
Università degli Studi di Padova
Dipartimento di Matematica "Tullio Levi-Civita"

Corso di Laurea Magistrale in Informatica

A graphical data analysis tool for dataset
enhancement and preprocessing

Master’s Thesis

Supervisor
Prof. Silvia Crafa

Co-supervisor
Prof. Barbara Di Camillo

Graduate student
Alessandro Zangari

Academic Year 2019-2020

Alessandro Zangari: A graphical data analysis tool for dataset enhancement and preprocessing,
Master’s Thesis, © September 2020.

Abstract

The success of data-driven approaches, as well of data analysis methods, heavily
depends on the quality of the data being used. Hence, these techniques rely on the
application of specific procedures for cleaning, organizing, and preparing data for
processing.
This document describes the development of DataMole, a new tool written in Python,
equipped with a Qt-based graphical interface, that can support researchers during
data exploration and preprocessing activities. Data transformation pipelines can be
defined and executed within a simple, user-friendly graphical environment, effectively
providing an intuitive approach to data manipulation. The tool also embeds function-
alities for data visualisation through interactive plots, like scatterplots and line charts,
and provides a specific feature for the extraction of time series from longitudinal
datasets.
DataMole is open source and released for free usage under the terms of the GNU
General Public License (GPL). The first version of the tool will be available on GitHub,
along with the technical documentation, a developer manual and a user guide. Drafts
of the manuals have been attached to this document in appendix.

iii

Acknowledgements

First I want to thank professors Silvia Crafa and Barbara Di Camillo, my thesis tutors, for
their support and encouragement throughout the development process and for their patience in
reviewing this thesis.

A special thanks to the whole research team at the Department of Information Engineering that
made this project possible. Your ideas and feedback has been invaluable.

I’d also like to thank professor Fabio Aiolli and Mirko Polato for their enthusiasm in sharing
their advices and suggestions about the tool and its possible applications.

Finally, I want to express my gratitude to my parents and my friends for their continuous
support and the great moments we shared during these years.

Padova, September 2020
Alessandro Zangari

v

Contents

1 Introduction 1
1.1 Project objectives . 3

1.1.1 Description of longitudinal datasets 4
1.1.1.1 The ELSA dataset . 4
1.1.1.2 The HRS dataset . 5
1.1.1.3 Critical issues in longitudinal datasets 6

1.2 DataMole overview . 6
1.2.1 Related work . 7

1.2.1.1 Comparison with DataMole 7
1.2.1.2 Extension of existing tools 8

2 Design of the data manipulation tool 11
2.1 GUI description . 11

2.1.1 Dataset exploration . 12
2.1.2 Plotting data . 13

2.1.2.1 Scatterplot matrix . 13
2.1.2.2 Time series plot . 15

2.1.3 Defining pipelines of transformations 15
2.1.4 Inspiration for GUI design . 16

2.2 Data manipulation features . 17
2.2.1 Extraction of a time series: an example 18

2.3 Conventions and other features . 22
2.3.1 Treating missing values . 22
2.3.2 Types representation . 22
2.3.3 Data transformation paradigms 23
2.3.4 Parametrised transformations . 23
2.3.5 Logging transformations . 26
2.3.6 Exporting and interoperability 26

3 Development 27
3.1 Technology . 27

3.1.1 Dataset management libraries . 28
3.1.2 Development environment . 29

vii

viii CONTENTS

3.2 Qt basics . 29
3.2.1 Signals and slots . 29
3.2.2 Model-view-delegate . 29

3.3 Architecture overview . 30
3.3.1 Description of the main packages 30
3.3.2 Model/view classes . 31

3.3.2.1 The workbench . 33
3.3.3 Representation of a dataset transformation 33

3.3.3.1 The Operation abstract class 34
3.3.3.2 The editor widget factory 35

3.3.4 The computational graph . 36
3.3.4.1 Pipeline laziness . 36
3.3.4.2 The GraphOperation abstract class 37
3.3.4.3 The graph data structure 37
3.3.4.4 The GUI for the graph 38
3.3.4.5 Pipeline management workflow 38
3.3.4.6 Executing the pipeline 43

3.3.5 The OperationAction controller 46
3.3.6 Charts visualisation . 46

3.3.6.1 Technological considerations 46
3.3.6.2 The plotting package 47

3.3.7 Logging . 48
3.3.7.1 Logging operations . 48

3.4 Testing . 49

4 Conclusions 51
4.1 Packaging DataMole . 52
4.2 Future work . 52

A Developer manual 55
A.1 Package organisation . 55
A.2 Definition of a new operation . 58

A.2.1 Choosing the abstract class . 58
A.2.1.1 A comment about subclassing in Python 59

A.2.2 Implementing the operation . 59
A.2.2.1 Operation methods . 60
A.2.2.2 Options validation . 61
A.2.2.3 GraphOperation methods 63

A.2.3 Export the operation . 65
A.2.4 Definition of editor widgets . 65

A.2.4.1 Customised validation error handling 67
A.2.4.2 The editor factory . 67

A.2.5 Creating worker operations . 71
A.3 Extension of the View panel . 72

CONTENTS ix

A.4 Using the notification system . 73
A.5 The logging package . 75

A.5.1 Implementing the Loggable interface 75
A.6 The resource system . 76

A.6.1 The operation description file . 76
A.6.2 Adding new resources . 76

B DataMole user manual 77
B.1 Using DataMole . 77

B.1.1 Importing a dataset . 77
B.1.2 Exporting a dataset . 77
B.1.3 The main window . 79

B.1.3.1 Applying operations 80
B.1.4 The Attribute panel . 80
B.1.5 The View panel . 81

B.1.5.1 Scatterplot matrix . 81
B.1.5.2 Time series plot . 83

B.1.6 The Flow panel . 83
B.1.7 Other features . 86

B.1.7.1 Dataframe visualisation 86
B.1.7.2 Logging facilities . 86

Bibliography 87

List of Figures

2.1 Exploration of the iris dataset in the Attribute panel 12
2.2 The View panel showing a scatterplot matrix on the iris dataset 14
2.3 A PNG image of a scatterplot from the iris dataset 14
2.4 The time series line chart showing the daily number of female births in

California during year 1959 . 15
2.5 A data pipeline in the Flow panel . 16
2.6 Extraction of time series from ELSA attribute wpbima 19
2.7 The average monthly income and yearly income of a single ELSA

respondent measured in wave 2 to 8 . 21
2.8 The yearly income of two ELSA respondents from wave 2 to 8 21
2.9 The editor widget for min-max scaling 24
2.10 The min-max scaler editor widget displaying a validation error 24

3.1 Class diagram of the mainmodelsmodule 32
3.2 Class diagram of the workbenchmodule 33
3.3 Hierarchy of Operation interfaces . 34
3.4 Widget factory class specification . 35
3.5 Example of an option editor created with the widget factory 36
3.6 Class diagram of the gui.graph and flow packages 39
3.7 Sequence diagram describing the creation of a new pipeline node . . . 40
3.8 Sequence diagram for connecting two existing operations 40
3.9 Sequence diagram for operation configuration 41
3.10 Sequence of operations after options confirmation in the editor 42
3.11 Sequence of operations after options validation exception 42
3.12 Class diagram of the threadsmodule 44
3.13 Sequence diagram of editor creation and display 45
3.14 Sequence diagram of the option confirmation process 45
3.15 Class diagram of the gui.charts package 47
3.16 Class diagram for a sample operation that can be logged 49

A.1 Abstract classes derived from Operation 58
A.2 Error message in the BinsDiscretizer operation 63
A.3 The three parts that compose every editor widget 66

x

A.4 Classes defined in the gui.editor package 66
A.5 Widget to import pickle dataframes created with factory methods . . . 70
A.6 Widget created with a factory method 70
A.7 Combo box used to switch active widget in the View panel 73
A.8 Class diagram of the notificationsmodule 74
A.9 The main window, with a message on the status bar and a pop-up used

for notifications . 74

B.1 The widget used to load a CSV file . 78
B.2 The widget used to export a dataframe in CSV file 78
B.3 The DataMole main window, with an empty Attribute panel on the right 79
B.4 The editor widget used to configure the one-hot encoder and its help

window . 80
B.5 The main window set on the Attribute panel 81
B.6 A scatterplot matrix with 3 attributes . 82
B.7 A scatterplot displayed in a new window 82
B.8 A time series displayed with a line chart 83
B.9 A simple pipeline defined in the Flow panel 84
B.10 The editor widget for the operation used to scale columns 85
B.11 Comparison of two dataframes side by side 85

List of Tables

1.1 Descriptions of variables from the ELSA dataset with their name in 4
waves . 5

2.1 Some rows from the daily-total-female-births dataset 18
2.2 Structure of a wave of the ELSA dataset 18
2.3 Structure of the dataset generated with the extraction of two time series 20

xi

Chapter 1

Introduction

Machine learning datasets often require some manipulation and polishing before
experts can actually use them in their algorithms. The quality of training data can
have a considerable impact on the algorithm output, so time should be spent to clean
and regularise the data, in order to remove all noise that makes the data unsuitable for
machine processing. This is particularly important with datasets containing human
supplied information, like the ones gathered in polls, population studies, medical
records, etc. Additionally, data can contain much more information than what is
reasonable to keep; hence, field-experts evaluation may be useful to discard all those
data features that are not relevant for the task at hand, and to assess their correctness and
value. Experts may also decide to improve and transform the data, a task-dependent
activity that commonly involves some preprocessing transformations, like feature
engineering, data encoding and scaling, in order to synthesise new, more expressive
attributes and give the data a more convenient representation. Data visualisation can
help as well, through informative statistics and charts, like scatterplots and heatmaps,
enabling analysts to get a better understanding of the meaning of the data and can
give some hints on how to enhance them.
This important groundwork can be tackled with any programming language, though
some of them are traditionally more used for these tasks, and benefit from years of
contributions from their communities that make them more comfortable to use for
data-wrangling operations. Python and R comes with a considerably long list of data
analysis packages which create a data-friendly ecosystem suitable for almost every
possible need. Still, technical abilities and programming skills are required to be able
to use these tools fluently, and a significant amount of time can be spent by anyone
approaching them for the first time. Thus, it is natural to wonder how a software
with a graphical interface could help users in their exploratory work on datasets: such
a tool should allow its users to transform and manipulate the data, enabling them
to keep track of their progress, through statistics and visualisation features. This
kind of tool can effectively support the work of interdisciplinary teams of experts,
even non-programmers, providing them a set of powerful features to make data
preparation a less time-consuming task and helping novice users to grasp the meaning

1

2 CHAPTER 1. INTRODUCTION

and importance of dataset preprocessing. Additionally it is of critical importance that
preprocessing steps can be reproduced on different datasets: this allows to apply the
same transformations on similar datasets, and ensures reproducibility of the whole
procedure.
This thesis describes DataMole, a user-friendly graphical tool created to help its users
to perform some of the aforementioned operations. The tool is inspired from Weka, a
machine learning workbench with graphical interface with similar functionalities, but
it is simpler to use (although more limited) and includes specific features to simplify
exploration of longitudinal datasets. Additionally it is developed in Python, to take
advantage of the many available packages, and internally uses Pandas and Scikit-learn
for data manipulation. Besides, Qt for Python is used to create the graphical interface.
When exploring an unknown dataset, experts may be interested in having a look at the
data features, seeing their correlation, and then applying some cleaning operations,
like removing unwanted attributes, changing data types or dealing with NaN values.
In other situations the dataset is already known, and a way to rapidly apply a set
of predefined transformations should be provided. DataMole supports these two
operative modes separately: it is possible to apply single transformations to individual
datasets while looking at the data, or the user can apply a complete pipeline of
transformations, that can be defined easily by dragging and dropping operations and
connecting them to create a graph. Pipelines can also be saved and later applied to
other data: this feature provides support for transparent data manipulation and boosts
reproducibility by making transformations easily replicable.
To get a sense of data before and after transformations, chart visualisation features are
provided with frequency histogram, scatterplot and time series line chart.
Finally, the tool integrates some specific features for time series extraction and
visualisation, tailored for usage with longitudinal datasets. These datasets track the
same sample of subjects through time, periodically monitoring some parameters of
interest. The tool provides a way to visualise such features over time, through the
creation of a normalised dataset which can be interpreted as a time series.
DataMole focuses on helping non-programmers to transform and clean their data: the
intuitive graphical interface guides the user in choosing the right transformation, by
offering a detailed description of how it operates and providing a simple widget to
configure it with the required parameters, that are additionally validated in order to
inform the user of any wrong combination of arguments.
The design of a graphical interface to create lazy pipelines of transformations, required
the development of a computational graph infrastructure to allow the propagation of
information through the graph and support multithreaded execution of every node.
Finally, many architecture design decisions were made in order to favour the embedding
of new features. Hence, a developer guide is included in the appendix of this document
to simplify software extension.

1.1. PROJECT OBJECTIVES 3

1.1 Project objectives
DataMole was the result of a collaboration between the Department of Mathematics
and the Department of Information Engineering of the University of Padua. Its primary
goal was the creation of an open source graphical desktop application capable of
extracting and polishing information contained in medium-sized biomedical datasets,
including longitudinal datasets. These datasets typically contain a huge amount of
features that need to be filtered, extracted, cleaned and prepared for usage in data
analysis tasks.
A list of the main functional requirements is provided below.

• Preprocessing capabilities: the tool should allow the application of common
preprocessing operations, like management of missing values, feature discretiza-
tion, scaling, standardization and simple dataset manipulations, like the ability
to add and remove or duplicate columns;

• Visualisation features: the tool should be able to help data exploration through
the presentation of informative statistics about the dataset and the creation of
charts, like scatterplots and histograms;

• Transformation pipeline: the ability to create preprocessing pipelines with a
graphical interface: this approach is often used for data manipulation, and is
easy to visualise, understand and convenient for sharing;

• Interoperability: the ability to import existing datasets into DataMole and
export them in order to continue working on them with different tools;

• Transformations tracking: it should be always possible to understand which
transformations were applied to a particular dataset. This is important to
document the applied transformations through a logging functionality;

• Support for multiple datasets: the ability to load in the software more than one
dataset and work on them in parallel;

• Support for longitudinal data: since longitudinal datasets contain temporal
information, the tool should have the ability to plot feature values over a time
axis. The structure of longitudinal datasets is covered in the next section, with
some examples.

Some additional desirable requirements are listed below. They describe possible
enhancements and features that were not considered indispensable.

• Pipeline export: the possibility to export existing pipelines for sharing and to
keep a documentation of the operations applied to a dataset;

• Support for train/test set: the tool should allow to fit pipelines on a training
dataset and apply them (without re-fitting) to a test set; this kind of support is
often required when processing data for machine learning;

4 CHAPTER 1. INTRODUCTION

• Scalability: the tool should support out-of-memory dataset and out-of-core
computations, in order to support big datasets that do not fit in the machine
main memory;

• Undoable transformations: the tool should give the possibility to revert the last
applied operation;

• Customised functions: the possibility to define functions and apply them to a
dataset.

Finally, the main quality requirements for DataMole are the following:

• Extensibility: the software should be designed in a way to favour the addition
of new features;

• Documentation: implementation and architectural choices should be docu-
mented in a developer manual and the program features and their internal
working should be described in a user manual;

• Open source: the software should preferably be released with a license that
allows to continue its development; hence, any third party technology embedded
in this software should be chosen appropriately, in order to fulfil this requirement.

1.1.1 Description of longitudinal datasets
Longitudinal datasets contain data from repeated observations of the same sample
(e.g. people) over a period of time. Thus some variables of interest of the observed
sample are measured on a continuous basis. Specifically, the team behind this project
is working with the English Longitudinal Study of Ageing (ELSA) [1] and the Health and
Retirement Study (HRS) [9]. The next sections present these two datasets, that will be
later used to give some examples of DataMole features.

1.1.1.1 The ELSA dataset

The English Longitudinal Study of Ageing was started 2002 by the National Institute on
Aging (NIA) and involves a sample of the English population aged 50 and older.
Every two years, the participants are asked to complete a core self-completion ques-
tionnaire covering questions such as well-being, relationships, alcohol consumption,
household and socio-economic status. Hence this longitudinal dataset is composed
of data gathered during successive waves of interviews, carried out every two years.
Currently the study made available data from 9 waves, with the last one completed
in 2020. Additionally, every 4 years, participants are visited from qualified nurses
and various physical examination and performance data are obtained, while some
biological samples are collected for analysis [6]. Waves may not contain data from
every participant, since they may refuse to be interviewed or they may not be available
when required. Similarly, while completing the questionnaire, participants can always
skip questions if they prefer not to answer. Thus data is not homogeneous and contains

1.1. PROJECT OBJECTIVES 5

WavesDescription
2 3 4 5

Chronic lung disease hedibw1 dhediblu hediblu hediblu
ever diagnosed
Whether respondent felt PScedG pscedg pscedg pscedg
sad much of the time
during the past week
Level of physical wpjact wpjact wpjact wpjact
activity in main job
Amount of income from wpwlyy wpwlyy wpwlyy wpwlyy
work in the last year
Average monthly income wpbima wpbima WpBIma wpbima
from business in the
last 12 months
Table 1.1: Descriptions of variables from the ELSA dataset with their name in 4 waves

a lot of missing values, that may be missing for several reasons, so different codes are
used to indicate these possibilities.
Every wave of data can be downloaded as a separate file from the UK Data Service
online portal, along with the data documentation needed to interpret it: for instance a
data dictionary is used to associate every variable with its description, its type and
possible values. Every file contains thousands of variables which corresponds to the
answers given to the ELSA questionnaire or, in case of the nurse visit datasets, to
the physical parameters measured during the visits. Every variable is placed on a
different column named with a code that is used to identify the feature. Besides every
participant has a cross-wave identifier that allows to recognise the same subject in
different waves. An example of three variables contained in the ELSA dataset, with
their description is shown in Table 1.1. Notice that variables names are not always
consistent through waves. Additionally some waves may contain slightly different
questions in place of older ones, or others may be deleted entirely starting from a wave.

1.1.1.2 The HRS dataset

The Health and Retirement Study is a longitudinal panel study that surveys a repre-
sentative sample of approximately 20000 people in America. It is conducted by the
University of Michigan and founded by the National Institute on Aging and the Social
Security Administration. It contains 16 waves from 1992 to 2018 and the participants
are interviewed every two years. These interviews cover a wide range of topics,
including family structure, health conditions, employment history and much more.
Similarly to ELSA, some physical parameters (e.g. blood pressure, waist and hip
circumference, lung function, grip strength, blood parameters) are measured every 4

6 CHAPTER 1. INTRODUCTION

years from a selected subsample of participants during specific examinations.
The public dataset can be downloaded for usage with statistical software like Stata or
SPSS, and it can be manually converted to a plain CSV file. Its structure is very similar
to ELSA, where columns represent variables and an unique identifier is provided to
recognise subjects through different waves.

1.1.1.3 Critical issues in longitudinal datasets

Longitudinal datasets like ELSA and HRS contain thousands of variables. DataMole
allows searching through the dataset and to extract specific subsets of columns, since
studies that use these datasets are typically interested in just a few variables.
These data are in large part self-reported by participants and often contain a lot of
missing information. For example the wpbima attribute from ELSA listed in Table 1.1
contains more than 97% of missing values in several waves. Sometimes this happens
because respondents choose not to share some more sensible information (like the
average monthly income) or because some questionnaire sections are skipped under
certain conditions (e.g. the respondents does not know the answer, the question is
not applicable to his/her category, etc.). To communicate these conditions special
codes are used. Some variables may also be dependent on other variables: for example
questions about previous employment are skipped if the respondent never had a job,
thus all such questions will be considered not applicable and marked with a specific
missing code. DataMole embeds a transformation that can be used to replace values,
so that these codes can be properly treated as missing values.
Values can also be inconsistent across different waves: for example a subject may
declare that a diagnosis of a lung disease has been reported to him, and dispute this
fact in a following wave. This may happen if the diagnosis has been made and later
proven incorrect, or it may result from a simple mistake. DataMole does not have a
specific feature to manage these inconsistencies, because the correct way to deal with
them differs from case to case, and it may involve some ad-hoc transformations that
need to be done outside of DataMole.

1.2 DataMole overview
DataMole is a data manipulation software suitable for dataset exploration and data
cleaning, that can be used through a graphical interface. It is written in Python
and uses the Pandas library and specifically its dataframe data structure to open and
manipulate datasets. Its features include:

• Import and export datasets in CSV format and with pickle;

• Visualise the dataframe in a table;

• Display a list of dataframe columns with their name and type and search for
specific attributes by name;

• Visualise statistics for every column, and an histogram to see value distribution;

1.2. DATAMOLE OVERVIEW 7

• Apply transformations to specific attributes, like scaling, one-hot encoding, and
also manage datasets by renaming, dropping and duplicating columns;

• Load more than one dataset and switch between open datasets to explore and
compare them;

• Side by side view for open datasets for fast comparisons;

• Define pipelines of transformations with the possibility of exporting and import-
ing them;

• Draw bivariate scatterplots and time series plots;

• Automatically log every applied operation along with its configuration for
documentation purposes;

• Easy-to-use graphical interface: every data transformation can be parametrised
using simple widgets and pipelines can be defined with drag-and-drop.

1.2.1 Related work
Most software for data preparation tasks is packaged inside libraries or frameworks
usable within programming languages. However there are very few tools that allow
to do this from a graphical interface, not counting commercial software. Two of them
are briefly described here:

• Weka, acronym of Waikato Environment for Knowledge Analysis, is an open
source software written in Java, developed by the University of Waikato (New
Zealand) that provides a collection of machine learning and preprocessing
algorithms that can be applied from a graphical interface [8]. Weka is a complete
machine learning suite, and offers much more than just data preparation features;

• DataPreparator is a free-to-use graphical software also developed in Java, designed
to assist with common tasks of data preparation for data analysis, and includes
features for data cleaning, preprocessing and visualisation [2].

1.2.1.1 Comparison with DataMole

Both the above software contain more features with respect to DataMole. As already
stated, Weka is a graphical machine learning suite capable of defining entire machine
learning pipelines, complete of preprocessing steps, training, validation and testing. It
additionally supports community developed extensions that further enrich the list
of available features. DataMole is more limited, but offers these functionalities that
Weka does not provide:

• Better CSV support: Weka is very sensitive to CSV formatting errors, which
unfortunately are quite common in the already cited longitudinal datasets; on
the other hand, Pandas handles well even wrong-formatted CSV files;

8 CHAPTER 1. INTRODUCTION

• Operation log: DataMole keeps a trace of every applied operation, which can be
useful to document an experiment;

• Multiple datasets: more than one dataset can be loaded in memory and the user
can easily switch between them; a side by side view of different datasets is also
available for comparisons;

• Column search: allows searching through dataset columns by name or regular
expression; this is particularly convenient when the dataset contains thousands
of columns, and provides a way to quickly filter attributes and select them when
configuring a transformation;

• Time series visualisation for longitudinal datasets: time series can be extracted
from this specific kind of datasets and plotted; this feature is described with an
example in the next chapter;

• Interoperability with Python: since DataMole is written in Python, it allows
exporting datasets in pickle, the serialised binary format for Python; this is
extremely useful to continue working on a dataset outside of DataMole, without
having to parse the dataset again.

DataPreparator does not have all Weka functionalities, but still provides advanced
features, like support of data streaming, more visualisation features and supports the
creation of fitted pipelines that can be exported and applied to a test set. The main
drawback of this tool is that it is not open source, hence not extendable, and it is not
maintained: the latest version was released in 2013. On the other hand DataMole is
open source and includes some convenient extension mechanisms described in the
developer manual (in Appendix A) that provides a way to extend it with additional
features.

1.2.1.2 Extension of existing tools

Before starting to develop DataMole, some time was spent exploring Weka and
DataPreparator, in order to determine which features they provide and how they could
be improved. In addition, we considered the possibility of extending Weka. This
software was designed to allow extension: a dedicated section is present in the Weka
user guide and new plug-in extensions can be published and distributed through an
official repository. Weka is composed of many panels that can be launched from a
main window and some of these support the embedding of new features: for example,
in the Explorer panel, extensions with new functionalities can be placed on new tabs,
while the Knowledge Flow, which allows the definition of complete machine learning
pipelines, can be extended with new customised steps (which are operations on the
datasets).
The Weka Explorer panel was one of the main inspirations for the earlier concepts of this
tool, so we considered adding the missing functionalities (like time series visualisation)
directly to it. However some features would have required a reimplementation of

1.2. DATAMOLE OVERVIEW 9

some part of the software, and not just an extension. For instance, Weka does not allow
to open more datasets at the same time in the Explorer, and we wanted to provide
this functionality to better support working with longitudinal datasets that are often
split in many different files. More importantly it had issues opening the HRS or ELSA
datasets from CSV files, probably because of some formatting errors or unsupported
characters.
Eventually we decided to develop our own independent tool, with the advantage of
having more control over design choices and the objective of starting a project that
could be improved over time.

Chapter 2

Design of the data manipulation
tool

This chapter briefly introduces the software interface and discusses the main considerations
involved in its design.

2.1 GUI description

DataMole is centred around three panels, accessible in three different tabs:

• The Attribute panel for dataset exploration;

• The View panel for charts creation;

• The Flow panel to build preprocessing pipelines.

Each of these is described in the next sections, along with its features.
The left side of every panel contains the workbench, which allows switching between
loaded datasets. Above the workbench, a widget shows some general information
about the selected dataset, like its name, column and row numbers. Fig. 2.1 shows
these two widgets marked with letters (W) and (G) respectively. Additionally various
dataset transformations can be applied from this side-panel, like type conversions,
feature discretization, one-hot encoding and many more. A detailed list of the available
transformations is in §2.2.
Many screenshots and examples of DataMole features described in this chapter are
based on the iris dataset. This is a very simple and well known dataset which measures
the length and the width of both sepals and petals of 150 iris flowers, belonging to 3
different species: versicolor, virginica and setosa. More information on this dataset can
be found in the original paper, available at [7].

11

12 CHAPTER 2. DESIGN OF THE DATA MANIPULATION TOOL

Figure 2.1: Exploration of the iris dataset in the Attribute panel: datasets can be switched in the
workbench (W) and information for every attribute in the selected dataset are shown
in sections (B) and (C). The attribute table (A) allows to change the selected attribute.

2.1.1 Dataset exploration
DataMole provides the basic functions to explore a dataset and understand its content
through some statistics within the Attribute panel. The visualisation of the iris dataset
from this panel is shown in Fig. 2.1.
To understand a dataset the user needs to get an overview of the content of each
column. To do this, the panel is organised in three sections:

• The attribute table keeps a list of every column in the dataset with its name and
type ((A) in Fig. 2.1);

• The statistics panel shows some statistical information for the selected attribute
(B);

• An histogram displays the frequency of values within the selected column (C).

DataMole uses Pandas to load and hold the dataset in memory, which automatically
infers some types when it parses a file. In DataMole five data types are supported:

• numeric: represents both integers and floats;

• datetime: used to encode dates and timestamps;

• categorical: used to encode non-numeric attributes with a small set of distinct
values. A categorical attribute can be:

– nominal: if no order relation is defined between categories;

– ordinal: if categories can be ordered.

2.1. GUI DESCRIPTION 13

• string: used for textual columns.

In the example in Fig. 2.1, the species column, which declares the species for every iris
in the dataset, has been encoded as a nominal attribute, since it contains only 3 values
with no order relation defined between them.
The type of information shown in the statistics panel depends on the attribute type:
attribute statistics for numeric attributes include the minimum, maximum, average
value, standard deviation and percentiles. For non-numeric columns this widget
shows the number of distinct values along with the most frequent one, as well as the
minimum and maximum date for datetime attributes. Additionally the percentage of
missing (NaN) values is always shown.
For non-numeric attributes, the histogram shows the frequency of every distinct value.
On the other hand, continuous-valued attributes (i.e. of type either numeric or
datetime) are grouped in equal-size intervals, and their number can be changed by
moving the slider on the bottom.

2.1.2 Plotting data
Aside from the histogram, which is shown in the Attribute panel, every other visualisa-
tion feature is included in the View panel. It allows to create informative charts from
the data. For now, it is possible to generate two type of charts:

• Scatterplot;

• Line chart, only for time series.

Double clicking on a chart opens it inside an independent window and allows to save
it as an image.
Even though this panel currently allows to create only two type of charts, its name was
set on purpose: it is meant to contain a collection of tools to visualise various type of
dataset information. Currently only charts can be created but the panel can be easily
extended with new features, which may possibly include not only charts.

2.1.2.1 Scatterplot matrix

The scatterplot matrix is often used to visualise the correlation between pairs of attributes
and to understand how well they can discriminate a target feature. For example Fig. 2.2
shows a scatterplot matrix on the 4 attributes of the iris dataset. Every point is coloured
with respect to its target category, which is set to the species attribute. The widget on
the right side of the matrix (A) allows to select which attributes to include and to select
the target feature. Double clicking a chart opens it in a window which additionally
displays the legend and allows to zoom, pan and resize the chart. Single charts can be
saved as images, like the one in Fig. 2.3.

14 CHAPTER 2. DESIGN OF THE DATA MANIPULATION TOOL

Figure 2.2: The View panel showing a scatterplot matrix on the iris dataset. Every point is an
entry of the dataset and its colour indicates the flower category, that can be selected
in the right panel (A).

Figure 2.3: A PNG image of a scatterplot from the iris dataset

2.1. GUI DESCRIPTION 15

Figure 2.4: The time series line chart showing the daily number of female births in California
during year 1959. Combo boxes in (A) allow to select the time axis and change its
format and the time series values can be selected in (B).

2.1.2.2 Time series plot

Datasets with feature values spread out over a time axis can be visualised in a line
chart that displays data over time. Fig. 2.4 shows the daily number of female births in
California during year 1959, taken from a public dataset found on Kaggle [3]. Every
entry in this dataset contains the time label (day of the year) of type datetime and the
number of births. The widget on the right side of the chart allows to configure it: the
attribute to use as time axis can be chosen in (A), while the dependent variables to plot
over time can be selected in (B).

2.1.3 Defining pipelines of transformations

Through the Flow panel its possible to create pipelines of transformations: a pipeline
defines a flow of operations on the data where the output of a node is the input of the
next connected operation. Fig. 2.5 shows a screenshot of a simple pipeline, marked
with (F). Transformations can be added by dropping them from the list placed on the
left side of the window (L). Additionally, most transformations must be configured
before the pipeline can be executed, and this is covered later, in §2.3.4.
One of the advantage of the approach to dataset transformation proposed in this panel
is that entire pipelines can be exported and imported to be used with other datasets.
All the available data transformations are described in §2.2.

16 CHAPTER 2. DESIGN OF THE DATA MANIPULATION TOOL

Figure 2.5: A data pipeline in the Flow panel: dataset is read using the Copy operation and the
pipeline result is written on the workbench using the To variable operation. New
operations can be added dragging them from the left panel (L).

2.1.4 Inspiration for GUI design

Some features of DataMole as well as its graphical interface has been inspired by
existing software, in particular Weka and DataPreparator, already described in the
introductory chapter.
The main Attribute panel has been inspired by the Weka Explorer panel. Weka presents
data in a similar way, with statistics and an histogram. It also allows to apply
transformations to the data by selecting the operation (called filter) and configuring
its arguments. Differently from DataMole, the Weka Explorer does not allow to keep
open more than one dataset at a time and to search for specific attributes, which
can instead be useful when dealing with many columns. In fact, this is particularly
important to work with the longitudinal datasets that contain thousands of columns,
and are usually split into many files.
The possibility to create a pipeline-based interactive mode, available in the Flow
panel, has been inspired by both the Weka Knowledge Flow and by a similar feature of
DataPreparator. The Weka pipeline is more advanced, since it allows to define complete
machine learning pipelines and supports data streaming. Similarly, DataPreparator
data processing capabilities are centred around the creation of an operator tree where
each node is a different operation that transforms the dataset. The interaction with
DataPreparator operator tree is quite different from DataMole, since every node must
be configured and executed manually before its successors can be run.
The implementation of the DataMole pipeline is described in chapter 3.

2.2. DATA MANIPULATION FEATURES 17

2.2 Data manipulation features
One of the DataMole core features is the ability to apply transformations to the dataset.
The following transformations are available:

• Type conversions: as explained in §2.1.1 types are automatically inferred when a
file is parsed, but the program allows to explicitly set types and convert between
them if needed;

• Dataset join: it is possible to join pairs of datasets on specific columns or
alternatively on index columns. Inner, outer, left and right SQL-like join is
supported;

• Missing values management: NaN values can be imputed with different strategies,
for example by replacing them with the column average value, with a specific
value or with the last valid value. Additionally rows or columns with a high
number of missing values can be removed;

• Indexing: sometimes it is useful to set one or more attributes as indices of the
dataset, for instance, before joining two datasets;

• Scaling: attributes can be scaled to a specified range with min-max scaling or
standardised with respect to their mean and standard deviation;

• Discretization: continuous features (i.e. of type numeric or datetime) can be
discretized into a variable number of bins with different strategies, including
equal-sized bins, equal-frequency bins and manual range specification;

• One-hot encoding: nominal categorical features and string attributes can be
one-hot encoded;

• Cleaning operations: attributes values can be replaced with different values,
columns can be renamed, duplicated and dropped;

• Time series extraction: one of the requirements for this project was the ability
to visualise the temporal information contained in longitudinal datasets. To
be interpreted as a time series, this information must first be extracted with an
operation designed for this purpose.

Most of these transformations are quite standard in the data science domain. On the
other hand, the time series extraction feature was specifically designed to work with
longitudinal datasets and its purpose is described with an example in the next section.

18 CHAPTER 2. DESIGN OF THE DATA MANIPULATION TOOL

2.2.1 Extraction of a time series: an example

Date Births
1959-01-01 35
1959-01-02 32
1959-01-03 30

...
...

1959-12-30 55
1959-12-31 50

Table 2.1: Some rows from the daily-total-female-births dataset

idauniq wpwlyy wpbima . . .
121321
121323
121332

...

Table 2.2: Structure of a wave of the ELSA dataset

The dataset used to plot the time series in Fig. 2.4 is composed of 365 entries, each
with a date (under column Date) and the number of female births on that day (column
Births). A sample of this dataset is reported in Table 2.1. The View panel can understand
dataset in this simple format: it is only necessary to convert the Date attribute to
datetime, set it as the time axis and select the time-dependent attributes, which is only
Births in this example.
Longitudinal dataset like ELSA or HRS are not so simple: first there is no attribute
representative of the time axis, but rather this information is implicitly conveyed by
putting the variables from different waves in distinct files, or, if they are all in the same
file, by renaming the variables to reference the wave they belong to (e.g. varA_wave1,
varA_wave2, etc.). Hence, with these datasets the temporal information must be made
explicit, by defining a time axis and, with the user help, link every column of the
datasets to their point in this axis. For instance the file containing ELSA data from
wave 3 has the structure described in Table 2.2. For the purpose of this example, only
3 attributes are listed: the idauniq attribute contains the unique cross-wave identifier,
wpwlyy is the amount of gross income gained from the respondent work at the end of
the previous year and wpbima is the average monthly income from business during
the previous 12 months (from the interview). Other waves follow the same scheme,
even though variable names can sometimes change across different waves. Suppose
we want to visualise how the respondent income changes from wave 2 to 8 and plot it
as a time series: there is no immediate way to do it, and we have to manipulate this
dataset and transform it into a time series that can be identified and used in the View

2.2. DATA MANIPULATION FEATURES 19

Figure 2.6: Extraction of time series from ELSA attribute wpbima

panel. The time series extraction operation is designed for this use case. Fig. 2.6 shows
the widget used to configure the operation. In this case the relevant attributes (wpbima
and wpwlyy) were previously extracted from their files and merged together in a single
dataframe using the join operation. They were also renamed by appending the name
of the waves they referred to (_w2 for the second wave, _w3 for the third and so on).
This attributes contain a majority of NaN values: for the purpose of this example, they
were filled with the per-column average, even though, in a real use case, they would
probably be unusable.
In Fig. 2.6 two time series are defined and added to list (S): mon_income for attribute
wpbima, and tot_income_y for wpwlyy.
Then every time series is populated with its values: since we are interested in the
average monthly income from the second to the eight wave, attributes from wpbima_w2
to wpbima_w8 are selected in table (A). Here all attributes are taken from a single
dataframe, but it is generally possible to select attributes from different dataframes by
choosing the right ones in the workbench shown in section (W).
The next step is the association of these attributes to a time point (the wave in this case).
Thus, after defining an appropriate number of labels for the time axis in the bottom-left
table (T), we associate every relevant column to its time label in the bottom-right table
(B): here we are basically telling DataMole that wpbima_w2 contains the values of the
attribute wpbima for wave 2, wpbima_w3 contains the values for wave 3 and so on.
Series tot_income_y is built in the same way, by selecting the attributes wpwlyy from the
various waves. Finally, a name for the dataset is set in (V) and the operation is started.
The result of this operation is a new dataset with the structure shown in Table 2.3.
Every respondent is associated to 7 entries, each containing a distinct time label
(time attribute) and the values of the wpwlyy and wpbima columns, respectively under

20 CHAPTER 2. DESIGN OF THE DATA MANIPULATION TOOL

idauniq time tot_income_y mon_income
w2
w3
w4
w5
w6
w7

121321

w8
w2
w3
w4
w5
w6
w7

121323

w8
w2
w3
w4
w5
w6
w7

121332

w8
...

Table 2.3: Structure of the dataset generated with the extraction of two time series (tot_income_y
and mon_income) from the ELSA dataset

columns tot_income_y and mon_income.
At this point it is possible to plot these attributes: you can see how the average monthly
income and the yearly income changes for a single respondent (Fig. 2.7) or you can
compare the same attribute (yearly income or monthly income) from two different
respondents (Fig. 2.8). In both cases the table on the bottom (named (C) in Fig. 2.7)
must be used to select the ids of the respondents to plot. This table allows to select
by dataframe index, that must be set appropriately: in this example it is set on the
respondent id. Additionally when an index is selected, the chart expects to find a time
attribute and some time-dependent attributes to plot for every selected index, exactly
like in Table 2.3. Hence table (C) should be used only to plot time series extracted with
the time series extraction operation.

2.2. DATA MANIPULATION FEATURES 21

Figure 2.7: The average monthly income and yearly income of a single ELSA respondent
measured in wave 2 to 8 (ELSA attributes wpbima and wpwlyy). The time labels for
every wave are shown on the Time axis (horizontal), while the vertical axis shows
the values of the two selected attributes.

Figure 2.8: The yearly income of two ELSA respondents from wave 2 to 8 (ELSA attribute
wpwlyy)

22 CHAPTER 2. DESIGN OF THE DATA MANIPULATION TOOL

2.3 Conventions and other features
The following sections discuss some features that were added to improve DataMole user-
friendliness, its transparency with respect to data manipulation and its interoperability
with Python.

2.3.1 Treating missing values

Missing values are codified using NaN: this is a standard practice when working with
preprocessing tools, like Pandas and Scikit-learn. This encoding for missing values is
independent of the type of the column. The number of NaN values within a column is
reported in the statistics panel available from the Attribute tab.
DataMole makes some choices about missing values that are sometimes different
from how they are treated in Pandas and Scikit-learn. These packages do not always
support computations with NaN values. For example the Scikit-learn discretization
functions available in the current version raise an exception if any selected column
contains NaN. In addition, Pandas does not always behave consistently with NaN
values. As an example, if a numeric column with missing values is converted to string,
every NaN in this column is replaced by the string "nan", that is no longer considered
a missing value. However it still uses NaN values to encode empty strings when it
parses non-numeric columns from a file.
This behaviour can be justified by the generality of this tools: they are used in a great
variety of tasks by a large user-base and while their behaviour may be surprising in
some situations, it may be desirable and expected in others. Additionally they offer an
API for usage within programming languages, thus they expect constant supervision
from a skilled user with programming background: if any exceptional condition is
encountered (like the presence of NaN) they may stop executing and allow the user to
personally deal with it, or they might expect the user to be aware of the problem, thus
making a choice that may not always lead to the intended result.
On the other hand, this software treats missing values consistently: every defined
transformation supports missing values and propagates them transparently. They are
generally ignored and unaffected by every transformation, unless it is designed to
explicitly treat them, for example to fill or remove them. For instance, the discretization
feature provided in this software does not change the number of missing values, but
rather processes only valid numeric values.

2.3.2 Types representation

When integer and real-valued columns are processed with DataMole they are marked
as numeric and no distinction is made between integer and real numbers. As a
consequence, for consistency, integers are always converted to real values when a new
dataframe is created. Numeric columns are therefore treated as continuous. If a discrete
encoding is required, the categorical type can be used instead.
One thing to keep in mind is that both string and categorical data types internally

2.3. CONVENTIONS AND OTHER FEATURES 23

represent values as strings. This may seem obvious, but Pandas supports an object
type that can contain any Python type. Thus object columns may contain a mix of
types, like integer, strings and boolean. Instead DataMole forces every column to
contain a single type. This greatly simplifies the application of certain transformations
that require the user to specify values found within the dataframe. For example, in
order to substitute values the user must provide the value to replace as well as the
replacement, and, to create a categorical column, the user can specify which categories
to keep. However, if mixed type columns were supported, the software would not
know how to parse these user-supplied values, since it would not know how they are
represented inside every column.

2.3.3 Data transformation paradigms
There are two alternatives ways to apply transformations to the dataset:

1. Applying single operations in the Attribute panel;

2. Setting up a pipeline and executing it in the Flow panel.

The two approaches are not completely equal, since the first one does not allow
applying operations that require multiple inputs, while the Flow panel can do that. As
a consequence datasets join can only be done within the pipeline. Conversely, some
operations may not be available in the graph. This is the case for the operation used
to extract time series information from longitudinal datasets. Using it as a pipeline
operation would not make sense, since it is only used to prepare data for visualisation
in the View tab.
Aside from this two exceptions, every other operation can be applied from either panel.
This may seem confusing, but these two panels are intended to be used in two different
scenarios. In the first one the user is unsure about which operation to apply and wants
to try various operations, while keeping an eye on the statistics to see how the dataset
is changing. This may be the case when a new unknown dataset is imported, and the
user wants to explore it.
On the other hand if the user knows in advance which transformations to apply or
is interested in defining a pipeline he can apply to many different datasets (but with
the same shape), then the Flow panel approach is more convenient. Pipelines can be
exported in pickle format, which allows to serialize arbitrary Python objects.

2.3.4 Parametrised transformations
Most transformations described in §2.2 require to be configured before being applied.
This ensures that every transformation is general enough to be useful in many different
situations. Most operations can be applied to a specific subset of columns that must be
selected by the user. Other options are more operation-specific: for example, missing
values can be filled with many different strategies and min-max scaling requires the
user to specify the scaling range.
Every operation that requires options from the user can be configured using an options

24 CHAPTER 2. DESIGN OF THE DATA MANIPULATION TOOL

Figure 2.9: The editor widget for min-max scaling. The editor is also warning the user that the
output name already exists in the workbench, and thus the output of the operation
will overwrite the current dataset.

Figure 2.10: The min-max scaler editor widget displaying a validation error

2.3. CONVENTIONS AND OTHER FEATURES 25

editor widget. Fig. 2.9 shows the editor used with the min-max scaling operation applied
to two numeric attributes of the iris dataset. In this example it requires the user to
specify the scaling range for the selected attributes.
When some configuration parameters are needed the software should also ensure
that the combination of options is always correct. Typically some transformations
are not applicable to every data type: for instance, discretization can only be applied
to continuous-valued attributes, which in DataMole are only numeric and datetime
columns. One-hot encoding can reasonably be applied only to string or nominal columns.
To assist the user and to prevent him from selecting wrong types, whenever he is
required to choose the set of columns to be transformed during options configuration,
the widget editor only shows the subset of columns with a supported data type. If more
than one type is supported, the operation must also take care to handle processing of
each type correctly.
Sometimes different data types require considerably different treatment, even for a
conceptually similar transformation. In this situation the two data types are handled
separately in two distinct operations. This is the case for numeric and datetime
discretization: the latter requires a specialised editor widget to handle dates and
time imputing, as well as a very different treatment during execution, compared with
its numeric equivalent. In this situations specialising operations is convenient to
simplify the editors, improving error handling and consequently ensures a better user
experience.
In order to prevent runtime errors as much as possible, every option set by the user is
validated. Any detected configuration error is notified by displaying error messages
directly on the editor widget. The user needs to correct the errors to be able to set
options correctly. Fig. 2.10 shows a validation error message on the editor widget
for the min-max scaling operation. In this case the user tried to confirm the options
without setting the scaling range for the selected attribute.
Sometimes its not possible to prevent runtime errors. Besides, there are situations in
which runtime errors are actually intended to happen. As an example, some operations
for type conversion ask the user how they should behave when a value which can not
be converted is encountered: the user may choose to be informed of this to manually
solve it, or he may tell the operation to set every unsupported value to NaN. If the
user chooses the former, the operation may stop with an error and a message will be
shown telling him that conversion was not possible.
Additionally, even if DataMole tries to prevent errors, there is the possibility that some
combination of parameters and inputs could break the operation. For example, some
operations fail if they are applied to a column with only missing values. This is the
standard behaviour of many Python packages and generally corner-cases like this are
not prevented from happening.
As a consequence, every runtime error or warning is reported to the user with a
pop-up notification.

26 CHAPTER 2. DESIGN OF THE DATA MANIPULATION TOOL

2.3.5 Logging transformations
Every operation, even the ones applied from the Attribute panel are logged. Log files
are placed in the logs folder within the main program directory. These logs are not
meant for debug purposes, but merely to keep a trace of the operations that were
applied to any dataset during a program session.
Every time a pipeline is run from the Flow panel, its execution is logged in a new
file created in the graph subfolder. For every applied operation the log contains its
configuration (i.e. which options were set), eventual execution information and a diff
of what changed in the dataset shape after the operation completed, including new
and removed columns and changed types.

2.3.6 Exporting and interoperability
DataMole includes many features often required in data analysis but many others are
missing or may be required for very specific use cases. Thus, it is essential to give the
opportunity to use this software together with other Python libraries. To guarantee
interoperability of this tool with external packages, every imported dataset can be
exported as a Pandas dataframe using the pickle binary format. Almost every Python
object can be exported in a pickle file, hence this feature provides a simple way to use
processed datasets with arbitrary Python scripts.
As already mentioned, the pipeline can also be exported in this format. However
pipelines can only be interpreted by DataMole, so this functionality is meant mainly
to save pipelines for later use or to share pipeline objects between DataMole users.

Chapter 3

Development

This chapter contains an overview of the software architecture, describes the program
external dependencies and explains how tests were conducted.

3.1 Technology
This section describes the technologies that were selected to realise DataMole and all
the tools that supported its development.
DataMole was developed in Python in order to maximise interoperability with other
packages and to take advantage of the existing data analysis libraries. The main
dependencies are listed below:

• Pandas 1.0.5: Pandas dataframe is used to manage datasets and its rich API is
used in the program to apply transformations and manipulate the data;

• Scikit-learn 0.23.1: this library is used to apply some transformations, because
of its excellent compatibility with Pandas;

• Networkx 2.4: a library for graph management and analysis used to create and
manage the computational graph;

• Numpy 1.19.1: a library for scientific computing and number crunching;

• PySide2 5.15.0: contains the Python bindings of the Qt Framework version 5.15.0
and is used to create the graphic interface;

• Prettytable 0.7.2: a library for printing formatted ASCII tables, used with
logging;

• PyTest 5.4.3: a framework for writing tests in Python;

• Sphinx 3.2.1: used to automatically generate the documentation for the project.

We decided to use Pandas as the data management library because of its mature
development state and richness of features. Pandas does not scale to big datasets and

27

28 CHAPTER 3. DEVELOPMENT

does not support out-of-core dataset processing. In our case scalability was not a
concern, since DataMole was required to work with relatively small datasets. The next
section describes some alternatives that were discarded in the first place, but may be
worth reconsidering for future extensions.
Many frameworks can be used to create a desktop application with Python, like Tkinter,
WxPython and Kivy. Qt is a C++ framework often used to create graphical interfaces.
It can be used with Python by installing the PyQt or the PySide package. PyQt is
maintained by a third party company [23], while PySide2 is developed by the same
company developing Qt [19]. Additionally PySide2 is released under GNU LGPL
license, while PyQt is licensed with the more constrained GPL v3.
In comparison to other frameworks, Qt is more complete and it is often suggested for
building professional desktop applications. Additionally I already had experience
with this framework in the past, so I was already accustomed to some of its usage
paradigms.

3.1.1 Dataset management libraries
Pandas dataframes are used in DataMole to manage datasets, but other libraries
offering similar data structures that were taken in consideration and are listed here.

• Dask: a project started in 2015 with the goal of creating a distributed computing
library with big data support. It offers a dataframe API very similar to Pandas,
with the difference of being able to manage huge out-of-memory datasets;

• Datatable: a Python porting of the popular data.tablepackage for R, developed
by the same authors. Only a beta version is currently released, and many features
of the R version are missing. Similarly to the R package it can deal with
out-of-memory datasets;

• PySpark: a big data computing framework written in Scala which supports data
stream, map-reduce operations on distributed file systems;

• Turicreate: a project currently maintained by Apple with the goal of simplifying
the development of custom machine learning models. It supports big data
computations and provides the SFrame container, a scalable dataframe similar
to a Pandas dataframe;

• Modin: a project with the goal of scaling Pandas to big datasets. Internally is
uses Dask or Ray to transparently process dataframes and to support out-of-core
and parallel computations.

Both Spark and Dask are designed to work with big data and heavy computations:
internally they use a scheduler and add complexity to support distributed file systems.
This focus on big data often results in additional computational overhead, which is
unjustified for the purpose of this project at its current state.
Datatable and turicreate are much simpler to use than the previous libraries, since
they do not handle distributed computation. Datatablemain disadvantage is its very

3.2. QT BASICS 29

limited API with respect to Pandas and the missing support for Windows. Turicreate
is more limited then Pandas, but still comes with a rich set of features that makes
it probably suitable for this project. It has one limitation: it works only with 64-bit
machines.
Finally Modinwas discarded because it is still an experimental project.
Adding big data support is of course desirable, but comes with additional costs and
overhead that should be taken into account. With respect to this project objectives,
I found the additional complexity not worth it, especially for an initial release, and
decided to work with Pandas. This library has also the advantage of being well
integrated in the Python ecosystem, and its dataframes are supported by other
packages like Scikit-learn. Naturally the other listed libraries may be reconsidered for
future extension, if scalability becomes a concern.

3.1.2 Development environment

DataMole was developed using Python 3.8.0 under Ubuntu 18.04.5 LTS using JetBrains
PyCharm IDE. I used the LATEX editor TexStudio for documentation and PlantUML
with Visual Studio Code to create UML diagrams.
The project and its documentation are versioned using Git and the repository with the
code is hosted on GitHub.

3.2 Qt basics

This section briefly describes two important features of Qt that have been widely used
to develop DataMole. The purpose of this section is not to provide a comprehensive
description of the Qt Framework and its functionalities, but merely to clarify the
meaning of some technical terms that will often be used throughout this chapter.

3.2.1 Signals and slots

Signals and slots are used for communication between objects and their combined
usage represents the Qt approach to event-driven programming [17].
A signal is emitted when a particular event occurs. For example when a button is
clicked, the clicked signal is emitted. A slot is a member function that is called in
response to a particular signal. Qt widgets come with many predefined signals and
slots, but they can be subclassed to add new customised slots handling specialised
signals.

3.2.2 Model-view-delegate

The Qt Framework provides a set of classes that use a model/view architecture to
manage the separation between data and the way it is presented to the user [16]. This
is achieved with the combined usage of three components:

30 CHAPTER 3. DEVELOPMENT

• Model: model classes inherit QAbstractItemModel that provides an interface for
the other components in the architecture. The model communicates with the
data: it can hold the data or it can be a proxy between the data container and the
other components;

• View: view classes inherit QAbstractItemView and their instances obtain refer-
ences to items of data from the model. With these, a view can retrieve items
from the data source and display them to the user;

• Delegate: a delegate renders the items of data inside a view and, when items are
edited, it communicates with the model to change its state. Every delegate class
inherits QAbstractItemDelegate.

These components define the model-view-delegate pattern, which is extensively used to
show information in DataMole.

3.3 Architecture overview
This section describes the architectural choices made while designing the DataMole
software architecture. UML class diagrams are presented alongside packages descrip-
tion to model the relation between different components. Moreover, several sequence
diagrams are shown in §3.3.4.5 to show the interaction between GUI components that
is required to carry out some operations.
The extension mechanisms, some implementation details, as well as a detailed descrip-
tion of various classes and their methods, are included in the developer manual in
Appendix A.

3.3.1 Description of the main packages
DataMole is a Python package, composed of many sub-packages and modules. In
Python notation a module is a single file containing definitions and statements, while a
package is a collection of modules (e.g. a directory containing Python files and possibly
other packages) [10]. The complete directory structure can be seen in Appendix A.
The main DataMole package, named dataMole, is organised in 4 sub-packages:

• data: defines the container classes for dataframe objects and everything required
for their management. Every Pandas dataframe is wrapped inside Frame object.
Every dataframe has a Shape, which is a description of the columns names and
their types. Finally a hierarchy of classes was defined to model the supported
data types;

• flow: defines the data structure used to contain the flowgraph (OperationDag)
and the handler to execute it in separate threads (OperationHandler);

• gui: contains all the widgets and GUI components used within the software. It
is further composed of 4 sub-packages:

3.3. ARCHITECTURE OVERVIEW 31

– charts: contains the widgets used to create and visualise all the charts;

– editor: defines the abstract class AbsOperationEditor, the super-type of
all editor widgets used for operation configuration. It also contains the
definition of the editor factory OptionsEditorFactory, defined as a single-
ton, and many utilities to configure the operation and show the operation
documentation;

– graph: collection of components which realise the user interface for the
Flow panel. It relies on the Qt Graphics View Framework and part of the
implementation was taken from an existing work available at [5];

– widgets: contains the definition of several widgets used in the program.

• operation: defines the common super-type of all operations and its subclasses,
which model every data transformations;

• flogging: the DataMole logging module. Also defines the interface to be imple-
mented in every operation whose execution must be logged to file (Loggable).

3.3.2 Model/view classes
Many classes that take part in model-view-delegate pattern are defined inside module
gui.mainmodels. Fig. 3.1 shows the UML class diagram for some of its classes, along
with their relationship to the data package.
Qt provides specialised models and views for displaying data in many different
ways: within DataMole data is often shown in tables and lists. In order to take
advantage of the Qt model-view system, model classes are required to subclass
QAbstractItemModel and implement the relevant methods.
FrameModel handles the visualisation of the dataframe inside a QTableView (which is
a view for tabular data).
AttributeTableModelworks as a proxy model, keeping a reference to the FrameModel
and showing only column names and types, hence is used to show the shape of a
dataset, which is required, for instance, in the Attribute panel.
AttributeProxyModel further refines the data shown in an AttributeTableModel by
adding filtering capabilities, like attribute search by name or regular expression and
type filtering. This last feature is exploited in the operation editors that only allow the
user to select the subset of columns with supported types.
When a dataset with thousands of columns or rows is visualised inside a table, the
process of filling every table cell with the data from the model can take time, and the GUI
would be unresponsive while this happens. Proxy classIncrementalRenderFrameModel
solves this problem: it shows the exact same data as the FrameModel it proxies, but
implements additional methods, specifically fetchMore and canFetchMore, to make
sure the table is filled on demand, only when it is scrolled. When this happens it loads
the next batch of 50 columns or 400 rows depending on the scrolling direction.
SignalTableViewdefines the view used to show tabular data in the program. It inherits
QTableView capabilities and defines a customised signal used to correctly handle rows

32 CHAPTER 3. DEVELOPMENT

Figure 3.1: Class diagram of the mainmodelsmodule

selection and deselection. This class is used inside theSearchableAttributeTableWidget,
a reusable widget that shows data inside a table complete with a search bar above it.
Finally the module also defines a custom delegate class and a custom header for the
table (not shown in Fig. 3.1), to be set in views that need to show a checkbox in one of
their columns.

3.3. ARCHITECTURE OVERVIEW 33

Figure 3.2: Class diagram of the workbenchmodule

3.3.2.1 The workbench

As explained in the previous section every loaded dataframe is contained in a Frame
object. These objects are wrapped in a FrameModel for visualisation inside Qt views. All
these datasets are kept in the WorkbenchModel, the centralised container for dataframes
(diagram in Fig. 3.2). It provides methods to access frame models by row number
(index) or name, that makes it usable as a list-like or dictionary-like container. Its
setDataframeByNamemethod is called whenever a new dataset, which was loaded or
created by applying operations, must be added to the workbench. The workbench is
shown using its specialised view class WorkbenchView, which overrides some methods
to allow item reordering, selection and the display of a menu on right click.

3.3.3 Representation of a dataset transformation

When defining a pipeline, every operation takes one or more datasets in input and
produces a result that must be the input of the next transformation. Sometimes
transformations must be parametrised with a variable number of arguments that
represent the configuration of the operation. Additionally every transformation should
be logged, in order to keep a trace of how a dataset was changed and, depending on
the operation, it might be possible to undo it.
With these requirements it seemed convenient to implement a command pattern: every
data transformation, also called operation in this document, is encapsulated in a object of
type Operation, whose contract is described in the next section.

34 CHAPTER 3. DEVELOPMENT

Figure 3.3: Hierarchy of Operation abstract classes

3.3.3.1 The Operation abstract class

Every operation defined in DataMole is a concrete subclass of Operation. Fig. 3.3
shows the Operation abstract class and its subclasses.
An operation keeps a reference to the workbench, which provides access to any loaded
dataset. Every operation has a name, comes with a short and optionally a long
description to be shown in the editor widget. The long description is shown on user
request on a separate help panel, and contains a detailed description of how the
operation works and how it should be configured.
The executemethod is run to apply the operation to its input arguments, which are
passed as parameters.
The getOptions/setOptions methods are reimplemented in every operation to
respectively get and set its arguments. If required, setOptions can also validate
the new options before setting them. If they are not correct it raises an exception of
type OptionValidationError which is handled by the controller. This mechanism is
further described in §3.3.4.5.5.
Methods hasOptions and needsOptions return a boolean value depending on whether
the operation is configured or needs an option editor widget. If the latter is true,
the operation also needs getEditor to be overridden to return the widget that the
operation will use to be configured. In order to avoid the definition of a new widget
for every operation, an editor factory was provided and can be used to quickly create
editors with standard option fields (checkboxes, combo boxes, line edits, etc.).
While getEditor only returns a new editor widget, the injectEditormethod is used
to configure the editor.
Finally the acceptedTypesmethod defines which types are accepted by the operation.

3.3. ARCHITECTURE OVERVIEW 35

Figure 3.4: Widget factory class specification

3.3.3.2 The editor widget factory

Most operations require options that must be supplied by the user. For example the
KBinsDiscretizer operation requires the user to select the columns to be discretized,
specify the number of bins for every column and select the strategy to be used. To
configure an operation, the widget returned by method getEditor is used. For most
operations this widget is composed of a table with some editable columns and some
radio buttons or checkboxes. To avoid code duplication and to speed up the process of
creating widgets, a factory class was defined. Fig. 3.4 gives an overview of the class
methods.
Factory methods allow appending widgets to the editor layout stacking them vertically,
thus the order of invocation determines their ordering. The factory is a singleton object
that must be re-initialised every time it is used by invoking the initEditormethod.
This method also accepts an optional subclass parameter with the type of the editor
to be created. This is particularly useful when an editor needs signals or slots to be
part of its class definition. To give an example, Fig. 3.5 shows the editor for the Fill
NaN operation, created by calling the following factory methods:

• withAttributeTable: this method creates widget (A), which is a table showing
every attribute name and type, with a configurable number of extra editable
columns used to receive options for every attribute. In this example the table
requires the values to be filled if the option to fill by value is selected (column
Fill value);

• withRadioGroup: adds a set of exclusive radio buttons and a descriptive title (B):
in the example it is used to select the strategy for filling missing values.

Further details about the factory usage and methods configuration are reported in
appendix, in §A.2.4.2.
Of course not every widget can be created with the factory: complex editors with
particular requirements must be defined manually. For instance, this is the case for
the Join and ExtractSeries operations.

36 CHAPTER 3. DEVELOPMENT

Figure 3.5: Example of an option editor whose body widgets (A and B) are created with the
widget factory

3.3.4 The computational graph
As explained in §3.3.1, the package gui.graph defines the components of the graphical
user interface which allow the user to interactively create a computational graph of
operations: new nodes (i.e. operations) can be added, moved, deleted and connections
can be created between existing nodes to create chains of operations. Hence, this
interactive flowchart can be seen as a pipeline of data transformations, internally
modelled as a directed acyclic graph. The class diagrams of the gui.graph and flow
packages are depicted in Fig. 3.6.

3.3.4.1 Pipeline laziness

Whenever a new operation is added, it is not executed immediately: the pipeline is lazy,
meaning that it is evaluated completely only when the user requests it. Thus every
node with an ancestor does not know its input until the whole pipeline is executed.
However most operations require to be configured with additional arguments through
theirs editor widgets, and often this arguments depends on the operation input (for
example the user may be asked to select the columns to transform), so in order to
do this they need some information about their inputs. Additionally, every time the
operation is configured, its options are validated, process that often depends on the
column and index types. To solve these problems every operation needs to be able
to describe some properties of its output before execution, provided a description of
its inputs and the required options. Specifically, it should describe the shape of its
output. The shape of a Frame object is encapsulated inside the type Shape: it includes
information about the name and type of every column, including the ones used as

3.3. ARCHITECTURE OVERVIEW 37

dataframe index. How the dataset shape is propagated through the graph is described
in the following sections.

3.3.4.2 The GraphOperation abstract class

The additional requirements of the operations that need to execute inside the pipeline
motivated the definition of the GraphOperation class, that specialises Operation
adding methods only relevant in the pipeline context. Every graph operation needs to
define how many inputs it needs and how many output connections it supports. This
information is conveyed by the minInputNumber, maxInputNumber and their respective
counterparts for the output number.
Moreover every graph operation reimplements method getOutputShape, which
returns the Shape object describing the names and types of every column in the
dataset after the application of the operation. Because this information needs to
be propagated through the graph, operations also provide the addInputShape and
removeInputShapemethods, to manage the shapes object when some configuration
changes or connections are removed.
However, there are situations when it might not be possible to predict the output shape
before the operation is run. If this is the case, method isOutputShapeKnown can be
redefined to return False. This is the case for the RemoveBijections operation, which
automatically removes every column which is a bĳection of the others. Conversely
some operations might not require knowing in advance the shape of the input coming
from their incoming connections, in which case needsInputShapeKnown should be
redefined to return False. For example RemoveNanRows, the operation used to remove
every row with a certain ratio of missing values, does not need to know the input
dataset shape because its output shape does not depend on it: since the operation just
remove rows, the output shape does not change at all.

3.3.4.3 The graph data structure

The operations added to a pipeline are stored inside a DiGraph, a data structure that
models a direct acyclic graph, provided by networkx, a very popular network analysis
library. This data structure is wrapped into an OperationDag object, that contains
some helper functions to manage the graph of operations.
Before choosing to implement a simple computational graph using networkx, these
Python libraries specific for creation and management of computational graphs were
also considered:

• Luigi: a package that simplifies the creation of pipelines of batch jobs;

• GraphKit: a library used to manage and run graph of computations (DAGs);

• Dask: this library offers many tools for scalable computations and its schedulers
support the execution of customised task graphs.

Eventually we decided to avoid using such libraries, since computations in DataMole
are not particularly heavy and thus would not have benefited from the advanced

38 CHAPTER 3. DEVELOPMENT

features provided by these packages. Additionally integrating them in a graphical
interface would require much work and time, because their API is not made for this
use case, but rather for usage in Python scripts.

3.3.4.4 The GUI for the graph

GUI components used to manage the graph are defined in the gui.graph sub-package.
This package makes use of the Qt Graphics View Framework, the Qt module for efficient
rendering and management of graphic items [15]. Many modules of this package were
adapted from [5], a project that used Python and Qt to build a generic graph manager,
and is licensed under GNU GPL.

3.3.4.4.1 Main graphic components

The Qt Graphics View Framework relies on three main classes:

• QGraphicsItem: represents a graphic item that can be shown within a graphics
scene;

• QGraphicsScene: the scene manages all the graphic items and provides function-
ality to efficiently determine items location, and control zooming and selection;

• QGraphicsView: visualises the content of a QGraphicsScene.

Fig. 3.6 shows the classes defined in the gui.graph package. All graphical items are
contained in the GraphScene a subclass of QGraphicsScene that additionally handles
drag-and-drop actions and mouse events. Graph nodes and edges are respectively
drawn using the Node and Edge classes, both subclasses of QGraphicsItem. Every Node
has a unique id that matches the id of the operation it represents. The NodeSlot item is
used to draw the circular sockets that represent the operation inputs and outputs and
are used to create connections. Finally RubberBand is used to handle mouse selection.
A controller, modelled by class GraphController, is used to ensure that the graphic
interface is kept synchronized with the underlying data structure containing the graph.
Every graph node is an object of type OperationNodewhich wraps a GraphOperation
and adds some helper methods used to manage pipeline nodes.

3.3.4.5 Pipeline management workflow

The GraphController interprets the user actions on the view and keeps updated the
graph data structure inside the OperationDag object. This section describes how the
controller and the other classes interact with each other to manipulate the pipeline.

3.3.4.5.1 Node creation

Nodes are placed on the graphic scene with drag-and-drop, by selecting operations
from a list and dropping them on the graphic view. When a new operation is dropped,
method dropEvent of GraphScene is called and the scene invokes method getDropData

3.3. ARCHITECTURE OVERVIEW 39

Figure 3.6: Class diagram of the gui.graph and flow packages

to retrieve the type of the operation that was dropped. It then emits a signal to ask the
controller to manage the creation of the new operation. The controller instantiates the
new Operation and OperationNode objects, updates the graph with the new operation
and, if successful, it updates the graphic scene with the new node. This entire process
is depicted with the sequence diagram in Fig. 3.7. On the other hand, if something
goes wrong and the pipeline cannot be updated, the controller shows an error message
and nothing is changed.

3.3.4.5.2 Edge creation

When the user starts to drag a new edge from a Node, it emits a signal and causes
the start_interactive_edge method of the scene to be called. Its purpose is to
display an interactive draggable edge that exits the source node and follows the
mouse pointer until the user drops its head on the target node. When this happens
stop_interactive_edge is called. This method looks for a free node slot in the target
node. If a free slot is found the addEdgemethod of the controller is called to update
both the acyclic graph and the graphic view accordingly. The corresponding sequence
diagram is shown in Fig. 3.8.
If the edge cannot be added, for example because the source operation does not provide
an input shape which is needed by the target operation, an error message is shown to
the user. In either case the temporary InteractiveEdge object created to display the
draggable edge is eventually deleted.

40 CHAPTER 3. DEVELOPMENT

Figure 3.7: Sequence diagram describing the creation of a new pipeline node

Figure 3.8: Sequence diagram for connecting two existing operations

3.3. ARCHITECTURE OVERVIEW 41

Figure 3.9: Sequence diagram for operation configuration

3.3.4.5.3 Operation configuration

Double clicks on existing operations cause the editor widget to be shown. Fig. 3.9
describes how the widget is created and configured. First the controller retrieves the
Operation object corresponding to the clicked item using its unique id. Afterwards
the editor is created using the getEditormethod and the existing options are retrieved
from the operation and set into the editor widget. Finally the editor is configured with
the injectEditor invocation and shown to the user.

3.3.4.5.4 Option confirmation

Once the user sets new options in the configuration widget and confirms them, the
accept signal is emitted by the editor. This signal is handled by the GraphController
that retrieves the options from the editor and updates the corresponding operation.
Finally the update_descendants routine is run to propagate the new shape through
the graph. The whole process is shown in Fig. 3.10.

3.3.4.5.5 Option confirmation with validation errors

The setOptions method defined in every operation can raise an exception of type
OptionValidationError if one or more options are not correct and need to checked by
the user. This exception is parametrised with a list of tuples, where each one represents

42 CHAPTER 3. DEVELOPMENT

Figure 3.10: Sequence of operations after options confirmation assuming no validation errors
occur

Figure 3.11: Sequence of operations after options validation exception

3.3. ARCHITECTURE OVERVIEW 43

an error, with a key and an error message for the user. After the user confirms the
options in the configuration widget, eventual validation errors are notified inside the
editor window. The process leading to this outcome is outlined in Fig. 3.11.
Error messages are normally shown on the bottom of the editor widget. If a more
advanced error handling is required, it is possible to change this behaviour by defining
custom error handling functions. This is detailed in §A.2.4 of the appendix.

3.3.4.6 Executing the pipeline

Execution of the pipeline is handled by the DagHandler class. This handler is instanti-
ated by the controller to direct the execution of the whole pipeline. First it checks for
runnable operations: an operation is considered runnable if all the required options
and its input dataframes are set. Starting from the input nodes, runnable operations
are scheduled for execution on a separate thread. When an operation completes, its
output is set as the input of all its successors and all runnable operations are started.
Additionally the handler communicates with the controller emitting a specific signal
when the status of an active operation changes (i.e. if it is running, has completed with
error, etc.). This allows the controller to update the status of each node in the graphic
view.

3.3.4.6.1 Multithreaded execution

In a Qt application, all QWidgets run in the main thread, also called the GUI thread [22].
If a time-expensive computation is run on this same thread the GUI will freeze and
stop responding until the operation completes. To avoid this problem every operation
to be executed is wrapped inside a QRunnable object and is added to a QThreadPool for
execution. The combined usage of QRunnable and QThreadPool represents a simple
multithreading pattern in Qt, with the advantage that the QThreadPool takes care of
thread management, including their creation and destruction: it creates a predefined
number of threads equal to the number of cores of the machine and reuses them
whenever a new operation is added to the pool. Considering that thread creation and
destruction can be costly, this pattern provides an higher-level alternative to thread
management with the QThread class, which would instead create a new thread every
time, without reusing them [20].
The helper class Workerwas defined in the threadsmodule, and is shown in Fig. 3.12.
Worker objects wrap executable objects, which are arbitrary Python objects that define
an execute method (like Operation instances). The worker is provided the list of
arguments that should be passed to the executemethod, if any, and an identifier to
be used when a signal is emitted. A WorkerSignal class inheriting QObject is defined
because QRunnable does not inherit QObject and thus can not emit signals. Through
this class, workers emit three signals, depending on their state:

• error: this signal is emitted then the worker was running the operation but a
runtime error occurred. The signal arguments are the operation identifier and
the error information;

44 CHAPTER 3. DEVELOPMENT

Figure 3.12: Class diagram of the threadsmodule

• result: emitted then the operation completes successfully. It carries the operation
result (i.e. the return value of the executemethod) and the operation identifier;

• finished: signal emitted immediately before the runmethod of the worker returns,
and carries the identifier.

These signals provide a way to monitor the status of every operation and are used by
the GraphController to update the graphic view.

3.3.4.6.2 Considerations and alternatives

The QRunnable and QThreadPool pattern is a very simple multithreading pattern, and
indeed was chosen for its simplicity. By comparison, the QThread class provides much
more flexibility, at the cost of explicitly managing threads. The main drawback of
the selected approach is the lack of support for stopping a running operation. This
comes from the fact that QThreadPool does not expose the underlying threads and
thus stopping them becomes impossible.
On the other hand, an equivalent approach using QThread may involve defining a
customised thread pool that keeps track of the running threads, in order to terminate
their execution when required. Nonetheless, caution is required when stopping a
running thread as it may leave data in an inconsistent state.
Using the Qt Concurrent module would be a simpler alternative: this module, part of
the Qt Framework, provides high-level functions to deal with some common parallel
computation patterns [13]. Unfortunately this module is not included in the Python
bindings for Qt. That is because the Qt Concurrent heavily relies on C++ templates
and due to the Python dynamically-typed nature and the impossibility of generating
C++ code at runtime there is not way to generate the Python bindings.

3.3. ARCHITECTURE OVERVIEW 45

Figure 3.13: Sequence diagram of editor creation and display

Figure 3.14: Sequence diagram of the option confirmation process

46 CHAPTER 3. DEVELOPMENT

3.3.5 The OperationAction controller
A controller class named OperationActionwas designed to manage the application
of operations from the Attribute panel. This class inherits QAction which provides the
support for launching operations from menu bars.
An OperationAction wraps an Operation and when triggered, either explicitly or
implicitly (e.g. by clicking an action in a menu), it shows the option editor and waits
for the user to set them. The whole process is described with a sequence diagram
in Fig. 3.13. After confirmation, if validation succeeds the operation is executed: to
do this a Worker object is created and added to the QTreadPool global instance. The
sequence diagram for this is shown in Fig. 3.14. If option validation fails, errors are
shown as already discussed in §3.3.4.5.5.
Because every GraphOperation is also an Operation, the OperationActionwrapper
can also run graph operations as single commands, outside of the graph context. To
execute such an operation as a single command there are two additional options that
the user must provide: the input dataset and a name for the output. However editor
widgets for graph operations do not provide a functionality to ask for these parame-
ters. Consequently, whenever a graph operation is triggered, the OperationAction
controller is also responsible of adding a combo box and an editable text box to the
operation editor, before every other widget. The result can be seen in Fig. 2.9. The
combo box allows to choose which dataset to operate on and the text box requires the
name of the output dataset, that will be set on the workbench when the operation
completes.

3.3.6 Charts visualisation
DataMole includes some visualisation features: it can show a frequency histogram to
represent value distribution, a scatterplot matrix to visualise bivariate relations and a
line chart for temporal series.
Implementing these features required some research about existing plotting libraries
that could be embedded in this project, and they are reported in the next section.

3.3.6.1 Technological considerations

All charts in the program are drawn using QtCharts. This is the official module for
creating graphs within Qt and is included in the PySide2 Python package, so no
additional packages are needed. It builds upon the Graphics View framework and it
is quite simple to use. On the other hand, it does not provide many advanced features,
and its documentation is a bit lacking, with respect to the rest of the framework.
The following list contains a description of other packages that can be used to plot
charts inside a Qt application:

• PyQtGraph: a scientific library based on Qt4 and numpy. It relies on the Qt
GraphicsView framework and is released under MIT license;

• QCustomPlot: a Qt-based C++ widget for plotting and data visualisation

3.3. ARCHITECTURE OVERVIEW 47

Figure 3.15: Class diagram of the gui.charts package

released under GPL v3 license

• PyQwt: another plotting library for Python based on PyQt.

PyQtGraph should be considered for future extension, since it is actively maintained
and works with both PyQt and PySide2. It offers many advanced features that would
require much work with the official QtCharts. On the other hand, QCustomPlot does
not work with PySide2 and PyQwt is not maintained anymore, and only supports
older versions of Qt.

3.3.6.2 The plotting package

Package gui.charts defines the widgets for creating and showing plots. Additionally
customised chart views are defined inside the viewsmodule, and some related helper
functions are in the utilsmodule. Fig. 3.15 shows the package class members.
When a chart view is double clicked the chart is copied on a secondary window, of type

48 CHAPTER 3. DEVELOPMENT

InteractiveChartWindow. This feature provides a way to move the charts around
the screen as independent windows, and adds the ability to save its content as image.
This feature relies on the ability to copy the chart data into a new one. Unfortunately
this is not possible for the histogram chart, due to a limitation in the QtCharts module,
and for this reason the BarsInteractiveChartView does not allow to open the chart
on a new window. The InteractiveChartView also draws a pop-up item showing
the data coordinates or label when one of its point is hovered with the cursor. This is
implemented in the Callout class, which was inspired from the official Qt example
available at [14].
TimeSeriesPlot and ScatterPlotMatrix are the widgets shown in the View panel,
used to create the line chart for time series and the scatterplot matrix. Every widget
that adds a visualisation feature to this panel must realise the DataView interface. It
only requires the definition of one slot, which is called whenever the user clicks on a
different dataframe in the workbench.

3.3.7 Logging

The flogging package provides all the logging functionalities for DataMole and
internally uses the Python logging module. This package is used to create three
different logs:

• Application log: contains all the application messages, like warnings, errors
and debug messages. These logs are dumped inside the logs/app folder and
are mainly useful for debugging;

• Operation log: logs the operations applied directly from the Attribute panel.
Every log file is created inside the logs/operations folder and contains a
summary of every operation run during a program session;

• Graph log: logs the execution of a pipeline. A different file is created every time
a pipeline is executed inside the logs/graph folder.

Additionally the logging module also creates a root logger which logs everything
passed to any active logger. This logger output is redirected inside the logs/root
folder.

3.3.7.1 Logging operations

Every operation supports logging. Operations log their options configuration and
every parameter set by the user.
Every operation that needs to be logged implements the Loggable interface. Diagram
in Fig. 3.16 shows its two methods:

• logOptions: returns a formatted string with the configuration of the operation
(typically user options) or other things that can be logged before the operation is
run;

3.4. TESTING 49

Figure 3.16: Class diagram for a sample operation that can be logged

• logMessage: returns a string with everything that should be logged after the
operation completes, possibly including execution details.

Every time a pipeline is run the OperationHandler creates a new log file and logs
the operations while they are executed. Operations launched from the Attribute panel
are instead logged by the OperationAction controller. In either case, only operations
realising the Loggable interface are logged.

3.4 Testing
Every operation defined in DataMole has been tested to ensure that input data are
always treated correctly and produce a correct output. The Pytest package has been
used to create test suites since it is very easy to use and require no boilerplate code.
Every test suite is defined in a separate file inside the tests folder. Every operation
is tested to ensure that every accepted data type with any possible combination of
options is handled as expected and that exceptions are thrown when invalid options
are set.
Module mocks contains the mock class definition for the WorkbenchModel and the
FrameModel class. This is necessary because they are both subclasses of the Qt model
classes, and thus they cannot be instantiated outside of a Qt Application, which is not
initialised for testing purposes.
These unit-tests have been essential to define operations that correctly operate with
Pandas and Scikit-learn. In addition, the OperationDagmethods are tested to ensure
that the graph data structure is updated correctly.
GUI components were not tested. To do this it may be worth using pytest-qt [12], a
Pytest plug-in that allows to simulate user interaction to test widgets.

Chapter 4

Conclusions

At its current state of development, DataMole is a valid choice for exploration of
new datasets. It embeds all the essential features described in §1.1: it can be used to
preprocess multiple datasets, to draw charts, and allows to define, execute and save
pipelines from within the graphical interface. Interoperability is achieved through the
possibility to export Pandas dataframes with the pickle Python module. Finally it
can be used to extract time series from longitudinal datasets, like ELSA and HRS, in
order to easily visualise the progression of consecutive measurements in a line chart.
The proposed quality requirements were also met: the plug-in-oriented architecture
ensures that new data transformations and widgets can be added with little effort.
A developer and user manual have been produced and will be published inside the
repository along with all the code, which is released under GNU GPL v3. Drafts
of both manuals are also attached to this document in appendix. The developer
manual is mainly focused on the description of the extension mechanisms embedded
in DataMole, while the user manual describes the graphical user interface and explains
how to use it.
However DataMole lacks many features with respect to related software like Weka
and DataPreparator, hence further work is needed to take it to a comparable level.
The value proposition of this tool is centred around two core features:

• The possibility to build pipelines;

• Its plotting capabilities.

From a technical point of view these were the most challenging features to design. The
first one required a research into packages created for this purpose and considerations
about an appropriate software architecture to support it. Additionally the creation
of the graphical interface for the Flow panel was quite complex and required time
to understand how to use the Qt Graphics View Framework to build it, since it does
not use the model/view paradigm which I already knew. As previously stated, the
existing software found in [5], licensed under GNU GPL, was used as the groundwork
for building all the pipeline graphic components.
The QtCharts module used to plot charts relies on the Graphics View Framework as

51

52 CHAPTER 4. CONCLUSIONS

well. The main drawback of this module is the lack of support for some common chart
functionalities, which required additional work to be implemented, and the scarce
documentation.
Besides, using Qt from Python introduces some memory management problems that
must be taken care of. Qt has its own garbage collection mechanism for every subclass
of QObject, which ensures that whenever an object is destroyed, all its children are
deleted too. Still, in order to avoid cluttering the main memory with widgets that are
not used anymore, explicit deletion is used throughout the program. Since Qt objects
live in a C++ runtime environment, this requires a synchronization between the C++
side and the Python side, because deleting a reference from just one side does not
necessarily delete it from memory.
Qt for Python was still a good choice overall: it is a very powerful and complete
framework, often considered one of the best for building desktop applications. On
the other hand, Qt has a steep learning curve and thus requires some time to get
familiar with. Looking ahead, the next major release of Qt, called Qt 6, which will
be released progressively during the next years, promises many new features and a
better integration with Python and its packages, including Pandas and Numpy [21].
As a consequence, future work may benefit from these improvements.

4.1 Packaging DataMole
Currently DataMole can be installed by cloning or downloading the GitHub repository
and installing the required dependencies. Ideally it could be distributed as a stand-
alone executable runnable on any machine, possibly using an installer. PyInstaller was
tried in order to bundle DataMole and every dependency in a single executable file:
unfortunately it did not work as expected, since some Qt modules were not included,
thus creating problems during execution. Additionally PyInstaller bundles only work
in the operating system where they were generated.
For now the simple installation from the repository suffices, but other packaging
alternatives, like fbs, may be tried in the future.

4.2 Future work
DataMole currently lacks the ability to fit pipelines on a training set and apply them
to different test sets. To implement this feature, the current pipeline system could be
extended with the possibility of exporting both fitted and unfitted pipelines. For inter-
operability with Python it may be useful to define every operation using Scikit-learn
Transformer API [11], thus giving the possibility to graphically create pipelines and to
later use them where needed, even in Python scripts.
Other desirable features that have not been implemented are an undo for transforma-
tions and the application of custom functions to dataframe columns. The latter can be
easily implemented with a simple code editor that allows to define a Python function.
More refined approaches may include the definition of a special simplified language

4.2. FUTURE WORK 53

with support for the main constructs and operators, or alternatively support for a
visual programming paradigm, like the one used in visual programming languages.
Support for big data is also missing: it may be achieved by using scalable data
containers, like the ones offered by packages described in §3.1.1.
Finally, DataMole multithreading support can be improved: multithreading was used
to make sure that the graphical interface is not blocked while operations are being
executed. The main drawback of the selected approach, described in §3.3.4.6, that
makes use of QThreadPool and QRunnable, is that it does not provide the ability to
stop running operations. Additionally, Python is quite limited when operating on
multiple threads, since the Global Interpreter Lock (GIL) only allows for one thread
to take control of the Python interpreter. Most of the operations that are done on
separate threads in DataMole involve the Pandas library. Pandas does not always
release the GIL, so this may be a bottleneck in some situations. Thus, multiprocessing
may be a better solution to achieve real parallelism. However, as already explained, the
objective of multithreading in DataMole is to avoid a frozen GUI, and multithreading
was enough for this purpose.

Appendix A

Developer manual

This chapter describes how DataMole can be extended with new functionalities. It is
an extension of chapter 3, that is assumed to be read before this one, since it discusses
high-level architectural choices that are not repeated here.
Part of the development was dedicated to making DataMole easily extensible. Exten-
sibility is meant with respect to the DataMole core features, which are the usage of
operations and the visualisation features, like charts. Thus the following topics are
discussed in this chapter:

• Definition of new operations, to be applied from the Flow panel or singularly (§A.2);

• Extension of the View panel with new widgets (§A.3).

Additionally the last sections describe how to use the notification system (§A.4), to
visualise pop-up with custom messages, the DataMole logger (§A.5) and finally §A.6
explains how non-code files can be added to the resource system.
This chapter only describes classes, methods and everything relevant in order to extend
DataMole. A complete description of the program API, with all classes and methods,
will be released in the software repository along with the code.

A.1 Package organisation
DataMole is organised as a standard Python package, and its complete structure is
shown in the tree below, where only the tests/ and docs/ folders have not been
expanded.
An overview of the content of the main sub-packages, marked in green in the below
tree, was given in §3.3.1.

55

56 APPENDIX A. DEVELOPER MANUAL

dataMole/
main.py
requirements.txt
makefile
docs/..Automatic documentation

. . .
tests/

. . .
dataMole
threads.py
status.py
resources.qrc
exceptions.py
utils.py
flow/...Pipeline management
dag.py
handler.py

operation/Every opeation is defined here
actionwrapper.py..........................Handles operation execution
cleaner.py
dateoperations.py
discretize.py
dropcols.py
duplicate.py
extractseries.py
fill.py
index.py
input.py
join.py
onehotencoder.py
output.py
removenan.py
rename.py
replacevalues.py
scaling.py
typeconversions.py
utils.py
readwrite/.. I/O operations
csv.py
pickle.py

computations/.......................................Worker operations
statistics.py

interface/
graph.py
operation.py

data/...Dataframe utilities
Shape.py
Frame.py
types.py

gui/..Qt GUI classes

A.1. PACKAGE ORGANISATION 57

mainmodels.py
workbench.py
window.py
utils.py
charts/
views.py
scatterplot.py
timeseriesplot.py
histogram.py
utils.py

panels/
framepanel.py
diffpanel.py
viewpanel.py
attributepanel.py
dataview.py

graph/
node.py
controller.py
constant.py
edge.py
rubberband.py
scene.py
view.py
polygons.py

widgets/
waitingspinnerwidget.py
statusbar.py
operationmenu.py
notifications.py

editor/
configuration.py
interface.py
OptionsEditorFactory.py
infoballoon.py

flogging/...Logging package
loggable.py
utils.py
operationlogger.py

resources/..Static resources
style.css
descriptions.html
icons/

config/.....................................Configuration files for extension
operations.json
dataviews.json

58 APPENDIX A. DEVELOPER MANUAL

Figure A.1: Abstract classes derived from Operation

A.2 Definition of a new operation
Adding a new operation is simple. Three steps are required:

1. Choose the Operation abstract class to subclass;

2. Define the new operation inside a module;

3. Edit a configuration file to tell DataMole where to look for new operations.

When defining a new operation it is probably necessary to define an editor widget to
support setting user options. This step is described later, in §A.2.4.

A.2.1 Choosing the abstract class
All data transformations in DataMole are represented with subclasses of the Operation
base class. Package operation.interface contains the definitions of 4 abstract classes
shown in Fig. A.1. The choice of the class to inherit depends on the operation that
needs to be defined:

• Operation: subclass this to define an operation as a generic task. The only
abstract methods are execute and setOptions. Such an operation can not be
used with the pipeline in the Flow panel, but can only be applied from the
Attribute panel. Even background workers can implement this interface to take
advantage of the multithreading module, as is later described in §A.2.5;

• GraphOperation: its subclasses can be used in the Flow panel as well as in the
Attribute panel, provided it has only one input. This constraint is set to reduce
complexity, since graph operations must be adapted to be used from the Attribute

A.2. DEFINITION OF A NEW OPERATION 59

panel and having to deal with multiple inputs was not easy.
Graph operations must not do side effects on their inputs (or on the workbench);

• InputGraphOperation: this is defined for convenience. It gives a default im-
plementation to some methods that are not relevant when defining an input
operation for the pipeline graph. These operations has no input nodes;

• OutputGraphOperation: again this is subclassed only once by the graph opera-
tion ToVariable which has no output and exactly one input. This interface may
be used to define an operation with no outgoing edges.

Every operation can hold a reference to the workbench object, but this is optional. In
general GraphOperation subclasses should avoid any side effect: the pipeline consists
of a chain of functional transformations where the output of the parent operation is
set as the input of the child node, and every operation must not change its input
while producing its output. InputGraphOperation and OutputGraphOperation can
instead do side-effect on the workbench: in fact they are mainly used to retrieve the
input dataframe from the workbench when the pipeline starts and to save the pipeline
output when it completes.

A.2.1.1 A comment about subclassing in Python

Interfaces and abstract classes are used in DataMole to enforce the presence of specific
methods in subclasses, that are required for them to correctly work. But the type
information itself (e.g. the mere fact that an operation is a subclass of Operation) is
not actually important, because Python is dynamically-typed and uses the duck typing
approach, thus subclasses type is not checked. As a consequence, interface realisation
is never strictly required, provided that all the relevant methods are defined. For
instance an operation can be any object that implements all the methods described in
§A.2.2, even if it is not a subtype of Operation.

A.2.2 Implementing the operation
New operations can be defined in new modules inside the operation package, where
all DataMole operations are defined. Additionally related transformations are usually
grouped in the same file. For example the module type.py contains the definition of
all the operations used for type conversion. However it is not important where the
new operations are defined, so they may be stored in different packages if desired.
The operation package also contains an utilsmodule with many helper functions for
parsing editor options and some validators used by the editor widgets to validate inputs.

60 APPENDIX A. DEVELOPER MANUAL

A.2.2.1 Operation methods

This section describes the methods that every Operation subclass inherits and override
when required.

• execute(*args, **kwargs): this method is run to execute the operation. It
takes any number of arguments (0 as well) and returns whatever the operation
produces. It may also return nothing, if the operation does side effects;

• setOptions(*args, **kwargs): the method used to configure an operation
with its options. This method is called with the arguments provided by the
getOptionsmethod of the editor widget, so its arguments depends on the way
the widget provides options. For example if the editor widget returns a tuple
of 3 integers, this method should expect to receive 3 integer arguments. If the
operation does not require options this method can be set to a no-op. This
method can also perform fields validation, see §A.2.2.2;

• getOptions(): this method returns the options currently set in the operation,
in the same format required by setOptions. If you are defining an operation
to use from the Attribute panel this method is probably never used and its
reimplementation can be skipped. The default implementation returns an empty
dictionary;

• name(): this static method returns a string with the name of the operation to be
shown to the user;

• shortDescription(): a static method with a reasonably short description to be
visualised inside the header of the editor widget;

• longDescription(): returns the text to be shown when the user clicks the
"More" button in the editor widget. The description can be long and can include
HTML formatted text. To avoid cluttering code with long formatted strings, they
can be placed in the resources/descriptions.html file, under a section tag
with the operation class name. By default this method searches the description
in that file. More details are in §A.6;

• hasOptions(): returns a boolean value saying whether all the required options
are set. This is required because every operation can have its own option fields.
Typically it returns True if all option fields are not set to None;

• needsOptions(): returns a boolean value that tells whether the operation needs
options, and consequently an editor widget. If this method returns False the
getEditormethod can be no-op;

• acceptedTypes(): returns the list of types that the operation supports, to choose
between Numeric, Nominal, Ordinal, String and Datetime. These types are
defined in the data.typesmodule. By default it supports all types;

A.2. DEFINITION OF A NEW OPERATION 61

• getEditor(): builds the editor widget of type AbsOperationEditor which
should be used to configure the operation. This is described in §A.2.4;

• injectEditor(AbsOperationEditor): if some editor components require ad-
ditional configuration that cannot be provided during the editor creation, this
method can be reimplemented. Typically it is used to fix column size on tables
created with the editor factory.

A.2.2.2 Options validation

Operations can refuse to accept parameters if they are not set correctly: options
validation may be performed inside the setOptionsmethod of every operation. This
method should first check if the provided options are acceptable and save them only
if they are. Otherwise it should raise an exception of type OptionValidationError.
This exception can be parametrised with a list of errors that occurred while validating
the options, thus it allows to notify more than one error at once. Every item of this list
is a pair made up of a string error code and an error message. The error code allows to
customise error handling and will be discussed in §A.2.4.1.
To give a practical example, part of the definition of the BinsDiscretizer class is
reported here and commented:

1 class BinsDiscretizer(GraphOperation , Loggable):

2 def __init__(self, *args, **kwargs):

3 super().__init__(*args, **kwargs)

4 # Initialisation of the options fields

5 # Strategy to use for discretizing

6 self.__strategy: BinStrategy = BinStrategy.Uniform

7 # The column indices to be discretized

8 self.__attributes: Dict[int, int] = dict()

9 # The suffix for the column to create (if the

transformation is not done in-place)

10 self.__attributeSuffix: Optional[str] = ’_discretized’

11

12 def setOptions(self,

13 attributes: Dict[int, Dict[str, str]],

14 strategy: BinStrategy ,

15 suffix: Tuple[bool, Optional[str]]) -> None:

16 # ’attributes’ is a dictionary like {row: {column_key:

value} }

17 # Thus it maps every row to the values of any column in

the table

18

19 # Validate options

20 errors = list()

21 if not attributes:

62 APPENDIX A. DEVELOPER MANUAL

22 # Error: the user did not select any attribute

23 errors.append((’e1’, ’Error: At least one attribute

should be selected’))

24 for r, options in attributes.items():

25 bins = options.get(’bins’, None)

26 if not bins:

27 # Error: column ’bins’ is not set for this row

28 errors.append(

29 (’e2’, ’Error: Number of bins must be set at row {:

d}’.format(r))

30)

31 elif not isPositiveInteger(bins):

32 # Error: column ’bins’ is not a valid number

33 errors.append((’e3’, ’Error: Number of bins must be >

1 at row {:d}’.format(r)))

34 if strategy is None:

35 # Error: no strategy is selected from the radio buttons

36 errors.append((’e4’, ’Error: Strategy must be set’))

37 if suffix[0] and not suffix[1]:

38 # Error: suffix is not set

39 errors.append((’e5’, ’Error: suffix for new attribute

must be specified’))

40 if errors:

41 # If any validation error occurred stop

42 raise OptionValidationError(errors)

43

44 # No error occurred, then set options

45 # Clear previously set attributes

46 self.__attributes = dict()

47 # Set options

48 for r, options in attributes.items():

49 k = int(options[’bins’])

50 self.__attributes[r] = k

51 self.__strategy = strategy

52 self.__attributeSuffix = suffix[1] if suffix[0] else None

In the above example the setOptionsmethod checks for options correctness in lines
20-39. Then if one or more validation errors were detected it raises an exception (line
42), otherwise it sets the new options (lines 44-52). The error message will be shown
to the user as in Fig. A.2.

A.2. DEFINITION OF A NEW OPERATION 63

Figure A.2: Error message in the BinsDiscretizer operation

A.2.2.3 GraphOperation methods

The following section describes methods defined in the GraphOperation class. All
methods inherited from Operation are not discussed here, unless they require further
explanation.

A.2.2.3.1 Utility methods

The following three methods provide functionalities required to manage every opera-
tion inside the pipeline. They are already implemented and should not be redefined
in most cases.

• shapes(): getter method for the protected shapes field, which contains the
shapes of the inputs of the operation;

• addInputShape(Shape, int): this method is used to set the shape at the
specified position in the shapes list;

• removeInputShape(int): remove the Shape object at the specified position in
the shapes list and sets it to None.

64 APPENDIX A. DEVELOPER MANUAL

A.2.2.3.2 Methods to be reimplemented

The following methods should be overridden in every subclass to customise the
operation behaviour.

• execute(*Frame): the execute method has a different signature from the one
defined in the Operation class. As already explained graph operations should
be defined in a functional way, with no side effects. Hence this method is passed
the input dataframes and must apply the transformation and return the output
dataframe (of type Frame) without affecting its input;

• getOutputShape(): this method should be overridden to return a Shape object
with the column names and types of the output of this operation. If the input
shapes are not set (for example because the node is not yet connected to a
predecessor) or any relevant option is not configured it must return None;

• isOutputShapeKnown(): this static method must return True if getOutputShape
is able to infer the output shape, given the operation options and the shapes
of its input. Otherwise it must return False. There are situations in which
this method could always return False. For instance, this is the case with the
operation to remove all columns with more than a threshold of NaN values:
there is no way of knowing in advance which columns will satisfy this condition,
hence the operation does not know its output shape;

• needsInputShapeKnown(): another static method that returns True for opera-
tions that require their input shapes to be used. Operations that do not need
the input shape are the only operations that can be placed after operations that
do not know their output shape (i.e. their isOutputShapeKnownmethod always
returns False);

• unsetOptions(): this method resets every option that depends on the input
shapes of the operation. It is called by the DagHandler whenever new input
shapes are propagated through the pipeline;

• minInputNumber(): a static method which returns the minimum number of
input connections that the operation supports;

• maxInputNumber(): a static method returning the maximum number of input
connections that the operation supports or −1 if there is no maximum;

• minOutputNumber(): a static method returning the minimum number of output
connections that the operation supports;

• maxOutputNumber(): a static method returning the maximum number of output
connections that the operation supports or −1 if there is no maximum;

A.2. DEFINITION OF A NEW OPERATION 65

A.2.3 Export the operation
Once operations have been defined it is necessary to make them visible to DataMole.
Every module must define a global variable export pointing to the new operation
class or, if more than one operations are defined in the same module, to a list (or tuple)
of classes. For instance if two new operations were defined in the same module with
classes TransformData1 and TransformData2, the export variable should be set as in
this snippet:

1 class TransformData1(Operation , Loggable):

2 def execute(self, *args, **kwargs):

3 pass

4 ...

5

6 class TransformData2(Operation , Loggable):

7 def execute(self, *args, **kwargs):

8 pass

9 ...

10

11 class OtherStuff:

12 # Class that is not an operation

13 ...

14

15 export = TransformData1 , TransformData2

16 # or export = [TransformData1 , TransformData2]

Additionally the name of every module to be searched for operations must be appended
to the list defined in file config/operations.json. The fully qualified name of the
module should be used, like in the following example:

1 {

2 "modules": [

3 "dataMole.operation.fill",

4 "dataMole.operation.discretize",

5 ...

6 "dataMole.operation.myNewModule"

7]

8 }

A.2.4 Definition of editor widgets
Every operation requiring user options is responsible for defining its specialised editor
widget to support options configuration. An example is in Fig. A.3.
Every editor widget must subclass the AbsOperationEditor abstract class, defined in
the gui.editor package. Package structure is shown in Fig. A.4.
Custom editors are usually defined in the file containing the operation definition, since

66 APPENDIX A. DEVELOPER MANUAL

Figure A.3: The three parts that compose every editor widget. The header shows the short
description and button to access the long description of the operation. The footer
has a button to quit the editor and one to confirm the options set.

Figure A.4: Classes defined in the gui.editor package

A.2. DEFINITION OF A NEW OPERATION 67

they are used only by a single operation. However, they can be placed on a different
file if they are reused many times.
An editor widget should reimplement the following methods:

• editorBody(): this abstract method should return the QWidget to place in the
editor, between the header and the footer;

• getOptions(): this abstract method must return the options set in the editor.
It should return them inside an iterable sequence that can be unpacked when
passed to the setOptions method of the operation. Its return type should
therefore be compatible with the argument type of the operation setOptions
method;

• setOptions(*args, **kwargs): sets the options inside the editor. The default
implementation does nothing, which is ok in case the operation does not require
a configurable editor;

• onAccept(): this hook method is called after the options are confirmed (i.e.
the "Ok" button is clicked) and before setting them in the operation. It can be
reimplemented to perform additional actions. Does nothing by default.

A.2.4.1 Customised validation error handling

As previously described, when the user configures an editor widget, the operation can
raise an error with type OptionValidationError if supplied options are not correct.
In this situation, every editor widget shows the error messages in red font immediately
above the footer, like in Fig. A.2. This is generally good enough, but complex editors
may behave differently, for example by applying a red border around a QLineEdit
or by showing pop-up immediately above the wrong fields. In fact, editor widgets
derived from AbsOperationEditor support custom error handling behaviours. This
abstract class defines a errorHandlers public field, of type Dict[str, Callable],
that contains arbitrary functions (Callables) used to handle specific validation errors.
Recall from §A.2.2.2 that every pair passed to the OptionValidationError constructor
contains an error code, as well as an error message. When handling validation error,
the editor first checks if a custom error handler is provided: to do this it searches
the errorHandlers dictionary for a pair with the specified error code as key. If a
matching key is found, the corresponding method is invoked, otherwise the default
error handling strategy is used.
Hence, once a customised method to handle errors has been defined, it may be added
to this dictionary with an error code that matches the one of the error it should handle.

A.2.4.2 The editor factory

Since many operation editors required very similar components a factory class has
been defined to quickly build standard editors with a variety of fields. To do
this, the factory class OperationEditorFactory can be instantiated inside method

68 APPENDIX A. DEVELOPER MANUAL

Operation.getEditor and used to configure the editor. Since the factory is a singleton,
method initEditormust be always called to initialise a new editor.
When the factory is used, widgets options are passed around between the editor and
the operations as Python dictionaries. This is the reason why methods getOptions
and setOptions of classes AbsOperationEditor and Operation also accept key-value
pairs with the **kwargs argument. The key used for every option can be specified
with the key argument when using the factory methods described below.

• withAttributeTable(key, options, checkbox, nameEditable, showTypes,
types, *args): adds a table to show dataframe columns, with optional column
of checkboxes for selection and any number of additional columns. For example
the widget in Fig. A.3 had a table with 1 additional column, named Fill value, to
specify the value that should be used to substitute NaNs. The options argument
is a dictionary to specify the additional columns to show in the table: every entry
consists of a column identifier and a tuple with the column name, a delegate
for that column and a default value to show when nothing is set. checkbox,
nameEditable, showTypes are boolean parameters to control whether to show a
checkbox column, whether the name column should be editable and the type
column should be showed. Argument types allows to filter only certain types,
in case the operation does not support every type. For example the Fill NaN
editor table is configured with this method call:

1 factory.withAttributeTable(

2 key=’selected’,

3 checkbox=True,

4 nameEditable=False,

5 showTypes=True,

6 types=self.acceptedTypes(),

7 options={

8 ’fill’: (

9 ’Fill value’,

10 OptionValidatorDelegate(

SingleStringValidator()),

11 None

12)

13 })

The delegate is Qt component that controls how column items are rendered inside
the view. By defining a custom delegate, it is possible to change items appearance
in any way: the checkbox in the first column of Fig. A.3, for instance, is created by
defining a custom delegate for boolean values. The OptionValidatorDelegate
was defined for convenience and only provides a customised validation the input,
through the QValidator passed as its argument. If no delegate and no default
value is needed, None can be used in their place. Definition of custom delegates
will not be discussed here, since it is part of the Qt Framework and is explained

A.2. DEFINITION OF A NEW OPERATION 69

in its official documentation;

• withTextField(key, label, validator): adds a QLineEdit setting a label
above it and with an optional QValidator for its input. Some validators com-
monly used are defined in the operation.utilsmodule. Widget marked with
(T) in Fig. A.5 was created using this method;

• withCheckBox(key, label): adds a QCheckBoxwith a label;

• withRadioGroup(key, label, values) inserts a group of QRadioButtons with
the specified label above it. the values argument is a list of pairs, that maps the
label to show (as a string) with the combo box value (of any type). The radio
buttons in Fig. A.3 is created with the following options:

1 factory.withRadioGroup(

2 key=’fillMode’,

3 label=’Method’,

4 values=[

5 (’Backfill’, ’bfill’),

6 (’Pad’, ’ffill’),

7 (’Mean’, ’mean’),

8 (’Values’, ’value’)

9])

• withComboBox(key, label, editable, model, strings): adds a QComboBox
with a label. If editable is True the combo box allows to enter arbitrary
values, otherwise it only allows to choose between one of the predefined values.
Arguments model and strings allow to set the values to show when the combo
box is used. A Qt model class can be used or alternatively a list of strings can be
provided;

• withAttributeNameOptionsForTable(key): using this method allows to add
a widget like Fig. A.6. It adds an option to avoid overwriting attributes when
transformations are applied by defining new ones with the specified suffix;

• withFileChooser(key, label, extensions, mode, **kwargs): used to cre-
ate a window that allow to choose an existing file using a QFileDialog. Showed
files can be filtered by their extension using the extensions argument. The mode
string argument must be set to "save" or "load", depending on whether the file
dialog should allow to select non existing files (save mode) or not (load mode).
An example of such widget is shown in Fig. A.5, marked with (F). Additional
arguments can be passed to the QFileDialog by setting them as **kwargs;

• initEditor(subclass): this method must be called before any factory method,
and is used to initialise a new editor widget. The factory is a singleton, thus a
call to this method resets its internal state and clean the parameters of widgets
previously created. The subclass parameter accepts a type of a class that should

70 APPENDIX A. DEVELOPER MANUAL

be used as base class for the new widget. Of course it must be a subclass of
AbsOperationEditor;

• getEditor(): assembles the new editor widget and returns it.

Figure A.5: Widget to import pickle dataframes created with factory methods

Figure A.6: Widget created with factory method withAttributeNameOptionsForTable

Using the factory, a typical getEditor implementation for an operation may look like
this:

1 def getEditor(self):

2 factory = OptionsEditorFactory()

3 factory.initEditor()

4 ...

5 # Call factory methods

6 ...

7 return factory.getEditor()

Finally it must be said that editor widgets defined using the factory do not support
the customised error handling mechanism described in §A.2.4.1.

A.2. DEFINITION OF A NEW OPERATION 71

A.2.5 Creating worker operations

Sometimes there is the necessity to do some background computation without freezing
the user interface. Operations can also be defined for completing tasks that can be
computed in background. For example the operation.computations.statistics
module contains two operations used respectively to compute data for the statistics
panel and the histogram when an attribute is clicked in the Attribute tab.
The threads module can then be exploited to run the operation in another thread.
This module defines a Worker class (deriving from QRunnable) that can be scheduled
for execution in a QThreadPool.
After defining a worker operation by implementing the Operation interface, a back-
ground computation can be set up using this general pattern:

1 # Define a worker operation

2 class BackgroundComputation(Operation):

3 def __init__(*args):

4 # Initialise

5 ...

6

7 def execute(arg1, arg2, *args):

8 ...

9 # Computation

10 ...

11 return result

12

13 # Initialise a new operation

14 comp = BackgroundComputation(*my_args)

15 # Set eventual options and define arguments for the execute()

method

16 myArg1 = ...

17 myArg2 = ...

18 # Create a worker for the operation and set the execute()

args

19 worker = Worker(comp, args=(myArg1, myArg2), identifier=’

comp1’)

20 # Connect worker signals to appropriate handler slots

21 worker.signals.result.connect(self.onResult)

22 worker.signals.error.connect(self.onError)

23 worker.signals.finished.connect(self.onFinish)

24 # Start computation on the thread pool

25 QThreadPool.globalInstance().start(statWorker)

The worker needs an identifier that will be passed back as the first parameter of the
emitted signals. This identifier can be of any type, and should be used to recognise
which worker emitted a particular signal, but can be omitted if it is not relevant.

72 APPENDIX A. DEVELOPER MANUAL

The args parameter can be omitted as well if the operation execute method does
not require arguments. In the above example onResult, onError and onFinish are
methods marked as Qt slots (which allow to connect them to signals) and are invoked
when the worker status changes, through the following signals:

• result(id: object, result: object): this signal is emitted when the
worker completes successfully (i.e. without runtime errors) and carries two
arguments, the identifier passed to the worker constructor and the value returned
by the execute method, which can be None if the operation does side effects
with the result;

• error(id: object, err: tuple): it is emitted when the execute method
fails with a runtime error. The second parameter is a tuple with the type of the
exception, the exception object itself and the stack-trace as a string. This data can
be used to create a log entry and to notify the user;

• finished(id: object): signal emitted after the worker stops executing, either
because it failed (and the error signal was emitted) or because it completed
successfully (and the result signal was fired).

A.3 Extension of the View panel
Currently the View panel supports the creation of two type of charts, the line chart for
time series and the scatterplot matrix, but it is possible to add customised visualisation
features to this panel. The active widget can be switched by using the combo box
shown in Fig. A.7. These widgets are dynamically discovered and loaded every time
DataMole is started by looking at the configuration in file config/dataviews.json.
This operation is done in the __init__ file of the gui.panels package. The json file
contains the following lines:

1 {

2 "config": {

3 "default": "Scatterplot",

4 "description": "Select a data view:"

5 },

6 "classes": {

7 "Scatterplot": "dataMole.gui.charts.scatterplot.

ScatterPlotMatrix",

8 "Time series": "dataMole.gui.charts.timeseriesplot.

TimeSeriesPlot"

9 }

10 }

The classes dictionary contains the fully qualified name of the widget class to show
in the panel, with the label to show in the combo box as keys. The config dictionary
contains the label to set as default one in the combo box, and the label to place before

A.4. USING THE NOTIFICATION SYSTEM 73

the combo box.
Hence, in order to add widgets to this panel, one should:

1. Define the new widget implementing the DataView interface; it requires the
definition of a single slot, namely onFrameSelectionChanged,in order to react
properly when the user changes the active dataframe;

2. Add the new class name to theclassesdictionary in theconfig/dataviews.json
file.

Figure A.7: Combo box used to switch active widget in the View panel

A.4 Using the notification system
Small pop-ups are used to notify the user whenever an error occurs or some operation
is completed. An example is shown in Fig. A.9. Notification messages are stacked
vertically and can be closed by clicking on the small right button.
These pop-ups are defined in the gui.widgets.notificationsmodule, which con-
tains 3 classes, outlined in diagram Fig. A.8. An instance of the Notifier class is always
available in the gui.notifier global variable. Thus in order to add notifications, this
global variable should be imported from the gui package. The addMessagemethod
can be used to add messages, or they can be cleared invoking clearMessages.
The gui package also exposes the gui.statusBar variable, which is the global access
point to the DataMole status bar, placed at the bottom of the main window, shown in
Fig. A.9. It inherits QStatusBar, so its methods can be used to show messages.

74 APPENDIX A. DEVELOPER MANUAL

Figure A.8: Class diagram of the notificationsmodule

Figure A.9: The main window, with a message on the status bar and a pop-up used for
notifications. In this example the user tried to execute a pipeline with no input
nodes.

A.5. THE LOGGING PACKAGE 75

A.5 The logging package

DataMole defines a collections of logging utilities in the flogging package, which
makes used of the Python loggingmodule. Three loggers are defined:

• appLogger: the application logger, where debug messages are printed, and the
standard error stream (stderr) is redirected. These log files are created in the
logs/app folder;

• graphLogger: when a pipeline is executed the DagHandler creates a new log file
in the logs/graph folder and uses this logger to log every operation. In order to
be logged operations need to have implemented the Loggable interface, defined
in the flogging.loggablemodule;

• opsLogger: every operation applied singularly (i.e. outside of the pipeline) is
logged through this object inside the logs/operations folder. Also in this case
the operations need to implement the two methods of the Loggable interface.

Loggers are objects of type logging.Logger and can be imported directly from the
flogging package. A simple example is the following:

1 from dataMole import flogging

2

3 # Log to the application logger

4 flogging.appLogger.warning(’A warning’)

5

6 # Log to the operation logger

7 flogging.opsLogger.error(’An operation failed’)

A.5.1 Implementing the Loggable interface

The two methods defined in Loggable interface, that must be implemented in order to
log an operation, are the following:

• logOptions: must return a formatted string with the configuration of the
operation, like its options. This method is invoked before the operation is
executed;

• logMessage: returns a formatted string with additional info. Differently from
the previous method, this one is invoked after the operation completes, but it
is not called if the operation fails with an error. It may include details on what
happened during execution. For instance, in the BinsDiscretizer class it is
used to inform the user of which intervals were used for discretization.

76 APPENDIX A. DEVELOPER MANUAL

A.6 The resource system
The Qt resource system is a platform-independent mechanism for storing binary files
in the application’s executable. This is useful for applications that need to access a
certain set of files like icons, translation files, etc. [18]. The resource directory groups
every such file used in DataMole. It has the following structure:

dataMole/
resources.qrc..Qt resource file
resources/
icons/...PNG icons
descriptions.htmlOperations descriptions
style.css...Stylesheet

A.6.1 The operation description file
File descriptions.html contains the formatted text that is returned by method
longDescription of an operation. Since these descriptions can be quite long, and
need to be formatted properly using HTML syntax, I decided to put them all in single
file, instead of having them scattered inside the operation classes. It is possible to add
new descriptions or edit the existing ones directly in this file. Every new description
must be placed in a new section, with a name attribute set to the class name of the
related operation, like in this example:

1 <section name="MyOperationClass">
2 <h2>Operation name</h2>
3 Very short description

4 <h3>Options description</h3>
5 ...

6 Explain how the operation can be configured

7 ...

8 </section>

There are no rules on how to write the long description, but it should include
everything that is needed to understand the purpose of the operation and how it
should be configured, if some options are required.
The description file is read during initialisation of the operation package, inside the
__init__ file.

A.6.2 Adding new resources
Adding a new resource can be done by adding its path to the resources.qrc file, as
explained in the official Qt documentation. After that, the resources must be converted
to bytecode by using the Qt Resource Compiler, which, in Qt for Python, can be
invoked with the pyside2-rcc command.
For convenience DataMole comes with a makefile that include the command needed to
do this: it is sufficient to run "make resources" from the main folder. This command
will generate a file named qt_resources.pywith the bytecode for every resource.

Appendix B

DataMole user manual

This guide describes how to use DataMole for data analysis. The tool allows to load
tabular datasets from disk and apply transformations to their columns. This manual
does not include a list of available transformation, nor does it explain how to use
them, since this information can be accessed directly while using DataMole through a
specific help widget.
A section describing how to install and launch DataMole was omitted, since this
information is kept updated in the readme file of the GitHub repository.

B.1 Using DataMole

B.1.1 Importing a dataset

DataMole can import tabular datasets from CSV and pickle files that contain serialised
Pandas dataframes. Notice that pickle files may contain any Python object, but only
Pandas dataframes can be loaded in DataMole.
By clicking File > Import > "From csv", the editor shown in Fig. B.1 appears. It allows to
choose the file separator and to select which columns to load. Columns can be selected
in the provided table, that, depending on the size of the dataset, may require some
time to be shown. Big datasets can be loaded in multiple dataframes, by selecting "Split
file by rows" and specifying the maximum number of rows per dataframe. Clicking the
"More" button opens a side panel with additional information on the operation.
Similarly, the widget to load a pickle dataframe can be opened clicking File > Import
> "From pickle".
Every imported dataset will be visible in the workbench, the widget that lists all loaded
dataframes, visible in Fig. B.3.

B.1.2 Exporting a dataset

Loaded dataframes can be exported in CSV or pickle files. The latter option is useful
to continue working on the dataset outside of DataMole, because every Python script

77

78 APPENDIX B. DATAMOLE USER MANUAL

Figure B.1: The widget used to load a CSV file

Figure B.2: The widget used to export a dataframe in CSV file

B.1. USING DATAMOLE 79

Figure B.3: The DataMole main window, with an empty Attribute panel on the right

can be used to load these files.
Fig. B.2 shows the widget for CSV export. DataMole can load multiple dataframes,
thus it is required to select which one to export using a combo box. Clicking on
"Choose" opens a dialog window for selecting the save path location. The attributes to
be included can be selected in the table, and many common options can be set.

B.1.3 The main window
Fig. B.3 shows the DataMole main window, set on the Attribute panel, which is described
later. On the right side of the window three tabs (P) can be selected to change the
active panel.
On the left side, the workbench (W) displays the list of loaded datasets. They can be
renamed by double clicking a row and typing the new name, which must be different
from the name of other dataframes. Right-clicking a row opens a small context menu
that allows to export and delete a dataframe. Selected dataframes can also be removed
by pressing the Canc key while they are focused.
Above the workbench, a widget displays information on the active dataset (I) and
allows to apply transformations using the menu in (A). This process is also described
in the next subsection.
When an operation is executed the status bar (S) is used to report its status.
Three widgets can be contained in the right side of the window (C):

• The Attribute panel;

• The View panel (in the Visualise tab);

• The Flow panel.

Each one is described respectively in §B.1.4, §B.1.5 and §B.1.6.

80 APPENDIX B. DATAMOLE USER MANUAL

Figure B.4: The editor widget used to configure the one-hot encoder and its help window

B.1.3.1 Applying operations

When an operation is selected in (A) and the "Apply" button is pressed, the operation
editor widget is opened, like the one shown in Fig. B.4, used to one-hot encode columns.
Every editor has an header with a brief description of the operation and a "More"
button on the right (M). By clicking on it, an help window with information on the
operation and on the required parameters will be opened (H).
Below the header, a combo box allows to select the dataset to transform and a text
box can be used to insert the name of the output dataset (A). After the options are
confirmed with the "Ok" button the operation will be applied and its result will be
written in a workbench variable with the specified output name. The output name
defaults to the input name, thus the transformed dataset will replace the original one
if the name is not edited.
Depending on the operation many options may need to be configured in (C). In the
example the operation only requires to select the columns to encode and whether or
not NaN values should be considered.

B.1.4 The Attribute panel

This panel is displayed on the left side of Fig. B.5, positioned inside the tabbed widget.
It provides some basic features to get an overview of the content of a dataset.
The attribute table (T) displays the column names and their types: every row represents
a column (i.e. an attribute) of the dataset. Column names can be changed by double
clicking the cell and typing in the new name. All column names should be unique, so
duplicated names will be rejected.
Above the table a search bar allows to search through attributes. Search by regular

B.1. USING DATAMOLE 81

Figure B.5: The main window set on the Attribute panel

expression is also supported using Perl-style syntax. The search is case-insensitive.
The statistics panel (S) and the histogram (H) show information about the currently
selected column, that can be changed by clicking on a row of table (T). The histogram
shows the number of occurrences of every distinct values for string and categorical
attributes, while numeric or datetime are first discretized in a predefined number of
equal-sized intervals. This number can be changed by moving the slider below the
chart (L).

B.1.5 The View panel

This tab groups DataMole visualisation features. Currently it supports the creation of
a scatterplot matrix, to inspect feature correlation, and a line chart to plot time series.

B.1.5.1 Scatterplot matrix

A scatterplot matrix with 3 attributes is shown in Fig. B.6. A dataset must be selected
in the workbench and the attributes to plot can be chosen in widget (B). Scatterplot dots
are usually coloured differently depending on the values of a target attribute, that can
be chosen using the combo box below the table (C).
Double clicking a scatterplot opens it in a new window, like in Fig. B.7. Here dots
can be hovered to inspect their values and the chart can be zoomed and stretched as
required. The content of the window can additionally be saved as an image in different
formats (PNG, JPEG, BMP, XMP).
The combo box in (A) allows switching between the two chart types.

82 APPENDIX B. DATAMOLE USER MANUAL

Figure B.6: A scatterplot matrix with 3 attributes

Figure B.7: A scatterplot displayed in a new window

B.1. USING DATAMOLE 83

Figure B.8: A time series displayed with a line chart

B.1.5.2 Time series plot

Time series can be represented in a line chart like in Fig. B.8 using this widget. First,
the dataset must be selected in the workbench. Then the attribute that contain the time
axis labels must be selected in (A): it must be either an attribute with type datetime
or with ordinal type, since a order must be defined between its values. If a datetime
attribute is selected the label format for visualisation in the horizontal axis can be
changed in (F).
The time dependent attributes can then be selected in table (V). The chart area (P) is
interactive and can be zoomed and moved around. The initial state of the chart can be
restored by using the Ctrl+R shortcut.
If an index is set in the dataframe, table (G) can be used to select a subset of indices
to plotted. When the chart is created, data are grouped by index, and every group is
considered a different time series to plot. This feature was included in order to plot
time series which have been extracted by longitudinal datasets. The documentation of
the Time series extraction operation provides more details about this.

B.1.6 The Flow panel

The last available panel provides an alternative approach to dataset transformation:
the same operations that could be applied singularly from both the Attribute and View
panel can be chained together to form a pipeline where the output of a node becomes
the input of its successors. Fig. B.9 displays a pipeline composed of 5 steps.
Steps can be added to the pipeline canvas (P) by dragging them from the list of
operations on the left side of the window (A). Every step is represented graphically
with a node that has some knobs (K) on the left an right side. Nodes can be connected
by clicking a knob on the source node and dragging the interactive edge up to the

84 APPENDIX B. DATAMOLE USER MANUAL

Figure B.9: A simple pipeline defined in the Flow panel

target node, where it must be dropped. Most operations require some parameters
before the pipeline can be executed. In order to do this every operation has a widget
editor that is used to configure them. For instance the widget shown in Fig. B.10 is
the editor widget for the min-max scaler operation. These editors can be opened by
double clicking the operation nodes in the pipeline, and when options are set they can
be confirmed with the "Ok" button. At this point the operation is configured an its
options indicator (C) turns green.
The pipeline canvas can be zoomed and moved around using the mouse wheel.
Pressing the F key while the canvas is focused fits the view to its content.
When the pipeline has been configured it can be executed by clicking Flow > Execute.
Once started, a status indicator appears above every node (S). It is grey for nodes
that must still be executed, green for completed nodes, yellow for running nodes
and red for nodes that failed with an error. This status can be reset by clicking
Flow > "Reset status".
Pipelines can also be imported and exported using the respective entries in the menu
bar: Flow > "Load" and Flow > "Save".

B.1. USING DATAMOLE 85

Figure B.10: The editor widget for the operation used to scale columns

Figure B.11: Comparison of two dataframes side by side

86 APPENDIX B. DATAMOLE USER MANUAL

B.1.7 Other features

B.1.7.1 Dataframe visualisation

Menu entry View > "Compare dataframes" opens a window where two dataframes can be
selected and compared side by side, like in Fig. B.11. It is also possible to visualise
single dataframes in a similar table, by clicking button "View as dataframe" in the
Attribute panel.
These views are read-only, thus datasets can not be edited from within DataMole.

B.1.7.2 Logging facilities

Whenever a pipeline is executed from the Flow panel DataMole writes an execution
report inside the logs/graph folder. Every log file is named with the timestamp of
when it was created and includes information on the configuration of every operation
(like user supplied options) and eventual parameters computed during execution.
Also operations applied singularly from the Attribute panel are logged in the same way
inside the logs/ops folder. In this case every program session initialises a new log file.
Additionally debug information as well as critical errors are logged inside logs/app.
These logs can be useful to debug software crashes and unexpected behaviours.
The log directory can be opened using the predefined window manager from menu
Help > "Open log directory".
Finally, option Help > "Delete old logs" clean the log directory removing all but the 5
most recent files.

Bibliography

References
[1] J. Banks et al. English Longitudinal Study of Ageing: Waves 0-8, 1998-2017. 2019. url:

http://doi.org/10.5255/UKDA-SN-5050-16 (visited on 09/09/2020) (cit. on
p. 4).

[2] S. Bozena. DataPreparator. 2013. url: http://www.datapreparator.com (visited
on 09/09/2020) (cit. on p. 7).

[6] ELSA: Study Documentation. url: https://www.elsa-project.ac.uk/study-
documentation (visited on 09/09/2020) (cit. on p. 4).

[7] R. A. Fisher. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC
PROBLEMS. Vol. 7. 2. 1936, pp. 179–188. doi: 10.1111/j.1469-1809.1936.
tb02137.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.
1469-1809.1936.tb02137.x (cit. on p. 11).

[8] E. Frank, Mark A. Hall, and Ian H. Witten. The WEKA Workbench. 4th edition.
Morgan Kaufmann, 2016. eprint: https://www.cs.waikato.ac.nz/ml/weka/
Witten_et_al_2016_appendix.pdf (cit. on p. 7).

[9] Health and Retirement Study, (RAND HRS Longitudinal File 2016 (V2)) public use
dataset. Produced and distributed by the University of Michigan with funding
from the National Institute on Aging (grant number NIA U01AG009740). 2020
(cit. on p. 4).

[10] Modules - Python 3.8.5 documentation. url: https://docs.python.org/3/
tutorial/modules.html (visited on 09/09/2020) (cit. on p. 30).

[13] Qt Concurrent. url: https://doc.qt.io/qt-5/qtconcurrent-index.html
(visited on 09/09/2020) (cit. on p. 44).

[15] Qt Documentation: Graphics View Framework. url: https://doc.qt.io/qt-
5/graphicsview.html (visited on 09/09/2020) (cit. on p. 38).

[16] Qt Documentation: Model/View Programming. url: https://doc.qt.io/qt-
5/model-view-programming.html (visited on 09/09/2020) (cit. on p. 29).

87

http://doi.org/10.5255/UKDA-SN-5050-16
http://www.datapreparator.com
https://www.elsa-project.ac.uk/study-documentation
https://www.elsa-project.ac.uk/study-documentation
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-1809.1936.tb02137.x
https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf
https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf
https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html
https://doc.qt.io/qt-5/qtconcurrent-index.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html

88 BIBLIOGRAPHY

[17] Qt Documentation: Signals & Slots. url: https : / / doc . qt . io / qt - 5 /
signalsandslots.html (visited on 09/09/2020) (cit. on p. 29).

[18] Qt Documentation: The Qt Resource System. url: https://doc.qt.io/qt-
5/resources.html (visited on 09/09/2020) (cit. on p. 76).

[19] Qt for Python: The official Python bindings for Qt. url: https://www.qt.io/qt-
for-python (visited on 09/09/2020) (cit. on p. 28).

[20] QThreadPool and QRunnable: Reusing Threads. url: https://doc.qt.io/qt-
5/threads- technologies.html#qthreadpool- and- qrunnable- reusing-

threads (visited on 09/09/2020) (cit. on p. 43).

[21] Technical vision for Qt for Python - What lies ahead. 2019. url: https://www.qt.
io/blog/2019/08/19/technical-vision-qt-python (visited on 09/09/2020)
(cit. on p. 52).

[22] Threading Basics: GUI Thread and Worker Thread. url: https://doc.qt.io/
qt-5/thread-basics.html#gui-thread-and-worker-thread (visited on
09/09/2020) (cit. on p. 43).

[23] What is PyQt? url: https://riverbankcomputing.com/software/pyqt/intro
(visited on 09/09/2020) (cit. on p. 28).

Online resources
[3] Daily total female births in California, 1959. url: https://www.kaggle.com/

dougcresswell/daily-total-female-births-in-california-1959 (visited
on 09/09/2020) (cit. on p. 15).

[4] dataPreparation: Automated Data Preparation. url: https://cran.r-project.
org/web/packages/dataPreparation (visited on 09/09/2020).

[5] dsideb/nodegraph-pyqt. url: https://github.com/dsideb/nodegraph- pyqt
(visited on 09/09/2020) (cit. on pp. 31, 38, 51).

[11] Pipelines and composite estimators. url: https://scikit-learn.org/stable/
modules/compose.html (visited on 09/09/2020) (cit. on p. 52).

[12] pytest-qt. url: https://pypi.org/project/pytest-qt (visited on 09/09/2020)
(cit. on p. 49).

[14] Qt Documentation: Callout Example. url: https://doc.qt.io/qt-5/qtcharts-
callout-example.html (visited on 09/09/2020) (cit. on p. 48).

https://doc.qt.io/qt-5/signalsandslots.html
https://doc.qt.io/qt-5/signalsandslots.html
https://doc.qt.io/qt-5/resources.html
https://doc.qt.io/qt-5/resources.html
https://www.qt.io/qt-for-python
https://www.qt.io/qt-for-python
https://doc.qt.io/qt-5/threads-technologies.html#qthreadpool-and-qrunnable-reusing-threads
https://doc.qt.io/qt-5/threads-technologies.html#qthreadpool-and-qrunnable-reusing-threads
https://doc.qt.io/qt-5/threads-technologies.html#qthreadpool-and-qrunnable-reusing-threads
https://www.qt.io/blog/2019/08/19/technical-vision-qt-python
https://www.qt.io/blog/2019/08/19/technical-vision-qt-python
https://doc.qt.io/qt-5/thread-basics.html#gui-thread-and-worker-thread
https://doc.qt.io/qt-5/thread-basics.html#gui-thread-and-worker-thread
https://riverbankcomputing.com/software/pyqt/intro
https://www.kaggle.com/dougcresswell/daily-total-female-births-in-california-1959
https://www.kaggle.com/dougcresswell/daily-total-female-births-in-california-1959
https://cran.r-project.org/web/packages/dataPreparation
https://cran.r-project.org/web/packages/dataPreparation
https://github.com/dsideb/nodegraph-pyqt
https://scikit-learn.org/stable/modules/compose.html
https://scikit-learn.org/stable/modules/compose.html
https://pypi.org/project/pytest-qt
https://doc.qt.io/qt-5/qtcharts-callout-example.html
https://doc.qt.io/qt-5/qtcharts-callout-example.html

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Project objectives
	1.1.1 Description of longitudinal datasets
	1.1.1.1 The ELSA dataset
	1.1.1.2 The HRS dataset
	1.1.1.3 Critical issues in longitudinal datasets

	1.2 DataMole overview
	1.2.1 Related work
	1.2.1.1 Comparison with DataMole
	1.2.1.2 Extension of existing tools

	2 Design of the data manipulation tool
	2.1 GUI description
	2.1.1 Dataset exploration
	2.1.2 Plotting data
	2.1.2.1 Scatterplot matrix
	2.1.2.2 Time series plot

	2.1.3 Defining pipelines of transformations
	2.1.4 Inspiration for GUI design

	2.2 Data manipulation features
	2.2.1 Extraction of a time series: an example

	2.3 Conventions and other features
	2.3.1 Treating missing values
	2.3.2 Types representation
	2.3.3 Data transformation paradigms
	2.3.4 Parametrised transformations
	2.3.5 Logging transformations
	2.3.6 Exporting and interoperability

	3 Development
	3.1 Technology
	3.1.1 Dataset management libraries
	3.1.2 Development environment

	3.2 Qt basics
	3.2.1 Signals and slots
	3.2.2 Model-view-delegate

	3.3 Architecture overview
	3.3.1 Description of the main packages
	3.3.2 Model/view classes
	3.3.2.1 The workbench

	3.3.3 Representation of a dataset transformation
	3.3.3.1 The Operation abstract class
	3.3.3.2 The editor widget factory

	3.3.4 The computational graph
	3.3.4.1 Pipeline laziness
	3.3.4.2 The GraphOperation abstract class
	3.3.4.3 The graph data structure
	3.3.4.4 The GUI for the graph
	3.3.4.5 Pipeline management workflow
	3.3.4.6 Executing the pipeline

	3.3.5 The OperationAction controller
	3.3.6 Charts visualisation
	3.3.6.1 Technological considerations
	3.3.6.2 The plotting package

	3.3.7 Logging
	3.3.7.1 Logging operations

	3.4 Testing

	4 Conclusions
	4.1 Packaging DataMole
	4.2 Future work

	A Developer manual
	A.1 Package organisation
	A.2 Definition of a new operation
	A.2.1 Choosing the abstract class
	A.2.1.1 A comment about subclassing in Python

	A.2.2 Implementing the operation
	A.2.2.1 Operation methods
	A.2.2.2 Options validation
	A.2.2.3 GraphOperation methods

	A.2.3 Export the operation
	A.2.4 Definition of editor widgets
	A.2.4.1 Customised validation error handling
	A.2.4.2 The editor factory

	A.2.5 Creating worker operations

	A.3 Extension of the View panel
	A.4 Using the notification system
	A.5 The logging package
	A.5.1 Implementing the Loggable interface

	A.6 The resource system
	A.6.1 The operation description file
	A.6.2 Adding new resources

	B DataMole user manual
	B.1 Using DataMole
	B.1.1 Importing a dataset
	B.1.2 Exporting a dataset
	B.1.3 The main window
	B.1.3.1 Applying operations

	B.1.4 The Attribute panel
	B.1.5 The View panel
	B.1.5.1 Scatterplot matrix
	B.1.5.2 Time series plot

	B.1.6 The Flow panel
	B.1.7 Other features
	B.1.7.1 Dataframe visualisation
	B.1.7.2 Logging facilities

	Bibliography

