

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Aerospaziale

Relazione per la prova finale «La missione spaziale Comet Interceptor verso una cometa dinamicamente nuova»

Tutor universitario: Prof. Monica Lazzarin

Laureando: Susanna Simula

Padova, 29/09/2023

Corso di Laurea in Ingegneria Aerospaziale

www.dii.unipd.it

gravitazionalmente influenzata da Giove

L'obiettivo è osservare il Sistema Solare da un punto di vista lontano nel tempo, ma come?

Studio del Nucleo di una cometa	Misurare la grandezza, la forma e la velocità di rotazione
	Inviare immagini della superficie per ricavarne la morfologia
	Osservare tramite telerilevamento la composizione del nucleo
	Misurare direttamente le proprietà termiche tramite infrarossi

Studio
della
ChiomaConnessione chioma-nucleoAttività cometaria

Soluzione: Fly by con prospettiva a tre corpi

Il metodo scelto per l'approccio ad una cometa sconosciuta è quello del fly-by singolo che, come suggerisce il termine, è un volo ravvicinato e sarà effettuato da tre diversi spacecraft di cui uno madre (S/C A) e due sonde ausiliarie (B1 e B2).

x 10⁵ x 10⁵ 5 y_{rotating} [km] z_{rotating} [km] - Comet-I Intercept Transfer -2 . Intercept Point -5 5 0 y_{rotating} [km] x 10⁵ 15 0 5 10 x_{rotating} [km] x 10⁵ Trasferimento dal punto Lancio: x 10⁵ L2 al target passeggero di 5 Fig. 4. Example of Comet Intercept Transfer for a hypothetical LPC. z_{rotating} [km] Ariane 62 assieme Trasferimento a alla missione punto L2 e fase ARIEL ່ 15 x 10⁵ ting [km 0 5 ⁵x 10⁵ d'attesa -1 0 x rotating (fine 2029)

MANOVRA INIZIALE DI FUGA DALLA SFERA DI INFLUENZA TERRESTRE (MODELLO A 3 CORPI)

• Trasferimento diretto

Per la simulazione è stato scelto il modello del Circular Restricted Three-Body Problem e il tempo di fuga è stato definito come quello per raggiungere la distanza di 0.2 au dalla Terra.

Periodo orbita Halo	0.5y
Dimensioni orbita Halo	850,000x600,000 km sul piano yz
Velocità di fuga	800 m/s
Δv	10 m/s (200 m/s se da L1)

• Swing-by lunare: modello a due corpi del tipo "patched conic"

Per conoscere le rispettive posizioni orbitali dello spacecraft e della Luna nel momento specifico in cui viene scoperto l'oggetto obiettivo della missione, verrà utilizzata una distribuzione di variabili random.

Il problema di progettazione della traiettoria eliocentrica è stato affrontato tramite un Optimal Control Problem OCP, il cui scopo è minimizzare il Δv di manovra richiesto. Il modello è sempre quello dei due corpi tramite un'approssimazione "patched conic".

UNIVERSITÀ DEGLI STUDI

di Padova

Dati di input

- le rivoluzioni complete attorno al Sole devono essere al massimo tre.
- la partenza considerata è solamente quella dal punto L2
- il tempo di volo non è stato vincolato

Risultati voluti (regione accessibile)

- $\Delta v < 750 \text{ m/s}$
- intervallo angolare da -150° a 150°
- Intervallo in termini di distanza da 1 a 1.18 au

N.B.: non è stato ancora considerata la possibilità di partire da L1, il che non richiederebbe spese di Δv

Opzione 2

- Considero la partenza da L1
- Impongo 3 differenti limiti di tempo
- Tolgo il vincolo legato al Sole

Fig. 7. Accessible regions for chemical propulsion (Lambert arc) in Earth synodic reference frame. The colour map represent the Δv budget in km/s. Earth is scaled to the size of its classical sphere of influence. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Dati di input

- le rivoluzioni complete attorno al Sole devono essere al massimo tre.
- la partenza sia da L2 sia da L1
- Vincoli sul tempo di volo

Risultati voluti (regione accessibile)

- limite superiore 72.74 kg di massa di propellente consumato per un impulso specifico Isp stimato di 1500s per una sonda di 750 kg
- intervallo angolare da -150° a 150°
- Intervallo in termini di distanza da 0.85 a 1.35 au

Fig. 9. Accessible regions for electric propulsion. The colour map represent the propellant mass in kg. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

• Combinazione delle due modalità per i medesimi dati di input, con massa di propellente ridotta fino a 60 kg

A causa dei vincoli imposti dall'ambiente, dei limiti delle ruote di reazione dello spacecraft e dalle loro possibili falle, è necessario introdurre un algoritmo in grado di riorientare la strumentazione necessaria alla raccolta dati, in modo che il target rimanga in ogni fase del fly-by nel field of view.

Vincoli

- L'angolo tra v e rc, θvmax per le fotocamere ottiche e θimax per quelle a infrarossi, dev'essere mantenuto al di sotto della metà dell'angolo massimo di field of view
- L'angolo tra v ed rsun deve risultare maggiore di θsun per proteggere la strumentazione
- NO manovre impulsive attuate da thrusters in quanto contaminerebbero la raccolta dati

Non trascura la dinamica dello spacecraft quali la

Fig. 1 Illustration of the instrument pointing \vec{v} , comet pointing \vec{r}_c and sun pointing \vec{r}_{sun} unit vectors as well as the various field of view constraints for the Comet Interceptor mission. Note: In this diagram \vec{v} is assumed to be aligned with the \vec{x} body axis

Non è di tipo repulsivo, e ciò rende difficile l'implementazione di vincoli più complessi tramite funzioni di controllo

rigidezza giroscopica e il

immagazzinato dalle

ruote di reazione

momento

Utilizzo

il metodo

Convex

Algorithm 1: Flyby Optimization using Se-			
quential Convex Programming			
I	nput: initial linearization trajectories		
$\overline{x}_k, \overline{u}_k, \overline{\gamma}_k, \overline{\zeta}_k \ \forall k \in \{0, \dots, N-1\}$			
Output: final spacecraft trajectory and control inputs			
	x_k, u_k		
1 compute the static parts of the matrices used in the			
convex solver call using eqs. (2.21) and (2.22)			
2 for $i \leftarrow 1$ to n_{iter} do			
3	using $\overline{\sigma}$, \overline{u} , and (2.15)		
4	update the parameters that depend on the		
•	linearization trajectory used in the convex solver		
	call		
5	for $j \leftarrow 1$ to n_{sol} do		
6	update the parameters that depend on the		
	trust region size used in the convex solver call		
7	solve optimization (2.16) to obtain		
	$x_k, u_k, \gamma_k, \zeta_k, o_{x,k}, o_{u,k}$		
8	integrating the input u_k using $acc. (2.1)$		
	and (2.12)		
9	calculate the solution quality metric ϵ_{π} using		
-	$x_{k_1} x_{k_2}^*$ and (2.17)		
10	if $\epsilon_x \leq \epsilon_{max}$ then		
11	expand trust region limits		
	$\delta_{xmax}, \ \delta_{umax} \leftarrow \kappa^+ \delta_{xmax}, \ \kappa^+ \delta_{umax}$		
12	accept new linearization trajectories		
	$\overline{x}_k, \overline{u}_k, \overline{\gamma}_k, \overline{\zeta}_k \leftarrow x_k^\star, u_k, {\gamma}_k, {\zeta}_k$		
13	break		
14	ense contract trust region limits $\delta = \delta = e^{-\delta}$		
15	$o_{xmax}, o_{umax} \leftarrow \kappa o_{xmax}, \kappa o_{umax}$		
10	return \overline{x}_{L} , \overline{u}_{L}		
16	end		
17	end		
	N-1		
18	if $\sum_{k=0}^{\infty} (\delta_{u,k} + \delta_{x,k}) \leq \delta_{convergence}$ then		
19	return $\overline{x}_k, \overline{u}_k$		
20	end		
21	if time limit exceeded or $i = n_{iter}$ then return		
	$\overline{x}_k,\overline{u}_k$		
22 e	nd		

[1] ESA European Space Agency. Comet interceptor: Visiting a pristine comet. 2022.

[2] Valentin Preda, Andrew Maxwell Hyslop, and Samir Bennani. Optimal sciencetime reorientation policy for the comet interceptor flyby via sequential convex programming. CEAS Space Journal, 14:173–186, 2021.

[3] Joan Pau S'anchez, David Morante, Pablo Hermosin, Daniel Ranuschio, Alvaro Estalella, Dayana Viera, Simone Centuori, Geraint H. Jones, Colin Snodgrass, Anny Chantal Levasseur-Regourd, and Cecilia Tubiana. Esa f-class comet interceptor: Trajectory design to intercept a yet-to-be-discovered comet. 2021