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Abstract

Slope instabilities, whether occurring in natural or engineered slopes, are significant geo-

hazards that carry substantial risks in terms of human safety, environmental impact, and

economic costs. The relevance of studying this phenomenon has grown due to the influence

of climate change, as increased rainfall patterns are expected to lead to a higher frequency of

slope instability events. Also, in engineered scenarios such as open pit mines, the operative

requirements have become stricter in recent years, focusing on the improvement of safety to

decrease operational risks. Moreover, the use of remote sensing technology such as Ground

Based Synthetic Aperture Radar (GB-SAR) has opened the possibility of monitoring in real-

time, with very high resolution the deformation of the slopes, which provides the opportunity

for timely decision-making in managing this hazard. Extracting geological structures from

GB-SAR data can improve the geological and geotechnical characterization of the slopes, and

can promptly provide an input to conduct a primary kinematic analysis for slope stability

modeling. In this study, a semi-automatic algorithm was developed to detect geological

structures from a velocity map obtained from GB-SAR data. This algorithm filters the

2D map and clusters the unstable area for posterior edge detection. Then, the extracted

3D edge serves as input for a newly developed 3D iterative plane-fitting algorithm which

provides surfaces that are potentially related to the geological structures involved in the

slope instability. The accuracy and effectiveness of this algorithm were tested in two cases

of study with radar data provided by the company IDS GeoRadar. With this data, it was

possible to compare the extracted planes with planes modeled using photogrammetry and

to establish the limitations and some of the requirements to use this algorithm, such as a

proper resolution of the Digital Terrain Model (DTM) and an accurate geocoding.
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1 Introduction

Slopes, whether natural or engineered, experience shear stress due to the force of gravity,

and in unstable conditions this might lead to the movement of a mass of rock, soil, or a

combination of material down-slope resulting in a failure event. This process is a consequence

of two possible conditions: the increase in shear stress and the reduction of the material shear

strength (Varnes 1978). These two factors can occur independently and simultaneously, and

depend on the geological structures of the slope since they usually control its stability, the

failure mechanism, and the hydro-geological conditions from the micro to the macro scale

(Stead and Wolter 2015). Thus, it is of great relevance to characterize in detail the structures

that are or may be associated with the slope instability. In the case of engineered slopes, the

study of the geological structures should be part of the multiple stages of the development of

the project such as the design, operation, and post-operation, since the human intervention

itself modifies the stress field of a slope and hence it modifies the role of the present structures

on its stability.

This geological phenomenon is a very relevant hazard since according to the report presented

by the Centre for Research on the Epidemiology of Disasters (CRED) “2022 Disaster on

numbers”, during this year 403 deaths were caused by landslides, casualties which most of

them could have been prevented with an appropriate risk assessment. Besides, on the data

gathered by CRED (2023b) in the EM-DAT database, during the last ten years (2013-2023),

natural slope instabilities have represented 4.72% of the total number of natural disaster

events. In some regions of the world, this percentage is likely to increase in the future due

to climate change. As mentioned in Jakob (2022) this is a complex relation that has to be

studied thoroughly since it depends on many variables such as the type of slope instability,

altitude, latitude, precipitation rates variability, etc. Nevertheless, it can be asserted that

regions in high latitudes and high altitudes will be more prone to the increase in the frequency

of slope failure events with climate change, being attributable to glacier retreat and other

special conditions of these areas. Also, tropical and mountainous regions will be affected

by high-intensity rainfalls which is one of the main triggers of slope instabilities. Because

of the concern regarding the adaptability of the affected regions to climate change and

landslides, the Sendai Partnerships 2015-2025 for Global Promotion of Understanding and
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Reducing Landslide Disaster Risk was established . One of the areas of collaboration within

this partnership involves the development of improved technologies for monitoring, testing,

analyzing, and simulating slope instabilities, and the creation of effective early warning

systems for this phenomenon.

Regarding engineered slopes, as mentioned above, during the excavation of rock or soil the

vertical and horizontal stresses are modified, which might cause the opening of cracks and

joints increasing the risk of a slope failure (Altiti, Alrawashdeh, and Alnawafleh 2021). Par-

ticularly, in the case of open pit mines, this hazard has the potential for economic losses

ranging from millions to ten million dollars per site per year, including the costs of cleaning,

disrupting the mining operations, damages to the equipment, and the abandonment of ma-

terial due to the difficulties in remediation (Young, Robotham, and Virk 2020). Moreover,

the main motivation to mitigate the slope instabilities is the protection of the workers, since

according to the Mine Health and Safety Inspectorate of South Africa (2018) slope failures

are one the main causes of accidents in open-pit mines. Additionally, as the world popula-

tion increases and the energy transition demands more production of raw minerals, about

17% of the existing open-pit mines will become deeper, reaching more than 1000m of depth.

This large increase in depth creates a complex scenario regarding the slope stability of the

rock mass, because of the variability of the mechanical properties of the rocks with depth

(Rimmelin and Vallejos 2020). Thus, considering the current state of the world development

model regarding climate change, energy transition, and world population, the study of slope

instabilities is currently a very relevant field for both natural and engineered slopes.

One of the main techniques to analyze slope instabilities is the application of remote sens-

ing methods, which allow safe conditions for the characterization of this hazard. Currently,

there is a wide diversity of options for remote sensing techniques with different applications

according to multiple parameters such as their spatial and temporal resolution, spatial cov-

erage, operative distance, etc (Casagli et al. 2023). The Ground Based Synthetic Aperture

Radar (GB-SAR) is a relatively new technique that emits electromagnetic waves in the mi-

crowave spectrum to detect the deformation of a slope with sub-millimeter sensitivity and

a practical operative range since it is possible to take measurements some kilometers away

from the target surface. It provides information about the rate and distribution of surface
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displacement, which makes it a very useful tool for early warning and monitoring of slope

instabilities. GB-SAR can be used in many scenarios and it is especially useful in complex

weather conditions when other remote sensing techniques would not be able to perform a

reliable measurement. However, the usage of the GB-SAR data to extract information about

the geological structures involved in the deformation is limited, and it usually refers to the

satellite-based SAR counterpart (Roccheggiani et al. 2018;Libert, Wuite, and Nagler 2022).

Therefore, in this study, a data processing algorithm is proposed to extract the geological

structures involved in the deformation of a slope using this remote sensing technique. These

extracted planes are useful to improve the slope characterization during the risk analysis

stage, and they could be used to do estimations about the volume of material involved in a

potential failure event. They also have great potential to be used as input for the kinematic

and stability analysis of the slope. All of this allows a prompt response to this hazard and

therefore this algorithm could optimize the mitigation plans for this geological risk.
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2 Generalities of slope instabilities studies

2.1 Risk management

As previously mentioned, a slope instability is a geological hazard that has the potential to

cause minor or severe damages. Therefore, it is important to give a risk definition in this

context. In general, risk is defined as the combination of hazard, vulnerability, and exposure:

Risk = hazard× vulnerability × exposure (1)

According to the definitions given by Glade, Anderson, and Crozier (2005), hazard refers to

a physical condition that has the potential to cause damage. It is defined according to its

probability of occurrence and expected magnitude within a given time-frame. The interplay

between frequency and magnitude is particularly relevant since smaller-scale events tend to

occur more frequently. Furthermore, vulnerability is understood as the expected level of

damage caused by an event of a certain magnitude and it depends on the human conditions

and how these interact with the hazard and how they react to an event. An example of

this is provided by Glade (2003) and it relates the level of damage of a mass movement

with the probability of the presence of people during different times of the day. Meanwhile,

exposure relates the level of damage with the expected losses for a given event. It considers

elements in different classifications such as the number of human lives at risk, the damage

to the infrastructure, the potential direct or derived economic losses, the effects on the

environment, and the mental health of the affected people, etc, including quantifiable and

unquantifiable effects.

Following the framework established by the Australian Geomechanics Society (2002), the

definition of risk given above would be part of the risks analysis stage of the risk management

process, summarized in Figure 1. In this case, the term landslide can be interchangeable with

the term slope failure, however, these terminologies must be used with caution. According to

this flow chart, the management of a slope instability hazard comprises analysis and studies

in several areas besides the geology-related fields, such as the economic and social aspects

affected by this phenomenon. However, in this study, only the geological conditions of the
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risk management will be considered. In this regard, slope instability studies have three main

stages, detection, monitoring, and hazard prediction (Casagli et al. 2023; Metternicht, Hurni,

and Gogu 2005).

During the detection stage, the goal is to characterize the physical features of an area such

as the geological, geotechnical, hydrological parameters, etc., that allow the identification

of active or inactive slope instabilities or the potential of an area to become one. In terms

of management, this corresponds to the risk analysis stage, where the magnitude and the

likelihood of the slope failure are defined during the hazard identification according to its

physical conditions (Macciotta and Hendry 2021). The magnitude is associated with the

volume of the material that would be potentially involved in the failure, while the likelihood

depends on the stability conditions of the slope.

Figure 1: Stages of landslide risk management. Summarized and modified from Australian
Geomechanics Society (2002).

After detecting and characterizing the slope instability, it is necessary to monitor its behavior
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including the velocity and magnitude of deformation. Considering the framework of risk

management (Figure 1) the monitoring stage is required in the risk control step, but it

also gives additional information about the physical conditions of the slope instability, and

therefore it provides feedback to the risk analysis, making these process an iterative analysis.

In this stage, it is very important to use adequate spatial and temporal resolutions to monitor

accurately the kinematic behavior of the hazard. Lastly, prediction is part of the risk control

step and during this stage, the parameters that are involved in the slope failure, that were

estimated and correlated in the risk analysis step, such as the pore pressure, the rainfall

rates, and the velocity of displacement, can be used as input for an alarm or monitoring

system, to forecast failure events and therefore reducing the vulnerability of the studied

area.

The methods to develop each stage are chosen, according to the particularities of a given

area, considering multiple factors like the required temporal resolution, the scale of the

slope instability, and the general risk related to it. For example, the methods required for

a slope in an open-pit mine, where workers and machinery are present, are different from

the ones required in a large-scale landslide in a remote area. Considering the scale of the

slope instability, multiple techniques can be chosen according to their type of acquisition.

In this regard, from the available methods, two main branches can be identified, the ones

that require in-situ tests and the remote sensing techniques. Evidently, the main difference

between these two is the need for direct contact with the slope, however, another important

distinction is the spatial coverage.

In-situ methods cannot cover a large area, and are usually limited to local-scale studies, since

they are usually based on point-to-point measurements, such as boreholes and penetration

tests, or have a complex acquisition like some of the geophysical methods. In contrast, remote

sensing methods have the advantages of covering larger areas, ensuring safe conditions in

high-risk instabilities, and facilitating the acquisition in inaccessible areas. However, in any

slope instability study, both types of methods are required to have a complete and accurate

characterization of the hazard. Thus, these two types of techniques should be integrated

into the three stages of the study of slope instability risk analysis and must be considered as

complementary independently of the scale of the area and the temporal resolution required.

11



2.2 Geological structures in slope instabilities

The term geological structure is a broad term related to the three-dimensional arrangement of

geological materials on the earth’s crust. The diversity of the geological process also produces

diverse types of geological structures, some related to the tectonic setting such as faults and

folds, others to the sedimentary nature of a rock like the bedding planes, or to metamorphic

processes as the foliation. However, in this study, this term is rigorously used to describe the

planes related to the failure or potential failure surface in a slope instability. This distinction

is relevant since, depending on the mechanical properties of the material, a slope movement

can have strong or weak structural control, related to the geological processes and structures

mentioned above. To distinguish between these two usages of this term, and as suggested

by Wyllie and Mah (2004), the structures related to the “naturally occurring breaks” which

are studied in structural geology such as the ones mentioned (faults, fold, bedding, joints,

etc.) will be referred to as discontinuities, while the planes related to the failure surface

(or potential surface) are the geological structures that will be referred to in the proposed

methodology. Thus, the aim of this study is to extract the structures that provide the lateral

surfaces present in a slope instability, that may or may not be caused by discontinuities.

The slope movements caused by the presence of discontinuities are referred to as structurally

controlled slope instabilities. The degree of structural control is one of the many parameters

that are used to classify the slope instabilities (Smith and Hungr, 1992 as cited in Glaston-

bury 2002) and their failure mechanisms (Norrish and Wyllie 1996;Wyllie and Mah 2004).

Nevertheless, there are many other classification parameters such as the type of material,

kinematic behavior, and state of activity. Hence, many classification schemes have been pro-

posed for this geological process, some of them are summarized in Glastonbury (2002). One

of the most widely used is the one proposed by Varnes (1958) and updated in Cruden and

Varnes (1996). In this last classification two types of materials are defined, rock as the “hard

or firm mass that was intact and in its natural place before the initiation of movement”, and

soil as an aggregate of particles that have been transported or formed by rock weathering.

From these two types of material, five types of movement are classified: fall, topple, slide,

spread, and flow. There is also an additional category, the complex slope movements which

include a combination of the kinematic behaviours mentioned.
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In engineering, one of the most relevant classifications is one done according to the failure

modes or mechanisms (Nichol, Shaker, and Wong 2006;Wyllie and Mah 2004;Mercer 2006).

In this classification, there are four failure modes: planar, wedge, topple, and circular (Figure

2 ). These, are related to the degree of structural control as follows:

• Planar failures: These are caused by a single discontinuity dipping towards the slope

causing a single failure plane.

• Wedge failures: In this case, two discontinuity planes cross in an intersection dipping

out of the slope face, causing the sliding of a block.

• Topple failure: Involves a group of discontinuities that dip vertically with a moderate

to close distance causing an arrangement of unstable slabs or columns.

• Circular failure: This failure mode occurs in soil masses and in highly fractured or

weathered rock, or when the face of the slope has a high dip angle. It is not necessarily

related to discontinuities.

This classification can be correlated to the classification made by Cruden and Varnes (1996)

since the planar, wedge, and circular failure mechanisms are enclosed in the slide category.

Planar and wedge failures are classified as translational slides, while the circular failure mode

is considered a rotational slide. The topple failure mechanism has the same nomenclature

in Cruden and Varnes (1996) classification.

(a) (b) (c) (d)

Figure 2: Failure mechanisms. (a) Planar, (b) Wedge, (c) Topple, and (d) Circular. Taken
from Wyllie and Mah (2004).

The accurate classification of a slope movement is very relevant since the selection of the

methods for the stability analysis depends on the failure mechanisms involved in the defor-
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mation. For instance, for a planar failure, the infinite slope analysis can be used, while in

the case of circular failures, the circular arc method is suggested (Abramson et al. 2001).

As stated in Piteau and Peckover (1978), to perform the stability analysis, it is necessary

to test the planes or combination of planes that would be related to the failure surface. A

simple example of this is the wedge failure mechanism, in which the location and orientation

of five bounding surfaces are required in the stability analysis (Norrish and Wyllie 1996).

Also, in the case of using the infinite slope method, where the slip surface is parallel to the

ground surface, the boundaries extracted from the deformation would be directly related to

the volume of the moving mass, if the depth is known. Therefore, the early extraction of

the planes involved in a slope movement would be very useful to perform early estimations

about its stability.

Besides being useful for the stability analysis, the planes given by the lateral margins have

been used to extract information about the depth, volume, and kinematics of a slope insta-

bility (Jaboyedoff et al. 2020; Dewitte and Demoulin 2005;Hu et al. 2020; Bunn, Leshchinsky,

and Olsen 2020; Nikolaeva et al. 2014). Also, not only the planes related to the failure are

useful for characterizing the deformation, but the superficial extent and geometry of the

unstable area have been used to estimate the classification of the slope movement (Parise

and Jibson 2000) and even to obtain information about the mobility of the instability (Tian

et al. 2017).

In summary, the geometrical description of the planes involved in the slope movement is of

great relevance in its characterization, being an input for the slope stability analysis, vol-

ume estimation, and kinematic description, and therefore an input for the risk mitigation

strategies. As stated in Martha et al. (2010) “ A comprehensive characterization [of a slope

movement] from an automatic detection perspective is required for the extraction of fast

and accurate results that will help decision-makers in implementing disaster management

strategies”. Additionally, the early extraction of the geological structures involved in the

deformation would provide valuable information to decide the location and depth of other

investigation techniques such as boreholes, geophysical surveys, or other in-situ measure-

ments, representing a cost reduction in further slope instability studies.
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2.3 Remote sensing in slope instabilities

Remote sensing techniques are used in the three stages of slope instability studies, detection,

monitoring, and prediction (Metternicht, Hurni, and Gogu 2005; Casagli et al. 2023) and are

fundamental for the characterization and mitigation of this geological risk. These techniques

can also be divided into three main types according to their acquisition, as airborne, satellite-

based, or ground-based, and each of them has a range of operability, which according to

Casagli et al. (2023) is described with six parameters: the spatial resolution, spatial coverage,

operative range, temporal resolution, accuracy and range of velocity detection. Of the three

main types of techniques, the satellite acquisitions are the ones with the largest spatial

coverage, with footprints from 10s of kilometers to about 300 kilometers, while the ground-

based methods can only reach up to 10 squared kilometers (Casagli et al. 2023). It is relevant

to mention that selecting the optimal method requires a careful consideration of the trade-

off between coverage and resolution, considering that a larger coverage would result in a

lower spatial resolution. However, with recent developments, it is becoming more common

to improve this trade-off, by increasing the spatial resolution of the measurement even in a

large area of acquisition using satellites with sub-meter resolution (WorldView, QuickBird,

IKONOS, GeoEye, SPOT, etc.), and also processing the images to improve their resolution

(Mei et al. 2020).

Regarding the temporal resolution, it has a large variation between methods, as the ac-

quisition frequency, in the same area, can vary from several days (satellite-based) to a few

minutes (ground-based). The requirement of the temporal resolution is dependent on the

velocity of the deformation of the slope instability; if the displacement is very fast a method

with a high temporal resolution is required to track properly the kinematic behavior of the

deformation, while during a slow deformation, a method with larger periods of acquisition is

able to characterize the displacement. Choosing a proper method according to this parame-

ter is a very important task, especially during the monitoring and prediction stages, because

the velocity of deformation can vary between orders of magnitude, as classified by Cruden

and Varnes (1996) from extremely slow (0.5 × 10−6mms−1) to extremely rapid movements

(5 × 103mms−1). Also, it is relevant to consider that this velocity can vary during the

development of the slope movement, which can have a quasi-stable condition with minor
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displacements that can occur during years or centuries without failure, or it can develop as a

minor displacement followed by a rapid acceleration preceding the failure (Wyllie and Mah

2004). Therefore, multiple techniques could be used in the same area during different stages

of the slope instability evolution.

Another important distinction between the remote sensing techniques is the type of acqui-

sition, which can be passive or active. All remote sensing techniques are based on the use

of electromagnetic (EM) waves for the detection of multiple characteristics of the observed

phenomenon, in the passive methods the instrument works only as a receiver of the EM

signal, while the active techniques work as a transmitter and receiver of EM waves. Passive

methods can include optical and thermal cameras and optical satellites; these can be used

in photogrammetry when they work in the visible range of the EM spectrum and in radiom-

etry when they work in the entire optical radiation spectrum. The main drawback of these

methods is the attenuation caused by the interaction with the atmosphere since clouds and

rain can attenuate or entirely obscure the signal (Long and Ulaby 2015). This can be very

inconvenient in the case of slope instability studies since the high precipitation rate is one of

the main triggers for this geological hazard. Passive methods are mostly used for landslide

inventorying, detection and mapping, and change detection (Casagli et al. 2023;Tofani et al.

2013)

Moreover, the active methods can be classified according to the frequency range of the EM

wave that is being transmitted. In the case of slope instability studies, two main sensors are

used (Metternicht, Hurni, and Gogu 2005), the microwave radar sensors which work in the

range of 0.3GHz to 300GHz, and the light sensors (LiDAR) which use higher frequencies in

the visible range (4.3×1014Hz - 7.5×1014Hz) and near-infrared range (214THz - 400THz).

In general, these two types of sensors can be used in all the acquisition types (satellite-

, air-,ground-based), however, for slope instability studies radar sensors are usually used

in satellite and ground-based acquisitions, while LiDAR techniques are usually set on air

and ground-based surveys. Since LiDAR works in higher frequencies, this method has a

higher spatial resolution than the radar methods, but it also makes it more susceptible to

atmosphere attenuation, therefore it has a lower operative distance than radar methods and

is less effective in complex weather conditions (Casagli et al. (2023)).
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In remote sensing, radar sensors are used in multiple types of studies, and they are classified

into different categories such as non-imaging radar, for instance, the scatterometers and

altimeters, and imaging radars like GB-SAR (Long and Ulaby 2015).

3 GB-SAR principles

GB-SAR is an active remote sensing technique that emits electromagnetic waves in the

microwave frequency range and uses an imaging radar. In general, a radar sensor can be

classified according to the type of imaging formation method, which can use an antenna with

a real aperture or a synthetic aperture. The antenna is the device that converts a guided

wave propagating through a transmission line to an EM wave propagating through the free

space and conversely (Long and Ulaby 2015). Hence, an antenna works as a transmitter

and receiver of EM waves. When working as a receiver, the antenna converts the energy of

an incident signal from power density (Wm−2) to intercepted power (W), the ratio of this

conversion gives the concept of effective aperture. In the case of Real Aperture Radars (RAR)

the effective aperture is directly related to the physical aperture of the antenna. During

transmission, a wider physical aperture would represent a narrower beam that illuminates a

smaller area on the ground (target), this concentration of energy would increase the power

density that, when it gets backscattered, increases the power during the reception. Therefore,

the physical aperture of the antenna determines the quality of the measured data (Long and

Ulaby 2015). For the Synthetic Aperture Radars (SAR), the size of the effective aperture

is not dependent on the physical aperture of the antenna, instead, a longer aperture is

synthesized by moving the sensor along a path, in the case of ground-based systems along a

rail (for linear scanning mode) or a rotating arm (for ArcSAR). Then, it records a signal for

each position of the antenna, processing them to combine them as if they were simultaneously

collected, generating a high-resolution radar image.

The signal that is backscattered from the illuminated area depends on the physical properties

of the target such as roughness and geometry, and on the electrical properties of its material

(i.e. permittivity) since EM waves penetrate on its volume. As mentioned in Rödelsperger

(2011), the typical bands used in SAR acquisitions are between the L-band to the Ku-
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band. However, the newest GB-SAR devices can also work in the K, Ka, V , and W bands,

which improves the accuracy of measurement by being able to detect the sub-millimetre

deformation of a mass movement. Additionally, thanks to the use of these wavelengths, the

atmosphere attenuation is minimal, and as a result, GB-SAR can be used even in adverse

weather. This also means that the sensor can be placed at a large distance from the measured

surface, reaching some kilometers of operative range. Furthermore, as it does not depend on

the visible spectrum it can provide measurements in every light condition.

Band name Wavelength (cm) Frequency (GHz)
L 15 – 30 2 – 1
S 7.5 – 15 4 – 2
C 3.7 – 7.5 8 – 4
X 2.5 – 3.75 12 – 8
Ku 1.67 – 2.5 18 – 12
K 1.11 – 1.67 27 – 18
Ka 0.75 – 1.11 40 – 27
V 0.4 – 0.75 75 – 40
W 0.27 – 0.4 110 – 75

Table 1: microwaves bands used in SAR. Taken from Bruder et al. (2003).

In general, radar data acquisition can work in different ways according to the type of signal

emitted. A way to understand the general radar functioning is by first explaining how the

Pulse Radar works. This type of radar transmits a signal with a time duration τ , then stops

and receives the return signal during the intervals between pulses. For a point target, the

received signal is the same as the emitted one with a time delay that depends on its distance

from the sensor. However, if there are multiple targets and they are too close together, or

if the target is very complex, the time between pulses would not be enough to resolve the

different time delays of their responses, as shown in Figure 3. Here, a pulse of length τ

is emitted, and then it is reflected by target 1 and target 2 producing the signals S1 and

S2. Depending on the separation of the targets, the received signal can be resolved or not,

in example (b) the targets have a small separation that does not allow to distinguish the

signals backscattered by each target. Consequently, when the acquisition is done using Pulse

Radars, the resolution in the direction of the emitted EM signal depends on the length of

the pulse τ .
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(a) (b)

Figure 3: Pluse radar scheme. Response of a pulse with length τ of two targets with a large
distance (a) and close together (b).

This resolution can be improved by reducing τ , this way the targets that are close together

can be resolved. However, this means that less energy would be transmitted in a shorter

signal, thus it would decrease the signal-to-noise ratio (SNR), decreasing also the radar

capability to measure at long distances. Therefore, in SAR measurements, a continuous

wave (CW) with no time intervals is used, this allows to have a high-energy signal with a

better SNR. However, since there is no time interval between pulses it is not possible to

distinguish the signal of each target. Because of this, a frequency-modulated continuous

wave (FMCW) is used, where the frequency varies in time within a certain bandwidth (B).

A filter is derived from the waveform of the echo of this transmitted signal, which is applied

to the received one, increasing the SNR and resolving the reflections of each target (Long

and Ulaby 2015).

For the newest GB-SAR instruments, the frequency modulation used is linear (LFMCW)

as a function of time in a bandwidth B over a sweep period of time T as shown in Figure

4a. The central frequency of B is called the carrier frequency (fc) and it is the one used to

describe the system. The shape in terms of the amplitude of the transmitted and received

waves would be similar to the representation in Figure 4b. Being the received signal an

attenuated copy of the emitted one, with added noise and a time-delay.
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Figure 4: Scheme of linear frequency modulation. (a) Time-frequency plot and (b) time-
amplitude plot. Modified from Peek (2011).

The resolution of the system depends on both the frequency modulation and the length of

the synthetic aperture. As the two conditions work in different directions, two resolutions

are derived. One is related to the horizontal movement that generates the synthetic aperture

of the radar, and the other is related to the bandwidth used in the frequency modulation.

The direction in which the FM signal is emitted and received is defined as the Line of

Sight (LOS), and the distance in this direction from the sensor to the target is called the

range distance (r) (Figure 5). The configuration of the system is done in such a way, that

the LOS is as parallel as possible to the deformation vector of the target surface. This

way, the values of displacement registered in this direction would be as close as possible

to the real deformation. However, this setting is not usually feasible, and as a result, the

measurement is limited to a component of the deformation vector (Figure 5). Along the

LOS direction, the range resolution (δr) determines the minimum spatial dimension from

which displacement can be detected. The range resolution cell on the LOS direction does

not correspond to an equal dimension on the ground, since this cell must be projected on the

surface, and depending on the topography it will correspond to a ground range resolution cell

as shown in Figure 7. The range resolution depends on the bandwidth used in the frequency

modulation and the velocity of the EM wave (c) as shown in the following equation:
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δr =
c

2B
(2)

(a) (b)

Figure 5: Scheme of GB-SAR acquisition. System scheme (a) and resolutions grid (b).

The horizontal movement of the sensor on a path of length L, that generates the synthetic

aperture, will give a second dimension to the radar measurement, and thus a second res-

olution, the azimuth resolution (δϕ), which is given in the perpendicular direction to δr.

Considering a single target on the surface, the emitted beam will overlap on the same point

for every position on L, thus a different phase value is recorded on every step. The phase

variation will depend on λ since it determines how fast the phase varies while the sensor

changes its position on L. This relation between the phase variation and the displacement

on the sensor path determines the azimuth resolution as follows:

δϕ =
λ

2L
(3)

This expression is given in degrees, but it can also be expressed as a distance considering

that the range distance (r) will change for every position on L, for a single target. Thus, δa

can also be named as cross-range resolution (δc) given in units of distance as follows:

δc =
λ

2L
r (4)
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These resolutions define both ground- and satellite-based systems. Some of the differences

between these methods are, as mentioned before, the acquisition frequency which in satellite-

based systems can take several days while in Ground-based (GB-SAR) it takes a few minutes.

Also, in GB-SAR the rail or the rotating arm, that gives the synthetic aperture path remains

in the same location for every acquisition, while the relative position of a satellite to a

single target can vary depending on the orbit. The differences in time and position between

acquisitions are referenced as temporal baseline and spatial baseline, the latter is usually zero

in the case of GB-SAR.

In GB-SAR, for all the positions on the rail, a single target will backscatter all the frequen-

cies contained in the bandwidth and multiple targets will have different time-delays and

amplitudes. Thus, a raw radar image is registered in these two dimensions, frequency and

position on L. To translate this to spatial dimensions, the radar image must be “focused”.

This focusing process applies a Fourier transform on each dimension, converting the image

to the range and azimuth directions, being the azimuth the angle from the center of the rail.

Lastly, the range and azimuth resolution values are used to do the conversion to planar x

and y coordinates from the location of the radar sensor, as shown in Figure 6.

Figure 6: Focusing process. Taken from Rödelsperger (2011).

Each radar pixel will store a complex value with the amplitude and phase information of

the received signal and will have a resolution given by δr and δc. One of the limitations

of GB-SAR is that the geometry of the measured area is not truly represented in the final

radar image. This happens because the true ground resolution is the projection of the range

resolution on the surface, and depending on the angle between the LOS and the surface,

the ground features can be overlayed or shadowed. Overlaying happens when two surfaces

at different heights but at the same range distance (r) get recorded in the same pixel, and

shadowing when the angle between the surface and the LOS is such, that no signal gets
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backscattered by the surface. As exemplified by Rödelsperger (2011) in the following figure:

Figure 7: Overlaying and shadowing. Taken from Rödelsperger (2011). The row pixels at
the bottom in grayscale exemplify the intensity response of the sensor.

Regarding the phase measurement, as it is derived from the time-delay received signal,

it gives information on the range distance (r), following equation 5. However, the phase

value is affected by a random term (ϕran) which is related to the scattering characteristics

of a distributed target. Because of this term, is it not possible to compute the distance

information from a single radar image. But, one advantage is that this term remains constant

between acquisitions, therefore by subtracting two radar images from different acquisition

times, this term can be canceled. This process is called interferometry and gives the phase

difference between two acquisitions, thus it can provide the distance variations which in other

words would be the deformation that occurred between two acquisition times.

ϕ = −
4π

λ
r + ϕran (5)

The phase difference between two acquisitions is calculated by using the conjugate of the

complex measurements of each radar image as follows:

z1z
∗

2 = a1a2 · e
i(φ1−φ2) (6)

Where z1 and z2 are the complex values of each radar pixel on acquisition times 1 and

2, containing the amplitudes a1 and a2, and the phase values ϕ1 and ϕ2. In equation 6 the
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subtraction between phases gives the wrapped differential phase (∆ϕw). The term “wrapped”

is used since this value is limited to the interval of [−π, π) which means that different values

of r can generate the same measured phase value but in different wave cycles (n). The

wrapped differential phase is related to the real differential phase value (∆ϕ) as:

∆ϕw = ∆ϕ− 2πn (7)

Using ∆ϕw the information about the relative changes between two acquisitions can be

extracted. However, the interferometric phase value is not only affected by changes in the

range distance (i.e. surface displacement), other temporal and spatial changes between the

two acquisitions can affect its value, causing temporal and spatial decorrelation between two

radar images. The contributions to the interferometric phase values are given by:

∆ϕw = ∆ϕtopo +∆ϕdisp +∆ϕatm +∆ϕnoise − 2πn (8)

The topography phase component is related to the changes in the position of the sensor and,

as mentioned previously, in GB-SAR the spatial baseline is usually zero, hence this compo-

nent is not considered. The displacement component is the target value of this process since

it contains the surface deformation measurement, however, it is masked by the contribution

of the atmosphere changes between acquisitions and the recorded noise. Radar measurements

are not as strongly affected by the atmosphere as other remote sensing methods, however,

microwaves do interact with the atmosphere depending on the humidity, temperature, and

pressure, which affect the refractive index of the propagation medium. Thus, to extract the

displacement component the following expression must be computed:

∆ϕdisp = ∆ϕw −∆ϕatm −∆ϕnoise + 2πn (9)

The integer number related to the wave cycles n must be calculated in order to find the

continuous differential phase measurement and not only the values contained in the wrapped

interval, this process is called unwrapping, and it is based on complex algorithms that will
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not be addressed. The atmosphere contribution is corrected using a diverse number of

atmospheric-phase correction algorithms (Chao et al. 2019). Currently, one of the most

used methods is based on Permanent Scatterers (PS) which are targets on the surveyed

surface that are relatively stable, meaning that between a number of acquisitions, they will

be located in the same relative position from the sensor. Therefore, the pixels that record

the back-scattered signal of the PS do not have a strong variation in their amplitude or

phase value, which means a high spatial and temporal coherence. Using these stable pixels,

the changes in the measurements that are not related to the deformation can be identified

and corrected.

After unwrapping and phase correction, the real component of the interferometric phase

related to the displacement is extracted. The final deformation in the direction of the LOS

(∆R) is given by:

∆R = −
λ ∆ϕdisp

4π
(10)

As summarized by Rödelsperger (2011), the processing for both satellite-based SAR and

GB-SAR is very similar, and it is based on the steps explained above and shown in the

following figure:

Figure 8: General steps for SAR processing. Taken from Rödelsperger (2011)

In Figure 8 the main processing steps are consolidated. Starting from the raw radar images in

different acquisition times t1 and t2, these are focused to convert them to spatial coordinates.

Then, the differential phase between acquisition is extracted during Interferometry, this
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process is usually referred to as InSAR processing or DInSAR processing. Later, unwrapping,

and atmospheric correction are performed to derive the displacement phase component in

the direction of the LOS. Using equation (10) the deformation during the time interval of

the two acquisitions is calculated. However, this result is still in 2D coordinates, and as

mentioned previously the resolution of the radar cell is not true ground resolution, as shown

in Figure 7. Thus, using a Digital Terrain Model (DTM), the 2D image can be projected to

the real coordinates of the 3D space in a process called Geocoding, which relates the radar

pixels to the DTM cells. This process will be explained in the methodology chapter (4).

3.1 Automatic extraction of structures using inSAR and other

remote sensing techniques

As mentioned in chapter 2.2, having information about the geological structures and discon-

tinuities that are involved in a mass movement is essential to perform the risk evaluation

and mitigation of a potential slope failure. The traditional method to obtain information

about these structures is the in-situ measurement made by an expert, however, this technique

has some drawbacks since it requires a large number of measurements to have a represen-

tative sample of the discontinuities, and also the description of multiple features such as

orientation, spacing, persistence, roughness, aperture, infilling, block size, wall strength, and

seepage (Wyllie and Mah 2004). Besides, describing these features is sometimes not viable

due to the risk level of the area under study. Therefore, in-situ measurements require a great

amount of time, are limited by the possibility of accessing the area, and depend on the crite-

ria of the expert. Hence, the use of remote sensing techniques to extract information about

the structures of a slope instability has become a common practice in the hazard identifi-

cation procedure, since as mentioned by Buyer and Schubert (2017) it has multiple benefits

including the reproducible results, time optimization, a great level of detail, safe conditions

during the investigation and the possibility to automatize the mapping and analysis of the

collected data.

According to Battulwar et al. (2021), the main two remote sensing methods that have been

used to characterize discontinuities are terrestrial or airborne LiDAR and photogrammetry

using an unmanned aerial vehicle (UAV) to perform the Structure from Motion (SfM) pro-
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cess. Both methods provide a 3D representation of the surface geometry and therefore they

can be used to construct a high-resolution Digital Terrain Model (DTM). The difference

between these two methods is related to their accuracy and the cost of the acquisition and

data processing. LiDAR requires more expensive equipment and has more complex process-

ing than the SfM from UAV (Cawood et al. 2017), however, this last method has a strong

dependence on the image resolution, light conditions, and angle distortion (Chen et al. 2023).

In Cawood et al. (2017) a comparison was done between these two methods and the time

required to acquire and process the data with the traditional fieldwork method. Considering

acquisition and processing, the areal SfM (ASfM) takes 8.5 hours being the fasted method,

while LiDAR adds up to 40 hours from which 35 hours are related to the processing. Mean-

while, in the fieldwork measurements, acquisition and processing represent 11 hours in total.

In this study, the accuracy of these methods was also confronted by comparing the virtual

outcrops derived from these two remote sensing methods, and the planes measured in field-

work using the compass-clinometer, the result showed that LiDAR had a maximum of 5◦ of

deviation from the mean principal orientation of control planes, while ASfM had a maximum

deviation of 42◦. Thus LiDAR can be considered a high-accuracy method but with higher

costs of implementation.

Many commercial software have been developed to extract automatically or semi-automatically

the discontinuities and their features from the 3D point cloud or the derived surface, as listed

in Alptekin and Yakar (2022). Also, many authors have developed their own algorithms for

this end using a wide diversity of methods (Gigli and Casagli 2011; Lato and Vöge 2012;

Kong, Wu, and Saroglou 2020; Chale, Joboyedoff, and Derron 2023; Chale, Joboyedoff, and

Derron 2023) including the Random Sample Consensus (RANSAC) algorithm (Ferrero et al.

2009; Voyat et al. 2006; Roncella, Forlani, and Remondino 2005) which will be explained in

the methodology chapter (4) since the construction of the proposed algorithm is based on

it. These methods are focused on the description of discontinuities for the rock mass char-

acterization for the stability analysis using exclusively the geometrical information derived

from the imagined surface. According to Chen et al. (2023), the plane extraction process

from the surface point cloud is based on three steps, the clustering of the 3D point cloud,

the segmentation of the points that belong to the same structural group, and the calculation
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of the occurrence of each discontinuity surface. Nevertheless, most of these algorithms have

three main drawbacks, they require to set manually a threshold to consider a linear feature

as a discontinuity, a manual selection is required during plane fitting, and when the methods

are based on clustering the results are very sensitive to the initial position of the centers and

setting of the number of clusters.

Few methods have been developed to extract structures using satellite-based Interferometric

synthetic-aperture radar (InSAR) and thus the structures detected are related to large-scale

discontinuities such as the method proposed by Roccheggiani et al. (2018) which uses the

slope gradient derived from vertical displacements to extract the ground ruptures associated

to an earthquake. Another example is the method described by Libert, Wuite, and Nagler

(2022) to delineate cracks in an ice shelf using the Canny Edge Detection algorithm on a

phase gradient map. However, no method has been proposed for GB-SAR data which has a

higher temporal frequency, is used for smaller areas.

Since GB-SAR provides displacement maps from the phase information, and not optical

images or surface geometry information, the structures extracted from this data are different

than the discontinuities mapped with the methods mentioned previously (LiDAR and SfM).

The potential to use GB-SAR for geological structures is entirely related to the boundaries

of the displacement of the slope instability. Meanwhile, LiDAR and SfM can map the

stable discontinuities but do not give direct information about their role in the deformation.

Another difference between these methods would be the acquisition of data, since GB-SAR

can be used in continuous monitoring mode, giving radar images every few minutes for

monitoring and early warning purposes, while LiDAR and SfM point clouds are usually

acquired to retrieve a high-resolution DTM or if they are used for monitoring changes, the

time-span of their acquisition can be some days or even months. In summary, the extraction

of structures using GB-SAR could be used during the monitoring of a slope instability and

it would provide information about the structures involved in the deformation for early

warning, while the utilization of LiDAR and SfM for extracting discontinuities is primarily

associated with the physical characterization of the slope. Therefore, the methods mentioned

can be used as complementary during the different stages of a slope investigation campaign.
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4 Methodology

The development of the algorithm was done using MATLAB R2023a. It comprises multiple

subroutines that are required to extract the 3D planes related to the geological structures

that are involved in the displacement of the rock or soil mass causing a slope instability. The

general algorithm is structured with the following steps:

1. 2D velocity map creation.

2. 2D velocity map filtering.

3. Velocity threshold clustering of the area selected by the user.

4. Binary 2D edge detection.

5. Geocoding of 2D velocity map and Edge point set.

6. Clustering of the 3D edge point cloud.

7. Seed selection.

8. Iterative plane fitting.

Each step and its required inputs are described in the following chapters, detailing some

of the MATLAB functions used, from which some are included in the MATLAB packages,

others were developed by different authors and are found in the online Mathworks File

Exchange, and some were developed by the authors of this thesis. The structure of the

general algorithm with the required inputs for each step is also detailed in the following

flowchart of Figure 9.

From these processes, one of the main contributions of this study is the velocity threshold

clustering since this process allows extracting semi-automatically the deformation velocity

limit to consider an area as unstable. This has been a challenge for the GB-SAR data

processing, considering the noise in the data and the smooth transition between stable and

unstable pixels, which makes it difficult to set a boundary between these two areas, a process

that is currently done manually. Also, the new method for 3D plane fitting is an important

contribution since it is developed specifically with the aim of extracting planes that “cut”

the surface of the slope, while other methods extract planes without considering a desired

direction.
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Figure 9: Flow chart describing the general steps of the developed algorithm

The first step of this algorithm is the creation of the 2D velocity map from the pre-processed

data of the GB-SAR acquisition. The velocity is chosen as the parameter to perform this

process since it gives a reference both on the magnitude and the time scale of the hazard,

which is relevant for its mitigation. While, if only the displacement is considered, there

would be no information about the time-scale of the deformation, and in terms of geological

risks this is a very relevant factor to be considered.

4.1 2D velocity map creation

To extract the velocity map, it is required to have the phase information of a differential

map after atmosphere removal, noise reduction, and phase unwrapping. As mentioned in the

previous chapter, these steps are done in the pre-processing of the GB-SAR data after its

acquisition and are not discussed in this study. After extracting the interferometric phase
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(∆ϕ) in a desired time period, and using the equation (10) with a λ value of 17.43mm

corresponding to the Ku-band, the total displacement (∆R) in mm can be calculated. To

find the velocity map, the time difference in hours (∆t) between the selected acquisition

times is calculated, then the following equation is used:

V =
∆R

∆t
(11)

The velocity of the slope displacement (V ) is not necessarily constant during the selected

time interval, so the value used for this processing is the average velocity of the deformation

since only the final displacement is considered. After this step, the 2D velocity map of the

area is acquired. Nevertheless, the resultant map still contains a high noise level, which

represents an issue for edge detection processing. An example of the resultant 2D velocity

map is shown in Figure 10:

Figure 10: Velocity map example. Positive values are approaching the sensor.

As mentioned above, even after the phase unwrapping and atmospheric correction, the noise

level can be very high. In this example it can be visualized especially in the lower part of

the image, and near the unstable area, which would affect the detection of its edges. Hence,

before doing this process is important to filter the velocity map before performing other

processes.
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4.2 2D velocity map filtering

The aim of this step is to decrease the noise level while preserving, as closely as possible,

the original boundaries of the unstable areas. For this, four types of filters were used to test

the effects on the 2D velocity maps:

1. Median Filtering

This filter works by calculating the median in a m × n moving window ( m and n

are odd). Then, in the filtered map, this value is assigned to the central pixel of the

window. The MATLAB function used to perform the median filtering was developed

by Voronov (2013) which is very suitable for this case since it is able to omit “Not

a number” (NaN) values, and therefore it calculates the mean even if there are NaN

pixels in the window. This is common in this case, especially at the boundaries, but

it can also occur in the central areas of the map. After several tests with different

window sizes, a 5×5 window was chosen to apply this filter to the 2D velocity map.

2. Kuwuhara-type Filter

This filter is also performed using a moving window, that was originally designed as a

3 × 3 window with four 2 × 2 sub-windows. In each sub-window, the variance and the

mean are calculated, and finally, the mean of the sub-window with the lowest variance

would be assigned as the value of the central pixel (Kuwuhara et al.,1976 as cited in

Burger and Burge (2022)). In this algorithm, and as suggested by Tomita and Tsuji

(1977) (as cited in Burger and Burge (2022)) a fifth central region is added. As in

the case of the median filter, a 5×5 window was chosen. In Figure 11 the sub-window

scheme is exemplified, where the central pixel (red) is the pixel that takes the mean

value of the sub-window (blue) with the lowest variance.

Figure 11: Scheme of kuhuwara type filter
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3. Nagao-Matsuyama filter

According to Burger and Burge (2022) the square sub-windows in the Kuwuhara-type

filter could generate artifacts in the final image, therefore a modification of the sub-

window geometry is proposed. In a 5×5 window, the sub-windows are designed as

follows:

Figure 12: Scheme of Nagao-Matsuyama filter

The procedure to calculate the value of the central pixel is the same as in the Kuwuhara-

type filter, but in this case, the selection of the mean is done considering the variance

of nine sub-windows shown in Figure 12. Again, the mean of the sub-window with the

lowest variance would be assigned as the value of the central pixel.

4. Gaussian filter

In contrast to the previous filters, a Gaussian filter is convolution-based, which means

that it does not use calculations on a moving window of the 2D velocity map. To

perform the convolution, a 2D Gaussian distribution is modeled using a 2D kernel,

that should represent a distribution given by the discrete equation (12).

H(x, y) =
1

2πσ2
exp(−

x2 + y2

2σ2
) (12)

According to this equation, the Gaussian filter would have its maximum in the center,

and it would decrease following a width that depends on the assigned standard devia-
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tion (σ). For the filtering of the 2D velocity map, a 5×5 kernel was used, modeling a

Gaussian distribution with a σ = 1.4, as shown in Figure 13.

Figure 13: Kernel used for the velocity map filtering

Having the modeled kernel, a 2D convolution is performed on the 2D velocity map.

In this case, since there are pixels with NaN value, the MATLAB function nanconv

developed by Benjamin Kraus (2013) is used. This function has the ability to ignore

the NaN values, so if this type of pixel is found at the convolution, it will continue the

calculation and assign the calculated value. Meanwhile, using the regular MATLAB

function conv2 if during the convolution a NaN value is found, the resulting value

would be also NaN, thus increasing the number of NaN pixels in the final filtered map.
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4.2.1 Filter comparison

To decide which filter is most suitable a qualitative analysis of the resulting filtered

maps is done. For this, a comparison between the different filtered maps, using a case

study as an example. The zoomed area displayed in Figure 14a is chosen to demonstrate

the efficiency of each filter; this area is problematic in the raw map since it contains

many noisy pixels, near the unstable area. These noisy pixels could complicate the

delimitation of this area, representing a problem for further steps, such as velocity

clustering and edge detection.

Comparing the filtered maps, the variations of the noise reduction and the edge blurring

are noticeable. The Nagao-Matsuyama (Figure 14e) and the Kuwuhara-type (Figure

14c) filters seem to be accurate at conserving the original edges of the raw velocity

map, displaying a low blurring. However, the noise is incremented at the boundary

of the unstable area, and this is not desired. Meanwhile, the Median (Figure 14b)

and Gaussian (Figure 14d) filters have a greater blurring effect on the edges, but the

Gaussian filter seems to have a better effect on the noisy pixels than the Median filter.

In traditional edge detection methods on regular image processing, it is essential to

conserve the original edges, therefore the development of complex filters to perform

noise reduction while conserving the edges is a crucial task. Considering this, in the

traditional image scenario the Kuwuhara-type and Nagao-Matsuyama filters have a

better performance. However, in this study, the development of velocity threshold

clustering and the method of binary edge detection simplify this problem. Therefore,

the main goal of the filter application is noise reduction, while the blurring of the edge

is tolerable. Hence, the chosen method is the Gaussian filter, which performs the best

on noisy pixels but still conserves a nice delimitation of the unstable area even after a

slight blurring.
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(a)

(b) (c)

(d) (e)

Figure 14: (a) Zoomed area of raw velocity map. (b) After median filter, (c) after Kuwuhara
type filter, (d) after gaussian filter and (e) after Nagao filter. Positive velocity values are
approaching the sensor.
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4.3 Velocity threshold clustering

Depending on the acquisition mode, GB-SAR can cover about 60◦ to 360◦ of the field

of view, which means that many unstable areas may be detected in a single acquisition.

To develop this algorithm, it was decided that the user should select the area of interest

to extract the geological structures. Considering this, the algorithm would be semi-

automatic, since the user has to provide input of the desired area, this is done by a

single click on the 2D velocity map to select a pixel contained in the unstable area.

The next step is to define the extent of the selected unstable area, and to this end, a

velocity threshold must be set to fix the minimum velocity for a pixel to be considered

not stable. This is done since the stable pixels do not necessarily have a velocity equal

to zero due to the noise in the data, and because usually, the transition between a

stable and a moving area is not a sharp limit. Hence, defining the limit between the

two areas requires defining a velocity limit.

In Figure 15 the processes of the velocity clustering algorithm (white boxes) are enu-

merated to be referenced in the explanation of the method, which is mainly divided

into two sections, the definition of the cluster size (S) as a function of the velocity

of displacement (deformation) (Vd) and the velocity threshold selection. From this,

the expected output is a binary map with a single cluster of pixels that represent the

unstable area selected by the user. Also, the final velocity threshold itself could be

considered an output, since this value could be the input for the early warning esti-

mation. Thus, this process is not only valuable for the extraction of the geological

structures but also, could be useful for the alarm system involved in risk mitigation.
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Figure 15: Flow chart of velocity threshold clustering

4.3.1 Cluster size as a function of velocity

In the first part of the algorithm, a range of velocities is tested in order to define a

function that describes the relationship between the size of the unstable area (S) and

the velocity thresholds (Vth). For this, the pixel that the user selects (Px) on the 2D

filtered velocity map, works as the input that defines an interval of velocity thresholds

(Vth(i)), the absolute velocity of Px (|V px|) defines the upper limit of the range, while,

the lower limit of the interval is 0. The total number of thresholds contained in Vth(i)
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are n velocities, with the index i = 0, ....n, being this interval the output of the process

(1) in Figure 15.

Vth(i) =
i |V px|

n
(13)

To exemplify this process, Figure 16 shows the pixel selection made by the user:

Figure 16: Example of pixel selection in the area of interest.

After the definition of this interval, an iterative process starts from Vth(i) = 0, testing

all the velocity values inside Vth(i). During this loop, each threshold is compared against

the displacement velocity of all the pixels contained in the 2D map, if a pixel has a

higher or equal velocity than Vth(i) it is included on a binary map. So at the end of the

process, n binary maps are created, one for each threshold, including the pixels that

exceeded the correspondent velocity. Taking as an example the velocity map in Figure

16, the resulting maps after three iterations are:
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(a) (b)

(c)

Figure 17: Binary maps of pixels with absolute velocity values (mm/h) greater than 0.92
(a), 2.43 (b), and 3.65 (c) in yellow.

With this example, the outputs of the process (2) are visualized, showing how the

number of pixels that exceed Vth(i) on each binary map starts to decrease with the

increase of the velocity threshold value. However, in this step, the pixel selection

considers all the pixels of the 2D velocity map and not only the ones connected to the

area selected by the user. For this, in process (3), it is necessary to isolate the pixels

spatially connected to Px in each binary map, this will create a single velocity cluster

of the area of interest for every map. If the user selects the pixel shown in Figure 16,

the resulting maps would be clustered as exemplified in the following figure:
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(a) (b)

Figure 18: Binary maps of pixels with velocities greater than 0.92 mm/h for all the pixels
in the 2D map (a) and the clustered pixels (b).

The output for each iteration i in the process (3) would be a connected cluster for

each threshold Vth(i), such as the one in Figure 18b. The total number of clustered

pixels is extracted from each binary map, resulting in n cluster size values. With this,

the relation between the size of the cluster (Si) and the velocity threshold (Vth(i)) is

obtained. As a result, the final output of the loop would be the continuous function

S(Vth) in the interval [0, V px].

4.3.2 Velocity threshold selection

The aim of this step is to find a single velocity value that allows to isolate the unstable

area selected by the user using the output of S(Vth). As shown in Figure 19b the

cluster size can have multiple behaviors.
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(a) (b)

Figure 19: Cluster size (number of pixels) as a function of the velocity thresholds (a) and
its logarithmic graph (b).

The cluster size tends to 0 for most of the velocity values since the unstable area is

very small compared to the total number of pixels in the 2D velocity map as illustrated

by Figure 19a. Therefore, to visualize the variations of the cluster size the logarithmic

graph (Figure 19b) will be used as a reference, where three main slope changes can be

differentiated. The first part of the graph in blue, shows how the cluster size reaches its

maximum value after taking all the pixels that have an absolute velocity higher than 0.

In this part of the graph, the rate at which the cluster area increases is very fast, hence

the cluster size is not stable. The area of interest for extracting the possible velocity

threshold is the red area. Here, the velocity values are not that high and the cluster

size is not that small, so the unstable cluster can be extracted without underestimating

the area of the instability. The yellow area is where the fastest deformations could be

extracted, but it would be very limited to relatively fast displacements and very small

areas, underestimating the implications of medium velocities on the deformation.

The final velocity threshold should be related to a stable cluster size, this means that

it must allow to cluster the moving pixels without including velocity values that do

not represent the general behavior of the unstable area. This means that the rate of

change in the function S(vth) must be low around that value. Thus, minimizing the
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first derivative of this function could be an effective estimation of the final velocity

threshold. Nevertheless, after some tests, it was proved that using the derivative of

S(Vth) is not a good method to find the velocity threshold, since its value is dependent

only on the velocity at which the area grows but it does not consider that the size of

the cluster must also be representative. To explain this, the derivative graph Figure

20 is used:

Figure 20: Example of the derivative of cluster size as a function of velocity, in blue is the
filtered curve. The point represents the minimum value.

In this figure, the minimum value of the derivative is located in the yellow area, where

the rate of growth of the cluster is low because it considers very few pixels, the ones

with a very high velocity of displacement. Choosing this threshold would restrict

the cluster to very fast movements, neglecting areas with relevant deformation. This

happens because the derivative considers only the velocity at which it changes, but not

the number of pixels that are involved in the variation. In the yellow area, as very few

pixels are considered, the magnitude of the size variation is very low.

In Figure 21 is proven that an exponential decay function can be fitted to S(Vth), which
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shows that the rate of change of the cluster size depends directly on its current value.

This behavior helps to overcome the challenge of choosing a very high velocity as the

final threshold.

Figure 21: Exponential decay fitted to S(Vth)

The exponential decay, in this case, can be described with the following differential

equation:
dS

dVth

= −rS (14)

Where r is the exponential decay constant or the rate of decay. This value gives

information about how the current cluster size contributes to its own decrease, meaning

how quickly the cluster size shrinks per pixel that is already in the cluster. This

constant behaves as follows:

• If r is positive, the cluster size is decreasing.

• If r is negative, the cluster size is increasing.

• If r is zero then the cluster size is stable.
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Since r is the parameter that determines if the cluster size is stable, the target equation

14 is:

|r| =

∣

∣

∣

∣

dS

dVth

1

S

∣

∣

∣

∣

(15)

This way it is easier to observe that r gives information about the rate at which the

cluster size grows and that it also depends on the current size of the cluster itself. This

means, that for the high velocities found in the yellow area of Figure 20, which result

in very small clusters (low S), r will have a larger value, compared to the mid-size

clusters in the red area, where r would be closer to zero. Finally, the minimum value

of r is found, thus, the corresponding velocity threshold would be the final velocity

threshold Vthf .

Figure 22: Rate of decay r of the cluster size growth in logarithmic scale with the final
velocity threshold

It is important to highlight that the noise in the data causes the velocity threshold

selection to be not entirely accurate even after filtering. However, this is not relevant

since the idea of using r to find the velocity threshold is to select it from a velocity

interval where the size of the cluster is stable, thus even though the velocity threshold

value could slightly vary, it would not cause a relevant change in the size of the final
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cluster. This would give us the output of the process (5) in the flow chart of Figure

15.

After finding the final velocity threshold (Vthf ), the final binary map is defined with

the pixels that have a displacement velocity greater or equal to this value (Vd ≥ Vthf ).

Finally, the output of the process (7) would be a cluster with the pixels that are

spatially connected to Px, resulting in the final clustered binary map that will be used

to extract the geological structures. An example of the final binary map, according to

the pixel selection shown in Figure 16, is:

Figure 23: Example of the final binary map that will be used to extract the geological
structures

In this case, the final velocity threshold that clusters the pixels in yellow is 3.13 mm/h,

which could also be used in the early warning system. The area clustered with this

velocity would be considered as the unstable zone in the area of interest selected by the

user. According to the general algorithm in Figure 9, the following step after extracting

the final binary map output is the 2D edge detection of this area, which would allow

the delineation of the planes related to the geological structures.
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4.4 Binary 2D edge Detection

The final clustered map will be a binary map, where the pixels that are part of the

cluster that represents the unstable area will have a value of 1 while the value of

the pixels that are outside the cluster is 0. This binary output simplifies the edge

extraction since in the usual algorithms for image processing, the detection is done

in smooth transitions, so the complexity of the algorithm increases. In this case, the

boundary is already defined by the velocity threshold clustering, and therefore the edge

detection problem is reduced to a binary identification.

The developed algorithm is based on a 3 × 3 moving window with 4 pairs of pixels.

Each pixel pair is located opposite from each other, as shown in Figure 24 :

Figure 24: Scheme of moving window for edge detection.

The value of each pixel pair is compared, and in case they have different values, the

central pixel (red) would be classified as an edge. Moreover, it is only necessary for

a single pair to have different values to consider the central pixel as an edge. This

process could be skipped in two cases: first, to avoid the creation of edges in areas

with NaN values, when there is a pixel with a NaN value in the window. Second, if

in the window there is a pixel that is already considered an edge, this will avoid the

creation of a thick edge, which means that the border is defined for more than one

consecutive pixel as illustrated in Figure 25a:
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(a) (b)

Figure 25: Pixels detected as an edge in red. Thick edge (a) and thin edge (b).

Generating a thin edge as in Figure 25b is important because, during the 3D plane

fitting, the dispersion of pixels in the width of the border affects the direction of the

extracted plane. But, if the border is defined by a thin edge, the direction of the plane

will depend only on the direction of the edge itself not on its width. The final result is

a 2D pointset, the following image represents an example of the final edge extraction

for the selected area on the velocity map:

(a) (b)

Figure 26: zoom of the detected edge 2D point set displayed on the binary map (a) and on
the filtered velocity map (b). Positive velocity values are approaching the sensor.

48



4.5 Geocoding of 2D velocity map and edges

Geocoding is the process in which the 2D maps in x and y coordinates, are translated

to the Digital Terrain Model (DTM) in 3D (Monserrat, Crosetto, and Luzi 2014). This

is a fundamental step since, as mentioned before, the dimensions of the radar cells do

not correspond to the ground dimensions, and they record the three-dimensional mea-

surements projected on the range and azimuth range coordinates causing distortions

as overlay and shadowing (Moreira et al. 2013) as depicted in Figure 7.

The DTMs can be represented in a rectangular grid, where each pixel has an x,y,z

coordinate, or a triangular mesh, where each vertex and face centroid, has an x,y,z

coordinate. The resolution of the DTMs should be higher than the radar map, which

means that one radar cell corresponds to several cells or faces in the DTM, this way, the

resolution of the radar data is not lost after the geocoding. In the general algorithm,

as shown in the flow chart of Figure 9, the required DTM input is a triangular mesh,

in which one triangular face, that can have different dimensions, has a centroid, three

vertex, and three edges (Figure 27a).

The second required input is the Geocoding Table, a matrix that relates each face

ID with the radar pixel IDs that overlap with it. It also contains information on the

overlap percentage which is required to assign the radar value to a triangular face.

This process is schematized in Figure 27b:

(a) (b)

Figure 27: Triangular mesh scheme (a) and radar values to triangular face scheme, each
color represents a pixel value (b).

49



This scheme shows how the value of the triangular face is assigned. In this example, one

face of the triangular mesh overlaps with four radar pixels, however, the overlapping

can happen with a single pixel or with more than four pixels. The velocity of the radar

pixels is represented by a different color. Depending on the percentage of overlap, the

weight of each pixel value is assigned considering that the sum of the weights must

represent 100% of the face area. In the case of a face overlapping four pixels:

wtotal = w1 + w2 + w3 + w4 = 1 (16)

Therefore, the velocity value assigned to the triangular mesh face would be given by:

Vface = V1w1 + V2w2 + V3w3 + V4w4 (17)

The method for assigning the radar values to the triangular faces is also used for the

edge values, however as multiple faces would overlap with a pixel labeled as an edge,

multiple faces would represent the edge. As mentioned before, this is not desired, since

this would create a wider edge, and the aim is to generate the edge as thin as possible.

For this, only the face with the largest overlap is selected. Then, the centroid of each

edge face would give the 3D coordinates (x,y,z) to a point. Lastly, at the end of the

Geocoding, the two outputs would be, the 3D velocity map projected in the DTM

and the 3D point cloud of the edge extracted from the boundary of the unstable area

selected by the user.
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4.6 Iterative plane fitting

This is the main process of the algorithm since it gives the final output of the planes

that could characterize the geological structures involved in the deformation of the

slope. The method used in this algorithm is based on the iterative method “Random

Sample Consensus” (RANSAC) introduced by Fischler and Bolles (1981) which is a

fitting model for data with a large dispersion and number of outliers. The conventional

methods such as Least Squares, use the entire set of data to fit a model, instead,

RANSAC starts fitting the model to a random small sample, and extends the model

to the compatible data points. This method allows fitting planes in linear features in

3D point clouds, and therefore, with some modifications, it allows us to find the linear

structures from the 3D edge point cloud extracted from the unstable area selected

by the user. It is expected that after running this algorithm, some of the extracted

planes will characterize the geological structures involved in the deformation of the

slope instability.

The general paradigm of RANSAC, which help us to understand the functioning of

the algorithm used in this study is explained by Fischler and Bolles (1981) as follows:

“Given a model that requires a minimum of n data points to instantiate its free pa-

rameters and a set of data points P such that the number of points in P is greater

than n [#(P )≥ n], randomly select a subset S1 of n data points from P and instantiate

the model. Use the instantiated model M1 to determine the subset S1∗ of points in

P that are within some error tolerance (ϵ) of M1. The set S1∗ is called the consensus

set of S1.

If # (S1∗) is greater than some threshold τ , which is a function of the estimate of the

number of gross errors in P , use S1∗ to compute (possibly using least squares) a new

model M1∗.

If # (S1∗) is less than τ , randomly select a new subset S2 and repeat the above pro-

cess. If, after some predetermined number of trials, no consensus set with τ or more

members have been found, either solve the model with the largest consensus set found

or terminate in failure.”
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The main variation done to this method is the selection of the random sample. In

this case, the seed is chosen from the spatially pre-clustered 3D edge point cloud, and

its selection depends on the relation between the plane extracted for each cluster and

the DTM. Therefore the method used is not a random consensus, since the seeds are

chosen based on a quantitative assessment.

Fischler and Bolles (1981) define three parameters that must be set to run RANSAC:

• The error tolerance (ϵ) to include a point in S1∗.

• The maximum number of iterations (m) to select a new subset.

• The threshold (τ). Which sets the minimum points to define a new model M1∗.

The selection of these parameters and the modification of the RANSAC algorithm for

the seed selection will be explained in the following sub-chapters.

4.6.1 Edge K-mean clustering and seed selection

As mentioned above, the selection of the sample of the data i.e. the seed, to initiate

the model is not done randomly in this case. This was decided since it is desired to

fit the planes in the direction of the edges, not across them. If a random sample is

chosen, there is the possibility of selecting points of the 3D point cloud that are on

opposite edges of the unstable area, and this would generate a plane almost parallel to

the slope of the surface. This is contrary to the scope of this study, which is to model

planes that simulate the geological structures that cut the slope of the rock or soil. In

terms of plane directions, the normal vector of the plane should be perpendicular to

the normal vector of the slope; this can be visualized in Figure 28 where (a) represents

a plane extracted from a random seed with points in the opposite edge, while (b) a

plane extracted from a seed with its points located in the “same” edge. To solve this

problem, the points of the seed should be part of the same edge. Hence, the solution

proposed is to cluster the 3D point cloud in k clusters based on their spatial coordinates

using the K-means clustering method.
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(a) (b)

Figure 28: Scheme of plane extracted from random and opposite points (red points) (a) and
extracted from points located in the “same” edge(b).

K-means is a clustering algorithm first introduced by Lloyd (1982). The aim of this

method is to partition the members of a given set of observables into k different clusters

according to their proximity measured using a certain distance metric (euclidean in this

case). The inputs necessary to run this algorithm are the data that will be clustered,

the number of desired clusters (k), their respective initial centroids, and the maximum

number of iterations. The method proceeds as follows:

1. Each point gets its distance calculated to each cluster centroid.

2. Each point gets assigned to the cluster with the closest centroid.

3. Centroids are re-computed using the new members of the respective cluster.

4. Repeat the previous steps until the positions of the centroids do not change or

the maximum number of iterations is reached.

In this case, the Matlab k-means method is employed. To run this method, the number

of clusters to segment the point cloud is 10 (k = 10). This was decided since it is ideal

to divide the edges into small point clouds with ideally no curvature and mostly a linear

structure. After some trials, it was tested that if the number of clusters is greater than

k = 10 the segments would be too small to extract a representative first model i.e.

plane, and if k is smaller than 10 the points in the cluster will be more curved in the
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space. Additionally, the number of maximum iterations set is 1000. As an example,

the K-means clustering with k = 10 would result as following:

Figure 29: Edge 3D point cloud segmented in k = 10 clusters.

After the edge segmentation, the seed can be chosen, however, the seed selection is not

random. As the aim of the algorithm is to extract planes that cut the topography, the

process of choosing the first seed to initiate the model is very relevant. The method to

decide quantitatively which seed is the best one to start the model begins using Least

Squares to fit a plane for each cluster with a modified function based on affine fit

developed by Adrien Leygue (2014); thus, 10 planes would be created. The idea is

to force the model to start with a plane that “cuts” the surface, this means that the

normal vector of the plane should be as perpendicular as possible to the normal vector

of the slope, to simulate the geological structures that cut the slope such as fractures

and faults. The normal vector to the slope is calculated by selecting, for each k cluster,

the triangular faces of the DTM that were used to extract the 3D coordinates of the

points of the cluster, thus for a k cluster a total of l faces is taken. Then, the normal
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vector of each face is extracted to finally average their components (x, y, z) on the

total number of faces (l). Thus, the resultant vector would be the average normal

unitary vector of the topography for each k cluster as follows:

n̂ktopo =

(

∑l

i=1 xki

l
,

∑l

i=1 yki

l
,

∑l

i=1 zki

l

)

(18)

Then, the plane whose normal vector (n̂kplane) has the smallest dot product with the

normal vector of its correspondent topography average normal vector is the ideal seed:

Seed = Clusterk = min(n̂ktopo · n̂kplane) (19)

This would be the point set that generates the plane with the most perpendicular direc-

tion possible to the surface. In the case of the example of Figure 29, the least suitable

plane would be the one generated in Figure 30a while the best plane is generated in

Figure 30b:

(a) (b)

Figure 30: Example of a bad seed (a) and ideal seed (b).

This process is the main difference from the traditional RANSAC method since the

seed selection is not random and it depends quantitatively on the characteristics of the

edge point cloud and its relation with the topography. After the seed is selected, the

first model of the linear fitting can be initiated.
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4.6.2 Model parameters

Using a modified version of the MATLAB function affine fit ( Adrien Leygue 2014),

which is based on the Least Square method, the following parameters of the plane

extracted from the first seed are obtained:

• The three eigenvectors (λ̂1, λ̂2, λ̂3) that represent the three principal components

of the 3D coordinates of the selected point cloud. These unit vectors are given

according to the variance, and with them, the plane can be extracted. The di-

rection with the smaller variance will define the vector normal to the plane (λ̂3),

while the other two components give the direction of the axis of the plane growth

(in-plane vectors), where λ̂1 defines the direction of the largest variance, and λ̂2

gives the second direction for the growth of the plane.

• The mean of each direction of the 3D coordinates of the seed (µx, µy, µz ), defining

the central point of the plane (p).

p⃗ = (µx, µy, µz )

• The standard deviation, of the points included in the plane model, in the direc-

tion of the three eigenvectors: normal to the plane (σ3), principal axis (σ1) and

secondary axis (σ2).

Using these parameters the iterative model can be initiated. Following the analogy with

RANSAC, and as mentioned previously and defined by Fischler and Bolles (1981), the

model parameters would be:

• The error tolerance (ϵ) to include a point in the model. It depends on the three

directions of the plane and it is defined as:

ϵ1 = 4 σ1, ϵ2 = 3 σ2, ϵ3 = 3 σ3

The coefficient in the principal axis (σ1) is greater than in the other directions

because it represents the largest variance of the data, which means that is the

direction that follows the edge, and therefore it should be able to include more

points to the model.
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• The maximum number of iterations (m) to select a new subset is set to 100.

• The threshold τ which sets the minimum points to define a new model, is τ = 3.

If the seed contains less than this value it is not considered and another sample

would be chosen, following the same quantitative selection done for the first seed.

• An extra parameter β is added to this fitting model. It refers to the minimum

number of points left to continue the seed selection. Which is defined as the 5%

of the total number (N) of points in P (β = 0.05N). If the number of remaining

points that have not been assigned to a model is smaller than β the entire process

will stop.

4.6.3 General algorithm

After the explanation of the seed selection and the parameters used in the model, the

general algorithm can be described. A summary of it is shown in the flowchart shown

in Figure 31. In general, two loops are used to extract the final planes, the main loop

with iterations j and the inner loop with iterations i. In i multiple plane models are

tested for a single seed Sj. , then in j the final stable plane extracted in i will be stored

and a new seed will be selected until all the points in the point cloud are used or until

the condition β is met.

The model begins with two inputs, the first seed selected with the procedure mentioned

in the previous chapter (Sj=1), and the 3D point cloud of the extracted edge (P ). It

is worth highlighting that P includes S1 and it contains the total number (N) of the

points labeled as edges. Thus, the model starts with a matrix of 3D points P = (Pnf ),

where n is defined by the total number of points as n = 1, 2, 3, ...N and each direction

in space is represented by f = 1, 2, 3. A single 3D point in the matrix is represented

by Pn. Using the two inputs, the process can be initiated with the following steps,

starting with j = 1 and i = 1:
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Figure 31: Flow chart of the iterative algorithm for plane fitting.

1. A plane (Mi) is modeled from the points in the seed Sj = 1 using Least squares

(affine fit) . The plane parameters are extracted, including the error tolerance in

each direction (ϵfi), the eigenvectors (λ̂fi), and the centroid of the plane p⃗i.

2. Using these parameters, the distances in each direction of the point cloud P to

the plane Mi are calculated ( ⃗dfni).

3. The distance of each point Pn ( ⃗dfni) is compared against the error tolerance (ϵfi).

If the distance ( ⃗dfni) is smaller or equal to the tolerance, the point Pn will be
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included in the consensus of Sj, thus stored in Sji∗. This consensus Sji∗ will

contain all the points Pn that fit inside the error tolerance of the modeled plane

(Mi) and will exclude all the points that exceed this value in each iteration i.

Meanwhile, the excluded points in each iteration will be stored in Dji.

4. Steps 1 to 3 are repeated for every consensus Sji∗, increasing i in each iteration

and adding points to Sji∗ and to the excluded set Dji.

5. Iterations i will finalize if the condition of the maximum number of iterations (m)

is met. However, another condition is also used to stop the model. It is expected,

that after a number of iterations i, the plane becomes stable, which means that the

normal vector stops changing (λ̂3), this vector is compared between consecutive

planes using the dot product. The model stops when the angle between the normal

vectors falls below 0.1°, following this condition:

λ̂3i · λ̂3(i−1) ≥ cos(0.1) (20)

6. When i stops, the final plane Mi is the most suitable model for the final consensus

Sj∗, thus in the outer cycle j the final plane would be stored as Hj = Mi, and the

final set of excluded points as Ej = Dji where the total number of points in Ej is

X.

7. After using the points of the consensus Sj∗ to build a plane, the available points

to fit a new model would be the previously excluded points Ej, with a number

of points X and from them a new seed is chosen. The selection of the new seed

uses the same procedure as the selection of S1. The k clusters extracted using

the K-means method are related to Ej, which means these points will be labeled

according to the k cluster to which they originally belonged. As the number

of available points X is less than the number of original points N , some of the

original clusters, labeled from 1 to 10, do not exist anymore. For example, if

all the points in cluster 3 were included in the previous consensus Sj∗, the label

k = 3 will not be related to the points in Ej. Thus, the remaining number of

clusters that will be related to the excluded points Ej will be g clusters, and after
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each cycle j it is expected that g < k. A plane is fitted to each cluster related to

the available points Ej resulting in g planes.

8. As in the selection of the first seed S1, the cluster g that generated the most

perpendicular plane to the topography will be selected as the new seed Sj. Con-

sidering the parameter τ , the new seed should have more than 3 points to be

chosen, if it contains fewer points the next-best seed is selected, which means the

cluster with the next lowest dot product of the mentioned vectors.

9. With the new seed Sj the iterations in i will start again from step 1 to step

4. But instead of using the original point cloud P to calculate the distance to

generated planes, the excluded points in the previous cycle Ej−1 will be used.

Thus a point Pn will belong to Ej−1 and n = 1, 2, ..X. Iterations j will stop in

step 4 if, according to the parameter β, the condition X < 0.1N is met.

At the end of this iterative process, j planes will be extracted from the edges of the

unstable area selected by the user. The ideal scenario is that these planes follow

the linear features of the edges and represent, as closely as possible, the geological

structures such as the fractures or faults, that are causing the displacement of the

mass.
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5 Cases of study

5.1 Cumba Slope Failure

The following information summarizes the findings reported in the study by Bar et al.

(2023) or were provided directly by the authors. The Cumba Slope Failure occurred

in the Pueblo Viejo gold mine located in Santo Domingo, Republica Dominicana, in

September 2019 when the northern wall failed progressively over a period of three

weeks. The material of the mass movement was andesite in a slope with a dip and dip

direction of 41◦/ 205◦ (pre-failure). The rocks of this area are affected by the Hatillo

Thrust Fault (HTF), a regional structure with dip directions ranging from 200◦ to 225◦

and a dip angle of about 30◦.

Figure 32: Photograph of Cumba Failure (Looking North-West, October 2019). Taken from:
Bar et al. (2023)

A back-analysis was conducted using aerial photogrammetry, GB-SAR, 3D limit-

equilibrium (LEM) and finite element modeling (FEM). The photogrammetry was

done using multiple historical (pre-failure) aerial images taken with a single direction
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from a nadir look at a high altitude, with a resolution of 8 cm per pixel (medium

resolution). From this, several 3D models were generated and later used to map dis-

continuities from which only the ones with a length greater than 10m were selected,

a threshold set manually by the experts. Consequently, six faults (Figure 33) were

extracted from the resultant 3D models with the following directions:

Fault Dip Dip direction Color
190916-a 51◦ 225◦ Purple
190916-b 82◦ 259◦ Black
190916-c 50◦ 164◦ Orange
190923-a 42◦ 215◦ Blue
190923-d 62◦ 167◦ Red
190923-e 64◦ 177◦ Yellow

Slope (pre-failure) 41◦ 205◦

Table 2: Average dip and dip direction of the extracted faults from the 3D model. The slope
values are written for reference.

Figure 33: Faults extracted from the 3D photogrammetry model overlapping the velocity
map. Positive velocity values are approaching the sensor.

From the mapped faults, the yellow, blue and red faults are considered the main

structures involved in the slope instability:
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Figure 34: Faults extracted from the 3D photogrammetry model. Taken from: Bar et al.
(2023)

According to the results reported, the blue fault is the principal structure in the slope

instability since it determines the sliding mechanism. It has a similar direction as the

regional HTF feature, but it is intersected by the yellow and the red faults. A kinematic

analysis was conducted using these three faults and the slope information, obtaining

the classification of the failure mechanism as a planar sliding on the blue fault with a

non-daylighting condition (the dip of the fault has a greater or equal angle than the

dip of the slope). It can also possibly form a non-daylighting wedge considering the

truncation of the red and yellow fault.

After classifying the failure mechanism, the mapped structures found in Table 2, were

used as input for the 3D LEM analysis. From this, the Factor of Safety (FoS) along

the multiple slip surfaces was estimated, and as shown in Figure 35, it was determined

that the main slip occurred in the blue and red faults, with the lowest FoS (in yellow):
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Figure 35: FoS from 3D LEM back-analysis. Taken from: Bar et al. (2023)

The results from the 3D LEM analysis were used to extract the shear strength of the

red and blue faults to be used in the 3D FEM analysis along with other mechanical

properties of the andesite. The resultant model of the 3D FEM analysis validated that

the displacement was bounded by the red and blue faults, as shown in Figure 36:

Figure 36: Displacement from 3D FEM analysis. Taken from: Bar et al. (2023)
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These results were verified using the displacement calculated from the ArcSAR in-

terferometry in which, during failure, a displacement of about 9 meters was recorded

along the blue fault in the direction of the LoS:

Figure 37: Displacement from ArcSAR interferometry (blue indicates < 100 mm displace-
ment and red indicates > 9, 000 mm displacement). Taken from: Bar et al. (2023)

5.1.1 Acquisition of radar images and extraction of velocity map

The Cumba pit was monitored using the ArcSAR radar and the software Guardian of

the company IDSGeoradar. The device was set on the southern wall at a distance of

about 277.5 m from the slope instability face with a LoS direction of 345.89◦ (from the

North) as shown in Figure 38, where the amplitude of the signal received by the radar

is overlapping the DTM. The band used was the Ku band with a central wavelength

(λ) of 17.43 mm. The two radar images selected for the extraction of the geological

structures were acquired with a time difference of 33 hours, starting from the 30-

September-2019 at 20:41:11 (hh:mm:ss) to the 02-October-2019 at 05:40:58. This is a

post-failure period and it was selected due to the availability of data.
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Figure 38: Map of radar amplitude overlapping the DTM (white) of the area of study. The
ArcSAR instrument is highlighted in red.

A radar image of the start date and one of the end date were used as input for the

interferometry process to extract the differential unwrapped phase. Using the equation

10 the displacement map was calculated from the differential phase map to finally

extract the 2D velocity map. The filtered velocity map shown in Figure 39d, was used

as the input for the velocity threshold clustering.
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(a) (b)

(c) (d)

Figure 39: (a) Differential Phase map in degrees. (b) Displacement map (c) Raw velocity
map and (d) velocity map after Gaussian filtering. Positive values are approaching the
sensor.

5.1.2 Velocity threshold clustering and edge detection

In this case, the area between the planes shown in Figure 34 was selected with a click

to perform the velocity threshold clustering. The selection was done as displayed in

Figure 40a. From this, the final velocity threshold (Vthf ) was computed, resulting in

a velocity of 0.658 91mmh−1. Using this value the unstable area shown in Figure 40c

was clustered. After this, the clustered 2D map was used as input for the binary edge

detection algorithm. The output of this process is the 2D point-set of the unstable
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area shown in red in Figure 40d.

(a) (b)

(c) (d)

Figure 40: (a) Pixel selected by the user. (b) r rate giving the velocity threshold (c) 2D
clustered velocity map (d) Edge detected on the 2D clustered velocity map (Zoom of c).
Positive velocity values are approaching the sensor.

The extracted edges were compared on both the raw velocity map and the filtered

velocity map, as the velocity clustering was carried out using only the filtered velocity

map. (Figure 41). This enabled the verification of the Gaussian filter’s effectiveness in

smoothing the original data without excessive blurring of the boundaries, ultimately

resulting in the accurate placement of the extracted edges.
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(a) (b)

Figure 41: (a) Edges overlaying the raw velocity map.(b) Edges overlaying the filtered ve-
locity map. Positive values are approaching the sensor.

5.1.3 Geocoding, edge clustering and seed selection

To transform the acquired 2D data into a 3D format, the initial Digital Terrain Model

(DTM), which was originally in a grid format with a cell size of 0.88m, was converted

into a triangular mesh format. Using the DTM in the new format, the 2D filtered

velocity map and the 2D point set of the extracted edges were geocoded converting

them to 3D data as illustrated in Figure 42:

Figure 42: Filtered velocity map and point cloud overlaying the DTM after geocoding.
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In accordance with the flow chart of Figure 9, the 3D point cloud of the extracted edges

is used as input for the K-means clustering. From this, the point cloud is segmented

into 10 clusters (Figure 43a). Then, a plane was fitted for each cluster to select the

seed to start the iterative plane fitting algorithm. As shown in Figure 43b the final seed

corresponds to the cluster that generated the most perpendicular plane with respect

to the surface.

(a) (b)

Figure 43: (a) Clustered edge point cloud.(b) Planes fitted to each cluster. The red arrow
points to the selected seed.

5.1.4 Iterative plane fitting results

With the edge point cloud and the selected seed point cloud shown in Figure 43a and b

respectively, the iterative process described in the flow chart of Figure 31 was initiated.

After running this algorithm, two planes in total were extracted. In Figure 44 the red

points are the final consensus of each plane iteration, this means that is the final point

cloud that generated the plane. Each plane is defined by the three vectors λ̂1 (blue),

λ̂2 (red) and λ̂3 (black) with an amplitude corresponding to their final tolerance (ϵ).

Ultimately, the dip direction vector, labeled as “Dip Dir” and displayed in cyan is

extracted by following the direction of the steepest inclination of the plane concerning

a horizontal plane. The values of the dip angle, dip direction, and number of iterations

for each plane are shown in Table 3.
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(a) (b)

(c) (d)

Figure 44: (a)(b) Different views of Plane 1. (c)(d) Different views of Plane 2.

Plane Dip angle Dip direction Iterations
Plane 1 66◦ 244◦ 7
Plane 2 39◦ 211◦ 15

Table 3: Planes structural information

These two planes were saved in .xyz format and imported to the software Guardian to

be displayed interactively in 3D along with the edge 3D point cloud.
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(a)

(b) (c)

(d) (e)

Figure 45: (a) Planes extracted with the iterative plane fitting displayed in Guardian. View
of Plane 1 (b) East and (c) West. View of Plane 2 (d) West and (c) East. Positive velocity
values are approaching the sensor
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5.2 Montana open pit

In this particular case study, no information regarding the failure surfaces contributing

to the slope instability is available due to company confidentiality restrictions. Conse-

quently, only the results obtained through the proposed algorithm will be presented.

The processing steps and parameters were the same as the ones used in the previous

case of study.

5.2.1 Acquisition of radar images and extraction of velocity map

The Montana pit was monitored using the ArcSAR radar and the software Guardian

of the company IDSGeoradar. The device was set on the northern wall at a distance of

about 480 m from the slope instability face as shown in Figure 46, where the amplitude

of the signal received by the radar overlaps the DTM. The band used was the Ku band

with a central wavelength (λ) of 17.43mm. The radar images selected for the extraction

of the geological structures were with a time difference of 122.7 hours starting from

27-October-2022 at 04:37:56 (hh:mm:ss) to 01-November-2022 at 07:20:27.

Figure 46: Map of radar amplitude overlapping the DTM (white) of the area of study. The
ArcSAR instrument is highlighted in red.
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The results of the interferometry between the two mentioned dates are shown in the

following figure, where the final output is the filtered velocity 2D map (Figure 47d):

(a) (b)

(c) (d)

Figure 47: (a) Differential Phase map in degrees. (b) Displacement map (c) Raw velocity
map and (d) velocity map after Gaussian filtering.

5.2.2 Velocity threshold clustering and edge detection

The result of the velocity clustering, using as input the final filtered 2D velocity map

shown in Figure 47d, is a velocity threshold of 0.79mmh−1 which generated the clus-

tering of the unstable area selected by the user depicted in Figure 48c. Using this

clustered map as input for the binary edge detection, the edge displayed in Figure 48d

was extracted.
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(a) (b)

(c) (d)

Figure 48: (a) Pixel selected by the user. (b) r rate giving the velocity threshold (c) 2D
clustered velocity map (d) Edge detected on the 2D clustered velocity map (Zoom of c).

To validate the filtering and the clustering of the velocity map, the extracted edge was

displayed in the raw velocity map and in the filtered velocity map (Figure 49a and b).

This confirms that the Gaussian filter and the semi-automatic velocity clustering were

appropriate for the delimitation of the unstable area in the Montana open pit.
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(a) (b)

Figure 49: (a) Extracted edge on the raw velocity map and on the filtered map (b).

5.2.3 Geocoding, edge clustering and seed selection

For the geocoding of the 2D edge pointset and velocity map a DTM originally in a

grid format, with a cell size of 1.5m, was transformed to a triangular mesh. Having

the triangular mesh the geocoded was run, obtaining the 3D velocity map and edge

point cloud.

Figure 50: Filtered velocity map and point set of edges geocoded on the triangular DTM.
Positive values are approaching the sensor.
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The 3D point cloud of the detected edge was clustered as mentioned in chapter 4,

resulting in 10 clusters of 3D points. The plane fitting of each cluster and the selection

of the best seed are shown in Figure 51b.

(a) (b)

Figure 51: (a) Edge point cloud k-means clustering with k = 10 (b) Plane fitting for each
cluster highlighting the selected seed.

5.2.4 Iterative plane fitting results

The iterative plane fitting algorithm initiated with the selected seed highlighted in

Figure 51b, gave as outputs four planes. The results are shown in Figure 52 where the

red points are the final consensus for each main cycle that were used to fit the planes

defined by the eigenvectors λ̂1, λ̂2 and λ̂3 (normal) displayed in red, blue and black

vectors, respectively, with an amplitude corresponding to each final tolerance (ϵ). As

in the Cumba case, the dip vector is displayed in cyan. The values of the dip angle,

dip direction, and number of iterations for each plane are shown in Table 4
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(a) (b)

(c) (d)

Figure 52: Montana iterative plane fitting results. (a) Plane 1, (b) Plane 2, (c) Plane 3 and
(c) Plane 4.

Plane Dip angle Dip direction Iterations
Plane 1 44◦ 258◦ 11
Plane 2 38◦ 255◦ 4
Plane 3 27◦ 216◦ 3
Plane 4 38◦ 261◦ 3

Table 4: Planes structural information
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The extracted planes were displayed in the software Guardian from IDSGeoradar:

(a)

(b) (c)

Figure 53: Montana iterative plane fitting results displayed in Guardian. (a) View of all the
extracted planes (b) Zoom of Plane 1, (c) Zoom of plane 2, 3, and 4. Planes overlayed on
the raw velocity map. Positive velocity values are approaching the sensor.
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6 Discussion

6.1 Cumba slope failure

Comparing the directions of the resultant planes (Table 3) with the planes extracted

using medium-resolution (Bar et al. 2023) photogrammetry (PH) (Table 2), it can

be suggested that Plane 1 and Plane 2, extracted using the iterative plane fitting

algorithm (IPF), have a good fit considering the fault 190916-b (Black) and 190923-

a (Blue) in Figure 33. In the case of Plane 2, its angle differences from the PH

plane, even have lower values than the results provided by Cawood et al. (2017) where

the comparison between LiDAR and the planes measured using compass-clinometer,

resulted in a maximum deviation of 5◦ from the principal direction. Moreover, Plane

1 angle differences from the PH planes, are smaller than the ones of the planes derived

from ASfM in Cawood et al. (2017), which have a maximum deviation of 42◦ from the

control planes.

Plane Dip Dip direction
Plane 1 66◦ 244◦

190916-b (Black) 82◦ 259◦

Difference 16◦ 15◦

Plane 2 39◦ 211◦

190923-a (Blue) 42◦ 215◦

Difference 3◦ 4◦

Table 5: Planes modeled with IPF (Plane 1 and Plane 2) and with PH (Black and Blue).

To visualize graphically the difference between the two modeling methods these planes

were displayed in Guardian, comparing Plane 1 with the 190916-b (Black) plane, and

Plane 2 with the 190923-a (Blue) plane:

80



(a) (b)

Figure 54: Plane comparison in Guardian displaying the velocity map (positive values are
approaching the sensor). (a) Plane 1 (IPF) and Black plane (PH). (b) Plane 2 (IPF) and
Blue plane (PH).

The obtained results allow us to state that the extracted planes using IPF are a good

match for the planes using photogrammetry. However, according to the analysis done

by the geotechnical team of the Cumba mine detailed in chapter 5.1, from the two

planes that were involved in the failure deformation, the IPF algorithm was able to

detect only one, the blue plane (PH) as Plane 2 (IPF), where the main displacement

occurred according to the modeled deformation. Nevertheless, some considerations

must be made to analyze why by using IPF only the blue plane was extracted, and

the difference between the two methods. The first consideration is that the radar

images used as input for the IPF were acquired on dates posterior to the failure event,

while the planes extracted with PH were modeled using aerial photos dated before the

failure. Thus, the displacement of the event recorded in the velocity map of Figure

39d indicates the instability of the slope after the main failure, and since the stress

conditions vary after the main deformation, it is likely that the structures in which

the displacement occur also varied. This possibly explains why the velocity clustering

shown in Figure 40b was limited to the Plane 1 and Plane 2 structures, and the red

plane in Figure 35 was not detected and therefore not extracted using IPF.

The second consideration is related to the resolution of the photogrammetry, which had

a medium resolution, the aerial photos were taken using only a nadir-looking flight with
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a high altitude the resultant models can have inaccuracies with respect to the ground-

truth. Therefore, the orientation and location of the modeled structures can be affected

by this, which means that the difference between the modeled structures with PH and

IPF can be derived from this condition. Another source of difference could be the

fact that the displacement measured with ArcSAR measured only the LOS component

of the real deformation vector, hence it might affect the velocity threshold clustering

which is a fundamental step in the extraction of the structures with IPF. To check the

validity of both methods it could be useful to take in-situ measurements of the faults,

to improve the resolution of the photogrammetry, or to acquire LiDAR data. However,

the difference in the measurements between the PH and IPF is small, considering the

angle differences, especially in the case of the Blue plane and Plane 2, and thus a

validation might not be necessary.

Finally, it is relevant to highlight that the dimension of the IPF-extracted structures

is limited by the mapped deformation. Hence the length of the extracted fault planes

does not represent the length of the real structure, this can be seen comparing the

planes extracted with PH shown in Figure 33 and Figure 45. This means that the

relevant information extracted using IPF is the orientation and location of the planes

and the deformation boundaries, but not the extent of the fault surfaces.

6.2 Montana Open-pit

As in this case of study, there was no available information about the ground truth of

the extracted planes, this case is used to evaluate the applicability of the IPF algorithm

in diverse slope instabilities. In this pit, only Plane 1 shows a viable representation

of a fault surface, as shown in Figure 52a, since this plane follows the continuous

northern edge, however the dip and dip direction cannot be validated. Planes 2, 3,

and 4 are discontinuous and do not represent a real surface. The extraction of these

planes was problematic since the original radar data contains an area with no values

in the southern boundary (Figure 55a) causing the segmentation of the edge between

Plane 2 and Plane 3 (Figure 55b).
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(a) (b)

Figure 55: (a) Plane view showing the gap in the southern edge with the (b) affected planes.
Positive velocity values are approaching the sensor.

Moreover, Plane 2 was not able to grow in the west direction towards the points of Plane

4, where the edge was continuous. This could indicate that in this case, the tolerances

(ϵ) of the iterative process for including a point in the final consensus (subchapter

4.6.2) should be reviewed since this determines the distance from the plane which will

be used to include points in the final model.

Another condition that possibly affects the quality of the extracted edges is the DTM

resolution and the geocoding using this DTM. In this case, the original DTM with grid

format had a cell resolution of 1.5m, nevertheless the width of the benches can have

values close to the cell resolution, according to the measurements made on the DTM

using Guardian (Figure 56).
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Figure 56: Bench width measurement on the DTM (color bar is the height according to the
reference level) using Guardian.

This means that the original DTM resolution is not appropriate for structure extraction

since it has a low resolution considering the pit design, since this would also represent

a low resolution in the triangulated mesh used in the geocoding process, resulting in

a wrong positioning of the edge 3D point cloud and therefore a wrong extraction of

the modeled planes. Besides the DTM resolution, the geocoding seems to be affected

by other factors, this can be seen in Figure 57 by comparing the geometry of the

deformation shown in the velocity map (red lines) and the pit bench faces bench floors

(yellow lines) geometry.
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Figure 57: Geocoding detailing the bench floors (yellow dotted line) and the deformation
geometry (red dotted line). Positive velocity values are approaching the sensor.

The vertical red lines in Figure 57 “cut” the floor of the benches, in yellow, this means

that the geocoding of the velocity map does not represent the right geometry of the

deformation on the DTM, since the horizontal red lines should overlap the bench floor

lines in the DTM. Using this information it can be stated that none of the extracted

fault planes using the IPF algorithm can be used for the characterization of the slope

instability or to perform a kinematic analysis since the input data does not have the

right resolution and spatial correctness, and therefore the extracted planes would not be

a proper representation of the geological structures involved in the slope displacement.
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7 Conclusions

The design and modifications of the proposed iterative plane fitting algorithm (IPF),

based on the RANSAC method, have proven to be effective in modeling planes that

have a geological nature and therefore have special considerations regarding the direc-

tion and inclination (dip direction and dip) of the expected planes with respect to the

topography. Typical plane fitting algorithms do not take into account these spatial

constraints and hence are not always appropriate to extract geological structures. The

accuracy of this method has been proven by comparing the planes extracted with IPF

and the planes modeled with photogrammetry, showing a small error between the two

methods. Additionally, in the two cases of study, the algorithm was able to find con-

verging planes in less than 20 iterations showing good efficiency and thus a suitable

potential for a near real-time application during the slope monitoring stage, where the

extracted planes could be a relevant input for the mass movement characterization and

specially for the stability analysis.

The main contribution of this study was the IFP algorithm for modeling geological

structures involved in slope instability. However, another important contribution was

the development of the velocity threshold clustering which by itself is a relevant input

in the description of a slope instability. To obtain a velocity threshold that clusters the

unstable area, using a quantitative process with mathematical considerations is a great

advance in the analysis of the GB-SAR data since the delimitation of the unstable area

is usually done manually using the display of the velocity or displacement maps, and

therefore it depends on the user considerations and even on the color scale used on the

graphical representation. With the proposed method the unstable area delimitation

is more precise and does not depend on human interpretation. Also, the numerical

output of the velocity threshold can be useful for early warning systems by defining

the unstable and stable pixels.

Moreover, the limitations of the proposed algorithm are mostly related to the input

data, as shown in one of the study cases. Extracting realistic planes from the velocity

map depends on the resolution of the DTM, the accuracy of the geocoding, and the
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noise on the differential phase map. However, other analyses must be done to determine

the applicability of this method, for instance, to establish if it is relevant for other

types of failure modes such as toppling or circular mechanisms, and to test its validity

on different slope movement geometries according to their morphometric parameters

(area, length, width, aspect ratio, slope angle). Another proposed future work is

the development of more robust methods for choosing the multiple parameters of the

algorithm, for example, the k number of clusters on the edge segmentation and the

error tolerances coefficients (ϵ) to add a point to the plane consensus. This could be

done by adding a third iterative cycle to test multiple plane models.

It is important to mention that in every slope instability study, multiple methods must

be used to improve the precision of the risk management plan. An output of a single

method should not be used as a unique estimation of this geological hazard, especially

pondering the important implications of a failure event. Therefore, the planes extracted

using the proposed algorithm must be considered as one input for the risk analysis

that must be supported by other methods, and as GB-SAR is usually used during

monitoring, they would be part of the iterative process of the slope instability risk

management where, as shown in Figure 1, the outputs obtained during the monitoring

stage are used as feedback for the hazard identification and the risk estimation steps.

Therefore these planes would be useful to provide a successful risk management to

mitigate a potential slope failure event.
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Lato, Matthew J. and Malte Vöge (2012). “Automated mapping of rock discontinu-

ities in 3D lidar and photogrammetry models”. In: International Journal of Rock

Mechanics and Mining Sciences 54, pp. 150–158. issn: 1365-1609. doi: https://

doi.org/10.1016/j.ijrmms.2012.06.003. url: https://www.sciencedirect.

com/science/article/pii/S1365160912001207.

90

https://doi.org/https://doi.org/10.1016/j.ijrmms.2010.11.009
https://www.sciencedirect.com/science/article/pii/S136516091000211X
https://www.sciencedirect.com/science/article/pii/S136516091000211X
https://doi.org/https://doi.org/10.1016/j.enggeo.2019.105442
https://doi.org/https://doi.org/10.1016/j.enggeo.2019.105442
https://www.sciencedirect.com/science/article/pii/S0013795219305848
https://www.sciencedirect.com/science/article/pii/S0013795219305848
https://doi.org/https://doi.org/10.1016/j.ijrmms.2012.06.003
https://doi.org/https://doi.org/10.1016/j.ijrmms.2012.06.003
https://www.sciencedirect.com/science/article/pii/S1365160912001207
https://www.sciencedirect.com/science/article/pii/S1365160912001207


Libert, Ludivine, Jan Wuite, and Thomas Nagler (2022). “Automatic delineation of

cracks with Sentinel-1 interferometry for monitoring ice shelf damage and calving”.

In: The Cryosphere 16.4, pp. 1523–1542.

Lloyd, Stuart (1982). “Least squares quantization in PCM”. In: IEEE transactions on

information theory 28.2, pp. 129–137.

Long, David and Fawwaz Ulaby (2015). Microwave radar and radiometric remote sens-

ing. Artech.

Macciotta, Renato and Michael T Hendry (2021). “Remote sensing applications for

landslide monitoring and investigation in western Canada”. In: Remote Sensing

13.3, p. 366.

Martha, Tapas R et al. (2010). “Characterising spectral, spatial and morphometric

properties of landslides for semi-automatic detection using object-oriented meth-

ods”. In: Geomorphology 116.1-2, pp. 24–36.

Mei, Shaohui et al. (2020). “Spatial and spectral joint super-resolution using convolu-

tional neural network”. In: IEEE Transactions on Geoscience and Remote Sensing

58.7, pp. 4590–4603.

Mercer, KG (2006). “Investigation into time dependent behavior and failure mechanism

of unsupported rock slopes based on the interpretation of observed deformation

behavior”. PhD thesis. PhD Thesis, Faculty of Eng., Univ. of Witwatersrand, SA.

Metternicht, Graciela, Lorenz Hurni, and Radu Gogu (2005). “Remote sensing of land-

slides: An analysis of the potential contribution to geo-spatial systems for hazard

assessment in mountainous environments”. In: Remote Sensing of Environment

98.2, pp. 284–303. issn: 0034-4257. doi: https://doi.org/10.1016/j.rse.

2005.08.004. url: https://www.sciencedirect.com/science/article/pii/

S0034425705002506.

Minerals, Department of and Energy (2018). Mine Health and Safety Inspectorate,

pp. 1–1.

Monserrat, O, M Crosetto, and G Luzi (2014). “A review of ground-based SAR inter-

ferometry for deformation measurement”. In: ISPRS Journal of Photogrammetry

and Remote Sensing 93, pp. 40–48.

91

https://doi.org/https://doi.org/10.1016/j.rse.2005.08.004
https://doi.org/https://doi.org/10.1016/j.rse.2005.08.004
https://www.sciencedirect.com/science/article/pii/S0034425705002506
https://www.sciencedirect.com/science/article/pii/S0034425705002506


Moreira, Alberto et al. (2013). “A tutorial on synthetic aperture radar”. In: IEEE

Geoscience and remote sensing magazine 1.1, pp. 6–43.

Nichol, Janet E., Ahmed Shaker, and Man-Sing Wong (2006). “Application of high-

resolution stereo satellite images to detailed landslide hazard assessment”. In:

Geomorphology 76.1, pp. 68–75. issn: 0169-555X. doi: https://doi.org/10.

1016/j.geomorph.2005.10.001. url: https://www.sciencedirect.com/

science/article/pii/S0169555X05003223.

Nikolaeva, Elena et al. (2014). “Landslide observation and volume estimation in central

Georgia based on L-band InSAR”. In: Natural Hazards and Earth System Sciences

14.3, pp. 675–688.

Norrish, Norman I and Duncan C Wyllie (1996). “Landslides: Investigation and Mit-

igation. Chapter 15-Rock slope stability analysis”. In: Transportation Research

Board Special Report 247.

Parise, Mario and Randall W Jibson (2000). “A seismic landslide susceptibility rating

of geologic units based on analysis of characteristics of landslides triggered by

the 17 January, 1994 Northridge, California earthquake”. In: Engineering geology

58.3-4, pp. 251–270.

Partnerships, ISDR-ICL Sendai Landslide (2021). Partnerships 2015-2025 for Global

Promotion of Understanding and Reducing Landslide Disaster Risk.

Peek, Kenneth E. (2011). “Estimation and compensation of frequency sweep nonlinear-

ity in FMCW radar”. In: url: https://api.semanticscholar.org/CorpusID:

32528580.

Piteau, Douglas R and F Lionel Peckover (1978). “Engineering of rock slopes”. In:

Landslides-Analysis and control. Nat. Acad. Sci., Washington, pp. 192–230.

Rimmelin, R and J Vallejos (2020). “Rock mass behaviour of deep mining slopes: a

conceptual model and implications”. In: Slope Stability 2020: Proceedings of the

2020 International Symposium on Slope Stability in Open Pit Mining and Civil

Engineering. Australian Centre for Geomechanics, pp. 591–608.

Roccheggiani, Matteo et al. (2018). “Automated detection of surface ruptures asso-

ciated with the 2016 Central Italy earthquake sequence by Sentinel-1 SAR in-

92

https://doi.org/https://doi.org/10.1016/j.geomorph.2005.10.001
https://doi.org/https://doi.org/10.1016/j.geomorph.2005.10.001
https://www.sciencedirect.com/science/article/pii/S0169555X05003223
https://www.sciencedirect.com/science/article/pii/S0169555X05003223
https://api.semanticscholar.org/CorpusID:32528580
https://api.semanticscholar.org/CorpusID:32528580


terferometry data”. In: Proceedings of the 9th International INQUA meeting on

Paleoseismology, Active Tectonics and Archeoseismology, pp. 229–232.

Rödelsperger, Sabine (2011). “Real-time processing of ground-based synthetic aperture

radar (GB-SAR) measurements”. PhD thesis. Dissertation, Darmstadt, Technische

Universität, 2011.

Roncella, Riccardo, Gianfranco Forlani, and Fabio Remondino (2005). “Photogramme-

try for geological applications: automatic retrieval of discontinuity orientation in

rock slopes”. In: Videometrics VIII. Vol. 5665. SPIE, pp. 17–27.

Stead, Doug and Andrea Wolter (2015). “A critical review of rock slope failure mech-

anisms: the importance of structural geology”. In: Journal of Structural Geology

74, pp. 1–23.

Tian, Yingying et al. (2017). “Geometrical characteristics of earthquake-induced land-

slides and correlations with control factors: a case study of the 2013 Minxian,

Gansu, China, Mw 5.9 event”. In: Landslides 14, pp. 1915–1927.

Tofani, Veronica et al. (2013). “Use of remote sensing for landslide studies in Europe”.

In: Natural Hazards and Earth System Sciences 13.2, pp. 299–309.

Varnes, David J (1958). “Landslide types and processes”. In: Landslides and engineer-

ing practice 24, pp. 20–47.

— (1978). “Slope movement types and processes”. In: Special report 176, pp. 11–33.

Voronov, Roman (2013). nanmedfilt2 version 1.0.0.0. url: https://it.mathworks.

com/matlabcentral/fileexchange/41457-nanmedfilt2 (visited on 04/29/2023).

Voyat, Iris et al. (2006). “Advanced techniques for geo structural surveys in modelling

fractured rock masses: application to two Alpine sites”. In: ARMA US Rock Me-

chanics/Geomechanics Symposium. ARMA, ARMA–06.

Wyllie, Duncan C and Chris Mah (2004). Rock slope engineering. CRC Press.

Young, K, A Robotham, and G Virk (2020). “Economic consequences of geotechnical

instabilities in open cut coal mines”. In: Slope Stability 2020: Proceedings of the

2020 International Symposium on Slope Stability in Open Pit Mining and Civil

Engineering. Australian Centre for Geomechanics, pp. 145–154.

93

https://it.mathworks.com/matlabcentral/fileexchange/41457-nanmedfilt2
https://it.mathworks.com/matlabcentral/fileexchange/41457-nanmedfilt2

