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Introduction

Extreme Value Theory (EVT) is a branch of statistical theory aimed at quantifying

the stochastic behaviour of a process at unusually large (or small) levels. In particu-

lar, it aims to estimate the probability that events more extreme than those that have

already been observed with the the available dataset take place. EVT can be imple-

mented in scientific areas where accurate descriptions of rare phenomena are needed,

since when these events occur, they have a strong impact on the society and therefore,

extreme predictions may turn out to be very helpful. Examples of fields of applica-

tion are oceanography, wind engineering, finance, telecommunications, biomedical data

processing, thermodynamics of earthquakes, food science and so on.

Extreme data can be statistically analysed through two main approaches: the Block

Maxima (BM) method which fits the Generalised Extreme Value (GEV) distribution

to the sample maxima of different portions of the initial data and the Peaks Over a

Threshold (POT) method, which relies on the Generalised Pareto (GP) distribution for

modeling those observation which overcome a chosen threshold. Considering that the

main goal of the EVT is the prediction of events that are expected to fall far beyond

the observed data, the probabilistic models and statistical tools that it provides are

asymptotically motivated. From a statistical point of view, such events are represented

by the quantiles corresponding to an exceeding probability equal to or smaller than

1/n (where n is the sample size) of the unknown unconditional distribution that has

generated the data. These are called extreme quantiles. Since to date, most of the

real applications focused on extreme events concerned with the exceedances of a very

large threshold, in this work we concentrate on the POT approach. Nevertheless, the

GP distribution is an asymptotic distribution for the conditional distribution of those

data conditioned on having exceeded a high threshold. Therefore, in order to achieve the

prediction of extreme quantiles of their unconditional distribution, a two-step procedure

is typically needed.
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In alternative to the standard POT based on the GP limit, in this work we propose

to rely on an adapted version of the asymptotic GEV distribution which also provides

a suitable approximation for the tail of the unknown unconditional distribution of the

data. On this basis, we perform inference through the so-called censored likelihood

function, which depends on the GEV distribution and exploits the entire dataset. Note

that, for making inference on the extreme quantile, the most important observations are

still the large ones and so, for this reason, we still refer to this approach as a POT type

method. Specifically, we name our approach as the Censored Peaks Over a Threshold

(CPOT) approach.

This work develops a new Bayesian framework for the CPOT. In particular, we use

an empirical Bayes prior for the parameters of the assumed GEV model, considering

that these quantities are not fixed but vary with the sample size n. We implemented

this new inferential method using software R. We sample from the posterior distribution

of the parameters through an Adaptive Gaussian Random Walk Metropolis-Hastings

(RWMH) algorithm, in order to obtain a prefixed optimal Overall Acceptance Proba-

bility (OAP). We test the performances of the Empirical Bayes CPOT comparing the

frequentist coverage probabilities of credible intervals concerning extreme quantiles with

their nominal level in a simulation study. Quantile, HPD and Gaussian approximation

based intervals are taken into account.

The Thesis is organized as follows. Chapter 1 introduces the main ideas behind

the univariate Extreme Value Theory and its asymptotic justification. The BM, POT

and CPOT approaches are presented theoretically and from a likelihood based inferen-

tial point of view. Particular attention is given to the location and scale normalizing

constants and to the concepts of extreme quantile and return level.

Chapter 2 is concerned with the empirical Bayes CPOT approach, which is described

in detail and justified. We then introduce the Adaptive Gaussian RWMH algorithm that

we used to draw samples from the posterior distribution. As an illustration, three com-

plete analyses are presented in order to show the behaviour of the method on simulated

extreme data pertaining to the three possible types of extreme distribution.

Chapter 3 describes the simulation study we made to test the performances of the

empirical Bayes CPOT in terms of frequentist coverage probabilities of 95% quantile,

HPD and normality-based credible intervals, for different sample sizes n and proportions

of exceedances k, and for nine different extreme models. We report the simulation results
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and discuss the performance of the new method, its problems and some possible future

developments.

The Appendix contains the R code used in the thesis.





Chapter 1

Univariate Extreme Value Theory

1.1 Foundational concepts

In the following, we give a brief introduction to Extreme Value Theory, mainly based

on Chapter 1 of Coles (2001).

Suppose that, as part of its design criteria for coastal defense, a sea-wall is required

to protect against all sea-levels that it is likely to experience within its projected life

span of 100 years. Local data on sea-levels might be available, but for a much shorter

period of 10 years. Our purpose is to estimate what sea-levels might occur over the

next 100 years given the 10-year history. Extreme value theory provides a framework

that enables extrapolations of this type: it supplies standard models from asymptotic

arguments that are useful in these peculiar contexts.

Suppose we have gathered the hourly sea-levels x1, . . . , xn over the past 10 years and

we have organized these data into 10 blocks of m observations each. Taking directly

into account the univariate random variables underlying the observed data, we denote

by X1,1, X2,1, . . . , Xm,1 the sea-levels related to the first year and, proceding in the same

way, X1,10, X2,10, . . . , Xm,10 indicate the sea-levels related to the tenth year. Then,

Mm,1 = max{X1,1, . . . , Xm,1}, . . . , Mm,10 = max{X1,10, . . . , Xm,10}

is the sequence of yearly maximum sea-levels, considering a year as an ”m-observation”

period. If we knew the probability distribution of the Xis, we could derive the cor-

responding probability distribution of Mm. Unfortunately, this is not our case, since

we put ourselves in the most general situation where the distribution of the Xis is left

unspecified. However, under suitable assumptions, the approximate behaviour of Mm

5



6 Section 1.2 - Block Maxima (BM) approach

for large values of m (asymptotic distribution) follows from detailed limit arguments by

letting m → ∞, leading to a family of models whose parameters can be estimated by

the observed values mm,1, . . . , mm,10. This reasoning is termed as the extreme value

paradigm, since it comprises a principle for model extrapolation based on the imple-

mentation of mathematical limits as finite-level approximations.

1.2 Block Maxima (BM) approach

This section refers to Chapter 3 of Coles (2001) and Chapter 1 of De Haan & Ferreira

(2006).

1.2.1 Model formulation

We consider a sequence of independent univariate random variables X1, . . . , Xm having

a common distribution F and their maximum

Mm = max{X1, . . . , Xm}. (1.1)

In applications, the Xis usually represent values of a process measured on a regular

time-scale, perhaps hourly measurements of sea-level, or daily mean temperatures, so

that Mm constitutes the maximum of the process over m time units of observations.

When F is known and X1, . . . , Xm are i.i.d., the distribution of Mm can be derived

directly for every value of m, in fact:

Fm(z) = Pr(Mm ≤ z) = Pr(X1 ≤ z, . . . , Xm ≤ z)

= Pr(X1 ≤ z) · . . . · Pr(Xm ≤ z)

= (F (z))m . (1.2)

However, in most applications the distribution function F is unknown and so is the

correct statistical behaviour of Mm. One could use standard statistical techniques to

estimate F from the observed data, and then substitute this estimate into (1.2) to obtain

the distribution function of Mm. Unfortunately, very small discrepancies in the estimate

of F can lead to substantial discrepancies in Fm.

Alternatively, we can work under the assumption that F is unknown and look for

approximate families of models for Fm, which can be estimated on the basis of extreme

data only. We procede by searching the asymptotic distribution of Mm as m → ∞. As a

matter of fact, if we call z+ the upper end-point of F , i.e. z+ := sup{z ∈ R : F (z) < 1},
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which may be infinite, it can be demonstrated (page 3 of De Haan & Ferreira, 2006)

that

Mm
p→ z+ as m → ∞, (1.3)

where
p→ stands for convergence in probability. So, Fm converges to 0 for z < z+ and to

1 for z = z+. In order to avoid a degenerate limit distribution, a linear renormalization

of the variable Mm is necessary:

M∗
m =

Mm − bm
am

,

for sequences of scale {am > 0} and location {bm ∈ R} constants, both depending on

the block size m. We therefore seek limit distributions for M∗
m, with appropriate choices

of {am} and {bm}, rather than the one of Mm.

Theorem 1.1. (Fisher & Tippett, 1928; Gnedenko, 1943)

If there exist sequences of constants {am > 0} and {bm} such that

Pr

(

Mm − bm
am

≤ z

)

= Fm(amz + bm) −→ Gγ(z) as m → ∞ (1.4)

for a non-degenerate distribution function G, then G is a member of the Generalised

Extreme Value (GEV) family

Gγ(z) = exp
{

− (1 + γ z)−
1
γ

}

, (1.5)

defined on {z : 1 + γ z > 0}.

In addition, expressions (1.4) and (1.5) can be furtherly developed into (page 4 of

De Haan & Ferreira (2006)):

m logF (amz + bm) −→ logGγ(z) = − (1 + γ z)−
1
γ as m → ∞ (1.6)

and

m {1− F (amz + bm)} −→ − logGγ(z) = (1 + γ z)−
1
γ as m → ∞. (1.7)

The GEV cumulative distribution function Gγ takes three different forms depending

on the value assumed by the shape parameter γ, also called tail (or extreme-value) index

(Fisher & Tippett, 1928), a location parameter µ ∈ R and a scale parameter δ > 0:
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1. Fréchet type (γ > 0):

Gγ(z) =







0 if z ≤ µ− δ
γ
,

exp
{

−
[

1 + γ
(

z−µ
δ

)]− 1
γ

}

otherwise;

2. Gumbel (or double-exponential) type (γ = 0):

G(z) = exp

{

− exp

(

−z − µ

δ

)}

z ∈ R;

3. Reverse-Weibull type (γ < 0):

Gγ(z) =







exp
{

−
[

1 + γ
(

z−µ
δ

)]− 1
γ

}

if z ≤ µ− δ
γ
,

1 otherwise.

In other words, the GEV family includes three classes of distributions, termed as the

extreme value distributions, widely known as the Fréchet, Gumbel and Reverse-Weibull

families respectively. The three types of extreme value distribution are the only possible

limits for the distribution of the rescaled maximum M∗
m, regardless of the distribution

F of the population. We provide a graphical representation of the three types of GEV

distributions in Figure 1.1. The R code for the plots is in Appendix A.

((a)) GEV c.d.f. ((b)) GEV p.d.f.

Figure 1.1: GEV cumulative density function ((a)) and probability density function
((b)) for µ = 0, δ = 1 and different values of γ.

The class of distribution functions F satisfying (1.4) is called max-domain of attrac-

tion of Gγ, and we write F ∈ D(Gγ). We now give necessary and sufficient conditions

for a distribution function F to belong to the max-domain of attraction of Gγ.
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Theorem 1.2. (Theorem 1.2.1 of De Haan & Ferreira, 2006)

The distribution function F is in the domain of attraction of the generalized extreme

value distribution Gγ if and only if

1. for γ > 0 (Fréchet case): z+ = sup{z ∈ R : F (z) < 1} is infinite and

lim
t→∞

1− F (tz)

1− F (t)
= z−

1
γ (1.8)

for all z > 0. This means that the function 1 − F is regularly varying at infinity

with index −1/γ;

2. for γ = 0 (Gumbel case): z+ can be finite or infinite and

lim
t↑z+

1− F (t+ zf(t))

1− F (t)
= e−z (1.9)

for all real z, where f is a suitable positive function. If (1.9) holds for some f ,

then
∫ z+

t
(1− F (s))ds < ∞ for t < z+ and (1.9) holds with

f(t) :=

∫ z+

t
(1− F (s))ds

1− F (t)
; (1.10)

3. for γ < 0 (Reverse-Weibull case): z+ is finite and

lim
t↓0

1− F (z+ − tz)

1− F (z+ − t)
= z−

1
γ (1.11)

for all z > 0.

The three types of limits that arise in Theorems 1.1 and 1.2 have distinct forms

of behaviour, corresponding to different functions F of the Xis. This can be made

precise by considering the behaviour of the limit distribution Gγ at z+, its upper end-

point. For the Reverse-Weibull class z+ is finite, while for both the Fréchet and Gumbel

classes z+ is infinite. Still, the density of Gγ decays exponentially for the Gumbel

distribution and polynomially for the Fréchet distribution, corresponding to relatively

different rates of decay in the tail of F . It follows that in applications the three different

families give quite different representations of extreme value behaviour. Actually, the

extreme-value index γ describes the heaviness of the tail of the distribution Gγ, indeed

distributions pertaining to the GEV class are called heavy-tailed if γ > 0, light-tailed if

γ = 0 and short-tailed if γ < 0. Assuming the general model specified in formula (1.5),

we can determine the most appropriate type of tail behaviour through inference on γ.
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Uncertainty in the inferred value of γ measures the lack of certainty as to which of the

original three types is most appropriate for a given dataset.

The Generalised Extreme Value (GEV) distribution is a probability distribution for

modeling extreme values which generally depends on the parameter θ = (γ, µ, δ), where

γ ∈ R is a shape parameter, µ ∈ R is a location parameter and δ > 0 is a scale

parameter. Its probability density function is here:

Gγ (z; γ, µ, δ) =

{

−
[

1 + γ

(

z − µ

δ

)]− 1
γ

}

, (1.12)

defined on
{

z : 1 + γ
(

z−µ
δ

)

> 0
}

. Equation (1.4) states that, if F ∈ D (Gγ), the renor-

malized block maximum M∗
m is asymptotically distributed as a GEV (γ, 0, 1) random

variable. If we interpret the limit in Theorem 1.1 as an approximation for large values

of m, we can use the GEV family as a proper statistical model for the distribution of

maxima of long sequences. The apparent difficulty arisen by the lack of knowledge of

the normalizing constants in practice can be easily resolved. Indeed, if for large m

Pr(M∗
m ≤ z) = Pr

(

Mm − bm
am

≤ z

)

≈ Gγ(z),

then, equivalently

Pr (Mm ≤ z) = (F (z))m ≈ Gγ

(

z − bm
am

)

= G∗γ(z), (1.13)

where G∗γ is another member of the GEV family, depending on the parameter θ =

(γ, µ∗, δ∗), which can be estimated by standard techniques.

This argument leads to the following approach for modeling extremes of a series

of independent observations x1, . . . , xn, the so called Block Maxima (BM) approach.

Data are blocked into sequences of observations of length m, for some large value of m,

generating a series of block maxima mm,1, . . . , mm,q (n = m×q), say, to which the GEV

distribution can be fitted. Often the blocks are chosen to correspond to a time period

of length one year. Estimates of the extreme quantiles of the block (annual) maximum

distribution are obtained by inverting Equation (1.12):

zp =







µ− δ
γ

[

1− {− log (1− p)}−γ
]

if γ ̸= 0,

µ− δ log {− log (1− p)} if γ = 0,
(1.14)

where Gγ(zp) = 1 − p. zp is commonly named return level associated with the return
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period 1/p = T , since the level zp is expected to be exceeded on average once every T

units of time (years) or, equivalently, Pr(Mn > zp) = p = 1/T .

We now provide two additional ingredients that are helpful in the proof of Theorem

1.1, which is the core of extreme value theory.

Definition 1.3. (Max-stability)

A distribution G is said to be max-stable if, for every n = 2, 3, . . . , there are constants

αn > 0 and βn such that

Gn(αnz + βn) = G(z).

Theorem 1.4. (Theorem 3.2 of Coles, 2001)

A distribution is max-stable if and only if it is a generalised extreme value (GEV) dis-

tribution.

It is possible to demonstrate that the limit distribution G in (1.4) is max-stable and

thus, thanks to Theorem 1.4 we conclude that G must belong to the GEV family.

1.2.2 Likelihood based inference

LetX1, . . . , Xn be univariate independent random variables from unknown F and Z1, . . . ,

Zq the derived block maxima of size m. Independence between the Zis is guaranteed

and, thanks to Theorem 1.1, we can assume for the block maxima a GEV distribu-

tion. When γ ̸= 0 (Fréchet and Reverse-Weibull cases) the log-likelihood for the GEV

parameters is

l(γ, µ, δ; z) =







−∞ if ∃i ∈ {1, . . . , q} : 1 + γ
(

zi−µ
δ

)

≤ 0,

−q log(δ)−
(

1 + 1
γ

)

∑q

i=1 log
[

1 + γ
(

zi−µ
δ

)]

−∑q

i=1

[

1 + γ
(

zi−µ
δ

)]− 1
γ otherwise.

(1.15)

When γ = 0 (Gumbel case) the log-likelihood for the GEV parameters is

l(µ, δ; z) = −q log(δ)−
q
∑

i=1

(

zi − µ

δ

)

−
q
∑

i=1

exp

{

−
(

zi − µ

δ

)}

. (1.16)

Unfortunately, with the GEV model the regularity conditions that are required for

the usual asymptotic properties associated with the maximum likelihood estimator to

be valid do not hold, since here the support depends on the parameter. Specifically, the

end-points of the GEV distribution are functions of the parameter values: µ− δ/γ is an

upper end-point when γ < 0 and a lower end-point when γ > 0. Smith (1985) studied

this problem in detail and obtained the following results:
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❼ when γ > −0.5, maximum likelihood estimators are regular, in the sense of having

the usual asymptotic properties;

❼ when −1 < γ ≤ −0.5, maximum likelihood estimators are generally obtainable,

but do not have the standard asymptotic properties;

❼ when γ < −1, maximum likelihood estimators are unlikely to be obtainable.

The case γ ≤ −0.5 corresponds to distributions with a very short bounded upper tail,

a situation which is rarely encountered in applications on extreme value modeling.

Maximization of the log-likelihoods (1.15) and (1.16) with respect to the parameter

vector θ = (γ, µ, δ) leads to the maximum likelihood estimate (MLE) with respect to the

entire GEV family. There is no analytical solution, but for any given dataset the max-

imization is straightforward using standard numerical optimization algorithms. Some

care is needed to ensure that such algorithms do not move to parameter combinations

violating the condition in (1.15) of non-null likelihood. Furthermore, (1.15) presents

numerical difficulties when evaluated in a neighbourhood of γ = 0, but this problem is

easily solved using (1.16) in place of (1.15).

Dombry & Ferreira (2019) studied the existence and asymptotic normality of the

maximum likelihood estimator θ̂ = (γ̂, µ̂, δ̂) under the following conditions:

1. First order condition:

F ∈ D (Gγ0) with γ0 > −1

2
,

where γ0 is the true value of the tail index γ.

2. We set V =
(

− 1
logF

)

←, the left-continuous inverse of the function− 1
logF

, such that
(

− 1
logF (x)

)

←= inf
{

y : − 1
logF (y)

≥ x
}

. Second order condition: for some positive

function a and some positive or negative function A with limt→∞A(t) = 0,

lim
t→∞

V (tx)−V (t)
a(t)

− xγ0−1
γ0

A(t)
=

∫ x

1

sγ
0−1

∫

1

suρ−1duds = Hγ0,ρ(x), x > 0, (1.17)

with γ0 > −1
2
. Note that necessarily ρ ≥ 0 and |A| is regularly varying with index

ρ.

3. Asymptotic growth for the number q of of blocks and block size m:

q = qn → ∞, m = mn → ∞ and
√
qA(m) → λ ∈ R, as n → ∞. (1.18)
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In the following, Qγ0 denotes the quantile function of the extreme value distribution

Gγ0 , i.e.

Qγ0(p) =
(− log p)−γ

0 − 1

γ0
, p ∈ (0, 1), (1.19)

and i(θ0) stands for the Fisher information matrix computed in the true value of the

parameter θ. We introduce the asymptotic bias b, i.e.

b = b(γ0, ρ) =

∫ 1

0

∂2l

∂x∂θ

(

θ0, Qγ0(s)
)

Hγ0,ρ

(

1

− log s

)

ds. (1.20)

Theorem 1.5. (Existence and asymptotic normality of the MLE)

Assume conditions (1.17) and (1.18).

❼ There exists a sequence of estimators θ̂n =
(

γ̂n, µ̂n, δ̂n

)

, n ≥ 1, such that

lim
n→+∞

Pr
(

θ̂n is a MLE
)

= 1 (1.21)

and

√
q

(

γ̂n − γ0,
µ̂n − bm

am
,
δ̂n
am

− 1

)

d−→ N3

(

λi(θ0)−1b, i(θ0)−1
)

. (1.22)

❼ The MLE θ̂ =
(

γ̂, µ̂, δ̂
)

is unique.

Equation (1.18) requires that both the number of blocks q and the block size m go

to infinity with a relative rate measured by the second order scaling function A and a

parameter λ. When λ = 0, the bias term disappears in (1.22); this corresponds to the

situation where m grows to infinity very quickly with respect to q so that the block

size is large enough and the GEV approximation (1.4) is very good. From (1.22) we

can directly derive the asymptotic distribution for the MLE θ̂ =
(

γ̂, µ̂, δ̂
)

, where am, bm

and i(θ0) can be substituted in the formula by suitable estimates. Confidence intervals

and other forms of inference follow immediately from the approximate normality of the

estimator.

The maximum likelihood estimate of the 1/p = T return level zp can be obtained by

substituting the maximum likelihood estimates of the GEV parameters into (1.14):

ẑp =







µ̂− δ̂
γ̂

[

1− {− log (1− p)}−γ̂
]

for γ̂ ̸= 0,

µ̂− δ̂ log {− log (1− p)} if γ̂ → 0.
(1.23)
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Furthermore, deriving the variance-covariance matrix V ar(θ̂) of the MLE from (1.22),

by the delta method,

V ar(ẑp) ≈ ∆zTp V ar(θ̂) ∆zp, (1.24)

where ∆zTp =
[

∂zp
∂γ

, ∂zp
∂µ

, ∂zp
∂δ

]

evaluated at (γ̂, µ̂, δ̂). If γ̂ < 0 it is also possible to make

inferences on the upper end-point of the distribution, which is effectively the ”infinite

observation return period”, corresponding to zp with p = 0. Its maximum likelihood

estimate is

ẑ0 = µ̂− δ̂

γ̂
,

and the variance around this estimate can still be found with the delta method.

1.3 Classical Peaks Over a Threshold (POT) ap-

proach

This section refers to Chapter 4 of Coles (2001) and Chapters 3 and 4 of De Haan &

Ferreira (2006).

1.3.1 Model formulation

As anticipated in Sections 1.1 and 1.2, the BM approach to extreme values is incredibly

wasteful, since it really models only the maxima of the blocked sequences and leaves

out the other data. Therefore, a new procedure of analysis of extreme values avoiding

the blocking process is needed.

Let X1, . . . , Xn be a sequence of univariate independent and identically distributed

random variables with marginal distribution function F . We can classify as extreme

events those of the Xis that exceed some high threshold u. In this way, extreme data

are nothing but peaks over a threshold (POT). Following this rationale, a description

of the stochastic behaviour of extreme events is given by this conditional probability:

Pr (X > u+ y|X > u) =
1− F (u+ y)

1− F (u)
, y > 0. (1.25)

If the parent distribution F was known, the distribution of threshold exceedances in

(1.25) would also be known. In practice we prefer avoiding restrictive (and often wrong)

assumptions, thus we look for asymptotic approximations which are broadly applicable

for high values of the threshold.
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Theorem 1.6. (Pickands’ Theorem: theorem 4.1 of Coles, 2001)

Let X1, . . . , Xm be a sequence of independent random variables with common distribution

F , and let

Mm = max{X1, . . . , Xm}.

Denote an arbitrary term in the Xi sequence by X, and suppose that F satisfies Theorem

1.1, so that for large m,

Pr (Mm ≤ z) ≈ Gγ(z),

where

Gγ(z) = exp
{

− (1 + γ z)−
1
γ

}

for some γ. Then, for large enough u, the distribution function of (X − u), conditional

on X > u, is approximately

H(y) = 1−
(

1 +
γ y

δ̃

)− 1
γ

(1.26)

defined in
{

y : y > 0 and
(

1 + γ y

δ̃

)

> 0
}

, where

δ̃ = γ u. (1.27)

The family of distributions defined by (1.26) is called generalised Pareto family (GP) and

by Theorem 1.6 it turns out to be the asymptotic distribution of threshold exceedances

as the threshold u → ∞. If γ < 0 the generalised Pareto distribution has an upper

bound of u− δ̃/γ, while it is unbounded when γ ≥ 0. When γ = 0, taking the limit for

γ → 0 in (1.26), we get

H(y) = 1− exp

(

−y

δ̃

)

, y > 0, (1.28)

corresponding to an exponential distribution with scale parameter 1/δ̃.

Theorem 1.6 implies that, if block maxima have approximating distribution G, then

threshold excesses have a corresponding approximate distribution within the general-

ized Pareto family. Moreover, the parameters of the generalized Pareto distribution of

threshold excesses are uniquely determined by those of the associated GEV distribution

of block maxima. In particular, the parameter γ in (1.26) is equal to that of the cor-

responding GEV distribution. Choosing a different, but still large, block size m would

affect the values of the GEV parameters, but not those of the corresponding general-

ized Pareto distribution of threshold excesses: γ is invariant to block size, and so is the
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calculation of δ̃ in (1.27). We provide in Figure 1.2 some plots of the generalized Pareto

distribution. The R code used to create the plots is in Appendix B. From now on, for

simplicity of notation, we substitute the expression of the scale parameter δ̃ with just δ.

((a)) GP c.d.f. ((b)) GP p.d.f.

Figure 1.2: GP cumulative density function ((a)) and probability density function

((b)) for δ̃ = 1 and different values of γ.

We now clarify the concept of return level in the Peaks Over a Threshold (POT)

context. Suppose that a generalized Pareto distribution with parameters γ and δ is

a suitable model for exceedances of a threshold u by a random variable X. That is,

putting together equations (1.25), (1.26) and (1.28), for x > u, we have

Pr (X > x|X > u) =
Pr (X > x)

Pr (X > u)
=







[

1 + γ
(

x−u
δ

)]− 1
γ if γ ̸= 0,

exp
(

−x−u
δ

)

if γ = 0.

It follows that, recalling that Pr (X > u) = ζu,

Pr (X > x) =







ζu
[

1 + γ
(

x−u
δ

)]− 1
γ if γ ̸= 0,

ζu exp
(

−x−u
δ

)

if γ = 0.
(1.29)

Hence, the r-observation return level is, by construction, the level xr that is exceeded on

average once every r observations, and can be found by solving the equation Pr (X > x) =

1/r. Provided that r is sufficiently large to ensure that xr > u, the return level takes

the expression

xr =







u+ δ
γ
[(rζu)

γ − 1] if γ ̸= 0,

u+ δ log (rζu) if γ = 0.
(1.30)



Chapter 1 - Univariate Exterme Value Theory 17

On an annual scale, the N -year return level is the level expected to be exceeded once ev-

ery N years. If there are ny observations per year, this corresponds to the r-observation

return level, where r = N × ny. Therefore, the N -year return level is defined by:

zN =







u+ δ
γ
[(Nnyζu)

γ − 1] if γ ̸= 0,

u+ δ log (Nnyζu) if γ = 0.

1.3.2 Likelihood based inference

We collect the raw univariate data x1, . . . , xn, consisting of a sequence of independent

measurements from the random variables X1, . . . , Xn whose common distribution F is

in the max-domain of attraction of the GEV distribution. Following the classical POT

framework, extreme events are identified by defining a high threshold u, for which the

exceedances are {xi : xi > u}. These exceedances are labeled by x(1), . . . , x(k) and

threshold excesses are defined by yj = x(j)−u, for j = 1, . . . , k. By Theorem 1.6, the yj

may be regarded as independent realizations of a random variable whose distribution can

be approximated by a member of the generalized Pareto family. The standard practice

is to adopt as low a threshold u as possible, subject to the limit model providing a

reasonable approximation. Inference consists of fitting the generalized Pareto family to

the observed threshold exceedances.

The parameters of the generalized Pareto distribution can be estimated by maximum

likelihood. When γ ̸= 0, the log-likelihood is obtained from (1.26) as:

l(γ, δ; y) =







−∞ if ∃ i ∈ {1, . . . , k} :
(

1 + γ yi
δ

)

≤ 0,

−k log δ −
(

1 + 1
γ

)

∑k

i=1 log
(

1 + γ yi
δ

)

otherwise.
(1.31)

If γ = 0, the log-likelihood is obtained from (1.28) as:

l(δ; y) = −k log(δ)− 1

δ

k
∑

i=1

yi. (1.32)

Analytical maximization of the log-likelihood is not possible, so numerical techniques

are again required, taking care to avoid numerical instabilities when γ ≈ 0 in (1.31),

and ensuring that the algorithm does not fail due to evaluation outside of the allowable

parameter space. Standard errors and confidence intervals for the generalized Pareto

distribution are obtained in the usual way from standard likelihood theory.

Estimation of return levels requires the substitution of the maximum likelihood es-

timates of the parameters γ̂ and δ̂ into (1.30). An estimate of ζu, the probability of
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an individual observation exceeding the threshold u, is also needed. This has natural

estimator of the sample proportion of points exceeding u, i.e.,

ζ̂u =
k

n
. (1.33)

Since it is reasonable to assume K ∼ Bi(n, ζu), the estimate in (1.33) is also maximum

likelihood estimate for ζu. Standard errors and confidence intervals for xr can be derived

using the delta method, including in the calculation the uncertainty in the estimate of

ζu, which is, by standard properties of the binomial distribution, V ar(ζ̂u) ≈ ζ̂u(1−ζ̂u)/n.

Assuming independence between ζ̂u and the pair (γ̂, δ̂) and denoting with V the variance-

covariance matrix of (γ̂, δ̂, ζ̂u), by delta method we compute

V ar(x̂r) ≈ ∆xT
r V ∆xr,

where ∆xT
r =

[

∂xr

∂γ
, ∂xr

∂δ
, ∂xr

∂ζu

]

evaluated at (γ̂, δ̂, ζ̂u).

One serious competitor to the maximum likelihood estimator is the probability

weighted moments (PWM) method of Hosking & Wallis (1997). The PMW method

was earlier developed for the GEV distribution, where it was shown by simulation to be

in general more efficient than the MLE for the central range of γ (−0.2 < γ < 0.2) and

moderate values of n (up to 100). However, PWMs are much less flexible than MLEs

as a general estimation method.

1.4 Censored Peaks Over a Threshold (CPOT) method

This section refers to Prescott & Walden (1983), Smith (1994) and Beranger et al.

(2021).

Our purpose it to define an alternative Peaks Over a Threshold framework which

exploits the asymptotic results of Block Maxima, defined in Theorem 1.1. We consider a

set of independent and identically distributed extreme data x1, . . . , xn from F ∈ D (Gγ),

we divide them into q blocks of size m and we set ym = amx+ bm, which is a large value.

From now on, we denote am with a(m) and bm with b(m) to underline the crucial

dependence of these constants on m. Then, from (1.4) we can state

Pr(max{X1, . . . , Xm} ≤ ym) ≈ exp

{

−
[

1 + γ

(

ym − µ

δ

)]− 1
γ

}

for large m, (1.34)

where µ = µm = b(m) and δ = δm = a(m).
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Here, having n overall sample units and k number of units exceeding a threshold

u, we set s = n/k, which is the inverse of the proportion of threshold exceedances.

This quantity s is important because it establishes a link between the BM and POT

approaches to extreme values, i.e. it plays the role of the block size m. From a logical

point of view, a rule for splitting units into homogeneous blocks of size s could be creating

k subsets containing one u-threshold exceeding unit and s− 1 non-exceeding units. We

point out that, under this blocking scheme, the random variable Ms = max{X1, . . . , Xs}
selects the unique peak over the threshold of the set. For this reason, in this context

the k block maxima ms,1, . . . ,ms,k are exactly the k threshold exceedances. From an

analytical point of view, s = n/k → ∞ as n → ∞, just like m → ∞ as n → ∞, and

consequently the asymptotic approximations of Theorem 1.1 still hold with s in place

of m. Hence, rearranging equation (1.7) we obtain:

s

[

1− Pr

(

Ms − b(s)

a(s)
≤ z

)]

−→ (1 + γz)−
1
γ as s → ∞

=⇒ Pr

(

Ms − b(s)

a(s)
≤ z

)

≈ 1− 1

s
(1 + γz)−

1
γ for large s.

First of all, fixing vs = b(s) + a(s)z (which is a large value), µ̃ = µ̃s = b(s) and

δ̃ = δ̃s = a(s), we compute:

Pr(Ms ≤ vs) ≈ 1− 1

s

(

1 + γ
vs − µ̃

δ̃

)− 1
γ

≈ exp

{

−1

s

(

1 + γ
vs − µ̃

δ̃

)− 1
γ

}

= exp

{

−
[

1 + γ

(

vs − µ̃

δ̃

)]− 1
γ

}
1
s

(1.35)

where, between the first and the second step, we have used a Taylor expansion of the ex-

ponential function and, thanks to the result in (1.35), we find that Ms
·∼ GEV

1
s (γ, µ̃, δ̃)

for large s. We highlight that the parameters µ̃ and δ̃ are nothing but the aforementioned

location and scale norming constants b(s) and a(s), unavoidable for the convergence re-

sults of Theorem 1.1 to the Generalised Extreme Value family. In the next section we

will supply some operating methods for finding such normalizing constants.
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Secondly, resuming the first line of the previous calculations we have

Pr(Ms ≤ vs) ≈ 1− 1

s

(

1 + γ
vs − µ̃

δ̃

)− 1
γ

= 1−
(

δ̃ + γ(vs − µ̃)

s−γ δ̃

)− 1
γ

= 1−
(

s−γ δ̃ − s−γ δ̃ + δ̃ + γ(vs − µ̃)

s−γ δ̃

)− 1
γ

= 1−



1 +
γ
(

vs − µ̃+ δ̃(1−s−γ)
γ

)

s−γ δ̃





= 1−
(

1 +
γ(vs − µ̄)

δ̄

)− 1
γ

≈ exp

{

−
[

1 + γ

(

vs − µ̄

δ̄

)]− 1
γ

}

, (1.36)

where, between the last two steps we have used again a Taylor expansion of the ex-

ponential function and (1.36) states that Ms
·∼ GEV (γ, µ̄, δ̄) for large s with a new

parameterization, which depends on the previous one in the following way

µ̄ =







µ̃− δ̃ 1−s−γ

γ
= µ̃− δ̃

1−(n
k )

−γ

γ
if γ ̸= 0,

µ̃− δ̃ log(s) = µ̃− δ̃ log
(

n
k

)

if γ = 0;
(1.37)

δ̄ =







s−γ δ̃ =
(

n
k

)−γ
δ̃ if γ ̸= 0,

δ̃ if γ = 0.
(1.38)

Having said this, we are ready to define the new Censored Peaks Over a Threshold

(CPOT) inferential method. Suppose we have gathered a sample of data x1, . . . , xn

and we want to use them to perform an extreme value analysis of the POT type. We

then define a high threshold u, e.g. the 90%, 95% or 99% percentile of the observed

sample, and, following the results in (1.35) and (1.36), we know we can properly model

the peaks with (a transformation of) the GEV distribution. In particular, in order not

to waste information, we regard at the units overcoming the threshold u as actually

observed, while we consider left-censored the units that fall before u. At this point

we can choose whether to exploit result (1.35) with the tilde parameterization or to

follow result (1.36) with the bar parameterization. In the remainder of this section, for

simplicity of notation, we will use the symbol Gγ to refer to the simple GEV distribution

function free of scale and location parameters, defined in (1.5).
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❼ In the tilde parameterization we define the Censored POT log-likelihood as:

l(γ, µ̃, δ̃; x) =
n
∑

i=1

logL(γ, µ̃, δ̃; xi), (1.39)

where µ̃ and δ̃ are the usual scale and location norming constants and, for i =

1, . . . , n

L(γ, µ̃, δ̃; xi) =











Gγ

(

u−µ̃

δ̃

) 1
s

if xi ≤ u,

d
dx

[

Gγ

(

xi−µ̃

δ̃

) 1
s

]

if xi > u,
(1.40)

where

d

dx

[

Gγ

(

xi − µ̃

δ̃

) 1
s

]

=











1
δ̃

1
s
Gγ

(

xi−µ̃

δ̃

) 1
s
[

1 + γ
(

xi−µ̃

δ̃

)]− 1
γ
−1

if γ ̸= 0,

1
δ̃

1
s
G
(

xi−µ̃

δ̃

) 1
s

exp
[

−
(

xi−µ̃
γ̃

)]

if γ = 0.
(1.41)

❼ In the bar parameterization we define the Censored POT log-likelihood as:

l(γ, µ̄, δ̄; x) =
n
∑

i=1

logL(γ, µ̄, δ̄; xi), (1.42)

where µ̄ and δ̄ are determined by (1.37) and (1.38) and, for i = 1, . . . , n

L(γ, µ̄, δ̄; xi) =







Gγ

(

u−µ̄
δ̄

)

if xi ≤ u,

d
dx

[

Gγ

(

xi−µ̄
δ̄

)]

if xi > u,
(1.43)

where

d

dx

[

Gγ

(

xi − µ̄

δ̄

)]

=







1
δ̄

[

1 + γ
(

xi−µ̄
δ̄

)]− 1
γ
−1

exp
{

−
[

1 + γ
(

xi−µ̄
δ̄

)]− 1
γ

}

if γ ̸= 0,

1
δ̄
exp

{

−xi−µ̄
δ̄

− exp
(

−xi−µ̄
δ̄

)}

if γ = 0.

(1.44)

We compute the maximum likelihood estimates of the parameters maximizing either

(1.39) for the tilde parameterization or (1.42) for the bar parameterization. Anyway,

the solution of the likelihood equation must be found numerically. Prescott & Walden

(1983) suggest a suitable iterative Newton-Raphson type procedure (Ypma, 1995). It

is possible for this procedure to produce a solution which is a local maximum or to fail

to converge. Nevertheless, this occurs rarely and with sample configurations which are

atypical of samples from extreme-value distributions. Other considerations about the

obtained inference are the same as in Section 1.2.2.
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We now make a comparison between the Censored Peaks Over a Threshold likelihood

for parameters (γ, µ, δ) in the tilde and bar parameterizations. In order to compare

them graphically, we have computed the profile likelihood for each of the three possible

couples of parameters and we have then derived three contour plots. This procedure has

been done using a sample of n = 1000 data generated from a distribution pertaining to

the GEV family. In particular, in Figures 1.3 and 1.4 (at the end of this chapter) are

shown the contour plots for the standardized unit-Fréchet (γ = 1) and unit-exponential

(γ = 0) model. We can see that, in general, the likelihood for the tilde parameterization

is flatter than the one of the bar parameterization, which is more curved. This can be

interpreted into an approximate orthogonality between tilde parameters, while this does

not hold for the bar parameters. This consideration will be taken into account later in

the simulation studies of Chapter 3. The code of the used R functions for the CPOT

likelihood and profile likelihoods is in Appendix C.

1.5 Norming constants

As introduced in Sections 1.2 and 1.4, both the Block Maxima and Censored Peaks Over

a Threshold approaches are based on the normalization of the extremes by location and

scale sequences, according to the asymptotic theory. Since Chapter 3 of the present

thesis concerns with a simulation study for testing the performances of the proposed

Empirical Bayes inferential procedure, then here we explicitly report the norming con-

stants that are needed there. In this situation, it seems necessary to present some tools

for computing these constants, which will be used in the following.

We start by considering a pure Block Maxima approach with block sizem. We set the

function ℧(t) = F ←
(

1− 1
t

)

, with F denoting the distribution function of the random

variable X and F ← left-continuous inverse of F , such that F ← (x) = inf{y : F (y) ≥ x}.
Then, a suitable choice for the norming sequences am = a(m) and bm = b(m) is:

b(m) = ℧(m) and a(m) = m ℧
′

(m) as m → ∞. (1.45)

This choice is suggested by the Von Mises’ sufficient conditions described by Theorem

1.1.8 of De Haan & Ferreira (2006). However, there are other choices for a(m) and b(m)

that are asymptotically equivalent to the selection in (1.45). For the purposes of this

work, another appropriate option for the norming constants is (De Haan & Ferreira,



Chapter 1 - Univariate Exterme Value Theory 23

2006):

b(m) = ℧(m) and a(m) =



















γ ℧(m) if γ > 0,

℧(m)−m−1
∫ m

0
℧(x) dx if γ = 0,

−γ (℧(∞)− ℧(m)) if γ < 0,

as m → ∞.

(1.46)

We recall that this theory works for the block size m that grows appropriately. Specif-

ically, m depends on the sample size n so that m = m(n), m → ∞ as n → ∞ and

m/n → 0 as n → ∞. Hence, in practice, we choose the location and scale constants

whose required calculations are made more straightforward by the problem under study.

In our project we consider a Peaks Over a Threshold (POT) approach, rather than

the BM method. The POT setting assumes to work with k exceedances, whose number

also depends on the sample size n, i.e. k = k(n) and k → ∞ as n → ∞. In our setting

it is like we see the block size m as the inverse of the proportion of the exceedances

s = n/k, and so s = n/k → ∞ as n → ∞ and s/n = 1/k → 0 as n → ∞.

In conclusion, we can convert the choice (1.45) in:

b(s) = ℧(s) and a(s) = s ℧
′

(s) as s → ∞, (1.47)

and the choice in (1.46) in:

b(s) = ℧(s) and a(s) =



















γ ℧(s) if γ > 0,

℧(s)− s−1
∫ s

0
℧(x) dx if γ = 0,

−γ (℧(∞)− ℧(s)) if γ < 0,

as s → ∞. (1.48)

We now provide detailed computations of the norming sequences for some parametric

families of distributions that are in the domain of attraction of the GEV distribution

in order to exploit them in the simulation study presented in Chapter 3. In particular,

we pick the Fréchet, Pareto and Half-Cauchy models for the Fréchet class, the Gum-

bel, Exponential and Gamma models for the Gumbel class and finally the Power-Law,

Reverse-Weibull and Beta models for the Reverse-Weibull class. We present these se-

quences in a listing format where 1. refers to (1.47) and 2. corresponds to (1.48). In the

following, F is the cumulative distribution function, F
′

is the density function and q is

the quantile function.



24 Section 1.5 - Norming constants

Fréchet constants

F (x;α) = e−x
−α

, x > 0, α > 0, γ = 1/α ⇐⇒ x = F−1(u;α) = (− log(u))−
1
α ;

d

dm

(

− log

(

1− 1

m

))− 1
α

=
1

αm(m− 1)
(log(m)− log(m− 1))−

1
α
−1 .

1.

b (n/k) = ℧

(n

k

)

=
(

log
(n

k

)

− log
(n

k
− 1
))− 1

α

= (log(n)− log(n− k))−
1
α ,

a(n/k) =
n

k
· ℧′

(n

k

)

=
n

k

1
n
k

(

n
k
− 1
)

(

log
(n

k

)

− log
(n

k
− 1
))− 1

α
−1

=
1

α
(

n
k
− 1
) (log(n)− log(n− k))−

1
α
−1 ;

2.

b(n/k) = (log(n)− log(n− k))−
1
α ,

a(n/k) = γ b(n/k) =
1

α
(log(n)− log(n− k))−

1
α .

Pareto constants

F (x;α) = 1− x−α, x > 1, α > 0, γ = 1/α =⇒ 1− x−α = 1− 1

t
⇐⇒ x = t

1
α ;

℧
′

(t) =
1

α
t

1
α
−1.

1.

b(n/k) = ℧

(n

k

)

=
(n

k

) 1
α

,

a(n/k) =
n

k
℧

′

(n

k

)

=
n

k

1

α

(n

k

) 1
α
−1

=
1

α

(n

k

) 1
α

;

2.

b(n/k) =
(n

k

) 1
α

,

a(n/k) =
1

α
℧

′

(n

k

)

=
1

α

(n

k

) 1
α

.
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Half-Cauchy constants

F
′

(x) =
2

π(1 + x2)
− 1, x > 0; ν = 1, γ =

1

ν
= 1;

1− F (x) ≈ 2

π x
=

1

t
⇐⇒ x ≈ 2

π
t as x → ∞;

℧
′

(t) ≈ 2

π
.

1.

b(n/k) = ℧

(n

k

)

=
2

π

n

k
,

a(n/k) =
n

k
℧

′

(n

k

)

=
2

π

n

k
;

2.

b(n/k) =
2

π

n

k
,

a(n/k) =
2

π

n

k
.

Gumbel constants

F (x) = exp (− exp (−x)) , x ∈ R, γ = 0;

e−e
−x

= 1− 1

t
⇐⇒ x = − log

(

− log

(

t− 1

t

))

;

℧
′

(t) =
1

t(t− 1)(log(t)− log(t− 1))
.

1.

b(n/k) = ℧

(n

k

)

= − log

(

log
(n

k

)

− log

(

n− k

k

))

= − log (log (n)− log (n− k)) ,

a(n/k) =
n

k
℧

′

(n

k

)

=
n

k
· 1

n
k

(

n
k
− 1
)

(log(n)− log(n− k))

=
k

(n− k) (log(n)− log(n− k))
;

2.

b(n/k) = − log (log (n)− log (n− k)) ,

a(n/k) = ℧

(n

k

)

− k

n

∫ n
k

1

log (log(s)− log(s− 1)) ds.
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Exponential constants

F (x;λ) = 1− e−λx, x ≥ 0, λ > 0, γ = 0;

1− e−λx = 1− 1

t
⇐⇒ x =

log(t)

λ
;

℧
′

(t) =
1

λt
.

1.

b(n/k) = ℧

(n

k

)

=
log(n)− log(k)

λ
,

a(n/k) =
n

k
℧

′

(n

k

)

=
1

λ
;

2.

b(n/k) =
log(n)− log(k)

λ
,

a(n/k) = ℧

(n

k

)

− k

n

∫ n
k

0

℧(s)ds

=
log(n)− log(k)

λ
− k

n

1

λ
(s log(s)− s)

∣

∣

∣

n
k

0

=
log(n)− log(k)

λ
− k

n

1

λ

n

k

(

log
(n

k
− 1
))

=
1

λ
.

Gamma constants

F
′

(x;α, β) =
xα−1e−βxβα

Γ(α)
, x > 0, α > 0, β > 0, γ = 0;

℧

(n

k

)

= F−1
(

1− k

n

)

= qα,β

(

1− k

n

)

;

℧
′

(

1− k

n

)

= q
′

α,β

(

1− k

n

)(

k

n

)2

=
1

F ′
(

qα,β
(

1− k
n

))

(

k

n

)2

.

1.

b(n/k) = ℧

(n

k

)

= qα,β

(

1− k

n

)

,

a(n/k) =
n

k
℧

′

(n

k

)

=
k

nF ′
(

qα,β
(

1− k
n

)) ;
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2.

b(n/k) = qα,β

(

1− k

n

)

,

a(n/k) = qα,β

(

1− k

n

)

− k

n

∫ n
k

0

qα,β

(

1− 1

s

)

ds.

Power-Law constants

F (x; c, x∗) =1− c(x∗ − x)α, α > 0, x ≤ x∗, γ = −1/α;

1− c(x∗ − x)α = 1− 1

t
⇐⇒ x = x∗ − (ct)−

1
α ;

℧
′

(t) =
c

α
(ct)−

1
α
−1

1.

b(n/k) = ℧

(n

k

)

= x∗ −
(

c
n

k

)− 1
α

,

a(n/k) =
n

k
℧

′

(n

k

)

=
1

α

(

c
n

k

)− 1
α

;

2.

b(n/k) = x∗ −
(

c
n

k

)− 1
α

,

a(n/k) = −γ
(

℧(∞)− ℧

(n

k

))

=
1

α

(

c
n

k

)− 1
α

.

Reverse-Weibull constants

F (x;α) = exp (− (−x)α) , x < 0, α > 0, γ = − 1

α
;

exp (− (−x)α) = 1− 1

t
⇐⇒ x = −

(

− log

(

1− 1

t

)) 1
α

;

℧
′

(t) =
1

αt(1− t)

(

− log

(

1− 1

t

)) 1
α
−1

.

1.

b(n/k) = ℧

(n

k

)

= −
(

− log

(

1− k

n

)) 1
α

,

a(n/k) =
n

k
℧

′

(n

k

)

=
k

α(n− k)

(

− log

(

1− k

n

)) 1
α
−1

;
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2.

b(n/k) = −
(

− log

(

1− k

n

)) 1
α

,

a(n/k) = ℧

(n

k

)

− n

k

∫ n
k

0

℧(s)ds

= −
(

− log

(

1− k

n

)) 1
α

− n

k

∫ n
k

0

−
(

− log

(

1− k

n

)) 1
α

d
n

k
.

Beta constants

F
′

(x;α, β) =
xα−1(1− x)α−1

B(α, β)
, 0 < x < 1, α > 0, β > 0, γ = − 1

β
;

℧

(n

k

)

= F−1
(

1− k

n

)

= qα,β

(

1− k

n

)

;

℧
′

(

1− k

n

)

= q
′

α,β

(

1− k

n

)(

k

n

)2

=
1

F ′
(

qα,β
(

1− k
n

))

(

k

n

)2

.

1.

b(n/k) = ℧

(n

k

)

= qα,β

(

1− k

n

)

,

a(n/k) =
n

k
℧

′

(n

k

)

=
k

nF ′
(

qα,β
(

1− k
n

)) ;

2.

b(n/k) = qα,β

(

1− k

n

)

,

a(n/k) = qα,β

(

1− k

n

)

− k

n

∫ 1

0

qα,β

(

1− 1

s

)

ds.

1.6 Extreme Quantile and Return Level

One of the main goal of the Extreme Value Theory is to predict extreme events. Statis-

tically speaking, one possible way to quantify extreme events is by computing Extreme

Quantiles and Return Levels. These two values refer to the same concept, that is they

are utmost quantiles and provide the expected extreme value related to a given return

probability p, or equivalently, to a return period T . On the other hand, they differ for

some more specific aspects.

Regarding the initial distribution of the data F and given a small exceeding prob-

ability p, the extreme quantile is the quantile of level 1 − p. Indeed, it is the value yp
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such that

1− p = F (yp) ⇐⇒ yp = F−1(1− p).

Since F is unknown and we know from Theorem 1.1 that

F (y) ≈ (Gγ(y; am, bm))
1
m for m → ∞,

then we have to solve with respect to yp the equation

1− p ≈ exp

{

− 1

m

(

1 + γ

(

yp − bm
am

))− 1
γ

}

,

from which we obtain

yp ≈ bm + am
(−m log(1− p))−γ − 1

γ
≈ bm + am

(mp)−γ − 1

γ
,

by a Taylor expansion for −p → 0. This approximation is applicable since p is by

definition a small probability and, furthermore, by the asymptotic theory of De Haan

& Ferreira (2006) p = pn depends on n in a way that p → 0 as n → ∞.

Now, to work with the Block Maxima approach with block size m is equivalent to

work with the Peaks Over a Threshold method with number of exceedances k and

sample size n. As previously stated, these two are linked by the relation m = n
k
= s.

Hence, in our context it is like we operate with k = n
m

exceedances, and with a suitable

substitution we arrive to the final formula for the extreme quantile (Beranger et al.,

2021):

yp = b(n/k) + a(n/k)

(

np

k

)−γ − 1

γ
. (1.49)

Considering the distribution of the m-block maxima Fm and given a (relatively) high

return period T , the return value is the level 1− 1
T
quantile. In formulas, we have that

1− 1

T
= Fm(yT ) ⇐⇒ yT = (Fm)−1

(

1− 1

T

)

.

Since also Fm is unknown, we know from the abovementioned theorem that for m → ∞

Fm(y) ≈ Gγ(y; am, bm) = exp

{

−
(

1 + γ

(

y − bm
am

))− 1
γ

}

,



30 Section 1.6 - Extreme Quantile and Return Level

with 1 + γ y−bm
am

> 0. Therefore, we solve with respect to yT the equation

1− 1

T
= exp

{

−
(

1 + γ

(

yT − bm
am

))− 1
γ

}

,

from which we obtain the return level yT associated with the return period T :

yT = bm + am

(

− log
(

1− 1
T

))−γ − 1

γ
.

In POT terms, this quantile is

yT = b(n/k) + a(n/k)

(

− log
(

1− 1
T

))−γ − 1

γ
. (1.50)
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((a)) tilde parameterization ((b)) bar parameterization

Figure 1.3: Contour plots of the profile likelihood for (γ, µ), (γ, δ) and (µ, δ) in the
tilde ((a)) and bar ((b)) parameterizations for a sample of size n = 1000 from the
standardized unit-Fréchet distribution.



32 Section 1.6 - Extreme Quantile and Return Level

((a)) tilde parameterization ((b)) bar parameterization

Figure 1.4: Contour plots of the profile likelihood for (γ, µ), (γ, δ) and (µ, δ) in the
tilde ((a)) and bar ((b)) parameterizations for a sample of size n = 1000 from the
unit-exponential distribution.



Chapter 2

Empirical Bayes inferential method

for Peaks Over a Threshold

2.1 The Bayesian framework

This section is inspired by the lectures about Bayesian Inference of the course Theory and

Methods of Inference by Professors Salvan and Sartori. For a more thorough discussion

on Bayesian inference we refer, for instance, to Davison (2003), Chapter 11.

2.1.1 Bayesian Inference

The observed data x = (x1, . . . , xn) are realization of a random vectorX whose probabil-

ity distribution is (partly) unknown. Data are used to reconstruct the distribution of X.

We assume x as a realization of X ∼ p0(x), x ∈ X , where p0(x) represents the unknown

probability density function (p.d.f.), with respect to a suitable measure, and where X is

the sample space. The aim of statistical inference is to reconstruct p0(x) on the basis of

both data and suitable assumptions and, on the ground of previous information, extract

quantitative insights from the behaviour of the observed data, interpretate some aspects

of the phenomenon under study and possibly make predictions for hypothesized future

data from the same generating process. In other words, we want to make an inference.

We assume a parametric statistical model F for the sample of data at hand, such

that

F =
{

pX(x|θ), x ∈ X ⊂ R
n, θ ∈ Θ ⊂ R

d
}

.

Generally, we further assume for F to be correctly specified with identifiable parameter

θ. In this respect, p0(x) = p(x|θ0) for some θ0 ∈ Θ. In an extreme value context,

33
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the GEV class is an asymptotic (not exact) model for block maxima or threshold ex-

ceedances, thus F is actually misspecified.

The Bayesian approach to statistical inference views the probability as an evaluation

of uncertainty, both concerning observables, like x or future observations x∗, and unob-

servables, like θ. We therefore additionally assume that the parameter θ is a realization

of a random variable with prior density π(θ) over Θ which summarizes prior knowledge

about the parameter. In this regard, we hypothesize for continuity of notation the exis-

tence of a true parameter value θ0 ∈ Θ, where such value is drawn from π (θ). By Bayes

theorem, information about θ is updated after the observation of x according to

π(θ|x) = π(θ)pX(x|θ)
∫

Θ
π(θ)pX(x|θ)dθ

=
π(θ)L(θ; x)

∫

Θ
π(θ)L(θ; x)dθ , (2.1)

the posterior density of θ given x. In (2.1) pX(x|θ) stands for the probability distribution

of the data, conditioned to the parameter. Indeed, it has the same expression of the

likelihood function L(θ; x) for θ with data x, apart for possible multiplicative constants

depending on x. Our objective is to perform computations to obtain summaries of

π(θ|x), such as estimates and credible intervals. For instance, with a scalar θ, a posterior

credible bound for θ, with posterior probability 1 − α is the 1 − α quantile of π(θ|x),
θ1−α(x),

Pr
(

θ ≤ θ1−α(x)|x
)

=

∫ θ1−α(x)

−∞

π(θ|x)dθ = 1− α.

The choice of the prior distribution π(θ) for the parameter is called prior specification.

This can be worked out in several ways, such as using information from previous studies

or expert personalistic opinions. In the absence of prior information, non-informative

or ”objective” priors could be used. In any case, often mathematically convenient prior

distributions are used, as with conjugate priors. Ideally, the prior distributions should

not depend on the data. An exception is given by the empirical Bayes approach (Rob-

bins, 1956), which will be discussed more in detail in Section 2.2, and that will be used

in our extreme value setting.

The computation of π(θ|x) can be sorted out:

❼ analytically, with the use of conjugate priors, if available;

❼ through asymptotic approximations due to the Bernstein-Von Mises theorem (Reid,

1996; Van der Vaart, 2000), valid under general regularity likelihood conditions
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and for every smooth π(θ). We consider the quantity

∆n(θ
0) =

1√
n

n
∑

i=1

l∗
(

θ0; xi

)

i1
(

θ0
)−1

, (2.2)

where l∗ (θ0; xi) and i1(θ
0) are the score function and the Fisher information matrix

of a single observation evaluated at the true parameter value θ0. Hence, the total

variation distance between the posterior distribution of
√
n (π (θn|x)− θ0) and the

random distribution N
(

∆n (θ
0) , i1 (θ

0)
−1
)

converges to 0 as n → ∞, therefore

θn|x ·∼ N
(

θ0 +
∆n(θ0)√

n
, i
(

θ0
)−1
)

for large n, (2.3)

where i (θ0) is the full sample Fisher information matrix. We point out that

the bias term in (2.3) fades out with the speed of
√
n, i.e. it is an Op

(

n−
1
2

)

.

Operationally, θ0 in Equation (2.3) can be substituted by a suitable estimate, like

the posterior mode θ∗ or the maximum likelihood estimate θ̂. Similarly, i (θ0)
−1

can be substituted by j
(

θ̂
)−1

or j∗ (θ∗)−1, which is the inverse of the negative

log-posterior hessian evaluated at the mode;

❼ via Monte Carlo methods like rejection sampling, importance sampling or Markov

Chain Monte Carlo methods (Robert & Casella, 2010), which will be discussed in

detail in Section 2.3.

A 1 − α credible region is the set C ⊂ Θ such that Pr(θ ∈ C|x) = 1 − α. For the

scalar case, we can compute credible intervals (θL, θU) in various ways, e.g.:

❼ Equi-tailed quantile intervals, i.e.:

(θL, θU) with Pr(θ < θL|x) =
α

2
and Pr(θ < θU |x) = 1− α

2
; (2.4)

❼ higher posterior density (HPD) credible intervals:

(θL, θU) with π(θ|x) ≥ π(θ
′ |x), θ ∈ (θL, θU) , θ

′

/∈ (θL, θU) (2.5)

and Pr (θ ∈ (θL, θU)|y) = 1− α.
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❼ Intervals based on the asymptotic normality of the posterior distribution, hence

referring to (2.3):

(θL, θU) =

(

θ∗ +
∆n (θ

∗)√
n

− z1−α
2

√

j∗ (θ∗)−1, θ∗ +
∆n (θ

∗)√
n

+ z1−α
2

√

j∗ (θ∗)−1
)

or

(2.6)

(θL, θU) =

(

θ̂ − z1−α
2

√

j(θ̂)−1, θ̂ + z1−α
2

√

j(θ̂)−1
)

, (2.7)

where z1−α
2
is the 1− α

2
quantile from a standard normal distribution Z ∼ N (0, 1).

2.1.2 Bayesian Censored Peaks Over a Threshold

Starting from a sample of observed extreme data x1, . . . , xn, we assume that the un-

derlying univariate random variables X1, . . . , Xn are i.i.d. with common unknown dis-

tribution F , with F belonging to the max-domain of attraction of Gγ. Following the

abovementioned asymptotic theory, we consider a Censored Peaks Over a Threshold

(CPOT) misspecified model F . Here, the function of the model is pX(x|θ̃) in (1.41) if

we choose to opt for the θ̃ =
(

γ, µ̃, δ̃
)

∈ (−1,+∞)×R× (0,+∞) parameterization, or

pX(x|θ̄) in (1.44) in the other θ̄ =
(

γ, µ̄, δ̄
)

∈ (−1,+∞) × R × (0,+∞) parameteriza-

tion. Therefore, we are able to compute a tilde likelihood L(γ, µ̃, δ̃; x) in (1.40) or a bar

likelihood L(γ, µ̄, δ̄; x) in (1.43).

We assume for the tilde parameters a data-dependent prior πθ̃

(

γ, µ̃, δ̃
)

, as in Padoan

& Rizzelli (2022) for block maxima models. Justifications for the choice of this prior will

be discussed in the next section. Let γ, µ̃ and δ̃ be prior independent, i.e. πθ̃

(

γ, µ̃, δ̃
)

=

πθ̃ (γ)× πθ̃ (µ̃)× πθ̃

(

δ̃
)

where:

❼ γ has density function

πθ̃ (γ) = (1− T1(−1))−1 t1(γ)I (−1 < γ < ∞)

=

(

1

2
− 1

π
arctan(−1)

)−1
1

π (1 + γ2)
I(−1 < γ < +∞), (2.8)

where T1 and t1 stand for the Cauchy c.d.f. and p.d.f respectively, and I(·) is the
indicator function;



Chapter 2 - Empirical Bayes inferential method for Peaks Over a Threshold 37

❼ µ̃ is distributed according to a transformation of the Gaussian density with location

ˆ̃µ and scale ˆ̃δ2, indeed

πθ̃ (µ̃) ∝
1

ˆ̃δ2

1√
2π

exp







−1

2

(

µ̃− ˆ̃µ

ˆ̃δ

)2






, (2.9)

where ˆ̃µ = b̂(n/k) and ˆ̃δ = â(n/k) are the maximum likelihood estimates of the

norming costants of the assumed underlying GEV model;

❼ δ̃ is distributed according to a transformation of the exponential density with scale

parameter ˆ̃δ, i.e.

πθ̃

(

δ̃
)

∝ 1

ˆ̃δ2
exp

{

−1

ˆ̃δ
δ̃

}

I(0 < δ̃ < +∞). (2.10)

In order to derive the prior πθ̄

(

γ, µ̄, δ̄
)

in the bar parameterization, we have to em-

ploy the transformation formula between densities of random variables, starting from

πθ̃

(

γ, µ̃, δ̃
)

and exploiting the relations defined in equations (1.37) and (1.38). In par-

ticular, we consider the one-to-one transformation

g = (g1, g2, g3)
T : (−1,+∞)× R× (0,+∞) −→ (−1,+∞)× R× (0,+∞)

between (γ, µ̄, δ̄)T and
(

γ, µ̃, δ̃
)T

and its inverse g−1 =
(

g−11 , g−12 , g−13

)T
. These trans-

formations are defined by:

γ = g1

(

γ, µ̃, δ̃
)

= γ ⇐⇒ γ = g−11

(

γ, µ̄, δ̄
)

= γ ;

µ̄ = g2

(

γ, µ̃, δ̃
)

=







µ̃− δ̃ 1−s−γ

γ
if γ ̸= 0,

µ̃− δ̃ log(s) if γ → 0
⇐⇒

µ̃ = g−12

(

γ, µ̄, δ̄
)

=







µ̄+ sγ δ̄ 1−s−γ

γ
if γ ̸= 0,

µ̄+ δ̄ log(s) if γ → 0;

δ̄ = g3

(

γ, µ̃, δ̃
)

=







s−γ δ̃ if γ ̸= 0,

δ̃ if γ → 0
⇐⇒ δ̃ = g−13

(

γ, µ̄, δ̄
)

=







sγ δ̄ if γ ̸= 0,

δ̄ if γ → 0,
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where s = n
k
is the inverse of the proportion of the exceedances. Moreover, we compute

the matrix of the first derivatives of g−1 with respect to
(

γ, µ̄, δ̄
)T

and its determinant:

∂g−1
(

γ, µ̄, δ̄
)

∂
(

γ, µ̄, δ̄
)T

=





































































1 0 0

δ̄(sγ log(s)−sγ+1)
γ

1 sγ

δ̄sγ log(s) 0 sγ











if γ ̸= 0,











1 0 0

0 1 log(s)

0 0 1











if γ → 0;

∣

∣

∣

∣

∣

∂g−1
(

γ, µ̄, δ̄
)

∂
(

γ, µ̄, δ̄
)T

∣

∣

∣

∣

∣

=







sγ if γ ̸= 0,

1 if γ → 0.

Then, the expression of πθ̄

(

γ, µ̄, δ̄
)

can be obtained through the transformation formula.

In particular, if γ ̸= 0, i.e. in the heavy and short-tailed cases:

πθ̄

(

γ, µ̄, δ̄
)

=

∣

∣

∣

∣

∣

∂g−1
(

γ, µ̄, δ̄
)

∂
(

γ, µ̄, δ̄
)T

∣

∣

∣

∣

∣

πθ̃

(

g−1
(

γ, µ̄, δ̄
))

=

∣

∣

∣

∣

∣

∂g−1
(

γ, µ̄, δ̄
)

∂
(

γ, µ̄, δ̄
)T

∣

∣

∣

∣

∣

πθ̃

(

g−11

(

γ, µ̄, δ̄
))

× πθ̃

(

g−12

(

γ, µ̄, δ̄
))

× πθ̃

(

g−13

(

γ, µ̄, δ̄
))

∝ sγ
(

1

2
− 1

π
arctan(−1)

)−1
1

π (1 + γ2)
I(−1 < γ < +∞)× (2.11)

1

ˆ̃δ2

1√
2π

exp







−1

2

(

µ̄+ sγ δ̄ 1−s−γ

γ
− ˆ̃µ

ˆ̃δ

)2






× (2.12)

1

ˆ̃δ2
exp

{

−1

ˆ̃δ
sγ δ̄

}

I(0 < δ̄ < +∞). (2.13)
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On the other hand, if γ → 0, i.e. in the light-tailed case:

πθ̄

(

γ, µ̄, δ̄
)

=

∣

∣

∣

∣

∣

∂g−1
(

γ, µ̄, δ̄
)

∂
(

γ, µ̄, δ̄
)T

∣

∣

∣

∣

∣

πθ̃

(

g−1
(

γ, µ̄, δ̄
))

=

∣

∣

∣

∣

∣

∂g−1
(

γ, µ̄, δ̄
)

∂
(

γ, µ̄, δ̄
)T

∣

∣

∣

∣

∣

πθ̃

(

g−11

(

γ, µ̄, δ̄
))

× πθ̃

(

g−12

(

γ, µ̄, δ̄
))

× πθ̃

(

g−13

(

γ, µ̄, δ̄
))

∝
(

1

2
− 1

π
arctan(−1)

)−1
1

π (1 + γ2)
I(−1 < γ < +∞)× (2.14)

1

ˆ̃δ2

1√
2π

exp







−1

2

(

µ̄+ δ̄ log(s)− ˆ̃µ

ˆ̃δ

)2






× (2.15)

1

ˆ̃δ2
exp

{

−1

ˆ̃δ
δ̄

}

I(0 < δ̄ < +∞). (2.16)

We deduce that the bar parameters are no longer prior independent. This prior specifi-

cation is in accordance with the likelihood shapes of Figures 1.3 and 1.4, and in general

with the considerations about parameter orthogonality for the tilde and bar parameters

made in the last paragraph of Section 1.4.

The posterior distributions of the parameters given the data x can be calculated in

either parameterization:

πθ̃

(

γ, µ̃, δ̃|x
)

=
πθ̃

(

γ, µ̃, δ̃
)

L
(

γ, µ̃, δ̃; x
)

∫

Θ̃

πθ̃

(

γ, µ̃, δ̃
)

L
(

γ, µ̃, δ̃; x
)

dθ̃

or (2.17)

πθ̄

(

γ, µ̄, δ̄|x
)

=
πθ̄

(

γ, µ̄, δ̄
)

L
(

γ, µ̄, δ̄; x
)

∫

Θ̄

πθ̄

(

γ, µ̄, δ̄
)

L
(

γ, µ̄, δ̄; x
)

dθ̄

. (2.18)

In the following, we will draw dependent samples from the posterior (2.17) or (2.18) via

an Adaptive Multivariate Random-Walk Metropolis-Hastings algorithm, which will be

better described in Section 2.3. Thus, we can isolate from the sampled joint posterior

distribution the marginal posterior distributions of the single parameters and compute

credible intervals, as in (2.4), (2.6) and (2.5). The R code for the prior and posterior

distributions is in Appendix D.

2.2 Empirical Bayes approach

This section sets out some ideas about the Empirical Bayes (EB) approach and presents

the EB framework of Padoan & Rizzelli (2022).
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Suppose we are in a classical Bayesian inference framework, as described in Section

2.1.1, and the parameter of interest θ is priorly distributed according to π (θ;λ), which

expresses a parametric model indexed by a hyperparameter λ. This prior needs to be

completely specified by tuning λ with a reasonable value resulting from previous studies

(if avalilable) or by adding another prior on this hyperparameter, which brings more

complexity to the model and a higher computational cost. An alternative solution would

be to use the Empirical Bayes (EB) approach.

Robbins (1956) initially proposed EB as a technique for estimating non-parametrically

(some functionals of) the prior distribution π(θ) from the marginal distribution of the

data. In the parametric context, the same approach can be helpful in tuning the hy-

perparameter λ with an estimate from the observed data x1, . . . , xn, computed on the

marginal distribution of X, i.e.

pX(x;λ) =

∫

Θ

pX(x|θ)π(θ;λ)dθ. (2.19)

For instance, λ can be easily estimated from pX(x;λ) using maximum likelihood if λ

is finite-dimensional. The estimate λ̂ is then plugged-in into the posterior for θ, giving

π(θ|x; λ̂) ∝ π(θ; λ̂)L(θ; x), from which inference will be based. The Empirical Bayes

approach is not accepted by many Bayesians since data are used twice and uncertainty

about λ is not accounted for.

We have applied an EB reasoning in the Bayesian CPOT method (described in

Section 2.1.2) for the task of choosing the hyperparameters for the prior distributions

of µ̃ and δ̃. In particular, we can imagine that the tilde parameters were orginally

distributed according to

πθ̃ (µ̃; b(n/k), a(n/k)) ∝
1

a2(n/k)

1√
2π

exp

{

−1

2

(

µ̃− b(n/k)

a(n/k)

)2
}

(2.20)

and πθ̃

(

δ̃; a(n/k)
)

∝ 1

a2(n/k)
exp

{

− 1

a(n/k)
δ̃

}

I(0 < δ̃ < +∞), (2.21)

since it seems logical to think at the location constant b(n/k) as the mean of µ̃ and at

the scale constant a(n/k) as the mean of δ̃ and the standard deviation of µ̃. In a pure

frequentist framework, these constants can be consistently estimated from the data by

maximization of the likelihood in (1.39). Recalling that b̂(n/k) = ˆ̃µ and â(n/k) = ˆ̃δ and

plugging-in these estimates into (2.20) and (2.21), by EB we arrive at the priors in (2.9)

and (2.10), respectively.

Further justifications on the use of EB in the extreme value setting can be found
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in Section 3 of Padoan & Rizzelli (2022) for block maxima models. The main results

of this theory imply that, under some mild conditions on the data generating process

(satisfied by all extreme value distributions considered in this work) and on the prior

distribution (satisfied by the aforementioned prior), the posterior distributions for θ̃ in

Equation (2.17) and for θ̄ in (2.18):

❼ provide consistent estimation of the unknown true parameter
(

γ0, µ̃0, δ̃0
)

(or
(

γ0, µ̄0, δ̄0
)

). In addition, we have that the asymptotic models GEV
1
s

(

γ0, µ̃0, δ̃0
)

and GEV
(

γ0, µ̄0, δ̄0
)

give consistent estimation of the unknown density of the

peaks over a threshold ms,1, . . . ,ms,k;

❼ are asymptotically normal as s → ∞.

Furthermore, also the derived marginal posterior distribution for the return level yp,

i.e. π (yp|x) concentrates around the true return level value y0p. The degree of this

concentration depends on the tail heaviness of F : the lighter is the tail of F , the

narrower is the neighbourhood of y0p on which π (yp|x) concentrates. Also, the marginal

posterior distribution of the return level is asymptotically normal as s → ∞.

2.3 Computational Aspects

In this section we will discuss some algorithmic and computational aspects of the devel-

opment of our Empirical Bayes Censored Peaks Over a Threshold (CPOT) approach,

fully described in Sections 1.4, 2.1.2 and 2.2. This tools have been applied to assess the

frequentist performances of the derived inference (empirical coverage of 95% credible

intervals) from our approach in the simulation study of Chapter 3.

Given a sample of extreme data x1, . . . , xn, in order to obtain the posterior distribu-

tion of the tilde and bar parameters defined in Equations (2.17) and (2.18), the Markov

Chain Monte Carlo (MCMC) procedure explained in Section 4 of Padoan & Rizzelli

(2022) has been adapted in the present context. In particular, we sampled from the

posterior distribution through a Random-Walk Metropolis-Hastings (RWMH) algorithm

(Metropolis et al., 1953; Hastings, 1970), refined in a way that it adapts the scaling pa-

rameter κ and the covariance matrix Σ of the proposal distribution N3

(

θ(i), κ(i)Σ(i)
)

at

each iteration i+1 of the algorithm with the objective of reaching a fixed optimal Over-

all Acceptance Probability (OAP) η∗. Theoretical justifications behind this Adaptive

MH algorithm can be found in Garthwaite et al. (2016) and Haario et al. (2001).



42 Section 2.3 - Computational Aspects

2.3.1 The Metropolis-Hastings (MH) algorithm

This section refers to Chapter 6 of Robert & Casella (2010).

MCMC methods exploit simulation from Markov chains to approximate the shape of

an objective distribution, e.g. a posterior distribution whose integral in the denominator

is too difficult to compute, either analytically or numerically.

A Markov chain {X(t)} is a sequence of dependent random variables X(0), X(1), . . . ,

X(t), . . . over the sample space X such that the probability distribution of X(t) given

the past variables depends only on X(t−1). This conditional probability distribution is

called a transition kernel or a Markov kernel K; that is X(t+1)|X(0), X(1), . . . , X(t) ∼
K(X(t), X(t+1)). For example, a simple random walk Markov chain satisfies X(t+1) =

X(t) + ϵt, where ϵt ∼ N (0, 1), indipendently of X(t); therefore, the Markov kernel

K(X(t), X(t+1)) corresponds to a N (X(t), 1) density. A stationary probability distri-

bution f exists for a Markov chain {X(t)} if X(t) ∼ f implies X(t+1) ∼ f , i.e. if

∫

X

K(x, y)f(x)dx = f(y).

A Markov chain is recurrent if it returns to any arbitrary nonnegligible set an infinite

number of times. Recurrent chains are ergodic, i.e. the stationary distribution f is also

a limiting distribution in the sense that the limiting distribution of X(t) is f for almost

any initial value X(0). From a simulation point of view, if a given kernel K produces

an ergodic Markov chain with stationary distribution f , then generating a chain from

K yields to a sequence of dependent observation with f as marginal distribution. In

particular, it holds for this Markov chain the Law of Large Numbers for dependent

variables (the Ergodic Theorem, proved by Birkhoff (1931)):

1

T

T
∑

t=1

h
(

X(t)
) p−→ Ef [h(X)] , (2.22)

where h is an integrable function.

The Metropolis-Hastings (MH) algorithm is a MCMC method that, for almost any

target density f , is able to build a Markov kernel K with stationary distribution f and

then generate from K a Markov chain {X(t)} with limiting distribution f . Averages

taken from the observed chain fulfill the Ergodic Theorem. The algorithm do not actu-

ally simulates from f , but from the proposal conditional density q(x|y), which is easier

to simulate. The proposal q must cover the entire support of f and the ratio f(x)/q(x|y)
must be known up to a constant independent of y. Under these moderate requirements,

q can be chosen arbitrarily. Hence, provided the length of the desired chain R and the
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initial value x(0) of the chain, a general MH algorithm follows the structure in Algorithm

1:

Algorithm 1: Metropolis-Hastings

Set R and x(0);

for i = 1 to R do

draw proposal X∗ ∼ q
(

x∗|x(i)
)

;

compute acceptance probability η(i) = min
(

f(x∗)

f(x(i))

q(x(i)|x∗)

q(x∗|x(i))
, 1
)

;

take X(i+1) =







x∗ with probability η(i),

x(i) with probability 1− η(i).

Algorithm 1 satisfies the so-called detailed balance condition f(x∗)K(x(i)|x∗) = f(x(i))K(x∗|x(i))

=⇒ f(x∗) min

(

f(x(i))

f(x∗)

q(x∗|x(i))

q(x(i)|x∗) , 1
)

= f(x(i)) min

(

f(x∗)

f(x(i))

q(x(i)|x∗)
q(x∗|x(i))

, 1

)

,

from which we can deduce that f is the stationary distribution of the chain {X(t)}.
When q is symmetric. i.e. q(x∗|x(i)) = q(x(i)|x∗), the acceptance probability simplifies

into

η(i) = min

(

f(x∗)

f(x(i))
, 1

)

. (2.23)

One important property of the Metropolis-Hastings algorithm is that it depends on

f only through the ratio f(x∗)/f(x(i)) in the computation for η(i). This means that it is

not necessary to completely specify f , indeed its norming constant can be neglected and

this is the crucial issue in Bayesian inference. Via the MH algorithm one can simulate

a sample of slightly positive dependent data from any given posterior whose just the

numerator is known.

The Overall Acceptance Probability (OAP) of the algorithm is nothing but the av-

erage through the R iterations of the acceptance probabilities η(i). In general, the

acceptance probability η(i) is high when the proposed value x∗ is near the current last

element of the chain x(i) and it is low when they are distant. The aim is to build a

Markov chain respecting the following properties:

1. it has entirely explored the support of the target distribution f or, in other words,

it has performed a good mixing. The marginal trace plots graphically check this

condition;
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2. it has reached stationarity and therefore presents f as marginal distribution. It is

common use, after the run of the MH algorithm, to discard the burn-in, an initial

piece of the obtained chain (whose length must be chosen) in order to consider only

the values that have reached stationarity. An histogram of relative frequencies of

the post-burn-in chain can underline its resemblance with f ;

3. once stationary, it mantains a sufficiently low degree of autocorrelation between

consecutives observations (at different lags). This element can be pointed out by an

autocorrelation plot, which should show an exponential decay through increasing

lags, typical behaviour in stationary series.

Section 2.4 will give plenty of such diagnostic plots.

In practice, the performance of the Metropolis-Hastings strongly depends on the

structure of the proposal distribution q. In particular, the proposal can be chosen

in order to take into account the value previously simulated to generate the following

value. Random walks (RW) are proposals of this type, like the guassian RW where X∗ ∼
N
(

x(i), σ2
)

and the uniform RW where X∗ ∼ U
(

x(i) − σ, x(i) + σ
)

, in unidimensional

settings. The additional parameter σ has to be tuned and it controls the spread of the

proposed values around the latest element of the chain. These proposals induce a local

stepwise exploration of the sample space X , which is appropriate when a good initial

value x(0) is known and for target distributions f with even complex shapes. In fact,

the local moves proposed by q avoid that the chain remains stuck into single values for

a long time, but favor more homogeneous explorations of the support of f . In addition,

random walk proposals are often symmetric distributions, leading to the simplification

in Equation (2.23).

The parameter σ regulates the closeness between successive steps of a RWMH algo-

rithm. Low variance of q induces the next proposed value to fall in a narrow neighbour-

hood of the latest value of the chain and to be accepted with high probability. Resulting

chains have high OAP, are highly autocorrelated and require a relatively big amount

of time for completely exploring X . On the other hand, fixing σ to a too high value

induces the proposal to pick up values in the support of f which may be really far from

the latest element of the chain, and hence, are very unlikely to be accepted. Resulting

chains have low OAP, are highly autocorrelated and remain stuck into single values of

X for several iterations, requiring more time for a good mixing, as well. The choice of

the tuning parameter σ must reflect a trade-off between these two opposite situations,

aimed at obtaining from a RWMH algorithm Markov chains with the right properties in



Chapter 2 - Empirical Bayes inferential method for Peaks Over a Threshold 45

a reasonable amount of time. Theory supplies some optimal Overall Acceptance Prob-

abilities that have to be looked for in tuning the proposal’s dispersion parameter σ.

Roberts & Rosenthal (2001) suggest a value of the OAP of 0.44 for univariate RWMH,

instead Gelman et al. (1997) recommend 0.234 for the multivariate case.

Adaptive Random-Walk Metropolis-Hastings algorithms avoid the necessity of tuning

σ, adapting its value through iterations in a way that induces a required OAP. For this

reason, in the simulation study of Chapter 3 we have sampled from the tilde and bar

posterior distributions with an Adaptive RWMH, which will be described in detail in

the next section.

2.3.2 An Adaptive Metropolis-Hastings (AMH) algorithm

This section refers to Padoan & Rizzelli (2022), Garthwaite et al. (2016) and Haario

et al. (2001).

An efficient way to draw samples from the posterior distributions for θ̃|x and θ̄|x
defined in (2.17) and (2.18) is by the means of an Adaptive Gaussian Random-Walk

Metropolis-Hastings (RWMH) algorithm. Padoan & Rizzelli (2022) used the algorithmic

scheme discussed in Garthwaite et al. (2016), which is a special case of the AMH class of

algorithms introduced by Haario et al. (2001), for the Bayesian Block Maxima approach

to extreme values. Here, we extend its use to the Censored POT approach. This

Adaptive Gaussian Random-Walk Metropolis-Hastings algorithm is summarised below

in Algorithm 2.

Algorithm 2: Adaptive Gaussian Random-Walk Metropolis-Hastings

Initialize: Set R, θ(0), κ(0) and Σ(0);

for i = 1 to R do

draw proposal θ∗ ∼ Nd

(

θ(i), κ(i)Σ(i)
)

;

compute acceptance probability η(i) = min
(

π(θ∗)L(θ∗;x)

π(θ(i))L(θ(i);x)
, 1
)

;

draw U ∼ U(0, 1);
if η(i) > U then

set θ(i+1) = θ∗;

else

set θ(i+1) = θ(i);

update Σ(i+1) according to Equation (2.25);

update κ(i+1) according to Algorithm 3.
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A short summary of the algorithm is as follows. From now on, with the generic symbol θ

we will relate to either θ̃ =
(

γ, µ̃, δ̃
)

or θ̄ =
(

γ, µ̄, δ̄
)

. The current state of the chain θ(i)

at iteration i is potentially updated by the proposal θ∗ ∼ N3

(

θ(i), κ(i)Σ(i)
)

. Given the

symmetry of the proposal, the acceptance probability of the update θ(i+1) = θ∗ reduces

to

η(i) = min

(

π(θ∗)L(θ∗; x)
π(θ(i))L(θ(i); x) , 1

)

, (2.24)

otherwise set θ(i+1) = θ(i) with probability 1− η(i).

Following Haario et al. (2001), the proposal covariance matrix Σ(i+1) is specified in

order to be proportional to the current estimate of the covariance matrix of the running

chain (Craiu et al., 2009) plus a noise term which avoids singularity. The update of

Σ(i+1) is

Σ(i+1) =







Σ(0) if i ≤ it,

1
i−1

∑i

s=1

(

θ(s) − θ̄(i)
) (

θ(s) − θ̄(i)
)T

+ (1/i)Id if i > it,
(2.25)

where d = 3 is the dimension of the parameter θ, Id is the d-dimensional identity matrix

and θ̄(i) = θ(1)+···+θ(i)

i
is the average of the obtained chain until iteration i. The bound

it reflects our trust in the initial covariance matrix Σ(0) and in our algorithm we have

set it to 100. We recall that, for i > it, the updates for θ̄(i) and Σ(i+1) can be efficiently

computed via recursion, i.e.

θ̄(i) =
(i− 1)θ̄(i−1) + θ(i)

i
, (2.26)

Σ(i+1) =
i− 2

i− 1
Σ(i) + θ̄(i−1)

(

θ̄(i−1)
)T − i

i− 1
θ̄(i)
(

θ̄(i)
)T

+
1

i− 1
θ(i)
(

θ(i)
)T

+
1

d
Id.

(2.27)

Since the update of Σ(i+1) involves information on the running chain, the AMH algorithm

is non-Markovian, but Haario et al. (2001) established that it has the correct ergodic

properties anyway.

When d is large, a substantial number of iterations of the Markov chain may be

needed before the update Σ(i+1) stabilizes. Monitoring of the trace plots of the param-

eters should be carried out to ensure that the updates of Σ(i+1) have stabilized.

The scaling parameter κ(i) > 0 affects the acceptance probability η(i) and its starting

value κ(1) can be chosen arbitrarily, e.g. κ(1) = 1. According to Garthwaite et al. (2016),

κ(i+1) can be adaptively updated using a Robbins-Monro process. The Robbins-Monro

process (Robbins & Monro, 1951) is a stochastic search algorithm that, essentially,
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increases κ(i+1) if the previous MCMC proposed move was accepted and decreases it

otherwise, in a way that the obtained sequence of κ(i) → κ∗, the value of the scaling

parameter that yields the desired OAP η∗. The update of κ(i+1) is such that

κ(i+1) = exp

{

log
(

κ(i)
)

+ a
η(i) − η∗

max{200, i/d}

}

, (2.28)

where, in our case, η∗ = 0.234 (Gelman et al., 1997),

a =

(

1− 1

d

)√
2π

exp
{

ζ20
2

}

2ζ0
+

1

dη∗ (1− η∗)

is a steplength constant with ζ0 = −Φ−1 (η∗/2) and Φ represents the c.d.f. of a univariate

standard normal random variable. The multiplier of a is called step size and reduces its

magnitude as i increases.

The Robbins-Monro process can be monitored and a search for κ(i+1) restarted if the

starting value ks seems poor (Garthwaite, 1996). Otherwise κ(i) → κ∗ can take a long

time to converge as the step size decreses with i, as shown in (2.28). On a restart, the

most recent update κ(i) is taken as the starting value and the value of i is reset. We start

(and restart) a search with i = n0, where n0 is a moderate size so as to avoid too rapid

steplength a changes in the early stages of the search. We choose n0 to be the integer

closest to 5/η∗(1− η∗), which typically works well in practice. We also choose to restart

the search if the update κ(i+1) changes by a factor of 3 from its value from when the

search started (or last restarted). To ensure that the search do not continually restart,

the algorithm records the number of restarts resulting from κ tripling and reducing

in value by two-thirds. Should both these numbers reach 5, then the process is not

restarted again. We also do not restart if more than 100 steps have been taken since the

last restart, as taking 100 steps without restarting suggests a reasonable starting point

has been used. These decision rules are arbitrary but typically work well in practice.

The sequence of operations needed for an update κ(i+1) with restart control has been

summarised in Algorithm 3.
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Algorithm 3: Adaptive κ update via Robbins-Monro process with restart control

Initialize: Set κs = κ(1), iMax = 100, n.up = 0, n.low = 0, t.up = 0 and

t.low = 0;

set OAP η∗ = 0.234;

set n0 = ⌊5/(η∗(1− η∗))⌉;
set ζ0 = −Φ−1(η∗/2);

set a =
(

1− 1
d

)√
2π e

ζ20
2

2ζ0
+ 1

dη∗(1−η∗)
;

if i > n0 then

update κ(i+1) = exp
(

log(κ(i)) + a(η − η∗)/max{200, i/d}
)

;

set k = κ(i+1);

if (i ≤ iMax+ n0) & (n.up < 5 |n.low < 5) then

t.up = κ > 3κs;

t.low = κ < κs/3;

if t.up |t.low then

n.big = n.big + t.big;

n.low = n.low + t.low;

i = n0;

κs = k.

For the process to converge to the correct value of κ∗, it must not converge before the

update of Σ(i+1) stabilizes. Similarly, many sampler iterations are typically needed to

effectively explore the parameter space Θ when there are many parameters, and proposal

acceptance probabilities η(i) may vary dramatically over this space. Hence, even after

the update of Σ(i+1) is fairly stable, the update of κ(i+1) should converge slowly if it is

to reflect the overall optimum for the parameter space. To achieve this, as it is possible

to see in (2.28), the magnitude of the steps η(i) − η∗ of the process is not reduced below

some pre-fixed limit until the update of Σ(i+1) is reasonably stable, and after that the

step size is reduced slowly.

2.4 Three complete analyses on simulated data

We now perform three complete Bayesian analyses aimed at applying our Empirical

Bayes POT method to large samples of simulated extreme data from each one of the

classes of distributions belonging to the GEV family. In particular, we consider the unit

Fréchet model for the Fréchet type (γ > 0), the unit Exponential model for the Gumbel
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type (γ = 0) and the Power-Law model for the Reverse-Weibull type (γ < 0). We only

report our analyses in the tilde parameterization, as we will compare the performances

between the two different parameterizations later in Chapter 3. Every computation has

been carried out with the software R (R Core Team, 2022). The analyses are focused

on:

❼ checking the validity of the asymptotic theory, especially results in (1.35) and

(1.36) of Section 1.4 and considerations at the end of Section 2.2. To do this, we

generally rely on histograms of the generated samples and of the obtained posterior

chains;

❼ computing MCMC posterior chains using the Adaptive RWMH Algorithm 2,

whose R code is in Appendix E. Specifically, we are interested in the posterior

distribution for the parameters γ, µ̃ and δ̃, the level p extreme quantile ỹp (1.49)

and the return level ỹT associated with the return period T (1.50). Trace plots,

autocorrelation plots and histograms of the posterior chains are provided;

❼ examining the adaptive path of the algorithm. To underline this aspect, we render

series plots of the scaling parameter k and of the Overall Acceptance Probability

of the latter half of the running iterations;

❼ Making Bayesian inference and evaluating its performances. In this context, we use

a function that performs frequentist or Bayesian inference assuming the Censored

POT model, whose code is in Appendix F. In particular, we inspect whether the

true (and known) parameter value is included in the corresponding HPD 95%

credible interval (2.5);

❼ monitoring the convergence of our MCMC algorithm. We sample different chains

from different starting points. The computational burden of this operation may be

lightened through parallelization. Convergence plots and diagnostics are obtained

via the functions from the coda package by Plummer et al. (2006). Special atten-

tion is paid to the Gelman & Rubin (1992) diagnostic statistics, e.g. the potential

scale reduction factor and the effective sample size.

The potential scale reduction factor idicates if the obtained parallel chains mix

in the same entire support of the target posterior distribution or they have not

converged yet. Absence of convergence may be due to the fact that different chains

may get stuck into local maxima of the target distribution near their starting point.

In this situation an increase in the chains’ length R can be helpful in reaching
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convergence. The potential scale reduction factor is calculated in this way:

PSRF =

√

(R−1)W+B

R

W
, (2.29)

where W stands for the variability within the chains and B for the variance be-

tween. If a good mixing has been performed, the fraction of between variance

B/R → 0, as R → ∞, and therefore our desired PSRF is as close to 1 as pos-

sible. When PSRF > 1.1 or PSRF > 1.2, we should increase R in order to

improve convergence.

We recall that MCMC chains are not i.i.d., but positively correlated, therefore a

sample of size R contains less information than an i.i.d. sample of the same size.

The effective sample size is the i.i.d. sample numerosity that would represent the

obtained chains in terms of informativity. It is defined by

EFS = R
1− ρ̂

1 + ρ̂
, (2.30)

where ρ̂ is an estimate of the correlation between the states of the chain assuming

an AR(1) process with parameter ρ. We wish for high EFS.

We set the sample size n = 10000 and the number of exceedances k = 500, hence

the inverse of the proportion of excesses is s = 20. We set the level of the extreme

quantile p = 0.0001 and the return period T = 50. We finally set the length of posterior

chains R = 60000, the burn-in at 10000 units and we simulate 5 different chains for

convergence diagnostics.
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2.4.1 Fréchet model

We recall the Fréchet density function and distribution function:

f(x;α, µ, σ) =
α

σ

(

x− µ

σ

)−1−α

e−(
x−µ
σ )

−α

, F (x;α, µ, σ) = e−(
x−µ
σ )

−α

,

where x > µ.

We set the true parameter value (α, µ, σ) = (1, 0, 1) and we can derive through

calculations in Section 1.5 the true values of the norming constants b(n/k) = 19.50 and

a(n/k) = 20.00. The true parameter value of the tilde asymptotic model for threshold

exceedances GEV
1
s

(

γ, µ̃, δ̃
)

is (1, 19.50, 20.00), while its value for the bar asymptotic

model for the excesses GEV
(

γ, µ̄, δ̄
)

is (1, 0.49, 1.00). The true value of the requested

extreme quantile is yp = 9999.5, while the true desired return level is yT = 989.67.

We simulate a random sample of size 10000 from the Fréchet distribution via the R

package evd (Stephenson, 2002). We set the threshold u at the 95th percentile of the

observed sample, so u = 19.71.

Figure 2.1 shows the empirical distribution of the data at hand. In addition, the blue

line is the censoring threshold u, the red curve relates to the true generating process

Fre(1, 0, 1) and the orange and green curves stand for the true asymptotic models for

threshold exceedances GEV
1
20 (1, 19.50, 20.00) and GEV (1, 0.49, 1.00). Here, we can see

that the true model and the asymptotic models overlap in the entire support and become

indistinguishable beyond the threshold. This fact supports the asymptotic theory.

From now on, we assume for the observed sample the tilde Censored POT model

with likelihood in (1.39). We perform an initial frequentist analysis. We compute by

maximum likelihood a point estimate of the parameters, the extreme quantile and the

return level and we obtain (0.98, 20.24, 21.02), 9576.81 and 987.05.

If we further assume the Empirical Bayes prior of Section 2.1.2, we can operate a

full Bayesian analysis. We set the starting point for the adaptive MH algorithm at

(0.1, 0.1, 1), we compute posterior chains of length 60000 in 342.22 seconds and we only

keep the 50000 post burn-in samples. The obtained Overall Acceptance Probability is

0.1986. From Figure 2.2 we see that the scaling parameter κ of the proposal collapses

towards 0 in the very first iterations, but then increases roughly linearly. The running

OAP seems to stabilize to a lower value than the desired η∗ = 0.234 through iterations

of the algorithm. Here, adaptivity is not completely fulfilled.

The posterior mode is (0.98, 20.20, 20.90), while the posterior mean is (0.94, 20.26,

22.03). Figures 2.3 and 2.4 display trace plots, autocorrelation plots and histograms

of the posterior distributions for γ, µ̃, δ̃, ỹ0.0001 and ỹ50. We generally denote a good
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((a)) Fréchet p.d.f. ((b)) Fréchet c.d.f.

Figure 2.1: Simulated density and distribution function with their threshold ex-
ceedances asymptotic approximations GEV tilde and GEV bar.

Figure 2.2: Fréchet model: scaling constant κ and Overall Acceptance Probability
(OAP) through the iterations of the running adaptive MCMC algorithm.
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Figure 2.3: Fréchet model: trace plot, autocorrelation plot and histogram of the

posterior chains for γ, µ̃ and δ̃. Dashed lines stand for the true parameter value, red
dotted lines for the 95% HPD credible interval.

((a)) ỹp ((b)) ỹT

Figure 2.4: Fréchet model: trace plot, autocorrelation plot and histogram of the
posterior chains for the extreme quantile and the return level. Dashed lines stand for
the true parameter value, red dotted lines for the 95% HPD credible interval.
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((a)) γ, µ̃, δ̃ ((b)) ỹp, ỹT

Figure 2.5: Fréchet model: trace plots and histograms of the 5 parallel chains.

Figure 2.6: Fréchet model: autocorrelation plot of the 5 parallel chains.
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Figure 2.7: Fréchet model: trace plot, autocorrelation plot and histogram of the

final posterior chains for γ, µ̃ and δ̃. Dashed lines stand for the true parameter value,
red dotted lines for the 95% HPD credible interval.

((a)) ỹp ((b)) ỹT

Figure 2.8: Fréchet model: trace plot, autocorrelation plot and histogram of the final
posterior chains for the extreme quantile and the return level. Dashed lines stand for
the true parameter value, red dotted lines for the 95% HPD credible interval.
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mixing and appropriate correlation structure for each one of these quantities. We can

observe by histograms that none of the posterior distributions is centered at its true

parameter value. In addition, these empirical distributions are all skewed, expect for µ̃.

Nevertheless, 95% HPD credible intervals contain the true parameter value.

To assess the convergence of the algorithm we sample 5 different analogue chains

from different starting points. These points are generated from the large sample ap-

proximation of the posterior distribution in (2.3) evaluated at the posterior mode θ∗.

Figures 2.5 and 2.6 show a good mixing of the chains in the entire support of the pos-

terior distribution and a similar stationary behaviour of autocorrelation. The potential

scale reduction factor is 1 with upper confidence limit equal to 1 for every one of the 5

quantities under investigation. With this information, we are able to affirm that these

chains seem to have reached stationarity and they seem to have properly explored the

same support of the posterior distribution. The averaged effective sample size of these 5

parallel (post burn-in) chains of length 50000 is 17042.77 for γ, 18206.81 for µ̃, 16708.51

for δ̃, 17959.65 for the extreme quantile and 17981.84 for the return level. Althought

the evident loss of information with respect to an i.i.d. sample, the dependent chains

are still worthy for exctracting inference from them.

Therefore, we put together the post burn-in portions of these 5 chains to obtain

posterior samples of size 250000. Figures 2.7 and 2.8 show trace plots, autocorrelation

plots and histograms with overwritten the corresponding true parameter value and the

95% HPD credible interval. In addition to what has already been said we point out that

these posterior samples present the same bias of the previous smaller samples, though

their asymmetry has been faded in favor of a smoother shape. Every high posterior

density 95% credible interval still includes its true parameter value.
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2.4.2 Exponential model

We recall the exponential density function and distribution function:

f(x; σ) =
1

σ
e−

1
σ
x, F (x; σ) = 1− e−

1
σ
x,

where x > 0.

We set the true parameter value σ = 1 and we can derive through calculations

in Section 1.5 the true values of the norming constants b(n/k) = 3.00 and a(n/k) =

1. The true parameter value of the tilde asymptotic model for threshold exceedances

GEV
1
s

(

γ, µ̃, δ̃
)

is (0, 3.00, 1), while its value for the bar asymptotic model for the

excesses GEV
(

γ, µ̄, δ̄
)

is (0, 0, 1). The true value of the requested extreme quantile is

yp = 9.21, while the true desired return level is yT = 6.90.

We simulate a random sample of size 10000 from the exponential distribution. We

set the threshold u at the 95th percentile of the observed sample, so u = 3.04.

Figure 2.9 shows the empirical distribution of the data at hand. In addition, the blue

line is the censoring threshold u, the red curve relates to the true generating process

Exp(1) and the orange and green curves stand for the true asymptotic models for

threshold exceedances GEV
1
20 (0, 3.00, 1) and GEV (0, 0, 1). Here, we can see that the

true model and the asymptotic models start overlapping after the value of the threshold.

This fact supports the asymptotic theory.

From now on, we assume for the observed sample the tilde Censored POT model

with likelihood in (1.39). We perform an initial frequentist analysis. We compute by

maximum likelihood a point estimate of the parameters, the extreme quantile and the

return level and we obtain (−0.0049, 3.06, 0.98), 9.04 and 6.84.

If we further assume the Empirical Bayes prior of Section 2.1.2, we can operate a

full Bayesian analysis. We set the starting point for the adaptive MH algorithm at

(0.1, 1, 1), we compute posterior chains of length 60000 in 438.39 seconds and we only

keep the 50000 post burn-in samples. The obtained Overall Acceptance Probability is

0.2455. From Figure 2.10 we see that the scaling parameter κ of the proposal collapses

towards 0 in the very first iterations, but then increases with a decreasing rate. The

OAP seems to converge from above to η∗ = 0.234 through iterations of the algorithm.

Here, we get a good adaptivity.

The posterior mode is (−0.0030, 3.06, 0.98), while the posterior mean is (0.0023, 3.06,

0.98). Figures 2.11 and 2.12 display trace plots, autocorrelation plots and histograms

of the posterior distributions for γ, µ̃, δ̃, ỹ0.0001 and ỹ50. We generally denote a good

mixing and appropriate correlation structure for each one of these quantities. We can
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((a)) Exponential p.d.f. ((b)) Exponential c.d.f.

Figure 2.9: Simulated density and distribution function with their threshold ex-
ceedances asymptotic approximations GEV tilde and GEV bar.

Figure 2.10: Exponential model: scaling constant κ and Overall Acceptance Prob-
ability (OAP) through the iterations of the running adaptive MCMC algorithm.



Chapter 2 - Empirical Bayes inferential method for Peaks Over a Threshold 59

Figure 2.11: Exponential model: trace plot, autocorrelation plot and histogram of

the posterior chains for γ, µ̃ and δ̃. Dashed lines stand for the true parameter value,
red dotted lines for the 95% HPD credible interval.

((a)) ỹp ((b)) ỹT

Figure 2.12: Exponential model: trace plot, autocorrelation plot and histogram of
the posterior chains for the extreme quantile and the return level. Dashed lines stand
for the true parameter value, red dotted lines for the 95% HPD credible interval.
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((a)) γ, µ̃, δ̃ ((b)) ỹp, ỹT

Figure 2.13: Exponential model: trace plots and histograms of the 5 parallel chains.

Figure 2.14: Exponential model: autocorrelation plot of the 5 parallel chains.
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Figure 2.15: Exponential model: trace plot, autocorrelation plot and histogram of

the final posterior chains for γ, µ̃ and δ̃. Dashed lines stand for the true parameter
value, red dotted lines for the 95% HPD credible interval.

((a)) ỹp ((b)) ỹT

Figure 2.16: Exponential model: trace plot, autocorrelation plot and histogram of
the final posterior chains for the extreme quantile and the return level. Dashed lines
stand for the true parameter value, red dotted lines for the 95% HPD credible interval.
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observe by histograms that only the posterior for µ̃ is particularly uncentered at its

true parameter value. In addition, these empirical distributions seem to already behave

normally at different levels. Furthermore, 95% HPD credible intervals contain the true

parameter value.

To assess the convergence of the algorithm we sample 5 different analogue chains

from different starting points. These points are generated from the large sample ap-

proximation of the posterior distribution in (2.3) evaluated at the posterior mode θ∗.

Figures 2.13 and 2.14 show a good mixing of the chains in the entire support of the pos-

terior distribution and a similar stationary behaviour of autocorrelation. The potential

scale reduction factor is 1 with upper confidence limit equal to 1 for every one of the 5

quantities under investigation. With this information, we are able to affirm that these

chains seem to have reached stationarity and they seem to have properly explored the

same support of the posterior distribution. The averaged effective sample size of these 5

parallel (post burn-in) chains of length 50000 is 22267.20 for γ, 21939.58 for µ̃, 21864.77

for δ̃, 21878.25 for the extreme quantile and 21968.94 for the return level. Althought

the evident loss of information with respect to an i.i.d. sample, the dependent chains

are still worthy for extracting inference from them.

Therefore, we put together the post burn-in portions of these 5 chains to obtain

posterior samples of size 250000. Figures 2.15 and 2.16 show trace plots, autocorrelation

plots and histograms with overwritten the corresponding true parameter value and the

95% HPD credible interval. In addition to what has already been said we point out

that the posterior sample for µ̃ presents the same bias of the previous smaller sample

and the smoothness of every posterior distribution is evidently improved. Every high

posterior density 95% credible interval still includes its true parameter value.
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2.4.3 Power-Law model

We recall the Power-Law density function, distribution function and quantile function:

f(x; x∗, α,K) = K α (x∗ − x)α−1 , F (x; x∗, α,K) = 1−K (x∗ − x)α ,

q(p; x∗, α,K) = x∗ −
(

1− p

K

) 1
α

,

where x < x∗ and K = 1/9.

We set the true parameter value (x∗, α) = (5, 3) and we can derive through cal-

culations in Section 1.5 the true values of the norming constants b(n/k) = 4.23 and

a(n/k) = 0.26. The true parameter value of the tilde asymptotic model for threshold

exceedances GEV
1
s

(

γ, µ̃, δ̃
)

is (−0.33, 4.23, 0.26), while its value for the bar asymp-

totic model for the excesses GEV
(

γ, µ̄, δ̄
)

is (−0.33, 2.92, 0.69). The true value of the

requested extreme quantile is yp = 4.90, while the true desired return level is yT = 4.79.

We simulate a random sample of size 10000 from the Power-Law distribution through

its quantile function by the inversion method (Section 2.1.2 of Robert & Casella (2010)).

We set the threshold u at the 95th percentile of the observed sample, so u = 4.23.

Figure 2.17 shows the empirical distribution of the data at hand. In addition, the

blue line is the censoring threshold u, the red curve relates to the true generating process

PL(5, 3, 1/9) and the orange and green curves stand for the true asymptotic models for

threshold exceedances GEV
1
20 (−0.33, 4.23, 0.26) and GEV (−0.33, 2.92, 0.69). Here, we

can see that the true model and the asymptotic models start overlapping after the value

of the threshold. This fact supports the asymptotic theory.

From now on, we assume for the observed sample the tilde Censored POT model

with likelihood in (1.39). We perform an initial frequentist analysis. We compute by

maximum likelihood a point estimate of the parameters, the extreme quantile and the

return level and we obtain (−0.34, 4.24, 0.26), 4.88 and 4.78.

If we further assume the Empirical Bayes prior of Section 2.1.2, we can operate a

full Bayesian analysis. We set the starting point for the adaptive MH algorithm at

(0.1, 2, 1), we compute posterior chains of length 60000 in 411.56 seconds and we only

keep the 50000 post burn-in samples. The obtained Overall Acceptance Probability is

0.2433. From Figure 2.18 we see that the scaling parameter κ of the proposal collapses

towards 0 in the very first iterations, but then increases linearly. The OAP seems to

converge from above to η∗ = 0.234 through iterations of the algorithm. Here, we get a

good adaptivity.
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((a)) Power-Law p.d.f. ((b)) Powerl-Law c.d.f.

Figure 2.17: Simulated density and distribution function with their threshold ex-
ceedances asymptotic approximations GEV tilde and GEV bar.

Figure 2.18: Power-Law model: scaling constant κ and Overall Acceptance Proba-
bility (OAP) through the iterations of the running adaptive MCMC algorithm.
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Figure 2.19: Power-Law model: trace plot, autocorrelation plot and histogram of

the posterior chains for γ, µ̃ and δ̃. Dashed lines stand for the true parameter value,
red dotted lines for the 95% HPD credible interval.

((a)) ỹp ((b)) ỹT

Figure 2.20: Power-Law model: trace plot, autocorrelation plot and histogram of
the posterior chains for the extreme quantile and the return level. Dashed lines stand
for the true parameter value, red dotted lines for the 95% HPD credible interval.
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((a)) γ, µ̃, δ̃ ((b)) ỹp, ỹT

Figure 2.21: Power-Law model: trace plots and histograms of the 5 parallel chains.

Figure 2.22: Power-Law model: autocorrelation plot of the 5 parallel chains.
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Figure 2.23: Power-Law model: trace plot, autocorrelation plot and histogram of

the final posterior chains for γ, µ̃ and δ̃. Dashed lines stand for the true parameter
value, red dotted lines for the 95% HPD credible interval.

((a)) ỹp ((b)) ỹT

Figure 2.24: Power-Law model: trace plot, autocorrelation plot and histogram of
the final posterior chains for the extreme quantile and the return level. Dashed lines
stand for the true parameter value, red dotted lines for the 95% HPD credible interval.
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The posterior mode is (−0.33, 4.24, 0.25), while the posterior mean is (−0.33, 4.24,

0.25). Figures 2.19 and 2.20 display trace plots, autocorrelation plots and histograms

of the posterior distributions for γ, µ̃, δ̃, ỹ0.0001 and ỹ50. We generally denote a good

mixing and appropriate correlation structure for each one of these quantities. The

autocorrelation decay seems slower for γ, δ̃ and ỹp with respect to µ̃ and ỹT . We can

observe by histograms that every posterior distribution is nearly centered at its true

parameter value. In addition, these empirical distributions seem to already behave

normally at different levels. Furthermore, 95% HPD credible intervals contain the true

parameter value.

To assess the convergence of the algorithm we sample 5 different analogue chains

from different starting points. These points are generated from the large sample ap-

proximation of the posterior distribution in (2.3) evaluated at the posterior mode θ∗.

Figures 2.21 and 2.22 show a good mixing of the chains in the entire support of the pos-

terior distribution and a similar stationary behaviour of autocorrelation. The potential

scale reduction factor is 1 with upper confidence limit equal to 1 for every one of the 5

quantities under investigation. With this information, we are able to affirm that these

chains seem to have reached stationarity and they seem to have properly explored the

same support of the posterior distribution. The averaged effective sample size of these 5

parallel (post burn-in) chains of length 50000 is 20601.15 for γ, 20246.50 for µ̃, 20673.23

for δ̃, 19805.41 for the extreme quantile and 19929.44 for the return level. Althought

the evident loss of information with respect to an i.i.d. sample, the dependent chains

are still worthy for extracting inference from them.

Therefore, we put together the post burn-in portions of these 5 chains to obtain

posterior samples of size 250000. Figures 2.23 and 2.24 show trace plots, autocorrelation

plots and histograms with overwritten the corresponding true parameter value and the

95% HPD credible interval. In addition to what has already been said we point out

that the smoothness of every posterior distribution is evidently improved. Every high

posterior density 95% credible interval still includes its true parameter value.
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Simulation Study

3.1 Simulation setting

We construct a simulation study to test the frequentist accuracy of credible intervals

based of the Empirical Bayes Censored Peaks Over a Threshold (CPOT) method. We

are interested in the marginal posterior distribution of the shape parameter γ, location

parameter µ, scale parameter δ, the extreme quantile yp (1.49) and the return level yT

(1.50) in order to evaluate the corresponding quantile (2.4), Gaussian approximation

based (2.7) and high posterior density (HPD) (2.5) 95% credible intervals. To this aim,

we draw N = 1000 independent random samples of increasing size n from 9 distributions

pertaining to the max-domain of attraction of the GEV distribution and we compute

coverage probabilities of credible intervals over the N iterations. We consider 3 heavy-

tailed distributions, 3 light-tailed distributions and 3 short-tailed distributions, i.e.:

1. Fréchet with shape, location and scale parameter (1, 0, 1), Pareto with shape,

location and scale parameter (1, 0, 1) and Half-Cauchy with scale parameter 1.

Each of these distributions has tail index γ = 1;

2. Gumbel with location and scale parameter (0, 1), Exponential with rate parameter

1 and Gamma with shape and scale parameter (2, 2). Each of these distributions

has tail index γ = 0;

3. Power-Law with upper bound, shape andK parameter (5, 3, 1/9), Reverse-Weibull

with shape parameter 3 and Beta with shape parameter (1, 3). Each of these

distributions has tail index γ = −1/3.

Computations of the posterior chains are performed through the Adaptive Gaussian

RWMH algorithm 2, either in the tilde and bar parameterization. We use the posterior

69
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mode or the MLE as starting point for the algorithm. We set the posterior sample size

to R = 10000 and the burn-in to 10000. Finally, we set the return period to T = 50.

We study 4 different simulation scenarios, characterized by the sample size n, the

fixed number of threshold excesses k and consequently by the inverse of the proportion

of threshold exceedances s:

❼ small extreme sample: n = 800 and k = 20, then s = 40;

❼ medium extreme sample: n = 1800 and k = 30, then s = 60;

❼ large extreme sample: n = 5450 and k = 50, then s = 109;

❼ ”big data”-type extreme sample: n = 23400 and k = 100, then s = 234.

We point out some implications due to these distinct simulation settings:

❼ the CPOT asymptotic theory works with s → ∞, hence we expect improving

performances from the small to the ”big-data”-type sample configuration;

❼ the location and scale normalizing constants b(n/k) and a(n/k) increase as s in-

crease, and so do the true parameter values θ̃0 and θ̄0 and their maximum likelihood

estimates from the data ˆ̃θ and ˆ̄θ. In other words, the Empirical Bayes hyperpa-

rameters of the prior distributions defined in (2.9) and (2.10) increase as s grows.

This is necessary in an Extreme Values context in order to avoid infinite (and

mathematically incorrect) priors;

❼ we set the probability p of the extreme quantile yp to the fraction 1/n, thus it

assumes the decreasing values of 0.00125, 0.000555, 0.000183 and 0.0000427 over

the 4 scenarios.

Every computation has been carried out with the software R. Because of computa-

tional problems, simulations for the Gumbel model in the tilde parameterization are

N = 500.

3.2 Results

We present the coverage probabilities resulting from the simulation study in a cross-table

format, in which rows represent the (transformation of the) parameter of interest and

columns are the 4 simulation scenarios. Firstly, we report tables for quantile credible

intervals, secondly the normality based intervals and then the HPD intervals. Corre-

sponding tables for the tilde and bar parameterizations are reported side by side. Lastly,
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we order the results’ discussion according to the class of extreme value distribution of

the generated data: the Fréchet family (Fréchet, Pareto and Half-Cauchy samples) is

first, the Gumbel family (Gumbel, Exponential and Gamma samples) comes second and

the Reverse-Weibull family (Power-Law, Reverse-Weibull and Beta samples) is at the

very end.

3.2.1 Fréchet family

First of all, we note that the coverage probabilities between the tilde and bar parame-

terizations do not differ considerably, but the ones for the tilde parameterization seem

to be a little higher. Generally, these empirical coverages are far from 95% for every

considered (transformation of the) parameter and for every credible interval, except

for µ. They range between 72% and 99%. Despite they are always higher than their

nominal level, empirical coverages for the location parameter are not bad, though none

of the three credible interval types seems to outstand the other competitors. We also

highlight that intervals based on the normal approximation provide good results for the

scale parameter δ. Globally, coverage probabilities tend to improve as n grows for γ, µ

and δ, while the extreme quantile and the return level show a similar irregular behaviour

with the return level that varies more with n. However, improvements are always mod-

erate. Parameter δ is best covered by Gaussian intervals, then by HPD intervals and

the worst are the quantile intervals. For other quantities, best performances are brought

by the the quantile intervals, then by the Guassian and by the HPD intervals. Results

for the Pareto model are better than those for the Half-Cauchy, that in turn are better

than those for the Fréchet. We underline an overall unsatisfactory performance of the

Empirical Bayes CPOT method.

The tail index γ reaches the best coverage of 85% for n = 5450 and n = 23400, in

the Pareto model, with quantile credible intervals in the tilde parameterization, while

its worst is of 72% for n = 800 and the bar parameterization, in the Fréchet model with

normal and HPD intervals and in the Half-Cauchy model with normal intervals. The

location parameter µ gets the best coverage of 96% for n = 800, in the Pareto model,

with Gaussian and HPD credible intervals in the tilde parameterization, while its worst

is of 99% for n = 5450 and the tilde parameterization, in the Half-Cauchy model with

quantile intervals. The scale parameter δ has the best coverage of 95% for every n, in

the Fréchet and Half-Cauchy model (n = 5450), with Gaussian credible intervals in the

tilde parameterization (Fréchet model) and bar parameterization, while its worst is of

79% for n = 1800 and the bar parameterization, in the Fréchet model with quantile

intervals. The extreme quantile yp gets the best coverage of 90% for n = 5450 and
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n = 23400, in the Pareto model (n = 23400) and Half-Cauchy model, with quantile

credible intervals in the tilde parameterization, while its worst is of 80% for n = 800

and the bar parameterization, in the Pareto model with HPD intervals. The return

level yT gets the best coverage of 91% for n = 23400, in the Pareto model, with quantile

credible intervals in the tilde parameterization, while its worst is of 77% for n = 800 and

the bar parameterization, in the Pareto and Half-Cauchy models with HPD intervals.

Table 3.1: Fréchet model: coverage probabilities of quantile 95% credible intervals.

n 800 1800 5450 23400
γ 0.82 0.80 0.84 0.82
µ̃ 0.98 0.98 0.98 0.98

δ̃ 0.82 0.83 0.83 0.86
ỹp 0.89 0.88 0.89 0.88
ỹT 0.87 0.87 0.89 0.88

n 800 1800 5450 23400
γ 0.78 0.80 0.81 0.83
µ̄ 0.97 0.98 0.98 0.98
δ̄ 0.82 0.79 0.83 0.85
ȳp 0.87 0.88 0.89 0.88
ȳT 0.86 0.87 0.89 0.88

Table 3.2: Fréchet model: coverage probabilities of Guassian approximation based
95% credible intervals.

n 800 1800 5450 23400
γ 0.77 0.75 0.81 0.81
µ̃ 0.97 0.98 0.98 0.97

δ̃ 0.97 0.96 0.96 0.95
ỹp 0.87 0.85 0.85 0.83
ỹT 0.87 0.85 0.85 0.84

n 800 1800 5450 23400
γ 0.72 0.76 0.78 0.82
µ̄ 0.97 0.98 0.98 0.98
δ̄ 0.95 0.95 0.95 0.93
ȳp 0.82 0.84 0.83 0.82
ȳT 0.80 0.83 0.84 0.83

Table 3.3: Fréchet model: coverage probabilities of HPD 95% credible intervals.

n 800 1800 5450 23400
γ 0.77 0.76 0.81 0.81
µ̃ 0.97 0.98 0.98 0.98

δ̃ 0.90 0.90 0.90 0.91
ỹp 0.82 0.81 0.83 0.81
ỹT 0.79 0.80 0.83 0.84

n 800 1800 5450 23400
γ 0.72 0.75 0.78 0.80
µ̄ 0.97 0.98 0.98 0.98
δ̄ 0.88 0.88 0.88 0.89
ȳp 0.81 0.83 0.83 0.82
ȳT 0.78 0.82 0.83 0.83

Table 3.4: Pareto model: coverage probabilities of quantile 95% credible intervals.

n 800 1800 5450 23400
γ 0.82 0.80 0.85 0.85
µ̃ 0.97 0.98 0.98 0.98

δ̃ 0.81 0.84 0.82 0.86
ỹp 0.89 0.88 0.90 0.90
ỹT 0.87 0.87 0.90 0.91

n 800 1800 5450 23400
γ 0.77 0.79 0.80 0.78
µ̄ 0.98 0.98 0.98 0.98
δ̄ 0.82 0.83 0.83 0.87
ȳp 0.86 0.87 0.86 0.85
ȳT 0.84 0.87 0.86 0.86
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Table 3.5: Pareto model: coverage probabilities of Guassian approximation based
95% credible intervals.

n 800 1800 5450 23400
γ 0.76 0.76 0.82 0.84
µ̃ 0.96 0.97 0.98 0.98

δ̃ 0.97 0.97 0.96 0.94
ỹp 0.86 0.86 0.86 0.85
ỹT 0.88 0.86 0.86 0.86

n 800 1800 5450 23400
γ 0.73 0.74 0.78 0.77
µ̄ 0.97 0.98 0.98 0.98
δ̄ 0.96 0.94 0.94 0.94
ȳp 0.82 0.83 0.81 0.77
ȳT 0.79 0.81 0.81 0.79

Table 3.6: Pareto model: coverage probabilities of HPD 95% credible intervals.

n 800 1800 5450 23400
γ 0.77 0.76 0.82 0.84
µ̃ 0.96 0.98 0.98 0.97

δ̃ 0.90 0.90 0.90 0.90
ỹp 0.82 0.83 0.84 0.84
ỹT 0.79 0.81 0.84 0.86

n 800 1800 5450 23400
γ 0.73 0.74 0.77 0.76
µ̄ 0.97 0.98 0.98 0.98
δ̄ 0.89 0.88 0.89 0.90
ȳp 0.80 0.82 0.81 0.77
ȳT 0.77 0.79 0.81 0.80

Table 3.7: Half-Cauchy model: coverage probabilities of quantile 95% credible in-
tervals.

n 800 1800 5450 23400
γ 0.79 0.83 0.84 0.84
µ̃ 0.97 0.98 0.99 0.98

δ̃ 0.81 0.83 0.85 0.85
ỹp 0.87 0.88 0.90 0.89
ỹT 0.86 0.87 0.90 0.90

n 800 1800 5450 23400
γ 0.78 0.81 0.82 0.81
µ̄ 0.97 0.98 0.98 0.97
δ̄ 0.82 0.82 0.85 0.84
ȳp 0.87 0.87 0.88 0.87
ȳT 0.85 0.86 0.88 0.88

Table 3.8: Half-Cauchy model: coverage probabilities of Guassian approximation
based 95% credible intervals.

n 800 1800 5450 23400
γ 0.74 0.78 0.82 0.83
µ̃ 0.97 0.98 0.98 0.98

δ̃ 0.96 0.96 0.96 0.96
ỹp 0.86 0.87 0.87 0.84
ỹT 0.87 0.87 0.87 0.85

n 800 1800 5450 23400
γ 0.72 0.76 0.79 0.80
µ̄ 0.97 0.98 0.98 0.97
δ̄ 0.96 0.96 0.95 0.93
ȳp 0.83 0.82 0.82 0.81
ȳT 0.81 0.81 0.82 0.83

3.2.2 Gumbel family

First of all, we note that in this case the coverage probabilities between the tilde and

bar parameterizations do not differ considerably. Generally, the empirical coverages

reach 95% at least once for every considered (transformation of the) parameter and for

every credible interval, for every generating process and for every sample size n. They

range between 87% and 99%. Globally, coverage probabilities tend to improve as n

grows for γ, µ and δ, the return level and the extreme quantile, in the tilde and bar
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Table 3.9: Half-Cauchy model: coverage probabilities of HPD 95% credible intervals.

n 800 1800 5450 23400
γ 0.75 0.79 0.81 0.82
µ̃ 0.97 0.98 0.98 0.98

δ̃ 0.89 0.90 0.91 0.91
ỹp 0.82 0.83 0.84 0.82
ỹT 0.79 0.81 0.84 0.85

n 800 1800 5450 23400
γ 0.73 0.75 0.77 0.78
µ̄ 0.97 0.98 0.98 0.97
δ̄ 0.89 0.89 0.91 0.88
ȳp 0.82 0.81 0.82 0.81
ȳT 0.77 0.80 0.82 0.83

parameterization, for every type of credible interval and for every starting light-tailed

distribution. Results for the Exponential model are better than those for the Gamma,

that in turn are better than those for the Gumbel. We underline an overall accurate

performance of the Empirical Bayes CPOT method.

The tail index γ reaches the worst coverage probability of 88% with n = 800, in

the bar parameterization, in the Gumbel model with quantile intervals. The location

parameter µ gets the worst coverage of 98%, at least once for every sample size n, in the

tilde and bar parameterizations, in the Gumbel model with quantile, normality based

or HPD intervals. The scale parameter δ has the worst coverage of 87% for n = 800

and in the bar parameterization, in the Gumbel model with quantile intervals. The

extreme quantile yp gets the worst coverage of 90% for every possible n except 23400,

with the tilde parameterization, in the Gumbel model and with every type of considered

credible interval. The return level yT gets the worst coverage of 89% for n = 800 or

n = 1800 and both parameterizations, in the Gumbel, Exponential and Gamma models

with Gaussian or HPD intervals.

Table 3.10: Gumbel model: coverage probabilities of quantile 95% credible intervals.

n 800 1800 5450 23400
γ 0.96 0.94 0.96 0.96
µ̃ 0.98 0.97 0.98 0.98

δ̃ 0.89 0.91 0.91 0.94
ỹp 0.90 0.92 0.92 0.93
ỹT 0.92 0.91 0.92 0.93

n 800 1800 5450 23400
γ 0.92 0.94 0.94 0.95
µ̄ 0.98 0.98 0.97 0.96
δ̄ 0.87 0.90 0.93 0.95
ȳp 0.92 0.91 0.94 0.94
ȳT 0.92 0.92 0.94 0.95

3.2.3 Reverse-Weibull family

First of all, we note that the coverage probabilities between the tilde and bar parameter-

izations do not differ considerably, except for parameters γ and δ in the Reverse-Weibull
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Table 3.11: Gumbel model: coverage probabilities of Guassian approximation based
95% credible intervals.

n 800 1800 5450 23400
γ 0.94 0.93 0.95 0.94
µ̃ 0.97 0.97 0.98 0.97

δ̃ 0.99 0.97 0.96 0.96
ỹp 0.91 0.91 0.90 0.93
ỹT 0.89 0.90 0.90 0.93

n 800 1800 5450 23400
γ 0.89 0.92 0.92 0.94
µ̄ 0.98 0.98 0.97 0.96
δ̄ 0.96 0.96 0.96 0.95
ȳp 0.93 0.92 0.91 0.94
ȳT 0.91 0.91 0.90 0.93

Table 3.12: Gumbel model: coverage probabilities of HPD 95% credible intervals.

n 800 1800 5450 23400
γ 0.93 0.94 0.95 0.95
µ̃ 0.98 0.97 0.98 0.97

δ̃ 0.94 0.94 0.92 0.95
ỹp 0.91 0.90 0.90 0.93
ỹT 0.89 0.90 0.90 0.92

n 800 1800 5450 23400
γ 0.88 0.92 0.92 0.94
µ̄ 0.98 0.98 0.96 0.96
δ̄ 0.91 0.94 0.94 0.94
ȳp 0.91 0.91 0.91 0.94
ȳT 0.89 0.90 0.91 0.93

Table 3.13: Exponential model: coverage probabilities of quantile 95% credible
intervals.

n 800 1800 5450 23400
γ 0.95 0.96 0.96 0.97
µ̃ 0.97 0.97 0.96 0.96

δ̃ 0.91 0.93 0.95 0.96
ỹp 0.91 0.92 0.95 0.95
ỹT 0.91 0.93 0.95 0.94

n 800 1800 5450 23400
γ 0.95 0.95 0.95 0.96
µ̄ 0.96 0.97 0.97 0.95
δ̄ 0.92 0.92 0.93 0.94
ȳp 0.91 0.93 0.95 0.94
ȳT 0.93 0.93 0.95 0.95

Table 3.14: Exponential model: coverage probabilities of Guassian approximation
based 95% credible intervals.

n 800 1800 5450 23400
γ 0.92 0.94 0.95 0.95
µ̃ 0.97 0.97 0.96 0.96

δ̃ 0.98 0.98 0.98 0.97
ỹp 0.92 0.93 0.94 0.95
ỹT 0.91 0.93 0.94 0.94

n 800 1800 5450 23400
γ 0.93 0.92 0.94 0.94
µ̄ 0.96 0.97 0.97 0.95
δ̄ 0.96 0.96 0.94 0.95
ȳp 0.94 0.93 0.95 0.95
ȳT 0.93 0.93 0.95 0.94

model for n = 23400, where the bar parameterization shows an evident decrease. Gen-

erally, these empirical coverages reach 95% at least once for every considered (transfor-

mation of the) parameter and for every credible interval, for every generating process

and for every sample size n. They range between 78% and 99%. Globally, coverage

probabilities tend to improve as n grows for γ, µ and δ, the return level and the ex-

treme quantile, in the tilde and bar parameterization, for every type of credible interval

and for every starting short-tailed distribution. The Beta model has empirical cover-

ages that generally show a different behaviour than the more similar Power-Law and
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Table 3.15: Exponential model: coverage probabilities of HPD 95% credible inter-
vals.

n 800 1800 5450 23400
γ 0.92 0.95 0.96 0.96
µ̃ 0.97 0.97 0.96 0.95

δ̃ 0.95 0.96 0.97 0.96
ỹp 0.91 0.92 0.94 0.94
ỹT 0.89 0.92 0.94 0.94

n 800 1800 5450 23400
γ 0.93 0.92 0.94 0.94
µ̄ 0.96 0.97 0.97 0.95
δ̄ 0.94 0.94 0.93 0.94
ȳp 0.92 0.93 0.94 0.94
ȳT 0.92 0.93 0.94 0.94

Table 3.16: Gamma model: coverage probabilities of quantile 95% credible intervals.

n 800 1800 5450 23400
γ 0.95 0.95 0.96 0.95
µ̃ 0.97 0.97 0.96 0.96

δ̃ 0.91 0.93 0.94 0.96
ỹp 0.91 0.92 0.94 0.95
ỹT 0.92 0.92 0.94 0.94

n 800 1800 5450 23400
γ 0.96 0.95 0.95 0.95
µ̄ 0.98 0.96 0.97 0.96
δ̄ 0.93 0.92 0.95 0.94
ȳp 0.92 0.92 0.92 0.94
ȳT 0.94 0.91 0.93 0.93

Table 3.17: Gamma model: coverage probabilities of Guassian approximation based
95% credible intervals.

n 800 1800 5450 23400
γ 0.93 0.95 0.94 0.94
µ̃ 0.97 0.97 0.96 0.96

δ̃ 0.99 0.98 0.98 0.97
ỹp 0.93 0.92 0.94 0.93
ỹT 0.91 0.90 0.91 0.90

n 800 1800 5450 23400
γ 0.94 0.92 0.93 0.93
µ̄ 0.97 0.96 0.97 0.95
δ̄ 0.97 0.96 0.96 0.95
ȳp 0.94 0.92 0.92 0.93
ȳT 0.91 0.90 0.91 0.92

Table 3.18: Gamma model: coverage probabilities of HPD 95% credible intervals.

n 800 1800 5450 23400
γ 0.93 0.95 0.95 0.94
µ̃ 0.97 0.97 0.96 0.96

δ̃ 0.96 0.96 0.96 0.96
ỹp 0.91 0.91 0.94 0.93
ỹT 0.90 0.89 0.92 0.91

n 800 1800 5450 23400
γ 0.93 0.91 0.93 0.93
µ̄ 0.98 0.96 0.97 0.96
δ̄ 0.95 0.94 0.96 0.94
ȳp 0.92 0.91 0.92 0.93
ȳT 0.91 0.91 0.90 0.91

Reverse-Weibull models. Results for the Power-Law model are better than those for

the Beta, that in turn are better than those for the Reverse-Weibull. We underline an

overall accurate performance of the Empirical Bayes CPOT method.

The tail index γ reaches the worst coverage probability of 78% for n = 23400 and

the bar parameterization, in the Reverse-Weibull model with Gaussian intervals. The

location parameter µ gets the worst coverages of 97% or 93% for every n except 5450,

with the tilde and bar parameterizations, in every model and with every credible inter-

val. The scale parameter δ has the worst coverage of 84% for n = 23400 and the bar
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parameterization, in the Reverse-Weibull model with normality based intervals. The

extreme quantile yp gets the worst coverage of 89% for n = 23400, with the tilde param-

eterization, in the Beta model with quantile intervals. The return level yT gets the worst

coverage of 90% for n = 23400 and both parameterizations, in the Reverse-Weibull and

Beta models with quantile intervals.

Table 3.19: Power-Law model: coverage probabilities of quantile 95% credible in-
tervals.

n 800 1800 5450 23400
γ 0.99 0.98 0.95 0.95
µ̃ 0.97 0.96 0.95 0.95

δ̃ 0.97 0.96 0.95 0.94
ỹp 0.95 0.94 0.95 0.93
ỹT 0.97 0.94 0.95 0.93

n 800 1800 5450 23400
γ 0.96 0.94 0.93 0.92
µ̄ 0.96 0.95 0.95 0.94
δ̄ 0.93 0.94 0.93 0.92
ȳp 0.94 0.93 0.94 0.94
ȳT 0.94 0.94 0.94 0.95

Table 3.20: Power-Law model: coverage probabilities of Guassian approximation
based 95% credible intervals.

n 800 1800 5450 23400
γ 0.97 0.96 0.95 0.94
µ̃ 0.97 0.96 0.95 0.96

δ̃ 0.99 0.98 0.96 0.95
ỹp 0.96 0.97 0.96 0.96
ỹT 0.97 0.98 0.96 0.95

n 800 1800 5450 23400
γ 0.93 0.91 0.92 0.93
µ̄ 0.96 0.95 0.95 0.93
δ̄ 0.96 0.95 0.94 0.93
ȳp 0.96 0.96 0.96 0.96
ȳT 0.97 0.96 0.96 0.96

Table 3.21: Power-Law model: coverage probabilities of HPD 95% credible intervals.

n 800 1800 5450 23400
γ 0.96 0.95 0.94 0.93
µ̃ 0.97 0.96 0.96 0.95

δ̃ 0.98 0.97 0.95 0.94
ỹp 0.96 0.95 0.96 0.94
ỹT 0.97 0.96 0.95 0.94

n 800 1800 5450 23400
γ 0.93 0.91 0.90 0.91
µ̄ 0.96 0.95 0.96 0.94
δ̄ 0.93 0.94 0.92 0.92
ȳp 0.96 0.95 0.95 0.96
ȳT 0.96 0.96 0.95 0.95

Table 3.22: Reverse-Weibull model: coverage probabilities of quantile 95% credible
intervals.

n 800 1800 5450 23400
γ 0.99 0.98 0.95 0.91
µ̃ 0.96 0.97 0.95 0.94

δ̃ 0.97 0.95 0.94 0.92
ỹp 0.92 0.93 0.92 0.91
ỹT 0.94 0.94 0.93 0.92

n 800 1800 5450 23400
γ 0.95 0.94 0.93 0.80
µ̄ 0.96 0.96 0.96 0.96
δ̄ 0.95 0.94 0.93 0.84
ȳp 0.93 0.94 0.94 0.90
ȳT 0.94 0.94 0.94 0.90
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Table 3.23: Reverse-Weibull model: coverage probabilities of Guassian approxima-
tion based 95% credible intervals.

n 800 1800 5450 23400
γ 0.97 0.95 0.94 0.90
µ̃ 0.96 0.97 0.96 0.94

δ̃ 0.99 0.98 0.96 0.92
ỹp 0.96 0.96 0.95 0.93
ỹT 0.96 0.96 0.95 0.94

n 800 1800 5450 23400
γ 0.92 0.92 0.92 0.81
µ̄ 0.97 0.96 0.96 0.95
δ̄ 0.97 0.96 0.94 0.86
ȳp 0.95 0.96 0.94 0.91
ȳT 0.95 0.95 0.94 0.92

Table 3.24: Reverse-Weibull model: coverage probabilities of HPD 95% credible
intervals.

n 800 1800 5450 23400
γ 0.96 0.94 0.93 0.90
µ̃ 0.97 0.97 0.95 0.94

δ̃ 0.98 0.96 0.95 0.92
ỹp 0.94 0.94 0.93 0.92
ỹT 0.94 0.94 0.93 0.93

n 800 1800 5450 23400
γ 0.92 0.92 0.90 0.78
µ̄ 0.96 0.96 0.96 0.95
δ̄ 0.96 0.95 0.93 0.84
ȳp 0.95 0.95 0.94 0.90
ȳT 0.95 0.94 0.94 0.91

Table 3.25: Beta model: coverage probabilities of quantile 95% credible intervals.

n 800 1800 5450 23400
γ 0.98 0.97 0.96 0.90
µ̃ 0.96 0.96 0.96 0.93

δ̃ 0.97 0.96 0.96 0.91
ỹp 0.93 0.95 0.94 0.89
ỹT 0.94 0.95 0.94 0.90

n 800 1800 5450 23400
γ 0.97 0.96 0.95 0.93
µ̄ 0.94 0.94 0.95 0.94
δ̄ 0.95 0.95 0.93 0.92
ȳp 0.94 0.96 0.96 0.95
ȳT 0.94 0.96 0.96 0.95

Table 3.26: Beta model: coverage probabilities of Guassian approximation based
95% credible intervals.

n 800 1800 5450 23400
γ 0.96 0.95 0.95 0.88
µ̃ 0.96 0.96 0.96 0.94

δ̃ 0.99 0.98 0.96 0.91
ỹp 0.97 0.97 0.96 0.91
ỹT 0.98 0.97 0.96 0.92

n 800 1800 5450 23400
γ 0.95 0.95 0.94 0.94
µ̄ 0.94 0.95 0.95 0.94
δ̄ 0.96 0.96 0.93 0.93
ȳp 0.96 0.97 0.97 0.96
ȳT 0.97 0.97 0.97 0.96

Table 3.27: Beta model: coverage probabilities of HPD 95% credible intervals.

n 800 1800 5450 23400
γ 0.96 0.94 0.93 0.88
µ̃ 0.96 0.97 0.96 0.93

δ̃ 0.98 0.97 0.95 0.91
ỹp 0.96 0.95 0.95 0.90
ỹT 0.96 0.95 0.95 0.91

n 800 1800 5450 23400
γ 0.94 0.94 0.92 0.92
µ̄ 0.94 0.94 0.95 0.93
δ̄ 0.95 0.95 0.92 0.92
ȳp 0.95 0.97 0.97 0.96
ȳT 0.95 0.97 0.96 0.96



Conclusions

In this work, we have developed a Bayesian version of the POT method for analysing

extreme data through the censored GEV likelihood. Figures 2.1, 2.9 and 2.17 highlight

that the GEV
1
s

(

θ̃
)

and GEV
(

θ̄
)

are appropriate asymptotic models for the uncondi-

tional distribution of threshold exceedances. The Empirical Bayes procedure has been

employed to tune from the observed data the prior distribution for θ̃ or θ̄ with suitable

hyperparameters, which increase as n grows. We have sampled efficiently from the pos-

terior distribution of the parameters via an AMH algorithm. Afterwards, we have tested

the performance of the new method checking the frequentist coverage probabilities of

credible intervals.

The Empirical Bayes CPOT method shows overall good performances for the Gum-

bel and Reverse-Weibull families, while in the Fréchet class the results are not yet as

satisfactory as we would like. We also recall that even the adaptivity of the used RWMH

algorithm is not adequate in the Fréchet model. This discrepancy could be better in-

spected through a graphical study of the posterior distributions in the three families.

The main reason behind these problematic simulation results is that so far, the number

of exceedances k to consider, given a sample of n observations, has been set quite arbi-

trarily. On the contrary, with intent to reach a good performance, it would be necessary

to determine a precise relationship between k and n using a criterion that takes into

account the bias term arising from the use of the asymptotic model, as it has been done

in Padoan & Rizzelli (2022).

Furthermore, we could compare the Empirical Bayes CPOT’s inferential perfor-

mances with the ones of the Bayesian Classical POT approach in order to see if the

censored additional data carry an actual benefit or a drawback. We could also ques-

tion if in this case a Bayesian analysis is really appropriate through a comparison with

coverage probabilities of frequentist confidence intervals computed from the likelihood

of the CPOT model. This comparisons could be made either on simulated data or real

extreme datasets. Finally, computational difficulties of the Adaptive RWMH algorithm

for the Gumbel model could be deeper examined.
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Appendix

Appendix A

#GEV distribution

#Probability density function

dgev1 <- function(x, par , log = FALSE){

gam <- par[1]; mu <- par[2]; delta <- par[3]

pdf <- 0

if(delta <= 0){

if(log == FALSE) return(pdf)

if(log == TRUE) return(log(pdf))

}

else{

z <- (x - mu)/delta

#Define 0 neighbourhood

eps <- .Machine✩double.eps^.3

#the smallest positive floating -point

#number x such that 1 + x != 1

if(abs(gam) <= eps){

pdf <- (1/delta)*

exp(-(z + exp(-z)))

}

else{

if((1 + gam*z) > 0){

gev.k <- (1 + gam*z)^(-1/gam)

pdf <- (1/delta)*

(gev.k^(gam + 1))*

exp(-gev.k)

}

81
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}

if(log == FALSE) return(pdf)

if(log == TRUE) return(log(pdf))

}

}

dgev.V <- Vectorize(dgev1, "x")

#Cumulative density function

pgev1 <- function(x, par , log = FALSE){

gam <- par[1]; mu <- par[2]; delta <- par[3]

cdf <- 0

if(delta <= 0){

if(log == FALSE) return(cdf)

if(log == TRUE) return(log(cdf))

}

else{

z <- (x - mu)/delta

#Define 0 neighbourhood

eps <- .Machine✩double.eps^.3

#the smallest positive floating -point

#number x such that 1 + x != 1

if(abs(gam) <= eps){

cdf <- exp(-exp(-z))

}

else{

gev.k <- (1 + gam*z)^(-1/gam)

cdf <- exp(-gev.k)

if(gam > 0 & ((1 + gam*z) <= 0))

cdf <- 0

if(gam < 0 & ((1 + gam*z) <= 0))

cdf <- 1

}

if(log == FALSE) return(cdf)

if(log == TRUE) return(log(cdf))

}

}

pgev.V <- Vectorize(pgev1, "x")



Appendix 83

#GEV distribution in the tilde parameterization

#Probability density function

dgev1.tilde <- function(x, par , s, log = FALSE){

gam <- par[1]; mu <- par[2]; delta <- par[3]

cdf <- 0

pdf <- 0

if(delta <= 0){

if(log == FALSE) return(pdf)

if(log == TRUE) return(log(pdf))

}

else{

z <- (x - mu)/delta

#Define 0 neighbourhood

eps <- .Machine✩double.eps^.3

#the smallest positive floating -point

#number x such that 1 + x != 1

if(abs(gam) <= eps){

cdf <- (exp(-exp(-z)))^(1/s)

pdf <- (1/(s*delta ))* cdf*exp(-z)

}

else{

gev.k <- (1 + gam*z)^(-1/gam)

gev.k2 <- (1 + gam*z)^(-1/gam -1)

cdf <- (exp(-gev.k))^(1/s)

pdf <- (1/(s*delta ))* cdf*gev.k2

if(gam > 0 & ((1 + gam*z) <= 0)){

cdf <- 0

pdf <- 0

}

if(gam < 0 & ((1 + gam*z) <= 0)){

cdf <- 1

pdf <- 0

}

}

if(log == FALSE) return(pdf)

if(log == TRUE) return(log(pdf))

}

}
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dgev.tilde.V <- Vectorize(dgev1.tilde , "x")

#Cumulative density function

pgev1.tilde <- function(x, par , s, log = FALSE){

gam <- par[1]; mu <- par[2]; delta <- par[3]

cdf <- 0

if(delta <= 0){

if(log == FALSE) return(cdf)

if(log == TRUE) return(log(cdf))

}

else{

z <- (x - mu)/delta

#Define 0 neighbourhood

eps <- .Machine✩double.eps^.3

#the smallest positive floating -point

#number x such that 1 + x != 1

if(abs(gam) <= eps){

cdf <- (exp(-exp(-z)))^(1/s)

}

else{

gev.k <- (1 + gam*z)^(-1/gam)

cdf <- (exp(-gev.k))^(1/s)

if(gam > 0 & ((1 + gam*z) <= 0))

cdf = 0

if(gam < 0 & ((1 + gam*z) <= 0))

cdf = 1

}

if(log == FALSE) return(cdf)

if(log == TRUE) return(log(cdf))

}

}

pgev.tilde.V <- Vectorize(pgev1.tilde , "x")
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Appendix B

#GP distribution

#Probability density function

dgp1 <- function(x, par , log = FALSE){

gam <- par[1]; delta <- par[2]

pdf <- 0

if(delta <= 0 | x <= 0){

if(log == FALSE) return(pdf)

if(log == TRUE) return(log(pdf))

}

else{

z <- x/delta

#Define 0 neighbourhood

eps <- .Machine✩double.eps^.3

#the smallest positive floating -point

# number x

such that 1 + x != 1

if(abs(gam) <= eps){

pdf <- (1/delta)*exp(-z)

}

else{

if((1 + gam*z) > 0){

pdf <- (1/delta)*

(1 + gam*z)^(-(1/gam) - 1)

}

}

if(log == FALSE) return(pdf)

if(log == TRUE) return(log(pdf))

}

}

dgp.V <- Vectorize(dgp1, "x")

#Cumulative density function

pgp1 <- function(x, par , log = FALSE){

gam <- par[1]; delta <- par[2]

cdf <- 0
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if(delta <= 0 | x <= 0){

if(log == FALSE) return(cdf)

if(log == TRUE) return(log(cdf))

}

else{

z <- x/delta

#Define 0 neighbourhood

eps <- .Machine✩double.eps^.3

#the smallest positive floating -point

# number x such that 1 + x != 1

if(abs(gam) <= eps){

cdf <- 1 - exp(-z)

}

else{

cdf <- 1 - (1 + gam*z)^(-1/gam)

if(gam > 0 & ((1 + gam*z) <= 0))

cdf <- 0

if(gam < 0 & ((1 + gam*z) <= 0))

cdf <- 1

}

if(log == FALSE) return(cdf)

if(log == TRUE) return(log(cdf))

}

}

pgp.V <- Vectorize(pgp1, "x")
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Appendix C

#Censored GEV likelihood

gev.lik <- function(par , data , t = NULL , p = 0.95,

log = FALSE ,

#llik.type = Max -Gev -Cens/ Gev -Cens

llik.type = "Gev -Cens",

#param.type = tilde / bar

param.type = "tilde"){

gam <- par[1]; mu <- par[2]; delta <- par[3]

#Set the smallest value of the log -likelihood

Low <- -1e300

#Check the validity of the required likelihood

if(!any(llik.type == "Max -Gev -Cens",

llik.type == "Gev -Cens")){

stop("Must choose the likelihood between

Max -Gev -Cens and Gev -Cens \n")

}

#Check the validity of the parameterization

if(!any(param.type == "tilde",

param.type == "bar")){

stop("Must choose the parameterization

between tilde and bar \n")

}

#Check the validity of the data

if(!is.vector(data))

{stop("Data must be a vector \n")}

#Check the validity of the parameters

if(length(par) != 3)

{stop("Wrong length of

parameter vector \n")}

#Check the support of the scale parameter delta

if(delta <= 0){

if(log == FALSE) return(0)

if(log == TRUE) return(Low)

}
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#Empirical threshold

#Use discontinuous sample 95% quantile: type = 3

if(is.null(t)){

t <- as.numeric(quantile(data , probs = p,

type = 3))

#message ("T set to 95% quantile by default \n")

}

#Indicator of censoring

cond <- data > t

#Exceedances

exceed <- data[cond]

#Sample size

n <- length(data)

#Effective sample size

k <- sum(cond)

if(llik.type == "Max -Gev -Cens"){

#Likelihood (tilde parameterization)

if(log == FALSE){

lik.cens <- (pgev.V(t, par ,

log = FALSE )^(k/n))^(n - k)

lik.obs <- prod((k/n)*( pgev.V(exceed , par ,

log = FALSE )^(k/n - 1))*

dgev.V(exceed , par , log = FALSE))

lik <- prod(lik.cens , lik.obs)

if(is.infinite(lik)) return(0)

return(lik)

}

#Log -likelihood (tilde parameterization)

if(log == TRUE){

llik.cens <- (n - k)*((k/n)*pgev.V(t, par ,

log = TRUE))

llik.obs <- sum(log(k/n) + dgev.V(exceed , par ,

log = TRUE) +

(k/n - 1)*pgev.V(exceed , par , log = TRUE))

llik <- sum(llik.cens , llik.obs)

if(is.infinite(llik)) return(Low)
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return(llik)

}

}

if(llik.type == "Gev -Cens"){

#Define the new parameterization

#(GEV parameterization)

if(param.type == "tilde"){

delta.new <- delta *(k/n)^(gam)

mu.new <- mu - delta * (1 - (k/n)^gam)/gam

par.new <- c(gam , mu.new , delta.new)

#Likelihood (tilde parameterization)

if(log == FALSE){

lik.cens <- (pgev.V(t,

par.new , log = FALSE ))^(n - k)

lik.obs <- prod(dgev.V(exceed ,

par.new , log = FALSE))

lik <- prod(lik.cens , lik.obs)

if(is.infinite(lik)) return(0)

return(lik)

}

#Log -likelihood (tilde parameterization)

if(log == TRUE){

llik.cens <- (n - k)*( pgev.V(t,

par.new , log = TRUE))

llik.obs <- sum(dgev.V(exceed ,

par.new , log = TRUE))

llik <- sum(llik.cens , llik.obs)

if(is.infinite(llik)) return(Low)

return(llik)

}

}

if(param.type == "bar"){

#Likelihood (bar parameterization)

if(log == FALSE){

lik.cens <- (pgev.V(t, par ,
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log = FALSE ))^(n - k)

lik.obs <- prod(dgev.V(exceed ,

par , log = FALSE))

lik <- prod(lik.cens , lik.obs)

if(is.infinite(lik)) return(0)

return(lik)

}

#Log -likelihood (bar parameterization)

if(log == TRUE){

llik.cens <- (n - k)*( pgev.V(t, par ,

log = TRUE))

llik.obs <- sum(dgev.V(exceed , par ,

log = TRUE))

llik <- sum(llik.cens , llik.obs)

if(is.infinite(llik)) return(Low)

return(llik)

}

}

}

}

#Profile likelihood

#(gamma , mu , \hat{delta }_{( gamma , mu)})

gev.lik.gammu <- function(par , data , t = NULL , p = 0.95,

log = FALSE ,

llik.type = "Gev -Cens", param.type = "tilde"){

par0 <- 5

prof.lik <- -nlminb(par0,

function(x) -gev.lik(par = c(par[1], par[2], x),

data = data , t = t, p = t.prob ,

log = log , llik.type = llik.type ,

param.type = param.type),

lower = 1e-10, upper = Inf)✩ objective

return(prof.lik)

}

#gev.lik.gammu <- Vectorize(gev.lik.gammu , "par")

#Profile likelihood
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#(gamma , \hat{mu}_{( gamma , delta)}, delta)

gev.lik.gamdel <- function(par , data , t = NULL , p = 0.95,

log = FALSE ,

llik.type = "Gev -Cens", param.type = "tilde"){

par0 <- 1

prof.lik <- -nlminb(par0,

function(x) -gev.lik(par = c(par[1], x, par[2]),

data = data , t = t, p = t.prob ,

log = log , llik.type = llik.type ,

param.type = param.type),

lower = -Inf , upper = Inf)✩ objective

return(prof.lik)

}

#gev.lik.gamdel <- Vectorize(gev.lik.gamdel , "par")

#Profile likelihood

#(\hat{gamma }_{(mu, delta)}, mu, delta)

gev.lik.mudel <- function(par , data , t = NULL , p = 0.95,

log = FALSE ,

llik.type = "Gev -Cens", param.type = "tilde"){

par0 <- 1

prof.lik <- -nlminb(par0,

function(x) -gev.lik(par = c(x, par[1], par[2]),

data = data , t = t, p = t.prob ,

log = log , llik.type = llik.type ,

param.type = param.type),

lower = -Inf , upper = Inf)✩ objective

return(prof.lik)

}

#gev.lik.mudel <- Vectorize(gev.lik.mudel , "par")
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Appendix D

#Uniform prior for (gamma , mu, delta)

gev.unif.prior <- function(par , log = FALSE){

#Same prior for tilde and bar parameterization

#Jeffreys ’ prior in scale and location families

#Jeffreys ’ prior is parameterization invariant

delta <- par[3]

pi.prior <- 1/delta

if(log == FALSE) return(pi.prior)

if(log == TRUE) return(log(pi.prior))

}

#Empirical Bayes prior distribution for (gamma , mu, delta)

gev.emp.prior <- function(par , hyp ,

#param.type = tilde / bar

param.type = "tilde",

#s = n/k

s.frac = NULL ,

log = FALSE){

#Parameters

gam <- par[1]; mu <- par[2]; delta <- par[3]

#Hyperparameters (hatmu , hatdelta)

bk <- hyp[1]; ak <- hyp[2]

if(param.type == "tilde"){

#gamma prior

pi.gam <- (1 - pt(-1, df = 1))^(-1)*dt(gam ,

df = 1)*I(gam > -1)

#Mu prior

pi.mu <- (1/ak)* dnorm((mu - bk)/ak)

#Delta prior

pi.del <- (1/ak)* dgamma(delta , shape = 1,

scale = ak)*I(delta > 0)
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#Prior

if(log == FALSE)

return(prod(pi.gam , pi.mu , pi.del))

if(log == TRUE)

return(sum(log(pi.gam),

log(pi.mu), log(pi.del)))

}

if(param.type == "bar"){

#Set s

if(is.null(s.frac )){

stop("Set the inverse of the

proportion of exceedances s \n")

}

#Define 0 neighbourhood

eps <- .Machine✩double.eps^.3

#the smallest positive floating -point

#number x such that 1 + x != 1

if(abs(gam) <= eps){

#Prior components

pi.1 <- (1 - pt(-1, df = 1))^(-1)

*dt(gam , df = 1)*I(gam > -1)

pi.2 <- (1/ak)* dnorm((mu - bk +

(delta*log(s.frac )))/ak)

pi.3 <- (1/ak^2)*exp(-(1/ak)* delta)

*I(delta > 0)

}

else{

#Prior components

pi.1 <- (s.frac^(gam ))*

(1 - pt(-1, df = 1))^(-1)*

dt(gam , df = 1)*I(gam > -1)

pi.2 <- (1/ak)* dnorm((mu - bk +

((s.frac^(gam ))* delta*

(1 - s.frac^(-gam )))/ gam)/ak)

pi.3 <- (1/ak^2)*

exp(-(1/ak)*(s.frac^(gam))*
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delta )*I(delta > 0)

}

#Prior

if(log == FALSE) return(prod(pi.1, pi.2, pi.3))

if(log == TRUE) return(sum(log(pi.1),

log(pi.2), log(pi.3)))

}

}

#Posterior distribution for (gamma , mu, delta)

gev.post <- function(par , data , hyp , t = NULL , p = 0.95,

log = FALSE ,

#llik.type = Max -Gev -Cens/ Gev -Cens

llik.type = "Gev -Cens",

#param.type = tilde / bar

param.type = "tilde",

#prior = "uniform" / "empirical"

prior = "empirical"){

if(prior == "uniform"){

if(log == FALSE)

return(prod(gev.lik(par , data , t = t,

p = p, log = FALSE ,

llik.type = llik.type ,

param.type = param.type),

gev.unif.prior(par , log = FALSE )))

if(log == TRUE)

return(sum(gev.lik(par , data , t = t,

p = p, log = TRUE ,

llik.type = llik.type ,

param.type = param.type),

gev.unif.prior(par , log = TRUE )))

}

if(prior == "empirical"){

#Empirical threshold

#Use discontinuous sample 95% quantile: type = 3

if(is.null(t)){
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t <- as.numeric(quantile(data ,

probs = p, type = 3))

}

#Indicator of censoring

cond <- data > t

#Sample size

n <- length(data)

#Effective sample size

k <- sum(cond)

#s = n/k

s.frac <- n/k

if(log == FALSE)

return(prod(gev.lik(par , data ,

t = t, p = p, log = FALSE ,

llik.type = llik.type ,

param.type = param.type),

gev.emp.prior(par , hyp ,

param.type = param.type ,

s.frac = s.frac ,

log = FALSE )))

if(log == TRUE)

return(sum(gev.lik(par , data ,

t = t, p = p, log = TRUE ,

llik.type = llik.type ,

param.type = param.type),

gev.emp.prior(par , hyp ,

param.type = param.type ,

s.frac = s.frac ,

log = TRUE )))

}

}
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Appendix E

#Adaptive Gaussian Random Walk Metropolis -Hastings Markov

#Chain Monte Carlo

adamh <- function(R, data , hyp , par0, k0, t = NULL , p = p,

#llik.type = Max -Gev -Cens/ Gev -Cens

llik.type = "Gev -Cens",

#param.type = tilde / bar

param.type = "tilde",

#prior = "uniform" / "empirical"

prior = "empirical",

#etastar: desired overall sampler acceptance probability

etastar = 0.234){

#Required packages

require(mvtnorm)

#Set parameters constraints

parcheck <- function(para){

res <- any(para[3] <= 0,

(para[1] > 0 &

(para[2] > min(data) + para[3]/para[1])),

(para[1] < 0 &

any(para[2] <= data + para[3]/para[1])))

return(res)

}

n <- length(data)

d <- length(par0)

if(!any(d == 3)){ stop("Wrong length of parameter vector")}

#Correct specification of the prior

if(!any(prior == "uniform", prior == "empirical")){

stop("Specify a prior type within

uniform and empirical")

}

#Quantities related to the adaptive update of k

zeta0 <- -qnorm(etastar/2)

#Steplength constant
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#Suitable overstimate of steplength constant

#in multivariate framework

a <- (1 - 1/d)*( sqrt(2*pi))*

exp((zeta0^2)/2)/(2*zeta0) +

1/(d*etastar *(1 - etastar ))

out <- array(dim = c(R, d))

#Acceptance vector

accepted <- rep(0, R)

#Acceptance probabilities vector

accepted.prob <- rep(0, R)

#Automatic rejection counter

#(proposed parameters that don ’t respect

#the constraints)

straight.reject <- rep(0, R)

#Vector of scaling parameters k

k.vec <- k0

#Monitor the adequate values of k

k.start <- k0

k.restart <- k0

#Number of iterations before the beginning

#of RM search

n0 <- round(5/( etastar *(1 - etastar )))

#Max number of iterations before the last restart

iMax <- 100

Numbig <- 0

Numsmall <- 0

#Counter of the iteration number at each restart

numRS <- 1

#Message about the outcome of the algorithm

msg <- "MCMC run without errors"

#Initialization

sigma0 <- diag(d)

par <- par0; sigma <- sigma0; k <- k0

#Progress bar

pb <- txtProgressBar(min = 0, max = R,

initial = 0, style = 3)
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for(i in 1:R){

#Adequacy of the covariance matrix

s <- try(eigen ((k^2)*sigma ,

symmetric = TRUE),

silent = TRUE)

if(class(s) == "try -error"){

msg <- "MCMC failed"

return(list(values = out ,

accepted.vec = accepted ,

accepted = mean(accepted),

accepted.prob = accepted.prob ,

straight.reject = straight.reject ,

k.vec = k.vec ,

k.restart = k.restart ,

msg = msg))

}

#Proposal

if(d == 1) pars <- rnorm(1, sigma = k)

#pars <- par + rmvnorm(1, sigma = k*sigma)

else pars <- par +

rmvnorm(1, sigma = (k^2)* sigma)

numRS <- numRS + 1

#Check for NA proposed values

if(any(is.na(pars ))){

straight.reject[i] <- 1

accepted.prob[i] <- 0

}

#Check basis condition

else{

if(parcheck(pars )){

straight.reject[i] <- 1

accepted.prob[i] <- 0

}

#Compute the acceptance probability

else{

eta <- min(1, exp(gev.post(pars ,

data , hyp , t = t, p = p, log = TRUE ,

llik.type = llik.type ,
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param.type = param.type ,

prior = prior) -

gev.post(par , data , hyp ,t = t,

p = p,log = TRUE ,

llik.type = llik.type ,

param.type = param.type ,

prior = prior )))

#Check for unsuccessful

#probability computation

if(is.na(eta )){

straight.reject[i] <- 1

accepted.prob[i] <- 0

eta <- 0

}

else{

accepted.prob[i] <- eta

#Accepatance/rejection step

if(runif(1) < eta){

par <- pars

accepted[i] <- 1

}

}

}

}

out[i,] <- par

#Adaptive covariance matrix update

#(Haario et al. 2001)

if(i > 100 && d > 1){

if(i == 101){

#Update partial covariance matrix

sigMat <- cov(out[1:i,])

#Update partial mean vector

thetaM <- apply(out[1:i,], 2, mean)

sigma <- sigMat

+ diag(d)/i

}

else{

#Recursive update of partial
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#mean vector

thetaM2 <- (thetaM *(i - 1) + out[i,])/i

#Recursive update of partial

#covariance matrix

sigMat <- (i - 2)/(i - 1)* sigMat +

thetaM %*%t(thetaM) -

(i)/(i - 1)* thetaM2%*%t(thetaM2)

+ 1/(i - 1)*out[i,]%*%t(out[i,])

sigma <- sigMat

+ diag(d)/i

#Recursive update of partial

#mean vector

thetaM <- thetaM2

}

}

#Adaptive k update via Robbins -Monro process

#(Garthwaite et al. 2016)

if(i > n0){

if(d == 1)

kstar <- exp(log(k) + a*(eta - etastar )/i)

else

kstar <- exp(log(k) +

a*(eta - etastar )/max(200, i/d))

k <- kstar

k.vec <- c(k.vec , k)

if ((i <= (iMax + n0)) &&

(Numbig < 5 || Numsmall < 5)) {

Toobig <- (k > (3*k.start))

Toosmall <- (k < (k.start/3))

if (Toobig || Toosmall) {

#Restart the algorithm

message("\n", "Restart the

program at ", numRS ,

"th iteration")

#k.restart

k.restart <- c(k.restart , k)

Numbig <- Numbig + Toobig

Numsmall <- Numsmall +
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Toosmall

i <- n0

k.start <- k

}

}

}

#Progress bar

print.i <- seq(0, R, by = 100)

if(i %in% print.i) setTxtProgressBar(pb , i)

}

#Return object

return(list(values = out ,

accepted.vec = accepted ,

accepted = mean(accepted),

accepted.prob = accepted.prob ,

straight.reject = straight.reject ,

k.vec = k.vec ,

k.restart = k.restart ,

msg = msg))

}
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Appendix F

#Censored POT frequentist/Empirical Bayes inference

fit.gev.inference <- function(data , t = NULL , t.prob = 0.95,

llik.type = "Gev -Cens", param.type = "tilde",

T.ret = 50, p = 1/length(data),

par0 = NULL , optim.meth = "Nelder -Mead", control = NULL ,

hessian = FALSE ,

#inf.type = c(" Frequent", "Bayes ")

inf.type = NULL ,

#prior = "uniform" / "empirical"

prior = "empirical",

#Posterior chain size

R = NULL ,

#Burn -in

burn = NULL ,

#Starting RW steplength k

k = 1,

#Desired overall sampler acceptance probability

etastar = 0.234,

#Plot about the MCMC algorithm

val.show = FALSE ,

...){

#Choose one of the possible types of inference

if(is.null(inf.type) || (inf.type != "Frequent" &&

inf.type != "Bayes")){

stop("Need to specify the type of inference

between: Frequent or Bayes")

}

#Setting of the starting value of the optimizator

if(is.null(par0))

{stop("Need to specify a starting value

for the optimization")}

#Empirical threshold

#Use discontinuous sample 95% quantile: type = 3

if(is.null(t)){

t <- as.numeric(quantile(data , probs = t.prob ,
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type = 3))

message(paste0("T set to the ", round(100*t.prob , 0),

"% quantile by default"))

}

#Optimization method:

#c("Nelder -Mead", "BFGS", "CG", "L-BFGS -B", "SANN", "Brent ")

if(is.null(optim.meth))

{stop("Need to specify an existing

optimisation method!")}

#Flow control parameters

if(!("control" %in% names(sys.call ()))){

#Maximization

control <- list(fnscale = -1, maxit = 8e+5)

}

else{

if(!("fnscale" %in% names(control ))){

#Maximization

control [["fnscale"]] <- -1

control [["maxit"]] <- 8e+5

}

}

#Sample size

n <- length(data)

#Effective sample size

n.eff <- sum(data > t)

#Define the proportion of exceedances

#exc.prop <- k/n

exc.prop <- n.eff/n

names(exc.prop) <- c("Excesses proportion")

#s = Reciprocal of proportion of exceedances

#s = (n/k)

s <- 1/exc.prop

#Outcome setting

optim.msg <- "Something went wrong"

optimfun <- function(par){

return(gev.lik(par = par , data = data , t = t,

p = t.prob , log = TRUE ,
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llik.type = llik.type , param.type = param.type))

}

#Compute the maximum consered likelihood estimates

#Hessian = TRUE preferred for minimizations

mle <- optim(par0, optimfun , method = optim.meth ,

control = control , hessian = hessian)

#Define the estimated GEV parameters

names(mle✩par) <- c("Shape", "Location", "Scale")

#Frequentist inference setting

if(inf.type == "Frequent"){

optim.msg <- mle✩convergence

names(optim.msg) <- c("Optimization message")

#Define the extreme quantiles

Q.ext <- mle✩par[2] + mle✩par[3] *

((s*p)^(-mle✩par[1]) - 1) / mle✩par[1]

names(Q.ext) <- c("Extreme -Quantile")

#Return level associated with the return period T.ex

R.lev <- mle✩par[2] + mle✩par[3] *

((-log(1 - 1/T.ret))^(-mle✩par[1]) - 1) / mle✩par[1]

names(R.lev) <- c("Return -Level")

#Return object

if(hessian == FALSE){

return(list(inference = inf.type ,

mle = mle✩par ,

max.lik = mle✩value ,

hessian = mle✩hessian ,

Q.extreme = Q.ext ,

R.level = R.lev ,

optim.msg = optim.msg ,

exc.prop = exc.prop))

}

else{

#Preferred for minimizations

return(list(inference = inf.type ,
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mle = mle✩par ,

max.lik = mle✩value ,

hessian = mle✩hessian ,

Q.extreme = Q.ext ,

R.level = R.lev ,

optim.msg = optim.msg ,

exc.prop = exc.prop))

}

}

#Bayesian inference setting

if(inf.type == "Bayes"){

#Outcome setting

optim.msg <- "Something went wrong"

#Check for the number of posterior samples

if(is.null(R))

{stop("Missing number of replications

for MCMC")}

#Set the number of quantiles to extrapolate

nQuant <- length(p)

#Correct specification of the prior

if(!any(prior == "uniform", prior == "empirical")){

stop("Specify a prior type within

uniform and empirical")

}

#Empirical Bayes

#Maximum likelihood estimates for norming constants

#in the tilde parameterization

optimfun <- function(par){

return(gev.lik(par = par , data = data ,

t = t, p = t.prob , log = TRUE ,

llik.type = "Gev -Cens",

param.type = "tilde"))

}

#Compute the maximum consered likelihood

#of the tilde parameters

mle.tilde <- optim(par0, optimfun ,

method = optim.meth , control = control ,
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hessian = hessian)

#Prior hyperparameters

hyp <- mle.tilde✩par[2:3]

hyp.ret <- mle.tilde✩par[2:3]

names(hyp.ret) <- c("b(n/k)", "a(n/k)")

#Optimization

optimfun <- function(par){

return(gev.post(par = par , data = data ,

hyp = hyp ,

t = t, p = t.prob ,

llik.type = llik.type ,

param.type = param.type ,

prior = prior , log = TRUE))

}

#Compute the posterior mode estimates

#Hessian = TRUE preferred for minimizations

mode <- optim(par0, optimfun , method = optim.meth ,

control = control ,

hessian = hessian)

optim.msg <- mode✩convergence

names(optim.msg) <- c("Optimization message")

#Posterior mode GEV parameters

names(mode✩par) <- c("Shape", "Location", "Scale")

#Posterior chain

post.mcmc <- adamh(R = R, data = data , hyp = hyp ,

par0 = par0, k0 = k,

t = t, p = p, prior = prior ,

llik.type = llik.type ,

param.type = param.type ,

etastar = etastar)

#Acceptance rate

post.acc <- post.mcmc✩accepted

mean.acc <- rep(NA , length(post.mcmc✩accepted.prob))

for(j in c(1:length(post.mcmc✩accepted.prob ))){

mean.acc[j] <- mean(post.mcmc✩accepted.prob[round(j/2) :j])

}

index <- c(1:2000, seq(2001, length(post.mcmc✩k.vec),

by = 100))

#Plots of steplength and acceptance probability
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if(val.show){

par(mfrow=c(1, 2))

plot(cbind(index , post.mcmc✩k.vec[index]^2),

type = "l", col = 3,

ylim = c(0, max(post.mcmc✩k.vec^2)),

ylab = expression(kappa),

xlab = "Iterations", lwd = 2)

abline(h = 0, lwd = 2)

plot(cbind(index , mean.acc[index]),

type = "l", col = 2, ylim = c(0,1),

ylab = "Acceptance Probability",

xlab = "Iterations", lwd = 2)

abline(h = etastar , lwd = 2)

par(mfrow = c(1, 1))

#Deduce approximate samples from the

#parameter ’s posterior distributions

}

#Posterior distribution of the original parameters

#(after burn -in)

if(is.null(burn )){

burn <- round(R/4)

message(paste0("\n Burn -in set to the 25% of

", R, " by default"))

}

post.sam <- post.mcmc✩values [(burn + 1):R,]

scale <- post.sam[,3]

loc <- post.sam[,2]

colnames(post.sam) <- c("Shape", "Location", "Scale")

#Extreme quantile chain

Q.ext <- matrix(NaN , nrow = nrow(post.sam),

ncol= nQuant)

for(j in 1:nQuant ){

Q.ext[,j] <- loc + scale *

((exc.prop/p[j])^ post.sam[,1] - 1)/

post.sam[,1]

}

#Return level

R.lev <- loc + scale *

((-log(1 - 1/T.ret))^(- post.sam[,1]) - 1)/
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post.sam[,1]

#Return object

if(hessian == FALSE){

return(list(inference = inf.type ,

mle = mle✩par ,

mode = mode✩par ,

max.post = mode✩value ,

optim.msg = optim.msg ,

emp.bayes.hyp = hyp.ret ,

mcmc.acc = post.acc ,

parameters = post.sam ,

Q.extreme = Q.ext ,

R.level = R.lev ,

straight.reject =

post.mcmc✩straight.reject [(burn + 1):R],

k.vec = post.mcmc✩k.vec ,

accept.prob =

cbind(index , mean.acc[index]),

msg = post.mcmc✩msg ,

exc.prop = exc.prop))

}

else{

return(list(inference = inf.type ,

mle = mle✩par ,

mode = mode✩par ,

hessian = mode✩hessian ,

max.post = mode✩value ,

optim.msg = optim.msg ,

emp.bayes.hyp = hyp.ret ,

mcmc.acc = post.acc ,

parameters = post.sam ,

Q.extreme = Q.ext ,

R.level = R.lev ,

straight.reject =

post.mcmc✩straight.reject [(burn + 1):R],

k.vec = post.mcmc✩k.vec ,

accept.prob =

cbind(index , mean.acc[index]),
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msg = post.mcmc✩msg ,

exc.prop = exc.prop))

}

}

}
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