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1
Introduction

The supervising and control of the river levels have always been a relevant

issue in order to prevent the damages of the flood events. The increasing

urbanization and industrialization of many river basins resulted in an growth of

the flood risk, therefore in the need for an accurate forecasting system to help

the authorities to plan and activate interventions and emergency evacuation

procedures. A reliable prediction for the water level and rate of flow is also

required to plan hydrological protection works, to manage the water resources

and to optimize their use for both industrial and agricultural purposes.

Several hydrologic and hydrodynamic models are currently used in order to

get a forecast of the river levels and flood. They involve the processing of a great

amount of data, including hydrometric and pluviometric measurements, weather

forecasts and hydrogeological maps, in addition to water level, temperature

and flow observations.

Such models are usually rather sophisticated, especially when describing

large, complex system such as the catchment area of a major river. Most of the

models – in particular the hydrodynamic ones, namely those which simulate the

propagation of the flow through the basin – are physically based, therefore they

aim to obtain a deterministic and physically meaningful description of the real
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system. They include a huge number of parameters, and their implementation

usually requires a great computational effort.

However, such an approach tends to overestimate the actual amount of

information actually available on the system behavior. Moreover, none of the

currently used techniques is capable of natively handling parameters uncertainty,

since it is assumed that the set of the chosen values perfectly describes the real

system.

In the field of Control and System Theory, identification of large scale

systems is a classical research topic. It is often the case that identification

algorithms tend to disregard the physics of the system, and treat the latter as

a black box input–output operator. One of the most recent developments is

the so called nonparametric approach, which is based on the idea of avoiding

the postulation of a priori structures for the result, and searching a model of

the system within a space of functions featuring some desirable properties of

stability and smoothness.

In this thesis we adopted this approach to forecast water heights and flows

on the Po River basin, which is the largest Italian catchment area, and already

features a complex supervising and prediction system. Thanks to the observed

data, kindly provided by the Regional Agency for Environmental Protection of

Emilia–Romagna, we were able to train and test our algorithm on real datasets,

and to compare the results of our prediction method with the ones of the

current forecasting system.

Overview of the thesis The thesis is organized as follows:

• in Chapter 2 we present the Po River case, along with the main charac-

teristics of the basin, and we review both structural and non structural

defense measures, including the current flood forecasting system;

• in Chapter 3 we introduce the theoretical framework of the nonpara-

metric approach, including Reproducing Kernel Hilbert Spaces theory

and regularization techniques, while summarizing the possible benefits of

such an approach to the Po River basin forecasts;

• in Chapter 4 we briefly describe the implementation of the identification

algorithm (including its training and testing on real datasets), show our

forecasting results on both water heights and flow values, and compare

the performances with those of the current system;



3

• in Chapter 5 we summarize the obtained results and propose some

directions for future research.
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The Po River case: the state of the art

The Po River is the largest and most important Italian river, which flows 650

km eastward from the Cottian Alps - in the North-West of Italy - into the

Adriatic Sea, crossing some of the most industrialized and densely inhabited

Italian regions. Through centuries, the river has always been subject to heavy

flooding, therefore the need of hindering the flood events has been a major

issue for every population settling in the Po Valley. The first human attempts

to control the river flow with embankments and channels date back to the

Etrurian age, and continued throughout history up to the present time.

It is known that since XVI century the Po river had long and continuous

levees from Mantova to the Adriatic sea, covering a stretch of about 150

km. Afterwards, in particular after severe flood events, the development of

embankments was extended upstream, as well as along the main tributaries.

Nowadays, the levees have reached a length of about 860 km along the main lengths of

the leveescourse of the Po River, and about 1420 km along the most important tributaries.

Despite the fact that the overall quantity of water is lower than in the

past centuries, flood risks are strongly increasing due to the massive expansion

of inhabited areas close to the river path. The growing urbanization, which

often involves even flood plains and other reserved areas, required the planning
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of several prevention and intervention strategies, both structural and non-

structural.

Figure 2.1: The Po River basin.

2.1 Structural measures

The definition of structural measures includes every kind of physical intervention,

from the repair of the levees to the construction of dams and embankments.

Several structures and strategies are currently used on the Po River in order to

face both seasonal and emergency flood events. An extremely important role in

stormwater management is played by detention basins , which are storage sitesdetention

basins (such as reservoirs or dry ponds) that delay the flow of water downstream. Such

basins not only provide general flood protection, but can also help controlling

extreme floods as well as extraordinary storm events with very long return

period. A detention basin allows the entrance of large flows of water, while

limiting the outflow thanks to the very small opening at the lowest point of the

structure. The inflow area is obviously subject to high stress, and is therefore

designed to be very stout, and to protect the whole structure from damages.

For example, concrete blocks are often used to reduce the speed of entering

flood water. Most detention basins are built upriver of major cities, in order to

protect the population.

Floodplains serve a similar function in beheading the flood. They are flatfloodplains

areas adjacent the river stream, stretching from the banks to the base of the
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Figure 2.2: The 2000 flood of the Po River.

levees. Floodplains experience flooding during periods of high discharge, and

since they can extend over very large areas, they are a fundamental resource for

emergency water storage. Many of them are in fact closed , namely there is a

second, lower levee that gets overrun during the flood event, therefore reducing

the rate of the flow. The maximum storage volume of the defended floodplains

all along the main trunk of the Po River is of about 410 · 109 m3. The most

important ones are Roncorrente, Revere, San Benedetto Po and Sustinente.

Figure 2.3: Sustinente floodplain map.
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A major issue concerning these floodplains is that increasing urbanization

leads people to settle down even in prohibited areas that are subject to inun-

dation - in particular if the return period of the flood event in that particular

site is long. Due to this problem, it is sometimes easier and cheaper - in

terms of costs and organizational complexity - to build up brand new defensive

structures than to relocate a whole community of settlers.

The main structural defense to contrast flood events is still the presence of

a continuous system of levees - in the case of the Po River, as already said, thelevees

total length of the levees is about 860 km along the main trunk, and 1420 km

along the main tributaries and the branching water courses of the river delta.

Although the levees offer an effective way to contain the flood and reduce the

inundation events, their construction and their growing extension towards the

upstream part of the river caused the subtraction of significative floodplain

areas, therefore slowing down the discharge process. Not only this determined

a progressive and significative rise of water levels and discharge times along the

Po main course, but at the same time the steady rise of the height of levees

caused the achievement of structural limit conditions. At present time, the size

of the embankments has reached its physical maximum along most part of thelimitations

of

structural

measures

lower course of the Po River, and can not be augmented anymore.

Figure 2.4: Evolution of the embankments after the 1951 flood event.

River embankments also need constant maintenance to prevent erosion and

collapses, in particular during flood events, that can last up to three or four

days. During that period the levees get hardly stressed, therefore requiring
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the presence of volunteers teams to keep under surveillance the most risky

stretches. Internal erosion of the embankment caused by seepage - also known seepage

as piping - can be fast enough to form channels underground, that follow

paths of maximum permeability and result in extensive field springs. The main

strategy to contrast them is that of sandbagging the whole area, in order to

increase pressure and consequently reduce water speed.

Figure 2.5: Sandbagging around a wide field spring (fontanazzo).

Just as the detention basins can be opened in order to behead the flood,

it is possible to break the levees at some point to let the water flow out.

Levees cuts are considered an extreme solution, and are only used to face levees cuts

very serious emergency events. The exact location and timing of the break

need to be carefully planned, otherwise the whole intervention might turn

out to be either devastating or useless. Moreover, these operations might be

rather dangerous for the workers performing the cut, which obviously need to

operate under security conditions. This is one of the reasons for the need of

an accurate forecasting system, along with other decisional problems such as

people relocation, damages minimization etc.

2.2 Non-structural measures: the AIPo

system

Apart from structural measures, an effective real time flood forecasting system

is needed in order to manage emergency situations and defensive strategies. In

the case of the Po River, such a need was particularly highlighted during the

serious October 2000 flood, and the later inundation of Turin.
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The organization that is currently in charge of flood protection and flood

damage reduction, and of the whole forecasting system, is the Interregional

Agency for the Po River (AIPo), that was established in 2003. AIPo provides

engineering and environmental services in support of the Italian regions crossed

by the Po river, namely Piemonte, Lombardia, Emilia - Romagna and Veneto.

AIPo efforts range from small, local protection projects to major civil

engineering works, such as dams, flood control storage areas, etc., in close

cooperation with national and local governments, academic institutions and

other concerned groups. Since its establishment, one of the main goals of AIPo

was the implementation of a flood early-warning system able to provide river

and flood real-time forecasts and information about the drought along the Po

River.

The Flood Forecasting and River Monitoring System was the result of a 2005

national and interregional agreement among public administrations, including

the Italian Department of Civil Protection, the Po river basin Authority, the

AIPo itself and of course the local governments of the interested regions, such

as the Regional Agency for Environmental Protection (ARPA). The main goals

of the project were:

• developing a reliable model for works management and defensive strategies

planning;

• developing a suitable forecasting system for real time applications;

• providing information in advance for the Civil Protection in order to

help the organization of flood control services, soil defense strategies, and

emergency management.

The system is currently used by local governments in order to reduce

territorial vulnerability and to plan alert strategies, and it is connected to

external hydrological and meteorological data sources. Imported data include,

for example, weather forecasts and telemetry systems, such as observed water

levels and precipitations. Besides flood management, the forecasting system

is also used to optimize the use of water resources, to provide information for

fluvial navigation and to simulate crisis scenarios.
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The inputs of the AIPo forecasting system

The input of the forecasting system is a wide variety of data coming from a

complex network of sensors all over the Po River basin. The acquisition takes

place by a regular auto-polling via radio from over a thousand stations every

thirty minutes - actually coordinated by few major stations.

The most important quantities are obviously temperatures, rainfall and

water levels. Rainfalls are measured not only by a thick system of pluviometers data kinds

(about one per 80 km2, with higher density on hills and mountainous areas),

but also by a network of radars. Pluviometers measure the rain depth per time pluviometers

unit, and provide information on both the total amount of water and the hourly

intensity of the rainfall, in order to warn on extraordinary precipitation events.

The radar network get instead an estimate of the rainfall field by measuring radar

networksrefractivity. Radar information is in general less accurate, as it just provides a

rough evaluation on a scale from 1 to 5, and is only used when - for any reason

- pluviometric data are not available in real time. It is in fact essential for the

forecasting system to be fully and continuously updated 24/7.

Figure 2.6: The radar network covering the Po River basin.

Both pressure and ultrasound sensors are used to measure stream stages pressure

and

ultrasound

along the main trunk and the major tributaries of the Po River, while in some

sections flow measurements are available too, thanks to several helix devices or

Doppler instruments placed in different points of each section. Without direct

flow measures, it is not trivial to compute the actual mass of water flowing

through a section, as the stream bed morphology can evolve through years, and

therefore a certain amount of water can correspond to rather different water
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stages. Moreover, water level measurements are affected by noise, in particular

on the upstream part of the basin, where water streams are more turbulent

and subject to sudden drifts - the so called flash floods . Some attention is thusflash flood

needed when dealing with historic flow data series.

In addition to hydrometric and pluviometric measures, hydrogeological maps,

temperature and flow observations, snow heights and water levels, information

on the artificial basins are also used. There are about 180 dams across the

whole Italian Alpine chain, which water level and volume data are acquired

by the forecasting system with a certain retard, due to the secret required by

the hydroelectric stock markets - which anyway is no longer restrictive during

flood and crisis events. Information about the industrial and agricultural water

use are also collected, and mainly used to optimize seasonal water drainage.

Salt concentration along the courses of the delta is measured for the samesalt concen-

tration purpose. Along with an atmospheric circulation model, which processes both

astronomic and meteorological forecasts, these measurements aim to estimate

saltwater intrusion, in order to identify the most appropriate timing for fresh

water drainage, which is obviously a primary concern for irrigation.

Besides observed data, forecasted data are used too. Weather forecasts , inweather

forecasts particular, play a fundamental role in the prediction process. The AIPo system

uses both forecasts from the European Centre for Medium-Range Weather

Forecasts (ECMWF), which are computed in the ECMWF base in Reading

(UK), and from a Limited Area Model (LAM). ECMWF predictions are based

on a general atmospheric circulation model, namely they are the result of

the integration of physics based differential equations over a whole Earth

hemisphere, while LAM models only apply to limited regions, and use the

information from the global models as an initial frame to develop a more

accurate short-range forecast. Although LAM models are unable to perform

long term forecasts, as they lack information on boundary conditions, they offer

a much more reliable short term predictions, as they compute their forecasts

on a very tight lattice - in the case of the Po River basin, the side of the cells

is just 2.8 km, while the ECMWF cells side is about 50 km.

The hydrologic and the hydrodynamic model

The AIPo system uses all the observed data and structural information to

simulate the behavior of the Po River basin. Hydrologic models convert
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rainfall information into flow forecasts, which are then used as an input for

the hydrodynamic models. A cluster of more than 140 CPU cores is used to current

forecasting

system

afford the computational charge of the simulations, coordinated by a master

that manages resource allocation according to an open source grid computing

technology (Condor). Two independent power systems are available, in order

to guarantee the continuity of the system even in breakdown or emergency

situations.

The hydrologic model

All the observed data serve as inputs for the hydrologic runoff models, which

aim to convert rainfall information into a flow forecast. Hydrogeological maps,

as well as information on soil usage, soil composition and land morphology are

used to estimate how much water per time unit is going to reach the main river

and its major tributaries. The observed data only allow to get a prediction

range shorter than the time of concentration, namely the time needed for water time of con-

centrationto flow from the most remote point in a watershed to the watershed outlet.

In order to perform longer term predictions, weather forecasts are also

included in the model. Due to the intrinsic uncertainty on the future values of

precipitation, a probabilistic approach is required to properly deal with this

additional information. It is fundamental to remark the fact that this type of

uncertainty does not arise from a lack of knowledge on the reliability of the

model or on the actual value of the parameters, but rather from the use of future

quantities, that are therefore inevitably unknown.

The AIPo system currently includes the predictive uncertainty on weather

forecast only by perturbing the initial conditions of the ECMWF general

atmospheric circulation model. Over fifty different scenarios are then generated,

and subsequently divided into different groups. A single representative is then

chosen from each set, according to some kind of meteorological metrics (such as

pressure, altitude etc.), and used as an input to the LAM. The initial condition

is provided by a mesoscale data assimilation based on a nudging technique.

This procedure leads to the generation of sixteen different scenarios - plus the

one obtained without any perturbation - which are computed by a CPU cluster

located at the CINECA (the largest Italian computing centre).

The seventeen scenarios, along with all of the observed data, get processed

by three different hydrologic runoff models:
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• the MIKE11-NAM model, a commercial software which is based onMIKE11-

NAM Nedbør Afstrømnings Model (NAM) methods. NAMs are lumped rainfall-

runoff models that describe the watershed as a single entity with a single

rainfall input (mean rainfall). The discharge at the watershed outlet

depends on the global dynamic of the system, and the whole drainage

basin is represented as a series of storages (including soil water retention,

groundwater, artificial basins etc.). Therefore, flow is calculated as a

function of the water storage in each of the mutually interrelated storages

that model the capacity of the catchment area. In the particular case of

the Po River basin, the model includes 488 different storages;

• the Hydrologic Modeling System (HEC-HMS), which is designed to simu-HEC-HMS

late the precipitation-runoff processes of branched watershed systems. A

model of the watershed is constructed by separating the hydrologic cycle

into single processes, represented as a series of storage layers (canopy

interception storage, surface interception storage, soil storage, ground

storage etc.).

• The TOPKAPI, a physically-based hydrologic model. The TOPKAPITOPKAPI

is fully distributed, namely the river basin is divided into several cells,

and a set of different components (such as interception, snowmelt, evap-

otranspiration, infiltration, percolation, sub-surface flow, surface flow,

groundwater flow and channel flow) is applied to each cell. Cells side

varies from 200 m on mountain regions up to about 1000 m on plain

regions, due to the fact that weather conditions are less uniform over

mountainous areas. The TOPKAPI is based upon physically meaningful

parameters, and it approximates the horizontal flow of the water over

and under the soil by means of a kinematic wave model. It represents

flood curves starting from meteorological inputs and from morphological

and physical characteristics of the hydrographical basin. The catchment

behavior is then obtained by aggregating the non-linear reservoirs into

three cascades, representing the soil, the surface and the drainage network,

see, e.g., Todini and Ciarapica (2002).

The hydrodynamic model

The outputs of the hydrologic models, namely the expected flow values, are

used as an input for three different hydrodynamic models, which aim to sim-
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ulate the flow propagation along the river network. The models in use are

MIKE11-HD (the hydrodinamic module of the Mike11 package), Hydrologic MIKE11-

HDEngineering Center River Analysis System (HEC-RAS) and SOBEK (a com-
HEC-RAS

SOBEK
mercial suite). They are all based on the so called Saint-Venant equations,

Saint-

Venant

namely the unidimensional form of shallow water equations:
∂Q

∂t
+

∂

∂x
(α
Q2

A
) + gA

∂h

∂x
= 0

∂Q

∂x
+
∂A

∂t
= 0

(2.1)

where:

• h is the water height (with respect to a fixed level)(m);

• g is the acceleration due to gravity (m/s2);

• Q is the flow value (m2/s);

• A is the area of the section (m2);

• α is the momentum distribution coefficient.

These equation can be derived from the momentum conservation and

mass conservation laws applied to each infinitesimal section of the river. The

hydrodynamic models represent the river as a series of separate stretches, each

one receiving as an input the forecasted flow from the hydrological model. The

effect of the incoming water is modeled as a combination of both upstream

and lateral inflow. The representation of the hydrographical basin is a network

based on topographic surveys coming from over 1,100 stations, in addition to

the information on every structure and artificial basin interacting with the Po

River catchment area.

A significative example is that of Isola Serafini , the largest island in the isola

SerafiniPo River, which also hosts a hydroelectric power plant. Two main barriers are

present on the two branches of the river that surround the island, along with a

wide reservoir for water storage. The operational rules of the diversion weir

are included in the hydrodynamic models, therefore their contribution is taken

into account while simulating the flow propagation.

The three hydrodynamic models (MIKE11-HD, HEC-RAS, SOBEK) use

different numerical methods for the integration of shallow water equations, all
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Figure 2.7: Managing software of the barriers of Isola Serafini.

based on finite-difference schemes. The models are one-dimensional, meaning

that there is no direct modeling of the hydraulic effect of cross section shape

changes, turbulence, and other two- and three-dimensional aspects of flow.

Only an average value of water height and speed is used to represent each

section. Therefore, the territory is modeled as a series of connected segments,

and turbulent flows are simulated just on the joints between the main course

of the river and its major tributaries. This leads to the so called quasi-2D

applications , which are capable to catch the most significant aspects of waterquasi-2D

applica-

tions

dynamics.

Figure 2.8: Graphical representation of a river stretch in the HEC-RAS system.

How parameters are calibrated and the simulations run

The calibration process is essential to let the model reproduce as faithfully

as possible the real system behavior. In the case of the AIPo system, the
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hydrologic and the hydrodynamic models have been simultaneously calibrated

by comparing the simulation results with the observed data. Rainfall and

temperature data were used to estimate the parameters of the hydrologic

model, which mainly depend on soil usage and composition. The flow data

were similarly used to calibrate the hydrodynamical parameters, namely the

river bed roughness in each section.

Remarkably, the AIPo system currently does not implement any learning

method for parameters update. Only some post processing techniques are used

to correct the forecasts on the base of the observed data.

The AIPo system features two different types of simulation. A deterministic

simulation - based on the observed data only - runs once per day, in order

to update the initial conditions of the model, namely the flow values and the

water content of each reservoir. This daily run has no prediction purposes, and

only aims to set the initial values of water level and soil conditions to initialize

the various hydrologic models. This initialization does not concern the model

parameters, that are fixed. A recalibration of the parameters takes place only

under extraordinary circumstances, such as the construction of a new dam or

watergate, or the survey of a previously unexplored area.

After the initializing run, the predictive simulation starts. A flow forecast

is produced once every three hours, by using the historic data series, the real

time observed data from the acquisition system, and the weather forecasts.

2.3 Management of the predictive

uncertainty

When dealing with flood events, an accurate forecast on the future behavior of

the river is essential for emergency management and decision making. Since it

is impossible to achieve a perfect, deterministic prediction on water and flow

values, the need arises for a reliable way to evaluate the predictive uncertainty,

namely the probability of any future value conditional upon all the information

available up to the present, see, e.g., Todini (2008).

Any river basin is an extremely complex system - expecially the Po River

basin m being really wide and heterogeneous - therefore it is impossible to

exactly model it, no matter how accurate the model might be. The approxima-

tion in the structure of the model, along with measurement errors on input and
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outputs, parameters uncertainties and errors on the initial conditions prevent

the implementation of a perfect model.

Still, the uncertainty on future flow and water stage values is not only due

to model errors, but also on the fact that they depend on future - therefore

unknown - values of rainfalls, temperature, weather conditions etc. This has

nothing to do with the uncertainty due to the model, being instead a direct

consequence of the fact that random processes are involved in the evolution of

the system.

One of the most recent approaches to flood forecasting lies on the attempt

of including in the forecast system a probabilistic description of the quantity of

interest (Todini, 2010). The basic idea is that of providing an optimal decision

strategy by maximizing an appropriate utility/damage function, such as, for

example, {
U(yt) = 0 if yt ≤ yD

U(yt) = g(yt − yD) if yt > yD
(2.2)

where g(·) represents a generic function relating the cost of damages and losses

to the water stage, and yD expresses a certain level that should not be exceeded.

I.e., U(yt) might reflect the damages that will actually occur at a certain future

time t if the water level yt overtops the dyke level yD. In flood management

operations, the future value yt is obviously unknown, therefore the manager

can only take his decision on the basis of expected utility E [U(yt)], which could

be computed using a prior assessment of the predictive uncertainty f0(yt) as

E [U(yt)] =

∫ ∞
0

U(yt)f0(yt)dyt . (2.3)

Unfortunately, the a priori probability density f0(yt) is generally quite flat,

thus resulting in an unreliable estimate of the utility expectation. This leads to

the attempt of gathering additional information in order to produce a denser

posterior pdf, conditional on all the available information up to the present time

(including both direct measurements and additionally generated information,

such as model forecasts ŷt|t0). Equation 2.3 can therefore be rewritten as

E
[
U
(
yt|ŷt|t0

)]
=

∫ ∞
0

U(yt)fyt|ŷt|t0 (yt|ŷt|t0)dyt , (2.4)

which is a more efficient estimator of the expected utility, as fyt|ŷt|t0 (yt|ŷt|t0) is

usually less dispersed around its mean than f0(yt). In other words, its variance
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is smaller, sometimes significantly.

We then remark that there exist thus two different kinds of uncertainties: emulation

uncertaintyemulation uncertainty, namely the probability density of a model forecast

given the knowledge of the occurred event;
prediction

uncertaintyprediction uncertainty, namely the probability density of a future event

given the knowledge of the model forecast.

In order to highlight the differences between these uncertainties, we plot

some observed and model predicted values are a scatter plot in Figure 2.9, and

then highlight which are the emulation and prediction uncertainties.

Figure 2.9: Graphical representation of emulation uncertainty (left) and predictive uncer-
tainty (right).

Emulation uncertainty corresponds thus to the spread of the predictions

around the real observed value. The emulation probability density, namely

the pdf of the model predictions conditional upon the observed value y∗t (see

the left panel of Figure 2.9), can thus be used to reduce errors by properly

adjusting the model. Nonetheless, emulation uncertainty can not be used to

obtain predictions, since the conditioning variables - namely the observations

- are not available for future times. In other words, emulation uncertainty is

essential when aiming at model validation or improvement, but meaningless in

terms of predictions.

On the contrary, predictive uncertainty fyt|ŷ∗t|t0
(yt|ŷ∗t|t0), namely the pdf of

the future and unknown value of y given a specific model prediction ŷ∗t|t0 , can
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be used to extend predictions to the future (see the right panel of Figure 2.9).

Notice that in this case the probability of occurrence of the model forecast is

obviously 1.

ŷ∗t|t0

fyt|ŷ∗t|t0
(yt|ŷ∗t|t0)

Figure 2.10: A graphical representation of the probabilistic measure of flooding conditional
upon a predicted water level.

Three different approaches are currently available to assess predictive un-

certainty, namely the Bayesian Hydrological Uncertainty Processor (HUP)

developed by Krzysztofowicz (1999), the Bayesian Model Averaging (BMA)

introduced by Raftery (Bollen and Long, 1993), and the Model Conditional

Processor (MCP) due to Todini (2008).

The Hydrological Uncertainty Processor (HUP) aims at estimating predic-

tive uncertainty given a set of historical observations and a hydrological model

prediction. It is based on the idea of converting both observations and model

predictions into a Normal space by means of the Normal Quantile Transform

(NQT) (Van der Waerden, 1952, 1953a,b), in order to exploit the Normal distri-

bution properties to derive the joint distribution and the predictive conditional

distribution from an analytically treatable multivariate distribution. The main

limitations affecting the HUP are the impossibility to extend it to multi-model

forecasts, the fact that it is based on a AR (Auto Regressive) model which

seems not to be adequate to represent the rising limb of the flood wave, and

the hypothesis of independence of the AR model errors from the prediction

model errors (which are usually correlated instead).

The Bayesian Model Averaging (BMA) aims at assessing just the uncondi-

tional mean and variance of any future value of the quantity of interest on the

basis of several model forecasts. Differently from the HUP assumptions, all the

models are here considered as possible alternatives, and weighted according to
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the result of the constrained optimization problem

maxwj
logL =

n∑
i=1

log

(
m∑
j=1

wjpj

(
yt

∣∣∣ ŷ(j)t )
)

s.t.
m∑
j=1

wj = 1

wj ≥ 0 ∀j = 1, . . . ,m .

(2.5)

The BMA assumes all the model forecasts and the variables to be pre-

dicted to be approximately Normally distributed. Moreover it computes the

unconditional mean on the basis of the estimated weights

E [yt | It0 ] =
m∑
j=1

wjE
[
yt

∣∣∣ ŷ(j)t|t0 ] , (2.6)

providing also an approximated value of the unconditional variance.

Still, it was found that the Expectation-Maximization (EM) algorithm

proposed by Raftery to solve (2.5) does not always converge to the maximum of

the likelihood, therefore requiring the development of additional optimization

tool.

To conclude, the Model Conditional Processor (MCP) aims to assess the

probability density of the predictand conditional on all the model forecasts

available at the present time. Like the HUP, the MCP converts both the

observed data and the forecasts into their Normal space images via the NQT,

by assuming their joint distribution to be approximatively multivariate Normal.

The next step is that of deriving the distribution of the predictand NQT image

conditional on the image of the observations. In other words, the MCP is a

multivariate extension of the HUP approach, and thanks to the additional

hypothesis on the joint distributions is no more limited to the choice of an AR

model, therefore allowing a generalization both to physically based models and

data driven models.
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3
Nonparametric system identification

3.1 Introduction

The previously analyzed state of the art refers to techniques that are “para-

metric”, in the sense that the models have all been derived on the basis of

Partial Differential Equations, depending on a certain fixed set of parameters.

While dealing with such a complex system as the Po River basin, an extremely

large number of parameters is used, both physically meaningful and devoid

of any physical interpretation. Still, none of the currently used techniques is

capable of managing parameters uncertainty and variability in a natural way.

The model calibration is performed just once, and only retrained when some

major event occurs.

For reasons that will be clear later, these parametric methods implicitly

assume a perfect knowledge of the physics of the system, i.e., they assume

that the actual model lies on a perfectly known and rather restrictive set of

possible hypotheses. When dealing with complex systems as river basins, this

assumption is often not sufficiently motivated by the amount of information

actually available about the system.

We now introduce the field of “nonparametric” identification and estimation.
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Both in regression and system identification, the adjective “nonparametric”

usually refers to techniques that do not fix a priori any structure for the result.

This lack of structure may initially appear as a negative characteristic, while,

on the contrary, years of application on real fields showed that their usage is

supported by various practical and mathematical reasons, such as:

• if there is a lack of knowledge on the model to be identified, or if the

model is known to belong to a family of different parametric models,

then nonparametric identification leads to better estimates (Pillonetto

and De Nicolao, 2010). A specific example is Pillonetto et al. (2011),

where authors prove that in some practical cases the identification of

linear systems through combination of classical model selection strate-

gies, like Akaike Information Criterion (AIC) (Akaike, 1974) or Bayesian

Information Criterion (BIC) (Schwarz, 1978), and Prediction Error Meth-

ods (PEM) strategies ( Ljung (1999); Söderström and Stoica (1989))

performs worse than identification through nonparametric Gaussian re-

gression approaches;

• nonparametric identification approaches can be consistent where para-

metric approaches fail to be (Smale and Zhou, 2007; De Nicolao and

Ferrari-Trecate, 1999);

• in general, nonparametric approaches require the tuning of very few

parameters, allowing the implementation of fast line search strategies (Pil-

lonetto and Bell, 2007);

• for some parametric models, the distributed implementation of Maximum

Likelihood (ML) strategies could be infeasible, due to the structure of

the likelihood function. An approach is then to convexify - in a sense

that will be clear later - the likelihood through the construction of a

suitable nonparametric approximated model. This strategy allows the

application of generic distributed optimization techniques (Bertsekas and

Tsitsiklis, 1997). Under particular choices of the cost and regularization

functions, we will show that the ML problem can be distributedly solved

through an approximated Regularization Network (RN) requiring small

computational and communication efforts and limited memory allocation.

Another important point is the following: the amount of prior information used

while using nonparametric techniques (e.g., the kernel functions introduced
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below, that can be considered as covariances whenever using Bayesian ap-

proaches based on Gaussian processes, see Section 3.2) is far less than the total

amount of prior information that is given assuming the model to be a certain

parametric function. Intuitively, the prior of the nonparametric techniques is

weaker than the parametric one, and this eventually makes the nonparametric

strategies more widely applicable and more robust. Nonetheless this is a tricky

point. In fact, should an experiment return a small amount of data, small

information would be available to perform the identification. In such a case,

if the parametric model at disposal is in some sense accurate, the amount of

information could be sufficient to obtain an estimate far better than the one

that could be obtained with the less informative nonparametric prior, which

needs to exploit part of the available information in order to select the model.

As an example, should we know a priori that the actual function to be identified

is exactly an exponential, and should there be no measurement noise, two

samples would be enough to perform an exact identification through parametric

techniques. On the contrary, nonparametric techniques tend to obtain better

performances when a sufficient number of (eventually) noisy data is available

to identify very complex systems.

The nonparametric identification framework applied to

the Po River case

The Po River basin is an extremely complex system, whose behavior depends

on a large number of factors. Not only its complicated dynamics involves

the interaction of many heterogenous components, but it also evolves through

time in a quite unpredictable way (the evolvement can depend on both human

interventions and natural processes, such as erosion, sedimentation and so on).

Due to its intrinsic time variability and complexity, the Po River modeling

represents a challenging issue. Parametric approaches, in particular, tend

to require the setting of a huge number of parameters in order to catch the

dynamics of the system, which leads to several problems, such as:

• the need for a great computational capability (e.g. the current AIPo

forecasting system exploits a cluster of more than 140 CPUs coordinated

by 16 different servers to compute the outputs of the hydrodynamic part

only);
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• the unfeasibility of parameters retuning, therefore the incapability of

taking into account the possible evolution of the basin;

• the impossibility to manage parameters uncertainty, as the model is

assumed to be fixed and deterministic.

Our prospect while implementing a nonparametric approach is that of

capturing both system variability and parameters uncertainty in a natural

way, thus allowing easier forecasts - and more efficient from a computational

viewpoint - and also offering the possibility of of on-line retraining procedures,

as it will be shown in the following sections.

We now briefly describe the general theory of RKHS-based nonparametric

regression and identification of Linear Time Invariant systems

3.2 RKHS-based nonparametric regression –

Background

From an intuitive point of view, RKHSs are sets of sufficiently-smooth functions

with some nice mathematical properties. The theory was founded by Aronszajn

(1950). See also Yosida (1965); Cucker and Smale (2002); Poggio and Girosi

(1990); Wahba (1990). For an overview of their uses in statistical signal

processing see Weinert (1982).

Definition 3.2.1 (Reproducing kernel Hilbert space). Let HK be a Hilbert

space of functions1

f (·) : X ⊆ Rd 7→ R (3.1)

endowed with the inner product 〈·, ·〉HK
and norm ‖f‖HK

:=
√
〈f, f〉HK

. If

there exists a function

K (·, ·) : X × X 7→ R (3.2)

such that

(a) K (x, ·) ∈ HK for every x ∈ X

(b) 〈f (·) , K (x, ·)〉HK
= f (x) for every x ∈ X and f ∈ HK

then HK is said to be a reproducing kernel Hilbert space with kernel K.

1We restrict our analysis only real-valued functions even if the same concepts could be
applied to complex-valued functions.
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Property (b) is usually called the reproducing property. Notice that L2

is not a RKHS since its representing functions, namely the delta functions,

are not in L2. For the following derivations it is necessary to introduce some

definitions.

Definition 3.2.2 (Positive-definite kernel). A kernel K is said to be positive-

definite if, for every N ∈ N+ and N -tuple x1, . . . , xN ∈ X
K (x1, x1) · · · K (x1, xN)

...
...

K (xN , x1) · · · K (xN , xN)

 =: K ≥ 0 (3.3)

where the inequality has to be intended in a matricial positive-semidefinite

sense.

Definition 3.2.3 (Symmetric kernel). A kernel K is said to be symmetric if

K (x, x′) = K (x′, x) for all x, x′ ∈ X .

Definition 3.2.4 (Mercer kernel). A symmetric positive-definite kernel K is

said to be a Mercer kernel if it is also continuous.

The term kernel derives from the theory of integral operators, where, given

a non-degenerate measure2 µ and a function K as in 3.2, it is possible to define

the integral operator

LK,µ [g] (x) :=

∫
X
K (x, x′) g (x′) dµ (x′) . (3.4)

Operator LK,µ [·] is said to be positive definite if K is positive definite.

The following theorem proves the biunivocity between symmetric positive-

definite kernels and RKHSs.

Theorem 3.2.5 (Moore-Aronszajn Aronszajn (1950)). For every symmetric

positive-definite kernel K there exists an unique RKHS HK having K as its

reproducing kernel. Viceversa, the reproducing kernel of every RKHS HK is

unique.

Having in mind our future applications on regression, we focus now on the

implications of the spectral theory of compact operators on RKHS theory3.

2We recall that a Borel measure µ is said to be non-degenerate w.r.t. the Lebesgue measure
L2 if L2 (A) > 0⇒ µ (A) > 0 for every A in the Borel σ-algebra.

3See (Zhu, 2007, Chap. 1.3) for more details on compact operators on general Hilbert
spaces.
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Assume then X to be compact, K to be Mercer on X ×X , L2 (µ) to be the set

of the Lebesgue square integrable functions under the non-degenerate measure

µ. A function φ that obeys the integral equation4

λφ (x) = LK,µ [φ] (x) (3.5)

is said to be an eigenfunction of LK,µ [·] with associated eigenvalue λ. The

following result holds.

Theorem 3.2.6 (Cucker and Smale (2002), see also König (1986)). Let K be

a Mercer kernel on X × X and µ a non-degenerate measure. Let {φe} be the

eigenfunctions of LK,µ [·] normalized in L2 (µ), i.e. s.t.∫
X
φe (x)φl (x) dµ (x) δel (3.6)

with corresponding eigenvalues λe ordered s.t. λ1 ≥ λ2 ≥ . . .. Then

(a) λe ≥ 0 for all e;

(b)
+∞∑
e=1

λe =

∫
X
K (x, x) dµ (x) < +∞

(c) {φe}+∞e=1 is an orthonormal basis for L2 (µ)

(d) the RKHS HK associated to {φe}+∞e=1 is given by

HK :=

{
g ∈ L2 (µ) s.t. g =

∞∑
e=1

aeφe with {ae} s.t.
∞∑
e=1

a2e
λe

< +∞
}

(3.7)

(e) K can be expanded via the relation

K (x, x′) =
∞∑
e=1

λeφe (x)φe (x′) (3.8)

where the convergence of the series is absolute and uniform5 in X × X .

4In some cases eigenvalues and eigenfunctions can be computed in closed forms, specially
in Gaussian cases Zhu et al. (1998). Often it is necessary to perform numerical computa-
tions De Nicolao and Ferrari-Trecate (1999), (Rasmussen and Williams, 2006, Chap. 4.3.2).

5This has the nice practical implication that it is possible to compute K with the desired
level of precision using a finite number of eigenfunctions.
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Remark 3.2.7. Condition
∑∞

e=1
a2e
λe
< +∞ expressed in (3.7) can be seen as

a smoothness condition. In fact, since the sequence λ1, λ2, . . . has to vanish

because the associated series is convergent, it follows that a2e must vanish

sufficiently fast.

From the same theorem it follows that if g1 =
∑+∞

e=1 aeφe and g2 =
∑+∞

e=1 a
′
eφe

then their inner product is

〈g1, g2〉HK
=

+∞∑
e=1

ae · a′e
λe

. (3.9)

Notice that, if g =
∑+∞

e=1 aeφe ∈ HK and a = [a1, a2, . . .]
T , orthogonality of

eigenfunctions in L2 (µ) implies that

‖g‖2L2(µ) =
+∞∑
e=1

+∞∑
l=1

aeal

∫
X
φe (x)φl (x) dµ (x) = ‖a‖22 . (3.10)

Moreover orthonormality of eigenfunctions in L2 (µ) implies orthogonality in

HK , i.e.

〈φe, φl〉L2(µ) = δel ⇔ 〈φe, φl〉HK
=

1

λe
δel . (3.11)

In the following we will use the shorthands ‖·‖µ for ‖·‖L2(µ) and ‖·‖K for ‖·‖HK
.

Remark 3.2.8. We could have defined HK using the so-called reproducing kernel

map construction (Rasmussen and Williams, 2006, page 131), i.e. starting

from the representing functions K (x, ·). We preferred to use eigenfunctions-

eigenvalues decompositions because these will be heavily used in the following

sections.

Examples of RKHSs

In this section we offer a couple of examples of the some commonly used kernels,

focusing on the case X = [0, 1], namely Gaussian and Laplacian kernels. A

third important case is the Spline kernel, but its treatment is postponed to

the next section, since it is the one used by the implemented identification

algorithm. We send the reader back to (Schölkopf and Smola, 2001, Chap. 13)

and references therein for general kernels design techniques.
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Gaussian Kernels A Gaussian kernel is described by

K (x, x′) = exp

(
−‖x− x

′‖22
2σ2

)
(3.12)

where x, x′ ∈ X ⊂ Rd (X is a compact). This kernel may have eigenfunctions

and eigenvalues in closed forms, depending on µ, see for example Zhu et al.

(1998).

In Figures 3.1 and Figure 3.2 we plot the first 4 eigenfunctions for the cases

µ = U [0, 1] and µ = N (0.5, 0.01), both with σ2 = 0.01. We notice how the

approximation capability of the eigenfunctions is concentrated where it is more

probable to have measurements. In Figure 3.3 we show the behavior of the

eigenvalues for the two different µ’s. Finally in Figure 3.4 we show 4 different

realizations fµ relative to the kernel just considered, under the assumptions of

Section 3.2.
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Figure 3.1: First 4 eigenfunctions for the Gaussian kernel (3.12), associated to µ = U [0, 1]
and σ2 = 0.01.

Laplacian Kernels A Laplacian kernel is described by

K (x, x′) = exp

(
−|x− x

′‖
σ

)
(3.13)

where x, x′ ∈ X ⊂ Rd, σ ∈ R+.

In Figure 3.5 we plot the first 4 eigenfunctions for the case µ = U [0, 1] with

σ = 0.1. In Figure 3.6 we show the behavior of the eigenvalues for this kernel,

and in Figure 3.7 we show 4 different realizations fµ relative to the kernel just

considered, again under the assumptions of Section 3.2.



3.2 RKHS-based nonparametric regression – Background 31

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

x

φ
e
(x
)

φ1 (x)
φ2 (x)
φ3 (x)
φ4 (x)

Figure 3.2: First 4 eigenfunctions for the Gaussian kernel (3.12), associated to µ =
N (0.5, 0.01) and σ2 = 0.01.
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Figure 3.3: Eigenvalues of the Gaussian kernel (3.12), associated to σ2 = 0.01 and different
measures µ.
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Figure 3.4: Independently generated realizations for the Gaussian kernel (3.12), associated
to σ2 = 0.01.

Regularized regression

Let fµ : X → R denote an unknown deterministic function defined on the

compact X ⊂ Rd. Assume we have the following S noisy measurements

yi = fµ (xi) + νi, i = 1, . . . , S (3.14)
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Figure 3.5: First 4 eigenfunctions for the Laplacian kernel (3.13), associated to µ = U [0, 1]
and σ = 0.1.
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Figure 3.6: Eigenvalues of the Laplacian kernel (3.13), associated to µ = U [0, 1] and
σ = 0.1.
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Figure 3.7: Independently generated realizations for the Laplacian kernel (3.13), associated
to σ = 0.1.

with νi white noise and i the measurement index. Without any additional

assumption, the problem of inferring fµ given the data set {xi, yi}Si=1 is ill-posed

in the sense of Hadamard. One of the most used approaches to overcome this
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problem relies upon the Tikhonov regularization theory67 Tikhonov and Arsenin

(1977), that relies computing the estimate of the unknown function as

f̂c := arg min
f∈HK

Q (f) (3.15)

where the functional Q (·) is defined as

Q (f) := L
(
f, {xi, yi}Si=1

)
+ γ ‖f‖2K (3.16)

and where the hypothesis space HK is typically given by the reproducing kernel

Hilbert space induced by the Mercer kernel K : X ×X → R. The first term is a

loss function accounting for data-fitting properties of f and related comments),

while the second term, usually called regularizer, weights the smoothness of f ,

penalizing thus non-smooth solutions8. Finally, γ is the so called regularization

parameter that trades off empirical evidence and smoothness information on

fµ.

By using the famous representer theorem (introduced in Kimeldorf and

Wahba (1971), see (Schölkopf and Smola, 2001, Chap. 4.2) for a generalized

version) it is possible to show that each minimizer of Q (f) has the form of a

linear combination of S basis functions, i.e.

f̂c =
S∑
i=1

ciK (xi, ·) (3.17)

i.e. f̂c admits the structure of a Regularization Network (RN), term introduced

in Poggio and Girosi (1990) to indicate estimates of the form (3.17).

A graphical intuition of (3.17) is that the optimal estimate is given by a

combination of some “slices” of the kernel function.

In sight of the Bayesian interpretation that will be introduced in Section 3.2,

our choice for the cost function is

Q (f) :=
S∑
i=1

(yi − f (xi))
2 + γ ‖f‖2K (3.18)

6Alternatively one could use explicit prior knowledge, and formulate the problem -for
example- through Gaussian Processes formalisms.

7Finite-dimensional formulation of this approach is also known as Ridge regression Hoerl
and Kennard (2000)

8See Girosi et al. (1995) for smoothness functionals involving Fourier transforms of the
candidate estimating function.
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that correspond to obtain the coefficients ci by means of
c1
...

cS

 = (K + γI)−1


y1
...

yS

 (3.19)

with

K :=


K (x1, x1) · · · K (x1, xS)

...
...

K (xS, x1) · · · K (xS, xS)

 . (3.20)

Bayesian interpretation

The estimate f̂c in (3.15) computed through (3.19) admits also a Bayesian

interpretation. In fact, if fµ is modeled as the realization of a zero-mean,

not-necessarily stationary Gaussian random field with covariance K, if the

noises νi are Gaussian and independent of the unknown function and with

variance σ2, once we set γ = σ2 it follows that Kimeldorf and Wahba (1970);

Zhu et al. (1998)

f̂c (x) = E [fµ (x) | x1, y1, . . . , xS, yS ] . (3.21)

We recall that, using the Bayesian point of view and a Gaussian Processs

(GPs) based formulation, it is straightforward to derive not only the estimate

(to be intended as the maximum a-posteriori of the conditional density), but

also to characterize the uncertainity of the prediction by means of the a-

posteriori covariance. Moreover GPs formulation is closely related to Kriging

techniques Stein (1999), usually used for interpolation of spatial data.

3.3 RKHS-based nonparametric

identification of Linear Time

Invariant (LTI) systems and the

SSpline.m procedure

This section is devoted to the application of nonparametric identification to

the case of linear time–invariant (LTI) systems, as well as to a brief description
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of the implemented algorithm, SSpline. We refer to Pillonetto and De Nicolao

(2012) for a more extended treatment and some nice examples of application of

SSpline.

Introduction

As recalled in the Introduction to this Chapter, a classic approach to identi-

fication of LTI systems is based on Prediction Error Methods (Ljung, 1999;

Söderström and Stoica, 1989), which is in turn a particular application of the

Maximum Likelihood estimation technique. As a matter of fact, this approach

requires to fix a model for the system, namely, the order of the polynomials

in the transfer functions must be known. Under this and other assumptions,

e.g. the innovation to be Gaussian white process, the signals to be stationary

and so on, it is well known that PEM methods are consistent and correct at

least asymptotically, namely, if a large number of data samples is available. As

already stated, however, the procedures for the estimate of the model structure,

such as AIC or BIM criteria, do not always guarantee an optimal performance,

and, moreover, their results are usually hard to analyze from a theoretical point

of view.

Here the approach is different, and aims to directly identifying the impulse

response of the system. The naive technique for impulsive response identification

is to exploit the convolutional representation of LTI systems

y(t) = (u ∗ h)(t). (3.22)

Once we stack the outputs and the impulse response in vectors

Y =


y1
...

yN

 and H =


h1
...

hN


and we build the matrix

U =


u1 0 0 · · · 0

u2 u1 0 · · · 0
...

...

uN uN−1 uN−2 · · · u1
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it is easy to see that 3.22 can be rewritten in the form

Y = UH

Thus in principle one could obtain the impulse response simply inverting the

system, namely computing H = U−1Y .

Consider however the following definitions:

Definition 3.3.1 (Ill-posed problem). A problem is said to be ill-posed when:

• the solution is not unique, or

• the solution does not depend continuously on the data.

Definition 3.3.2 (Ill-conditioned problem). A problem is said to be ill-posed

when the solution is much sensitive to small errors in the data.

It is possible to show that the problem of computing H = U−1Y is not only

extremely ill conditioned due to the lower triangular structure of U , but also

suffers from a strong dependence on the data set, namely is ill–posed. Moreover,

as a third disadvantage, it does not take into account the eventual dynamical

structure of the measurement noise.

To overcome these problems, we use a new Bayesian technique for non-

parametric regression. In particular, without imposing any structure on the

system (as in the PEM techniques), the impulse response is searched for in an

infinite-dimensional space, with some constraints allowing to tune its smooth-

ness. This is obtained looking for the impulse response in a suitable RKHS

whose kernel -the so–called Stable Spline kernel, which we review in the next

section- imposes smoothness on the functions of the space.

Identification of LTI systems

We always consider MISO systems, namely, systems in which m inputs are

filtered to produce a single output following the rule

yt =
∞∑
i=1

fiut−i +
∞∑
i=0

giei (3.23)

where, for each time instant t ∈ Z, yt ∈ R, et ∈ R and ut ∈ R1×m, while

the coefficients of the impulse responses are such that ft ∈ R1×m and gt ∈ R.
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Notice that the system is causal since ft = 0 and gt = 0 for t < 0, and in the

input–output chain there is always at least one delay step (i.e., f0 = 0). In this

model the stochastic process et is the Gaussian innovation sequence (namely,

et is independent from the past of the system up to time t− 1).

One can easily rewrite the system a form suitable to immediately obtain

the one-step ahead predictor as (here uk is the k-th input), namely

yt =
m∑
k=1

[
∞∑
i=1

hki u
k
t−i

]
+
∞∑
i=1

hm+1
i yt−i + et (3.24)

in which one can interpret the system as a single output, yt, with m+ 1 inputs,

namely the m true inputs and the output sequence up to time t− 1.

The goal of the algorithm used in this thesis is the reconstruction of the

predictor impulse responses hk = {hkt }t≥0.

Remark 3.3.3. Formally, {yt}t≥0 and {ut}t≥0 are jointly stationary processes

related by the model in Eq. 3.23. Here we made a slight abuse of notation and

avoided to explicitly distinguish among processes and their realizations.

Under the assumption that the joint spectrum of {yt}t≥0 and {ut}t≥0 is

bounded away from zero on the unit circle, the predictor impulse responses are

BIBO stable. This is taken as a steady assumption from now on.

Kernel–based identification

Given the set of observed data {yt}t≥0 and {ut}t≥0 (now, realization of the

corresponding processes), our aim is to reconstruct the hk’s.

The implemented approach consists in the minimization of a regularization

functional in a suitable RKHS H associated with a symmetric positive–definite

kernel, as recalled in the previous sections. In particular, we aim to solve (we

drop the superscript index k for sake of notation)

ĥ = arg min
h∈H

N∑
t=1

(yt − Γt[h])2 + η||h||2H

where N is the number of data samples and, in general, {Γt[h]}t=1,...,N are linear

and bounded functionals on H. In particular, in our scenario, it holds

Γt[h] = (u ∗ h)(t)
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which would represent the output at time t with zero innovation and if h were

the “true” impulse response of the system.

The already recalled representer theorem allows us to conclude that the

solution to the stated problem is a combination of N basis functions defined

by the kernel, filtered by the functionals {Γt}. As a matter of fact, this implies

that the true h can be thought as the realization of an infinite dimensional

random vector with zero mean and covariance equal to the kernel, seen as an

infinite matrix. From the same perspective, the error on the data yt−Γt[h] can

be interpreted as a white Gaussian noise independent of h, while the solution

to the minimization problem represents the minimum variance estimate of h

given the data.

The Stable-Spline kernel The space of functions H must satisfy some

constraints which are not fully captured by the Gaussian nor Laplacian kernels

presented in the previous section.

For sake of simplicity, and without loss of generality, in this paragraph we

assume the signals to have domain in [0, 1] ⊂ R.

A first constraint regards the smoothness of the solution. We restrict to

spaces of functions in which the signals and some derivatives are continuous

with bounded energy (namely, they belong to a Sobolev space of suitable order).

In the Bayesian interpretation, this type of functions can be recovered by

considering the p-fold integral of a Gaussian white noise, where p ≥ 1 is an

integer. The corresponding kernel is called Spline kernel, and takes the form

Wp(s, t) =

∫ 1

0

Gp(s, u)Gp(t, u)du

with

Gp(r, u) =
(r − u)p−1+

(p− 1)!

where (x)+ = max{0, x} is the positive part of x. Again, in the Bayesian inter-

pretation, the kernel represents the autocorrelation of the signal (in particular,

Wp(s, t) increases with p, or, from an intuitive point of view, the bigger is p,

the smoother the signals are).

A particularly important case is the cubic spline kernel (p = 2), which leads

to

W2(s, t) =
stmin{s, t}

2
− min{s, t}3

6
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This kernel is already widely used in literature to treat historic data regressions

in several fields (econometrics, biology and so on).

So far we just dealt with smoothness constraints. As we are interested in

impulse responses of BIBO stable LTI systems, we also need to require the

solution to our minimization problem to decay exponentially to zero. However,

the signals in the space defined on the basis of the kernel Wp(s, t) have h(0) = 0

and the correlation among h(t) and h(s) increases with the difference among t

and s. As a drawback, almost any signal in this space diverges.

To overcome this problem, in Pillonetto and De Nicolao (2010) a new type

of kernel has been proposed to explicitly handle the problem of exponential

stability of the signals in the space. In particular, the Stable–Spline kernel is

defined as

Kp(s, t) = Wp(e
−βs, e−βt)

and among these kernels, again, particularly important is the case p = 2, for

which

K2(s, t) =
e−β(s+t)e−βmax(s,t)

2
− e−3βmax(s,t)

6

From Pillonetto and De Nicolao (2010) we known the following proposition,

which ensures that the RKHS defined on the bases of K2 is a space of suitable

functions for our scopes.

Proposition 3.3.4. Let h be an infinite dimensional Gaussian random vector

with zero mean and covariance K2. With probability one, the realizations of h

are continuous impulse responses of BIBO stable dynamical systems.

Enrichment of the prior We enrich the previously described prior by

modeling the impulse responses hk as proportional (with unknown scale factors

λk) to the convolution of a signal in the space defined on the bases of K2

with a parametric discrete–time impulse response r, which is used in order

to capture “non–smooth” dynamics, such as high-frequency oscillations. In

particular, called R(z) the z-transform of such a r, we have

R(z) =
z`

Pθ(z)
, Pθ(z) = z` +

∑̀
i=1

θiz
`−i

which is characterized by a vector of hyperparameters θ ∈ R`. The vector θ

belong to a given feasible set Θ such that the roots of Pθ(z) belong to the open
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left unit semicircle in the complex plane.

We let K(s, t) be the kernel obtained using both K2 and the low–dimensional

impulse responses r. Overall, this kernel depends on the unknown hyperparam-

eter vector

χ := [λ1, . . . , λm, λm+1, θ1, . . . , θ`, β]

while the variance of innovation, σ2, is estimated from the data as explained in

Goodwin et al. (1992).

Figure 3.8: Realizations of a stochastic process f with autocovariance proportional to the
standard Cubic Spline kernel (left), the new Stable Spline kernel (middle) and its sampled
version enriched by a parametric component defined by the poles −0.5± 0.6

√
−1 (right).

The algorithm

The first step to describe the used algorithm is to consider the following

vector–form for Eq. 3.24

y+ =

(
m∑
k=1

Ak(u
k)hk

)
+ Am+1(y

+, y−)hm+1 + e (3.25)
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where (the unknown samples of y− are set to zero in actual implementations)

y+ =


y1
...

yN

 , y− =


y0

y−1
...

 , e =


e1
...

eN


On the basis of such a description of the system, the algorithm exploits the

two–steps empirical Bayesian paradigm:

1. the unknown hyperparameter vector χ is estimated using marginal likeli-

hood optimization in a low–dimensional space,

2. the hyperparameters are set to the just–found estimate, and a minimum

variance of the impulse response estimated is computed.

In the next paragraphs we review the two steps. The following approximation

is widely used

p(y+, {hk}, y−|χ, u) ≈ p(y+|{hk}, y−, χ, u)p({hk}|χ, u)p(y−|u) (3.26)

which means that y− is assumed not to carry information on the impulse

responses {hk} nor on the hyperparameters χ.

Estimate of the hyperparameters χ The estimate of χ is obtained by

optimizing the marginal likelihood, which is the joint density p(y+, {hk}, χ)

where {hk} is integrated out. We define

V [y+] = σ2IN +
m+1∑
k=1

λkAkKA
T
k

were K is seen as an infinite matrix and

[Ak]ij =

ukj−i, k = 1, . . . ,m

yj−i, k = m+ 1

Then it holds (Pillonetto et al., 2011)

Proposition 3.3.5. Assume {yt}t≥0 and {ut}t≥0 be zero mean, finite variance

stationary stochastic processes. Let also hold true the approximation in Eq. 3.26.
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Then the maximum marginal likelihood estimate of

χ = [λ1, . . . , λm+1, θ1, . . . , θ`, β]

is given by the solution to the problem

χ̂ = arg min
χ
J(y+, χ)

with the constraints θ ∈ Θ, β > 0 and λk ≥ 0,∀k = 1, . . . ,m,m + 1, and the

cost function is almost surely defined pointwise as

J(y+, χ) :=
1

2
log(det[2πV [y+]])

1

2
(y+)T (V [y+])−1y+

Estimate of the impulse responses hk given the estimate χ̂ Let HK

the RKHS defined on the basis of the kernel K, which, as already mentioned,

takes into account both the structure of K2 and the possible high–frequencies

poles of the impulse responses r. Denote by || · ||HK
the norm in HK , and

denote also ĥk = E[hk|y+, χ], the Bayesian estimate of the impulse responses.

The following proposition, again taken from Pillonetto et al. (2011), clarifies

the situation.

Proposition 3.3.6. Assume {yt}t≥0 and {ut}t≥0 be zero mean, finite variance

stationary stochastic processes. Let also hold true the approximation in Eq. 3.26.

Then almost surely9

{ĥ}m+1
k=1 = arg min

{hk∈HK}m+1
k=1


∥∥∥∥∥y+ −

m+1∑
k=1

Akh
k

∥∥∥∥∥
2

+ σ2

m+1∑
k=1

||hk||2HK

λ2k


In closed form, we have

ĥk = λ2kKA
T
k c

where

c =

(
σ2IN +

m+1∑
k=1

λkAkKA
T
k

)−1
y+

The implemented MatLab function: SSpline.m SSpline.m is the Mat-

Lab implementation of the algorithm. It takes as inputs both the observed

9Here || · || is the Euclidean norm in RN .
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inputs and outputs of the system to be identified, in form of vectors or matrixes.

The MatLab function also requires the setting of several other parameters, such

as:

• the number p of predictor coefficients to estimate;

• the model type, to be selected between noise model

A
(
z−1
)
y = B

(
z−1
)
u+ e,

outpur error model (namely A (z−1) = 1)

y = B
(
z−1
)
u+ e,

or time series (namely B (z−1) = 0)

A
(
z−1
)
y = e;

• additional constraints to the hyperparameter vector;

• the number r of input-output data to be used while estimating the

hyperparameter vector (this is a key point for computational complexity,

as the estimate of the hyperparameters requires the inversion of a r × r
matrix, with complexity O(r3));

• (optional) the dimension of the parametric component of the prior, that

corresponds to the number of poles introduced in the model.

The outputs of the algorithm are the estimated model and the hyperparam-

eter vector.
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4
A prediction system for the Po River

and its tributaries

In this chapter we describe the application of the nonparametric identification

algorithm proposed in Pillonetto and De Nicolao (2010, 2012); Pillonetto et al.

(2011) (and briefly reviewed in the previous chapter) to the case of identification

and validation on real data of heights and flows of the Po river and some of its

main tributaries.

The application of the algorithm to the observed data has been divided into

three steps:

• data acquisition and data preprocessing: in the first section we

present the raw database which ARPA institution kindly provided. We

describe the process of data acquisition and the preprocessing techniques

that have been used;

• training: in the second section we describe the data set used to train

the algorithm, namely to identify the impulse responses of the system;

• validation: in the third section we describe the actual implementation of

the prediction algorithm for water heights and flows upon various stations
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along the Po River and its tributaries. The good performances of the

predictor are shown, and some criticalities are discussed. In particular, it

is conjectured that the availability of additional data, namely weather

forecasts, could significantly improve the prediction performances.

4.1 Database characteristics and

preprocessing

The database we received from ARPA - AIPo consists of 44 time series cor-

respondent to 11 locations along the Po River main trunk and some of its

major tributaries. In particular, as depicted in Figure 4.1, the data acquisition

stations of Spessa Po, Piacenza, Cremona, Boretto and Borgoforte are located

along the main trunk of the Po river, while Pizzighettone lies upon the Adda

River, Borgotaro and San Secondo upon the Taro River, Parma Ponte Verdi

upon the Parma River, Marcaria upon the Oglio River and Sorbolo upon the

Enza River. Overall, the locations along the main trunk cover about 180 Km

through Lombardia and Emilia–Romagna regions.

For each location, indicated with a label k = 1, . . . , 11, the data provided

by ARPA are

• the observed heights {yk(t)}t∈I and the observed flow levels {qk(t)}t∈I ,
taken each hour (i.e., the integer t indicates hours) in the whole period I
from 00:00, 01 January 2000, up to 24:00, 31 December 2008;

• the ARPA forecasted heights {ŷk(t|t− 12)}t∈I and the forecasted flows

{q̂k(t|t−12)}t∈I . The ARPA forecast on time t is done using the available

information up to time t−12 (namely, the observed data), and the weather

forecasts regarding the subsequent 11 hours, up to time t.

In total, each time series includes about 71000 data samples.

An important remark is that the river heights are never measured with

respect to the stream bed of the river. Instead, the values report the distance

of the water-level from the hydrometric zero quote, which is an arbitrary

altimetric benchmark which zero-level does not refer to any physical quantity.

It is interesting to point out that, at any point, the distance between the

hydrometric zero and the bed of the river level is not fixed, as the stream
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Figure 4.1: Locations along the Po river trunk.

bed can evolve due to erosion and sedimentation. On the contrary, flow

measurements are not affected by this problem.

Preprocessing of the database was needed due to the presence of spurious

data. In particular, for all the 44 time series, we had to deal with:

• missing data, that have been linearly interpolated using the closest data

at disposal. Namely, assume that yk(T ), yk(T + 1), . . . , yk(T + r) are the

missing observations of the water height at location k, and assume that

instead yk(T − 1) and yk(T + r + 1) are at disposal. Then we set

yk(T − 1 + α) = yk(T − 1) +
α

r + 2

(
yk(T + r + 1)− yk(T − 1)

)
,

for α = 0, 1, . . . , r + 2;

• outliers: due to several reasons (e.g., temporary failures of the instru-

ments, random interferences such as passage of boats too close to the

sensors) some data subsequences are definitively meaningless. We imple-

mented a simple outlier removal strategy which removes a single data,

say qk(t), the flow level at time t at location k, if the increment of qk(t),

call it dqk(t), exceeds the value

|(qk(t)− qk(t− 1))−m(dqk)| > κ s(dqk)
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where m(dqk) is the mean increment dqk(t) over the whole dataset, i.e.,

m(dqk) :=
1

N

N∑
t=2

(qk(t)− qk(t− 1)) ,

and s(dqk) is the standard deviation of the increment dqk(t), i.e.,

s(dqk) :=

√√√√ 1

N

N∑
t=2

(qk(t)− qk(t− 1)−m(dqk))2 .

The threshold κ has been set to the value 10 for simplicity. In order

to avoid meaningless automatic outlier removals, the outcome of the

procedure was to be accepted by the user. In some cases it has been

necessary to manually correct the data, since the described procedure

was either too mild or too tight.

4.2 Training of the algorithm: settings and

choice of training sets

As already recalled in Chapter 3, we model the whole river–system as a set of

linear time invariant local operators. In particular, we assume that, according

to the already presented notation, we can model the height and flow at location

k as

Ay,k(z
−1)yk =

∑
j∈Nk

(Byy,jk(z
−1)yj +Bqy,jk(z

−1)qj) (4.1)

Aq,k(z
−1)qk =

∑
j∈Nk

(Byq,jk(z
−1)yj +Bqq,jk(z

−1)qj) . (4.2)

Nk is the set of in–neighbors of k, namely the set of stations assumed to have a

relevant influence on k. In this thesis we decided to consider the following rule:

The in–neighbors of a location k are the stations j which are at most two hops

upstream with respect to k.

Considering Figure 4.1, the in–neighbors of Cremona are Piacenza, Spessa

Po and Pizzighettone, while the in–neighbors of Boretto are, among the others,
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Cremona and Piacenza, but not Spessa Po, which is three hops upstream with

respect to it.

The choice of considering as possible in–neighbors only the upstream loca-

tions lies on obvious physical causality arguments. Moreover, we restricted the

influence to the two–hops neighbors only, since we assume that they convey all

the important information to predict what happens at a certain location. This

choice is also sustained by the empirical observation that, roughly speaking,

what happens in k at time t is a delayed version of what already happened at

the previous one/two upstream stations, with a delay of at most 10 hours. Since

we aim to draw comparisons with the ARPA predictions, we are interested in

12 hours predictions. The definition of in–neighbors as the two–hops upstream

stations seems thus enough for our purposes.

Settings of SSpline.m

As already described above, SSpline.m accepts as function inputs both the

output and the inputs of the system we want to identify, plus a set of settings

for the algorithm. In this paragraph we briefly describe the choice for these

parameters:

• number p of coefficients of the predictor to estimate: as recalled, we are

interested in 12-steps ahead predictions. We always set p = 50, which

means that we assume that a quantity at time t is influenced by its

inputs up to time t− 50. In other words, Ay,k and Byy,jk, . . . , Bqq,jk are

polynomials in z−1 of degree 50. The comparison with trains and tests

on smaller datasets than those presented in the following sections showed

that smaller values of p yield to worse results. In principle, one could

train and test the algorithm with increasing values of p, and optimize over

a suitably defined cost which takes into account both the performances in

terms of fitting of the data, and the computational load and time. This

is left for future design of a more complex identification system;

• the model type: the stations can be divided into two large groups, namely

upstream stations and non upstream stations. In the first group we find

Spessa Po, Pizzighettone, Borgotaro, Parma Ponte Verdi, Marcaria and

Sorbolo. The main characteristic of these stations is that we have no

information on their inputs, thus we model their river heights and flow
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levels as time series. In other terms, the model type for these stations is

set to ’yn’, and the algorithm will produce a model, for example for the

heights at station k, of the type

Ay,k(z
−1)yk = e .

For the second group of stations, instead, we know what happened at

the previous stations along Po and tributaries. We thus interpret this

information as an additional input to the system. Thus, the model type

for these stations is set to ’yy’, and the produced model will be of the

type in Eq. (4.1);

• additional constraints on the hyperparameter vector: for these constraints

we chose standard low computational load settings. Comparing trains

and tests suggests that less performing settings do not yield to substantial

improvements;

• the number r of input-output data to be used while estimating the

hyperparameter vector: this is set to one fifth of the amount of data

samples, looking for a trade–off among computational load and accuracy;

• the dimension of the parametric component of the prior: this was set to

zero, namely the set of possible impulse responses is not enriched with

high frequency components. The reason behind this choice is that the

river system appears to be a relatively slow/low pass system.

Actual training

Once the database had been processed, it was immediately recognized that the

data we had at disposal could hardly be seen as inputs and outputs to linear

systems. In fact, the height measurements oscillate around the hydrometric zero.

Since the hydrometric zeros have no physical meanings, they show fictitious

forcing terms. To give an example of this fact, consider Figure 4.2, in which

we depicted the measured heights at Cremona and Boretto, two subsequent

stations along the main trunk of Po river, in the period 00:00, 17 February 2005

– 16:00, 30 March 2005. As one can see, it seems that a fictitious offset among

the heights of the two stations is present. As a second observation, heights are

not always strictly positive quantities, as one could expect.
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Figure 4.2: Offset example.

In order to overcome these problems, we decided to consider three groups

of datasets:

• the raw data: in this group of datasets we maintain the original data,

without any correction of the observed offsets;

• zero mean data: in this second group of datasets we subtract the mean

to all the time series at disposal. This allows to avoid the offsets, and

makes the time series more resemblant to inputs and outputs of linear

time invariant systems;

• non negative data: in this third group of datasets we subtract the mini-

mum value to all the time series at disposal. This imposes some sort of

fictitious positiveness of the signals we deal with.

For each group of datasets, five different training sets have been used:

• 16:00, 16 April 2005 7→ 08:00, 8 May 2005 (1000 data samples);

• 16:00, 16 April 2005 7→ 24:00, 22 June 2005, (2000 data samples);

• 16:00, 16 April 2005 7→ 16:00, 2 August 2005, (3000 data samples);

• 16:00, 16 April 2005 7→ 08:00, 13 September 2005, (4000 data samples);

• 16:00, 16 April 2005 7→ 24:00, 25 October 2005, (5000 data samples).

The fifth dataset, which is the longest, covers a period which lasts from late

spring to early autumn. It thus reflects different weather and river scenarios,

such as high levels of water and flow values due to spring rains, low levels in
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summer, and again higher levels in autumn. We decided to run several trains

covering an enlarging period in order to appreciate whether letting the algorithm

learn from larger sets of data could yield to performances improvements. As

we will show in the next section, this was indeed the case.

4.3 Test of the algorithm: implementation

and results

The test of the algorithm consisted in the implementation of a set of functions

capable to use the identified models in order to compute, for each station, the

forecasts ŷk(t|t− 12) and q̂k(t|t− 12). Namely, we aimed to predict the river

height and flow value at time t given all the possible information up to time

t− 12. This is done in order to draw a comparison between the performances

of our nonparametric approach and the ARPA prediction system.

We chose as set of samples for validation the period 16:00, 20 April 2007 –

24:00, 12 July 2007, corresponding to 2000 samples of the dataset. This choice

for the test set is motivated by the fact that the time distance among the

training set and the validation set must be large enough to assume that the

samples in these two sets are statistically independent.

Forecast for upstream stations

As already recalled, the model identified by the algorithm for heights and flow

values of upstream stations has no input, namely it is of the type

Ay,k(z
−1)yk = ey,k

Aq,k(z
−1)qk = ey,k.

The one–step ahead predictors ŷk(t + 1|t) and q̂k(t + 1|t) of these stations is

thus simply given by a linear combination of the heights, or the flows, at times

t− 1, . . . , t− p. The 12–steps ahead predictions can be thus easily computed

on the basis of them.
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Forecast for non upstream stations

The 12–steps ahead prediction of non upstream stations is slightly more involved.

Assume, e.g., that we want to compute the 12–steps ahead predictions ŷk(t+12|t)
for the Piacenza station. The model identified by SSpline.m is of the type

AP (z−1)yP (t) = By,SP (z−1)ySP (t) +Bq,SP (z−1)qSP (t) + eP (t) ,

where yP (t) is the water height at Piacenza at time t, ySP (t) and qSP (t) are

respectively the height of the river and the flow at Spessa Po at time t, and

eP (t) is Gaussian innovation. Namely, the height of the river at Piacenza is

the output of the model in which the inputs are the past samples of the height

at Piacenza, and heights and flows at Spessa Po. In particular, we can rewrite

the previous equation for time t+ 12 as

yP (t+ 12) =

p∑
i=1

By,SP,iySP (t+ 12− i) +

p∑
i=1

Bq,SP,iqSP (t+ 12− i)

+

p∑
i=1

AP,iyP (t+ 12− i) + eP (t+ 12)

which in principle yields

ŷP (t+ 12|t) =

p∑
i=1

By,SP,iySP (t+ 12− i) +

p∑
i=1

Bq,SP,iqSP (t+ 12− i)

+

p∑
i=1

AP,iyP (t+ 12− i) . (4.3)

In this equation we see that the predictor ŷP (t+ 12|t) would also require the

knowledge of the inputs ySP (t + 12 − i) and ySP (t + 12 − i) in the interval

[t+ 1, . . . , t+ 11], but this is impossible, since these data belong to the future

with respect to time t. In order to overcome this problem, we substitute for

these “actual” inputs their forecasts, under the assumptions that they have

already been computed by the station in Spessa Po, as depicted in Figure 4.3.
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In other terms, Equation (4.3) turns into

ŷP (t+ 12|t) =
11∑
i=1

By,SP,iŷSP (t+ 12− i|t) +

p∑
i=12

By,SP,iySP (t+ 12− i)

+
11∑
i=1

Bq,SP,iq̂SP (t+ 12− i|t) +

p∑
i=12

Bq,SP,iqSP (t+ 12− i)

+
11∑
i=1

AP,iŷP (t+ 12− i|t) +

p∑
i=12

AP,iyP (t+ 12− i|t) (4.4)

and in general

ŷP (t+ r|t) =
r−1∑
i=1

By,SP,iŷSP (t+ r − i|t) +

p∑
i=r

By,SP,iySP (t+ r − i)

+
r−1∑
i=1

Bq,SP,iq̂SP (t+ r − i|t) +

p∑
i=r

Bq,SP,iqSP (t+ r − i)

+
r−1∑
i=1

AP,iŷP (t+ r − i|t) +

p∑
i=r

AP,iyP (t+ r − i|t) (4.5)

which for r = 12 gives the previous equation.

Analogously to what has been shown for Piacenza and Spessa Po, for

any other non upstream station, the prediction is computed using the actual

measured data if available, and the forecasts computed by the in–neighbors if

not. Notice that it is thus necessary that the in–neighbors store in memory,

for each t, the entire sequences [ŷk(t + 1|t), . . . , ŷk(t + 11|t), ŷk(t + 12|t)] and

[q̂k(t + 1|t), . . . , q̂k(t + 11|t), q̂k(t + 12|t)], which can be computed using the

analogous to Equation (4.5). For example, Piacenza is in–neighbor of Cremona.

The forecast in Cremona will thus require the whole [ŷP (t + 1|t), . . . , ŷP (t +

11|t), ŷP (t+ 12|t)] and [q̂P (t+ 1|t), . . . , q̂P (t+ 11|t), q̂P (t+ 12|t)].
Notice moreover that this procedure requires a certain ordering of the

stations in terms of forecasts computation, since non upstream locations need

their in–neighbors’ information in order to process their data. This is made

possible by the assumption that the in–neighbors of a station are upstream with

respect to that location, since then an iterative algorithm can be implemented.

Assume in fact we are at time t and we need to compute the prediction at time

t+ 12. Then, as it can be seen in Figure 4.1,

• step 1: the stations Spessa Po, Pizzighettone, Borgotaro, Parma Ponte
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t t+ 12

qSP

ySP

yP

q̂SP (t+ r|t)

ŷSP (t+ r|t)

Figure 4.3: Pictorial description of the prediction algorithm for non upstream stations. If it
is at disposal the information up to time t and the goal is to compute the forecast ŷP (t+ 12|t)
of the height at Piacenza, the inputs up to t+ 11 are in principle needed. Since the future
[t+ 1, . . . , t+ 11] is however unseen, the predictor uses the actual data up to time t (solid
line) and the forecasts of the heights and flows at Spessa Po in the unseen future (dashed
line). This allows to compute iteratively ŷP (t+ 1|t), ŷP (t+ 2|t), . . . , ŷP (t+ 12|t). Notice that
this sequence must be stored since it will be used when forecasting at Cremona, of which

Piacenza is an in–neighbor.

Verdi, Sorbolo and Marcaria, which are all upstream, do not require any

information from other locations, thus they can forecast their heights and

flows;

• step 2: all the in–neighbors of stations Piacenza and San Secondo have

now computed their forecasts. These data are sent to Piacenza and San

Secondo, which can make their own forecasts;

• step 3: Cremona is able to compute its forecasts;

• step 4: Boretto is able to compute its forecasts;

• step 5: Borgoforte is able to compute its forecasts.

After the fifth step, all the stations have computed their forecasts, and they

can wait for time t+ 1 and the new measurements.

Test results

The identified models, for each of the 15 obtained databases, have been validated

for time constraints reasons on four stations, namely Spessa Po, Pizzighettone,
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Piacenza and Cremona. These four locations constitute the most upstream

part of the main trunk of the Po river, with the tributary Adda.

The overall computation time required by the algorithm to compute the

12–steps ahead predictions, for all the time instants in the test set, for all

the 15 databases, for the four considered stations, has been around 4 hours

using the Computation Cluster BLADE at the Department of Information

Engineering, University of Padova. The algorithm has been implemented using

the programming environment MatLab by MathWorks. The computation time

required to obtain the 12–steps ahead predictions for the four stations for a

specific time is thus around 1 second. Of course, a real implementation of the

algorithm will need to take into account all the stations along the Po river

trunk and its tributaries, thus increasing the computation time to obtain the

12–steps ahead prediction up to several minutes. However, we expect a major

performances improvement on C implementation and after optimization of the

code.

Results in the upstream locations

In this first paragraph we present some results obtained on the two upstream

locations considered, namely Pizzighettone (on the Adda river) and Spessa Po

(on the main trunk of the Po river).

In Figure 4.4 and Figure 4.5 we draw a comparison among the predictions

using the model identified using nonparametric techniques (in dotted line)

and the predictions obtained by ARPA (in dashed line). The periods covered

in the two figures are respectively 16:00, 30/04/07 – 16:00, 10/05/07 and

16:00, 25/05/07 – 16:00, 25/05/07, and the training of the algorithm has been

performed on 5000 data samples on the dataset in which the mean has been

removed. As we show later on, this is arguably the type of dataset which

provides the best performance among all our tries.

Analysis of the results show that we can roughly distinct two different

conditions which affect the performances of the nonparametric algorithm:

• “stationary regime”: we say that a station is in a stationary regime when

heights and flows slowly change in time. For example, in Figure 4.4 the

station is in this regime during the first 50 and the last 80 samples. In this

situation, the autoregressive component of the model allows the predictor

to oscillate around the actually observed (12 steps later) value of height
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Figure 4.4: Prediction of the height at Spessa Po in the period 16:00, 30/04/07 – 16:00,
10/05/07. The nonparametric model is obtained training the algorithm over 5000 samples
of the database in which we preprocessed the data such as their mean is zero. Notice two
operative regimes, called “stationary regime” and “non–stationary regime”. Due to absence of
information on rainfall and on upstream stations, in the non–stationary regime the forecasted

values show a certain delay (of about 12 hours) with respect the observed data.

(for the flows we obtain an analogous phenomenon).

• “non–stationary regime”: we say that a station is not in a stationary

regime when heights and flow are subjected to fast changes in time due

to the fact that rainfall or upstream floods rapidly increase the quantity

of water at the station. Since upstream locations receive no inputs, i.e.,

have no possibility to know what is happening upstream, the predictor

has no way to correctly forecast such increasings/decreasings in heights

and flows.

Analogous observations can be done analyzing Figure 4.6 and Figure 4.7. In

the former, we compare observed flows and 12–steps ahead predictions at Spessa

Po in the period 16 : 00, 19/06/07−−16 : 00, 29/06/07, while in the latter we

compare observed heights and 12–steps ahead predictions at Pizzighettone in

the period 16 : 00, 24/05/07−−16 : 00, 15/06/07. As Spessa Po, Pizzighettone

is an upstream station, and in fact the predictor exhibits a certain delay with

respect to the observed heights.

Comparison with ARPA predictions shows that in general the nonparametric

model allows predictions which are closer to the actual data. However, ARPA

system shows much better performances concerning the ability to correctly

forecast flood peaks. This is clearly a very important feature since it allows to



58 A prediction system for the Po River and its tributaries

19/06/07 21/06/07 23/06/07 25/06/07 27/06/07 29/06/07
−0.5

0

0.5

1

1.5

2

Time

H
ei
g
h
t
[m

]
SPESSA PO - Heights

Observed
ARPA
Nonparametric

12 h

Figure 4.5: Prediction of the height at Spessa Po in the period 16:00, 19/06/07 – 16:00,
29/06/07. The nonparametric model is obtained training the algorithm over 5000 samples of
the database in which we preprocessed the data such as their mean is zero. We notice again
that in stationary regime the performances of the nonparametric model are good, while it is
unable to follow fast changes increasing or decreasing of the quantity of interest, in this case

the height of the river.

exactly inform authorities about flood risks, thus making the forecast system

valuable.

Results in non upstream locations

This this second paragraph we discuss the result in the two non upstream

stations for which forecasts have been computed, namely Piacenza and Cremona.

Figure 4.8 depicts a comparison among ARPA prediction and nonparametric

prediction for heights at Piacenza in the period 16:00, 09/06/07 – 16:00,

09/07/07. We use again our best identified model, obtained using 5000 samples

for training and the database in which the signals have zero mean.

In case of a non upstream location, in addition to the autoregressive part

we have a set of inputs which contribute to heights and flows at the station.

In our particular case, inputs for Piacenza are heights and flows at Spessa

Po, while inputs for Creamona are heights and flows at Piacenza, Spessa Po e

Pizzighettone.

Due to this characteristic of non upstream stations, we expected an improve-

ment in the ability of the nonparametric model to correctly forecast. In fact,

one can easily see from the Figure 4.8 that using heights and flows from Spessa

Po helps to correctly forecast that a flood will take place. In other terms, the
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Figure 4.6: Prediction of the flow at Spessa Po in the period 16:00, 19/06/07 – 16:00,
29/06/07. The nonparametric model is obtained training the algorithm over 5000 samples of

the database in which we preprocessed the data such as their mean is zero.
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Figure 4.7: Prediction of the flow at Pizzighettone in the period 16:00, 24/05/07 – 16:00,
15/06/07. The nonparametric model is obtained training the algorithm over 5000 samples of

the database in which we preprocessed the data such as their mean is zero.
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Figure 4.8: Prediction of the height at Piacenza in the period 16:00, 09/06/07 – 16:00,
09/07/07. The nonparametric model is obtained training the algorithm over 5000 samples of
the database in which we preprocessed the data such as their mean is zero. In case of non
upstream stations, we do not observe a clear distinction among stationary and non–stationary
regimes. However, in the regime in which heights are subjected to fast increasings and

decreasing, forecast are a bit in advance with respect to the actual measured quantity.

predictor does not have to wait 12 steps in order to receive the information “the

water level increased/decreased”, as it happens in upstream stations. Instead,

since the level of the river increased at Spessa Po, a corresponding increasing

is expected and forecasted also at Piacenza.

One can also notice that input information is somehow misused by the

predictor, yielding forecasts which are a bit in advance with respect to the

observed heights. This is probably due to the fact that identification of the

impulse response is not ideal, and also because the Po river is far from being a

time–invariant system.

Notice that in case of Piacenza ARPA predictions are very accurate. In

particular, we notice that peaks are perfectly forecasted.

For completeness we also discuss Figure 4.9 and Figure 4.10, which compare

ARPA and nonparametric forecasts for heights and flows, respectively, at

Cremona, both in the period 16:00, 04/06/07 – 16:00, 04/07/07. In both cases,

the nonparametric forecast is computed according to the model obtained using

5000 samples and the zero mean database.

In this case, Cremona receives information from many stations, and forecasts

show good performance.



4.3 Test of the algorithm: implementation and results 61

25/04/07 05/05/07 15/05/07 25/05/07

−7

−6

−5

−4

−3

Time

H
ei
gh

t
[m

]
CREMONA - Heights

Observed
ARPA
Nonparametric

12 h

Figure 4.9: Prediction of the height at Cremona in the period 16:00,16:00, 04/06/07 – 16:00,
04/07/07. The nonparametric model is obtained training the algorithm over 5000 samples of
the database in which we preprocessed the data such as their mean is zero. We can easily
appreciate also in this case the improvement with respect to Spessa Po and Pizzighettone.
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Figure 4.10: Prediction of the flow at Cremona in the period 16:00,16:00, 04/06/07 – 16:00,
04/07/07. The nonparametric model is obtained training the algorithm over 5000 samples of

the database in which we preprocessed the data such as their mean is zero.
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Figure 4.11: Prediction of the height at Piacenza in the period 16:00, 29/05/07 – 16:00,
08/06/07. A comparison among forecasts using raw data, zero mean data and non negative
data is shown, with train over 4000 samples in the three cases. In this case the forecasts are

very similar one each other.

Comparison among the databases

In this section we briefly compare forecasts obtained using different instances

of the 15 databases obtained after the preprocessing.

In the previous sections we showed forecasts computed according to the

model identified using 5000 samples and the database in which the signals have

zero mean.

In general, models obtained using non negative data show performances

comparable with those obtained with zero mean signals. Raw data are instead

more subject to the fact that heights are measured with respect to different

hydrometric zero quotes, thus showing fictitious offsets.

We only give a couple of examples. In Figure 4.11 we compare forecasts

computed using three models, each based on a training set of 4000 samples, with

Raw data, zero mean data and non negative data. The problem is prediction

of height at Piacenza in the period 16:00, 29/05/07 – 16:00, 08/06/07. This is

a lucky case, in which the three models behave approximatively in the same

manner, namely, they provide very similar forecasts. We can also notice that

in all the three cases the forecast is in advance with respect to the measured

heights.

Another example is depicted in Figure 4.12 in which we compare heights
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Figure 4.12: Prediction of the heigth at Cremona in the period 16:00, 17/07/07 – 16:00,
27/06/07. A comparison among forecasts using raw data, zero mean data and non negative
data is shown, with train over 5000 samples in the three cases. In this case forecasts using zero
mean signals and non negative signals are similar one each other and show good accordance
with the measured heights, while forecasts using raw data show a not–compensated offset.

forecasts at Cremona using three models, each based on a training set of 5000

samples, with raw data, zero mean data and non negative data. One can

see that, while forecasts computed using zero mean signals and non negative

signals are in good accordance with measured data and similar one each other,

the forecasts computed using raw data show a not–compensated offset with

measured data. This is probably due to the structure of the identified impulse

response using raw data. It is worth noticing, however, that this is not the

typical behavior of models obtained from raw data. For example, in the same

scenario, when training the dataset using 4000 samples the offset disappears.

4.4 Mean–square error

In this section we measure the performances of the models obtained from

the 15 databases using the mean–square error as a performance indicator.

In particular, if {yt}t∈I and {ŷt|t−12}t∈I are measured heights and forecasted

heights, for a certain station and according to a certain model, the Mean Square
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1000 2000 3000 4000 5000 ARPA
SPESSA PO 0.0612 0.0621 0.0640 0.0620 0.0621 0.3188

PIZZIGHETTONE 0.0265 0.0260 0.0257 0.0261 0.0260 0.9063
PIACENZA 0.0231 0.3222 5.0642 0.0205 6.4899 0.1442
CREMONA 1.6885 1.7758 2.8075 1.4055 1.7975 0.3423

Table 4.1: Mean–square errors for heights forecasts of nonparametric models and ARPA
model. Rows are indexed by the various stations for which forecasts have been computed,
columns are indexed by the numerosity of the dataset used for training. The table refers to

models obtained using raw data.

Error (MSE) is defined as

MSE :=
1

|I|
∑
t∈I

(yt − ŷt|t−12)2 ,

where I is the whole validation period of 2000 samples. Of course, analogous

definitions hold for flows and flows forecasts.

The results are shown in Tables 4.1, 4.2 and 4.3 for heights and heights

forecasts, and in Tables 4.4, 4.5 and 4.6 for flows and flows forecasts. The

following figures graphically depict these tables.

We can notice that

• usually models obtained from raw data behave worse than those obtained

from zero mean data and non negative data. This might be due to the

offsets in raw data, which are not present, or at least whose influence is

much lower, in case of non negative data and, even more, in case of zero

mean data;

• even if not as much as expected, there is a slight improvement using

larger training sets. We can appreciate this improvement in particular

for models obtained using zero mean data;

• nonparametric models usually perform better than ARPA model, at least

using large enough databases for training.

We also notice the presence of two outliers in Table 4.1 concerning Piacenza

station, for which we have no clear explanation. We expect to have a better

understanding of this issue in future analysis.
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1000 2000 3000 4000 5000 ARPA
SPESSA PO 0.0470 0.0459 0.0460 0.0443 0.0443 0.3188

PIZZIGHETTONE 0.0180 0.0169 0.0166 0.0170 0.0169 0.9063
PIACENZA 0.0283 0.0255 0.0250 0.0245 0.0239 0.1442
CREMONA 0.6346 0.0861 0.0776 0.0845 0.0756 0.3423

Table 4.2: Mean–square errors for heights forecasts of nonparametric models and ARPA
model. Rows are indexed by the various stations for which forecasts have been computed,
columns are indexed by the numerosity of the dataset used for training. The table refers to

models obtained using zero mean data.

1000 2000 3000 4000 5000 ARPA
SPESSA PO 0.0443 0.0450 0.0467 0.0449 0.0450 0.3188

PIZZIGHETTONE 0.0171 0.0165 0.0163 0.0167 0.0166 0.9063
PIACENZA 0.0271 0.0155 0.0185 0.0274 0.0143 0.1442
CREMONA 0.5237 0.1146 0.0907 0.0814 0.0792 0.3423

Table 4.3: Mean–square errors for heights forecasts of nonparametric models and ARPA
model. Rows are indexed by the various stations for which forecasts have been computed,
columns are indexed by the numerosity of the dataset used for training. The table refers to

models obtained using non negative data.

1000 2000 3000 4000 5000 ARPA
SPESSA PO 1.6689 1.6595 1.6865 1.5986 1.6072 5.8165

PIZZIGHETTONE 0.1226 0.1200 0.1198 0.1354 0.1260 0.7088
PIACENZA 1.5370 1.1289 1.0232 1.0359 0.9748 7.4394
CREMONA 2.3688 1.5308 1.4474 1.5012 1.6361 8.9115

Table 4.4: Mean–square errors for flows forecasts of nonparametric models and ARPA
model. Rows are indexed by the various stations for which forecasts have been computed,
columns are indexed by the numerosity of the dataset used for training. The table refers to

models obtained using raw data. A factor 104 is omitted in the table.

1000 2000 3000 4000 5000 ARPA
SPESSA PO 1.7432 1.6612 1.6300 1.5549 1.5664 5.8165

PIZZIGHETTONE 0.1333 0.1255 0.1251 0.1397 0.1323 0.7088
PIACENZA 1.2158 1.4768 1.0624 1.0657 1.0256 7.4394
CREMONA 2.0742 1.7072 1.5551 1.4973 1.4446 8.9115

Table 4.5: Mean–square errors for flows forecasts of nonparametric models and ARPA
model. Rows are indexed by the various stations for which forecasts have been computed,
columns are indexed by the numerosity of the dataset used for training. The table refers to

models obtained using zero mean data. A factor 104 is omitted in the table.
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1000 2000 3000 4000 5000 ARPA
SPESSA PO 1.6689 1.6595 1.6865 1.5986 1.6072 5.8165

PIZZIGHETTONE 0.1226 0.1200 0.1198 0.1354 0.1260 0.7088
PIACENZA 1.4698 1.0394 0.9477 0.9872 0.9646 7.4394
CREMONA 2.4642 1.5208 1.4567 1.5319 1.4603 8.9115

Table 4.6: Mean–square errors for flows forecasts of nonparametric models and ARPA
model. Rows are indexed by the various stations for which forecasts have been computed,
columns are indexed by the numerosity of the dataset used for training. The table refers to

models obtained using non negative data. A factor 104 is omitted in the table.
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Figure 4.13: Mean–square errors for heights forecasts of nonparametric models and ARPA
model at Spessa Po. The histogram describes the change in MSE when the dataset used
for training grows from 1000 to 5000 samples. It is also shown, for comparison, the MSE of

ARPA forecasts.
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Figure 4.14: Mean–square errors for flows forecasts of nonparametric models and ARPA
model at Spessa Po. The histogram describes the change in MSE when the dataset used
for training grows from 1000 to 5000 samples. It is also shown, for comparison, the MSE of

ARPA forecasts.
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Figure 4.15: Mean–square errors for heights forecasts of nonparametric models and ARPA
model at Pizzighettone. The histogram describes the change in MSE when the dataset used
for training grows from 1000 to 5000 samples. It is also shown, for comparison, the MSE of

ARPA forecasts.
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Figure 4.16: Mean–square errors for flows forecasts of nonparametric models and ARPA
model at Pizzighettone. The histogram describes the change in MSE when the dataset used
for training grows from 1000 to 5000 samples. It is also shown, for comparison, the MSE of

ARPA forecasts.
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Figure 4.17: Mean–square errors for heights forecasts of nonparametric models and ARPA
model at Piacenza. The histogram describes the change in MSE when the dataset used for
training grows from 1000 to 5000 samples. It is also shown, for comparison, the MSE of

ARPA forecasts.
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Figure 4.18: Mean–square errors for flows forecasts of nonparametric models and ARPA
model at Piacenza. The histogram describes the change in MSE when the dataset used for
training grows from 1000 to 5000 samples. It is also shown, for comparison, the MSE of

ARPA forecasts.
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Figure 4.19: Mean–square errors for heights forecasts of nonparametric models and ARPA
model at Cremona. The histogram describes the change in MSE when the dataset used for
training grows from 1000 to 5000 samples. It is also shown, for comparison, the MSE of

ARPA forecasts.
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Figure 4.20: Mean–square errors for flows forecasts of nonparametric models and ARPA
model at Cremona. The histogram describes the change in MSE when the dataset used for
training grows from 1000 to 5000 samples. It is also shown, for comparison, the MSE of

ARPA forecasts.



5
Conclusions

The main motivation for this thesis was that of testing the performances of a

nonparametric approach to the real case of the Po River basin. The extreme

complexity of the system suggested that a block box approach could eventually

perform better than a deterministic, physically based one. Moreover, the

nonparametric approach guarantees the possibility of easy retuning/relearning

of the model, which is a particularly useful characteristic when dealing with

such an inherently time variant system as a river basin.

Thanks to the kind collaboration of ARPA, we were able to train and test

our algorithm on a series of real databases.

The simulation results were satisfactory, both from the point of view of

accuracy and efficiency. Despite requiring much lower computational load and

time, the nonparametric algorithm obtained – according to MSE comparison –

better performances than the current forecasting system.

We obtained best results in the case of stationery regime, namely when

height levels and flow values change slowly. On the contrary, a certain delay

appears in case of sudden variations, especially in the upstream stations. This is

explained by the fact that rainfall forecasts are not at disposal of our algorithm,

thus implying the modeling of upstream stations as auto–regressive systems
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only. The AIPo forecast systems appear to be more capable of predicting the

actual water rising time, while less accurate in providing the exact value of the

increment.

On the contrary, non upstream stations are capable – in our model – to take

into account the information from their upstream neighbors, thus providing a

very accurate forecast both in timing and magnitude.

We guess that the inclusion of weather forecast data as additional inputs to

our model could greatly help improving the performances, both to reduce (or

remove) the upstream prediction delay and to refine all of the results.

A future research topic could be that of including some a priori information

to the model, moving back from a completely black box approach to one that

features some physical based characteristics.

Another research direction might be that of providing a theoretical frame-

work for computing an approximate probability distribution of the predictions.

In particular, assuming that the heights and flows under analysis are stochastic

processes, by direct computation of the 12–steps ahead prediction one can in

principle also argue that the actual value is distributed as a Gaussian random

variable centered in the prediction and with variance given by the model. This

could allow providing a reliable uncertainty range to Civil Protection, in order

to plan emergency management according to a probabilistic scenario instead

than on a single prediction value.
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