖s∗(rk)− xk‖)

=

= (rk, dAWk + dFWk )
‖pk‖(‖q∗(rk)− xk‖+ ‖s∗(rk)− xk‖)

≤ (rk, dAWk + dFWk )
‖pk‖(‖dAWk ‖+ ‖dFWk ‖)

≤ 2 (rk, dFWk )
‖pk‖(‖dFWk ‖+ ‖dAWk ‖)

≤

≤2 (rk, dFWk )
‖pk‖‖dFWk ‖

≤ 21 + β

1− β
(d̃FWk , rk)
‖pk‖‖d̃FWk ‖

(2.5.72)
Therefore since the algorithm in Table 3 sets d̃k = d̃FWk if d̃AWk is not computed

1− β
2(1 + β)‖pk‖NW

f (Ω) ≤ (d̃FWk , rk)
‖d̃FWk ‖

= (d̃k, rk)
‖d̃k‖

(2.5.73)

Summarizing, we have that in case 1 the approximated algorithm has indeed the same
descent property of the exact one described by equation (2.5.30) with 1−β

2+2βNW
f (Ω)

instead of NWf (Ω).
Case 2: αk = αmax = 1, d̃k = d̃FWk . On the one hand combining (2.5.32) with
(2.5.61) we get

h̃k ≤ (−∇f(xk), dk) ≤ (1 + β)(−∇f(xk), d̃k) (2.5.74)
while on the other hand (2.5.34) still holds for the approximated algorithm

h̃k − h̃k+1 ≥
1
2(−∇f(xk), d̃k) (2.5.75)
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Multiplying the second inequality by 2(1 + β) and concatenating

(2 + 2β)(h̃k − h̃k+1) ≥ h̃k (2.5.76)

which can be rewritten as
h̃k+1 ≤

1 + 2β
2 + 2β h̃k (2.5.77)

Hence the same linear descent property of the exact algorithm holds with 1+2β
2+2β instead

of 1
2 .

Case 3: αk = αmax, d̃k = d̃AWk The analysis does not change in this case since we
only need d̃k to be a descent direction.
Given these analogies in the analysis of the 3 possible kinds of steps, the rest of the
proof is identical to the one of Theorem (2.5.2).
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Chapter 3

Active set complexity

3.1 Introduction
In this chapter we discuss the complexity of the active set problem. We first

introduce the problem from a geometric and an algebraic point of view, in terms
of exposed faces and non zero Lagrangian multipliers respectively. We then show
that for polytopes these two approaches yield equivalent definitions. In the rest of
the chapter we makes several examples of methods with the finite time active set
identification property. While in this chapter our analysis is done in the geometric
framework, in chapter 4 we will analyze the AFW active set complexity using the
algebraic framework.

3.1.1 Exposed faces
In the rest of this chapter Ω will be a convex and closed subset of Rn, f : Ω→ R

differentiable with X∗ the set of local minima for f .
We first recall the definition of exposed face:

Definition 3.1.1. If Ω is a closed convex set and c a linear function the face of Ω
exposed by c is the the set

EΩ(c) = argmax{cx | x ∈ Ω} (3.1.1)

It follows immediately from the definition that x ∈ EΩ(c) if and only if c ∈ NΩ(x)
(see for instance [11] for a proof). Since the first order optimality conditions can
be expressed as −∇f(x∗) ∈ NΩ(x∗), they can also equivalently be written as x∗ ∈
E(−∇f(x∗)). We can now define the support of a subset of solutions:

Definition 3.1.2. We will say that a face F of Ω is the geometric support of a subset
A of X∗ with respect to f and write F = Af (A) if

F = EΩ(−∇f(x)) (3.1.2)

for every x ∈ A.

When it is clear from the context what function we are considering we will simply
say that F is the geometric support of A.
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Notice that A ⊂ F because by first order optimality conditions x ∈ EΩ(−∇f(x)) for
every x ∈ X∗. This notion of support allows us to formally define what it means to
solve the active set problem for sequences converging to the set of minimizers.

Definition 3.1.3. Let {xk}k∈N ⊂ Ω be a sequence converging to a subset A of X∗
with geometric support F , that is to say

dist(xk, A)→ 0 (3.1.3)

with Af (A) = F . We say that {xk}k∈N solves the active set problem in M steps if
xk ∈ F for every k ≥M .

We now introduce the definition of polyhedral face, which comes from a general-
ization of a property concerning the faces of polyhedral sets.

Definition 3.1.4. A face F of Ω is said to be polyhedral if for any x ∈ ri(F):

aff(F) = {x}+ lin(TΩ(x)) (3.1.4)

As a notable example, all the faces of a polyhedral set are polyhedral. We now
need to introduce two properties of polyhedral faces that define the structure of their
normal cones. These properties of normal cones will be relevant when studying the
projection on Ω, because πΩ(x) = y ⇔ x ∈ {y}+NΩ(y).

Proposition 3.1.5. Let F be a polyhedral face of Ω. Then for every x, y ∈ ri(F) we
have NΩ(x) = NΩ(y).

Proof. See [12].

Thanks to this first property one can defineN(F) = NΩ(x) for some x ∈ ri(N(F)),
and the definition does not depend on x. We can now state the second property:

Proposition 3.1.6. Let F be a polyhedral face of Ω. Then

1. d ∈ ri(N(F)) if and only if EΩ(d) = F .

2. For every x ∈ F the cone N(F) is a face of NΩ(x).

Proof. 1. See [12].
2. If F is a singleton the statement is trivial because N(x) = N(F) for the only point
x ∈ F . Otherwise consider y 6= x such that y ∈ ri(F). Let e = y − x. We claim that
N(F) = EN(x)(e). Since (e, d) = (y − x, d) ≤ 0 for every d ∈ NΩ(x) we have

maxd∈NΩ(x)(e, d) = 0 (3.1.5)

so that d ∈ EN(x)(e) if and only if (d, e) = 0. We now prove the two inclusions.
⊆: for every d ∈ N(F) ⊂ NΩ(x)

(d, x) = (d, y) = maxz∈Ω(d, z) (3.1.6)

so that in particular (d, e) = (d, y − x) = 0 which means d ∈ EN(x)(e).
⊇: if (d, e) = 0 then again (3.1.6) and therefore d ∈ NΩ(y) = N(F).
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3.1.2 Optimality conditions
We now give an algebraic definition of active set complexity. This complexity

will be defined for constrained problems as the number of iterations that it takes
to identify a certain subset of the constraints which are satisfied on a possibly local
minimum. This subset corresponds to the indexes of possibly non zero Lagrangian
multipliers in some KTT like optimality conditions. There are of course different
kind of hypotheses that imply the existence of Lagrangian multipliers, so that it is
now convenient to pick one type of conditions which encompasses all the problems
we will deal with in this chapter.
In the rest of this chapter for any constrained problem and any feasible point x∗
we call A(x∗) the subset of indexes of the inequality constraints which are active
(satisfied with equality) in x∗.
We now recall stationarity conditions for systems of inequalities (see for instance [25]
for a proof).

Proposition 3.1.7. Given the problem

min{f(x) | gi(x) ≤ 0 ∀ 1 ≤ i ≤ n, hj(x) = 0 ∀ 1 ≤ j ≤ m} (3.1.7)

with gi(x) convex and differentiable, hi(x) affine assume that x∗ is a local constrained
minimum and that f, gi are differentiable in x∗. Assume also and there exists x̄ such
that hi(x̄) = 0, gi(x̄) < 0 (this condition is known as SMFCQ). Then there exists
λ ∈ Rn, µ ∈ Rm such that

∇f(x) + λT∇g(x∗) + µT∇h(x∗) = 0
λ∗ ≥ 0

(g(x∗), λ) = 0
(3.1.8)

where g(x) = (g1(x), ..., gn(x))T and h(x) = (h1(x), ..., hn(x))T . When f is convex,
the converse is also true.

We can finally define the set of proper active constraints A+(x∗).

Definition 3.1.8. Under the assumptions of Proposition 3.1.7, we say that an index
i ∈ {1, ..., n} is in A+(x∗) if there exists Lagrangian multipliers (λ, µ) satisfying
(3.1.8) such that λi > 0.

By convexity and positive linearity of the optimality conditions, it is easy to see
that there exists λ satisfying (3.1.8) such that λi > 0 for every i ∈ A+(x∗).
Finally, we define the algebraic support of a subset of solutions:

Definition 3.1.9. Let A+ be a subset of {1, ..., n} and A be a subset of X∗. We say
that the surface F = {x ∈ Ω | gi(x) = 0 ∀i ∈ A+} is the algebraic support of A and
write F = Aaf (A) if A+(x) = A+ for every x ∈ A.

In the rest of this section we cite a few results concerning the connection between
active sets of constraints and normal or tangent cones.
The following theorem which relates the normal cone to the active constraints is a
particular case of [24], Theorem 3:
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Theorem 3.1.10. Under the hypotheses of Proposition 3.1.7 if Ω is the feasible set
then

TΩ(x∗) = {d ∈ Rn | (∇gi(x∗), d) ≤ 0 ∀ i ∈ A(x∗), (∇hi(x∗), d) = 0 ∀ 1 ≤ i ≤ m}
(3.1.9)

Then this description of the normal cone immediately follows by linear duality:

Corollary 3.1.11. Under the hypotheses of Proposition 3.1.7 if Ω is the feasible set
then

NΩ(x∗) = {
∑

i∈A(x∗)
λi∇gi(x∗) +

m∑
i=1

ui∇hi(x∗) | λi ≥ 0 ∀ i ∈ A(x∗)} (3.1.10)

As forA+(x∗), it turns out to be a set of generators together with {∇hj(x∗)}j∈{1,...,m}
of the smallest face of NΩ(x∗) containing −∇f(x∗).

Proposition 3.1.12. Under the hypotheses of Proposition 3.1.7 the set

F = cone({∇gi(x∗)}i∈A+(x∗)) + span({∇ri}1≤i≤m)

is a face of NΩ(x∗) and −∇f(x∗) ∈ ri(F).

Proof. Follows from Proposition 5.1.5 of the appendix, considering as set of generators

G = {∇gi(x∗)}i∈A+(x∗) ∪ {∇ri}1≤i≤m ∪ {−∇ri}1≤i≤m

These results allow us to study the relation between algebraic and geometric
support.

3.1.3 Equivalence of definitions for linear constraints
In general for any x ∈ X∗ the geometric support is a subset of the algebraic

support, and the inclusion can be strict as can be seen for instance in balls. Indeed
given the euclidean unit ball described by the constraint ‖x‖2 ≤ 1 and a differentiable
function f : B(0, 1) → R having a non singular minimum in p ∈ ∂B(0, 1) it is easy
to check that Af ({p}) = {p} while Aaf ({p}) = ∂B(0, 1). We now prove the inclusion.

Proposition 3.1.13. Under the hypotheses of Proposition 3.1.7 for every x̄ ∈ X∗

EΩ(−∇f(x̄)) ⊆ Aaf ({x̄})

Proof. For every x ∈ Ω, i ∈ A(x̄) ⊇ A+(x̄) we have

(∇gi(x̄), (x− x̄)) ≤ 0 (3.1.11)

because gi(x̄) = 0, gi(x) ≤ 0 and gi(x) is convex. By hypothesis we can apply
Proposition 3.1.7 to obtain

−∇f(x̄) =
∑

i∈A+(x̄)
λi∇gi(x̄) +

m∑
j=1

uj∇hj(x̄)

44



where we can choose λA+(x̄) such that λi > 0 for every i ∈ A+(x̄). Let x ∈
EΩ(−∇f(x̄)), so that (x− x̄,∇f(x̄)) = 0. Then

0 = (−∇f(x̄), x− x̄) =
∑

i∈A+(x̄)
λi(∇gi(x̄), x− x̄) +

m∑
j=1

uj(∇hj(x̄), x− x̄) =

=
∑

i∈A+(x̄)
λi(∇gi(x̄), x− x̄)

(3.1.12)

Applying (3.1.11) to this equation we obtain that the last sum is equal to 0 if and
only if (∇gi(x̄), x− x̄) = 0 for every i ∈ A+(x̄). We then have by convexity gi(x) ≥ 0
for every i ∈ A+(x̄) forcing gi(x) = 0 for every i ∈ A+(x̄) and in particular x ∈
AaΩ({x̄}).

When the {gi}i∈A+(x̄) are linear, positive multipliers are related to the face exposed by
the negative gradient −∇f(x). We begin the proof with the following lemma con-
cerning a feasible set given by the intersection of two closed convex sets.

Lemma 3.1.14. Let Ω = P ∩ U where P, U are closed convex sets. Let x ∈ P and
d ∈ NP (x). Then if x ∈ Ω

EΩ(d) = EP (d) ∩ U (3.1.13)

Proof. The hypothesis d ∈ NP (x) can be equivalently rewritten as x ∈ EP (d). Then

(x, d) = max{y ∈ P | (y, d)} (3.1.14)

and since Ω = P ∩ U ⊂ P , x ∈ Ω

(x, d) = max{y ∈ Ω | (y, d)} (3.1.15)

so that

EΩ(d) = argmax{(y, d) | y ∈ Ω} = {y ∈ Ω | (y, d) = (x, d)} =
= {y ∈ P | (y, d) = (x, d), y ∈ U} = EP (d) ∩ U

(3.1.16)

Proposition 3.1.15. For a constrained problem like the one in 3.1.7, let x̄ ∈ X∗

and assume that gi is affine for every i ∈ A+(x̄). Than the geometric support of {x̄}
coincides with the algebraic support of {x̄}:

EΩ(−∇f(x̄)) = {x ∈ Ω | gi(x) = 0 ∀ i ∈ A+(x̄)} (3.1.17)

Proof. Let P be the polyhedral set defined by

P = {x ∈ Rn | gi(x) ≤ 0 ∀ i ∈ A+(x), hj(x) = 0 ∀ 1 ≤ j ≤ m}

Then by Proposition 3.1.12 we have −∇f(x̄) ∈ ri(NP (x̄)). Since x̄ satisfies all con-
straints with equality the minimal face of P containing x is

FP (x̄) = {x ∈ Rn | gi(x) = 0 ∀ i ∈ A+(x), rj(x) = 0 ∀ 1 ≤ j ≤ m}
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which is an affine subspace. In particular FP (x̄) = ri(FP (x̄)) so that x̄ ∈ ri(FP (x̄)).
By Lemma 3.1.6, this together with −∇f(x̄) ∈ ri(NP (x̄)) implies EP (−∇f(x̄)) =
FP (x̄). Let now U = {x ∈ Rn | gi(x) ≤ 0 ∀ i ∈ {1, ..., n} \ A+(x̄)}. Then

Aaf (x̄) = {x ∈ Ω | gi(x) = 0 ∀ i ∈ A+(x̄)} =
= U ∩ {x ∈ P | gi(x) = 0 ∀i ∈ A+(x̄),∇hj(x̄) = 0 ∀ 1 ≤ j ≤ m} =
= U ∩ FP (x̄) = U ∩ EP (−∇f(x̄))

(3.1.18)

where by Lemma 3.1.14 since Ω = U ∩ P

U ∩ EP (−∇f(x̄)) = EΩ(−∇f(x̄))

We have the following corollary for polyhedra, that is when Ω = P in the notation
of Proposition 3.1.15.

Corollary 3.1.16. If Ω is a polyhedron, the support and the algebraic support of any
subset of X∗ coincide when one of the two exists.

Proof. Just apply the previous proposition to any point a of a set A ⊂ X∗ with
constant support.

3.2 A new proof for PG finite time active set iden-
tification with convergence estimates

In this section we present a new proof of finite time active set identification for
the projected gradient method on polytopes and give explicit convergence estimates
under suitable hypotheses on f . P will be a polyhedron and given x ∈ P the set
F(x) will be the minimal face of P containing x. This proof differs from the one
[12] because we will not use normal cones to faces and the corresponding partition
lemma. We will instead do a local analysis which will highlight how the active set
radius depend on the position of the optimum and on the gradient of the objective
function on the optimum.
As it was done in the original proof (see [11], [12]) we start by recalling a few relevant
properties of convex sets. We begin by characterizing the minimal face containing a
certain point x.

Lemma 3.2.1. For every x ∈ P the minimal face F(x) of P containing x is uniquely
defined by x ∈ ri(F(x)).

Proof. Let
F(x) = ∩G is a face of P

x∈G
G

be the minimal face of P containing x. Assume by contradiction x /∈ ri(G). Then by
the separation theorems there would exists an hyperplane (c, y) = (c, x) separating x
from ri(F). But the intersection between this hyperplane and F would be a smaller
face of P containing x, absurd.
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In the above proof we used implicitly that all the faces of F(x) are still faces of P ,
which is well known (see for instance [17], proposition 3.25). A corollary of Lemma
(3.2.1) is the partition property (see for instance [41] for a proof)

P =
⋃

F is a face of P
ri(F) (3.2.1)

We now need a technical lemma in which we relate the width of P with respect to
tangent cone in a fixed point with the distance of this point from a certain set of
faces. In practice, this lemma will allow us to consider TP (x) instead of P in a small
enough neighborhood of x.

Lemma 3.2.2. For x ∈ P let r = lbP,x(0, 1) defined in chapter 1. Consider the set G
of faces of P such that F(x) is not a subset of G. If

D =
⋃
H∈G

H

then dist(x,D) = r > 0

Proof. Any face H in G can not contain x otherwise we would have F(x) ⊂ H by
the minimality of F(x).
It is thus clear that dist(x,D) > 0, since D is a closed set not containing x.
Now just applying the definition we get

r = lbP,x(0, 1) = inf{lP,x(ĉ) | c ∈ TP (x)} (3.2.2)

We will first show that r ≤ dist(x,D). Let p be a projection of x on the set D, and let
c = (p−x) so that c ∈ TP (x). Then lP,x(ĉ) ≥ ‖p−x‖ because p ∈ P . Moreover, there
exists by hypothesis a (proper) face of P containing p but not x, so that x+λ(p−x)
is not in P for every λ > 1. To see this, consider (q, ·) a linear function exposing the
face of P containing p but not x. Then on the one hand

(q, p) = max{y ∈ P | (q, y)} (3.2.3)

and on the other hand

(q, x) < (q, p)⇒ (q, λ(p− x)) > (q, p) for λ > 1 (3.2.4)

which proves x+ λ(p− x) /∈ P for λ > 1.
We can now deduce lP,x(ĉ) = ‖p− x‖ = dist(x,D) and the ≤ is proved by (3.2.2).
It remains to prove r ≥ dist(x,D), or in other words lP,x(ĉ) ≥ dist(x,D) for every
c ∈ TP (x). For a fixed ĉ let λc = lP,x(ĉ) so that y = x+λcĉ ∈ P , x+λĉ /∈ P for every
λ > λc. If we prove y ∈ D we are done because then clearly

lP,x(ĉ) = λc = ‖y − x‖ ≥ dist(x,D) (3.2.5)

Assume by contradiction that y /∈ D, or equivalently F(x) ⊂ F(y). Since y ∈
ri(F(y)) by definition and x ∈ F(y) we would then have x+λ(y−x) ∈ F(y) ⊂ P for
some λ > 1, contradiction with the maximality of λc. Then y ∈ D and we are done
by (3.2.5).
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We now apply the lemma we just proved to show the local coincidence of P and
TP (x). Furthermore, we show with quantitative estimates the lower semicontinuity
of F(x) on P as a set valued function.

Lemma 3.2.3. For every x ∈ P let r = lbP,x(0, 1) as in Lemma 3.2.2. Then:

1. P ∩B(x, r)− {x} = TP (x) ∩B(0, r)

2. For every y ∈ P ∩B(x, r) we have F(y) ⊃ F(x).

Proof. 1. Since P−{x} ⊆ TP (x) we have P ∩B(x, r)−{x} ⊆ TP (x)∩B(x, r). On the
other hand for every c ∈ TP (x)\{0} there exists y ∈ P such that ĉ = y−x

‖y−x‖ . Reasoning
as in Lemma 3.2.2 we get x+λĉ ∈ P for every 0 ≤ λ ≤ r. If c ∈ TP (x)∩B(0, r)\{0}
we have ‖c‖ < r and c = ‖c‖ĉ, so that in particular c ∈ P ∩B(x, r)− {x}.
2. This is a corollary of Lemma 3.2.2, since using the notation introduced in the
lemma r = dist(x,D) with y /∈ D if and only if F(y) ⊃ F(x) for y ∈ P .

Having proved these facts we can now describe how the projection on a cone
behaves in a neighborhood of a point in the dual cone.

Proposition 3.2.4. Let C be a polyhedral convex cone and let e ∈ Cd. Let F(e) be
the minimal face of Cd containing e. Let

r = lbCd,e(0, 1)

Then for every x ∈ B(e, r) the projection πC(x) of x on C is on EC(e).

The proof relies on the Moreau Yosida decomposition and on the duality Lemma
5.1.6. In this proof and in the rest of this section we use the notation πA(x) for the
projection of x on a closed convex set A.

Proof. Let x ∈ B(e, r). By the Moreau Yosida decomposition

x = πC(x) + πCd(x) with πC(x) ⊥ πCd(x) (3.2.6)

Since the projection is 1 - Lipschitz, we have πCd(x) ∈ B(e, r) and by Lemma 3.2.3
we have F(πCd(x)) ⊃ F(e).
Since πC(x) ⊥ πCd(x) we have, using the notation of Lemma 5.1.6:

πC(x) ∈ (F(πCd(x))∗ ⊂ (F(e))∗ ⊂ EC(e) (3.2.7)

where we recall that (·)∗ reverse inclusions and in the last inclusion we are using
EC(e) = C ∩ e⊥.

We can finally describe quantitatively how close a point must be to a certain
vector in the normal cone to identify the same face in a polyhedral set:

Lemma 3.2.5. Let P be a polyhedral set, let x ∈ P and let e ∈ NP (x). Let

re = lbNP (x),e(0, 1), rx = lbP,x(0, 1) (3.2.8)

and rm = min(re, rx) Then for every y ∈ B(e, rm) the projection πP (y + x) of y + x
on P is on EP (e).
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Proof. Let p = πP (y), p′ = πP (TP (x)). On the one hand by Lemma 5.1.10 we have
‖p′‖ = dist(y,NP (x)) < rm < rx so that p′ ∈ TP (x) ∩ B(0, rx) = P ∩ B(x, rx) − {x}
where the last equality is justified by Lemma 3.2.3 . Then p = p′ + x with p′ ∈
ETP (x)(e) by Lemma 3.2.4. This implies (e, x) = (e, p′ + x) = (e, p), so that also
p ∈ EP (e).

Given Lemma 3.2.5 it is straightforward to compute how close the sequence gen-
erated by a projected gradient method must be to the optimal point for the active
set identification to happen.

Lemma 3.2.6. Suppose that x∗ ∈ P satisfies first order optimality conditions for a
function f with L− Lipschitz gradient so that −∇f(x∗) ∈ NP (x∗). Let r∗ = lbP,x∗(0, 1)
and r∇ = lbN(x∗),−∇f(x∗)(0, 1). For every x ∈ P and α > 0 such that

(1 + αL)‖x− x∗‖ < min(αr∇, r∗) (3.2.9)

we have πP (x− α∇f(x)) ∈ EP (−∇f(x∗))

In the rest of this proof we use N(·) as a shorthand for NP (·).

Proof. We have by the Lipschitz condition

‖(x− α∇f(x))− (x∗ − α∇f(x∗))‖ ≤ ‖x− x∗‖+ α‖∇f(x)−∇f(x∗)‖ ≤
≤(1 + αL)‖x− x∗‖ < min(αr∇, r∗)

(3.2.10)

Now we notice that

αr∇ = αlbN(x∗),−∇f(x∗)(0, 1) = lbN(x∗),−α∇f(x∗)(0, 1) (3.2.11)

as it is immediate to check from the definitions using that N(x∗) is a cone. To
conclude now it suffice to apply Lemma 3.2.5 with x − α∇f(x) instead of y and
(x∗,−α∇f(x∗)) instead of (x, e).

We can now apply this lemma to the well known results about projected gradient
method convergence to get finite time active set identification results:

Theorem 3.2.7. Under the assumptions of 3.2.6, suppose additionally that f(x) is
convex. If {xk}k∈N is a sequence generated by the projected gradient method with
decreasing step size {αk}k∈N → ᾱ then

1. There exists a minimizer x∗ ∈ P of f such that {xk} → x∗

2. For r∗ and r∇ defined as in Lemma 3.2.6 we have xk ∈ EP (−∇f(x∗)) for every
k ≥ k̄, where k̄ is the minimum index such that

(1 + αk̄L)‖xk̄ − x∗‖ < min(ᾱr∇, r∗) (3.2.12)

Proof. By [6], proposition 6.1.7 there exists a minimizer x∗ for f such that xk → x∗

and ‖xk − x∗‖ → 0 is decreasing in k. So 1. follows immediately and 2. follows by
3.2.6. Indeed for every k ≥ k̄

(1 + αkL)‖xk − x∗‖ ≤ (1 + αk̄L)‖xk̄ − x∗‖ < min(ᾱr∇, r∗) ≤
≤ min(αkr∇, r∗)

(3.2.13)

so that condition (3.2.9) is satisfied.
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In the next theorem we state active set identification bounds for strongly convex
objectives.

Theorem 3.2.8. Under the assumptions of 3.2.6, suppose additionally that f(x) is
strongly convex, and let x∗ be the unique minimizer for f over P . If {xk}k∈N is
a sequence generated by the projected gradient method with constant step size ᾱ ∈
(0, 2/L) then

1. Let q = max(1− ᾱL, 1− ᾱµ) with µ the strong convexity constant of f . Then

‖xk − x∗‖ ≤ qk‖x0 − x∗‖

2. For r∗ and r∇ defined as in Lemma 3.2.6 we have xk ∈ EP (−∇f(x∗)) for every
k ≥ k̄ + 1, with k̄ defined by

k̄ = d ln((1 + ᾱL)(‖x0 − x∗‖))− ln(min(ᾱr∇, r∗))
ln(1/q) e (3.2.14)

Proof. 1. Follows by [6], proposition 6.1.8. It is then straightforward to check that
for every k ≥ k̄ the condition (3.2.9) of Lemma 3.2.6 is satisfied as we have already
done in 3.2.7.

3.2.1 Descent directions
We now state a few key facts related to first order algorithms that will be useful

in the analysis of the active set complexity problem. In the rest of this section Ω is
a closed compact set and f : Ω→ R is a differentiable function with gradient having
Lipschitz constant L.
First, we will define the descent directions and the λmax function that are fundamental
in the analysis of first order algorithms especially when the line search method is
employed to compute the step size.

Definition 3.2.9. Given x ∈ Ω, d ∈ Rn such that x + d ∈ Ω we say that d is a
descent direction and write d ∈ DΩ(x) if f(x+ d) < f(x+ td) for every t ∈ [0, 1).
We define λmax(Ω, x, d) = max{λ ∈ R≥0}x+ λd ∈ Ω}.

When the objective function is convex we can determine whether a direction is a
descent direction by studying its subdifferential. In the following proposition we use
the notation (A, x) with A ⊂ Rn and x ∈ Rn to denote the set {(x, a) | a ∈ A}.

Proposition 3.2.10. Let g : Ω→ R be a convex function. If x, x+ d ∈ Ω and

R<0 ∩ ∂f(x+ d) · d 6= ∅

then d ∈ DΩ(x).

Proof. By hypothesis there exists z ∈ ∂f(x + d) such that (d, z) < 0. Then since
z ∈ ∂f(x+ d)

f(x+ td) ≥ f(x+ d) + (x+ td− (x+ d), z) = f(x+ d) + (t− 1)(d, z) > f(x+ d)

for every t ∈ [0, 1).
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If f has Lipschitz gradient then the usual quadratic upper bound and descent
lemma properties are easy to relate to descent directions:

Proposition 3.2.11. Assume that f has Lipschitz gradient with constant L.

1. f(x+ d) ≤ f(x) + (∇f(x), d) + L
2 ‖d‖

2

2. (∇f(x+ d), d) ≥ (∇f(x), d)− L‖d‖2

3. If (∇f(x), d)− L‖d‖2 ≤ 0 then d is a descent direction.

Proof. 1. See [6], proposition 6.1.2.
2. Follows immediately from the Lipschitz property of f

(∇f(x+ d)−∇f(x), d) ≥ −‖∇f(x+ d)−∇f(x)‖‖d‖ ≥ −L‖d‖2 (3.2.15)

3. Follows from Lemma 3.2.10 and point 2.

3.3 Active set identification for AFW and PFW
In this section we prove finite time active set identification for the AFW and the

PFW algorithm on polytopes assuming (continuous) differentiability on the objective
and convergence to a subset of minimizers with constant support. In [9] it has already
been proved that for the AFW and the PFW methods on the simplex the active set
is identified in finite time with a few additional assumptions on the objective function
but without the convergence assumptions that we use here.
As for the projected gradient method, we start by analyzing a few relevant properties
of closed convex cones. We use these properties to prove that any method employing
search directions transversal to the active set and "close" to its tangent cone eventually
does maximal steps if it hasn’t already identified the active set. This then becomes
the key lemma in the proofs concerning the AFW and the PFW methods.
Given a cone C it is well known the dual cone Cd can always be decomposed in an
orthogonal sum

Cd ∩ aff(C)
⊕

aff(C)⊥ = Cd ∩ aff(C)
⊕

lin(Cd) (3.3.1)

By the definition of dual cone, we have (d, p) = 0 for any p ∈ Cd and d ∈ C. In the
next two propositions we compute bounds for (d, p) when d is still in C but p is not in
Cd. Of course our bounds will depend on how close p is to Cd and to the orthogonal
complement of aff(C). We use the notation rbd(A) for the relative boundary of a
convex set A: rbd(A) = A \ ri(A).

Proposition 3.3.1. Let C be a closed and convex cone, d ∈ ri(C) and δ = dist(rbd(C), d).
For every p ∈ Cd

(d, p) ≤ −δ‖p− πlin(C)(p)‖ (3.3.2)
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Proof. We now apply the decomposition (3.3.1) to write p as an orthogonal sum. We
have

p = πlin(Cd)(p) + (p− πlin(Cd)(p)) = πlin(Cd)(p) + pC

with πlin(Cd)(p) ∈ lin(Cd) = aff(C)⊥ and pC ∈ aff(C) so that (d, πlin(Cd)(p)) = 0.
Thus (p, d) = (d, pC), and by the definition of δ we have d − δp̂C ∈ C, so that
(d, pC) + δ‖p‖C = (d+ δp̂C , pC) ≤ 0, and the thesis follows.

Proposition 3.3.2. Let C be a closed and convex cone, d ∈ ri(C) and δ = dist(rbd(C), d).
For every p ∈ ∂B(0, 1), if γ = dist(p, Cd), α = ‖πlin(Cd)(p)‖ then

(d, p) ≤ −δ
√

1− γ2 − α2 + γ‖d‖ (3.3.3)

Proof. Since Rn = lin(Cd) ⊕ aff(C) with lin(Cd) ⊥ aff(C) we can write p = pl + pa in
a unique way with pl ∈ lin(Cd) and pa ∈ aff(C) so that pa ⊥ pl and

1 = ‖p‖ = ‖pa‖2 + ‖pl‖2 = ‖pa‖2 + α2 ⇒ ‖pa‖ =
√

1− α2 (3.3.4)

Let πCd(p) = q = qa+ql with the summands on the right hand side defined analogously
to pa and pl. Since

‖q − p‖2 = ‖qa − pa‖2 + ‖ql − pl‖2

with the right hand side the minimum for q ∈ Cd necessarily ql = pl, so that

‖qa − pa‖ = dist(p, Cd) = γ

Since q is a projection on a convex cone with λq ∈ Cd for every λ ≥ 0 we have

pa − qa = p− q ⊥ q (3.3.5)

Since qa − pa ∈ aff(C) we have qa − pa ⊥ ql and then (3.3.5) implies qa − pa ⊥ qa.
Hence

1− α2 = ‖pa‖2 = ‖qa‖2 + ‖qa − pa‖2 = ‖qa‖2 + γ2 (3.3.6)

so that ‖qa‖ =
√

1− α2 − γ2. Applying Proposition 3.3.1 to q we get

(d, q) ≤ −δ
√

1− γ2 − α2 (3.3.7)

and since ‖p− q‖ = γ

(d, p) ≤ (d, q) + γ‖d‖ ≤ −δ
√

1− γ2 − α2 + γ‖d‖ (3.3.8)

We now define an identifying property for search directions which generalizes a
property of the AFW and PFW search directions.

Definition 3.3.3. Let Ω be a compact convex set and F be a polyhedral face of Ω.
A sequence of directions in Rn \{0} is said to be F− identifying if for k large enough:

1. dist(d̂k,−T (F))→ 0

52



2. ‖πaff(F)(d̂k)‖ < h for some fixed h < 1.

We can now prove the lemma which guarantees maximal steps for the AFW and
the PFW methods for iterations which have not yet identified the active set.

Lemma 3.3.4. Let Ω be a compact convex set and F be a polyhedral face of Ω.
Let f : Ω→ R be a convex function with continuous differential and let {xk}k∈N be a
sequence in Ω generated doing linesearch along the directions {dk}k∈N. In other words

xk+1 ∈ argmin{f(x) | x = xk + λdk, λ ≥ 0} (3.3.9)

Assume that dist(xk,A)→ 0 for some A with geometric support F . Then for k large
enough xk+1 = xk + λmax(Ω, xk, dk).

Proof. It suffices to show that xk+1 − xk ∈ DΩ(xk) for k large enough, or by Lemma
3.2.10 that (∇f(xk+1), xk+1 − xk) < 0 which is true iff (∇f(xk+1), d̂k) < 0. Let ak
be the projection of xk on A so that if βk = ‖∇f(ak) − ∇f(xk)‖ then by uniform
continuity βk → 0. First, we have inequality

(∇f(xk+1), d̂k) ≤ (∇f(ak), d̂k) + ‖∇f(ak)−∇f(xk)‖ = (∇f(ak), d̂k) + βk (3.3.10)

with −∇f(ak) ∈ N(F).
Let δk = dist(rbd(N(F)),−∇f(ak)) so that δk ≥ δ for every k with

δ = min
x∈A

dist(rbd(N(F)),−∇f(x)) > 0 (3.3.11)

because −∇f(x) is continuous and dist(rbd(N(F)),−∇f(x)) > 0 for every x ∈ A
since F is the geometric support of A.
Let αk = ‖πaff(F)−{ak}(−d̂k)‖ = ‖πlin(T (F))(−d̂k)‖ and γk = dist(T (F),−d̂k). By
hypothesis γk → 0 and αk < h < 1 for some fixed h. We now apply Lemma 3.3.2
with d = −∇f(ak), C = T (F), p = −d̂k and obtain

(∇f(ak), d̂k) = (−∇f(ak),−d̂k) ≤ −δk
√

1− γ2
k − α2

k + γk‖∇f(ak)‖ (3.3.12)

Plugging this inequality into (3.3.10) we get

(∇f(xk+1), d̂k) ≤− δk
√

1− γ2
k + β2

k − α2
k + γk‖∇f(ak)‖+ βk ≤

≤− δ
√

1− γ2
k − α2

k + γkM + βk
(3.3.13)

with M = maxx∈A ‖∇f(x)‖. To conclude, we have

lim
k→∞
−δ

√
1− γ2

k − α2
k + γkM + βk = −δ

√
1− α2

k (3.3.14)

so that for k large enough (∇f(xk+1), d̂k) < 0.

We recall that given a convex and closed set P , and x ∈ P we define F(x) as
the minimal face of P containing x. In the next proposition we prove active set
finite time identification for an abstract version of the AFW. We do not prove an
analogous proposition for the PFW, which does not appear to have a simple geometric
generalization.
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Proposition 3.3.5. Let Ω be a compact convex set, f : Ω→ R a C1 function, A ⊂ Ω
with geometric support F . Let {dk}k∈N be a sequence of F− identifying directions,
let {xk}k∈N be a sequence in Ω and let M > 0 be with the following properties:

1. dist(xk,A)→ 0.

2. For k ≥M , either xk+1 ∈ F or xk+1 is the result of a linesearch along dk from
xk.

3. For k ≥M , either xk+1 ∈ F or xk+1 ∈ F(xk).

Then for k large enough xk ∈ F .

Proof. By Lemma 3.3.4 applied to property 2. there exists N ≥ M such that for
k ≥ N either xk ∈ F or xk+1 = xk + λmax(Ω, xk, dk)dk.
We first show that if xk̄ ∈ F for some k̄ ≥ N then xk ∈ F for every k ≥ k̄. It suffices
to show that xk̄+1 ∈ F and then the claim follows by induction. But xk̄+1 ∈ F is
immediate because by property 3 xk+1 is either in F or in F(xk̄) ⊂ F .
Let k ≥ N such that xk /∈ F . Then xk+1 = xk + λmax(Ω, xk, dk)dk together with
xk+1 ∈ F(xk) imply that xk+1 ∈ rbd(F(xk)) so that dim(F(xk+1)) < dim(F(xk)),
which can of course happen finitely many times since the minimal dimension is 0.
This means that eventually there must exists k̄ such that xk̄ ∈ F , and the theorem
follows from the first claim.

We start to set up the main theorem by introducing an additional assumption
which however is not restrictive with respect to the general case. Let P be a finite set
of points in Rm, with n = |P|. We assume P = {ei}1≤i≤n so that conv(P) = ∆n−1 ⊂
Rn. This is not restrictive because the key elements of our theorem are invariant by
affine transformation. It is now necessary to introduce some notation to make a more
explicit statement and prove it.
Let A be the matrix whose columns Ai are the elements of P , so that {Aei}1≤i≤n = P .
Let fP : conv(P) → R with continuous differential and f : ∆n−1 → R defined by
f(x) = fP (Ax).
First, if {xPk }k∈N in conv(P) is a sequence generated by the AFW or the PFW with
respectively, it is well known (see for instance [28]) that there exists a sequence
{xk}k∈N in ∆n−1 generated by the corresponding method applied to f and such that
Axk = xPk for every x ∈ N.
As for the set of minimizers, it is clear that if X∗P is the set of minimizers for fP then
X∗ = A−1(X∗P ) is the set of minimizers for f on ∆n−1.
If FP is a face of conv(P ) then there exists a subset FP of P such that

FP = conv(FP) = conv({Ai | i ∈ A(FP )}) (3.3.15)

for some A(FP ) ⊆ {1, ..., n}. We claim that if F = A−1(FP ) then

F = conv({ei | i ∈ A(F)}) (3.3.16)

Indeed if x ∈ F then by definition x = ∑
i∈A(F) λiei with λi ≥ 0,∑i∈A(F) λi = 1.

Therefore Ax = ∑
i∈A(F) λiA

i ∈ FP . Conversely, if Ax ∈ FP then it cannot be
that xj 6= 0 for some j /∈ A(F), otherwise Ax = λjA

j + ∑
i∈{1,...,n}\{j} λiA

i with
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λi ≥ 0 ∀i ∈ {1, ..., n}, λj > 0. This would mean in particular Ax /∈ FP , contradiction.
With this we proved that F is a face of ∆n−1.
It remains to check that if AP ⊂ X∗P ∩ FP has geometric support FP then also
A−1(AP ) ⊂ X∗ ∩ F has geometric support F . The ⊂ relation follows clearly from
the definitions, so it only remains to prove that E(−∇f(x)) = F for every x ∈ A.
Equivalently we want to prove

(−∇f(x), y) = (−∇f(x), x) ∀ x ∈ A, (−∇f(x), y) < (−∇f(x), x) ∀ y /∈ F (3.3.17)

But −∇f(x) = −∇fP (Ax)A, A = A−1AP so that the first piece can be rewritten as

(−∇fP (Ax)A, y) = (−∇fP (Ax)A, x) ∀ y ∈ A−1(FP ) (3.3.18)

or equivalently

(−∇fP (Ax), Ay) =(−∇fP (Ax), Ax) ∀ y ∈ A−1(FP )⇔ (−∇fP (Ax), z) =
=(−∇fP (Ax), Ax) ∀ z ∈ FP

(3.3.19)

which is true because by hypotesis EP (−∇fP (Ax)) = FP . The second piece of
(3.3.17) can be proved analogously.

Remark 3.3.6. We just proved implicitly that ri(N(F)) = A−1ri(N(FP ))

We can finally state the main theorem:

Theorem 3.3.7. Let P be a finite set of points in Rn, P = conv(P), f : P → R
with continuous differential, A ⊂ X∗ with geometric support F . Let {xk}k∈N be a
sequence generated by the AFW or the PFW converging to A using linesearch for the
step size. Then xk ∈ F for k large enough.

By the previous reasoning we can assume without loss of generality P = {ei}1≤i≤n
so that P = ∆n−1. Indeed once we’ve proved the statement for ∆n−1 we can generalize
to conv(P) by conjugation. One key point is that {xk} → A also for the transformed
sequence in ∆n−1 because the transformation A : ∆n−1 → conv(P) is surjective.
We need to check that the AFW and the PFW satisfy all the hypotheses of the more
abstract theorems proved, and for the PFW additional considerations will be also
needed to complete the proof.
In the rest of this section F = {x ∈ ∆n−1 | xi = 0, i ∈ Ic} will be a face of ∆n−1.

Lemma 3.3.8.

ri(F) = {x ∈ F | xj > 0 ∀ j ∈ I}
aff(F) = {x ∈ Rn | xi = 0 ∀ i ∈ Ic,

∑
j∈I

xj = 1} (3.3.20)

Proof. Follows immediately from the definitions.

Lemma 3.3.9. There exists a neighborhood U of A such that for every x ∈ U :

argmini∈{1,...,n}(−∇f(x), ei) ⊆ I

min
i∈Ic

(−∇f(x), ei) > max
i∈I

(−∇f(x), ei)

min
i∈Ic

(−∇f(x), ei − x) > max
i∈I

(−∇f(x), x− ei)
(3.3.21)
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Proof. We recall that F = {x ∈ ∆n−1 | xi = 0 ∀i ∈ Ic} is by definition the ex-
posed face by −∇f(x) for every x ∈ A. This means that for every x ∈ A we have
(∇f(x), ei) = (∇f(x), x) for every i ∈ I and (−∇f(x), ei) > (−∇f(x), x) for every
i ∈ Ic. The inequalities in (3.3.21) then follow immediately for any x ∈ A and by
continuity also in a neighborhood of every x ∈ A. But A is compact so that the
inequalities in (3.3.21) hold in a neighborhood of A.

Lemma 3.3.10. For every x ∈ U defined as in Lemma 3.3.9 if x /∈ F the away
direction selected by a FW variant dAW is equal to x − ei for some i ∈ Ic and the
classic FW direction dFW is equal to ei−x for some i ∈ I. Moreover, the AFW select
dAW as search direction.

Proof. By definition dAW = x − ei with i ∈ argmaxi∈{1,...,n}
xi>0

(∇f(x), ei). But since

x /∈ F there exists i ∈ Ic such that xi > 0, so that by the second equation of (3.3.21)
we have argmaxi∈{1,...,n}(∇f(x), ei) ⊆ Ic for every x ∈ U .
We have also dFW = ei − x with i ∈ argmini∈{1,...,n}(∇f(x), ei) ⊆ I.
It remains to prove that the AFW select dAW or writing explicitly the selection rule
(dAW ,−∇f(x)) > (dFW ,−∇f(x)) for every x ∈ U \ F . But

(dAW ,−∇f(x)) = (−∇f(x), x− ei)

for some i ∈ Ic and
(dFW ,−∇f(x)) = (−∇f(x), ej − x)

for some j ∈ I so that (dAW ,−∇f(x)) > (dFW ,−∇f(x)) follows by the third in-
equality in (3.3.21).

Lemma 3.3.11. Under the notation introduced above

sup
y∈F
i∈Ic

‖πlin(T (F)(ei − y)‖
‖ei − y‖

= h(F) < 1 (3.3.22)

Proof. Since Ic is finite it suffices to prove the inequality for every i ∈ Ic. Since
lin(T (F)) = aff(F) − {y} clearly by the characterization in Lemma 3.3.8 ei − y /∈
lin(T (F)) so that

hi(y) def= ‖πlin(T (F)(ei − y)‖
‖ei − y‖

< 1

for every y ∈ F . But then since hi(y) is continuous

sup
y∈F

hi(y) = max
y∈F

hi(y) < 1 (3.3.23)

Lemma 3.3.12. Let K = {k ∈ N | xk /∈ F}. Then the sequence of search directions
{dk}k∈K generated by the AFW and the PFW is a sequence of identifying directions
for F
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Proof. We first prove the lemma for the PFW search directions. If U is the neigh-
borhood of Lemma 3.3.10, then for k large enough xk ∈ U so that

dPFWk = dFWk + dAWk = ei − ej (3.3.24)

for some i ∈ I, j ∈ Ic. since for any x ∈ ri(F) clearly −dPFWk is a feasible direction,
dPFWk ∈ −T (F) whenever (3.3.24) is satisfied and in particular for k large enough.
It remains to show that for k large enough ‖πlin(T (F))(dPFWk )‖ < h‖dPFWk ‖ for some
fixed h < 1. But even without explicitly computing the projection, by (3.3.24) it
follows that dPFWk takes a finite number of values and is never in lin(T (F)). Then
for some M ∈ N there exists h such that

sup
k≥M

‖πlinT (F)(dPFWk )‖
‖dPFWk ‖

= h < 1 (3.3.25)

because ‖dPFWk ‖ > ‖πlinT (F)(dPFWk )‖ for every k ≥M and dPFWk takes a finite number
of values.
We now prove the lemma for the AFW search directions. Let M, ε > 0 be such that
xk ∈ U ∩ B(F , ε) for every k ≥ M with dist(ei,F) > 2ε for every i ∈ I. Then by
Lemma 3.3.10 we have dk = dAWk = xk − ei for some i ∈ Ic for every k ≥ M such
that xk /∈ F . It is now convenient to split the iteration indexes in a family of sets
{Ki}i∈Ic defined by

Ki = {k ≥M | dAWk = xk − ei} (3.3.26)
so that

K = {k ≥M | xk /∈ F} = ∪i∈IcKi (3.3.27)
Fix i ∈ Ic. For every k ∈ Ki, let ak = πF(xk) so that

dist(−T (F), dAWk ) = dist(−T (F), xk−ei) ≤ dist(ak−ei, xk−ei) = ‖ak−xk‖ (3.3.28)

where the inequality is justified because ak ∈ F so that ak − ei ∈ −T (F). We can
finally write

lim sup
k→∞
k∈Ki

dist(−T (F), dAWk ) ≤ lim sup
k→∞
k∈Ki

‖ak − xk‖ = 0 (3.3.29)

Notice that by the definition of M we have ‖dAWk ‖ = ‖ei − xk‖ > ε, so that

lim sup
k→∞
k∈Ki

dist(−T (F), dAWk
‖dAWk ‖

) < lim sup
k→∞
k∈Ki

dist(−T (F), dAWk )
ε

= 0 (3.3.30)

We now prove that for every k ∈ Ki we also have

‖πlinT (F)(dAWk )‖
‖dAWk ‖

< h < 1 (3.3.31)

for some fixed h < 1. First, notice that since (dAWk )i < 0 for every k ∈ Ki then
dAWk /∈ lin(T (F)) so that the fraction in (3.3.31) is < 1. We also have

lim
k→∞
k∈Ki

‖dAWk ‖
‖ei − ak‖

= lim
k→∞
k∈Ki

‖πlin(T (F))(dAWk )‖
‖πlin(T (F))(ei − ak)‖

= 1 (3.3.32)
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so that

lim sup
k→∞
k∈Ki

‖πlinT (F)(dAWk )‖
‖dAWk ‖

= lim sup
k→∞
k∈Ki

‖πlin(T (F))(ei − ak)‖
‖ei − ak‖

≤ h(F) < 1 (3.3.33)

where the constant h(F) is the one of Lemma 3.3.11 and does not depend on i.
Equation (3.3.33) together with the fact that the fraction in (3.3.31) is always < 1
gives that for some constant ki

‖πlinT (F)(dAWk )‖
‖dAWk ‖

≤ ki < 1 (3.3.34)

so that for every k ≥M such that xk /∈ F

‖πlinT (F)(dAWk )‖
‖dAWk ‖

≤ max
i∈I

ki < 1 (3.3.35)

We can now prove the main theorem:

Proof of Theorem 3.3.7. Let M be as in Lemma 3.3.12 and k ≥ M . We first want
to prove that if xk ∈ F then xk+1 ∈ F for both the AFW and the PFW. But this is
true because dAWk = x − ei for some ei ∈ F(x) ⊆ F , and by Lemma 3.3.9 we have
dFWk = ej − x for some ej ∈ F . Then xk + λdk ∈ aff(F) for every λ ∈ R and in
particular xk+1 ∈ F .
On the other hand if K is the set of indexes such that xk /∈ F we’ve already proved
in lemma 3.3.12 that {dk}k∈K is a sequence of identifying directions for A. Thus for
the AFW the only condition that remains to be proved to apply Proposition 3.3.5
is xk+1 ∈ F(xk). Indeed we have dk = dAWk = ei − xk for some ei ∈ F(xk) \ F by
Lemma 3.3.9 and this concludes the proof for the AFW.
As for the PFW, let Jk = {i ∈ Ic | (xk)i > 0}. Since dPFWk = ei − ej for i ∈ I,
j ∈ Jk and by Lemma 3.3.4 the xk+1 = xk + λmaxd

PFW
k = xk + (xk)jdPFWk it follows

that (xk+1)j = 0, (xk+1)h = (xk)h for every h /∈ Jk so that |Jk+1| < |Jk|. It follows
that eventually there must be k̄ such that |Jk̄| = 0, or equivalently such that xk̄ ∈ F .
This together with the first part implies xk̄+m ∈ F for every m ∈ N.

58



Chapter 4

AFW active set complexity

4.1 Introduction and preliminaries
In this chapter we give explicit bounds for the AFW active set complexity on

different settings. We mostly analyze applications of the AFW over the simplex,
which is not restrictive with respect to the general polytope setting by the affine
invariance properties of the AFW (see for instance [28]). In fact every application of
the AFW to a polytope can be seen as an application of the AFW to the simplex,
with each vertex of the simplex corresponding to one of the atoms generating the
polytope.
The key idea in the complexity proofs is that there exists a neighborhood of the set
of minimizers for which the AFW at each iteration identifies an active constraint.
In particular to bound the active set complexity it is sufficient to control how many
iterations it takes for the AFW sequence to enter this neighborhood.
Finite time active set complexity for the AFW on the simplex has been proved recently
in [9]. However the proof used additional hypotheses on the curvature of f , which
we will not use here, and no explicit bounds were given. Here we use also a slightly
different definition of support identification, which for general polytopes can be nicely
translated in terms of exposed faces as we will show later in this chapter, subsection
4.6.4.
In the rest of this chapter f : ∆n−1 → R will be a function with gradient having
Lipschitz constant L and X∗ will be the set of minimizers of f . The constant L will
also be used as Lipschitz constant for ∇f with respect to the norm ‖ · ‖1. This does
not require any additional hypothesis on f since in general ‖ · ‖1 ≥ ‖ · ‖ so that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ≤ L‖x− y‖1 (4.1.1)

for every x, y ∈ ∆n−1.
For x ∈ Rn, X ⊂ Rn the function dist(x,X) will be the standard point set distance
and for A ⊂ Rn the function dist(A,X) will be the minimal distance between points
in the sets:

dist(A,X) = inf{a ∈ A, x ∈ X | ‖a− x‖} (4.1.2)
We define dist1 in the same way but with respect to ‖ · ‖1. Given a (convex and
bounded) polytope P and a linear function c we define the face of P exposed by c as

F(c) = argmax{cx | x ∈ P} (4.1.3)

59



It follows from the definition that the face of P exposed by a linear function is always
unique and non empty.
We now introduce the multiplier functions, which were recently used in [18] to define
an active set strategy for minimization over the simplex.
For every x ∈ ∆n−1, i ∈ {1, ..., n} the multiplier function λi : ∆n−1 → R is defined as

λi(x) = (∇f(x), ei − x)

or in vector form
λ(x) = ∇f(x)− (x,∇f(x))e (4.1.4)

Remarkably, for every x ∈ X∗ these functions coincide with the Lagrangian multipli-
ers of the constraints xi ≥ 0.

4.2 Local active set variables identification prop-
erty of the AFW

In this section we prove a rather technical proposition which is the key tool to give
quantitative estimates for the active set complexity. It states that when the sequence
is close enough to a fixed minimizer at every step the AFW identifies one variable
violating the complementarity conditions with respect to the multiplier functions on
this minimizer (if it exists), and it sets the variable to 0 with an away step. The main
difficulty is giving a tight estimate for how close the sequence must be to a minimizer
for this identifying away step to take place.
A lower bound on the size of the non maximal away steps is needed in the following
theorem, otherwise of course the steps could be arbitrarily small and there could be
no convergence at all.
We use the notation introduced in [34] for the FW direction dFWk and the away
direction dAk .

Theorem 4.2.1. Let x∗ be a fixed point in X∗, let

I = {i ∈ {1, ..., n} | λi(x∗) = 0}

and let Ic = {1, ...n} \ I. Let {xk}k∈N0 be the sequence of points generated by the
AFW,

δmin = min{λi(x∗) | i ∈ Ic}, Jk = {i ∈ Ic | (xk)i > 0}
Assume that for every k such that dk = dAk the step size αk is either maximal with
respect to the boundary condition or αk ≥ (−∇f(xk),dk)

L‖dk‖2
. If ‖xk − x‖1 <

δmin
δmin+2L = r∗

then
|Jk+1| ≤ max{0, |Jk| − 1} (4.2.1)

Before proving the main theorem we need to compute the local Lipschitz constant
of λ in x∗.

Lemma 4.2.2. Given h > 0, xk ∈ ∆n−1 such that ‖xk − x∗‖1 ≤ h let

Ok = {i ∈ Ic | (xk)i = 0}
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and assume that Ok 6= Ic. Let δk = maxi,j∈{1,...,n}\Ok λi(x∗) − λj(x∗). For every
i ∈ {1, ..., n}:

|λi(x∗)− λi(xk)| ≤ h(L+ δk

2 ) (4.2.2)

In this proof we simply show that we have all the hypotheses to apply the technical
Lemma 4.6.1 to bound the left hand side of (4.2.2).

Proof. Let λ̄ : ∆n−1 × Rn → Rn be defined by λ̄(x, a) = a− (a, x)e so that for every
x ∈ ∆n−1

λ̄(x,∇f(x)) = λ(x) (4.2.3)

and in particular

|λi(xk)− λi(x∗)| = |λ̄i(xk,∇f(xk))− λ̄i(x∗,∇f(x∗))| (4.2.4)

for every i ∈ {1, ..., n}.
We have ‖x∗ − xk‖1 ≤ h, x∗i = (xk)i = 0 for i ∈ Ok by hypothesis and

‖∇f(x∗)−∇f(xk)‖1 ≤ L‖x∗ − xk‖ ≤ L‖x∗ − xk‖1 ≤ Lh (4.2.5)

by the Lipschitz condition. This means that using the notation of Lemma 4.6.1
we have (xk,∇f(xk)) ∈ POk

h,L(x∗,∇f(x∗)) and by applying the lemma we get the
inequality

|λ̄i(x∗,∇f(x∗))− λ̄i(xk,∇f(xk))| ≤ h(L+ δOkmax(∇f(x∗))
2 )

Concatenating this to (4.2.4) we obtain

|λi(x∗)− λi(y)| ≤ h(L+ δOkmax(∇f(x∗))
2 )

where

δOkmax(∇f(x∗)) = max
i,j∈{1,...,n}/Ok

∇fi(x∗)−∇fj(x∗) = max
i,j∈{1,...,n}/Ok

λi(x∗)− λj(x∗) = δk

We now show a few important relations between the multipliers and the directions
selected by the AFW algorithm. Notice that for a fixed xk the multipliers λi(xk) are
the values of the linear function x → (∇f(xk), x) on the vertexes of ∆n−1 up to a
constant, which in turns are the values controlled by the AFW to select the direction,
so the next results should not be surprising.

Lemma 4.2.3. Let Hk = {i ∈ {1, ..., n} | (xk)i > 0}. Then

(a) If max{λi(xk) | i ∈ Hk} > max{−λi(xk) | i ∈ {1, ..., n}}, then the AFW does
an away step with dk = dAk = xk − ei for some i ∈ argmax{λi(xk) | i ∈ Hk}.

(b) For every i ∈ {1, ..., n}/Hk if λi(xk) > 0 then (xk+1)i = (xk)i = 0.

61



Proof. (a) Notice that since the vertexes of the simplex are linearly independent for
every k the set of active atoms is necessarily Hk. In particular
dAk ∈ argmax{(−∇f(xk), d) | d = xk − ei, i ∈ Hk} and this implies

dAk = xk−ei for some i ∈ argmax{(−∇f(xk), xk−ei) | i ∈ Hk} = argmax{λi(xk) | i ∈ Hk}
(4.2.6)

As a consequence of (4.2.6)

(−∇f(xk), dAk ) = max{(−∇f(xk), d) | d = −ei + xk, i ∈ Hk} = max{λi(xk) | i ∈ Hk}
(4.2.7)

where the second equality follows from λi(xk) = (−∇f(xk), d) with d = −ei + xk.
Analogously

(−∇f(xk), dFWk ) = max{(−∇f(xk), d) | d = ei − xk, i ∈ {1, ...n}} =
= max{−λi(xk) | i ∈ {1, ...n}}

(4.2.8)

We can now prove that (−∇f(xk), dFWk ) < (−∇f(xk), dAk ) so that the away direction
is selected :

(−∇f(xk), dFWk ) = max{−λi(xk) | i ∈ {1, ...n}} <
< max{λi(xk) | i ∈ Hk} = (−∇f(xk), dAk )

where we used (4.2.7) and (4.2.8) for the first and the second equality respectively,
and the inequality is true by hypothesis.
(b) We will first show that (dk)i = 0 for every i ∈ {1, ..., n}/Hk such that λi(xk) > 0.
We distinguish two cases.
Case 1: dk = dAk = xk − ej for some j ∈ Hk. Since (xk)i = 0 for every i ∈
{1, ..., n}/Hk we also have (dAk )i = (xk)i − (ej)i = (ej)i = 0 were the last equality is
justified because j ∈ Hk so that in particular j 6= i.
Case 2: dk = dFWk . We will assume that the minimization oracle selects a vertex
solution which simplifies the proof and in practice is often true. In section 4.6 we
prove that this additional assumption is not necessary anyway.
Let dFWk = ej − xk with

j ∈ argmin{(∇f(xk), el − xk) | l ∈ {1, ..., n}}

We can now prove that λi(xk) > 0 implies i 6= j:

(ej − xk,∇f(xk)) = (dFWk ,∇f(xk)) = min{(∇f(xk), el − xk) | l ∈ {1, ..., n}} =
= min{(∇f(xk), x− xk) | x ∈ ∆n−1} ≤ (∇f(xk), xk − xk) = 0 < λi(xk) = (ei − xk,∇f(xk))

(4.2.9)
In particular

(dFWk )j = (ej − xk)i = (ej)i − (xk)i = 0 (4.2.10)

To finish the proof, just observe that (xk+1)i = (xk)i + γ(dk)i by definition with
(xk)i + γ(dk)i = 0 for every i such that (xk)i = 0 and λi(xk) > 0 because also the
second summand in both of the two cases we just examined is 0.
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Figure 4.1: Away step identifies
one active variable

We can now prove the main theorem. The
strategy will be to split {1, ..., n} in three subsets
I, Jk and Ok = Ic/Jk and use Lemma 4.2.2 to
control the variation of the multiplier functions
on each of these three subsets. In the proof we
examine two possible cases under the assump-
tion of being close enough to a minimum. If
Jk = ∅, which means that the current iteration
of the AFW has identified the support of the so-
lution, then we will show that the AFW choses
a direction contained in the support so that also
Jk+1 = ∅.
If Jk 6= ∅, we will show that in the neighbor-
hood claimed by the theorem the largest multi-
plier in absolute value is always positive, with
index in Jk, and big enough so that the corre-
sponding away step is maximal. This means that
the AFW at the iteration k + 1 identifies a new
active variable.

Proof. If λ(x∗) = 0 ⇔ Ic = ∅ then there is nothing to prove since Jk ⊂ Ic = ∅ ⇒
|Jk| = |Jk+1| = 0.
Otherwise since Ic 6= ∅ and since by optimality conditions λi(x∗) ≥ 0 for every i
necessarily δmin > 0.
As in Lemma 4.2.2, let Ok = {i ∈ Ic | (xk)i = 0}, so that Ic/Ok = Jk and

δk = max
i,j∈{1,...,n}/Ok

λi(x∗)− λj(x∗) = max
i∈{1,...,n}/Ok

λi(x∗)− min
j∈{1,...,n}/Ok

λj(x∗) =

= max
i∈Jk∪I

λi(x∗)− min
j∈Jk∪I

λj(x∗) = max
i∈Jk∪I

λi(x∗)
(4.2.11)

where in the last equality we used that λj(x∗) ≥ 0 for every j and that I 6= ∅ so that
minj∈Jk∪I λj(x∗) = 0. For every i ∈ {1, ..., n}, by Lemma 4.2.2

λi(xk) = λi(x∗ + (xk − x∗)) ≥ λi(x∗)− ‖xk − x∗‖1(L+ δk

2 ) >

> λi(x∗)− r∗(L+ δk

2 ) = λi(x∗)−
δmin(L+ δk

2 )
2L+ δmin

(4.2.12)

We now distinguish two cases.
Case 1: |Jk| = 0. Then δk = 0 because Jk ∪ I = I and λi(x∗) = 0 for every i ∈ I.
Equation (4.2.2) becomes

λi(xk) > λi(x∗)−
δminL

2L+ δmin
(4.2.13)

so that for every i ∈ Ic since λi(x∗) ≥ δmin

λi(xk) > δmin −
δminL

2L+ δmin
> 0 (4.2.14)
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This means that for every i ∈ Ic we have (xk)i = 0 and λi(xk) > 0, so we can apply
part (b) of Lemma 4.2.3 and conclude (xk+1)i = 0 for every i ∈ Ic.

Case 2. |Jk| > 0. In particular if i ∈ argmax{i ∈ Jk | λi(x∗)} we have

λi(x∗) = max
i∈Jk

λi(x∗) = max
i∈Jk∪I

λi(x∗)

where we used that λj(x∗) = 0 < λi(x∗) for every j ∈ I. Then by the definition
(4.2.11) it follows

λi(x∗) = δk

so that

λi(xk) > λi(x∗)−
δmin(L+ δk

2 )
2L+ δmin

≥ δk

2 (4.2.15)

where we used (4.2.12) and that δk ≥ δmin.
We will now show that dk = xk − ei with i ∈ Jk.
For every i ∈ I since λi(x∗) = 0 again by Lemma 4.2.2

|λi(xk)| = |λi(xk)− λi(x∗)| ≤ ‖xk − x∗‖1(L+ δk/2) <
< r∗(L+ δk/2) ≤ δk/2

(4.2.16)

and for every i ∈ Ic by (4.2.12)

λi(xk) > δmin −
δmin(L+ δk

2 )
2L+ δmin

> −δ
k

2 (4.2.17)

Then using this together with (4.2.16), (4.2.15) we get −λj(xk) < δk/2 < λh(xk) for
every j ∈ {1, ..., n}, h ∈ argmax{λi(x∗) | i ∈ Jk}. So the hypothesis of Lemma 4.2.3
is satisfied and dk = dAk = xk − ei with i ∈ argmax{λi(xk) | i ∈ Hk}. We need to
show i ∈ Jk. But Hk ⊆ I ∪ Jk and by (4.2.16) if i ∈ I then λi(xk) < δk/2 < λj(xk)
for every j ∈ argmax{i ∈ Jk | λi(x∗)}. If i ∈ Ok then (xk)i = 0 and i /∈ Hk. Hence
we can conclude argmax{λi(xk) | i ∈ Hk} ⊆ Jk and dk = xk − ei with i ∈ Jk. In
particular, by (4.2.15) we get

λi(xk) = max{λj(xk) | j ∈ Jk} >
δk

2 (4.2.18)

We now want to show that αk = αmax. Assume by contradiction αk < αmax. Then

αk ≥
(−∇f(xk), dk)

L‖dk‖2 = λi(xk)
L‖dk‖2 >

δmin

2L‖dk‖2 (4.2.19)

where in the last inequality we used (4.2.18) together with δk ≥ δmin. Also, by Lemma
4.6.3

‖dk‖ = ‖ei − xk‖ ≤
√

2(ei − xk)i = −
√

2(dk)i ⇒
(dk)i
‖dk‖2 ≤ −1/2

(xk)i = (xk − x∗)i ≤
‖xk − x∗‖1

2 <
r∗
2 = δmin

4L+ 2δmin

(4.2.20)

64



Finally, combining (4.2.20) with (4.2.19)

(xk+1)i = (xk)i + (dk)iαk <
r∗
2 + (dk)i

δmin

2L‖dk‖2 ≤

≤ δmin

4L+ 2δmin
− δmin

4L < 0

where we used (4.2.19) to bound α in the first inequality, (4.2.20) to bound (xk)i and
(dk)i
‖dk‖2

. Hence (xk+1)i < 0, contradiction.

4.3 Active set complexity bounds
Before giving the active set complexity bounds in several settings it is important

to clarify that by active set associated to a solution x∗ we do not mean the set
A(x∗) = {i ∈ {1, ..., n} | (x∗)i = 0}} but the set Ic(x∗) = {i ∈ {1, ..., n} | λi(x∗) >
0}. In general Ic(x∗) ⊂ A(x∗) by complementarity conditions and the two sets
coincide under strict complementarity conditions. The face F of ∆n−1 defined by
the constraints with indexes in Ic(x∗) still has a nice geometrical interpretation: it is
the face of ∆n−1 exposed by −∇f(x∗).
It is at this point natural to require that the sequence {xk}k∈N converges to a subset
A of X∗ for which Ic is constant. This motivates the following definition:

Definition 4.3.1. Given a compact subset A of X∗ we will say that the multiplier
function λ has the support identification property for A if there exists

Ic(A, λ) ⊂ {1, ..., n}

such that for every x ∈ A the support of the multiplier function is Ic(A, λ). Under
these conditions we define

δmin(A, λ) = min{λi(x) | x ∈ A, i ∈ Ic}

The geometrical interpretation of the above definition is the following: for every
point in the subset A the negative gradient −∇f(x∗) exposes the same face. This is
trivially true if A is a singleton, and it is also true if for instance A is contained in
the relative interior of a face of ∆n−1 and strict complementarity conditions hold for
every point in this face.
Notice that by the compactness of A we always have δmin(A, λ) > 0. We can finally
give a rigorous definition of what it means to solve the active set problem:

Definition 4.3.2. Consider an instance of the AFW generating a sequence {xk}k∈N
converging to a subset A of X∗ for which λ has the support identification property.
We will say that this instance solve the active set problem in M steps if (xk)i = 0 for
every i ∈ Ic(A, λ), k ≥M .

We can now apply Lemma 4.2.1 to show that once a sequence is definitely close
enough to a set for which λ has the support identification property the AFW identifies
the active set in at most |Ic| steps.
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Theorem 4.3.3. Let X∗ be the set of minimizers of a function f : ∆n−1 → R
with ∇f having Lipschitz constant L. Let {xk} be a sequence generated by the AFW
applied to f on the simplex, and assume that there exists a compact subset A of X
such that dist(xk, A)→ 0 and for every x ∈ A the support of the multiplier function
is Ic. Then there exists M such that (xk)i = 0 for every k ≥M , i ∈ Ic(A, λ).

Proof. Since λ has the support identification property for A we can set δmin =
δmin(A, λ) > 0 and Ic = Ic(A, λ) to simplify notations. Let k̄ be such that dist1(xk, A) <
δmin

2L+δmin
= r∗ for every k ≥ k̄, and let Jk = {i ∈ Ic | (xk)i > 0}.

Then every k ≥ k̄ there exists y∗ ∈ A with ‖xk − y∗‖1 < r∗. But since by hypothesis
for every y∗ ∈ A the support of the multiplier function is Ic with δmin ≤ λi(y∗) for
every i ∈ Ic, we can apply Theorem 4.2.1 with y∗ as fixed point and obtain that
Jk+1 ≤ max(0, Jk − 1). This means that it takes at most |Jk̄| ≤ |Ic| steps for all the
variables with indexes in |Ic| to be 0. To conclude, again by (4.2.1) since |Jk̄+|Ic|| = 0
by induction |Jm| = 0 for every M ≥ k̄ + |Ic|.

The proof above also gives a relatively simple upper bound for the complexity of
the active set problem:

Proposition 4.3.4. Under the hypotheses of Proposition 4.3.3 the active set com-
plexity is at most

min{k̄ ∈ N | dist1(xk, A) < r∗∀k ≥ k̄}+ |Ic|

where r∗ = δmin
2L+δmin

.

Finally, under some assumptions on the set of minimizersX∗ and on the step sizes,
we can prove finite time active set identification. This theorem is a consequence of
the local convergence properties we just proved combined with a general convergence
theorem that we prove in the appendix. In subsection 4.6.3 we discuss the hypotheses
on X∗ and the step sizes.

Theorem 4.3.5. Assume that X∗ = ⋃C
i=1Ai where {Ai} is a family of compact and

disjoint sets, and assume that for each of these sets λ has the support identification
property. Let {xk}k∈N be the sequence generated by the AFW with step sizes satisfying
αk ≤ 2(∇f(xk), dk)/‖dk‖2L or more in general

xk ∈ argmax{f(x) | x ∈ conv(xk, xk+1)} (4.3.1)

If f(xk)→ f ∗ then there exists i such that

dist1(xk, Ai)→ 0 (4.3.2)

Moreover, (xk)i = 0 for every i ∈ Ic(Aiλ),

i ≥ k̄ + |Ic(Ai, λ)| (4.3.3)

where k̄ is the minimum such that

dist1(xk, Ai) ≤
δmin(Ai, λ)

2L+ δmin(Ai, λ)
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Proof. Thanks to the condition on the step sizes by Lemma 4.6.5 the AFW satisfies
the condition

xk ∈ argmax{f(x) | x ∈ conv(xk, xk+1)} (4.3.4)
In particular we have all the hypotheses to apply 4.6.4 and obtain that there exists
Ai such that dist1(xk, Ai) → 0. The active set complexity bound (4.3.3) follows the
immediately from 4.3.4.

As an example of a more concrete application of Theorem 4.2.1 we prove an active
set complexity result for strongly convex functions on the simplex. We will actually
use a slightly weaker hypothesis: f is convex and has a unique minimum x∗ on the
n− 1 dimensional simplex ∆n−1 such that

f(x) ≥ u1

2 ‖x− x
∗‖2

1 (4.3.5)

for every x on ∆n−1.
Corollary 4.3.6. Let {xk}k∈N0 be the sequence of points generated by the AFW,
hk = f(xk) − f∗. Let q < 1 be such that hk ≤ qkh0. Under the same hypotheses
of Theorem 4.2.1, if also the error bound condition (4.3.5) holds, then the active set
complexity is

max(0, ln(h0)− ln(ur2
∗/2)

ln(1/q) ) + |Ic|

Proof. Notice that by the linear convergence rate hk ≤ qkh0 the number of steps that
it takes to reach the condition

hk ≤
u1

2 r
2
∗ (4.3.6)

is at most
k̄ = max(0, ln(h0)− ln(u1r

2
∗/2)

ln(1/q) )

We claim that if condition (4.3.6) holds then it takes at most |Ic| steps for the sequence
to be definitely in the active set.
Indeed if hk ≤ u

2r
2
∗ then necessarily xk ∈ B(x∗, r∗) by (4.3.5) and by monotonicity

of the bound we then have xk+h ∈ B(x∗, r∗) for every h ≥ 0. Once the sequence is
definitely in B(x∗, r∗) by (4.2.1) it takes at most |Jk̄| ≤ |Ic| steps for all the variables
with indexes in |Ic| to be 0. To conclude, again by (4.2.1) since |Jk̄+|Ic|| = 0 by
induction |Jm| = 0 for every m ≥ k̄ + |Ic|.

Remark 4.3.7. In the above proof we did not use Theorem 4.3.5, which would
require additionally the sequence {f(xi)} to be decreasing. It is anyway not difficult
to see that the hypothesis

xk ∈ argmax{f(x) | x ∈ conv(xk, xk+1)} (4.3.7)

is only used to show that the sequence {xk} does not escape from the connected
components of sublevel sets, which in the convex case is obvious since every sublevel
set is connected.

The proof of AFW active set complexity for generic polytopes in the strongly
convex case requires additional theoretical results and is presented in the appendix.
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4.4 Active set complexity for non convex objec-
tives

In this section we give a more explicit convergence bound for the general non
convex case. A fundamental element in our analysis will be the FW gap function
g : ∆n−1 → R defined as

g(x) = (−∇f(x), x)−min{(−∇f(x), y) | y ∈ ∆n−1} . (4.4.1)

We have clearly g(x) ≥ 0 for every x ∈ ∆n−1 with equality iff x is a stationary point.
The reason this function is called FW gap is evident from the relation

g(xk) = (−∇f(xk), dFWk ) . (4.4.2)

This FW gap function was used in [32] to analyze the convergence rate of the classic
FW algorithm for non convex functions. In particular, a convergence rate of O( 1√

k
)

was proved for
g∗k = min

0≤i≤k
g(xi) . (4.4.3)

The key insight of [32] is that to prove a convergence rate for this sequence g∗k one can
extend in a straightforward way the techniques used in the convex case to the non
convex one. This does not appear to be true if one still tries to prove a convergence
rate for the sequences {f(xk)}k∈N or {∇f(xk)}k∈N. Following this insight we mostly
repeat the steps used to compute the convergence rate of the AFW in the (strongly)
convex case (see for instance [39]) to prove a convergence rate for {g∗k}k∈N0 in the non
convex one.
In the rest of this section we assume that the AFW starts from a vertex of the simplex.
This is not restrictive because otherwise by affine invariance one can apply the same
theorems to the AFW starting from en+1 for f̃ : ∆n → R satisfying

f̃(x) = f((x1, ..., xn) + xn+1p) (4.4.4)

where p ∈ ∆n−1 is the desired starting point. We will discuss more in detail the
invariance of the AFW under affine transformations in section 4.6.4.

Theorem 4.4.1. Let f ∈ C1(∆n−1,R) be with L− Lipschitz differential. Let f ∗ =
minx∈∆n−1 f(x), and let {xk}k∈N be a sequence generated by the AFW algorithm ap-
plied to f on Ω with step size

αk = min(αmax
k ,

1
L‖dk‖2 (−∇f(xk), dk)) . (4.4.5)

Assume that the linear minimization oracle always selects a vertex solution, and that
the algorithm starts from a vertex. Then for every T ∈ N

g∗T ≤ max(
√

8L(f(x0)− f ∗)
T

,
4(f(x0)− f ∗)

T
)
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Proof. Let rk = −∇f(xk), let Sk = {i ∈ {1, ..., n} | (xk)i 6= 0} and gk = g(xk). We
distinguish 3 cases.
Case 1. αk < αmax

k . Then by the standard descent lemma (see [6], Proposition 6.1.2)

f(xk + αdk) ≤ f(xk) + α(∇f(xk), dk) + α2L

2 ‖dk‖
2 . (4.4.6)

Minimizing the right hand side with respect to α we have that for α = αk

f(xk+1) = f(xk + αkdk) ≤ f(xk)−
1

2L‖dk‖2 (rk, dk)2 (4.4.7)

which rearranging becomes

f(xk)− f(xk+1) ≥ 1
2L‖dk‖2 (rk, dk)2 ≥ 1

2L‖dk‖2 g
2
k ≥

g2
k

4L (4.4.8)

where we used (rk, dk) ≥ (rk, dFWk ) = gk in the second inequality and ‖dk‖ ≤
√

2 in
the third one.
As for Sk, by hypothesis we have either dk = dFWk so that dk = ei − xk or dk = dAk =
xk− ei for some i ∈ {1, ..., n}. In particular Sk+1 ⊆ Sk ∪{i} so that |Sk+1| ≤ |Sk|+ 1.
Case 2: αk = αmax

k = 1, dk = dFWk . Again by the standard descent lemma applied
to f with center xk and α = 1

f(xk+1) = f(xk + dk) ≤ f(xk) + (∇f(xk), dk) + L

2 ‖dk‖
2 .

Since by the Case 2 condition min( (−∇f(xk),dk)
‖dk‖2L

, 1) = αk = 1 we have

(−∇f(xk), dk)
‖dk‖2L

≥ 1⇒ −L‖dk‖2 ≥ (∇f(xk), dk) (4.4.9)

so that

f(xk)− f(xk+1) ≥ (−∇f(xk), dk)−
L

2 ‖dk‖
2 ≥ −1

2(∇f(xk), dk) = 1
2gT . (4.4.10)

Reasoning as in Case 1 we also have |Sk+1| ≤ |Sk|+ 1.
Case 3: αk = αmax

k , dk = dAk . Then dk = xk − ei for i ∈ Sk and

(xk+1)j = (1 + αk)(xk)j − αk(ei)j

with αk = αmax
k = (xk)i

1−(xk)i . Therefore (xk+1)j = 0 for j ∈ {1, ..., n} \ Sk ∪ {i} and
(xk+1)j 6= 0 for j ∈ Sk \ {i}. In particular |Sk+1| = |Sk| − 1. For i = 1, 2, 3 let now
ni(T ) be the number of Case i steps done in the first T iterations of the AFW. We
have by induction on the recurrence relation we proved for |Sk|

|ST | − |S0| ≤ n1(T ) + n2(T )− n3(T ) (4.4.11)

for every T ∈ N.
Since n3(T ) = T − n1(T )− n2(T ) from (4.4.11) we get

n1(T ) + n2(T ) ≥ T + |ST | − |S0|
2 ≥ T

2 (4.4.12)
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where we used |S0| = 1 ≤ |ST | Let now CT
i be the set of indexes up to T − 1

corresponding to Case i steps for i ∈ {1, 2, 3}, which satisfies |CT
i | = ni(T ). We have

by summing (4.4.8) and (4.4.10) for the indexes in CT
1 and CT

2 respectively

∑
k∈CT1

f(xk+1)− f(xk) +
∑
k∈CT2

f(xk+1)− f(xk) ≥
∑
k∈CT1

g2
k

4L +
∑
k∈CT2

1
2gk (4.4.13)

We now lower bound the RHS of (4.4.13) in terms of g∗T
∑
k∈CT1

g2
k

4L +
∑
k∈CT2

1
2gk ≥ |C

T
1 | min

k∈CT1

g2
k

4L + |CT
2 | min

k∈CT2

gk
2 ≥

≥(|CT
1 |+ |CT

2 |) min((g∗T )2

4L ,
g∗T
2 ) = (n1(T ) + n2(T )) min((g∗T )2

4L ,
g∗T
2 ) ≥

≥T2 min((g∗T )2

4L ,
g∗T
2 ) = T

2 min(g
∗
T

2 ,
(g∗T )2

4L ) .

(4.4.14)

Since the LHS of (4.4.13) can clearly be upper bounded by f(x0)− f ∗ we have

f(x0)− f ∗ ≥ T

2 min(g
∗
T

2 ,
(g∗T )2

4L ) . (4.4.15)

To finish, if T
2 min(g

∗
T

2 ,
(g∗T )2

4L ) = Tg∗T
4 we then have

g∗T ≤
4(f(x0)− f ∗)

T
(4.4.16)

and otherwise

g∗T ≤
√

8L(f(x0)− f ∗)
T

. (4.4.17)

The thesis follows taking the max in the system formed by (4.4.16) and (4.4.17).

In the rest of this section we will use the notation introduced in Theorem 4.3.5.
Before stating the active set complexity bound result, we need to introduce a few
new elements. Let

ri = min( δmin(Ai, λ)
2L+ δmin(Ai, λ) ,

dist1(Ai, X∗ \ Ai)
2 ) (4.4.18)

and
X∗λ =

⋃
i∈{1,...,C}

B1(ri, Ai) . (4.4.19)

It follows immediately from the definition that the connected components of X∗λ are
B1(ri, Ai) for 1 ≤ i ≤ C. Let m = min{x ∈ ∂X∗λ | f(x)} so that in particular m > f ∗

because X∗ ⊂ (X∗λ)◦. Finally, let

τ = min{g(x) | x ∈ f−1([m,+∞))} (4.4.20)
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Theorem 4.4.2. Assume that in addition to the hypotheses of Theorem 4.3.5 we also
have

αk = min((−∇f(xk), dk)
‖dk‖2L

, αmax
k ) . (4.4.21)

Then the constant k̄ appearing in the statement of Theorem (4.3.5) satisfies

k̄ ≤ max(4(f(x0)− f ∗)
τ

,
8L(f(x0)− f ∗)

τ 2 ) + 1 . (4.4.22)

Proof. We have all the hypotheses to apply the bound given in Theorem 4.4.1 for g∗k.

g∗k ≤ max(
√

8L(f(x0)− f ∗)
k

,
4(f(x0)− f ∗)

k
) (4.4.23)

It is straightforward to check that if

h̄ = dmax(4(f(x0)− f ∗)
τ

,
8L(f(x0)− f ∗)

τ 2 )e (4.4.24)

then
g∗h̄ < τ . (4.4.25)

So that in particular g(xk) < τ for some k ≤ h̄. Hence, by the definition of τ we get
f(xk) < m and also f(xh̄) < m given the monotonicity of the AFW with step sizes
given by (4.4.21). We claim that xh ∈ X∗λ for every h ≥ h̄. Indeed otherwise since
xk → X∗ ⊂ X∗λ there would be h′ ≥ h̄ such that xh′ /∈ X∗λ but xh′+1 ∈ X∗λ. But as a
consequence we would have on the one hand m > f(xh′) with

xh′ ∈ argmax{f(x) | x ∈ conv(xh′ , xh′+1)}

and on the other hand f(y) ≥ m for y ∈ conv(xh′ , xh′+1)∩ ∂X∗λ 6= ∅, a contradiction.
With the same argument we can prove that for every h ≥ h̄ the point xh is in the
same connected component of X∗λ, or in other words there exists i such that

dist1(Ai, xh) ≤ ri ≤
δmin(Ai, λ)

2L+ δmin(Ai, λ) (4.4.26)

for every h ≥ h̄. Of course this i must then coincide with the one in the statement
of Theorem (4.3.5). The thesis follows immediately from the definition of k̄.

Combining this result with Theorem 4.3.5 we have the following more explicit
estimate for the AFW active set complexity in the non convex case.
Corollary 4.4.3. Under the hypotheses of Theorem 4.4.2 the active set identification
complexity is at most

n+ max(4(f(x0)− f ∗)
τ

,
8L(f(x0)− f ∗)

τ 2 ) + 1 . (4.4.27)

Proof. We have by Theorem 4.3.5 that the active set complexity is

C(f) ≤ k̄ + |Ic(Ai, λ)| (4.4.28)

where i is the index such that xk → Ai. Then

C(f) ≤ k̄ + |Ic(Ai, λ)| ≤ n+ max(4(f(x0)− f ∗)
τ

,
8L(f(x0)− f ∗)

τ 2 ) + 1 (4.4.29)

where we used Theorem 4.4.2 in the second inequality.
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4.5 Conclusions
We proved general results for the AFW finite time active set convergence problem,

giving explicit bounds on the number of steps necessary to identify the support of a
solution. As an example of application of these results we computed the active set
complexity for strongly convex functions. Possible expansions of these results would
be to adapt them for other FW variants and compute the active set complexity for non
strongly convex functions applying the known convergence results. It also remains
to be seen if these identification properties of the AFW can be extended to problems
with non linear constraints.

4.6 Technical proofs

4.6.1 Technical inequalities
In the following technical lemma we define a linear programming problem related

to the variation of the multiplier functions and compute an upper bound to its optimal
value. Before defining the problem we need to introduce some notation. Let λ̄ :
∆n−1 × Rn → Rn be defined by λ̄(x, a) = a − (a, x)e, so that if λ is the vector of
multiplier functions for f then λ(x) = λ̄(x,∇f(x)). Let x ∈ ∆n−1, a ∈ Rn, h, L > 0,
O ⊂ {1, ..., n} and let

PO
h,L(x, a) = {(y, b) ∈ ∆n−1 × Rn | ‖y − x‖1 ≤ h, ‖b− a‖1 ≤ Lh, yi = xi ∀ i ∈ O}

Finally, let δOmax(a) = maxi,j∈{1,...,n}/O ai − aj. Then:

Lemma 4.6.1. Let m ∈ {1, ..., n} and

z = max |λ̄m(y, b)− λ̄m(x, a)|
(y, b) ∈ PO

h,L(x, a)
(4.6.1)

Then z ≤ (L+ δOmax(a)/2)h.

Notice that in principle one could solve two linear programming problems with
the same feasible region of (4.6.1) to compute the maximum and the minimum of the
objective function without absolute value. However, the computations seem rather
complex, so that instead we will just prove the upper bound on z by splitting the
objective function in two summands much easier to bound individually. Our estimate
turns out to be the actual optimal value for some instances of the problem, as we
show in the remark after the proof.

Proof. By the definition of λ̄m and the triangular inequality

|λ̄m(y, b)−λ̄m(x, a)| = |bm−am+(a, x−y)+(a−b, y)| ≤ |bm−am+(a−b, y)|+|(a, x−y)|
(4.6.2)

Let ti = −yi for i ∈ {1, ..., n}/{m}, tm = 1 − ym. Since y ∈ ∆n−1 and in particular
0 ≤ yi ≤ 1 we have |ti| ≤ 1 for every i ∈ {1, ..., n}. This implies that

|bm − am + (a− b, y)| = |(b− a, t)| ≤ ‖b− a‖1‖t‖∞ ≤ Lh (4.6.3)
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where the last inequality is justified by the Holder inequality with exponents 1,∞
and holds for every (y, b) ∈ PO

h,l(x, a).
We now bound the second piece. Let

ki = max{0, (x− y)i}, li = max{0,−(x− y)i} (4.6.4)∑
i∈{1,...,n} xi = ∑

i∈{1,...,n} yi = 1 since x, y ∈ ∆n−1 so that∑
i∈{1,...,n}

(x− y)i =
∑

i∈{1,...,n}
ki − li = 0⇒

∑
i∈{1,...,n}

ki =
∑

i∈{1,...,n}
li (4.6.5)

Moreover, 2 ∑
i∈{1,...,n} ki = 2 ∑

i∈{1,...,n} li = ∑
i∈{1,...,n} ki + li = ∑

i∈{1,...,n} |xi − yi| ≤ h
so that ∑

i∈{1,...,n}
ki =

∑
i∈{1,...,n}

li
def= h′/2 ≤ h/2 (4.6.6)

Let am = mini∈{1,...,n}/O ai, aM = maxi∈{1,...,n}/O ai. By definition ki, li ≥ 0 for every
i ∈ {1, ..., n} so that

h′

2 am = am
∑

i∈{1,...,n}/O
ki ≤

∑
i∈{1,...,n}/O

kiai =
∑

i∈{1,...,n}
kiai (4.6.7)

where in the last equality we used that by hypothesis ki = li = 0 ∀ i ∈ O. Also

∑
i∈{1,...,n}

kiai =
∑

i∈{1,...,n}/O
kiai ≤ aM

∑
ki = h′

2 aM (4.6.8)

Reasoning analogously for li we get

(a, l) ∈ [h
′

2 am,
h′

2 aM ], (a, k) ∈ [h
′

2 am,
h′

2 aM ] (4.6.9)

We can finally bound the second piece of (4.6.2)

|(a, x−y)| = |
∑

i∈{1,...,n}
ai(ki−li)| = |(a, k)−(a, l)| ≤ h′

2 (aM−am) ≤ h

2 (aM−am) = h

2 δ
O
max(a)

(4.6.10)
for every y ∈ ∆n−1.
To conclude, by (4.6.2)

z ≤ max{|bm − am + (a− b, y)| | (y, b) ∈ PO
h,L(x, a)}+ max{|(a, x− y)| | (y, b) ∈ PO

h,L(x, a)} ≤
≤ max{|bm − am + (a− b, y)| | (y, b) ∈ PO

h,L(x, a)}+ max{|(a, x− y)| | y ∈ ∆n−1}
(4.6.11)

and bounding the two summands with (4.6.3) and (4.6.10) respectively

max{|bm−am+(a−b, y)| | (y, b) ∈ PO
h,L(x, a)}+max{|(a, x−y)| | y ∈ ∆n−1} ≤ (L+δ

O
max(a)

2 )h
(4.6.12)
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Remark 4.6.2. There are many simpler ways to bound the variation of the multi-
pliers function, so that it is important to underline that the bound we gave on this
linear problem can be optimal. We provide a set of vectors for which our estimate
coincide with the actual optimal value of the problem. Let x, a,m be such that for
some i, j 6= m we have δOmax(a) = ai−aj and xm = 0. Let yi = xi+h/2, yj = xj−h/2
and y{1,...,n}\{i,j} = x{1,...,n}\{i,j}. Finally, let b{1,...,n}\{m} = a{1,...,n}\{m}, bm = am −Lh.
It is easy to check that if xi ≤ 1 − h/2, xj ≥ h/2 then (y, b) is feasible for problem
(4.6.1) and that |λ̄m(y, b) − λ̄m(x, a)| = (L + δOmax(a)/2)h coincides with the upper
bound we proved.

A few elementary properties of the simplex ∆n−1 which will allow us to relate
different norms restricted to ∆n−1 will be useful to show that the AFW away steps
are long enough to be maximal with respect to the boundary conditions.

Lemma 4.6.3. Given x, y ∈ ∆n−1, i ∈ {1, ..., n}:

1. ‖ei − x‖ ≤
√

2(ei − x)i;

2. (y − x)i ≤ ‖y − x‖1/2

Proof. 1. (ei − x)j = −xj for j 6= i, (ei − x)i = 1− xi = ∑
j 6=i xj. In particular

‖ei − x‖ = (
∑
j 6=i

x2
j + (ei − x)2

i )
1
2 ≤ ((

∑
j 6=i

xj)2 + (1− xi)2) 1
2 =
√

2(
∑
j 6=i

xi) =
√

2(ei − x)i

(4.6.13)
2. Since ∑

i∈{1,...,n} xi = ∑
i∈{1,...,n} yi so that ∑(x− y)i = 0 we have

(y − x)i =
∑
j 6=i

(x− y)j

and as a consequence

‖y − x‖1 =
∑

j∈{1,...,n}
|(y − x)j| ≥ (y − x)i +

∑
j 6=i

(x− y)j = 2(y − x)i (4.6.14)

4.6.2 Oracles that do not guarantee a vertex solution
We now prove Lemma 4.2.3 without assuming that the minimization oracle finds

a vertex solution.

Proof. We omit the first part of the proof which has no significant differences with
the one of Lemma 4.2.3 and start from case 2 of point b).
We first prove that the smallest multiplier is at most 0:

min{λi(xk) | i ∈ {1, ..., n}} = min{(∇f(xk), ei − xk) | i ∈ {1, ..., n}} =
= min{(∇f(xk), x− xk) | x ∈ ∆n−1} ≤ (∇f(xk), xk − xk) = 0

(4.6.15)

Let dk = dFWk = xf − xk with

xf ∈ argmin{(∇f(xk), x− xk) | x ∈ ∆n−1} = argmin{(∇f(xk), x) | x ∈ ∆n−1}
def= Ck
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Since ∆n−1 is a polytope with vertexes {ei}1≤i≤n we have

Ck = conv({ei | ei ∈ Ck}) (4.6.16)

where ei ∈ Ck if and only if

∇fi(xk) = min{(∇f(xk), ej) | j ∈ {1, ..., n}} = min{λj(xk) + (xk,∇f(xk)) | j ∈ {1, ..., n}} =
= min{λj(xk) | j ∈ {1, ..., n}}+ (xk,∇f(xk))

(4.6.17)
and bringing (xk,∇f(xk)) on the left hand side the condition becomes
λi(xk) = min{λj(xk) | j ∈ {1, ..., n}}. In other words

ei ∈ Ck ⇔ λi(xk) ∈ argmin{λj(xk) | j ∈ {1, ..., n}} def= Ak

Since xf ∈ Ck = conv{ei | i ∈ Ak} we have xf = ∑
i∈Ak ᾱiei where ᾱi ≥ 0,∑

i∈Ak ᾱi = 1. As a consequence (xf )j = 0 for every j such that λj(xk) > 0, because
λj(xk) > 0 ≥ min{λi(xk) | i ∈ {1, ..., n}} by (4.6.15), hence j /∈ Ak. If additionally
(xk)j = 0,

(dFWk )j = (xf − xk)j = (xf )j − (xk)j = 0 (4.6.18)
so also case 2 is proved.
The conclusion follows as in Lemma 4.2.3.

4.6.3 Convergence lemma.
The following is a very general and straightforward lemma which ensures that if

the set of minimizers of f can be split in a family of disjoint and compact sets then
any minimizing sequence with a certain descent property converge to one of these
set. The property is

xk ∈ argmax{f(x) | x ∈ conv(xk, xk+1)} (4.6.19)

and it is obviously stronger than the usual monotonicity. However, if f is convex,
this property is equivalent to f(xk) ≥ f(xk+1). Indeed given

x ∈ conv(xk, xk+1) = {λxk + (1− λ)xk+1 | λ ∈ [0, 1]}

for λ ∈ [0, 1] we have

f(λxk + (1− λ)xk+1) ≤ λf(xk) + (1− λ)f(xk+1) ≤ f(xk)

if f(xk) ≤ f(xk+1).

Lemma 4.6.4. Assume that X∗ = ⋃C
i=1Ai where the {Ai}1≤i≤C is a family of compact

and disjoint sets. Assume that {xk} is a sequence in ∆n−1 with the property (4.6.19).
Then if f(xk)→ f ∗ there exists i such that dist(xk, Ai)→ 0.

In the proof we use that as a consequence of (4.6.19) the sequence xk can not
escape from connected components of sublevel sets, so that when it falls into a con-
nected component of a sublevel set close to a certain Ai it cannot reach the other
components of X∗.
We define

Bε(X) = {x ∈ Rn | ‖x−X‖ < ε} (4.6.20)
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Proof. First notice that by the continuity of f and the compactness of ∆n−1 neces-
sarily

dist(xk, X∗)→ 0 (4.6.21)
otherwise for an ε > 0 we could pick a converging subsequence {yk} of {xk} outside
Bε(X∗) so that f(yk)→ f(limk→∞ yk) > f ∗, a contradiction.
Since the family of sets {Ai}1≤i≤C is formed by compact and disjoint sets we have
that D = min1≤i<j≤C dist(Ai, Aj)/2 > 0. Consider any δ < D

2 : then for every
x ∈ Ai, y ∈ Aj we have ‖x− y‖ > 2δ so that {Bδ(Ai)}1≤i≤C is a family of open and
disjoint sets.
Let

f̃ = min{f(x) |x ∈ ∆n−1/
C⋃
i=1

Bδ(Ai)} = min{f(x) |x ∈ ∆n−1/Bδ(X∗)} > f ∗

Since f(xk) → f ∗ there exists k̄ such that f(xk) < f̃ for every k ≥ k̄. This implies
that xk ∈ Bδ(X∗) for every k ≥ k̄. Let xk̄ ∈ Ai. We claim that xk ∈ Bδ(Ai) for
every k ≥ k̄. It suffices to show that if xk ∈ Bδ(Ai) then also xk+1 ∈ Bδ(Ai). Assume
by contradiction xk+1 ∈ Aj with j 6= i. Then there exists p ∈ conv(xk, xk+1) such
that p /∈ ⋃C

i=1Bδ(Ai) because otherwise {Bδ(Ai) ∩ conv(xk, xk+1}1≤i≤C would be a
partition open in conv(xk, xk+1) of a connected segment. But then f(p) ≥ f̃ > f(xk),
contradicting hypothesis (4.6.19).
We now have xk ∈ Bδ(Ai) which implies xk /∈ Bδ(Aj) for every k ≥ k̄, j 6= i. This
means that dist(Ai, xk) < δ and dist(Aj, xk) > δ for every j 6= i, k ≥ k̄, which
implies dist(X∗, xk) = dist(Ai, xk) for every k ≥ k̄. To finish, notice that since
dist(X∗, xk)→ 0 then also dist(Ai, xk)→ 0.

If ∇f has the Lipschitz property and the step size respect a certain upper bound
depending on the Lipschitz constant and the current center xk then condition (4.6.19)
still holds. The proof uses the standard descent lemma (see [6], proposition 6.1.2).
Lemma 4.6.5. Consider a sequence {xk}k∈N in Rn such that xk+1 = xk + αkdk with
αk ∈ R, dk ∈ Rn. Assume that 0 ≤ αk ≤ (−2∇f(xk), dk)/‖dk‖2L. Then the sequence
{xk}k∈N has the property (4.6.19).
Proof. By the standard descent lemma

f(x) ≤ f(xk) + (∇f(xk), d) + L‖d‖2

2
so that

f(xk + αdk) ≤ f(xk) + α(∇f(xk), dk) + α2L‖dk‖2

2 (4.6.22)

Since for 0 ≤ α ≤ −2(∇f(xk),dk)
L‖dk‖2

we have

α(∇f(xk), dk) + α2L‖dk‖2

2 ≤ 0 (4.6.23)

for every x ∈ conv(xk, xk+1) ⊆ {x+ αkdk | 0 ≤ α ≤ −2(∇f(xk),dk)
L‖dk‖2

}

f(x) = f(x+ αdk) ≤ f(xk) + α(∇f(xk), dk) + α2L‖dk‖2

2 ≤ f(xk) (4.6.24)

76



4.6.4 AFW complexity for generic polytopes
It is well known as anticipated in the introduction that every application of the

AFW to a polytope can be seen as an application of the AFW to the simplex. We’ve
already used this property of the AFW in section 3.3 of chapter 2. There we proved
that the sequence generated by the AFW is definitely on the face of the polytope
exposed by −∇f(x∗), where x∗ is a point in a certain subset of minimizers to which
the function converges. An analogous result was already well known for the gradient
projection algorithm, and in section 3.2 of chapter 2 we gave explicit estimates for
the convergence rate. In this section our aim is to give explicit estimates for the
AFW active set identification complexity for generic polytopes. With respect to the
considerations made in section 3.3 we are then more interested in obtaining quanti-
tative results. There is however some overlap between the beginning of this section
and section 3.3, which we maintain instead of referencing equations for clarity.
Before stating the general theorem we need to introduce formal notations and prove
a few simple properties in the generic polytope setting.
Let P = {x ∈ Rn | Cx ≤ b} be a polytope and f : P → Rn be a function with
gradient having Lipschitz constant L. In the rest of this section the vectors in Rn

have dimension n×1 and ∇f(x) has dimension 1×n, so that we can use the product
between matrices and omit the scalar product notation.
To define the AFW algorithm we need a finite set of atoms A such that conv(A) = P .
As for the simplex we can then define for every a ∈ A the multiplier function
λa : P → R by

λa(x) = ∇f(x)(a− x)

Let finally A be a matrix having for columns the atoms in A, so that A is also a
linear transformation mapping ∆|A|−1 in P with Aei = Ai ∈ A.
In order to apply Theorem 4.2.1 we need to check that the transformed problem

min{f(Ax) | x ∈ ∆|A|−1} (4.6.25)

still has all the necessary properties under the assumptions we made on f .
Let f̃(x) = f(Ax). First, it is easy to see that the gradient of f̃ is still Lipschitz:

∇f̃(x)−∇f̃(y) = (∇f(Ax)−∇f(Ay))A ≤ L‖A(x− y)‖‖AT‖ ≤ L‖A‖‖AT‖‖x− y‖
(4.6.26)

This computation also shows that ∇f̃ has Lipschitz constant

LA = L‖A‖‖AT‖ (4.6.27)

Also λ is invariant under affine transformation, meaning that λAi(Ax) = λi(x) for
every i ∈ {1, ..., |A|}, x ∈ P . Indeed

λAi(Ax) = ∇f(Ax)(Ai − Ax) = ∇f(Ax)A(ei − x) = ∇(f(Ax))(ei − x) = λi(x)

We now need to check that the active set identification property and the disjoint
compact partition property used in Theorem 4.3.5 are also invariant under affine
transformation. Let X∗P be the set of minimizers for f on P , so that X∗ = A−1(X∗P ) is
the set of minimizers for f̃ . IfX∗P = ⋃C

i=1Bi with {Bi}1≤i≤C compact and disjoint than
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also X∗ = ⋃C
i=1A

−1(Bi) with {A−1(Bi)}1≤i≤C compact and disjoint. The invariance
of the identification property follows immediately from the invariance of λ: if the
support of the multiplier functions for f restricted to B is {Ai}i∈Ic , then the support
of the multiplier functions for f̃ restricted to A−1(B) is Ic.
We now show the connection between the face exposed by −∇f and the support of
the multiplier function. Let x∗ ∈ X∗P and let

P ∗(x∗) = {x ∈ P | ∇f(x∗)x = ∇f(x∗)x∗} = argmax{−∇f(x∗)x | x ∈ P} (4.6.28)

be the face of the polytope P exposed by −∇f(x∗). The complementarity conditions
for the generalized multiplier function λ can be stated very simply in terms of inclusion
in P ∗: since x∗ ∈ P ∗ we have λa(x∗) = 0 for every a ∈ P ∗, λa(x∗) > 0 for every a /∈ P ∗.
But P is the convex hull of the set of atoms in A so that the previous relations mean
that the face P ∗ is the convex hull of the set of atoms for which λa(x∗) = 0:

P ∗(x∗) = conv{a ∈ A | λa(x∗) = 0} (4.6.29)

or in other words since λAi(x∗) = 0 if and only if i ∈ I(x∗):

P ∗(x∗) = conv{Ai ∈ A | i ∈ I(x∗)} (4.6.30)

A consequence of (4.6.30) is that given any subset B of P with the active set identi-
fication property necessarily P (x∗) = P (y∗) for every x∗, y∗ ∈ P , since I(x∗) = I(y∗).
For such a subset B we can then define

P ∗(B) = P ∗(x∗) for any x∗ ∈ B (4.6.31)

where the definition does not depend on the specific x∗ ∈ B considered. We can now
restate Theorem 4.3.5 in slightly different terms:

Theorem 4.6.6. Assume that X∗P and {xk} have the properties described in 4.3.5.
Then there exists M and i ∈ {1, ..., C} such that xk ∈ P ∗(Ai) for every k ≥M .

Proof. Follows from 4.3.5 and the affine invariance properties discussed above.

We now generalize the analysis of the strongly convex case.
The technical problem here is that strong convexity, which is used in Corollary 4.3.6,
is not maintained by affine transformations, so that instead we will have to use a
weaker error bound condition. As a possible alternative, in [34] linear convergence of
the AFW is proved with dependence only on affine invariant parameters, so that any
version of Theorem 4.2.1 and Corollary 4.3.6 depending on those parameters instead
of u, L would not need this additional analysis.
Let x∗ be the unique minimum of f on P and u > 0 be such that

f(x) ≥ u

2‖x− x
∗‖2 (4.6.32)

The function f̃ inherits the error bound condition necessary for Corollary 4.3.6 from
the strong convexity of f : for every x ∈ ∆|A|−1 by [3], lemma 2.2 we have

dist(x,X∗) ≤ θ‖Ax− x∗‖
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where θ is the Hoffman constant related to [CT , [I; e;−e]T ]T . As a consequence if f̃ ∗
is the minimum of f̃

f̃(x)− f̃ ∗ = f(Ax)− f(x∗) ≥ u

2‖Ax− x
∗‖2 ≥ u

2θ2dist(x,X
∗)2 (4.6.33)

and using that n‖ · ‖2 ≥ ‖ · ‖2
1 we can finally retrieve an error bound condition with

respect to ‖ · ‖1:
f̃(x)− f̃ ∗ ≥ u

2nθ2dist1(x,X∗)2 (4.6.34)

where dist1 is the set point distance computed with respect to ‖ · ‖1.
Having proved this error bound condition for f̃ we can now generalize (4.2.6):

Corollary 4.6.7. The sequence {xk} generated by the AFW is in P ∗(x∗) for

k ≥ max(0, ln(h0)− ln(uP r2
∗/2)

ln(1/q) ) + |Ic|

where f(xk) − f(x∗) ≤ qk(f(x0) − f(x∗)), uP = u
2nθ2 , r∗ = δmin

2L+δmin
with δmin =

min{λa(x∗) | λa(x∗) > 0}.

Proof. Let I = {i ∈ {1, ..., |A|} | λAi(x∗) = 0}, P ∗ = P ∗(x∗). Since P ∗ = conv(A ∩
P ∗) and by (4.6.30) conv(A ∩ P ∗) = conv{Ai | i ∈ I} the theorem is equivalent to
prove that for every k greater than the bound xk ∈ conv{Ai | i ∈ I}. So if {x̃k} is
the sequence corresponding to {xk} generated by the AFW on the simplex we need
to prove that for every k greater than the bound

x̃k ∈ conv {ei | i ∈ I}

or in other words (x̃k)i = 0 for every i ∈ Ic.
Reasoning as in Corollary 4.3.6 we get that dist1(x̃k, X∗) < r∗ for every

k ≥ ln(h0)− ln(uP r2
∗/2)

ln(1/q) ) (4.6.35)

Let k̄ be the minimum index such that (4.6.35) holds. For every k ≥ k̄ there exists
y∗ ∈ X∗ with ‖xk − y∗‖1 < r∗. But λi(x) = λAi(x∗) for every x ∈ X∗ by the
invariance of λ, so that we can apply Theorem 4.2.1 with fixed point y∗ and obtain
that if Jk = {i ∈ Ic | x̃i > 0} then Jk+1 ≤ max(0, Jk − 1). The conclusion follows
exactly as in Corollary 4.3.6.
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Chapter 5

Appendix

We give in this chapter the necessary definitions and basic theorems used in the
rest of the thesis. The author was not able to find a reference for some elementary
properties, and in this case the (straightforward) proofs are included.

5.1 Preliminaries
Definition 5.1.1. Given a convex and closed cone C ⊆ Rn we define:

1. Cd as the dual of C: Cd = {x ∈ Rn | (x, c) ≤ 0 ∀c ∈ C}

2. Cδ = {0} ∪ {x ∈ Rn \ {0} | dist( x
‖x‖, , C) ≤ δ} for δ ≥ 0

3. C−δ = {0} ∪ {x ∈ Rn \ {0} | dist( x
‖x‖, , C

c) ≥ δ} for δ ≥ 0

We will need the following results that relate the distance of a point from the dual
cone to the norm of the projection on the cone:

Proposition 5.1.2. For every x ∈ Rn

dist(x,Cd) = sup
c∈C

(ĉ, x) (5.1.1)

As stated in [11] this is an immediate consequence of the Moreau decomposition:

x = π(C, x) + π(Cd, x)

However here we prove this statement in a way that generalizes straightforwardly to
Banach spaces, which will be useful for the analysis in section 5.6.

Proof. First we show that for every ε > 0, c ∈ C \ {0}

dist(x,Cd) + ε ≥ (ĉ, x) (5.1.2)

Let c∗ ∈ Cd such that dist(c∗, x) ≤ dist(x,Cd) + ε. Then

(ĉ, x) = (ĉ, c∗ + (x− c∗)) ≤ (ĉ, c∗ − x) ≤ ‖c∗ − x‖ ≤ dist(x,Cd) + ε (5.1.3)
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where in the first inequality we used (c∗, c) ≤ 0. This proves (5.1.2).
It remains to prove that for every ε > 0 or equivalently for every ε ∈ (0, dist(x,Cd)/2)
there exists c ∈ C \ {0} such that

dist(x,Cd)− ε ≤ (ĉ, x) (5.1.4)

Let d = dist(x,Cd) − ε/2. Consider c separating the open convex set B(x, d + ε/4)
and Cd, so that

c ∈ C \ {0}, (c, b) ≥ 0 (5.1.5)
for every b ∈ B(x, d+ ε/4). Then

(ĉ, x) = (ĉ, x− dĉ+ dĉ) = (ĉ, x− dĉ) + d ≥ d > dist(x,Cd)− ε (5.1.6)

where in the first inequality we used that x − dĉ ∈ B(x, d + ε/4). Hence (5.1.4)
is proved so that combining it with (5.1.2) and taking the limit for ε → 0 we get
(5.1.1).

Remark 5.1.3. The sup in (5.1.1) is actually a max for cones in Rn by compactness.

It is not difficult to prove that Cδ and C−δ are cones for every δ > 0, and moreover
that C−δ is the closed convex cone dual of Cd

δ . In particular, in chapter 1 we use the
following:

Proposition 5.1.4. Given a cone C:
a) Cδ is a cone for every δ ∈ [−1, 1].
b) If C is closed and convex, (Cd

δ )d ⊇ C−δ for every 1 ≥ δ > 0.

Proof. a) We assume δ ≥ 0, but the same proof works also for δ < 0. By definition,
{0} ∈ Cδ. If x 6= 0 ∈ Cδ then for every λ > 0 we have

dist( λx

‖λx‖
, C) = dist( x

‖x‖
, C) ≤ δ (5.1.7)

so that λx ∈ C.
b) Proving the inclusion is equivalent to prove that given c ∈ C−δ for every c̄ ∈ Cd

δ we
have (c̄, c) ≤ 0. Fix c ∈ C−δ and c̄ ∈ Cd

δ . Without loss of generality we can assume
‖c‖ = ‖c̄‖ = 1. By Proposition 5.1.2 we have

dist(c̄, Cd) ≤ δ ⇒ max
v̂∈C

(v̂, c̄) ≤ δ (5.1.8)

Assume by contradiction that (c, c̄) > 0. We identify the plane containing c, c̄, 0
with R2, and assume without loss of generality that c̄ = (0, 1), c = (cos(θ), sen(θ))
for some 0 < θ ≤ π

2 . We distinguish two cases.
Case 1: B̄(c, δ) ∩ {(0, y) | y > 0} 6= ∅. Then since B̄(c, δ) ⊂ C we also have
c̄ = (0, 1) ∈ C. Then the max in (5.1.8) is 1 attained for v̂ = c̄. It follows δ = 1
so that Cd

δ = Cd
1 = Rn, contradiction because then C = C−1 = C−δ = {0} so that

c /∈ C−δ.
Case 2: B̄(c, δ)∩ {(0, y) | y > 0} = ∅. We refer to Figure 5.1 for the analysis of this
case. We have for ϕ = arcsin−1(δ) + θ ∈ (0, π2 )

q̂
def= (cos(ϕ), sin(ϕ)) ∈ C (5.1.9)
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Figure 5.1: Configuration of the proof that C−δ ⊂ (Cd
δ )d.

using again that B̄(c, δ) ⊂ C. But then

(c̄, q̂) = sin(ϕ) = sin(arcsin−1(δ) + θ) > sin(arcsin−1(δ)) = δ

contradicting (5.1.8).

Studying convex problems over a polytope with a degenerate solution requires
relating conic combinations to the facial structure of the cone, and also a certain
lemma about the relation between the faces of a cone C and the faces of his dual Cd.

Proposition 5.1.5. Let M(C) be a n×m matrix whose columns generate the convex
cone C. Then for every face F of C if MF = {i ∈ {1, ...,m} | M(C)i ∈ F} in F the
relative interior of F is the set of vectors

{c =
∑
i∈MF

λici | λi > 0∀i ∈MF}

Proof. See for instance [12].

Theorem 5.1.6. If C is a convex polyhedral cone then there is a one to one idem-
potent and inclusion reversing correspondence

{faces of C} ←→ {faces of Cd}
τ ←→ τ ∗ = Cd ∩ τ⊥
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Proof. See [16], Theorem 9.

We recall the definition of tangent cone to a general set Ω:

Definition 5.1.7. A vector w ∈ Rn is tangent to a set Ω in x̄ ∈ Ω, written w ∈ TΩ(x̄),
if there exists a sequence of positive scalars τk → 0 and a sequence {xk}k∈N in Ω with
xk → x̄ such that

(xk − x̄)/τk → w

The tangent cone TΩ(x̄) to Ω in x̄ defined as the set of vectors tangent to Ω in x̄.

We also recall the general definition of regular normal cone:

Definition 5.1.8. The regular normal cone N̂(x̄) to a set Ω in x̄ is defined as the
set of vectors v satisfying

(v, x− x̄) = o(‖x− x̄‖) for x→ x̄ in Ω (5.1.10)

The next proposition characterizes the tangent cone and the normal cone for
convex closed sets.

Proposition 5.1.9. Let Ω be a closed convex set. For every point x̄ ∈ Ω if TΩ(x̄) is
the tangent cone to Ω in x̄ then

TΩ(x̄) = cl{w | ∃λ > 0 with x+ λw ∈ Ω},
int(TΩ(x̄)) = {w | ∃λ > 0 with x+ λw ∈ int(Ω)}
N̂Ω(x̄) = TΩ(x̄)d

Proof. See [40], Theorem 6.9.

Using these characterizations we now prove a formula connecting the maximal
"slope" of a linear function along an admissible direction to the tangent and the
normal cone:

Proposition 5.1.10. If Ω is a closed convex subset of Rn, x̄ ∈ Ω then for every
r ∈ Rn

max{0, sup
h∈Ω\{x̄}

(r, h− x̄
‖h− x̄‖

)} = dist(r, N̂Ω(x̄)) = ‖π(TΩ(x̄), r)‖

Proof. We first prove that

sup
h∈Ω/{x̄}

(r, h− x̄
‖h− x̄‖

) = sup
h∈TΩ(x̄)/{0}

(r, ĥ) (5.1.11)

Let h ∈ TΩ(x̄) \ {0}. Then there exists sequences {λi} and {hi} in R>0 and Ω
respectively such that λi(hi − x) → h. In particular ‖λi(hi − x)‖ → ‖h‖ so that we
also have λi(hi − x)/‖λi(hi − x)‖ = (hi − x)/‖hi − x‖ → ĥ. Hence

cl({ h− x
‖h− x‖

| h ∈ Ω \ {0}}) = {ĥ | h ∈ TΩ(x̄)/{0}} (5.1.12)

and (5.1.11) follows immediately by the continuity of (r, ·).
Since N̂Ω(x̄) = TΩ(x̄)d the first equality is exactly the one of Lemma 5.1.2 if r /∈ N̂Ω(x̄),
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and it is trivial since both terms are clearly 0 if r ∈ N̂Ω(x).
It remains to prove

max{0, sup
h∈TΩ(x̄)/{0}

(r, ĥ)} = ‖π(TΩ(x̄), r)‖ (5.1.13)

Let πr be the projection of r on TΩ(x̄), and πdr the projection of r on N̂Ω(x̄). By the
Moreau - Yosida decomposition r = πr + πdr with πr ⊥ πdr . If r ∈ N̂Ω(x̄) then πr = 0
so that again the equation (5.1.13) is true with both sides equal to 0.
Otherwise on the one hand

sup
h∈TΩ(x̄)/{0}

(r, ĥ) ≥ (r, π̂r) = (πr + πdr , π̂r) = ‖πr‖ (5.1.14)

and on the other hand for every h ∈ TΩ(x̄) \ {0}

(ĥ, r) = (ĥ, πr + πn) ≤ (ĥ, πr) ≤ ‖πr‖ (5.1.15)

Taking the sup in (5.1.15) and combining it with (5.1.14) we get the desired equality.

5.2 Length function and vertex width diameter ra-
tio.

The width of a convex set, and more precisely its ratio with the diameter, will be
crucial to give lower bounds for the decrease of the objective function at every step
in the convergence analysis of the FDFW.

Definition 5.2.1. Given Ω ⊂ Rn closed and convex we define the directional width
of Ω in y with respect to r ∈ Rn/{0} as

dirW(Ω, r, x) = max{r(x− y) | x ∈ Ω}

the directional width of Ω with respect to r as

DirW(Ω, r) = max{r(x− y) | x, y ∈ Ω}

and the width of Ω as

W (Ω) = min{DirW(Ω, r) | r ∈ ∂BRn(0, 1)}

It is easy to check that this width function is non negative and monotone increasing
with respect to the inclusion. The width of a set isn’t of much help in the convergence
analysis of the FDFW method when dealing with points on the boundary, so that for
these we need to define a sort of width and diameter dependent on a restricted set of
admissible directions. We define these parameters in section 2.4.4. The motivation
behind definitions 2.4.7, 2.4.8 is fundamentally that they allow us to give a lower
bound on the directional normalized width for every vertex and every direction.
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We now prove a few properties of the parameters defined in section 2.4.4. Let
pΩ,x̄ : Rn → R≥0 ∪ {∞} be the Minkowski functional of Ωx̄ = Ω− {x̄}:

pΩ,x̄(x) = inf{α ∈ R>0 ∪ {∞} | α−1x ∈ Ω− {x̄}}

It is well known that this functional is convex, homogeneous for positive scalars and
lower semicontinuos on all Rn. It is now convenient to use the convention 1/0 =
∞, 1/∞ = 0 in the rest of this section. With this convention it easy to prove the
following:

lΩ,x̄(c) = 1
pΩ,x̄(x) ∀x ∈ TC(x̄) (5.2.1)

since for a fixed direction c ∈ TC(x̄)/{0} one has

lΩ,x̄(c) = lΩ,x̄(ĉ)/‖c‖ = 1/pΩ,x̄(x) (5.2.2)

As a corollary, to the properties of pΩ,x̄ correspond analogous properties for lΩ,x̄, as
we prove in the following proposition.
Proposition 5.2.2. With the notation introduced above, let C = TΩ(x̄):

1. lΩ,x̄ is continuous in int(C), upper semicontinuous in C;

2. For 0 < β the inf is actually a min in the definition (2.4.35) of lbΩ,x̄; the sup is
always a max in the definition (2.4.35) of lBΩ,x̄;

3. The following formula holds for Ω strictly convex:

RΩ,x̄(k) = inf
0<δ≤1

min{pΩ,x̄(ĉ) | 0 ≤ dist(ĉ, Cc) ≤ δ}
max{pΩ,x̄(ĉ) | kδ ≤ dist(ĉ, Cc) ≤ δ}

Proof. 1) The continuity of lΩ,x̄ in int(C) follows immediately if we can prove that
pΩ,x̄ is continuous in int(C). By Proposition 5.1.9 for every x ∈ C \ {0} there exists
λ > 0 such that λx ∈ Ω− {x̄}. Then

pΩ,x̄(x) = inf{α ∈ R≥0 ∪ {∞} | α−1x ∈ Ω− {x̄}} ≤ λ

‖x‖
< +∞ (5.2.3)

so that pΩ,x̄ is finite in TΩ(x̄). But pΩ,x̄ is also convex, hence continuous in its domain
which contains C◦.
As for the upper semicontinuity, it follows from the fact that the inverse of a positive
lower semicontinuous function is an upper semicontinuous function.
2) Follows immediately from the fact that an upper semicountinuous function and a
lower semicontinuous function have always a maximum and a minimum respectively
on a compact set.
3) We have

RΩ,x̄(k) = inf
0<δ≤1

inf{lΩ,x̄(ĉ) | kδ ≤ dist(ĉ, Cc) ≤ δ}
sup{lΩ,x̄(ĉ) | 0 ≤ dist(ĉ, Cc) ≤ δ}

= inf
0<δ≤1

inf{1/pΩ,x̄(ĉ) | kδ ≤ dist(ĉ, Cc) ≤ δ}
sup{1/pΩ,x̄(ĉ) | 0 ≤ dist(ĉ, Cc) ≤ δ}

=

= inf
0<δ≤1

inf{pΩ,x̄(ĉ) | 0 ≤ dist(ĉ, Cc) ≤ δ}
sup{pΩ,x̄(ĉ) | kδ ≤ dist(ĉ, Cc) ≤ δ}

(5.2.4)
where in the last term the inf is actually a min by lower semicontinuity of pΩ,x̄ and
the sup is actually a max by the continuity of pΩ,x̄ on C◦ proved in point 1).
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The following property concerning unitary vectors maximizing the distance from
the boundary of a cone will be useful to study NW(Ω) for strictly convex sets.

Proposition 5.2.3. If C is a full dimensional closed convex cone different from Rn,
then

argminc∈Rn\{0}dist(ĉ, Cc) ⊂ C◦ ∩ −Cd (5.2.5)

The proof is a fairly straightforward application of optimality conditions. How-
ever, transforming the problem in a constrained programming one to which we can
apply optimality conditions requires a few observations.

Proof. As first step we want to find a problem equivalent to minimizing the distance
from the boundary to which we can apply Kuhn Tucker necessary optimality condi-
tions (see [2], Theorem 3.7).
We begin by rewriting the problem equivalently as

sup{dist(c, Cc) | c ∈ ∂B(0, 1)} = max{dist(c, Cc) | c ∈ ∂B(0, 1)} (5.2.6)

where the sup is actually a max because we are maximizing a continuous function in
a compact set. We also have by the positive homogeneity of the distance

λmax{dist(c, Cc) | c ∈ ∂B(0, 1)} = max{dist(c, Cc) | c ∈ λ∂B(0, 1)} (5.2.7)

so that

max{c ∈ ∂B(0, 1) | dist(c, Cc)} = max{dist(c, Cc) | c ∈ λ∂B(0, 1), 0 ≤ λ ≤ 1}
= max{dist(c, Cc) | c ∈ B̄(0, 1)}

(5.2.8)
with argmax{dist(c, Cc) | c ∈ B̄(0, 1)} ⊂ ∂B(0, 1). Indeed if there existed
x ∈ B̊(0, 1) \ {0} ∈ argmax{dist(c, Cc) | c ∈ B̄(0, 1)} we would have dist(x̂, Cc) =

1
‖x‖dist(x,C

c) > dist(x,Cc). We also have clearly

argmax{dist(c, Cc) | c ∈ ¯B(0, 1)} ⊂ C◦

so that in particular 0 /∈ argmax{dist(c, Cc) | c ∈ B̄(0, 1)} since by hypothesis 0 /∈ C̊.
By the biduality theorem for cones

C = (Cd)d =
⋂

c∈Cd\{0}
{x ∈ Rn | (ĉ, x) ≤ 0} =

⋂
c∈Cd∩∂B(0,1)

Ac

where Ac = {x ∈ Rn | (c, x) ≤ 0}. Therefore

dist(x,Cc) = dist(x, (
⋂

c∈Cd∩∂B(0,1)
Ac)c) = dist(x, (

⋃
c∈Cd∩∂B(0,1)

Acc)) = inf
c∈Cd∩∂B(0,1)

dist(x,Acc)

(5.2.9)
Let x ∈ C ∩ B̄(0, 1) and c ∈ ∂B(0, 1) ∩ Cd. We have

dist(x,Acc) = ‖π(rc, x)‖ (5.2.10)

where rc is the line generated by c. Since c ∈ Cd we have (−c, x) ≥ 0 which together
with ‖c‖ = 1 implies

‖π(rc), x‖ = (−c, x) (5.2.11)
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Starting from (5.2.9) we can now further transform the expression for dist(x,Cc):

inf
c∈Cd∩∂B(0,1)

dist(x,Acc) = inf
c∈Cd∩∂B(0,1)

−(c, x) = min
c∈Cd∩∂B(0,1)

−(c, x) (5.2.12)

where the last equality is justified by the continuity of (x, ·) and the compactness of

Cd ∩ ∂B(0, 1)

Let f : Rn → R be defined by

f(x) = max
c∈Cd∩∂B(0,1)

(c, x)

Since f(x) is the maximum of convex continuous functions it is convex, l.s.c and

∂f(x) = conv{c ∈ Cd ∩ ∂B(0, 1) | (c, x) = f(x)} ⊂ Cd (5.2.13)

as it follows from the formula for the subdifferential of the max of convex functions.
Moreover, for every x ∈ Cc by the separation theorems there exists c ∈ Cd such
that (c, x) ≥ 0, so that f(x) ≥ 0. At the same time by (5.2.9) and (5.2.8) we have
f(x) = −dist(x,Cc) for every x ∈ C. Then

argminx∈B̄(0,1)f(x) = argmaxx∈B̄(0,1)dist(x,Cc) ⊂ C◦

and we can finally rewrite our problem as

max{dist(c, Cc) | c ∈ B̄(0, 1)} = max{−f(c) | c ∈ B̄(0, 1)} = −min{f(c) | ‖c‖2 ≤ 1}
(5.2.14)

As observed at the beginning of the proof if c̄ ∈ C ∩ B̄(0, 1) is a solution necessarily
‖c̄‖ = 1, so that the Kuhn Tucker optimality conditions dictates

0 ∈ ∂f(c̄) + λ2c̄ (5.2.15)

for a certain λ ≥ 0. Since 0 is a vertex of the cone Cd it can not be a proper conic
combination of elements in Cd different from 0, hence by (5.2.13) 0 /∈ ∂f(c̄). But
then λ > 0 in (5.2.15) so that c̄ ∈ −∂f(c̄)/2λ, which implies the thesis because
−∂f(c̄) ⊂ −Cd.

5.3 Step size oracle for convex hulls
Let Ω = conv(A), with

A = {ai | 1 ≤ i ≤ n} (5.3.1)
a finite subset of Rn. We are interested in trasforming the problem

αmax(x̄, d) = max{α ∈ R | x̄+ αd ∈ Ω} (5.3.2)

in a linear programming problem for a fixed x̄ ∈ Ω, d ∈ Rn.
Consider an hyperplane

Hc,β = {x ∈ Rn | (c, x) + β = 0} (5.3.3)
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such that Ω is contained in the negative half space H−c,β:

(c, x) + β ≤ 0 ∀x ∈ Ω (5.3.4)

Assume also that (c, d) = 1. We now consider the set H of hyperplanes with these
two properties to give an upper bound on αmax. Then we will show that this upper
bound coincide with the actual value of αmax.
Let αc,βmax(x̄, d) be the maximal feasible step from x̄ in the direction d with respect to
the set Hc,β:

αc,βmax(x̄, d) = max{α ∈ R | x̄+ αd ∈ Hc,β} (5.3.5)
From now on we will write αc,βmax and αmax instead of αc,βmax(x̄, d) and αmax(x̄, d) since
x̄, d are fixed anyway.
Notice that

(c, x̄+ αc,βmaxd) + β = 0⇒ αc,βmax = −β − (c, x̄) (5.3.6)
where we used (c, d) = 1.
αc,βmax gives an upper bound for αmax:

αc,βmax ≥ αmax (5.3.7)

because by hypothesis H−c,β ⊇ Ω.
We can now define a linear programming problem which has optimal value αmax:

z = min − (c, x̄)− β
(c, d) = 1
(c, ai) + β ≤ 0 ∀ 1 ≤ i ≤ n

(5.3.8)

Since Ω = conv({ai}1≤i≤n), the third condition is equivalent to Ω ⊂ H−c,β. Therefore
c, b satisfies the constraint of problem (5.3.8) iff Hc,β ∈ H. We can now use the above
reasoning to conclude that αmax ≤ αc,βmax = −(c, x̄) − β for every feasible (c, β), so
that z ≥ αmax.
To see that equality holds we distinguish two cases. If d is not a feasible direction
then αmax = z = 0, where the optimal value in problem (5.3.8) is obtained for the
hyperplane separating Ω from the ray x̄+ λd, λ ≥ 0. If d is a feasible direction then
F(x̄+αmaxd) ( F(x̄) so that there exists a supporting plane Hc̄,β̄ for Ω in x̄+αmaxd
not containing x̄. But then

(c̄, x̄+ αmaxd) + β > (c̄, x̄) + β (5.3.9)

so that (c̄, d) > 0. It is now immediate to check that by diving the coefficients of
Hc̄,β̄ by (c̄, d) we get a feasible point (c′, β′) for problem (5.3.8) for which αmax =
−(c′, x̄)− β′. This proves that αmax is indeed the optimal value of problem (5.3.8).

5.4 Minimal face for convex hulls
We now show that when Ω = conv(A) as in the previous section for every x̄ ∈ Ω

finding the minimal face F(x̄) of Ω containing x̄ is equivalent to finding a point in
the interior of a certain polyhedron. The key property our analysis is based on is the
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following: given a polyhedron P and x̄ ∈ P then F(x̄) is the face exposed by the
vectors in ri(NP (x̄)). In formulas, given r ∈ ri(NP (x̄)) :

F(x̄) = {y ∈ P | (r, y) = (r, x̄)} (5.4.1)

and conversely if r ∈ Rn is such that (5.4.1) holds then r ∈ ri(NP (x̄)). We use this
property extensively also in chapter 32, where we provide references and show the
connection with other properties of normal cones.
Applying this property to our problem we get that if we can find r ∈ ri(NΩ(x̄)) then

F(x̄) = {y ∈ Ω | (r, x̄) = (r, y)} = conv({a ∈ A | (a, r) = (a, x̄)}) (5.4.2)

so that we can identify the subset of A given by its intersection with F(x̄) and
consequently solve linear optimization problems checking the value of the objective
on the points in this subset.
We have thus reduced the problem of identifying A∩F(x̄) to the problem of finding
r ∈ ri(NΩ(x̄)). By Proposition 5.1.9

NΩ(x̄) = {y ∈ Rn | (y, x− x̄) ≤ 0 ∀ x ∈ Ω} = {y ∈ Rn | (y, a) ≤ (y, x̄) ∀ a ∈ A}
(5.4.3)

where we used Ω = conv(A) in the second equality. We can finally write inequalities
describing NΩ(x̄) in matrix form

NΩ(x̄) = {x ∈ Rn | Ax ≤ e(x, x̄)} (5.4.4)

The problem of finding a point in the relative interior of NΩ(x̄) is then a particular
case of the problem of finding a point in the relative interior of a polyhedron (more
precisely a cone) given in standard inequality form. This problem has already been
studied for its relevance in the initialization of interior point methods and in com-
pressed sensing (see for instance [37], [15] where an algorithm with linear convergence
and asymptotic quadratic convergence is given).

5.5 Strictly convex sets
We now prove a lemma guaranteeing a sort of continuity modulus for bounding

the distance of an approximated solution from the minimizer of a linear function.

Proposition 5.5.1. Let Ω be a strictly convex set. Then there exists an increasing
function mΩ : [0,+∞)→ R≥0 ∪ {∞} continuous in 0 such that mΩ(0) = 0 and

dist(x, argminy∈Ω(r, y)) ≤ mΩ((r, x)−miny∈Ω(r, y)
‖r‖

) (5.5.1)

for every x ∈ Ω, r ∈ Rn \ {0}.

Proof. Since both sides of equations (5.5.1) are invariant if r is multiplied by a positive
scalar, we can assume r ∈ ∂B(0, 1). We define c(r) as the continuous function from
∂B(0, 1) to ∂Ω associating to r the minimizer of (r, ·) on Ω. Then for δ ≥ 0 we define

C(r, δ) = {y ∈ Ω | (y − c(r), r) = δ} (5.5.2)
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and
m(r, δ) = sup{‖y − c(r)‖ | y ∈ C(r, δ)} (5.5.3)

Thus in particular m(r, 0) = 0 and the sup is actually a max whenever the set C(r, δ)
is non empty. We finally define

mΩ(δ) = sup
r∈∂B(0,1)

0≤δ′≤δ

m(r, δ′) (5.5.4)

for every δ > 0. Since m(r, 0) = 0 for every r ∈ ∂B(0, 1) we have mΩ(0) = 0 and
mΩ is also increasing because the sup is taken on increasing sets. It remains to prove
that mΩ is continuous in 0. Assume by contradiction that this is not the case, or
equivalently that there exists a sequence {ri}i∈N in ∂B(0, 1) and a sequence {δi}i∈N
converging to 0 such that

m(ri, δi) > ε (5.5.5)
for some fixed ε > 0. By compactness we can assume ri → r̄. Let si ∈ C(ri, δi) such
that

‖si − c(ri)‖ > ε (5.5.6)
Modulo considering a subsequence we can again assume si → s̄ ∈ Ω. Then on the
one hand passing to the limit (5.5.6) we get by the continuity of c(r)

‖s̄− c(r̄)‖ > ε (5.5.7)

and on the other hand passing to the limit in si ∈ C(ri, δi) we get

(c(r̄)− s̄, r̄) = 0 (5.5.8)

which is incompatible with (5.5.7) since Ω is strictly convex and c(r̄) is a point on
the boundary.

5.6 Generalizing on Banach spaces
In this section we discuss a few technical details about how the elements intro-

duced in the preliminaries generalize to Banach spaces. We then use these results to
analyze the FDFW method on a more general setting than Rn.
The main references for this section are [2] for convex analysis, and [10] for some
elementary properties of Banach spaces.
X will be a Banach space with norm ‖ · ‖ and dual X∗. For every c ∈ X∗, x ∈ X we
will write (c, x) instead of c(x).
The notion of (strongly) convex function generalizes in a straightforward way to Ba-
nach spaces. As for differentiability, we remark that for a function f : X → R we
will use the Frechét definition of differential Df : X → X∗. So we say that f is
differentiable in a point x if there exists Df(x) ∈ X∗ such that

f(x+ h) = f(x) +Df(x)(h) + o(‖h‖)

We say that f is differentiable in Ω if it is differentiable for every point in a neigh-
borhood of Ω. The Lipschitz condition than becomes ‖Df(x)−Df(y)‖ ≤ L‖x− t‖
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where we are using ‖ · ‖ also for the dual norm on X∗. In particular we have that
if a function has Lipschitz differential than a fortiori its restriction to any line has
Lipschitz derivative. To see this, consider x ∈ X, d ∈ X with ‖d‖ = 1. Then:

∂

∂t
(f(x+ td))|t=t̄ −

∂

∂t
f(x+ td)|t=0 =

=(Df(x+ td), d)− (Df(x), d) ≤ ‖Df(x+ td)−Df(x)‖‖d‖ ≤ Lt
(5.6.1)

Another important element of our analysis is the polar of a set, which generalizes the
concept of dual cone. Given A ⊂ X, the polar of A is the set Ad ⊂ X∗ satisfying:

Ad = {x∗ ∈ X∗ | sup
x∈A

(x∗, x) ≤ 1} (5.6.2)

Before stating its properties we need to recall an important theorem about reflexive
Banach spaces:

Proposition 5.6.1. If a Banach space X is reflexive than every closed, convex and
bounded subset of X is weakly compact.

The properties of the polar set and its connection with conjugate functions are
discussed in [2], but here we are interested only in the case where A is closed and
convex, with 0 ∈ int(A). We recall that a closed convex subset of a Banach space is
called smooth if for every point on the boundary the normal cone is a ray. Here we
are using normal cones defined extending the definition of normal cones in Rn in an
obvious way.

Proposition 5.6.2. Let A be a closed convex subset of a reflexive Banach space such
that 0 ∈ A. Then

1. (Ad)d = A

2. 0 ∈ int(A)⇔ Ad is bounded, and conversely.

3. A is (smooth) strictly convex if and only if Ad is (strictly convex) smooth.

Proof. 1. Obvious corollary of the bipolar theorem. See for instance [2], Theorem
2.26.
2. This is straightforward and well known for Rn (see for instance exercise B.15, [4]),
and in this setting can be proved in the same way.
3. See [2], Theorem 1.101. Even if this theorem is for balls with respect to a certain
norm, the proof works step by step also in our setting.

Finally, if Ω is strictly convex, smooth, and 0 ∈ int(Ω) then we can define a
generalization of the duality function (which is usually defined for balls) J : ∂Ω →
∂Ωd imposing (J(x), x) = 1, and its inverse J∗ : ∂Ω→ ∂Ωd analogously.

Proposition 5.6.3. Assume that Ω is strictly convex, smooth, bounded and that
0 ∈ int(Ω). Then J(x) and J∗(x) are well defined bijections with J∗ = J−1.
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Proof. It suffices to show that J and J∗ are well defined since then (J(x), x) = 1⇒
x = J∗(J(x)) and analogously y = J(J∗(y)) which suffices to prove the bijection
property. We need to show that for every x ∈ ∂Ω there exists a unique x∗ ∈ ∂Ωd such
that (x, x∗) = 1. By the separation theorem there exists x∗ such that (x∗, x) = 1,
(x∗, y) ≤ 1 for every y ∈ Ω. Then by definition of Ωd we have x∗ ∈ ∂Ωd and by the
smoothness hypotheses necessarily NΩ(x) = cone(x∗) so that x∗ is unique. As for J∗,
notice that it is the same functional defined for Ωd, which by Proposition 5.6.2 has
the same properties of Ω.

This function J turns out to be strictly monotone:

Proposition 5.6.4. Under the same hypotheses of 5.6.3

(J(x)− J(y), x− y) > 0 (5.6.3)

for every x 6= y

Proof. (J(x), x) = 1 by the definition of J and (J(x), y) < 1 for every y 6= x, y ∈ Ω
by strict convexity. The same holds of course if the roles of x and y are switched, so
that we can conclude

(J(x)− J(y), x− y) = 2− (J(x), y)− (J(y), x) > 0 (5.6.4)

We now formally state the definition of normal cone for closed convex sets in
Banach spaces, which is sometimes stated in terms of subdifferential of the indicator
function. As anticipated, it will be a straightforward extension of the definition used
for sets in Rn.

Definition 5.6.5. Let Ω be a closed and convex subset of a Banach space X with
dual X∗. The normal cone NΩ(x̄) to Ω in the point x̄ ∈ Ω is the subset of X∗ made
by the vectors which supports Ω in x̄:

NΩ(x̄) = {v ∈ X∗ | (v, x− x̄) ≤ 0 ∀x ∈ Ω} (5.6.5)

As for the tangent cones, one can still show generalizing in a straightforward
way Proposition 5.1.9 how Clarke’s definition applies to convex and closed subsets of
Banach spaces (see [2], lemma 3.22 and definition 3.23).
We will instead need a slightly different argument which does not use compactness
to prove that N̂Ω(x̄) = TΩ(x̄)d still holds for Banach spaces.

Proposition 5.6.6. Let Ω be a closed convex subset of a Banach space X. Then
NΩ(x̄) = TΩ(x̄)d for every point x̄ ∈ Ω.

Proof. First notice that by the continuity of the dual defining condition

Cd = {v ∈ X∗ | (v, x− x̄) ≤ 0 ∀x ∈ C} (5.6.6)

we have Cd = C̄d for any C cone in X.
Let

A = {λ(x− x̄) | x ∈ Ω, λ ≥ 0} (5.6.7)
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so that A is a convex cone in X. Then

TΩ(x̄) = cl({λ(x− x̄) | x ∈ Ω, λ ≥ 0}) = cl(A) (5.6.8)

and
NΩ(x̄) = {v ∈ X∗ | (v, x− x̄) ≤ 0 ∀x ∈ Ω} =

= {v ∈ X∗ | (v, λ(x− x̄)) ≤ 0 ∀x ∈ Ω, λ ≥ 0} = Ad
(5.6.9)

Therefore we can conclude NΩ(x̄) = TΩ(x̄)d using (5.6.6).

We can proceed to generalize part of 5.1.10, which is essential to simplify the
definition of normalized width.

Proposition 5.6.7. Let Ω be a closed convex set. For every r ∈ X∗

max{0, sup
h∈Ω/{x̄}

(r, h− x̄
‖h− x̄‖

)} = dist(r, N̂Ω(x̄)) (5.6.10)

The proof is exactly the same that we presented for Rn.

5.7 NW(Ω) from the dual point of view
The classic FW algorithm for convex optimization on Banach spaces has already

been analyzed in [43], where several convergence properties were proved assuming
also uniform continuity of the differential.
In the same spirit, here we try to prove convergence properties in a more general
setting than Rn for our FDFW. In the rest of this section X will be a Banach space
and Ω will be a convex and bounded subset of X. A few less obvious assumptions
will be also needed.
Assumption 1: X is reflexive.
Since every closed and convex bounded subset of a Banach space is weakly compact,
this assumption guarantees that every linear functional has a maximum and a mini-
mum over Ω. In terms of our algorithms the existence of the FW direction and the in
face direction depends on the existence of extreme points for linear continuous func-
tions. In principle we could just assume Ω to be weakly compact. However, together
with assumption 2 this would still implies that X is reflexive.
Assumption 2: Ω has non empty interior.
This is necessary to guarantee that the width of Ω is greater than 0. It is also not
restrictive with respect to assuming that Ω has non empty relative interior. Indeed
in this case we can repeat the same analysis translating Ω so that it contains the
origin and restricting everything to the vector space aff(Ω). Notice that under these
conditions aff(Ω) is a closed subspace of E, hence a reflexive Banach space itself.
Assumption 3a: The dimension of the faces of Ω is bounded by a finite constant
M .
This is necessary because we need to bound the number of maximal in face steps done
by the FDFW as at most a fraction of the total. Indeed at least with the current
proof we don’t control how much the objective function decreases after one of these
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steps.
To avoid a few technical details concerning the definition of faces in Banach spaces
we will in practice use the stronger strict convexity assumption.
Assumption 3b: Ω is strictly convex.
Under assumptions 1, 2, 3a, we can still define the normalized width for subsets of X
generalizing in a straightforward way the normalized width for subsets of Rn. Indeed
given r ∈ X∗, x̄ ∈ Ω, we can still define F(x̄) as the minimal face of Ω containing
x̄, because by assumption all proper faces containing x̄ have finite dimension, hence
if x ∈ ∂Ω their intersection is the proper face with minimal dimension containing x̄.
The sets argminx∈Ω(r, x), argmaxx∈F(x̄)(r, x) are non empty by assumption 1, so that
we can still define s∗r(x̄). Finally, by Proposition 5.6.7 about tangent cones

πx̄(r) = max{0, sup
h∈Ω/{x̄}

(r, h− x̄
‖h− x̄‖

)} = dist(r, N̂Ω(x̄))

so that we have all the elements to define dirNW(Ω, x̄, r) and as a consequence
NW(Ω).
Now under assumptions 1, 2, 3a the linear convergence Theorem 2.5.2 and its corol-
laries still holds with the same exact proofs. Indeed if f is strongly convex and has
Lipschitz differential then it has these properties along every line with the same con-
stants, so that we can write the same inequalities concerning the upper bound on the
solution gap and the lower bound on the decrease of the objective function at each
step.
We are now interested in giving conditions for NW(Ω) to be greater than 0 under
assumptions 1, 2, 3b. Without loss of generality we can assume {0} ∈ int(Ω), since of
course NW(Ω) is invariant by translation. First we prove a technical lemma. ‖·‖∗ will
be a norm equivalent to the euclidean norm with dist∗ and B∗r (x) the corresponding
distance and ball of center x and radius r.

Lemma 5.7.1. Let Ω be a convex subset of R2 such that 0 ∈ int(Ω), let and let
r, R > 0 such that B∗r (0) ⊂ Ω ⊂ B∗R(0). Let c, c∗ ∈ ∂Ω. If C∗ is the ray generated by
c∗ then

dist∗(c, C∗) ≥
1

1 +R/r
‖c− c∗‖∗ (5.7.1)

Proof. Let p = (1−t)c∗ be a projection of p on C∗ so that 1−t ≥ 0 and dist∗(c, C∗) =
‖c− p‖∗. If t = 0 then p = c∗ and

‖c− c∗‖∗ = dist∗(c, C∗)

Otherwise applying a dilatation of center c∗ and factor 1
t
which sends p to the origin

we get

‖c− p‖∗ = |t|‖c∗ + 1
t
(p− c∗)− (c∗ + 1

t
(c− c∗))‖∗ = |t|‖c∗ + 1

t
(c− c∗)‖∗ (5.7.2)

If 0 < t ≤ 1 so that 1
t
≥ 1, since c∗, c ∈ ∂Ω we have

c∗ + 1
t
(c− c∗) ∈ (Ω◦)c (5.7.3)
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and if t < 0 again (5.7.3) holds because 1
t
< 0. Then using the hypothesis B∗r (0) ⊂ Ω

we obtain
|t|‖c∗ + 1

t
(c− c∗)‖∗ ≥ |t|r (5.7.4)

Concatenating (5.7.2) with (5.7.4), we get

‖c− p‖∗ ≥ |t|r (5.7.5)

Now by the definition of p

‖c∗ − p‖∗ = |t|‖c∗‖∗ ≤ |t|R (5.7.6)

and by (5.7.5)
‖c∗ − p‖∗ ≤ |t|R = |t|rR

r
≤ ‖c− p‖∗

R

r
(5.7.7)

From these two inequalities we can finish the proof using the triangular inequality

‖c− c∗‖∗ ≤ ‖c− p‖∗ + ‖p− c∗‖∗ ≤ ‖c− p‖∗ + |t|R ≤ ‖c− p‖∗(1 +R/r) =
= (1 +R/r)dist∗(c, C∗)

(5.7.8)

We use this lemma to compute dirNW(Ω, x, c). J will be the generalized duality
function introduced in section 5.6; under the hypotheses of Proposition 5.6.3, which
are included in the following lemma, J is a bijection between ∂Ω and ∂(Ωd).

Lemma 5.7.2. Let Ω be a convex and bounded smooth subset of X for which assump-
tions 1, 2 and 3b hold. Let r, R > 0, and assume 0 ∈ int(Ω) with Br(0) ⊂ Ω ⊂ BR(0).
Let x̄ ∈ ∂Ω, c ∈ ∂(Ωd) \ cone(J(x̄)), let x∗ = J−1(c) and c∗ = J(x). Then

(x∗ − x̄, c)
‖c− c∗‖‖x̄− x∗‖

≤ dirNW(Ω, x̄, c) ≤ k(x∗ − x̄, c)
‖c− c∗‖‖x− x∗‖

with k = 1 +R/r.

The assumption 0 ∈ int(Ω) is not restrictive up to translation.

Proof. Since c ∈ ∂Ωd with Ω smooth and strictly convex c = J(x∗) ⇔ c ∈ NΩ(x∗).
Since X is weakly compact, strictly convex and with non empty interior every linear
functional has exactly one solution, so that

c ∈ NΩ(x∗)⇒ x∗ ∈ argmax(c, ·)⇒ {x∗} = argmax{(c, ·)} (5.7.9)

Now using the definitions given at the beginning of section 2.4, since by strict con-
vexity F(x̄) = x̄ so that Mc(x̄) = x̄, mc = {x∗} by (5.7.9) and

σ∗c (x̄) = inf{ (c, s− r)
‖s− x̄‖+ ‖r − x̄‖ | s ∈ mc, q ∈Mc(x̄)} = (c, x∗ − x̄)

‖x̄− x∗‖
(5.7.10)

Therefore

dirNW(Ω, x̄, c) = σ∗c (x̄)
dist∗(c, cone(c∗))

= (c, x∗ − x̄)
‖x̄− x∗‖dist∗(c, cone(c∗))

(5.7.11)
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the thesis follows if we can prove

‖c− c∗‖ ≤ dist(c, cone(c∗)) ≤ k‖c− c∗‖ (5.7.12)

The first inequality is trivial since c∗ ∈ cone(c∗) and the second follows by applying
Lemma 5.7.1 to the plane spanned by c, c∗ with the restriction of ‖ · ‖ in this plane
as norm.

Theorem 5.7.3. Under the same hypotheses of Lemma 5.7.2 on Ω, X let

M(Ω) = inf
x,y∈∂Ω, x 6=y

(x− y, J(x))
‖x− y‖‖J(x)− J(y)‖ (5.7.13)

Then
M(Ω) ≥ NW(Ω) ≥ min( r

D
,
M(Ω)
k

) (5.7.14)

with k = 1 + R
r
.

Proof. Since dirNW(Ω, x, c) is invariant by positive rescaling of c, we can always
assume c ∈ ∂(Ωd) in the rest of the proof. For every c ∈ ∂(Ωd) there exists yM , ym such
that yM is the unique maximizer of (c, ·) and ym is the unique minimizer of (c, ·). By
hypothesis ±ĉr ∈ Ω so that (c, ym) ≤ (c,−ĉr) = −‖c‖r and (c, yM) ≥ (c, ĉr) = ‖c‖r.
Therefore if x ∈ Ω◦ so that ‖πTΩ(x)(c)‖ = ‖c‖

dirNW(Ω, x, c) = (ym − yM , c)
‖c‖(‖(ym − x)‖+ ‖yM − x‖)

≥ 2r‖c‖
2D‖c‖ = r

D
(5.7.15)

We can now use this result in combination with Lemma 5.7.2 to bound NW(Ω):

NW(Ω) = inf
x∈Ω,
c/∈NΩ(x̄)

dirNW(Ω, x, c) =

= min( inf
x∈Ω◦,
c/∈NΩ(x̄)

dirNW(Ω, x,−c), inf
x∈∂Ω,
c/∈NΩ(x̄)

dirNW(Ω, x, c)) ≥

≥ min( r
D
, inf

x∈∂Ω,
c/∈NΩ(x̄)

(J−1(c)− x, c)
k‖c− J(x)‖‖x− J−1(c)‖)

(5.7.16)

Now we will use that J is a bijection from ∂Ω to ∂(Ωd) to change variables in the
computation of the inf. Setting y = J−1(c) we obtain

inf
x∈∂Ω,
c/∈NΩ(x̄)

(J−1(c)− x, c)
k‖c− J(x)‖‖x− J−1(c)‖ = inf

x,y∈∂Ω,
x 6=y

(y − x, c)
k‖J(y)− J(x)‖‖x− y‖ (5.7.17)

Applying this last equation to (5.7.16) we get the desired lower bound on NW(Ω).
The upper bound can be proved exactly in the same way, ignoring the case x ∈ Ω◦.

Corollary 5.7.4. Under the same hypotheses Theorem (5.7.3)

inf
x,y∈∂Ω,
x 6=y

(x− y, J(x)− J(y))
2‖x− y‖‖J(x)− J(y)‖ ≥ NW(Ω) (5.7.18)
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Proof. Follows immediately from the upper bound in Theorem 5.7.3 above switching
the roles of x and y, summing and using the superadditivity of the inf operator.

Remark 5.7.5. Notice that in this upper bound for NW(Ω) the numerator is exactly
the measure of monotonicity of J , which is sort of normalized dividing by the norms
of the two terms in the denominator. In Rn, if θ is the angle between x − y and
J(x)− J(y), then the value of the upper bound is cos(θ)/2.

Remark 5.7.6. We now explain how the upper bound

u(x, y) = (x− y, J(x)− J(y))
2‖x− y‖‖J(x)− J(y)‖ (5.7.19)

is related to the positive definiteness of DJ(x). Assume that ∂Ω × ∂Ω is strongly
compact. The upper bound u(x, y) is continuous and strictly positive in the set
{(x, y) ∈ ∂Ω | x 6= y}. Then it is bounded away from 0 if and only if u(xk, yk)→ c > 0
for every (xk, yk)→ (x̄, x̄), x̄ ∈ Ω. If J is regular enough this is equivalent to say

lim
yk→x̄

(x̄− yk, DJ(x̄)(x̄− yk))
‖x̄− yk‖‖DJ(x̄)(x̄− yk)‖

> 0 (5.7.20)

for every yk sequence in the tangent space to Ω Finally, inequality (5.7.20) holds if
DJ(x̄) is positive definite and has continuous inverse.
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