
Giulio Peretti

CoAP over DTLS TinyOS Implementation

and Performance Analysis

Implementazione di CoAP e DTLS in TinyOS ed Analisi delle Prestazioni

Tesi di laurea magistrale

Advisor: Prof. Michele Zorzi
Co-Advisor: Vishwas Lakkundi, Ph.D.

University of Padova

School of Engineering

Department of Information Engineering

December 10, 2013

Abstract

The IP-based Internet of Things (IoT) and the availability of inexpensive sensing
devices capable of wireless communications enable a wide range of applications such
as intelligent building automation and control, mobile health care, smart logistics
and distributed monitoring. IoT devices are expected to employ Constrained Appli-
cation Protocol (CoAP) for the integration of such applications with the Internet,
which suggests the use of Datagram Transport Layer Security (DTLS) protocol
in order to provide authentication functionalities as well as essential end-to-end
security for the transmission of sensitive information.
This thesis presents firstly an application called BlinkToSCoAP, obtained through
the integration of three libraries implementing lightweight versions of DTLS and
CoAP protocols as well as the IPv6/6LoWPAN stack. Secondly, an experimental
campaign is presented that evaluates the performance of the DTLS security opera-
tions. The experiments analyze the BlinkToSCoAP’s communications exchanged
between two Zolertia Z1 devices, allowing evaluations in terms of memory footprint,
energy consumption, latency and packet overhead. Based on performance analysis
results and the experience gained during the implementation phase, this thesis
finally presents an outlook on future works that can be developed in order to
enhance the application performance.

iii

Sommario

La tecnologia Internet-of-Things (IoT), basata sul protocollo IP, e la disponibili-
tà di dispositivi economici dotati di sensori e funzionalità wireless sono alla base
di un’ampia gamma di applicazioni come il controllo intelligente ed automatico di
edifici, la supervisione delle funzioni vitali in ambito medico ed il monitoraggio
distribuito. I dispositivi IoT implementano il Constrained Application Protocol
(CoAP) per integrare tali applicazioni con Internet. Lo standard di tale protocollo
consiglia l’utilizzo del protocollo Datagram Transport Layer Security (DTLS) per
garantire le essenziali funzionalità di sicurezza end-to-end per trasmissioni di dati
sensibili e per autenticare i dispositivi coinvolti nella comunicazione.
La tesi presenta un’applicazione che integra i protocolli DTLS, CoAP e lo stack
IPv6/6LoWPAN, basata su implementazioni sviluppate dal SIGNET Group del
Dipartimento di Ingegneria dell’Informazione di Padova. In secondo luogo viene
presentata una serie di esperimenti con lo scopo di valutare la variazione di perfor-
mance dovuta alle operazioni di sicurezza del protocollo DTLS. Tale variazione sarà
valutata in termini di memoria ed energia richiesta, ritardi e overhead nei pacchetti.
Basandosi sui risultati degli esperimenti effettuati e sull’esperienza guadagnata
durante la fase di sviluppo dell’applicazione, la tesi presenta infine una serie di
suggerimenti per eventuali lavori futuri che estendono il lavoro presentato.

iv

Acknowledgements

Desidero ringraziare tutti coloro che mi hanno aiutato nella realizzazione di
questa mia Tesi. Ringrazio la mia famiglia per il quotidiano sostegno morale, per
la fiducia riposta nelle mie capacità. Ringrazio Michele Zorzi e Vishwas Lakkundi
per il supporto fornito, ringrazio Giulio Marin per avermi aiutato nella revisione
della lingua inglese e per i suoi preziosi consigli. Ringrazio inoltre Moreno Dissegna
e Matteo Fiorindo per il supporto fornito nella progettazione e valutazione degli
esperimenti effettuati, Mario Emilio Cecconato per il suo sostegno prima e durante
la stesura del codice dell’applicazione sviluppata. Ringrazio infine tutte le persone
che mi sono state vicino in questi mesi impegnativi, le persone che mi hanno fatto
sorridere, le persone che non hanno mai smesso di spronarmi ed avere fiducia in me.

Padova, December 10, 2013 Giulio

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 2
1.3 Related Work . 3
1.4 Outline . 4

2 Constrained Application Protocol 5
2.1 CoAP Overview . 5

2.1.1 CoAP Requests and Responses 7
2.1.2 Messages . 8

2.2 Message Format . 9

3 Datagram Transport Layer Security 13
3.1 TLS Overview . 13

3.1.1 TLS Handshake Protocol . 14
3.1.2 TLS ChangeCipherSpec, Alert and Application Protocol . . 16
3.1.3 TLS Record Protocol . 17

3.2 DTLS Overview . 18
3.2.1 DTLS Handshake Protocol 18
3.2.2 DTLS Record Protocol . 19

4 Environment Set-up 21
4.1 Zolertia Z1 Module . 21
4.2 TinyOS and NesC . 22

4.2.1 TinyOS Executive Model . 23
4.2.2 NesC Programming Language 23

4.3 System Set-up . 24

5 BlinkToSCoAP Implementation 27
5.1 Protocol Libraries . 27

vii

viii CONTENTS

5.1.1 CoAP Protocol Library . 27
5.1.2 DTLS Protocol Library . 28
5.1.3 IPv6/6LoWPAN Protocol Stack Library 30

5.2 BlinkToSCoAP Application . 32
5.2.1 BTSCTest Component and Wiring 32
5.2.2 CoAP Wiring . 33
5.2.3 SSLP Component and DTLS, SiGLoWPAN Wiring 37
5.2.4 Practical Issues . 42

5.3 BlinkToCoAP . 43

6 Performance Analysis and Results 45
6.1 Memory Footprint . 45
6.2 Packet Overhead . 46
6.3 Energy Consumption . 49

7 Conclusions 63
7.1 Concluding Remarks . 63
7.2 Future Work . 64

Bibliography 67

List of Figures

2.1 The CoRE ReSTful architecture. 6
2.2 CoAP protocol layers. 7
2.3 Client-server model. 7
2.4 Piggy-backed and separated responses in CoAP. 10
2.5 CoAP message format. 11

3.1 TLS protocol stack. 13
3.2 TLS handshake. 14
3.3 TLS record protocol operations. 17
3.4 DTLS handshake retransmission state machine. 19
3.5 DTLS handshake with cookie exchange. 20

4.1 Zolertia Z1 module. 22
4.2 BlinkC wiring example. 25

5.1 CoAP library structure. 28
5.2 DTLS library structure. 29
5.3 SiGLoWPAN architecture. 31
5.4 BlinkToSCoAP architecture. 32
5.5 BTSCTest wiring. 33
5.6 CoAPClient interface. 34
5.7 CoAPServer interface. 35
5.8 UDP6LPClient interface. 36
5.9 SSLP wiring . 38
5.10 DTLS interface. 39
5.11 UDP interface. 40
5.12 Memory interface. 41
5.13 BlinkToCoAP Architecture. 44

6.1 DTLS RAM memory overhead. 46
6.2 DTLS ROM memory overhead. 47

ix

x LIST OF FIGURES

6.3 DTLS overhead expressed in bytes. 48
6.4 Electrical schematic for energy measurement. 49
6.5 Energy experiment electrical schematic with AVR. 51
6.6 Client secured transmission and LED activity. 53
6.7 Server secured transmission and LED activity. 53
6.8 Client secured transmission. 54
6.9 Server secured transmission. 55
6.10 Client unsecured transmission. 55
6.11 Server unsecured transmission. 56
6.12 Comparison of energy consumption. 58
6.13 Energy consumption of DTLS and SSLP components for a secured

CoAP transaction. 59
6.14 Client handshake phase. 60
6.15 Server handshake phase. 60

Chapter 1

Introduction

1.1 Motivation

The paradigm Internet of Things (IoT) denotes the Internet-like interconnection
of highly heterogeneous and wireless-capable entities such as sensors, actuators and
mobile devices, in a Low power and Lossy Network (LLN). These small devices
usually have 8-bit microcontrollers with small amounts of ROM and RAM, while
constrained networks usually have high packet error rates and very low throughputs.
Proposed for the first time by Kevin Ashton in 2009 [9], the IoT allows a wide
range of application scenarios with potentially critical actuating and sensing tasks.
The integration of such applications with the Internet will contribute to shape a
vision of a future Web that is nowadays denoted as the Web of Things (WoT). In
this scenario, IoT entities interact with each other, with Internet remote services
and with humans carrying an Internet-capable device, like a smartphone.

In order to simplify this integration, the fundamental building blocks used for
IoT applications are the web services, the IPv6 protocol and its LLN compressed
version obtained through the IPv6 Low power Wireless Personal Area Network
(6LoWPAN) protocol. More specifically, the 6LoWPAN protocol defines encapsula-
tion and header compression mechanisms that allow IPv6 packets to be efficiently
sent over constrained networks. The Internet Engineering Task Force Constrained
Restful Environments (IETF CoRE) working group provides a framework for IoT
resource-oriented applications with the standardization of the Constrained Appli-
cation Protocol (CoAP), that is a LLN optimized version of the HTTP protocol
designed to run over the UDP protocol, in order to guarantee efficient communica-
tions at the application level.

1

2 CHAPTER 1. INTRODUCTION

The standardization of the CoAP protocol suggests the introduction of trans-
mission security. The most common approach to provide security functionalities
to the Internet communications is given by the Transport Layer Security (TLS)
protocol, together with a public-key infrastructure. Unfortunately, TLS is not
suited to constrained networks as it needs reliable channels and due to high power
consumption. For this reason, multiple alternatives have been proposed to solve
the security requirements in constrained environments. Therefore, in order to
protect the transmission of information, the CoAP standard [16] allows either the
usage of Datagram Transport Layer Security (DTLS) or Internet Protocol Security
(IPsec), which are end-to-end security approaches that achieve replay protection,
data integrity and authentication.

IPsec is a network layer protocol and is implemented in the kernel of operating
systems. For this reason, it may not be the best choice for all kinds of environments
[2]. IPsec is not supported by all the embedded IP stacks and neither by all PC
operating systems or back-end web servers. In addition, application developers may
not have privileges to add a security gateway to the network or to enable and con-
figure IPsec. Firewalls and NATs might thus compromise the usage of this approach.

A more suitable solution is currently represented by a datagram capable version
of TLS, the DTLS protocol. A great advantage of DTLS over IPsec is that it is
an application layer protocol, thus implemented in the application space instead
of in the kernel, therefore avoiding the aforementioned problems for the IPsec
protocol. In addiction, thanks to their similarity, DTLS allows the reusage of ex-
isting TLS protocol infrastructure at the cost of a minimal application overhead [15].

1.2 Contribution

This thesis presents an IoT application that includes the CoAP protocol, pro-
tected by the DTLS protocol, running over the IPv6/6LowPAN stack. It is realized
by merging, adapting and optimizing previously existing implementations of these
protocols, all written by different authors within the Department of Information
Engineering (DEI) at the University of Padova. Furthermore, it gives an in-depth
analysis of the performance variation due to the presence of the security protocol
including:

• additional RAM and ROM memory usage of the application, since data

1.3. RELATED WORK 3

storage and especially RAM are very critical resources on actual sensor node
platforms

• computational time and energy overhead required, as they represent two
important evaluation criteria of the feasibility of the security implementation

• packet length overhead introduced by the DTLS header.

1.3 Related Work

Recently, a lot of research into end-to-end security protocols for the IoT and
WSNs running CoAP has been conducted.

Authors of [10] introduce a DTLS security architecture that performs two-way
authentication, which includes both client and server authentication, based on RSA,
the most widespread key exchange algorithm. This particular asymmetric encryp-
tion algorithm requires too much resources in constrained devices, furthermore the
devices considered in that architecture have to guarantee hardware support for
secure application and RSA key storage, such as Trusted Platform Modules (TPMs).
This architecture, running over the 6LowPAN protocol, achieves proper authentica-
tion through the access control server, a trusted non-constrained entity in which the
access rights of the sensor device are stored, and through X.509 certificates signed by
a trusted third party, called Certificate Authority. The architecture has been then
tested in terms of latency and energy consumption in order to evaluate its feasibility.

In [6] the performance impact of several DTLS security modes, proposed by the
CoAP standard, is analyzed in order to identify the limitations of node platforms
and the requirements of IoT applications. The authors have evaluated the energy,
the packet and the computational overhead as well as the memory footprint of the
various security modes, showing that the small memory space and the absence of
Elliptic Curve Cryptography (ECC) hardware support are a critical aspect for the
compatibility of the IoT networks with existing public-key certification infrastruc-
tures. However, some DTLS security suites were identified as viable if security and
resources usage compromises are allowed by the network application.

In [7] an extensive experimental evaluation is presented to identify the most
appropriate secure communications mechanisms between end-to-end network-layer
and application-layer security, compared in terms of energy, computational over-
heads and memory footprints. The authors have described the impact of end-to-end

4 CHAPTER 1. INTRODUCTION

security on communications rate of sensing devices as well as on the lifetime of the
constrained network. The end-to-end approach provides the benefit of enabling se-
cure communications regardless of the application, while the network-layer security
may facilitate the integration with certification infrastructures through the usage
of ECC, at the cost of more resources.

In [13], it has been shown that DTLS headers can be compressed using 6LoWPAN
mechanisms, significantly reducing the number of additional security bits. This
result leads to an increment of both the network lifetime and the achievable
throughput. The same authors, in a more recent work [14], have presented Lithe, a
DTLS secured CoAP implementation that exploits the data compression methods
mentioned earlier.

1.4 Outline

After introducing the Constrained Application Protocol (CoAP) and the Data-
gram Transport Layer Security (DTLS), the thesis presents the environment set-up
used to develop and test the BlinkToSCoAP application, described in Chapter 5.
The following Chapter 6 presents the experiment campaign together with the re-
sults achieved, while the last Chapter 7 draws the conclusions and reports some
suggestions for future work.

Chapter 2

Constrained Application Protocol

2.1 CoAP Overview

The Constrained Application Protocol (CoAP) is a specialized web transfer
protocol intended to be used by constrained devices in Machine-to-Machine (M2M)
applications. M2M can be seen as a subset of IoT, as it refers to all the technologies
that allow machines to communicate with each other, especially over Internet pro-
tocols in wireless channels. The CoAP protocol provides a client/server interaction
model between application endpoints and includes the same key functionalities of
the HTTP protocol. For this reason CoAP is easily interfaced with HTTP, resulting
in simplified web integration while also ensuring M2M critical requirements such as
low overhead, multicast support, built-in discovery and simplicity.

The Representational State Transfer (ReST), named for the first time by Roy
Thomas Fielding in his Ph.D. dissertation [5], is a network architectural style
that abstracts the implementation of the network elements within a distributed
hypermedia system1. Moreover, ReST focuses on the architectural elements role,
the constraints in their interactions and interpretation as significant data elements.

The Constrained REST Environments (CoRE) working group aims at the real-
ization of the ReST architecture, exemplified in Figure 2.1, suitable for constrained
devices and networks. Their work comprises the specification of the CoAP protocol
[16] which has been proposed with the following features:

• constrained web protocol fulfilling M2M requirements.

• UDP binding with optional reliability, supporting unicast and multicast

1A multimedia system in which information items are connected and can be presented together

5

6 CHAPTER 2. CONSTRAINED APPLICATION PROTOCOL

requests.

• asynchronous message exchanges.

• small header overhead and parsing complexity.

• URI and Content-type support.

• simple proxy and caching capabilities.

• a stateless HTTP mapping, allowing proxies to be built providing access to
CoAP resources via HTTP in a uniform way or for HTTP simple interfaces
to be realized alternatively over CoAP.

• security binding to Datagram Transport Layer Security (DTLS).

The Internet
Constrained EnvironmentsProxy

HTTP/CoAP

C

C

C

C
C

Client Server

Server

CoAP

HTTP

Figure 2.1: The CoRE ReSTful architecture.

The CoAP protocol is divided into two layers, depicted in Figure 2.2, that
provide different functionalities. The higher one handles all the mechanisms needed
by the protocol to provide web services, while the lower layer implements techniques
to handle the unreliability of the channel. The next two sections will present these
two layers.

2.1. COAP OVERVIEW 7

UDP

Requests/Responses

Messages

CoAP

Application

Figure 2.2: CoAP protocol layers.

2.1.1 CoAP Requests and Responses

The CoAP client/server interaction model, depicted in Figure 2.3, imposes that
CoAP requests are sent by clients in order to request an action on a resource of
the server. After the request elaboration, the server sends back a CoAP response
containing an appropriate response code and optionally a resource representation.

Client Server

Request

Response

Figure 2.3: Client-server model.

The client request contains a method that specifies the action requested, an
unique identifier of the server resource called Uniform Resource Identifier (URI)
and optionally a payload containing meta-data about the request. The CoAP
standard defines four different methods:

• GET: retrieves an information representation of the resource.

• POST: carries an information representation and asks the receiver to process
it. The output depends on the target resource, usually involving resource
creation or update.

8 CHAPTER 2. CONSTRAINED APPLICATION PROTOCOL

• PUT: requests an update operation of the resource identified by the request
URI with the carried information representation.

• DELETE: causes the deletion of the resource identified by the request URI.

Upon reception of the request, the server elaborates it and, if no errors occur, sends
back to the client its response containing a response code that indicates the result
of the request process. Response codes are divided into three classes:

• 2.xx (Success): the request has successfully been received and processed.

• 4.xx (Client Error): the request was not valid or correctly understood by the
server.

• 5.xx (Server Error): the server accepted the request but failed to process it.

The fraction of the response code just denoted with xx does not have any catego-
rization role: it gives instead additional details of the output of the request process.
For example, the most common HTTP response code is the 404 or not found error,
which indicates that the client request was correct but the server was not able to
find the resource pointed by the URI field.

The matching between requests and responses is achieved by means of a token,
that is an unique identifier of any request/response couple between two specific
endpoints. This field is included on every CoAP request as well as in every CoAP
response.

2.1.2 Messages

As CoAP is by default bound to UDP, requests and responses can appear
duplicated, arrive out of order or go missing. To deal with this issue, the protocol
is theoretically divided into two logical layers, where the upper one comprises the
request/response mechanisms previously introduced and the lower one handles a
lightweight reliability mechanism.

The message layer is totally independent of the request/response layer. It defines
four message types:

• Confirmable (CON): indicates that the carried data have to be acknowledged
from the receiver, providing reliability functionality.

• Non Confirmable (NON): carries data that do not require acknowledgments
but still has to be protected from message duplication.

2.2. MESSAGE FORMAT 9

• Acknowledgement (ACK): acknowledges CON messages.

• Reset (RST): signals errors occurred in the reception of a CON or NON
message.

The matching of CON/ACK messages and the message duplicate detection is done
by means of a Message ID, generated and enclosed in every CON and NON message.
As for the token introduced in the previous section, the Message ID has to be
unique for every NON or CON/ACK message between two specific endpoints. Until
the reception of the matched ACK message from the same destination, the CON
message is retransmitted through the channel using a default timeout with an
exponential back-off time.

These message types can embody client requests or server responses as shown in
Table 2.1. The special combination of a Confirmable message without any request
or response included is used only to trigger a Reset message, realizing the CoAP
ping application.

CON NON ACK RST

Request X X - -
Response X X X -
Empty * - X X

Table 2.1: Usage of message types.

When a request arrives in a CON message, and the server has the response
immediately available, it can be carried directly in the resulting ACK message
saving network resources. These kind of responses are called piggy-backed responses.
On the other hand, if the server needs a longer time to process the request, it should
prevent client retransmissions by immediately replying with an ACK message.
When available, the response will be sent in a CON or NON message. An example
of piggy-backed and separated responses is depicted in Figure 2.4.

2.2 Message Format

CoAP message format is illustrated in Figure 2.5; it starts with a 4 bytes header
that contains the following fields:

• Version (Ver): indicates the protocol version number.

10 CHAPTER 2. CONSTRAINED APPLICATION PROTOCOL

CON [0xfe80]
GET /Blink
Token 0x22

ACK [0xfe80]
2.05 Content "7"

Token 0x22

Client Server

CON [0xfe80]
GET /Blink
Token 0x22

ACK [0xfe80]

Client Server

CON [0x1234]
2.05 Content "7"

Token 0x22

ACK [0x1234]

Figure 2.4: Piggy-backed and separated responses in CoAP.

• Type (T): indicates the message type (CON, NON, ACK, RST).

• Token Length (TKL): represents the number of bytes of the Token field.

• Code: signals a client request or a server response.

• Message ID: contains the Message ID used to match CON and ACK messages
as well as to detect message duplicates.

The header is followed by the token field, used to correlate requests and responses,
which can be from 0 to 8 bytes long. The length can be zero if no other token is
currently used for the same destination or when the client sends requests serially
and receives only piggy-backed responses. Besides, a long randomized token is
generated when the CoAP protocol is not secured by a transport layer security
protocol, acting as a protection from response spoofing.
After those fields, a sequence of zero or more CoAP options and the optional payload
take place, separated by a one-byte Payload Marker (0xFF). The absence of this
marker indicates that no payload is present.
The total message size is upper bounded by the CoAP specification but, to avoid
undesirable packet fragmentation at lower layers, it should fit in an IP MTU.

2.2. MESSAGE FORMAT 11

8 16 24
Ver T TKL Code Message ID

- - - Token (if any) of TKL bytes - - -
- - - Options (if any) - - -

1 1 1 1 1 1 1 1 - - - Payload (if any) - - -

0 32

Figure 2.5: CoAP message format.

Chapter 3

Datagram Transport Layer Security

Datagram Transport Layer Security (DTLS), defined in [15], is an extension of
the Transport Layer Security (TLS) protocol. This chapter introduces TLS and
then describes the main modifications accomplished in DTLS in order to adapt it
to unreliable transport protocols.

3.1 TLS Overview

Transport layer security, presented in [4], is nowadays the most widespread web
security protocol. It provides messages authentication, integrity and confidentiality.
The structure of the protocol, illustrated in Figure 3.1, is layered into two levels.
In the higher one four subprotocols interact with the lower layer Record Protocol
in order to provide different functionalities: Handshake Protocol, Change Cipher
Spec (CCS) Protocol, Alert Protocol and Application Protocol. Due to this layered
structure, at each layer, messages include fields for length, description, and content.

Handshake
Protocol

Change Cipher Spec
Protocol

Alert
Protocol

Application
Protocol

Record Protocol

TCP

Figure 3.1: TLS protocol stack.

13

14 CHAPTER 3. DATAGRAM TRANSPORT LAYER SECURITY

3.1.1 TLS Handshake Protocol

The Handshake Protocol consists of a series of messages exchanged by client and
server before any application data transmission takes place. During this initial phase,
endpoints reciprocally authenticate each other and negotiate security parameters.
In Figure 3.2 a basic TLS handshake, consisting of only the essential messages,
is illustrated. There are multiple variants of the TLS Handshake, depending on
the specific application, that implement one or two way authentication1 or include
certificate verification messages. The functionality of these optional handshake
messages are beyond the scope of this chapter and for this reason only the basic
handshake messages are described below. From Figure 3.2 it can also be noticed
that handshake messages are grouped in flights, defined in the TLS specification as
groups of contiguously sent handshake messages.

Client Server

ClientHello

ServerHello, ServerCertificate, ServerHelloDone

[ChangeCipherSpec], ServerFinished

[Encrypted Application Data]

ClientKeyExchange, [ChangeCipherSpec], ClientFinished

Flight 1

Flight 3

Flight 5

Flight 2

Flight 4

Figure 3.2: TLS handshake.

The essential messages of a TLS handshake are described below.

ClientHello (CH) This is typically the first message of the handshake phase (in
some applications the server is allowed to request a ClientHello message). Its
structure contains the following fields:

1One way authentication includes only server certificate while the two way authentication
involves the client certificate as well

3.1. TLS OVERVIEW 15

• the version of the protocol.

• a client random token used later to generate the premaster secret.

• a session ID that, if not empty, allows reuse of the security parameters
already established in a previous session.

• an optional compression algorithm.

• a list of cipher suites available in the client.

In particular, a cipher suite is composed of:

• a symmetric encryption algorithm, used to encrypt and decrypt ap-
plication data flowing between endpoints after the conclusion of the
handshake phase.

• a MAC algorithm that provides message integrity.

• an asymmetric encryption algorithm used to securely exchange the
premaster secret.

A typical example can be TLS_RSA_WITH_AES_CBC_SHA, where RSA
is the key exchange algorithm, AES_CBC the Advanced Encryption Standard
in Cipher-Block Chain mode symmetric encryption algorithm and SHA is the
Secure Hash Algorithm used to provide message integrity.

ServerHello (SH) This message is the server response to the ClientHello. It
contains:

• the protocol version supported by both endpoints that will be used for
the connection.

• a server random token that, together with the client random token, will
contribute to the generation of the premaster secret from which the
master secret will be derived.

• a session ID for future session resumptions.

• the strongest client cipher suite (and compression algorithm) also sup-
ported by the server that will be used for the transmission.

ServerCertificate (SC) The server, after the ServerHello message, sends to the
client its certificate containing the server’s public key. The server certificate
is also used by the client to verify the server identity.

ServerHelloDone (SHD) This is a message with no content that indicates the
end of the ServerHello flight. After this message the server awaits the response
from the client.

16 CHAPTER 3. DATAGRAM TRANSPORT LAYER SECURITY

ClientKeyExchange (CKE) This message is sent after computing the premaster
secret using both the client and server random tokens. The premaster secret
is then enclosed in the ClientKeyExchange message after being encrypted
through the chosen key exchange algorithm using the server public key. Both
endpoints will use this parameter in order to locally compute the master secret,
that will be extended through the PRF function2 into several keys intended
to be used for the encryption and HMAC algorithms. ClientKeyExchange
message also includes the client protocol version in order to guard against
rollback attacks, which cause the server and the client to use an earlier and
thus less secure version of the protocol.

ChangeCipherSpec (CCS) notifies to the other endpoint that all future mes-
sages will be encrypted using the keys and algorithms just negotiated. The
ChangeCipherSpec message is not really part of the Handshake Protocol as it
belongs to the ChangeCipherSpec Protocol.

ClientFinished (CF) This message is the first message being encrypted and
hashed by the record layer, and signals that the client has no other handshake
messages to send. It contains also a hash of the entire conversation in order
to provide further authentication of the client.

ServerFinished (SF) Like the CF message just described, this message is a hash
of the entire handshake exchange until this point. If the client is able to
successfully decrypt this message and the contained data, the TLS handshake
is successful and the two endpoints are ready to exchange application data in
a secure manner.

3.1.2 TLS ChangeCipherSpec, Alert and Application Proto-

col

The CCS Protocol is composed only by the ChangeCipherSpec message described
above. This protocol has the purpose of allowing developers to define their own
CCS mechanisms.
Messages belonging to the Alert Protocol convey TLS alerts carrying information
about errors occurred. Alert messages are divided into two levels, warning and
fatal. Fatal alerts result in the immediate termination of the session, forcing the
establishment of a new connection in order to keep the transmissions safe. If
otherwise a waring alert is sent or received, the connection can continue normally

2A mechanism used to produce a securely generated pseudo-random output of arbitrary length.

3.1. TLS OVERVIEW 17

or be terminated depending on the specific situation. The Application Protocol
refers to the higher level protocol that utilizes the DTLS protocol services.

3.1.3 TLS Record Protocol

The last portion of the TLS protocol, at the bottom of its structure, is the TLS
Record Layer which applies security mechanisms and handles data transport. As
illustrated in Figure 3.3, this protocol merges and fragments messages coming from
the upper protocols into more manageable blocks. If possible, multiple messages of
the same type can be enclosed together into a single record, or a single long one can
be fragmented across several records. Moreover the TLS Record Protocol optionally
compresses the data, adds a MAC field, encrypts and finally transmits the resulting
extended fragment. When a new packet is delivered to Record Protocol from lower
layers, the data is decrypted, verified, decompressed, reassembled and then passed
on to higher layer protocols.

Application
data

Fragment

Compress

Add MAC

Encrypt

Append TSL
record header

Figure 3.3: TLS record protocol operations.

The TLS protocol is assumed to be interfaced with a reliable transport protocol
such as TCP. This requirement prohibits its utilization in LLN networks, where
unreliable transport protocols are a more efficient choice. For this reason, as

18 CHAPTER 3. DATAGRAM TRANSPORT LAYER SECURITY

mentioned in Chapter 2, the CoAP specification suggests to secure communications
by means of the DTLS protocol.

3.2 DTLS Overview

Datagram Transport Layer Security is a modified version of TLS that resolves
the original protocol issues when running over unreliable transport protocols. DTLS
is designed to be as similar to TLS as possible in order to take advantage of pre-
existing protocol infrastructures and implementations.
DTLS resolves several incompatibilities of the the TLS protocol running over un-
reliable protocols [15], and the main changes affect the Handshake Protocol and
Record Protocol.

3.2.1 DTLS Handshake Protocol

The TLS handshake is not compatible with unreliable transport layer protocols
because it would break the handshake process due to message loss or reordering,
resulting in the failure of any successive communication. DTLS must then provide
reliability to handshake messages, and this is done by means of two mechanisms: a
simple retransmission timer, represented by the state machine shown in Figure 3.4,
and a handshake message number field. Since the handshake messages are grouped
in flights, the retransmission mechanism refers to these message groups as a whole
instead of keeping track of each single message.
The handshake message number introduced by DTLS allows the receiver to re-
construct the correct order of handshake messages: when a peer receives one of
them, it can quickly determine whether that message is the expected one or not. If
so, then it is processed, if not, it is queued for future handling, once all previous
messages have been received.

Because of the connectionless nature of the UDP protocol, DTLS, contrary to
TLS, is vulnerable to several Denial Of Service (DOS) attacks with spoofed IP
addresses. To mitigate this threat, the TLS handshake has been extended with a
cookie exchange technique: before the server allocates resources for a new commu-
nication, the client must demonstrate its capability of receive packets addressed
to its declared IP address. This is done by replying a cookie provided by the
server through the HelloVerifyRequest (HVR) message, shown in Figure 3.5. In the
first DTLS ClientHello message the new cookie field has zero length. The server,

3.2. DTLS OVERVIEW 19

PREPARING

SENDING

WAITING

FINISHED

Last flight sent

Flight
computed

and buffered

Set
retransmission

timer

Timer expires

Retransmission received

Last flight
received

Next flight
received

Retransmission received,
retransmit last flight

Send Hello Request

Figure 3.4: DTLS handshake retransmission state machine.

unable to verify it, sends the HelloVerifyRequest message containing a new cookie
whose generation process must not allocate resources on the server, in order to
avoid resource-consuming DOS attacks. Upon receiving the HelloVerifyRequest,
the client retransmits the ClientHello with the received cookie added (indicated
with CH*). This time the server can verify the cookie and is allowed to proceed
with the handshake.

3.2.2 DTLS Record Protocol

Another incompatibility of the TLS running over unreliable transport protocols
is related to the cipher modes: stream ciphers maintain residual state between
encryption of records, requiring records to be decrypted in order without missing
messages on the receiver side. In addition, the MAC of each record is calculated
taking into account an implicit sequence number of the records, requiring again that
messages be delivered in order and without losses, the functionalities not provided
by UDP.
For these reasons, DTLS Record Protocol is not compatible with stream ciphers,
allowing only block ciphers, and uses an explicit record sequence number field in

20 CHAPTER 3. DATAGRAM TRANSPORT LAYER SECURITY

Client Server

ClientHello

ServerHello, ServerCertificate, ServerHelloDone

[ChangeCipherSpec], ServerFinished

[Encrypted Application Data]

ClientKeyExchange, [ChangeCipherSpec], ClientFinished

ClientHello*

HelloVerifyRequest

Flight 1

Flight 3

Flight 4

Flight 5

Flight 6

Flight 2

Figure 3.5: DTLS handshake with cookie exchange.

order to resolve the MAC issue.
Sequence number restarts from zero after every ChangeCipherSpec message, conse-
quently causing confusion when several handshakes are performed in close succession.
Indeed, if delay events occur, in the channel there can be multiple messages with
the same sequence number but belonging to different cipher suites. For this reason,
in addition to the sequence number, DTLS Record Protocol also introduces the
epoch field, whose value is incremented at every ChangeCipherSpec message sent
and allows endpoints to distinguish such messages.

Chapter 4

Environment Set-up

The environment used to realize the application developed in this thesis is, for
practical reasons, the same environment used for the CoAP, DTLS and 6LowPAN
libraries. In particular, the mote available at the Department of Information
Engineering of the University of Padova at the start of this work was Zolertia
Z1, also used as the testing board during CoAP and DTLS development. The
programming language used to build the implementations of the aforementioned
protocols is nesC, a dialectal form of the C programming language purposely created
for the TinyOS embedded operating system.
Furthermore, this chapter introduces the devices used for implementing the whole
protocol stack, the TinyOS operating system and also the system created to compile,
install and debug the application source code.

4.1 Zolertia Z1 Module

The Z1 module, shown in Figure 4.1, is a general purpose development platform
for wireless sensor networks designed for researchers and developers. This hardware
platform does not require any external hardware to be programmed. Indeed,
due to its built-in full USB capability, it can be directly programmed allowing
easy integration with multiple systems. The mote is equipped with the following
hardware:

• second generation MSP430F2617 low power microcontroller

• 16-bit RISC CPU, 16MHz clock speed, built-in clock factory calibration

• 8KB RAM

• 92KB flash memory

21

22 CHAPTER 4. ENVIRONMENT SET-UP

Figure 4.1: Zolertia Z1 module.

• CC2420 transceiver, IEEE 802.15.4 compliant, operates at 2.4GHz with an
effective data rate of 250 Kbps

• digital programmable accelerometer (ADXL345)

• digital temperature sensor (TMP102)

• CP2102 USB-to-serial chip from SiLabs

• user and reset buttons

• three RGB LEDs.

The board can be powered by means of a battery pack, a coin cell, a USB cable or
directly connected through a power source. It can be enhanced with other analog
and digital sensors, for a total of up to 4 additional external devices.
Zolertia Z1 also supports two of the currently most employed open source embedded
operating systems, TinyOS and Contiki, which can both take advantage of a huge
online community support.

4.2 TinyOS and NesC

TinyOS is a BSD-licensed open source operating system for wireless embedded
systems, designed to support the concurrency-intensive and low-power operations

4.2. TINYOS AND NESC 23

required by the constrained devices of IoT networks. It supports several microcon-
troller families as well as multiple radio chips, and is composed mainly of a work
scheduler and a set of drivers for the most common hardware of wireless embedded
platforms.

4.2.1 TinyOS Executive Model

Due to the broad range of hardware capabilities of sensor nodes and their very
limited RAM, one of the goals of TinyOS is to have a flexible hardware/software
boundary. Synchronous code is a piece of code that runs in a single execution
context thus reserving the CPU access and preventing other code (from hardware
interrupts or events) execution until its completion, adversely affecting the mote
responsiveness especially when the execution time is long. Rather than making
everything synchronous, in TinyOS operations that are split-phase (or non-blocking)
in hardware are split-phase in software too. Furthermore, all input/output opera-
tions that need more than a few hundred microseconds are asynchronous and have
a down-call called command, that starts the operation, and a call-back, called event,
that signifies operation completion. This feature enables the operating system to
maintain high concurrency with one unique stack but, on the other hand, forces
applications to have many small event handlers.
Due to the concurrency-intensive nature of typical operations of IoT networks,
TinyOS provides a form of deferred procedure call, called task, that allows ap-
plications to postpone CPU-intensive computations. Tasks are non-preemptive
and run in FIFO order, i.e. their codes run synchronously with respect to each other.

4.2.2 NesC Programming Language

The programming language adopted by the TinyOS operating system is nesC,
an extension of the C programming language suited for the hardware limits of
sensor networks and designed to embody the structuring concepts and execution
model of TinyOS just described.
TinyOS code is statistically linked with the application code by a GNU toolchain.
In these kind of programs, all the code is contained in a single executable module,
and thus the efficiency of the library referencing operations is improved. However,
as a drawback, the memory code size increases.
The model of TinyOS applications is component-based, which means that each
application is composed of one or more software components interconnected by

24 CHAPTER 4. ENVIRONMENT SET-UP

interfaces. Components should embody simple functions while their connection
should realize more complex functions. TinyOS provides built-in components and
interfaces that represents hardware abstractions, such as packet communication,
routing, sensing and storage.
All components have two code blocks: the first describes the component signature
and the second its implementation. The implementation section divides compo-
nents into two categories, modules and configurations, used interchangeably to
build TinyOS applications. In the modules component, the implementation section
consists of variables and functions, like a classic C program; in the configurations
component instead the implementation section consists of nesC wiring code that
connects components together.
Component signatures contain zero or more interfaces that the component can
provide or use. Each interface describes a functional relationship between two or
more different components and defines a set of functions divided into commands
and events, that corresponds to the previously introduced TinyOS down-calls and
call-backs. This distinction determines which component implements the function
and which can call it: user components can call commands implemented by provider
components, and conversely provider components can launch events managed by
the user components. From this point of view, a component that provides an
interface offers a service meant to be accessed by another component wired to it.
Implementations of events and commands take place in the module implementation
section.

In Figure 4.2 an example of interface wiring is shown: the BlinkC component
make use of the Boot, Timer<TMilli> and Leds interfaces provided by MainC,
TimerMilliC and LedsC components respectively. A grey triangle inside a rectangle
indicates an interface provided by the relative component, while an external triangle
indicates an used interface.

4.3 System Set-up

In order to program the Zolertia devices, the TinyOS libraries have to be
installed on a compatible system. TinyOS can be installed on the most common
operating system such as Linux and Windows or in a virtual machine emulating
one of them. The best choice in terms of portability and complexity, thanks to its
built-in features and to the great TinyOS support, is the Ubuntu Linux distribution.
Specifically, the system is composed of a 32-bit Linux Ubuntu 12.04 LTS, with

4.3. SYSTEM SET-UP 25

BlinkC

TimerMilliCMainC LedsC

Timer<TMilli> LedsBoot

Figure 4.2: BlinkC wiring example.

kernel 3.8.0, virtualized by the VMware Fusion software running on a 2012 Macbook
air with 1 GB of RAM and 2 virtual cores of the 1.8 GHz Intel Core i5. The TinyOS
version installed on the linux distribution is 2.1.2, coupled with the GCC MSP430
compiler version 4.6.3. The procedure followed for the installation of TinyOS and
the MSP430 toolchain is presented in [1].
Furthermore, two Zolertia Z1 motes have been connected and powered via two USB
cables, completing the environment setup.

Chapter 5

BlinkToSCoAP Implementation

In Chapter 2 and Chapter 3 two fundamental IoT network protocols have been
described, one providing web services and the other end-to-end security functionali-
ties. This chapter presents an application called BlinkToSCoAP, intended to run
over 6LoWPAN networks, which includes a DTLS secured CoAP implementation.
In the following section, the TinyOS libraries that implement these protocols are
briefly presented and then a detailed description the BlinkToSCoAP application is
given. The last section of the chapter describes another application, called Blink-
ToCoAP, obtained by depriving BlinkToSCoAP of the security components. The
purpose of this second application is to allow the evaluation of DTLS performance
through the experiments that will be presented in the following chapter.

5.1 Protocol Libraries

This section contains a brief description of the libraries utilized to assemble the
BlinkToSCoAP and BlinkToCoAP applications. These components implement a
lightweight and unoptimized version of the protocols, and all their authors belong
to the SIGNET Group of the University of Padova’s Department of Information
Engineering (DEI).

5.1.1 CoAP Protocol Library

The CoAP library has been developed by Angelo P. Castellani and Mattia Gheda.
The code structure, depicted in Figure 5.1, is composed of a main component, called
CoAP, and an auxiliary component called TimedPool. The first one provides two
different interfaces, CoAPClient and CoAPServer, that offer to other components
CoAP client and CoAP server functionalities respectively. While CoAP module
handles all the CoAP request/response messages and all the protocol mechanisms,

27

28 CHAPTER 5. BLINKTOSCOAP IMPLEMENTATION

the TimedPool component stores all the transaction data and implements a timed
queue for message retransmissions. By default, this library is wired to the IP_6LP
component, written by Matus Harvan, that provides UDP and IPv6/6LoWPAN
protocol functionalities. However, BlinkToSCoAP does not utilize this component
but uses instead the IPv6/6LoWPAN implementation developed within the SIGNET
group.

CoAP

IP_6LP

TimedPool

UDP6LPClient

TransactionPool

CoAPClient CoAPServer

Figure 5.1: CoAP library structure.

The CoAP library is designed to handle, by default, up to 5 concurrent transac-
tions for each mote. Since it implements only piggy-backed responses, there is no
need to use two different identifiers to distinguish requests/responses and different
message types. Furthermore the matching is done by means of a transaction ID,
provided by the TimedPool component every time a new transaction is stored. In
addition to this mechanism, the CoAP library uses different UDP port numbers for
different transactions, realizing a second matching mechanism that can be adopted
when separate responses are implemented.

5.1.2 DTLS Protocol Library

The DTLS library has been developed by Cristiano Tapparello. It is a lightweight
implementation of the DTLS protocol and is based on the interconnection of mul-
tiple components with the dtls main module, which represents the entry point
of DTLS implementation and contains all its logic required to handle a secure
communication such as sessions data, handshake protocol definition and structures
of different messages belonging to the security protocol.

5.1. PROTOCOL LIBRARIES 29

dtls
DTLS

Pool

 Rijndael

CCM

Random
Random

 LocalTimeMilli
LocalTime

Crypto
Crypto

HMac
HMac

Pool
PeerStoragePool

NetQ
NetQ

 Sha2

Pool

Pool

CipherStoragePool

Rijndael

CCM

HMacStoragePool

Sha2

NetQStoragePool

Figure 5.2: DTLS library structure.

The DTLS library structure is depicted in Figure 5.2 and is composed of
several modules. Crypto is the cryptographic module that handles all authen-
tication and encrypt/decrypt operations. Since this is a lightweight DTLS im-
plementation, the crypto component provides the only cipher suite supported
DTLS_PSK_WITH_AES_128_CBC_SHA-256, which is composed of the Pre
Shared Key (PSK) exchange algorithm and the 128 bit Advanced Encryption Stan-
dard (AES) algorithm in Counter CBC-MAC (CCM) mode. AES is a symmetric
block cipher based on the Rijndael algorithm that, in CCM mode, provides both
message authentication and confidentiality. This algorithm is implemented and
provided by the Rijndael and CCM components.
Message integrity and a second check for message authentication is achieved by
a keyed Hash Message Authentication Code (HMAC), provided by the HMac
component, which calculates a MAC through the 256-bit Secure Hash Algorithm
(SHA-256) function in combination with a secret cryptographic key generated from
the master secret, elaborated during the handshake phase.
The generation of the client and server random tokens that will contribute to the
computation of the premaster secrets, as proposed by the DTLS standard, involves
random values as well as the current time. These functionalities are provided by
the Random module and the LocalTimeMilli component respectively.
The multiple Pool component instances are used to store concatenated lists of data
structures: each component utilizes one instance in order to store their specific
data.

30 CHAPTER 5. BLINKTOSCOAP IMPLEMENTATION

The NetQ module implements a concatenated list meant to provide, coupled with
a timer, reliability feature to handshake messages. However this feature is still not
fully developed.
From Figure 5.2, it can be seen that, differently from the CoAP structure, the
DTLS component does not have a vertical architecture. Instead of providing its
functionalities upwards for components of higher layers, and utilize functionalities
provided by lower layer components, the dtls component can be wired only through
its unique interface DTLS.

The DTLS library implements the basic version of the DTLS Handshake Protocol,
which consists of the message flights described in Table 5.1.

Flight number Number of records Handshake messages included

1 1 CH
2 1 HVR
3 1 CH*
4 1 SH, SHD
5 3 CKE, CCS, CF
6 1 CCS
7 1 SF

Table 5.1: DTLS library handshake flights.

The first three flights are the same as the DTLS basic handshake shown in Figure
3.5. The fourth flight instead is composed of one single record sent by the server
that includes the ServerHello and ServerHelloDone messages. The fifth flight instead
is composed of three different records, one for each handshake message involved,
because the implementation requires that the ChangeCipherSpec is carried alone
by a single record. In the end, once the server receives the client CCS message it
changes the cipher specification and immediately sends back its own CCS message.
In order to send its last handshake message, the server has to elaborate both the CF
and SF messages, resulting in a non-negligible computation time. For this reason,
the server’s CCS and SF messages belong to different flights.

5.1.3 IPv6/6LoWPAN Protocol Stack Library

The implementation of IPv6/6LoWPAN enclosed in the BlinkToSCoAP and
BlinkToCoAP applications is provided by the SiGLoWPAN library [3], developed by

5.1. PROTOCOL LIBRARIES 31

Giulio Ministeri. The SiGLoWPAN architecture, shown in Figure 5.3, is composed
of several protocols spanning from the transport layer to the IP adaptation layer,
which stands between the network and the Medium Access Control (MAC) layers.
UDP and ICMPv6 implementations take place at the fourth layer, the third layer
contains the IPv6 component with other supporting modules and at the bottom
layer there are 6LoWPAN and IP adaptation components, which perform the
adaptations required to transmit IP messages over specific link layer protocols such
as IEEE 802.15.4 or Point-to-Point Protocol (PPP). This library is enhanced by
an advanced memory management approach, the link layer independence and an
optimized memory footprint.

 IPv6RoutingTable

IPv6

MemoryManager
Address

RouteOver

UDP ICMPv6

IPv6
 IPv6Address

PppControl
IPv6OverSerial Ipv6Over154

6LoWPAN

PPP

IPv6Adaptation

6LPAdaptation

Memory

UDP ICMPv6

Figure 5.3: SiGLoWPAN architecture.

The link layer independence is achieved through the aforementioned IP adaptation
layer, at the lowest level of the SiGLoWPAN stack, while the advanced memory
management approach of SiGLoWPAN is provided by a very useful component
called MemoryManager. Instead of allocating the necessary static buffers inside of
each TinyOS module that has to be big enough to accommodate the maximum size
of data supported by the protocol represented, all the SiGLoWPAN modules share a
fraction of the available RAM that is statistically allocated to the MemoryManager
component at link time. When necessary, the module dynamically reallocates this
memory to the requesting component.

32 CHAPTER 5. BLINKTOSCOAP IMPLEMENTATION

Other details of the SiGLoWPAN stack are beyond the scope of this thesis and
can be found in [3].

5.2 BlinkToSCoAP Application

The design of the BlinkToSCoAP application architecture, depicted in Figure
5.4, was driven by the pre-existent wiring structures of the three libraries introduced
earlier. The development of this application, discussed below, has involved mainly
the BTSCTest, CoAP, SSLP, dtls and MemoryManager components.

CoAP

CoAPClient

BTSCTest

CoAPServer

SSLP DTLS
DTLS

SiGLoWPAN

SSLP

UDP

MemoryManager
Memory

Figure 5.4: BlinkToSCoAP architecture.

5.2.1 BTSCTest Component and Wiring

At the top of the BlinkToSCoAP stack there is the BTSCTest component,
designed to test the whole application and to act as a CoAP Server or Client.
The role interpreted by this component depends on the IPv6 address of the mote,
assigned during the compiling phase: one specific address is assigned to the server,
the other belongs to clients. If it acts as a CoAP client, it sends a Blink request
to the CoAP server. If otherwise, the component interprets a CoAP server and
waits for a Blink request. Every time it correctly receives this kind of a request,
an internal counter is incremented and sent back to the client carried by the
server’s response. Both server and client nodes can optionally turn on the LEDs

5.2. BLINKTOSCOAP APPLICATION 33

of the Zolertia platform in a configuration that represents the binary value of the
exchanged counter. Therefore, to exploit the CoAP functionalities, the BTSCTest
component is wired to the CoAP module through both of its interfaces, namely
CoAPClient and CoAPServer.
The BTSCTest module, as wired to the MainC component via the Boot interface,
is the first component that has the control of the node. This includes responsibility
of the initialization of all the necessary circuitries, modules and variables. For
this reason, in order to activate the radio and all the SiGLoWPAN variables,
BTSCTest is wired to the IPv6 module of the SiGLoWPAN library through the
SplitControl interface that is intended to be used in contrast for this purpose. The
IPv6 component then handles the initialization of all the SiGLoWPAN library plus
the radio circuitry. The BTSCTest wiring is illustrated in Figure 5.5.

CoAP

CoAPClient

BTSCTest MainC
Boot

Leds
Leds

CoAPServer
IPv6

SplitControl

Figure 5.5: BTSCTest wiring.

5.2.2 CoAP Wiring

The BTSCTest component exploits the CoAP module functionalities by means
of the CoAPClient and CoAPServer interfaces.

The CoAPClient interface, shown in Figure 5.6, provides only a request command
and a response event. The first function returns the transaction ID of the created
transaction used to further match the server response or a NULL value if some
errors occurs, and requests three parameters:

• *absuri - location of the C structure containing URI, destination host IPv6
address and destination UDP port number;

• method - code representing one of the CoAP methods (GET, POST, PUT,
DELETE);

34 CHAPTER 5. BLINKTOSCOAP IMPLEMENTATION

• *content - location of the memory buffer containing the payload of the CoAP
request.

The response event is launched by the CoAP module when a received message is
correctly recognized as a server response to a previously sent client request. It
provides to the event handler function the following data:

• tid - transaction ID of the response transaction that must match the tid of
the relative request;

• status - code representing the server response, as described in Chapter 2 ;

• *content - location of the buffer containing the payload of the CoAP response.

1 interface CoAPClient {
2
3 command coap_tid_t request (
4 coap_absuri_t* absuri ,
5 coap_method_t method ,
6 coap_content_t* content ,
7 bool acked
8);
9
10 event void response (
11 coap_tid_t tid ,
12 coap_status_t status ,
13 coap_content_t* content
14);
15 }

Figure 5.6: CoAPClient interface.

The CoAPServer interface is shown in Figure 5.7 and provides, in contrast to the
CoAPClient interface, the response command and the request event. The request
event is signaled by the CoAP module when a received packet has been recognized
as a new client request, and provides the following parameters to the component
that interprets the CoAP server role:

• rid - transaction ID of the received request;

• *uri - location of the requested resource’s URI;

• method - code that represents the requested method;

• *content - location of the buffer containing the payload of the received CoAP
request;

5.2. BLINKTOSCOAP APPLICATION 35

• toack - boolean value that indicates if the request was carried by a CON or
NON message.

When the application component finishes to elaborate the request, the response
command is called to transmit the results of the elaboration via a CoAP response.
The function requires the following data as parameters:

• rid - transaction ID of the response;

• status - code that represents the server response;

• *content - location of the buffer containing the payload of the CoAP response.

1 interface CoAPServer {
2
3 event void request (
4 coap_rid_t rid ,
5 coap_absuri_t* uri ,
6 coap_method_t method ,
7 coap_content_t* content ,
8 bool toack
9);
10
11 command error_t response (
12 coap_rid_t rid ,
13 coap_status_t status ,
14 coap_content_t* content
15);
16
17 }

Figure 5.7: CoAPServer interface.

At the bottom of the original CoAP library structure, the CoAP component
is interfaced with the UDP6LPClient interface, shown in Figure 5.8, in order to
send CoAP messages by means of the UDP protocol. The UDP6LPClient interface
provides one command, sendTo, and two events, sendDone and receive. The sendTo
function requires the following parameters to send a CoAP message through the
UDP protocol:

• *addr - location of the destination IPv6 address;

• port - destination UDP port number;

• *buf - location of the UDP payload to send;

• len - length of the UDP payload expressed in number of bytes.

36 CHAPTER 5. BLINKTOSCOAP IMPLEMENTATION

Once the lower layer finishes the sending process or encounters an error, the event
sendDone is launched. It gives the result of the operation and the pointer to the
payload sent, in order to eventually free the memory allocated to it.
When a new packet arrives, the component providing the UDP6LPClient interface
launches the receive event to provide the following information:

• *addr - location of the source IPv6 address;

• port - source port;

• *buf - location of the UDP payload received;

• len - length of the received UDP payload expressed in number of bytes.

1 interface UDP6LPClient {
2
3 command error_t sendTo(const ip6_addr_t *addr ,
4 uint16_t port ,
5 const uint8_t *buf ,
6 uint16_t len
7);
8
9 event void sendDone(error_t result ,
10 void* buf
11);
12
13 event void receive(const ip6_addr_t *addr ,
14 uint16_t port ,
15 uint8_t *buf ,
16 uint16_t len
17);
18 }

Figure 5.8: UDP6LPClient interface.

The direction of the functional relationship established by this interface be-
tween the CoAP module and the UDP/IPv6 stack has to be changed in order to
include both the DTLS security protocol as well as the SiGLoWPAN library in
the BlinkToSCoAP application. The fact that the DTLS interface provided by the
DTLS library is completely different from the UDP6LPClient interface, and the
horizontal architecture of the library, has led to the definition of a new module.
This component intercepts the CoAP transmission requests in order to elaborate
them via the DTLS interface and, once finished, redirect the encrypted data to the
UDP module of the SiGLoWPAN library. Vice-versa, when a new UDP datagram
is received it intercepts the payload, passes it to the DTLS protocol and redirects
the eventual decrypted application data to the CoAP component. Therefore, this

5.2. BLINKTOSCOAP APPLICATION 37

new module is directly wired with CoAP, SiGLoWPAN and DTLS components,
acting like a gateway for the data flowing between them.

5.2.3 SSLP Component and DTLS, SiGLoWPAN Wiring

The new component, called Secure SiGLoWPAN (SSLP), abstracts the function-
alities of the DTLS protocol and the SiGLoWPAN stack, also resolving some issues
of the DTLS library architecture. The first problem, already introduced in the
DTLS library overview, stands on its horizontal architecture. Rather than taking
care of plain data by securing and passing it to lower layer for the transmission and
signaling of the operations concluded through specific events, the DTLS interface is
designed to provide security functionalities through its commands and to return the
result of operations done by means of its signaling events. This structure makes the
DTLS library highly modular and completely independent of other components, but
at the same time forces the component wired to the DTLS interface to handle both
the plain data as well as the encrypted data ready for transmission. In addition,
the DTLS interface involves another issue of the security component: DTLS data
structures are not restricted to the DTLS library. Commands and events have, as
parameters, the main data structures that contain variables strictly belonging to
the protocol.
Therefore the SSLP component is designed to handle the plain data coming from the
CoAP library, the obfuscated data from the DTLS module ready to be transmitted
through the SiGLoWPAN stack and also the DTLS data structures such as the
context, peers and sessions. Its wiring scheme is depicted in Figure 5.9, where it can
be seen that SSLP provides the SSLP interface, which is basically the previously
presented UDP6LPClient interface renominated. In this way, the CoAP module
does not have to be modified to handle different primitives and the new name of
the interface clarifies that it abstracts a DTLS secured IPv6/6LoWPAN stack.

Moreover, SSLP is wired to the DTLS library through the DTLS interface
presented in Figure 5.10, in order to handle all its security functionalities. At the
start-up of the platform, the first action that has to be done at the security layer
is to initialize the dtls context that will be used to store buffers, list of connected
endpoints and session states. This data structure is allocated and returned by
the dtls_new_context command, that accepts as parameter a memory address
intended to be the physical location of the application buffer containing the data
which has to be secured and transmitted.

38 CHAPTER 5. BLINKTOSCOAP IMPLEMENTATION

SiGLoWPAN

UDP

SSLP DTLS
DTLS

CoAP

SSLP

MemoryManager
Memory

Figure 5.9: SSLP wiring

When a CoAP packet is received, the SSLP component checks if the destination
of the message has already a DTLS connection active via the dtls_isConnected
command, that returns the data structure of the peer if found or a null pointer
otherwise. This command needs the following parameters in order to execute the
search:

• *ctx - location of the DTLS context structure;

• *dst - location of the data structure containing information of the destination
address such as its IPv6 address and UDP port.

If the SSLP component receives a null pointer from the command, the DTLS
protocol has to establish a new session or recover an expired one. The dtls_connect
command of the DTLS interface starts a new handshake with a remote host, speci-
fied as a parameter, in order to establish the secure channel. This function accepts
the same parameters described for the dtls_isConnected command, and returns an
integer value that indicates eventual errors.
If, otherwise, the session is found active, the message can be immediately handled
by the DTLS component. This is done by the dtls_write command that needs, in
addition to the previously described parameters of the dtls_isConnected function,
the location of the CoAP message and its length expressed in number of bytes.
Once the DTLS module has finished the elaboration of the message, it signals the
send_to_peer event in order to provide to the SSLP component the pointer of the
encrypted data ready for transmission. The parameters of this function are the

5.2. BLINKTOSCOAP APPLICATION 39

1 interface DTLS{
2
3 command int16_t dtls_connect(dtls_context_t *ctx ,
4 const session_t *dst
5);
6
7 command dtls_context_t * dtls_new_context(void *app_data);
8
9 command int16_t dtls_write(struct dtls_context_t *ctx ,
10 session_t *dst ,
11 uint8_t *buf ,
12 size_t len
13);
14
15 command int16_t dtls_handle_message(dtls_context_t *ctx ,
16 session_t *session ,
17 uint8_t *msg ,
18 int16_t msglen
19);
20
21 command dtls_peer_t * dtls_isConnected(dtls_context_t *ctx ,
22 session_t *dst
23);
24
25 event int16_t read_from_peer(struct dtls_context_t *ctx ,
26 session_t *session ,
27 uint8_t *data ,
28 size_t len
29);
30
31 event int16_t send_to_peer(struct dtls_context_t *ctx ,
32 session_t *session ,
33 uint8_t *data ,
34 size_t len
35);
36
37 event int16_t get_key(struct dtls_context_t *ctx ,
38 const session_t *session ,
39 const unsigned char *id ,
40 size_t id_len ,
41 const dtls_key_t ** result
42);
43
44 event int16_t signal_event(struct dtls_context_t *ctx ,
45 session_t *session ,
46 dtls_alert_level_t level ,
47 uint8_t code
48);
49 }

Figure 5.10: DTLS interface.

40 CHAPTER 5. BLINKTOSCOAP IMPLEMENTATION

same as that of the dtls_write command: the dtls context, the session structure of
transmission, the memory address of the obfuscated message and its total length.
When a new message arrives from the UDP protocol, the SSLP component expects
that it is a DTLS packet. Furthermore, it passes the data directly to the DTLS
module through the dtls_handle_message command.
If DTLS recognizes the received packet as a valid application message, it decrypts it
and launches the read_to_peer event, where the SSLP forwards the decrypted data
to the CoAP layer. If the received message is recognized as a DTLS alert message,
the security module signals it via the signal_event function, which provides as
parameters the code and the level of the alert message in addition to the dtls context
and the session structure. This particular functionality is not yet implemented in
the code. As the last case, if the received packet is a handshake message, the DTLS
library will process it and follow the handshake protocol specification.
The last function of the DTLS interface is the get_key event, used to retrieve the
pre-shared key and its ID from the mote. Actually, the key recovery functionality
is not yet implemented, and the operation is thus bypassed by the SSLP module by
providing the values written directly on its source code.

In order to transmit messages over the wireless channel, the SSLP component
is interfaced with the SiGLoWPAN stack through the UDP interface shown in
Figure 5.11. To exploit the primitives of the UDP module, the SSLP component

1 interface UDP {
2
3 command error_t send (memory_id_t ID ,
4 slp_ip6_entry_t* dest ,
5 uint16_t dstPort);
6
7 event void sendDone (memory_id_t ID,
8 error_t error);
9
10 event void receive (memory_id_t ID,
11 slp_ip6_entry_t* src ,
12 uint16_t srcPort);
13 }

Figure 5.11: UDP interface.

needs to adopt the same mechanism used by the SiGLoWPAN library to handle
shared buffers between its components. The MemoryManager component makes its
reserved RAM virtual by assigning a virtual memory ID (vmID) to each specific
memory allocation rather than identifying it with its memory address. The vmID

5.2. BLINKTOSCOAP APPLICATION 41

can be shared between layers avoiding the need for static memory allocations,
since it is a global identifier for the buffer space. MemoryManager provides its
functionalities through the Memory interface, shown in Figure 5.12. This interface
provides several commands: the alloc and smartalloc functions allocate a given
number of RAM bytes and return its virtual memory identifier, the release of a
vmID is performed by the free command and the id2p converts a vmID into a
physical address. The last two commands of the memory interface are designed to

1 interface Memory {
2
3 command memory_id_t alloc(memory_size_t size);
4
5 command memory_id_t smartalloc (memory_size_t size , uint8_t

layer);
6
7 command void free(memory_id_t id);
8
9 command void * id2p(memory_id_t id , memory_size_t * size);
10
11 command error_t realloc(memory_id_t id , int16_t size);
12
13 command error_t hrealloc(memory_id_t id , int16_t size);
14
15 }

Figure 5.12: Memory interface.

resize memory buffers: the realloc function appends at their ends a given number
of bytes, while hrealloc adds bytes in front of the buffers. This last function is
particularly useful when new headers need to be added to memory buffers containing
payloads coming from upper layers.

The MemoryManager module provides to the SSLP component the necessary
tools to be correctly interfaced with the SiGLoWPAN library: every time a trans-
mission is requested by the DTLS protocol, the SSLP module converts the pointer of
the buffer containing the data to send into a vmID, successively passed to the UDP
interface. On the receive handler function of the SSLP instead the reverse operation
is done in order to obtain a physical address of the UDP payload, successively
handled by the DTLS component.

42 CHAPTER 5. BLINKTOSCOAP IMPLEMENTATION

5.2.4 Practical Issues

During the development of the BlinkToSCoAP application, some practical issues
have been encountered, as described below.

Compiler dependent implementation Before the BlinkToSCoAP application
has been finished, when the DTLS component was being analyzed and tested,
the system setup had installed the most recent version of the GNU mspgcc
toolchain, specifically the 4.7.0 version. This was causing the failure of the
DTLS decryption process, problem no more encountered if the 4.6.3 compiler
was used. This issue has evidenced the presence of some compiler-dependent
function or operation of the DTLS encrypt/decrypt section. Actually this
issue is not yet resolved.

Data structure incompatibilities The first issue is related to the data structure
incompatibility between the different libraries used to assemble the whole ap-
plication. In particular, these incompatibilities have taken place in the SSLP
component where the destination endpoint is represented by the DTLS compo-
nent as a session_t structure and by the UDP module as a slp_ip6_entry_t
structure.
In order to fix this problem, the optimal solution should have been the con-
version of all the destination representations to an unique data structure,
either modifying the DTLS or the SiGLoWPAN source code. Unfortunately,
this involves a lot of modifications and time, independently from the data
structure chosen, and for this reason a sub-optimal solution has been adopted:
the SSLP module performs data structure conversion every time it is needed.

RAM usage The total RAM available on the Zolertia Z1 platform is 8KB. Once
the BlinkToSCoAP application has been finished, with the configurations of
all the libraries set to their default values, the compilation procedure was
failing due to a RAM region overflowing of about 500 bytes. In order to reduce
the memory consumption of the application, some configuration parameters
have been reduced, more specifically, in the CoAP library:

• COAP_MAX_CONNECTIONS = 2 - maximum CoAP contemporane-
ous active transactions;

while in the SiGLoWPAN library:

• SLP_IPV6_QUEUE = 3 - maximum queue dimension for IPv6 packets;

5.3. BLINKTOCOAP 43

• SLP_IPV6_MAX_ADDR = 1 - maximum number of IPv6 addresses a
node can have at the same time;

• SLP_ROUTES = 3 - number of entries in the SiGLoWPAN IPv6 routing
table;

• SLP_MEMORY_SIZE = 500 - number of RAM bytes dedicated to the
dynamic management of the MemoryManager component.

In addiction of these modifications, the DTLS has been optimized by elimi-
nating some redundant code and variables.

UDP ports As already mentioned, the CoAP library implements a request/re-
sponse matching mechanism based on different adjacent UDP port numbers.
Unfortunately, the SiGLoWPAN implementation uses these parameters to
offer multiple instances of the UDP interface, allowing multiple components
to be linked to the same protocol but forcing them to use a predetermined
number of UDP ports. Since the CoAP library implements only piggy-backed
responses, this matching mechanism is momentarily disabled until separate
responses are added to implementation. The CoAP module therefore uses a
single UDP port to handle all its transactions.

5.3 BlinkToCoAP

The BlinkToCoAP application is equivalent to BlinkToSCoAP, except for the
presence of the DTLS security layer. Its structure is shown in Figure 5.13. Since its
purpose is to evidence the performance variation brought in by the DTLS module,
the BlinkToCoAP application is designed to be as close as possible to its secured
version. Specifically, their differences involve only the wiring of the CoAP module,
which – in this application – is interfaced directly to the UDP protocol. As can be
seen from the BlinkToCoAP architecture, and as already discussed above, CoAP
is wired to the MemoryManager component in order to correctly relate with the
SiGLoWPAN library.

44 CHAPTER 5. BLINKTOSCOAP IMPLEMENTATION

CoAP

CoAPClient

BTSCTest MainC
Boot

Leds
Leds

CoAPServer
IPv6

SplitControl

SiGLoWPAN

UDP

MemoryManager
Memory

Figure 5.13: BlinkToCoAP Architecture.

Chapter 6

Performance Analysis and Results

An experimental evaluation campaign is performed using the proposed Blink-
ToSCoAP and BlinkToCoAP implementations in a 6LoWPAN network to evaluate
the performance variation due to the DTLS security operations. The network setup
consists of two Zolertia motes that communicate directly through the radio by
means of the IEEE 802.15.4 Medium Access Control (MAC) protocol with no Radio
Duty Cycling (RDC) enabled. The performance is evaluated in terms of parameters
such as energy consumption, execution time, packet overhead and memory footprint,
whose experiments are described in the following sections together with their results.

6.1 Memory Footprint

The memory footprint of the BlinkToSCoAP and BlinkToCoAP applications
is provided by the GCC MSP430 Toolchain, which during the Zolertia device
programming phase, displays the total bytes that are written in to the ROM and
RAM memories. Since the two applications differ only in terms of presence of the
DTLS protocol, the difference in memory utilization precisely provides the memory
space occupation of the SSLP component and DTLS library.

Memory Footprint Results

The memory footprints provided by the GCC MSP430 Toolchain, used to com-
pile and link the code, are shown in Table 6.1. The SSLP and DTLS components
that include all the cryptographic functionalities and the DTLS state-machine,
require 16298 bytes of ROM and 2428 bytes of RAM, which represent 36% and 44%
of RAM and ROM usage of the BlinkToSCoAP application respectively. Figure
6.1 and Figure 6.2 show graphical representations of these results along with free
Zolertia Z1 memory dimensions still available for use.

45

46 CHAPTER 6. PERFORMANCE ANALYSIS AND RESULTS

Application RAM [bytes] ROM [bytes]

BlinkToSCoAP 6832 37360
BlinkToCoAP 4404 21062

Table 6.1: Memory footprint.

BlinkToCoAP+
55%+DTLS+SSLP+

30%+

Free+
15%+

Figure 6.1: DTLS RAM memory overhead.

6.2 Packet Overhead

The packet overhead experiment involves a wireless packet sniffer board inter-
faced to a Linux system running Wireshark – a packet analyzer software.
This tool is used to capture packets exchanged over the air, between the two nodes
under test, such as handshake messages, CoAP secured transactions and CoAP
unsecured transactions. Wireshark is capable of parsing the captured data in
order to distinguish the various protocols headers, providing access to all their
fields as well as their sizes and, in particular, the effective DTLS header dimension.
Moreover, this experiment also gives additional time measurements of the message

6.2. PACKET OVERHEAD 47

BlinkToCoAP+
23%+

DTLS+SSLP+
18%+

Free+
59%+

Figure 6.2: DTLS ROM memory overhead.

elaborations and computations, since packet transmissions are events that occur
either before or after CPU-intensive periods that correspond to their elaborations.

Packet Overhead Experiment Results

Table 6.2 shows the frame and UDP payload dimensions for unsecured CoAP
transactions, whereas Table 6.3 depicts secured CoAP transactions and finally Table
6.4 shows all the handshake messages.

Frame length UDP payload length
[bytes] [bytes]

Request 30 13
Response 24 7

Table 6.2: Unsecured CoAP transmission lengths.

From the values reported, it can be noticed that the protocols below the
application layer add a total overhead of 17 bytes to each frame, while the DTLS
protocol adds 29 more bytes. This overhead drastically reduces the 102 octets
maximum frame size available at the media access control (without link-layer

48 CHAPTER 6. PERFORMANCE ANALYSIS AND RESULTS

Frame length UDP payload length
[bytes] [bytes]

Request 59 42
Response 53 36

Table 6.3: Secured CoAP transmission lengths.

Frame length UDP payload length
[bytes] [bytes]

ClientHello 84 67
ClientHelloVerify 61 44

ClientHello (with cookie) 100 83
ServerHello + ServerHelloDone 105 88

ClientKeyExchange 59 42
ChangeCipherSpec 31 14
ClientFinished 70 53

ChangeCipherSpec 31 14
ServerFinished 70 53

Table 6.4: Handshake message lengths.

security) [12]. Figure 6.3 shows the graphical representation of the DTLS header
and CoAP message sizes.

0" 5" 10" 15" 20" 25" 30" 35" 40" 45"

CoAP"Request"

CoAP"Response"

DTLS" CoAP"

Figure 6.3: DTLS overhead expressed in bytes.

6.3. ENERGY CONSUMPTION 49

6.3 Energy Consumption

Energy consumption of the employed hardware platform is obtained through
experimental measurements of the voltage across a current sensing resistor of 32.8 Ω,
placed in series with the Zolertia Z1 board and the USB cable used to supply it, as
illustrated by the electrical schematic depicted in Figure 6.4. They are measured
using the UTD2102CEL Digital Storage Oscilloscope, characterized by the parame-
ters shown in Table 6.5.

Parameter Value

Real time sampling rate 1GS/s
Bandwidth 100MHz
Vertical sensitivity 1mV ∼ 20V/div
Scan time base 2ns ∼ 50s/div

Table 6.5: UTD2102CEL oscilloscope parameters.

R = 32.8 Ω

+5V

RZ1(t)
+
-

VUSB

I(t)

VR

I(t)

Figure 6.4: Electrical schematic for energy measurement.

50 CHAPTER 6. PERFORMANCE ANALYSIS AND RESULTS

The platform can be assumed as a time variable resistor RZ1(t). Its variation
affects both its drain current as well as its voltage: if I(t) is the current and
VUSB = 5V the voltage supplied by the USB cable, R = 32.8 Ω the sensing resistor
and RZ1(t) the variable resistance of the Zolertia mote, then the Kirchhoff and
Ohm laws impose the following equation:

VUSB = VR(t) + VZ1(t) (6.1)

= (R +RZ1(t))I(t) (6.2)

⇒ I(t) =
VUSB

R +RZ1(t)
(6.3)

From the last equation can be seen that if RZ1(t) increases, I(t) decreases and
vice-versa. Moreover, the variance of the platform equivalent resistance is sensed
by the sensing resistor because its voltage is obtained through the voltage divider
equation VR = VUSB

R
R+RZ1(t)

.

By default, the adopted platform is intended to run at 3 Volts [17], so the 5
Volts provided by the USB cable are reduced to the correct value by means of an
Automatic Voltage Regulator (AVR) integrated on the mote’s CP2102 (USB-to-
UART bridge) chip, shown in Figure 6.5.
The AVR chip causes a performance loss in terms of power consumption: this

inefficiency is verified considering the current provided by the USB cable, while the
Zolertia mote is only listening the wireless channel for new packets, thus suppyling
only the radio circuitry. As reported in [8], the CP2102 transceiver requires 18.8mA
in listening mode, but the average current flowing across the sensing resistor,
calculated from its average voltage during the inactivity periods, is about 19.7mA.
Since all the other components drain only a few µA while inactive, the residual
0.9mA is supposed to be drained by the voltage regulator. Therefore, a lower
bound of the power efficiency coefficient for the AVR can be estimated as:

ηAV R ≥ 1− Pmeasured − Pideal

Pideal

= 0.953 (6.4)

where, Pmeasured is the power consumed by the board, calculated with the average
measurements of the sensor resistor voltages, and Pideal is the power consumption of
the radio circuitry calculated with its nominal current requirements. One cause of
the voltage regulator inefficiency can be associated to its leakage current, consumed
internally and thus not available to the load, which has a typical value of about
25 µA [11].

6.3. ENERGY CONSUMPTION 51

R = 32.8 Ω

+
-

GND

OUT IN

AVR

+5V+3V

RINT,Z1(t) VUSB

I(t)

ILEAK

IINT,Z1(t)

VR

I(t)

Figure 6.5: Energy experiment electrical schematic with AVR.

The AVR chip inefficiencies thus slightly increment the energy consumption of
the Zolertia nodes. However, since the performance evaluation is focused on the
impact of the DTLS operations on response time and energy consumption, this
performance loss due to the AVR chip will not affect the evaluation of the higher
energy requirements of BlinkToSCoAP with respect to BlinkToCoAP. For this
reason this issue will be neglected in the following considerations and the estimation
of the Zolertia Z1 energy consumption, for a given operation of duration T , is
calculated as:

EZ1 = PZ1T (6.5)

= VZ1IT (6.6)

= (VUSB − VR)
VR
R
T (6.7)

where, Ediss,Z1 and Pdiss,Z1 are respectively the energy and the power dissipated by
the hardware platform.

The experiment is subdivided into three subsections, each of them involving a
different communication mode:

• CoAP secured and unsecured transmissions;

52 CHAPTER 6. PERFORMANCE ANALYSIS AND RESULTS

• DTLS handshake phases.

CoAP Secured and Unsecured Transmissions

In this experiment the two nodes have already established a secure channel by
means of the DTLS Handshake Protocol. The first goal to achieve is to understand
the time behaviour of the resistor voltage: theoretically, the client mote activity
should be represented on the oscilloscope behaviour as a step, caused by the
incremented power need of the Zolertia platform due to the request elaboration
and transmission, followed by a certain period of inactivity time where the mote is
awaiting the server response and another step that signals the request receipt and
elaboration. In a complementary manner, the oscilloscope sensing the server node’s
activity should display an unique step due to the request reception and elaboration
as well as the response computation and transmission.
In order to evidence DTLS operations, the SSLP component is configured, for this
experiment, to turn on a LED every time the DTLS module is called to handle a
message, involving operations such as encryption, decryption, message computation
and message parsing. When the security operations are signaled as concluded, the
LED is turned off. Furthermore, while the first probe of the oscilloscope senses the
voltage of the sensing resistor, the second one measures the activity of the toggling
diode. The behaviour displayed by the electrical tool for a secured transmission
while studying a CoAP client is shown in Figure 6.6.

The measurements in yellow indicate LED activity: the steps correspond to the
CPU time used by the DTLS library for its security operations. Moreover, re-
quest transmission and response receipt are clearly visible on the blue samples
that indicate the first oscilloscope probe measures. The security calculations are
evidenced by both the diode activity as well as its energy consumption, noticeable
on the blue samples as a second step over the main one, which instead indicates
the high CPU utilization. The resistor voltage also shows the particular Tx and Rx
operations, recognized as two consecutive troughs clearly visible after the elabo-
ration of the packet to send and also present – in a less clear form – just before
response elaboration. Between the elaboration of the CoAP request and its trans-
mission, it is also possible to recognize the fraction of time where the radio circuitry
of the Zolertia mote is sensing the wireless channel in order to avoid packet collisions.

The same experiment, applied to the CoAP server mote, yields the behaviour
depicted in Figure 6.7, which clearly evidences the CPU time phases belonging to

6.3. ENERGY CONSUMPTION 53

Figure 6.6: Client secured transmission and LED activity.

Figure 6.7: Server secured transmission and LED activity.

following protocols:

• SiGLoWPAN receipt operation time before the first LED activity;

• decryption phase during the first LED activity;

• CoAP interval between the two LED activities;

54 CHAPTER 6. PERFORMANCE ANALYSIS AND RESULTS

• encryption of the response during the second LED activity;

• SiGLoWPAN transmission operations after the second LED activity.

Also the carrier sense phase of the wireless circuitry can be recognized here just
after the computation of the server response.

The only measurements that can be considered reliable from this first experi-
ment are the CPU utilization times taken by various processing phases, since LED
activity alters the energy consumption of the mote. For this reason, the experiment
is repeated with the LED disabled in order to acquire reliable measurements of the
electric potential difference of the sensing resistor during the CPU-intensive and
inactivity phases. The resulting behaviors displayed by the oscilloscope for both
CoAP client and server secured transmissions are shown in Figure 6.8 and Figure
6.9 respectively.

Figure 6.8: Client secured transmission.

At this point, in order to obtain the effective performance variation due to the
DTLS implementation, the same experiment is repeated on two nodes programmed
with the BlinkToCoAP application. This experiment provides other measurements
of the resistor voltage during the CPU-intensive phases and the time required to
elaborate the CoAP request and response without security features. The behaviour
yielded by the oscilloscope for this experiment is shown in Figure 6.10 and Figure
6.11, where the reduced time fraction of the CPU-intensive tasks can be observed.

6.3. ENERGY CONSUMPTION 55

Figure 6.9: Server secured transmission.

Figure 6.10: Client unsecured transmission.

CoAP Transmission Results

The oscilloscope experiments described above provide various information. The
first are the measures of the sensing resistor voltage during the CPU-active and

56 CHAPTER 6. PERFORMANCE ANALYSIS AND RESULTS

Figure 6.11: Server unsecured transmission.

CPU-inactive phases of the Zolertia platform, whose mean values are as follows:

VR,CPU−active = 0.764 [V] (6.8)

VR,CPU−inactive = 0.645 [V] (6.9)

The first value is used to get the estimation of energy consumption. The second
kind of information gathered are the BlinkToSCoAP and BlinkToCoAP CPU times
needed for the computation of CoAP requests, CoAP responses, handshake flights
and radio transmissions. From the time values of various CPU-intensive processes
the relative energy consumption can be estimated by means of equation 6.7 and
related CPU ticks can be calculated using the following formula:

ticksproc =
Tproc
Ttick

(6.10)

= TprocfCPU (6.11)

where, Tproc is the time duration of the considered process and fCPU the CPU
clock frequency of the Zolertia board. CPU ticks, average energy consumption
and processing time values are presented together in Table 6.6 for CoAP secured
transactions and in Table 6.7 for CoAP unsecured transactions.

6.3. ENERGY CONSUMPTION 57

Processing time Energy consumption Ticks
[ms] [µJ]

Client request 7.08 698 113.28 K
Client response 5.22 515 83.52 K
Server request 5.82 574 93.12 K
Server response 7.34 722 117.12 K

Client transaction 12.30 1213 196.8 K
Server transaction 13.16 1296 210.24 K

Transaction / 2509 407.04 K

Table 6.6: CoAP secured transaction performance parameters.

Processing time Energy consumption Ticks
[ms] [µJ]

Client request 2.70 266 43.2 K
Client response 0.91 88 14.4 K

Client transaction 3.81 355 57.6 K
Server transaction 4.42 436 70.72 K

Transaction / 791 128.32 K

Table 6.7: CoAP unsecured transaction performance parameters.

Table 6.7 does not provide information about the server unsecured request and
response, because, in contrast to the CoAP secured transactions, there are no
experiments with LED indications of the CPU time fractions for components other
than DTLS.
The experiment done with the LED indicating the DTLS CPU usage time provides
precise time values of DTLS security operations, comprehensive of message parsing,
creation, encryption and decryption, which are reported in Table 6.8 together with
their estimated energy consumption and CPU ticks.

The time requested for the security operations can be evaluated considering
that in 3.84ms the transceiver could transmit about 55 bytes, while in 4ms about
57 bytes. From the estimated energy consumption values just presented can be
calculated the ratio between the total energy spent, by both the client and the
server, for a secured CoAP transaction and the total energy spent for an unsecured
CoAP transaction. This value indicates how much more energy-hungry is the
BlinkToSCoAP application in comparison to its unsecured version BlinkToCoAP

58 CHAPTER 6. PERFORMANCE ANALYSIS AND RESULTS

Processing time Energy consumption Ticks
[ms] [µJ]

Creation, encryption 3.84 379 61.44 K
Parsing, decryption 4 395 64 K

All 7.84 774 125.44 K

Table 6.8: DTLS operation performance parameters.

when exchanging a secure CoAP transaction over an already established and active
DTLS session:

Etrans,sec

Etrans,unsec

=
Etrans,sec(client) + Etrans,sec(server)

Etrans,unsec(client) + Etrans,unsec(server)
∼= 3.17 (6.12)

Etrans,sec and Etrans,unsec are the energies requested by client and server to complete
a secured and unsecured CoAP transaction.

0,0E+00%

2,0E'04%

4,0E'04%

6,0E'04%

8,0E'04%

1,0E'03%

1,2E'03%

1,4E'03%

Client% Server%

En
er
gy
%c
on

su
m
p>

on
%[J
]%

CoAP%unsecured%transac>on% CoAP%secured%transac>on%

Figure 6.12: Comparison of energy consumption.

The security functionalities provided by the DTLS and SSLP components
increment the energy requirements of CoAP transactions by a factor of about 3.
In order to have a graphical comparison, the visual representation of client and
server drained energy values for a complete secured and unsecured transaction can
be found in Figure 6.12.

Considering also the energy drained from the DTLS library components, an
estimation of energy inefficiency due to the SSLP component can be calculated as:

6.3. ENERGY CONSUMPTION 59

Etrans,sec(SSLP) = Etrans,sec − Etrans,unsec − 2Etrans,sec(DTLS) (6.13)
∼= (1213 + 1296)− (355 + 436)− 2(379 + 395) (6.14)
∼= 172 [µJ] (6.15)

A graphical comparison of the drained energy (by both client and server devices)
involving also the above value is depicted in Figure 6.13.

DTLS%
62%%

Other%
components%

31%%

SSLP%
7%%

Figure 6.13: Energy consumption of DTLS and SSLP components for a secured CoAP
transaction.

DTLS Handshake

Another source of performance degradation introduced by the DTLS protocol
is its handshake phase. Every time two nodes interact for the first time or after
a long gap, both of them must spend a certain amount of time and energy in
order to establish or recover a DTLS secured channel. Since the lightweight DTLS
implementation does not include mechanisms for recovering expired sessions, the
experiment is applied only to the full handshake. Figure 6.14 and Figure 6.15 show
the electric potential difference measured on the sensing resistor of CoAP client

60 CHAPTER 6. PERFORMANCE ANALYSIS AND RESULTS

and CoAP server respectively during a full DTLS handshake phase.

Figure 6.14: Client handshake phase.

Figure 6.15: Server handshake phase.

The behaviour displayed by the oscilloscope evidences the handshake flight
elaborations: the first step (due to the large spatial base of the oscilloscope) among

6.3. ENERGY CONSUMPTION 61

client measurements is the ClientHello message elaboration, followed by the troughs
of the radio activity waveform and a small period of inactivity that corresponds
to the ClientHelloVerify computation and transmission of the server as can be
seen in Figure 6.15. Upon reception of this message, the client processes it and
then retransmits the ClientHello with the received cookie included. Operations
corresponding to the second step and its adjacent troughs are shown in Figure 6.14.
After that, the server starts the the ServerHello elaboration and ServerHelloDone
messages noticeable by the second long step on its measurements, while the client is
inactive and waits for the fourth flight. The fifth flight elaboration and transmission,
visible on the client behaviour as the third step and the consecutive peaks, involves
the computation and transmission of the CKE, CCS and CF messages. Upon
reception of the ChangeCipherSpec message, the server immediately switches to
the secure transmission mode and responds with its own CCS message. Its receipt
corresponds to the last peak after the long step on the client measurements and to
the preceding peaks of the last step on the server behaviour. After the security mode
switch, the server decrypts and elaborates the received ClientFinished message and
starts the computation of its ServerFinished message, as indicated by the last step
shown in Figure 6.15. Finally, the last CPU-intensive period of the client handshake
indicates the decryption and verification of the hashed information carried by the
received SF message.

DTLS Handshake Results

Referring to the flight numbers presented in Table 5.1, Table 6.9 and Table 6.10
show – together with the performance parameters – the average time values needed
by client and server operations to handle message flights of a full handshake. These
operations include all the elaborations done by the SiGLoWPAN library in order to
handle the reception or transmission of the flights involved plus the parsing and con-
struction of received flights and new flights scheduled by the DTLS library. The total
time needed by a couple of nodes to perform a full handshake is a channel-dependent
parameter, but the time durations required for frame transmissions are negligible
compared to the duration of their elaborations, which are the main source of la-
tency. The average delays caused by the handshake phase are reported in Table 6.11.

The time and energy required to establish a secure channel are a major source of
performance degradation. In fact, the elaborations of the handshake phase consume
an amount of energy that approximately corresponds to the energy requested by a
device for exchanging 33 CoAP secured transactions, while within the time required

62 CHAPTER 6. PERFORMANCE ANALYSIS AND RESULTS

Flights involved Processing time Energy consumption Ticks
[ms] [µJ]

1 7.8 769 124.8 K
2, 3 14.2 1400 22.72 K
4, 5 302.3 29822 4833.6 K
6 3.2 316 51.2 K
7 72.4 7142 1158.4 K

All 400 39450 6398.4 K

Table 6.9: Client handshake flights and their processing parameters.

Flights involved Processing time Energy consumption Ticks
[ms] [µJ]

1,2 31.7 3127 507.2 K
3,4 259.9 25639 4158.4 K
5 2.9 286 46.4 K
6,7 142.8 14087 2284.8 K

All 437.3 43140 6996.8 K

Table 6.10: Server handshake flights and their processing parameters.

Duration
[ms]

Client 880
Server 800

Table 6.11: Handshake durations.

to establish the secure channel the device could transmit approximately 200 secured
transactions.

Chapter 7

Conclusions

7.1 Concluding Remarks

The goal of this thesis was to present both the implementation as well as
the evaluation of a CoAP application secured by DTLS for 6LoWPAN-based IoT
networks. This work gives an overview of the underlying protocol implementations
and new components merged to assemble the proposed BlinkToSCoAP application
and outlines their relationships to ensure their correct collaboration. Experimental
results show that despite the unoptimized state of protocols implementation and
the high number of their functionalities, the amount of RAM available in the
Zolertia Z1 platform is quite sufficient to contain all the necessary data. On the
other hand, the security operations of DTLS implementation, consume considerable
amounts of energy and introduce delay for every handshake carried out every
time two nodes begin a new communication or need to recover an expired session.
Once the security session has been established, the security operations increase
the energy consumption of CoAP transmissions by a factor of about 3.2 and affect
the responsiveness of the nodes, which have to work for additional 8 milliseconds
per CoAP transaction in order to deal with obfuscated data and to transmit the
additional DTLS header.
The context considered to assess the quality of the proposed application comprises
communications between only two devices supplied through a USB cable. Therefore,
the next logical step would be the evaluation of the application performance in
more realistic conditions involving multiple nodes running on battery supply.

63

64 CHAPTER 7. CONCLUSIONS

7.2 Future Work

The development of the BlinkToSCoAP application and its performance evalua-
tion has raised some issues that suggest possible directions for future work as an
extension of the works presented here.

Delegation of the handshake operations The operations done during the hand-
shake phase cause a considerable amount of energy consumption and latency.
A future work could analyze the possibility to delegate these operations to a
trusted third entity with no energy constraint and with better performance,
reducing the delay and allowing the devices to save precious energy.

Dynamic memory approach The MemoryManager component included in the
SiGLoWPAN library provides functionalities that greatly simplify and opti-
mize the memory management for constrained devices. Reviewing the CoAP
and DTLS libraries, in order to change their static allocation approach to
the dynamic one by the MemoryManager module, can greatly improve the
application performance while also reducing source code complexity and
incrementing code reutilization.

DTLS vertical orientation The SSLP solution, presented in Chapter 5, that
resolves the issues of the DTLS horizontal design may not be the best one. A
better alternative would be to rewrite the DTLS interface. This operation
firstly will remove the DTLS structures from the signatures of the interface
primitives, forcing the dtls module to keep its variables private. Secondly, it
will replace the events used to signal obfuscated or plain data just after its
elaboration with events that signal the transmission of the current message
or the receipt of a new one. The rewriting process then would also involve
the dtls component that has to include the mechanisms implemented in the
SSLP module in order to handle the transmission and receipt of packets via
the UDP interface provided by the SiGLoWPAN library.

TimedPool for handshake reliability The TimedPool component included in
the CoAP library implements a timed queue intended to provide CoAP
message reliability. This module could also be exploited by the DTLS library
in order to guard against handshake message losses, while also incrementing
the source code reutilization.

CoAP separated responses The current implementation of the CoAP protocol
does not provide separate responses for confirmable messages. This means

7.2. FUTURE WORK 65

that if the server needs more than a CoAP timeout duration to elaborate the
response, the client will retransmit the request, thus wasting precious energy
and network resources. Therefore, the implementation of CoAP separated
responses could enhance the overall application performance. This feature also
raises the need for a second matching mechanism, that has to be implemented
as well, in order to have a distinct identifier for CoAP CON, NON, ACK
messages and CoAP requests and responses.

DTLS header compression Experimental results show that the DTLS protocol
adds 29 bytes of header to each CoAP message. In order to enhance both
the transmission efficiency as well as the maximum payload size available
without MAC layer fragmentation, the 6LoWPAN header compression for
DTLS presented in [13] could be integrated into the SiGLoWPAN library.

Bibliography

[1] 2013. url: http : / / www . eetutorials . com / article / 28 / 1 / TinyOS -

installation-guide-on-Ubuntu.html (cit. on p. 25).

[2] C. Bormann. Using CoAP with IPsec. Tech. rep. CoRE Working Group, 2012
(cit. on p. 2).

[3] A. Castellani, G. Ministeri, M. Rotoloni, L. Vangelista, and M. Zorzi. “Inter-
operable and globally interconnected Smart Grid using IPv6 and 6LoWPAN”.
In: Communications (ICC), 2012 IEEE International Conference on. 2012,
pp. 6473–6478 (cit. on pp. 30, 32).

[4] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard). Updated by RFCs 5746, 5878,
6176. Internet Engineering Task Force, Aug. 2008. url: http://www.ietf.
org/rfc/rfc5246.txt (cit. on p. 13).

[5] R. T. Fielding. “REST: Architectural Styles and the Design of Network-based
Software Architectures”. Doctoral dissertation. University of California, Irvine,
2000. url: http://www.ics.uci.edu/~fielding/pubs/dissertation/
top.htm (cit. on p. 5).

[6] J. Granjal, E. Monteiro, and J. Sa Silva. “On the feasibility of secure
application-layer communications on the Web of Things”. In: Local Com-
puter Networks (LCN), 2012 IEEE 37th Conference on. 2012, pp. 228–231
(cit. on p. 3).

[7] J. Granjal, E. Monteiro, and J. Silva. “On the Effectiveness of End-to-End
Security for Internet-Integrated Sensing Applications”. In: Green Computing
and Communications (GreenCom), 2012 IEEE International Conference on.
2012, pp. 87–93 (cit. on p. 3).

[8] T. Instruments. CC2420 Datasheet. url: http://www.silabs.com/Support%
20Documents/TechnicalDocs/CP2102-9.pdf (cit. on p. 50).

[9] A. Kevin. “That ’Internet of Things’ Thing, in the real world things matter
more than ideas”. In: RFID Journal (2009) (cit. on p. 1).

67

http://www.eetutorials.com/article/28/1/TinyOS-installation-guide-on-Ubuntu.html
http://www.eetutorials.com/article/28/1/TinyOS-installation-guide-on-Ubuntu.html
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.silabs.com/Support%20Documents/TechnicalDocs/CP2102-9.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/CP2102-9.pdf

68 BIBLIOGRAPHY

[10] T. Kothmayr, C. Schmitt, W. Hu, M. Brunig, and G. Carle. “A DTLS based
end-to-end security architecture for the Internet of Things with two-way
authentication”. In: Local Computer Networks Workshops (LCN Workshops),
2012 IEEE 37th Conference on. 2012, pp. 956–963 (cit. on p. 3).

[11] S. Labs. CP2102 Datasheet. url: http://www.silabs.com/Support%
20Documents/TechnicalDocs/CP2102-9.pdf (cit. on p. 50).

[12] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of
IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944 (Proposed Standard).
Updated by RFCs 6775, 6282. Internet Engineering Task Force, 2007. url:
https://datatracker.ietf.org/doc/rfc4944/ (cit. on p. 48).

[13] S. Raza, D. Trabalza, and T. Voigt. “6LoWPAN Compressed DTLS for
CoAP”. In: Distributed Computing in Sensor Systems (DCOSS), 2012 IEEE
8th International Conference on. 2012, pp. 287–289 (cit. on pp. 4, 65).

[14] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt. “Lithe: Lightweight
Secure CoAP for the Internet of Things”. In: Sensors Journal, IEEE 13.10
(2013), pp. 3711–3720 (cit. on p. 4).

[15] E. Rescorla and N. Modadugu. Datagram Transport Layer Security. RFC
4347 (Proposed Standard). Updated by RFC 5746. Internet Engineering Task
Force, Apr. 2006. url: http://www.ietf.org/rfc/rfc4347.txt (cit. on
pp. 2, 13, 18).

[16] Z. Shelby, Sensinode, K. Hartke, and C. Bormann. Constrained Application
Protocol (CoAP) draft-ietf-core-coap-18. Tech. rep. CoRE Working Group,
2013 (cit. on pp. 2, 5).

[17] Zolertia. Z1 Datasheet. 2013. url: http://zolertia.sourceforge.net/
wiki/images/e/e8/Z1_RevC_Datasheet.pdf (cit. on p. 50).

http://www.silabs.com/Support%20Documents/TechnicalDocs/CP2102-9.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/CP2102-9.pdf
https://datatracker.ietf.org/doc/rfc4944/
http://www.ietf.org/rfc/rfc4347.txt
http://zolertia.sourceforge.net/wiki/images/e/e8/Z1_RevC_Datasheet.pdf
http://zolertia.sourceforge.net/wiki/images/e/e8/Z1_RevC_Datasheet.pdf

	Frontespizio
	Abstract
	Sommario
	Acknowledgements
	Contents
	Introduction
	Motivation
	Contribution
	Related Work
	Outline

	Constrained Application Protocol
	CoAP Overview
	CoAP Requests and Responses
	Messages

	Message Format

	Datagram Transport Layer Security
	TLS Overview
	TLS Handshake Protocol
	TLS ChangeCipherSpec, Alert and Application Protocol
	TLS Record Protocol

	DTLS Overview
	DTLS Handshake Protocol
	DTLS Record Protocol

	Environment Set-up
	Zolertia Z1 Module
	TinyOS and NesC
	TinyOS Executive Model
	NesC Programming Language

	System Set-up

	BlinkToSCoAP Implementation
	Protocol Libraries
	CoAP Protocol Library
	DTLS Protocol Library
	IPv6/6LoWPAN Protocol Stack Library

	BlinkToSCoAP Application
	BTSCTest Component and Wiring
	CoAP Wiring
	SSLP Component and DTLS, SiGLoWPAN Wiring
	Practical Issues

	BlinkToCoAP

	Performance Analysis and Results
	Memory Footprint
	Packet Overhead
	Energy Consumption

	Conclusions
	Concluding Remarks
	Future Work

	Bibliography

