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Chapter 1

Introduction

The aim of this work is to present a relatively new concept about modifying gravity,

dubbed Mimetic Gravity, arising in the more general framework of Scalar-Tensor-Vector

theories of gravity. Since the first pubblication [1], several authors [2, 3, 4] started to

expand the new idea looking at it from different perspectives and each time finding new

features. In this thesis I offer a review of some articles, presenting the ideas behind

mimetic gravity and then discussing some aspects. The main topic of this thesis fits well

into the so called Horndeski theory of gravity, one of the most general type of scalar-

tensor theory with second-order equations of motions. This framework is usually used

for describing gravitation with some additional degrees of freedom and one of its most

attracting features is that it can accomodate a wide range of classic ideas about General

Relativity and its extensions. For examples Horndeski theory can describe

• GR with a minimally coupled scalar field, the most basic extension with a scalar

degree of freedom. Non minimal couplings (as well as derivative couplings) also

can be accommodated;

• Brans-Dicke theory in which the gravitational coupling to be a function of space-
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6 CHAPTER 1. INTRODUCTION

time coordinates is allowed;

• f(R) gravity, theory for which the Ricci scalar enters the action through a general

function f(R), (as we will see there exists essentially three possibles versions of

f(R) theories);

• covariant Galileon theory, in which the field equations of motions are invariant

under galilean-type 4D transformations (in a flat spacetime);

• Gauss-Bonnet coupling theory in which the action contains scalars build up from

higher rank tensors than the only Ricci tensor Rµν ;

• Inflationary theory from modified GR;

• Dark Matter and Dark Energy modeling, the main topic of this work.

Horndenski theory essentially tells us how to build a general Lagrangian function of the

field φ, its kinetic term X = gµν∂µφ∂νφ plus some geometric scalars coming from ordi-

nary differential geometry. The standard way to proceed is to perturbe a choosen metric

and then look at the cosmological evolution of the perturbations under the influence of

gravity and other added scalar degrees of freedom. A common step is to choose a par-

ticular gauge parameterizing the metric and then perturbing it, restricting the attention

to a particular hypersurface on spacetime, a constant t hypersurface Σt. In the unitary

gauge δφ = 0 the constant time slices can be identified as the constant φ surfaces. On

each slice the only relevant perturbations are those of the metric, the scalar degree of

freedom is ”eaten” by the metric. At the end one wants to calculate the equations of

motions of the perturbed quantity, and also in expanding the action up to second order.

On the surface Σt, an induced metric hµν is defined along with some scalars derived

from its first and second derivative in the usual manner. In all generality one allows

the Lagrangian to be a functional of several scalar quantities related to the geometry



7

of the hypersurface. Once the second-order Lagrangian is calculated, shifting to the

Hamiltonian point of view allows to study the so called ghost and Laplacian instabilities

under which one has a good definition of the energy of the system.

The main topic of this thesis is about a specific conformal extension of General

Relativity following from imposing a functional dependence of the metric on an auxiliary

metric and a scalar field subject to a constraint. Calculations show that Mimetic Gravity

can describe for example Dark Matter alongside with other different cosmological features

as early and late time acceleration.

The work is organized as follows

• in chapter II a brief introduction of the concordance model of Cosmology is given

as well as a brief recall of General Relativity,

• in chapter III we will discuss some well know examples of modified theories of

gravity,

• the Mimetic Gravity model is described in chapter IV,

• chapter V is devoted to a brief recall of the theory of cosmological perturbations,

• in chapter VI conditions for second order equations and absence of Ostrogradski

and Laplacian instabilities are derived and analyzed,

• chapter VII is about Horndeski theory and Disformal transformations,

• the last chapter is devoted to some conclusions.
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Chapter 2

Modern Cosmology

2.1 Standard Model of Cosmology

Modern cosmology relies on the concordance ΛCDM model in addition with some infla-

tionary mechanism in the early universe. Recent results of the Planck mission confirm

our ΛCDM model in which the matter and radiation fractions Ωm and Ωr, the Dark

Energy (DE) fraction ΩΛ and the Dark Matter (DM) fraction Ωdm add up to the total

budget of the universe. The firsts two term are well know, Ωm is given by ordinary

matter clustered as galaxies, stars and planets, Ωr essentially comes from the cosmic

background radiation CMB with mean temperature of T ' 2.7K and fluctuation of or-

der ∆T/T ' 10−5. The total matter contribute is [5] Ωm + ΩDM = 0.3089 ± 0.0062,

while the Dark Energy amount to ΩDE = 0.6911± 0.0062. The radiation fraction Ωr es-

sentially comes from CMB and its contribute is very small compared to the others. The

most enigmatic contributions to the budget are the last two: DE, essentially is telling us

that now our universe is in an accelerated expansion epoch because of something similar

to a cosmological constant Λ, while DM is telling us that there exists some other type

of matter besides the ordinary baryons, that clusters and interacts with ordinary matter

9



10 CHAPTER 2. MODERN COSMOLOGY

only through gravity.

Actually the Standard Model (SM) of particles physic cannot offer a solution in term

of a candidate for such a type of dark components. The only one offered by the SM would

be the neutrino, chargeless and weakly interacting, but it cannot account for the entire

Dark Matter budget for at least two reasons: first it is relativistic and so a neutrino

dominated universe would result in a top-down formation instead of a bottom-up as

observed (first stars, then galaxies and at the end clusters of galaxies) and second it has

a too small mass: in the SM there is no solutions for DM and DE.

ΛCDM and more in general the standard Hot Big Bang model alone cannot resolve

some problems of the early universe. An attempt at an explanation is given by the

Inflationary Model. Developed in the early eighties, it introduces the inflaton, a scalar

field that drives an exponential expansion. Before the introduction of IM there was the

following open problems:

• the horizon problem that can be cast in the following question: Why is the universe

isotropic and homogeneus as stated by the cosmological principle? We have already

said that the universe within small fluctuations have about the same temperature

every where. Moreover even regions of the universe never been in causal contact.

Inflation provides a solution because the comoving Hubble radius rH ∝ 1/aH de-

creases when the scale factor exponentially grows a ∼ eHt (which is when inflation

occours), while it starts to increase at the end of the accelerated period, (here H is

the Hubble parameter). Thus, regions (scales) of the universe that were in causal

contact (thermalized) in the past, can reenter now in our Hubble radius with the

same temperature as the whole universe. In some sense all the properties of the

universe produced during inflation get frozen outside the comoving Hubble radius

until the scale cross again rH today. Homogeneity and isotropy of the universe at
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the largest scales we can see today fix the amount of exponential growth or e-folds

we need to solve the horizon problem at about Ne ∼ 60− 70.

• The flatness problem or why is the universe so flat today? According to the first

Firedmann equation

H2 =
8πG

3
ρ− kc2

a2
,

where H = ȧ/a is the Hubble parameter, ρ is the energy density and k the spatial

curvature (k = 0 corresponds to flat). The amount of spatial curvature of the

Universe depends on the density of matter/energy. The latter equation can be

recast as follows

(Ω−1 − 1)ρa2 = −3kc2

8πG
,

where the right hand side is a constant value and Ω = ρ
ρc

= 8πG
3H2 ρ. The critical

energy density ρc corresponds to a condition for which the Universe is flat (Ω = 1).

In order to compensate the decrease of ρa2 of a factor of 1060 keeping the right hand

side of the equation constant, the quantity (Ω−1 − 1) must have been increased

of the same amount. The problem is that today we observe a universe which is

completely consistent with a flat universe finding [5] Ω = 1.0023+0.0056
−0.0054 and so Ω−1

must have been less than 10−60 at the Planck era. Given that the initial energy

density of the universe could take any value, a fine tuning seems to have taken

place in order to set exactly ρ ' ρc at the beginning. Inflation succeeds in the

solution of this problem because during an inflationary expansion, the scale factor

growing as a ∝ eHt suppresses the curvature term kc2/a2.

• The last issue, is the so called problem of relics or monopoles. In particular the

fact that today we do not observe any of these topological defects. These exotic

entities are extraordinary massive and may be the result of some mechanism of

spontaneous symmetry breaking in the early universe. An inflationary mechanism
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can diluite these defects almost to zero due to the exponential growth of the scale

factor.

A model for inflation is to allow the existence of a scalar field φ, the inflaton, with

equation of state

w = p/ρ =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
.

If the potential V (φ) is set to match the so call slow-roll conditions

1

2
φ̇2 � V (φ), φ̈� ∂V

∂φ
,

then, w ' −1 and one is looking to a quasi-de Sitter solution a(t) ' eHt. This can

happen for example if the potential V (φ) is sufficiently flat. Over the years, different

types of potential were studied each one proposed with different motivations. As quoted

on [6] the Planck full mission temperature and polarization data are consistent with the

spatially flat base ΛCDM model, whose perturbations are Gaussian and adiabatic with

a spectrum described by a simple power law, as predicted by the simplest inflationary

models.

On the other hand, ΛCDM with the addition of inflation tell us that there exists a

dark sector without giving any explanation about DM and DE. In order to have some

insight into Dark Energy and Dark Matter, essentially there are two ways of reasoning:

adding some scalar fields or instead try to modify Einstein Gravity.

2.2 The Action of General Relativity

The mathematical background of General Relativity, (GR), is given by Riemmanian

Geometry that provides the concept of metric gµν(xα) from which one can build the line

element

ds2 = gµνdx
µdxν . (2.1)
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The geometric object gµν , a rank-two symmetric tensor, is the dynamical tensor field

that propagates the gravitational interaction.

Taking into account that in general a manifold M is not flat, the common way to

define the derivative concept on M is to appeal to the so called Christoffel connection

1-form

Γ = Γαβ = Γαµβdx
µ, (2.2)

a non-tensorial object defining parallel transport of vectors between points on the man-

ifold. From the latter it follows that the definition of covariant derivative acting on a

vector is given by

∇µV ν = ∂µV
ν + ΓνµαV

α. (2.3)

Such a connection is called Levi-Civita connection if it covariantly conserves the metric

∇αgµν = 0, (2.4)

while it is called torsion-free if

Γα[µν] = 0. (2.5)

The first relation completely determines the connection as a function of first derivatives

of the metric, while the second implies the symmetry of the connection with respect to

its two lower indices. Equation (2.4) fixes the form of the connection as a function of

the metric and its first derivative as

2Γαµβ = gατ (∂µgτβ + ∂βgµτ − ∂τgµβ). (2.6)

Starting from a 1-form there are two natural way to build a 2-form, namely the exterior

derivative of a 1-form and the product of two 1-forms. In this way the curvature 2-form

is defined

R = Rα
β = dΓαβ + (Γ2)αβ = (∂µΓανβ + ΓαλµΓλνβ)dxµdxν =

1

2
Rαβµνdx

µdxν , (2.7)
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where Rαβµν is the Riemann tensor whose components are given by antisymmetrizing the

wedge product indices. The Ricci tensor is defined as Rβν = Rαβαν while the Ricci scalar

R = gβνRβν is the trace of the latter.

Under a generic coordinate transformation x 7→ x′(x) differents objects trasforms

differentely: a scalar remains unchanged

φ′(x′) = φ(x), (2.8)

a contravariant vector transforms like

V ′µ(x′) =
∂x′µ

∂xα
V α(x), (2.9)

instead a covariant vector

V ′µ(x′) =
∂xα

∂x′µ
Vα(x), (2.10)

a mixed tensor trasforms like

T ′µνσ (x′) =
∂x′µ

∂xα
∂x′ν

∂xβ
∂xγ

∂x′σ
Tαβγ (x) (2.11)

and finally a tensor density of weight W transforms as

t′µν =
∣∣∣∂x′
∂x

∣∣∣W ∂x′µ

∂xα
∂x′ν

∂xβ
tαβ(x) (2.12)

where
∣∣∣∂x′∂x ∣∣∣ is the Jacobian of the transformation x 7→ x′. It is easy to see that the

determinant of the metric g = det gµν transform as g 7→ g′ =
∣∣∣∂x′∂x ∣∣∣−2

g and so it is a

tensor density of weight W = −2. On the other hand the volume element of integration

transforms as d4x′ =
∣∣∣∂x′∂x ∣∣∣d4x, hence the measure

d4x
√
−g (2.13)

is invariant.
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Using the invariant volume element and the Ricci scalar, the gravity action can be

written as

SEH =
1

2

∫
d4x
√
−gR, (2.14)

the Einstein-Hilbert action. Taking its variation and imposing δSEH = 0, one obtains

the Einstein Field equations in vacuum

Gµν ≡ Rµν −
1

2
gµνR = 0. (2.15)

In fact, taking the variation we get

δSEH =
1

2

∫
d4xδ(

√
−g)R+

√
−gδR (2.16)

and taking into account the following definition

g = det gµν = etr(log gµν) ⇒ δg = ggµνδgµν = −ggµνδgµν , (2.17)

the variation of the action reads

δSEH =
1

2

∫
d4x
√
−g
(
− 1

2
Rgµνδg

µν + δgµνRµν + gµνδRµν

)
. (2.18)

The term proportional to δRµν vanish upon integration by virtue of Gauss’ theorem

since δΓ → 0 at the boundary1, while collecting the terms proportional to δgµν one

recovers equation (2.15). In presence of matter one has to include the matter action

SM =
∫
d4x
√
−gLM alongside the Einstein-Hilbert action SEH . Using the definition of

the stress-energy tensor

Tµν = − 2√
−g

δSm
δgµν

, (2.19)

one finds that Einstein field equations read

Gµν − Tµν = 0, (2.20)

1This is true if one postulates also that δ∂αg
µν → 0 besides δgµν → 0 at the boundary.
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where Gµν = Rµν − 1
2Rgµν is the Einstein tensor, build with at most second derivatives

of the metric.

As mentioned, the quantity δRµν vanishes upon integration due to Gauss’ theorem.

In fact it can be written in term of a total derivative. Using the definition of the Ricci

tensor Rµν = Rαµαν we see from (2.7) that

δRµν = ∂αδΓ
α
µν − ∂νδΓαµα + δΓαµνΓβαβ + ΓαµνδΓ

β
αβ − δΓ

β
ναΓαβµ − ΓβναδΓ

α
βµ (2.21)

and recalling the definition of the covariant derivative this last equation can be written

as

δRµν = ∇αδΓαµν −∇νδΓαµα (2.22)

often called Palatini identitiy. Taking into account that the metric is covariantely con-

served, equation (2.21) can be put in the following form

√
−ggµνδRµν =

√
−g[∇α(gµνδΓαµν)−∇ν(gµνδΓαµα)]. (2.23)

Using the definition of the Christoffel symbols it is easy to show that

Γααβ =
1

2
gατ∂βgατ = ∂β(ln

√
−g) =

1√
−g

∂β
√
−g, (2.24)

then the covariant four-divergence of a four-vector can be written as

∇αV α = ∂αV
α + ΓααβV

β =
1√
−g

∂α(
√
−gV α) (2.25)

and so ∫
d4x
√
−ggµνδRµν =

∫
M

d4x ∂α(
√
−gV α) =

∫
∂M

dΣα(
√
−gV α) (2.26)

where

V α = gµνδΓαµν − gµνδΓαµα, (2.27)

while dΣα is the infinitesimal element of a three-dimensional hypersurface. With this

result we can conclude that the contribution to the variation of the action due the
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variation of the Ricci tensor can be put in the form of a total four divergence and so it

vanishes at the boundary ∂M if one imposes δΓ→ 0 on ∂M.
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Chapter 3

Modified Gravity

There are basically two approaches for the construction of models for the dark compo-

nents. In order to describe DM, a possible approach is based on modified matter models

in which the energy-momentum tensor Tµν on the r.h.s. of the Einstein equations con-

tains an exotic matter source. The second approach, historically used in order to describe

DE, is based on modified gravity models in which the l.h.s. of the Einstein equations is

modified. It is however important to realize that within General Relativity this division

is mostly a practical way to classify the variety of dark energy models but, in general,

does not carry a fundamental meaning. One can write down Einstein’s equations in the

standard form Gµν = 8πGTµν by absorbing in Tµν all the gravity modifications that one

conventionally puts on the l.h.s. This is not always true when dealing with action with

higher-order derivatives terms. As we will see in the next chapter, Mimetic Gravity is

one of the few models that can accomodate both DM and DE.

19
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3.1 Dark Energy as a modified form of matter

3.1.1 Quintessence

Historically, quintessence was thought as a canonical scalar field φ with a potential V (φ)

responsible for the late-time cosmic acceleration. Unlike the cosmological constant, the

equation of state of quintessence dynamically changes with time and the cosmological

evolution can be easily understood by a dynamical system approach. In these models

it is important the existence of the so called tracker fields solutions that correspond

to attractor-like solutions in which the field energy density tracks the background fluid

density for a wide range of initial conditions. We use the term “quintessence” to denote

a canonical scalar field φ with a potential V (φ) that interacts with all the other compo-

nents only through standard gravity. Following [7], the quintessence model is therefore

described by the action

S =

∫
d4x
√
−g
[ R

2κ2
− 1

2
gµν∂µφ∂νφ− V (φ)

]
+ Sm, (3.1)

where Sm is the matter action and κ2 = 8πG; κ ≡ 1 in most of what follows. One finds,

as in the case of inflation, that the equation of state reads

wφ =
pφ
ρφ

=
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
, (3.2)

while the Klein-Gordon field equation for φ can be written as

φ̈+ 3Hφ̇+
∂V

∂φ
= 0. (3.3)

During radiation- or matter-dominated epochs, the energy density ρM of the fluid dom-

inates over that of quintessence, i.e. ρM � ρφ. We require that ρφ tracks ρM so that

the dark energy density emerges at late times. Whether this tracking behavior occurs

or not depends on the form of the potential V (φ). If the potential is steep so that the

condition φ̇2 � V (φ) is always satisfied, the field equation of state is given by wφ ∼ 1.
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In this case the energy density of the field evolves as ρφ ∝ a−6, which decreases much

faster than the background fluid density. From Einstein equations one sees that in order

to realize the late-time cosmic acceleration the condition wφ < −1/3 must hold, this

translates into the condition φ̇2 < V (φ). Hence the scalar potential needs to be shallow

enough for the field to evolve slowly along the potential.

This situation is similar to that in inflationary cosmology and it is convenient to

introduce the slow-roll parameters

ε =
1

2κ2

(V,φ
V

)2
, η =

V,φφ
κ2V

. (3.4)

It is easy to see that if the conditions ε � 1 and |η| < 1 hold, then φ̇2 � V (φ) and

|φ̈| � 3Hφ̇. Defining ξ = |φ̈|/3Hφ̇, the deviation of wφ from −1, when ξ � 1, can be

written [7] in terms of ε

1 + wφ =
V 2
,φ

9H2(ξ + 1)2ρφ
∼ 2

3
ε (3.5)

neglecting the matter fluid in Einstein equations, (i.e. 3H2 ∼ κ2V (φ)).

So far many quintessence potentials have been proposed. Roughly speaking they

have been classified into freezing models and thawing models. In the former case the

field was rolling along the potential in the past, but the movement gradually slows down

after the system enters the phase of cosmic acceleration. The representative potentials

that belong to each class are

freezing model V (φ) = M4+nφ−n, n > 0 and V (φ) = M4+nφ−neαφ
2/m2

pl ,

thawing model V (φ) = V0M
4−nφn, n > 0 and V (φ) = M4 cos (φ/f).

The first of the two potentials do not posses a minimum and so the field rolls down the

potential toward infinity while the second potential has a minimum (in which wφ = −1)

and eventually the field gets trapped in it. The second class describes a field with mass
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mφ that has been frozen by Hubble friction Hφ̇ until recently when H drops below mφ

and begins to evolve.

3.1.2 k-essence

Quintessence is based on scalar field models using a canonical field with a slowly varying

potential. It is known however that scalar fields with non-canonical kinetic terms often

appear in the context of inflation [8]. The same idea applied to DE led to classes of

modified matter models such as k-essence among the others. The action for such models

is in general given by

S =

∫
d4x
√
−g
[ R

2κ2
+ P (φ,X)

]
+ Sm, (3.6)

where P is a function of the field and its kinetic energy X = −1
2g
µν∂µφ∂νφ. The central

point is that cosmic acceleration can be realized by the kinetic energy X of the field φ.

k-essence models are based on the assumption that

P = K(φ)X + L(φ)X2, (3.7)

in which the kinetic part allows a functional dependence by φ other than that of X.

These models are usually motivated by low-energy effective string theory [9]. It can be

shown that the equation of state of k-essence is

wφ =
pφ
ρφ

=
p

2Xp,X − p
(3.8)

and, as long as the condition |2Xp,X | � |p| is satisfied, wφ can be arbitrarily close to

−1.

Another example is that of Phantom or ghost condensate models that are described

by a non canonical kinetic term with the opposite sign of the canonical one, K(φ) =

−1 and using L(φ) = M−4. However the phantom field is plagued by severe ultra-

violet quantum instabilities because its energy density is not bounded from below. The
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equation of state in this case reads

wφ =
1−X/M4

1− 3X/M4
(3.9)

which gives −1 < wφ < −1/3 for 1/2 < X/M4 < 2/3. Another example of such class of

models is given by the dilatonic ghost condensate model in which L(φ) = eκλφ/M4 that

arises as a dilatonic higher-order correction to the tree-level string action [7].

In k-essence it can happen that the linear kinetic energy in X has a negative sign.

Such a field, called phantom or ghost scalar field, suffers from a quantum instability

problem unless higher-order terms in X or φ are taken into account in the Lagrangian

density. In the (dilatonic) ghost condensate scenario it is possible to avoid this quantum

instability by the presence of the term X2. Stability conditions of k-essence can be found

by considering small fluctuations δφ of the field φ about a background value φ0 solution

in the FLRW spacetime. The expansion of the Lagrangian up to second order allows

one to write the perturbed Hamiltonian density that in this case reads [7]

δH = (p,X + 2p,XX)( ˙δφ)2/2 + p,X(∇δφ)2/2− p,φφ(δφ)2/2. (3.10)

The positive definiteness of the Hamiltonian is guaranteed if the following conditions

holds

E1 = p,X + 2p,XX ≥ 0, E2 = p,X ≥ 0, E3 = −p,φφ ≥ 0. (3.11)

These two conditions prevent an instability related to the presence of negative energy

ghost states. If these conditions are violated, the vacuum is unstable under a catastrophic

production of ghosts. The production rate from the vacuum is proportional to the phase

space integral on all possible final states. Since only a UV cut-off can prevent the

creation of modes of arbitrarily high energies, this is essentially a UV instability. The

phantom model with the Lagrangian density P (φ,X) = −X − V (φ) violates both the

first two conditions, which means that its vacuum is unstable. Taking into account
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higher-order terms such as X2 in P (φ,X), it is possible to avoid the quantum instability

mentioned above. Let us consider the dilatonic ghost condensate model with K(φ) = −1

and L(φ) = eκλφ/M4. It can be shows that the quantum instability is ensured for

eκλφ/M4 ≥ 1/2 and in this case wφ ≥ −1. The instability prevented by the last condition

in (3.11) is of the tachyonic type and generally much less dramatic (infra-red (IR) type)

as long as the two first conditions are satisfied.

3.2 Dark components as a modification of gravity

3.2.1 f(R) theories of Gravity

Another class of modifications of the Einstein theory of gravitation results from the so

called f(R) theories in which the Einstein-Hilbert action generalizes to a function of the

Ricci scalar ∫
d4x
√
−gR+ Sm →

∫
d4x
√
−gf(R) + Sm,

in which one thinks f(R) as a power expansion in R as f(R) =
∑

k αkR
k. Essentially

there exist three types of f(R) gravity:

metric f(R) gravity theory with an action depending on the metric through the func-

tion f(R);

Palatini f(R) gravity , extension of the latter in which one promotes the connection

Γ to a dynamical field;

metric-affine f(R) gravity , the most general case in which one allows also the matter

action Sm to be a function of the new Γ field.

Having f(R) in place of R implies a modification of the field equations in which the

possibility of describing accelerated expansion emerges. Variation of the action with
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respect to gµν gives the following equations of motion

F (R)Rµν(g)− 1/2f(R)gµν −∇µ∇νF (R) + gµν�F (R) = Tµν , (3.12)

where

F (R) =
∂f

∂R
≡ fR

and Tµν is the matter energy momentum tensor. The trace of equation 3.12 is

3�F (R) + F (R)R− 2f(R) = T = gµνTµν = −ρ+ 3p (3.13)

where ρ and p are the energy density and pressure of the matter field. If, on the other

hand, one thinks - as in the Palatini formalism - the connections Γ as independent fields,

the following field equations hold

F (R)Rµν(Γ)− 1/2f(R)gµν = Tµν (3.14)

and

Rµν(g)− 1/2gµνR(g) = Tµν/F − gµν(FR(T )− f)/2F + (∇µ∇νF − gµν�F )/F+

− 3(∂µF∂νF − 1/2gµν(∇F )2)/2F 2. (3.15)

when the action is varied with respect to the metric and the independent connection

respectively. The trace of (3.14) is

F (R)R− 2f(R) = T. (3.16)

In General Relativity f(R) = R − 2Λ and F (R) = 1, so that the term �F (R) in (3.13)

vanishes. In this case both the metric and the Palatini formalisms give the relation

R = −2T = (ρ− 3p), which means that the Ricci scalar R is directly determined by the

matter (the trace T ). In modified gravity models where F (R) is a function of R, the term

�F (R) in general does not vanish. This means that, in the metric formalism, there is a
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propagating scalar degree of freedom, φ = F (R). The trace of equation (3.13) governs

the dynamics of the scalar field φ (dubbed “scalaron”). In the Palatini formalism the

kinetic term �F (R) is not present in equation (3.16), which means that the scalar-field

degree of freedom does not propagate freely.

3.2.2 Brans–Dicke theory and Scalar-Tensor theories

As we have seen in the last section, most models of dark energy rely on scalar fields.

Scalar fields have a long history in cosmology, starting from Brans–Dicke theory in which

gravity is mediated by a scalar field in addition to the metric tensor field. Brans–Dicke

theory was an attempt to revive Mach’s principle (according to which inertia arises when

a body is accelerated with respect to the global mass distribution in the Universe) by

linking the gravitational constant to a cosmic field. At the same time, Brans–Dicke

theory incorporated Dirac’s suggestion that the gravitational constant G varies in time.

Brans–Dicke theory is just a particular example of scalar-tensor theories. These are

probably the simplest example of modified gravity models and as such one of the most

studied alternatives to General Relativity.

The action for scalar-tensor theories in presence of matter field is given by

S =

∫
d4x
√
−g
[1

2
f(φ,R)− 1

2
ζ(φ)(∇φ)2

]
+ Sm[gµν ,Ψm] (3.17)

where f is a general function of the scalar field φ and the Ricci scalar R, ζ is a function of

φ, and Sm is the matter Lagrangian that depends on the metric gµν and matter fields Ψm.

The latter action includes a wide variety of theories such as f(R) gravity, Brans–Dicke

theory, and dilaton gravity. f(R) gravity corresponds to the choice f(φ,R) = f(R) and

ζ = 0. The action of Brans–Dicke theory is written with f = φR and ζ = ωBD/φ,

where ωBD is called ”Brans–Dicke parameter”. One can generalize Brans–Dicke theory

by adding the field potential U(φ) to the original action, i.e. f = φR − 2U(φ) and ζ =
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ωBD/φ. The dilaton gravity arising from low-energy effective string theory corresponds

to f = 2e−φR−2U(φ) and ζ(φ) = −2e−φ, where we have introduced the dilaton potential

U(φ). The action (3.17) can be transformed to the Einstein frame under a conformal

transformation with the choice

Ω2 = F ≡ ∂f

∂R
. (3.18)

It have been shown that f(R) theory in the Palatini formalism corresponds to the gen-

eralized Brans–Dicke theory with ωBD = −3/2.

3.2.3 Gauss-Bonnet gravity

The f(R) and scalar-tensor theories add to the gravitational tensor field a new degree

of freedom, a scalar field. However this certainly does not exhaust the range of possible

modifications of gravity. One possibility is to add vector fields. Another one is to add

to the Einstein Lagrangian general functions of the Ricci and Riemann tensors, e.g.,

f(R,RµνR
µν , RµναβR

µναβ , . . . ). However these Lagrangians are generally plagued by

the existence of ghosts, i.e. the existence of negative energy states. Even besides the

quantum problems, this generally implies classical instabilities either at the background

or at the perturbed level. There is however a way to modify gravity with a combination

of Ricci and Riemann tensors that keeps the equations at second-order in the metric

and does not necessarily give rise to instabilities, namely a Gauss–Bonnet (GB) term

coupled to scalar field(s). The GB term is a topological invariant quantity. It is the

unique invariant for which second derivative occurs linearly in the equations of motion,

thereby ensuring the uniqueness of solutions. Moreover, it is worth noticing that the

GB term naturally arises as a correction to the tree-level action of low-energy effective

string theory [9, 10]. A formulation of the model is based on the following action

S =

∫
d4x
√
−g
[1

2
R− 1

2
(∇φ)2 − V (φ)− f(φ)R2

GB

]
+ Sm[gµν ,Ψm] (3.19)
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where

R2
GB = R2 − 4RµνR

µν +RµναβR
µναβ (3.20)

is the Gauss-Bonnet term. The action corresponds to the Einstein frame action in which

the scalar field φ does not have a direct coupling to the Ricci scalar R.

3.3 Dynamical system approach

A dynamical system which plays an important role in cosmology belongs to the class of

so called autonomous systems. For simplicity we shall study the system of two first-order

differential equations, but the analysis can be extended to a system of any number of

equations. Let us consider the following coupled differential equations for two variables

x(t) and y(t)

ẋ = f(x, y, t), ẏ = g(x, y, t), (3.21)

where f and g are the functions in terms of x, y and t. The latter system is said to be

autonomous if f and g do not contain explicit time-dependent terms. The dynamics of

the autonomous systems can be analyzed in the following way. A point (xc, yc) is said

to be a fixed point or a critical point of the autonomous system if (f, g)(x = xc) = 0. A

critical point (xc, yc) is called an attractor when it satisfies the condition

(x(t), y(t))→ (xc, yc) for t→∞. (3.22)

We can find whether the system approaches one of the critical points or not by studying

the stability around the fixed points. Let us consider small perturbations δx and δy

around the critical point (xc, yc), i.e.,

x = xc + δx, y = yc + δy. (3.23)
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Then substituting into Eqs. (3.21) leads to the first-order differential equations

d

dN

δx
δy

 = J

δx
δy

 , (3.24)

where N = ln a is the number of e-folding which is convenient to use for the dynamics.

The Jacobian J evaluated at the critical point gives information about the stability of

the critical point itself. The matrix possesses two eigenvalues µ1 and µ2. The general

solution for the evolution of linear perturbations can be written as

δx = C1e
µ1N + C2e

µ2N , δy = C3e
µ1N + C4e

µ2N (3.25)

where C1, C2, C3, C4 are integration constants. Thus the stability around the fixed

points depends upon the nature of the eigenvalues. One generally uses the following

classification

Stable node: µ1 < 0 and µ2 < 0

Unstable node: µ1 > 0 and µ2 > 0

Saddle point: µ1 < 0 and µ2 > 0 or µ1 > 0 and µ2 < 0

Stable spiral: the determinant of the matrix is negative and the real parts of the

eigenvalue µi are negative.

A critical point is an attractor in the first and in the last cases but not in the second

two cases. In the following two subsections two examples of dynamical system approach

are shown in the case of quintessence and in the case of a dilatonic ghost condensate

models.

3.3.1 Quintessence

For the quintessence model let’s define

x1 =
κφ̇√
6H

, x2 =
κ
√
V√

3H
, (3.26)
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then Ωm = κ2ρm
3H2 can be espressed as

Ωm = 1− x2
1 − x2

2. (3.27)

We also define the energy fraction of dark energy

Ωφ ≡
κ2ρφ
3H2

= x2
1 + x2

2 (3.28)

which satisfies the relation Ωm + Ωφ = 1. Deriving the Einstein equations in this model,

leads to the following equation

Ḣ/H2 = −3x2
1 − 3/2(1 + wm)(1− x2

1 − x2
2). (3.29)

In this case the effective state equation reads weff = wm+(1−wm)x2
1−(1+wm)x2

2. The

equation of state of the quintessence field reads wφ =
x21−x22
x21+x22

. It can be show that the

autonomous dynamical system associated with the described quintessence model reads

dx1

dN
= −3x1 +

√
6λx2

2/2 + 3x1/2[(1− wm)x2
2 + (1 + wm)(1− x2

2)]

dx2

dN
= −
√

6λx1x2 + 3x2/2[(1− wm)x2
1 + (1 + wm)(1− x2

2)], (3.30)

where λ = −V,φ/κV characterizes the slope of the field potential and obeys the following

equation

dλ

dN
= −
√

6λ2(Γ− 1)x1, (3.31)

where Γ = V V,φφ/V
2
,φ.

If λ is constant, the integration of equation (3.31) yields an exponential potential

V (φ) = V0e
−κλφ,

that corresponds to Γ = 1. In this case the autonomous equations (3.30) are closed. The

cosmological dynamics can be well understood by studying fixed points of the system.

If Γ is constant but λ is not, we have to solve equations (3.30) and (3.31). For the
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power-law potential, V (φ) = M4+nφ−n (n > 0, φ > 0), we have that Γ = (n+ 1)/n > 1

and x1 > 0, in which case the quantity λ(> 0) decreases. Of course, for general field

potentials, Γ is not necessarily constant. In such cases we need to obtain the field φ as a

function of N together with the use of the relation κ
√
V =

√
3Hx2. Then the evolution

of the variable λ = λ(φ) is known accordingly. We can derive fixed points of the system

by setting dx1/dN = dx2/dN = 0. The fixed points are in general the solution of the

dynamical system and give a first qualitative description of the phase space. As we

discuss below they can be classified according to their stability properties. If there are

no singularities or strange attractors, the trajectories with respect to x1(N) and x2(N),

in general to be obtained numerically, run from unstable fixed points to stable points,

coasting along “saddle” points. When λ is constant they are found to be the five points:

• the matter dominated critical point a = (0, 0) corresponding to

Ωm = 1 ,Ωφ = 0 , weff = wm , wφ undefined,

• points b1 = (1, 0) and b2 = (−1, 0) in which Ωφ = 1, weff = wφ = 1, for them

the kinetic energy of quintessence is dominant in which case ρφ decreases rapidly

ρφ ∝ a−6 relative to the background density,

• the scalar field dominated critical point c = (λ/
√

6, [1 − λ2/6]1/2), where Ωφ = 1,

weff = wφ = −1 + λ2/3 existing if λ2 < 6, the cosmic acceleration is realized if

weff < −1/3, i.e. λ2 < 2. the limit λ → 0, (V (φ) → V0), corresponds to the

equation of state of a cosmological constant weff = wφ = −1.

• the last critical point d = (
√

3/2(1 + wm)/λ, [3(1 − w2
m)/2λ2]1/2) is the so-called

tracker solution for which the ratio Ωφ/Ωm is a non-zero constant and Ωφ = 3(1 +

wm)/λ2; this scaling solution exist when λ2 > 3(1 + wm) following from Ωφ < 1.
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Since wφ = wm for scaling solutions, it is not possible to realize cosmic acceleration

unless the matter fluid has the unusual state equation wm < −1/3..

If the determinant of the Jacobian vanishes, the system becomes effectively one-dimensional

around the fixed point. This classification can be extended to more dimensions: a fixed

point is stable if all the real parts of the eigenvalues are negative, unstable if they are

all positive, and a saddle when there are negative and positive real parts. If an eigen-

value vanishes then the stability can be established expanding to higher orders. In the

realistic case in which the equation of state of the fluid is in the region 0 ≤ wm < 1, the

eigenvalues and the nature of the above fixed points are those in table (3.1)

a b1 b2

−3
2(1− wm) 3−

√
6

2 λ 3 +
√

6
2 λ

3
2(1 + wm) 3(1− wm) 3(1− wm)

saddle unstable for λ <
√

6 unstable for λ > −
√

6

saddle for λ >
√

6 saddle for λ < −
√

6 saddle for 3(1 + wm) < λ2 < 6

c d

1
2(λ2 − 6) −3(1−wm)

4 (1 +
√
I)

λ2 − 3(1 + wm) −3(1−wm)
4 (1−

√
I)

stable for λ2 < 3(1 + wm) saddle for λ2 < 3(1 + wm)

stable for 3(1 + wm) < λ2 < 6 stable for 3(1 + wm) < λ2 < η

stable spiral if λ2 > η

Table 3.1: Eigenvalues of critical points for a quintessence model. η = 24(1+wm)2

7+9wm
and

I = 1−
√

8(1+wm)[λ2−3(1+wm)]
λ2(1−wm)

.
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The radiation (w = 1/3) and matter (w = 0) dominated epochs can be realized either

by the point (a) or (d). When λ2 > 3(1 +wm) the solutions approach the stable scaling

fixed point (d) instead of the point (a). In this case, however, the solutions do not exit

from the scaling era (Ωφ = constant) to connect to the accelerated epoch. In order to

give rise to tracking behavior in which Ωφ evolves to catch up with Ωm, we require that

the slope of the potential gradually decreases. This can be realized by the field potential

in which λ gets smaller with time (such as V (φ) = M4+nφ−n). The point (c) is the

only fixed point giving rise to a stable accelerated attractor for λ2 < 2. When λ2 < 2, a

physically meaningful solution (d) does not exist because Ωφ > 1 for both radiation and

matter fluids. In this case the radiation-and matter-dominated epochs are realized by

the point (a). Note that when λ is close to 0 the solution starting from the point (a) and

approaching the point (c) is not much different from the cosmological constant scenario.

Nevertheless, since the equation of state of the attractor is given by wφ = −1 +λ2/3, we

can still find a difference from wφ = −1.

In figure (3.1) a plot of the trajectories of solutions in the (x1, x2) plane for λ = 1

and wm = 0. Since Ωm ≥ 0 in equation (3.28), the allowed region corresponds to

0 ≤ x2 ≤
√

1− x2
1. The kinetic-energy-dominated points (b1) and (b2) are unstable in

this case. Since the matter point (a) is a saddle, the solutions starting from x2 � 1

temporarily approach this fixed point. The trajectories finally approach the accelerated

fixed point (c), because this is stable for λ2 < 3.

3.3.2 k-essence example: dilatonic ghost field condensate

Let us consider the cosmological dynamics of the dilatonic ghost condensate model with

P = −X + eκλφX2/M4
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Figure 3.1: The trajectories of solutions for the exponential potential V = V0e
−κλφ with

model parameters λ = 1 and wm = 0. The attractor is the accelerated point c, the

matter point a is a saddle whereas b1 and b2 are unstable nodes. The thick curve is the

border of the allowed region characterized by x2 =
√

1− x2
1.
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in the flat FLRW background. As a matter fluid we take into account both non-

relativistic matter (energy density ρm) and radiation (energy density ρr). As before,

fields equations can be written in terms of several quantities related to the physical

ones, then we hve the following definitions

x1 =
κφ̇√
6H

, x2 =
φ̇2eκλφ

2M4
, x3 =

κ
√
ρr√

3H
. (3.32)

The autonomous system of equations in the case of k-essence is

dx1

dN
= −x1

6(2x2 − 1) + 3
√

6λx1x2

6(2x2 − 1)
+
x1

2
(3− 3x2

1 − 3x2
1x2 + x2

3), (3.33)

dx2

dN
= x2

3x2(4−
√

6x1)−
√

6(
√

6− λx1)

(1− 6x2)
, (3.34)

dx3

dN
=
x3

2
(−1− 3x2

1 + 3x2
1x2 + x2

3), (3.35)

together with

weff = −1− 2Ḣ

3H2
= −x2

1 + x2
1x2 + x2

3/3,

wφ = pφ/ρφ =
1− x2

1− 3x2
,

Ωφ = −x2
1 + 3x2

1x2,

Ωr = x2
3

and

Ωm = 1− Ωr − Ωφ.

Quantum stability can be achieved if x2 ≥ 1/2. There are essentially three critical points:

the radiation point r = (0, 1/2, 1) with weff = 1/3, wφ = −1, Ωr = 1 and Ωφ = Ωm = 0,

the matter point m = (0, 1/2, 0) with weff = 0, wφ = −1 Ωφ = Ωr = 0 and Ωm = 1 and

then the accelerated critical point

a = (−
√

6λf−(λ)/4, 1/2 + f+(λ)/16, 0)
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where

f±(λ) = 1±
√

1 + 16/(3λ2).

The point a satisfies weff = wφ = −8+λ2f+
8+λ2f+

, Ωφ = 1 and Ωr = Ωm = 0. Cosmic

acceleration occurs for −1 ≤ weff < −1/3 which translates into the condition 0 ≤

λ <
√

6/3. There is another critical point but it lies on the quantum instability region

corresponding to a phantom equation of state wφ < −1. In figure (3.2) a plot of the

cosmological evolution of the dilatonic ghost condensate model with λ = 0.2 is given.

The initial conditions at the radiation era are chosen to be close to the radiation point r

with x2 > 1/2. Finally we recall that the sound speed of the dilatonic ghost condensate

model is smaller than the speed of light and it is given by

c2
s =

2x2 − 1

6x2 − 1
(3.36)

and the condition for the existence of the late-time accelerated point gives

0 ≤ c2
s < 1/3

and thus this model does not violate causality.
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Figure 3.2: Evolution of Ωm, Ωr, Ωφ, weff and wφ for the dilatonic ghost condensate

model with λ = 0.2 versus redshift z.
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Chapter 4

Mimetic Gravity

4.1 Mimetic Gravity

It was recently shown [1, 2], that allowing the physical metric ḡµν to be a function of an

auxiliary metric gµν and of a scalar field φ via the relation

ḡµν = (gαβ∂αφ∂βφ)gµν = Pgµν (4.1)

it is possible to describe a wide variety of gravitational phenomena. Such a theory is

clearly Weyl invariant, because a rescaling

gµν 7→ Ω2gµν (4.2)

would preserve the physical metric ḡµν that is a function of the auxiliary metric and its

inverse.

Taking the variation of the Einstein-Hilbert action in the presence of matter

SEH
(
ḡµν(gµν)

)
+ SM (4.3)

with respect to the metric defined by (4.1), we find

Gµν − TµνM − (G− TM )ḡµαḡνβ∂αφ∂βφ = 0, (4.4)

39
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where G− TM = tr(Gµν − TµνM ). This result can be obtained after noting that

δḡµν = δPgµν + Pδgµν = (δgαβ∂αφ∂βφ+ 2gαβ∂αδφ∂βφ)gµν + Pδgµν (4.5)

and after restoring the relation between the physical and the auxiliary metrics, in fact

from (4.1) follows that

ḡµν = P−1gµν .

In this case, in contrast to standard GR, even when matter is absent TM ≡ 0, one

find a contribute to the right hand side of the Einstein field equations, given by

Gḡµαḡνβ∂αφ∂βφ. (4.6)

This term, as we will see, can be identified with the energy-momentum tensor of some

kind of fluid. Moreover, the relation between the physical metric and the auxiliary imply

the existence of the constraint

P = gαβ∂αφ∂βφ = P ḡαβ∂αφ∂βφ (4.7)

or

ḡαβ∂αφ∂βφ = 1, (4.8)

which tells us that the relatives Einstein equations (4.4) are traceless. It is important

to stress that the scalar field of the mimetic model it is a different entity respect to

others scalar fields introduced by other existing tensor-scalar theories. In fact, due to

the conformal symmetry, the scalar degree of freedom in (4.1) is equivalent to the scaling

factor up to an integrating constant, and thus it is not a new dynamical degree of freedom

[1]. The existence of the constraint (4.8), as suggested in [2], encourages to employ the

constraint (4.8) as Lagrange multipliers inside the usual Einstein-Hilbert action.
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4.1.1 Action and equations of motion of Mimetic Matter

Employing the constraint in the action and generalizing it by adding also a potential

V (φ), results in the following action

Sλ =

∫
d4x
√
−g
(R

2
− λ(gαβ∂αφ∂βφ− 1) + V (φ) + LM

)
. (4.9)

Taking variation of the latter with respect to the Lagrange multiplier leads to the con-

straint (4.8). Using the constraint in the calculation of the variation of Sλ with respect

to the metric brings the Einstein type equations in the following form

Gµν = TMµν + 2λ∂µφ∂νφ+ gµνV (φ) ≡ TMµν + Tmimetic
µν . (4.10)

The equation of motion of φ follows if instead we vary the action with respect to φ.

After an integration by parts the quantity∫
d4x
√
−ggαβ

(
2λ∂αδφ∂βφ− ∂φV δφ

)
, (4.11)

gives

∇β(2λ∂βφ) = −∂φV (φ), (4.12)

where 2λ is fixed by the trace of equation (4.10)

2λ = G− T − 4V. (4.13)

Comparing Tmimetic
µν in (4.10) with the energy-momentum tensor of a perfect fluid

T p.fluid
µν = (ρ+ p)uµuν − pgµν , (4.14)

we can conclude that we are in the presence of a perfect fluid with energy density and

pressure density given by

ρ = G− T − 3V, p = −V, (4.15)

while the normalized four velocity is uµ = ∂µφ, the normalization condition being the

constraint.
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4.1.2 Cosmological Solutions

Equation (4.8) completely determines the form of the field φ and for a FLRW metric

φ = ±t+ const. ≡ t (4.16)

clearly is a solution. With this result, the equation of motion (4.12) of φ simplifies a lot.

In fact for a flat isotropic and homogeneous universe described by the diagonal metric

ds2 = dt2 − a3(t)δijdx
idxj , (4.17)

the only contribution to it is given by

1√
−g

d

dt

(√
−g(ρ− V )φ̇

)
= −V̇ . (4.18)

Integration of the latter equation gives

ρ =
3

a3

∫
da a2V +

const.

a3
, (4.19)

that is the energy density as a function of the potential. The contribute of the integration

constant reproduce the typical dust-type contribution given by this mimetic fluid.

In the case that the metric is (4.17) and the stress-energy tensor is that of this mimetic

fluid, then the only relevant parts of the Ricci tensor are only along the diagonal, i.e.

R0
0 = 3

ä

a
, Rij =

( ä
a

+ 2
ȧ2

a2

)
δij (4.20)

while the Ricci scalar is

R = 6
( ä
a

+
ȧ2

a2

)
. (4.21)

Differentiating the Hubble parameter with respect to time one has

Ḣ =
ä

a
−H2 (4.22)

and so the time-time component of the Einstein equations become

H2 =
1

3
ρ (4.23)
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while the space-space component reads

2Ḣ + 3H2 = V. (4.24)

At this point, solving these two last equations in terms of the scale factor a for a given

potential, and taking into account that

w = p/ρ = −1− 2Ḣ

3H2
(4.25)

is the state equation of this perfect fluid, it is possible to mimic a wide range of cos-

mological behaviors when an appropriate potential is chosen. Equation (4.25) must be

understood as a function of H once the scale factor a is calculated for a given V . If

we choose the potential as a power law of time V = αtn, then setting y = a3/2, the

space-space Einstein equation (4.24) became the differential equation

ÿ − 3

4
V (t)y = 0, (4.26)

whose solutions can be obtained for example using the Frobenius method, that consists

in the substitution of the ansatz y = ts
∑∞

k=0 akt
k. In doing this one finds an algebrical

relation between the terms of our original differential equation and the ak coefficients.

Inserting the ansatz gives

∞∑
k=0

tk+sak
[
(k + s)(k + s− 1)t−2 − 3α

4
tn
]

= 0. (4.27)

For example, setting k = 0 the case n = −2 results in the equation

t−2a0[s(s− 1)− 3α

4
] = 0, (4.28)

which is solved for t−2a0 6= 0 and α ≥ −1/3 (p ≤ 1/3) by

s± =
1±
√

1 + 3α

2
. (4.29)
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With this value a solution in the case p ≤ 1/3 is of the form

y(t) = c1t
s+ + c2t

s− = c1t
s+(1 + cts−−s+) = c1t

s+(1 + ct−2
√

1+3α), (4.30)

where c1 and c2 are constant of integration and c = c2/c1 6= 0. Given that a = y2/3,

ρ = 3H2 and p = −α/t2 one finds

w = p/ρ = −3α
(

1 +
√

1 + 3α
1− ct−2

√
1+3α

1 + ct−2
√

1+3α

)−2
, (4.31)

which in the limit of large and small t approaches a constant. For α = −1/3 we have

w = 1 a ultra-hard equation of state p = ρ while the case α = −1/4 corresponds to a

ultra relativistic fluid with p = 1
3ρ for t→∞ and p = 3ρ for t→ 0.

If, in the other case α < −1/3, then the solutions is of the form

y(t) = k1t
1/2 cos

(1

2

√
|1 + 3α| ln t+ k2

)
(4.32)

with two constants of integration. This solution shows that for large negative α, i.e.

large positive pressure p, we are describing an oscillating flat universe with singularities

and amplitude of oscillations growing in time. The general case of a power-law potential

V = αtn with n 6= −2 can be solved in term of the modified Bessel functions of first

kind [2]

y(t) = t1/2Z 1
n+2

(√−3α

n+ 2
t
n+2
2

)
. (4.33)

If n < −2, that is, the potential decay faster than 1φ2, the asymptotic at large t is y ∝ t

and, correspondingly, the scale factor in the leading order behaves as in dust dominated

universe, a ∝ t2/3. For n > −2

y ∝ t−n/4 exp
(
± i
√
−3α

n+ 2
t
n+2
2

)
(4.34)

as t → ∞. Here the behavoir of the scale factor drastically depends on the sign of

α. For negative α (positive pressure p), the mimetic matter leads to an oscillating
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universe with singularities. The case of positive α corresponds to accelerated, inflationary

universe. In particular, for n = 0 one finds an exponential expansion corresponding to

the cosmological constant, while n = 2 leads to inflationary expansion with scale factor

a ∝ t−1/3 exp
(√ α

12
t2
)
. (4.35)

4.1.3 Mimetic Matter as Quintessence

It is possible to consider the behavior of mimetic matter in the case when the universe

is dominated by some other matter with constant equation of state p = wρ and where

the potential si given by V (φ) = α/t2. In this case the scale factor is α ∝ t23(1 + w)

and if φ = t then the energy density of mimetic matter given by (4.19) decays as

ρmimetic = − α

wt2
(4.36)

if one set to zero the constant of integration in (4.19). Because pmimetic = −α/t2, the

mimetic matter imitates the equation of state of the dominant matter [2]. However,

since the total energy density is equal to

ρ = 3H2 =
4

3(1 + w)2t2
(4.37)

this mimetic matter can be subdominant only if α/w � 1. The more general solution

for subdominant mimetic matter, φ = t+ t0, first corresponds to a cosmological constant

for t < t0 and only at t > t0 starts to behave similar to a dominant matter.

4.1.4 Mimetic Matter as an inflaton

One can easily construct the inflationary solutions using the mimetic matter. In fact,

one can take any scale factor a(t) = y2/3 and using equation (4.26) find the potential

V (φ ≡ t) =
4ÿ

3y
(4.38)
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for the theory where this scale factor wil be a solution of the corresponding equation.

For example, the potential

V (φ) =
αφ2

eφ + 1
(4.39)

with positive α describes inflation with graceful exit to matter dominating universe. In

fact, the scale factor grows as

a ∝ exp
(
− α

12
t2
)

(4.40)

at large negative φ = t and is proportional to t2/3 for positive t. Playing with potentials

one can easily get any ”wishful” behavior for the scale factor during inflation and after

it. Thus we see that the mimetic matter can easily provide us with the inflaton. The

questions is then: how one can generate the radiations and baryons we observe? This

can be done either via gravitational particle production at the end of inflation, or via

direct coupling of other fields to φ.

4.2 Modified Mimetic action

A further generalization for the action would be to add a higher derivative term for the

scalar field to the mimetic action Sλ and setting LM ≡ 0 with no loss of generality. The

new term can be of the form

Sγ =

∫
d4x
√
−g1

2
γ(�φ)2. (4.41)

Taking variations of this gives as always two terms: the first when varied with respect

to the metric, arising from the determinant, and the second when acting on the higher

derivative term. These new terms results in an alteration of the stress-energy tensor

already found for this mimetic matter. The variations read

δSγ =

∫
d4x
√
−g
(
− γ

4
gµνχ

2 − γ∂µχ∂νφ
)
δgµν , (4.42)
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where the last line follows after an integration by parts and after defining χ = �φ. The

new contribution Yµν ≡ ∂µχ∂νφ to the stress-energy tensor can be decomposed into the

sum of three irreducible pieces

Yµν =
(
Y[µν]

)
+
( 1

n
δµνδ

αβYαβ

)
+
(
Y(µν) −

1

n
δµνδ

αβYαβ

)
(4.43)

and so the stress-energy tensor for this modified action is

Tµν =
(
V + γ

(
∂σφ∂

σχ+
1

2
χ2
))
δµν + 2λ∂νφ∂

µφ− γ(∂νφ∂
µχ+ ∂νχ∂

µφ). (4.44)

Recalling that for a given metric the covariant d’Alambertian of a scalar field corre-

sponds to

�φ =
1√
−g

∂µ(
√
−ggµν∂νφ), (4.45)

we see that a scalar field φ solution of the constraint, i.e. φ = t + const., in a flat

background produces a value of χ equal to

χ = φ̈+ 3Hφ̇ = 3H (4.46)

and so, in a flat Friedman universe, φ and χ are functions only of time. The Einstein

equations in this case read

H2 =
1

3
V + γ

(3

2
H2 − Ḣ

)
+

2

3
λ (4.47)

and

2Ḣ + 3H2 = V +
3

2
γ(2Ḣ + 3H2) (4.48)

from the time-time and space-space respectively. Therefore in place of equation (4.24)

we find

2Ḣ + 3H2 =
2

2− 3γ
V (4.49)

different from equation (4.24) by the overall normalization of the potential V propor-

tional to the speed of sound cs defined [2] as

c2
s =

γ

2− 3γ
. (4.50)
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It is clear that this non-vanishing speed of sound is an added feature of the standard

mimetic model with potential V (φ) which instead predicts cs = 0, as we saw before in

(4.24). The high derivative term was analyzed for the first time by [2] in order to imple-

ment mimetic gravity in the context of inflation and in particular in the quantization of

the inflaton. As pointed out by the authors, this modification can lead to a suppression

of gravitational waves from inflation, seemingly without any non-Gaussianity.



Chapter 5

Cosmological perturbations

5.1 Cosmological perturbations

The present chapter is devoted to consider what consequences a small perturbation of

the scalar field φ = φ0 + δφ can have in relation of small perturbations around, for

example, a conformally flat background metric for which φ0 is a solution of the flat field

equations. One foundamental result is that at the end we can be able to write some

gauge-invariant functions.

The total metric splits into its conformally flat background term 0gαβ, of the form

0gαβdx
αdxβ = a2(η)

(
dη2 − δijdxidxj

)
, (5.1)

plus a small perturbation |δgαβ| � |0gαβ| that in general can be of scalar, vectorial or

tensorial type. Einstein equations involve rank-two symmetric tensors, so the number

of degrees of freedom n(n + 1)/2 is ten, the same as the independent components of

the metric. In order to perturb every component of a symmetric metric we have to

use ten degrees of freedom of various type. Therefore calling the scalar perturbations

(φp, B, ψ,E), the vector perturbations (Si, Fi) and the symmetric tensor hij , they add

49
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up to a total of

4 + 2 · 3 + 6 = 16 (degrees of freedom).

The correct amount of d.o.f. is achieved imposing the divergence free conditions ∂iS
i = 0,

∂iF
i = 0 and ∂ih

i
j = 0 along with the traceless condition hii = 0. A total of 6 equations

that reduce the number of degrees of freedom to the desired result. Scalar perturbations

are induced by energy density inhomogeneities, while vector perturbations are related

to the rotational motion of the fluid. The former are the most relevant while the latter

are quickly decaying and so not important to a first approximation. On the other hand,

tensor perturbations (traceless and transverse) describe gravitational waves. The most

general form of the perturbed metric is

δgαβdx
αdxβ = a2[2φpdη

2 +2(B,i+Si)dηdx
i+(2ψδij+2E,ij+2F(i,j) +hij)dx

idxj ]. (5.2)

In General Relativity there exists a freedom in the choice of the coordinate system

realized by diffeomorphisms. Following [11] for a small displacement of coordinates

x 7→ x′(x) = x+ ξ

the transformation law for the metric is given by

g′µν(x′) =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x) '

(
δαµ − ξα,µ

)(
δβν − ξβ,ν

)
(0gαβ + δgαβ) (5.3)

' 0gµν(x) + δgµν − 0gµλξ
λ
,ν − 0gνλξ

λ
,µ + higher order terms.

The metric expressed in the new coordinate system also splits into background and

perturbation part as

g′µν(x′) = 0gµν(x′) + δg′µν , (5.4)

while

0gµν(x) =0 gµν(x′ − ξ) ' 0gµν(x′)− 0gµν,λ(x)ξλ + high order terms, (5.5)
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so at linear order we find

δgµν 7→ δg′µν = δgµν − 0gµν,λ(x)ξλ − 0gµλξ
λ
,ν − 0gνλξ

λ
,µ. (5.6)

The same recipe applied to vectors and scalars allows one to write

δuµ 7→ δu′µ = δuµ − 0uµ,λξ
λ − 0uλξ

λ
,µ (5.7)

and

δq 7→ δq′ = δq − 0q,λξ
λ (5.8)

where 0uλ and 0q are the background values. In order to find how the scalar functions φ,

B, ψ and E transform one must apply (5.6) taking into account that each scalar enters

in a different component of the transformation law of the metric. If the traslation vector

ξµ in xµ 7→ xµ + ξµ is of the form

ξµ = (ξ0 = δt, ξi), (5.9)

taking into account that from equation (5.2) one has

δg00 = 2a2φp, (5.10)

then the transformation of the scalar part of the metric is

δg00 7→ δg′00 = δg00 − 0g00,λξ
λ − 2 0g0λξ̇

λ

= δg00 − 0ġ00ξ
0 − 2 0g00ξ̇

0

= δg00 − 2aȧδt− 2a2δ̇t = δg00 − 2a ddt(aδt).

(5.11)

because the background metric is diagonal, conformally flat and independent of the space

coordinate. This last equation tells us how the scalar perturbation φ transforms, in fact

2a2φp 7→ 2a2φp − 2a
d

dt
(aδt) (5.12)

or

φp 7→ φ′p = φp −
1

a

d

dt
(aδt). (5.13)
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Now looking at the transformation law of the vector part of the metric, and splitting

the space part of the infinitesimal translation ξi as

ξi = ξi⊥ + ζ ,i (5.14)

where ξi⊥ is divergence free and ζ is a scalar, one finds

δg0i 7→ δg′0i = δg0i − 0g0i,λξ
λ − 0g0λξ

λ
,i − 0giλξ

λ
,0, (5.15)

that with our diagonal background metric become

δg0i 7→ δg′0i = δg0i − 0g00ξ
0
,i − 0gij ξ̇

j

= δg0i − a2ξ0
,i + a2ξ̇i

= δg0i + a2
(
ξ̇i⊥ + (ζ̇ − ξ0),i

)
.

(5.16)

After an integration by parts, from

δg0i

∣∣∣
scalar

= a2B,i (5.17)

one finds

B 7→ B′ = B + ζ̇ − δt, (5.18)

because ∂iξ̇
i
⊥ = 0. The transformation laws of the two last scalars ψ and E follow using

the same reasoning and turn out to be

ψ 7→ ψ′ = ψ +Hδt, (5.19)

and

E 7→ E′ = E + ζ, (5.20)

where H = da/adη.These four relations are functions only of the two parameters δt and

ζ. It is easy to see that if one chooses two of them as

E = −ζ and B = δt− ζ̇ = δt+ Ė, (5.21)
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then E′ = 0 and B′ = 0 while the other two become

Φ = φp −
1

a

(
a(B − Ė)

)•
(5.22)

and

Ψ = ψ −H(B − Ė), (5.23)

the two Bardeen potentials. The latter are two gauge-invariant quantities. If both

are zero in a coordinate system then they will be zero in any coordinate system and

in this case the perturbations are called fictictious because these are the result of the

particular coordinate system chosen. In the framework of cosmological perturbation dif-

ferent gauges exists and for example in the case of scalar perturbations, the Longitudinal

(conformal-Newtonian) gauge is defined by the condition ζ = −El and δt− Ėl = Bl = 0.

In this frame the metric takes the form

ds2 = a2[(1 + 2φl)dη
2 − (1− 2ψl)δij)dx

idxj ], (5.24)

where only the two potentials Φ = φp ≡ φl and Ψ = ψ ≡ ψl appear. Moreover, in the

longitudinal gauge these two functions are gauge invariant. The latter metric simplifies

if one has a stress-energy tensor with diagonal space part, in fact in that case the two

functions φl and ψl are just the same function.

5.2 Cosmological perturbations of Mimetic Gravity

Perturbations of the metric induce a perturbation of the Einstein tensor Gµν that can

be expanded as,

Gµν = 0Gµν + δGµν + · · · , (5.25)

where δGµν is linear in metric perturbations and from this, a linearized version of Einstein

equations reads

δGµν = δTµν , (5.26)
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where δTµν is the linear part of the perturbed stress-energy tensor. The calculation in

the flat background gives

0G0
0 =

3H2

a2
, 0G0

i = 0 and 0Gij =
1

a2

(
2Ḣ+ 3H2

)
δij (5.27)

where Ḣ = dH/dη. Consider a longitudinal Newtonian gauge in the presence of a diag-

onal stress-energy tensor, then the gauge invariant quantities Φ and Ψ can be identified

and the metric in this case is

ds2 = (1 + 2Φ)dt2 − (1− 2Φ)a2δijdx
idxj . (5.28)

Giving a small perturbation to the scalar field solution of the mimetic model of the last

Chapter, using the constraint we see that one can choose the flat background solution

as φ0 ≡ t and so φ = t+ δφ. Using the constraint (4.8) we find that

g00(φ̇)2 = 1 or (1 + 2Φ)−1(1 + ˙δφ)2 = 1, (5.29)

so we have

Φ = ˙δφ. (5.30)

Thus, time derivative of the small perturbation of the scalar degree of freedom of the

metric in the mimetic model can be identified with the gauge-invariant newtonian po-

tential Φ in the longitudinal gauge.

An evolution equation for this quantity can be extracted from the linearized time-

space component of the Einstein equations. Because the metric is diagonal the only

contribution to the Einstein tensor G0i is given by

R0i = 2∂i(Φ̇ +HΦ), (5.31)

while from the perturbation of a perfect fluid stress energy tensor we find that the

time-space component can be written at linear order as

δT 0
i = (ρ+ p)∂iδφ. (5.32)
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Recalling that for mimetic dark matter the following relations hold,

2Ḣ + 3H2 = V = −p, ρ = 3H2 ⇒ ρ+ p = −2Ḣ, (5.33)

we see that combining (5.31) with (5.32) one get

∂i

(
Φ̇ +HΦ

)
=

1

2
(ρ+ p)∂iδφ (5.34)

or

δ̈φ+H ˙δφ+ Ḣδφ = 0 (5.35)

because Φ = ˙δφ. Solution of this differential equation is of the form

δφ = const.× 1

a

∫
adt (5.36)

and so the newtonian gravitational potential is given by

Φ = ˙δφ = const.×
(

1− H

a

∫
adt
)
. (5.37)

The above solution is valid for every perturbation irrespective of its wavelength and, as

pointed out in [2] it is the same one would obtain for the long wavelength solution when

negleting the spatial derivative term for a hydrodynamical fluid. The mentioned spatial

derivative term is usually multiplied by the speed of sound and in this sense we see

that perturbations behave as dust with vanishing speed of sound even for mimetic dark

matter with nonvanishing pressure. This turns out to be a problem if one wants to use

mimetic matter, for example as an inflationary mechanism, because quantum fluctuation

cannot be defined in the usual way. There are two ways to solve this problem: adding

one more scalar degree of freedom making the theory not very plausible because such

a theory can ”explain” nearly everything and predict nothing, or slightly modify the

action, for example by adding a higher derivative term for the scalar degree of freedom

φ of the metric.
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Recalling the result of the previous Chapter about the modification of the Mimetic

action with the term ∝ (�φ)2, the symmetric stress-energy tensor was quoted to be

Tµν =
(
V + γ

(
∂σφ∂

σχ+
1

2
χ2
))
δµν + 2λ∂νφ∂

µφ− γ(∂νφ∂
µχ+ ∂νχ∂

µφ). (5.38)

In order to write the scalar field equations at linear order in perturbations, we need the

linear order perturbation of the Einstein tensor - for a metric written in a particular

gauge - and the perturbed energy-momentum tensor. From equation (5.38) one can find

that, at linear order in perturbations, the energy-momentum tensor is

δT 0
i = 2λ∂i(t+ δφ)

d

dt
(t+ δφ)− γ(∂i(t+ δφ)

d

dt
(χ+ δχ) + ∂i(χ+ δχ)(t+ δφ)) (5.39)

or

δT 0
i = 2λ∂iδφ− 3γḢ∂iδφ− γ∂iδχ, (5.40)

using χ = 3H. The quantity δχ = δ(�φ) must be evaluated at linear order when the

metric that defines the operator

�φ = gµν∇µ∂νφ =
1√
−g

∂µ(
√
−ggµν∂νφ) (5.41)

is given by the longitudinal Newtonian gauge. Taking into account that −g = a6(1 +

2Φ)(1 − 2Φ)3 and g00 ' (1 − 2Φ) while gij ' − 1
a2

(1 + 2Φ)δij , after some calculations

one finds

δχ = −3δ̈φ− 3H ˙δφ− ∆

a2
δφ. (5.42)

Using

λ = (3γ − 1)Ḣ (5.43)

which follows from (4.47) and (4.48), we see that equation (5.35), when the kinetic term

χ is taken into account, is modified as

δ̈φ+H ˙δφ− c2
s

a2
∆δφ+ Ḣδφ = 0. (5.44)
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The presence of the kinetic term drastically changes the equation that δφ must solve, in

fact now a second-order spatial derivative term appears and the speed of sound is given

by

c2
s =

γ

2− 3γ
. (5.45)

In the following chapter we will find that in order to avoid Laplacian instabilities, i.e. a

wrong sign in front of the Laplacian ∆ in (5.44), one must require c2
s > 0 that in this

case is satisfied when 0 < γ < 2/3.
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Chapter 6

Effective Field Theories

6.1 Second order equations of motion

Each theories of interactions follows from an action built with a Lagrangian. Looking at

the different interactions in nature, at first sight it seems that each theory is built in a

way to have second order equations of motion. There is a reason for this. Higher order

derivative theories suffer the plague of the appearance of ghost modes, i.e. states with

negative energy. These states lead to a catastrophic production of normal and ghost

fields out from the vacuum invalidating the theory itself. This problem, as first pointed

out by Ostrogradski, arises because, in the case of higher derivative order theories, the

Hamiltonian of the system is linear in one of its conjugate canonical momenta and

then not bounded from below. Considering at the classical level, in one dimension, a

Lagrangian function of N time derivatives

L = L(q, q̇, q̈, . . . , q(N)), (6.1)

it is easy to show that in this case the Euler -Lagrange equation of motion (EOM) reads

N∑
k=0

(−1)k
dk

dtk

( ∂L

∂q(k)

)
= 0. (6.2)
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Cleary, if the Lagrangian is non-degenerate, det ∂2L
∂q(N)∂q(N) 6= 0, then (6.2) gives rise

to 2N -order EOM and in order to write a solution one needs 2N initial conditions

(q, q̇, q̈, . . . , q(2N−1))0. The number of initial conditions is the same as the dimension of

the phase-space of canonical conjugate coordinates

Q = (Q1 = q,Q2 = q̇, Q3 = q̈, . . . , QN = q(N−1)) (6.3)

and

P = (PN =
∂L

∂Q̇N
, PN−1 =

∂L

∂Q̇N−1

− d

dt
PN , . . . ). (6.4)

The Hamiltonian H is the Legendre transform of L, defined in the usual manner as

H =
∑
i

PiQ̇i − L (6.5)

where one has to understand the latter as a function of Qs and P s, once the relations

between each Pi and Q̇i have been inverted. Consider for simplicity the case N = 2,

then the Lagrangian is L(q, q̇, q̈) and the EOM reads

∂L

∂q
− d

dt

(∂L
∂q̇
− d

dt

∂L

∂q̈

)
= 0, (6.6)

which require the four initial conditions (q, q̇, q̈, q(3))0 if the Lagrangian is not degenerate.

The canonical variables are

Q1 = q,Q2 = q̇, P1 =
∂L

∂q̇
− d

dt

∂L

∂q̈
, P2 =

∂L

∂q̈
. (6.7)

It is clear that q̈ can be inverted as a function of Q1, Q2 and P2 only, and so P1 appears

only in the first term of the Hamiltonian meaning that there is a linear dependence on P1

and so a non-bounded energy from below. This instability on its own is not a bad thing.

It becomes bad when interactions with other degrees of freedom whose Hamiltonians

are bounded from below are introduced. The presence of these negative energy states

means that there exists a vast phase space where the Hamiltonian is negative, hence the
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modes will begin to populate them by entropic arguments alone while, by conservation

of energy, creating an equally large number of positive energy modes in the interacting

d.o.f.. This is the onset of the instability. Note that, while this is a classical instability,

in quantum theory, negative energy modes are particularly sick - attempts to canonically

quantize them will either lead to negative norm (and hence undefined) states or negative

energy states (and hence runaway particle production). Since negative norm states

are often called “ghosts” in quantum theory, higher derivative theories are often called

“ghost-like”.

As pointed out by Dirac, one might try to eliminate the instability by imposing

constraints, i.e. one selectively restricts the trajectories of the d.o.f. such that the

Hamiltonian becomes bounded from below. Those constraints for example can follows

from the fact that not all the relations between conjugate momenta can be inverted to

give q̇i in terms of pi. Then the theory has primary constraints Φ(qi, pi) = 0 solely

by virtue of the form of the Lagrangian. As Dirac noted [12], in such a case a theory

described by a Hamiltonian H(qi, pi) could just as well be described by a Hamiltonian

Htotal = H + uiΦi for arbitrary functions ui. The implementation of constraints into

the theory requires the introduction of auxiliary variables and hence the enlargement

of the total phase space. As a consequence, one may hope to change the orbits of the

trajectories of the theory to a degree which is sufficient to cure it from the instability.

Using a fourth order theory example [13], one can imagine a modification

S =

∫
dt
(
q̈2/2− α(q) + λf(q, q̇, q̈)

)
(6.8)

where α(q) is a potential and λ is an auxiliary field which enforces the constraint

f(q, q̇, q̈) = 0. We emphasize that the latter action is a different physical theory from

the case in which no constraint is present, as long as the constraint cannot be gauged

away. The question is: can f be cleverly chosen in such a way that this theory, despite
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being a higher derivative theory, is free of the linear instability? If these constraints are

first class, or second class and give rise to a secondary class constraints, then they will

remove the spurious degrees of freedom associated with the higher derivatives appearing

in the action. Second class constraints are “physical” in the sense that the solutions

to the equations of motion are different with or without the constraint. On the other

hand, first class constraints are those associated with some gauge freedom in the the-

ory, i.e. the solutions of the equations of motion contain some arbitrary functions of

time and hence describe physically equivalent systems [14]. As shown in [13], one can

“gauge fix” such theories - these so-called “gauge fixing” functions appear as new (pri-

mary) constraints in the theory, and once introduced the original first class constraint

and the new gauge fixing constraint both become second class constraints. The most

general second order time derivative Lagrangian with one auxiliary field λ is given by a

Lagrangian L(q, q̇, q̈, λ). Calling the generalizated coordinates Q1 = q, Q2 = q̇, Q3 = λ,

the consequent conjugate momenta are P1 = ∂L/∂q̇ − d
dt∂L/∂q̈, P2 = ∂L/∂q̈ and since

the Lagrangian does not depend on ˙lambda we have P3 = ∂L/∂λ̇ = 0. The primary

constraint, from now calledΦ1, has the following functional form P3 = 0. The assump-

tion of non-degeneracy det ∂2L/∂q̈2 6= 0 allows us to use the definition of P2 to invert

the relation and writing q̈ = h(Q1, Q2, Q3, P2). Then the total Hamiltonian becomes

HT = P1Q1 + P2h(Q1, Q2, Q3, P2)− L(Q1, Q2, Q3, h) + u1Φ1, (6.9)

where Φ1 ≡ P3 is the primary constraint while u1 is the Lagrange multiplier that enforce

the condition P3 = 0. Since P3 = 0, consistency implies that its equation of motion

Ṗ3 = [P3, HT ] must also vanish (on constraint) - this leads to a series of consistency

relations which allow us to find further constraints called secondary constraints. In this

case, there exists one further secondary constraint as expected (the conservation under
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time evolution of the primary constraint Φ1), which is

Φ2 : [Φ1, HT ]poisson bracket = −P2
∂h

∂Q3
+

∂h

∂Q3

[∂L
∂q̈

]
q̈=h

+
∂L

∂λ

∣∣∣
λ=Q3

=
∂L

∂λ

∣∣∣
λ=Q3

' 0

(6.10)

Here we introduce the weak equality symbol ' for the constraint equations. The con-

straint equation is written as Φ2 ' 0, which means Φ2 is numerically restricted to be

zero but does not identically vanish throughout phase space. I.e. Φ2 only vanishes on

the hypersurface where all the constraints are satisfied.

6.2 Effective Field Theory methods

Effective Field Theory methods in the framework of cosmological perturbations [17] rely

on the variation of an action expanded up to second order about its geometrical and

physical variables when the unitary gauge is employed. The former variables are scalars

of various type accounting for the geometry of the hypersurface at constant time Σt, while

the latter in general can be several scalars degrees of freedom associated to gravity, for

example the scalar degree of freedom φ of the mimetic model. Once the second order

variation of the action is calculated, it is possible to impose conditions under which the

model would be free of ghosts arising from a wrong sign in front of the Laplacian or from

higher derivative action giving equations of motion of order higher than two, avoiding

in this latter case the so called Ostrogradski instabilities.

Strictly speaking Effective Field Theory methods are usually employed in particle

physics [15] as well as in the context of inflation [16]. Those methods are used in order

to describe the nature of interactions at some particular energy scale ignoring what

happen at other scales. This mathematical framework automatically limits the role

which smaller distance scales can play in the description of larger objects. In the context

of inflation when one has to deal with the inflaton, a scalar field, and one see that the
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scalar mode can be eaten by the metric by going to unitary gauge. This is analogous to

what happens in a spontaneously broken gauge theory where a Goldstone mode, which

transforms non-linearly under the gauge symmetry, can be eaten by the gauge boson

(unitary gauge) to give a massive spin one particle. The usual way to study a single field

inflationary model is to start from a Lagrangian for a scalar field φ and solve the equation

of motion for φ together with the Friedmann equations for the FLRW metric. One is

usually interested in an inflating solution, i.e. an accelerated expansion with a slowly

varying Hubble parameter, with the scalar following an homogeneous time-dependent

solution φ0(t). At this point one studies perturbations around this background solution

to work out the predictions for the various cosmological observables. The theory of

perturbations around the time evolving solution is quite different from the theory of φ

one started with: while φ is a scalar under all diffeomorphisms, the perturbation δφ is a

scalar only under spatial diffeomorphisms while it transforms non-linearly with respect

to time diffeomorphisms:

t 7→ t+ ξ0(x, t), δφ 7→ δφ+ φ̇0(t)ξ0.

In particular one can choose a gauge φ(t, x) = φ0(t) where there are no inflaton pertur-

bations, but all degrees of freedom are in the metric. The scalar variable δφ has been

eaten by the graviton, which has now three degrees of freedom: the scalar mode and the

two tensor helicities.

This quasi de Sitter background has a privileged spatial slicing, given by a physical

clock which allows to smoothly connect to a decelerated hot Big Bang evolution. The

slicing is usually realized by a time evolving scalar φ(t). To describe perturbations

around this solution one can choose a gauge where the privileged slicing coincides with

surfaces of constant t, i.e. the unitary gauge δφ(x, t) = 0. In this gauge there are no

explicit scalar perturbations, but only metric fluctuations. As time diffeomorphisms
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have been fixed and are not a gauge symmetry anymore, the graviton now describes

three degrees of freedom: the scalar perturbation it is said to has been ”eaten” by the

metric.

As pointed out in [16], in the context of inflation, starting from a scenario of inflation

with a scalar field with minimal kinetic term and slow-roll potential, one parameterize

our ignorance about all the possible high energy effects in terms of the leading invariant

operators. Experiments will put bounds on the various operators, for example with

measurements of the non-Gaussianity of perturbations and studying the deviation from

the consistency relation for the gravitational wave tilt. In some sense this is similar

to what one does in particle physics, where one puts constraints on the size of the

operators that describe deviations from the Standard Model and thus encode the effect

of new physics. This is the standard definition of EFT in particle physics and inflationary

models.

6.2.1 The Geometry of the hypersurface at constant time

Following [17] at constant time we choose the hypersurface Σt and so the induced metric

is given by

hµν = gµν + nµnν , (6.11)

where nµ = −Nt,µ = (−N,~0) is a vector orthogonal to Σt. The metric gµν can be

parametrized as

gµνdx
µdxν = −N2dt2 + hij(dx

i +N idt)(dxj +N jdt), (6.12)

where nµ = gµνnν = (1/N,N i/N) while N and N i are the lapse function and the shift

vector respectively. The lapse N is the change in proper time as one moves off the spatial

surface and the shift N i is the displacement in identification of the spatial coordinates

between two adjacent slices. Clearly nµn
µ = −1 and so nµhµν = 0. The extrinsic
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curvature, the acceleration of the hypersurface, is defined by

Kµν = hλµnν,λ = (gλµ + nλnµ)nν,λ = nν,µ + nµaν , (6.13)

aν being the normal acceleration of the vector nµ; in addition, the relation nµKµν = 0

ensures that the extrinsic curvature is a quantity on Σt. The extrinsic Ricci tensor

Rµν ≡ (3)Rµν associated to the spatial part of the induced metric hµν define the internal

geometry of Σt. The Ricci scalar R = Rµµ, is related to the four dimensional Ricci scalar

by the decomposition

R = R−KµνK
µν −K2 + 2(Knµ − aµ),µ. (6.14)

Alongside with the lapse function N , several geometric scalars such as

N, K = Kµ
ν , S = KµνK

µν , R = Rµµ, Z = RµµRµν , U = RµνKµν

(6.15)

can be defined and the action of general gravitational theories that depends on these

scalars, that encodes the geometry of the hypersurface at constant time Σt, is given by

S =

∫
d4x
√
−gL(N,K,S,R,Z,U ; t). (6.16)

In what follows, LN , LK , . . . represent partial derivatives of the lagrangian with

respect to N,K, . . . . The latter action does not contain any scalar related to the shift

vector N i while φ the scalar degree of freedom of the metric (see below) and its kinetic

term X, depending on N and t, enters the equations of motion through LN and LNN .

Let us consider four scalar perturbations

(A,ψ, ζ, E)

about a FLRW background with scale factor a(t) described by the perturbed metric

ds2 = −e2Adt2 + 2∇(h)
i ψdxidt+ a2

(
e2ζδij + (∇(h)

i ∇
(h)
j −

δij
3

∆(h))E
)
dxidxj (6.17)
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where ∇(h)
i is the covariant derivative build with the metric hij . The scalar perturbation

ζ is the so called curvature perturbation. Under the perturbation realized by

ξα = (δt, δij∂jδx) (6.18)

the scalar fields φ of modified gravitational theories with a single scalar degree of freedom

associated to the metric (as for example in mimetic gravity) and the scalar perturbation

E transforms, according to (5.8) and (5.6), as

δφ 7→ δφ− φ̇δt, E 7→ E − δx, (6.19)

and so the unitary gauge δφ = 0 fixes the time slicing δt while the choice E = 0 fixes

the spatial threading δx and allows us to concentrate on the scalar perturbation ζ of

the metric. Thus the hypersurface at constant time Σt coincide with the constant φ

hypersurface. As already stated, in this unitary gauge, the scalar degree of freedom

associated with φ is eaten by the metric and so the Lagrangian in (6.16) does not have

an explicit dependence on φ for a flat background. For a FLRW background metric h̄µν ,

the three dimensional geometric quantities already defined are given by

K̄µν = Hh̄µν , K̄ = 3H, S = 3H2, R̄µν = 0, R̄ = Z̄ = Ū = 0 (6.20)

where H = ȧ/a, while the perturbations of these can be written as

δKµ
ν = Kµ

ν −Hhµν , δK = K − 3H, δS = S − 3H2. (6.21)

Using the definition of S and the first and second relations of the latter equations, one

sees that the perturbation of S can be rewritten as

δS = 2HδK + δKµ
νK

ν
µ, (6.22)

while given that the quantities R and Z vanish in the background, they appear only as

a perturbation that can be written as

δR = δ1R+ δ2R, δZ = δRµνRνµ. (6.23)



68 CHAPTER 6. EFFECTIVE FIELD THEORIES

From the last definition in (6.15), using (6.21) one finds that

U = RµνKµν = HR+RµνδKν
µ, (6.24)

clearly the second term is a second order quantity.

Expanding the Lagrangian up to quadratic order in the perturbations one finds

L = L̄+ LNδN + LKδK + LSδS + LRδR+ LZδZ + LUδU+

+1
2

(
δN ∂

∂N + δK ∂
∂K + δS ∂

∂S + δR ∂
∂R + δZ ∂

∂Z + δU ∂
∂U

)2
L.

(6.25)

Defining

F = LK + 2HLS (6.26)

one finds that the third and the fourth terms of the latter Lagrangian become

LKδK +LSδS = F(K − 3H) +LSδK
µ
νK

ν
µ ' −Ḟ − 3HF + ḞδN +LSδK

µ
νK

ν
µ − ḞδN2,

(6.27)

where the last equality comes after an integration by parts of FK = Fnµ,µ and an

expansion of 1
N = 1

1+δN up to second order. On the other hand it can be shown that

the first order contribution of the last term of (6.25) is equal to1

LUδU =
1

2

(
L̇U + 3HLU

)
δ1R. (6.28)

Defining

E = LR +
1

2
L̇U +

3

2
HLU (6.29)

up to first order one finds

L0 = L̄− Ḟ − 3HF , L1 = (Ḟ + LN )δN + Eδ1R. (6.30)

Remembering that L =
√
−gL, and so

δL =
√
hLδN +NLδ

√
h+N

√
hδL, h = dethij , (6.31)

1Using the relation 2α(t)U = α(t)RK + 1
N
α̇(t)R, where α(t) is an arbitrary function of time.
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neglecting second-order corrections one has

L0 = a3L0 = a3
(
L̄−Ḟ − 3HF

)
, L1 = a3(L̄+LN − 3HF)δN +NL0δ

√
h+ a3Eδ1R.

(6.32)

Variations with respect to N and
√
h of L1 gives the following equations of motion

L̄+ LN − 3HF = 0, L0 = L̄− Ḟ − 3HF = 0; (6.33)

the difference of these equations gives

LN + Ḟ = 0. (6.34)

Two of the last three equations are sufficient to determine the cosmological dynamics

on the flat FLRW background.

6.2.2 Expansion of the action up to second order

From equations (6.21) one finds the following second-order variation of the variables

δS2 = 4H2δK2, δKδS = 2HδK2, δSδN = 2HδKδN. (6.35)

Furthermore, the second-order expansion of U

δU
∣∣∣
2◦ord.

=
1

2

(
LUδK − L̇UδN

)
δ1R+

1

2

(
L̇U + 3HLU

)
δ2R, (6.36)

allows one to write the expansion of the lagrangian (6.25) up-to-second-order as

L = L̄− Ḟ − 3HF + (Ḟ + LN )δN + Eδ1R+ (6.37)

+
(1

2
LNN − Ḟ

)
δN2 +

1

2
AδK2 + BδKδN + CδKδ1R+DδNδ1R+

+Eδ2R+
1

2
Gδ1R2 + LSδKµνδK

µν + LZδRµνδRµν ,

when the following definitions are taken into account

A = LKK + 4HLSK + 4H2LSS , B = LKN + 2HLSN
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C = LKR + 2HLSR +
1

2
LU +HLKU + 2H2LSU

D = LNR +
1

2
L̇U +HLNU , G = LRR + 2HLRU +H2LUU . (6.38)

Then, expansion of the Lagrangian density up-to-second order is

L2 = δ
√
h
[
(Ḟ + LN ) + Eδ1R

]
+ (6.39)

+a3
[(
LN +

1

2
LNN

)
δN2 + Eδ2R+

1

2
AδK2 + BδKδN + CδKδ1R+

+(D + E)δNδ1R+
1

2
Gδ1R2 + LSδKµνδK

µν + LZδRµνδRµν
]
.

From the gauge choice (6.17) with E = 0, the three dimensional induced metric is

hij = a2(t)e2ζδij and so the perturbations of the determinant and of the extrinsic three

dimensional Ricci tensor and scalar can be expressed as

δ
√
h = 3a3ζ, δRij = −(δij∂

2ζ + ∂i∂jζ),

δ1R = −4
∂2ζ

a2
, δ2R = − 2

a2
[(∂ζ)2 − 4ζ∂2ζ], (6.40)

while it can be shown that the extrinsic curvature can be written as

Kij =
1

N

(
ḣij −∇(h)

i Nj −∇(h)
j Ni

)
(6.41)

and so for the perturbed metric (6.17) the first-order extrinsic curvature reads

δKi
j =

(
ζ̇ −HδN

)
δij −

1

2a2
δik(∂kNi + ∂iNk). (6.42)

Since the shift vector is related to the metric perturbation ψ via Ni = ∂iψ the trace of

Kij can be expressed as

δK = 3
(
ζ̇ −HδN

)
− 1

a2
∂2ψ, (6.43)

exhibiting the dependence of δK on δN . On using (6.40), (6.42) and (6.43), the sec-

ond order Lagrangian density (6.39), up to boundary terms and using the background

equation LN + Ḟ = 0, reduces to

L2 = a3
{1

2
(2LN + LNN + 9AH2 − 6BH + 6LSH

2)δN2+
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+
[
(B − 3AH − 2LSH)

(
3ζ̇ − ∂2ψ

a2

)
+ 4(3HC − D − E)

∂2ζ

a2

]
δN+

−(3A+ 2LS)ζ̇
∂2ψ

a2
− 12Cζ̇ ∂

2ζ

a2
+
(9

2
A+ 3LS

)
ζ̇2 + 2E (∂ζ)2

a2
+

+
1

2
(A+ 2LS)

(∂2ψ)2

a2
+ 4C (∂2ψ)(∂2ζ)

a2
+ 2(4G + 3LZ)

(∂2ζ)2

a2

}
. (6.44)

Defining the following quantity

W = B − 3AH − 2LSH, (6.45)

then the variation of (6.44) with respect to δN and ∂2ψ leads to the following Hamilto-

nian and momentum constraints, respectively:

[
2LN + LNN − 6HW − 3H2(3A+ 2LS)

]
δN+

−W ∂2ψ

a2
+ 3W ζ̇ + 4(3HC − D − E)

∂2ζ

a2
= 0 (6.46)

WδN − (A+ 2LS)
(∂2ψ)2

a2
+ (3A+ 2LS)ζ̇ − 4C (∂2ζ)

a2
= 0. (6.47)

These two constraints give δN and ∂2ψ/a2 in terms of ζ̇ and ∂2ζ/a2. An important

point is that if one imposes the vanishing of the coefficients of the last three terms of

(6.44)

A+ 2LS = 0, C = 0, 4G + 3LZ = 0, (6.48)

then the consequent equations of motion will be at most of second order.

Inverting the equations of motion as a function of ζ̇ and ∂2ζ/a2 and inserting the

results into the second order Lagrangian density (6.44) will result in the fact that the

latter can be decomposed in the following way

L2 = c1(t)ζ̇2 + c2(t)ζ̇∂2ζ + c3(t)(∂ζ)2 = c1(t)ζ̇2 +
(1

2
ċ2(t) + c3(t)

)
(∂ζ)2, (6.49)

where the last equality results after an integration by parts. Finally, the second order

Lagrangian can be recast in a more easy to read form

L2 = a3Qs
[
ζ̇2 − c2

s

a2
(∂ζ)2

]
(6.50)
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where

Qs ≡
2LS(3B2 + 4LS(2LN + LNN ))

W2
(6.51)

while the speed of the scalar perturbation ζ is defined as

c2
s ≡

2

Qs

(
Ṁ+HM−E

)
, (6.52)

with

M≡ 4LS(D + E)

W
= 4LS

LR + LNR +HLNU + 3
2HLU

LKN + 2HLSN + 4HLS
. (6.53)

6.2.3 Ghost and Laplacian instability for scalar and tensor perturba-

tions

Variation of the action S2 =
∫
d4xL2, built with the lagrangian density (6.50), with

respect to the curvature perturbation ζ leads to the following equation of motion

d

dt

(
a3Qsζ̇

)
− aQsc2

s∂
2ζ = 0 (6.54)

and we see that in order to avoid ghost and Laplacian instability the following conditions

must hold

Qs > 0, c2s > 0. (6.55)

If instead one looks at tensors perturbations, a similar expansion of the Lagrangian up

to second order can be made. Including a trace/divergence-free tensor mode γij and

parametrizing the three dimensional metric hij as

hij = a2e2ζ(δij + γij +
1

2
γilγlj), (6.56)

a similar treatment would end up with an up-to-second-order tensorial action

S
(h)
2 =

∑
λ=+,×

∫
d4xa3Qt

[
ḣ2
λ −

c2
t

a2
(∂hλ)2

]
(6.57)
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where the sum is over (each) polarization (γij = h+e
+
ij + h×e

×
ij). Again variation of the

action with respecto to the tensorial perturbations gives rise to the equations of motion

d

dt

(
a3Qtḣλ

)
− aQtc2

t∂
2hλ = 0 (6.58)

where

Qt =
LS
2

(6.59)

while the speed of the tensorial perturbation is defined as

c2
t =

E
LS

. (6.60)

The conditions for the avoidance of ghost and Laplacian instabilities in the tensorial case

are simpler and reads

LS > 0, E > 0. (6.61)

6.3 Hamiltonian analysis of Mimetic Gravity

The key point of Mimetic Gravity is a parametrization of the physical metric ḡµν in term

of an auxiliary metric gµν and a scalar field as

ḡµν = (−gαβ∂αφ∂βφ)gµν ≡ Φ2gµν , (6.62)

where Φ is related with the term P in equation (4.1) of the mimetic gravity model by

Φ2 = −P . The General Relativity action

S[gµν , φ] =
1

2

∫
d4x
√
−ḡR

(
ḡµν(gµν , φ)

)
(6.63)

after an integration by parts, can be rewritten as

S[gµν , φ] =
1

2

∫
d4x
√
−g
[
Φ2R(gµν) + 6gµν∇µΦ∇νΦ

]
(6.64)
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using the relation

R(ḡµν) =
1

Φ2

(
R(gµν)− 6

gµν∇µ∇νΦ

Φ

)
(6.65)

where ∇µ is the covariant derivative defined using gµν . As already mentioned, the action

(6.64) is invariant with respect to a Weyl rescaling gµν 7→ Ω2gµν , and containing second-

order derivatives of the field φ, an Hamiltonian analysis is needed in order to exclude

the presence of ghosts. Besides the fields gµν and φ, it is customary to introduce an

auxiliary field λ playing the role of Lagrange multiplier that enforces the constraint

Φ2 = −gαβ∂αφ∂βφ and hopefully reducing the action to be first order in derivatives of

φ, i.e. the action becomes

S[gµν , φ] =
1

2

∫
d4x
√
−g
[
Φ2R(gµν) + 6gµν∇µΦ∇νΦ− λ(Φ2 + gαβ∂αφ∂βφ)

]
. (6.66)

Variation of the latter with respect to the field λ gives back the constraint and moreover,

the field Φ will be treated as independent togheter with the field φ. In order to perform

the Hamiltonian analysis, following [18], we employ the ADM formalism using a 3 + 1

decomposition of the metric gµν as

g00 = −N2 + hjiN
iNj , g0i = Ni, gij = hij (6.67)

where N and Ni are the lapse function and shift vector respectively. The inverse metric

components are

g00 = − 1

N2
, g0i =

N i

N2
, gij = hij − N iN j

N2
, (6.68)

where the metric hij refers to the Cauchy surface Σt and hijh
jk = δki . The four-

dimensional scalar curvature - the Ricci scalar - is related to the extrinsic geometry

via the relation

R(gµν) = KijG
ijklKkl +R+

2√
−g

∂µ(
√
−gnµK)− 2√

hN
∂i(
√
hhij∂jN) (6.69)
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where the extrinsic curvature Kij and the de Witt metric G ijkl are defined as

Kij =
1

2N

(∂hij
∂t
−DiNj −DjNi

)
, Di ≡ ∇

(hjk)
i (6.70)

and

G ijkl =
1

2
(hikhjl + hilhjk)− hijhkl, (6.71)

Di ≡ ∇
(hjk)
i being the spatial part of the covariant derivative built using the metric of

the hypersurface Σt. The future pointing vector nµ normal to Σt has component

n0 =
√
−g00 =

1

N
, N i = − g0i√

−g00
= −N

i

N
. (6.72)

With the previous results, it can be shown that, ignoring boundary terms, and using

∇nΦ =
1

N
(∂tΦ−N i∂iΦ), (6.73)

the original action can be rewritten as

S[N,N i, hij ,Φ, λ, φ] =
1

2

∫
dtdx

√
hN [KijG

ijklKklΦ
2 +RΦ2 − 4KΦ∇nΦ+

− 2√
h
∂i(
√
hhij∂jΦ

2)− 6(∇nΦ)2 + 6hij∂iΦ∂jΦ+

− λΦ2 + λ(∇nφ)2 − λhij∂iΦ∂jΦ]. (6.74)

From this action the following conjugate momenta of hij , Φ, λ and φ can be extracted

πij =
1

2

√
gG ijklKklΦ

2 −
√
hhijΦ∂nΦ, (6.75)

pΦ = −2KΦ
√
h− 6

√
h∇nΦ, (6.76)

pλ ' 0, (6.77)

and

pφ =
√
hλ∇nφ. (6.78)
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From these, the primary constraint D can be obtained as combination of the previous

conjugate momenta as

D = pΦΦ− 2πijhij ' 0. (6.79)

A Legendre transformation of the Lagrangian gives the Hamiltonian of the model that

can be written as a sum of constraints that vanish for any physical configuration on the

constraint surface on the phase space. The Hamiltonian reads

H =

∫
d3x(NHT +N iHi + vDD + vNπN + viπi + vλpλ) (6.80)

where

HT =
2√
hΦ2

πijGijklπkl −
1

2

√
hRΦ2 +

1

2
√
hλ
p2
φ + ∂i(

√
hhij∂jΦ

2)

− 3
√
hhij∂iΦ∂jΦ +

1

2

√
hλ(Φ2 + hij∂iφ∂jφ) (6.81)

and

Hi = pΦ∂iΦ + pφ∂iφ− 2hijDkπ
jk. (6.82)

These results hold up to boundary terms and express the Hamiltonian of local degrees

of freedom rather than the global gravitational energy. On the other hand, a complete

Hamiltonian must contain also these boundary terms defining the total energy conserved

in time. According to [18], the total energy is conserved in time, and according to the

positive energy theorem of general relativity the total energy is positive, except for

flat Minkowski spacetime, which has zero energy. The field Φ is not dynamical, since

it is a gauge degree of freedom associated with the conformal symmetry. The total

gravitational energy is independent of the chosen gauge for the conformal symmetry.

Fixing the gauge of the conformal symmetry one obtains a minimally coupled scalar field

theory. It must be required that the energy density of the scalar field is positive on the

initial Cauchy surface, at time t = 0 for example, since only those initial configurations

are physically meaningful. Then the energy conditions of the positive energy theorem of
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general relativity are satisfied at the inital time t = 0 and the total gravitational energy

is positive. Since the total energy is conserved, it remains positive.

The preservation of primary constraints πN ' 0, πi ' 0 implies the secondary

constraints

HT ' 0, Hi ' 0. (6.83)

The next step is to require the preservation of primary constraints under time evolution

and for further analysis it is common to introduce two smeared quantities

TT (N) =

∫
d3xNHT , TS(N i) =

∫
d3x(N iHi + pλ∂iλ). (6.84)

The preservation of pλ implies

Cλ ≡
1

N
∂tpλ =

1

N
{pλ, H} =

1

2
√
hλ2

p2
φ −

1

2

√
h(Φ2 + hij∂iφ∂jφ) ' 0. (6.85)

In order to impose the preservation of the constraint D ' 0 let us consider the following

linear combination with pλ ' 0

D̃ = D + 2pλλ (6.86)

which has the following non-zero Poisson brackets:

{D̃(x), hij(y)} = 2hij(x)δ(x− y)

{D̃(x), πij(y)} = −2πij(x)δ(x− y)

{D̃(x),Φ(y)} = −Φ(x)δ(x− y)

{D̃(x), pΦ(y)} = pΦ(x)δ(x− y)

{D̃(x), λ(y)} = −2λ(x)δ(x− y)

{D̃(x), pλ(y)} = 2pλ(x)δ(x− y). (6.87)
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It can be shown that D̃ is conserved without imposing any additional constraint, in fact

one finds

∂tD̃ = {D̃,HT } = −NHT + ∂i(N
iD̃) + 2vλpλ ' 0. (6.88)

Finally the Poisson brackets between HT and Hi in their smeared form read

{T̃T (N),TT (M)} = TS((N∂iM −M∂iN)hij)−
∫

d3x(∂iMN −N∂iM)hij
∂jΦ

Φ
D,

(6.89)

vanishing on the surface Hi ' 0 D ' 0. Further one finds

{T̃S(N i),TS(M i)} = TS(N i∂iM
j −M i∂iN

j), (6.90)

and lastly

{T̃S(N i),TT (M)} = TT (N i∂iM). (6.91)

Hence the Hamiltonian and momentum constraints (6.83) are preserved under time

evolution. According to Dirac formula, the number of extra degrees of freedom following

from the presented argument amounts to

# of canonical variables/2−# of primary constraints−# of secondary constraints/2

(6.92)

and so comparing this model with standard General Relativity one finds that an extra

degree of freedom is present. If one sets the secondary constraints Cλ ' 0 to vanish

strongly, then solving the latter with respect to λ allows one to find

λ = ±
pφ√

h(Φ2 + hij∂iφ∂jφ)
. (6.93)

Setting pλ = 0 leads to the disappearing of the conjugate variables λ and pλ from the

Hamiltonian that can be rewritten as

HT =
2√
hΦ2

πijGijklπkl −
1

2

√
hRΦ2 + ∂i(

√
hhij∂jΦ

2)+
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− 3
√
hhij∂iΦ∂jΦ± pφ

√
Φ2 + hij∂iφ∂jφ. (6.94)

The Hamiltonian dependence on pφ is linear, and as we have already seen, this can lead

to ghost intabilities.

Choosing for convention the Hamiltonian with positive sign in front of pφ leads to an

interpretation of the latter as proportional to the energy density of the mimetic dust on

the surface Σt, i.e. pφ can be view as the rest mass of the mimetic fluid per coordinate

volume d3x as measured by the Eulerian observers with four-velocity nµ. Since pφ has

the physical meaning of density of rest mass, we require that pφ is initially nonnegative

everywhere, i.e. pφ ≥ 0 everywhere on the initial Cauchy surface Σ0 at time t = 0.

On the other hand, the physical meaning of φ is that its gradient ∂µφ represents the

direction of the rest mass current of the mimetic dust in spacetime. The equation of

motion of φ reads

∂tφ = {φ,H} = N
√

Φ2 + hij∂iφ∂jφ+N i∂iφ, (6.95)

and the square of the latter tells us that the rest mass current of the mimetic fluid

is a timelike vector, Φ2 = −gµν∂µφ∂νφ. Equation (6.95) is rather unusual, in fact the

evolution of φ is not driven by its canonical conjugate momentum pφ; this kind of systems

where the evolution of a coordinate does not depend on canonical momenta have been

studied in the past in the context of ’t Hooft ’s deterministic quantum mechanics [19].

The evolution of φ in the gauge where N = const. ≥ 0, N i = 0 and Φ = const. ≥ 0 is

monotonic and always increasing and the rate of growth experiences an increase from

the minimal value ∂tφ = NΦ when spatial inhomogeneities in φ are present. It is the

spatial gradient of φ the relevant quantity and not the local value of the field on Σt.

The other relevant equation of motion belongs to pφ and it can be shown to be

∂tpφ = Npφ∂i

( hij∂jφ√
Φ2 + hij∂iφ∂jφ

)
+ ∂i

( Nhij∂ipφ∂jφ√
Φ2 + hij∂iφ∂jφ

)
(6.96)
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when the aforementioned gauge has been employed. Physically, the latter represents the

continuity equation for the mimetic rest mass current ensuring the conservation of the

total rest mass on the surface Σt under time evolution. This equation shows that there

exists a ground state where pφ = 0, and if there exists a region of space in which pφ = 0

and ∂ipφ = 0, then ∂tpφ = 0. Considering now a situation in which pφ > 0 somewhere

in space, the question is: can pφ evolve to the negative side of the phase space where

pφ < 0? Inside a region of space in which hij and ∂iφ are nearly constant, only the

second term of equation (6.96) really drives the evolution of pφ, because the first one

becomes negligible. Considering now the case in which the two gradients ∂iφ and ∂jpφ

are contradirectional to each other, then hij∂ipφ∂jφ < 0. The crucial point is that no

matter how small pφ is, it would eventually evolve towards zero crossing then the pφ = 0

surface at some later time. This discussion shows that under certain circumstances, the

energy density of the mimetic dust can become negative, and consequently the system

can become unstable. Also for the mirror image of this system, the one that follows

choosing the minus sign on the initial Hamiltonian, one is forced to conclude that the

system can still become unstable for some given kind of initial configurations.

6.4 Another example of Hamiltonian analysis of Mimetic

Gravity

In the last section, following [18] the mimetic constraint

Φ2 = −gαβ∂αφ∂βφ, (6.97)

was treated as an independent field and then the Hamiltonian analysis was presented.

There exists another way to perform the Hamiltonian analysis without the assumption

that Φ is also an independent field. As shown by [4] in order to get the canonical formal-
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ism it is possible to start directly from the original mimetic action with the constraint

as Lagrange multiplier

S = −
∫

d4x
√
−g
(1

2
R+

1

2
λ(1− gµν∂µφ∂νφ) + V (φ)

)
. (6.98)

This action can be rewritten in a 3 + 1 dimensional form and its φ-dependent part reads

Sφ = −
∫

d4x
1

2
N
√
hλ
(

1− g00φ̇2 − 2g0iφ̇∂iφ+ hij∂iφ∂jφ+

− N iN j

N2
∂iφ∂jφ

)
+N
√
hV (φ), (6.99)

where N and N i are the lapse and shift functions and g00 = 1
N2 , g0i = −N i

N2 and gij =

−hij + N iNj

N2 . There are two conjugate momenta, respectively

pλ =
∂L

∂λ̇
= 0 (6.100)

and

p =
∂L

∂φ̇
= N
√
hλ(g00φ̇+ g0i∂iφ). (6.101)

Equation (6.100) is a primary constraint that implies a secondary constraint by demand-

ing its time constancy

0 = ṗλ = {pλ, H} =
δH

δλ
. (6.102)

Equation (6.101) can be inverted giving φ̇ in function of its conjugate momenta, φ̇ = φ̇(p),

thus allowing to perform a Legendre transform and writing the Hamiltonian as

H =
Np2

2
√
hλ

+
1

2
N
√
hλ(1 + hij∂iφ∂jφ) + pN i∂iφ+N

√
hV (φ). (6.103)

The dependence of the latter Hamiltonian with respect to the Lagrange multiplier λ can

be excluded by solving equation (6.102) in terms of λ and it can be shown that

λ =
p√

h(1 + hij∂iφ∂jφ)
. (6.104)
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The total action can be cast in the following form [20]

S = Sg + Sφ =

∫
d4x
(
LADM + pφ̇−Np

√
1 + hij∂iφ∂jφ−N ip∂iφ+

−N
√
hV (φ), (6.105)

where

LADM = ḣijπij −NR0 −N iRi, (6.106)

πij =
√
−h(Γ0

kl − hklΓ0
mnh

mn)hikhjl, (6.107)

and the intrinsic curvature is given by

R0 ≡ −
√
h
[

3R+ h−1
(1

2
π2 − πijπij

)]
, (6.108)

Ri ≡ −2hikπ
kj
|j , (6.109)

where |j indicates the covariant derivative given by the metric hij while π = πii. The

quantity 3R is understood as three-dimensional. After the previous definitions the total

action can then be written as

S =

∫
d4x
[
ḣijπij + pφ̇−N

(
R0 + p

√
hij∂iφ∂jφ+ 1

)
−N i(Ri + p∂iφ)−N

√
hV (φ)

]
.

(6.110)

Then the equations of motion are found by varying with respect to the variables hij , πij .

Variation with respect to πij gives the six equations

ḣij = {hij , H} =
2N√
h

(
πij − 1

2
hijπ

)
+N i|j +N j|i (6.111)

independent of the scalar field φ, since the action Sφ is independent of πij . On the other

hand, variation with respect to hij gives

π̇ij = {πij , H} = −N
√
h
(

3Rij −
1

2
hij

3R
)

+
1

2
√
h
Nhij

(
πmnπmn −

1

2
π2
)

+

− 2√
h
N
(
πimπ

m
j −

1

2
ππij

)
+
√
h(N|ij − hijN

|m
|m ) + (πijN

m)|m+
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−N |mi πmj −N |mj πmi +
Np∂iφ∂jφ

2
√
hkl∂kφ∂lφ+ 1

− 1

2
N
√
hV (φ)hij , (6.112)

that differ from Einstein’s gravity by the presence of two terms function of φ.

Variation of the action with respect to N and N i yields four constraint equations

R0 + p
√
hij∂iφ∂jφ+ 1 +

√
hV (φ) = Hgrav +Hφ = 0

Ri + p∂iφ = Hi gravHi φ = 0. (6.113)

Differently from standard General Relativity in the case of mimetic gravity there are

two more phase space variables and consequently two more equations of motion, namely

those of φ and p, respectively

φ̇−N
√
hij∂iφ∂jφ+ 1−N i∂iφ = 0, (6.114)

ṗ− ∂k
( Nphkl∂lφ√

hij∂iφ∂jφ+ 1
+Nkp

)
+N
√
h
dV (φ)

dφ
= 0. (6.115)

The crucial point here is that these two last equations do not add new information as

these are nothing else that the constraint equation gµν∂µφ∂νφ = 1 and the Bianchi

identity ∇µTµi = 0 that follow after calculating the stress-energy tensor from the action

Sφ. Summarizing, the equations of motion of mimetic gravity are those of Einstein’s

gravity plus two more equations that can be reinterpreted as the conservation of the

energy-momentum tensor and the constraint equation. However, the equations of motion

obtained varying with respect to hij , N and N i are those of pure Einstein’s gravity [20]

but including extra terms as a function of the scalar field φ. As in the last section, with

the help of smeared functions in order to have well-defined algebraic relationships, it is

possible to define a Dirac algebra showing its closure.

As was shown in the last two sections, the presence of the Lagrange multipliers in the

action has strong impact on the form of the resulting equations of motions. Then it was

natural to ask the question how the presence of Lagrange multipliers modifies Hamilto-

nian structure of given theory. Moreover, one would like to see whether the Hamiltonian
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of these systems is again given as a linear combination of constraints and whether these

constraints are the first class and their Poisson algebra respects the basic principles of

geometrodynamics [21]. It turns out that Hamiltonian structure of given theory is very

interesting. It was shown that the presence of the first scalar field that plays the role of

the Lagrange multiplier implies an existence of the second class constraints. Then after

their solving we find the Hamiltonian equations of motions for the second scalar field

that are autonomous in the sense that the time evolution of the scalar field does not

depend on its conjugate momenta. The final result is that the resulting theory is a fully

constrained system with the algebra of constraints that has the same form as in General

Relativity.



Chapter 7

Horndeski theory and Disformal

transformations

7.1 The invariance of the Horndeski action under Disfor-

mal transformations

Concepts of mimetic gravity can be analyzed within the most general framework of

Horndeski theories built from an action that gives rise to second-order equations of

motion. This framework is a general description of how a scalar degree of freedom φ

fits into a theory of gravity and in particular how φ and its first and second derivatives

along with the kinetic term X = gµν∂µφ∂νφ/2 enter into the action. The Lagrangian

density is fully described by the four functions (K(φ,X), Gi(φ,X)) and read

LHor =

5∑
i=2

Li (7.1)

85
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where

L2 = K(φ,X)

L3 = G3(φ,X)�φ

L4 = G4(φ,X)R−G4X(φ,X)[(�φ)2 − (∂µ∂νφ)2]

L5 = G5(φ,X)Gµν∇µ∂νφ+ G5X(φ,X)
6 [(�φ)3 − 3(�φ)(∇ν∂µφ)2 + 2(∇µ∂νφ)2].

(7.2)

It can be shown that for the Horndeski action, conditions (6.48) of the last chapter are

satisfied and so LHor gives rise to second-order equations of motion.

In chapter IV we saw that Mimetic Matter emerges if we map the metric gµν to a

well defined function of a scalar field φ via

gµν 7→ ḡµν = (gαβ∂αφ∂βφ)gµν = P (φ)gµν . (7.3)

There exists a more general class of transformations [22, 23], dubbed disformal trans-

formations, realized by

gµν 7→ ḡµν = A(φ,X)gµν +B(φ,X)∂µφ∂νφ, X = ḡµν∂µφ∂νφ/2. (7.4)

In order to be a physical transformation, the following three conditions have to be

satisfied:

Lorentzian signature: considering a frame in which ∂µφ = (φ̇,~0), then the lorentzian

signature is guarantee if

ḡ00 = A(φ,X)g00 +B(φ,X)φ̇2 < 0

or

A(φ,X) + 2B(φ,X)X > 0. (7.5)

Causal behaviour: the sign of B can alter the light-cone introducing superluminal

or a-causal effects, but the requirement that physical particles obey ds2 < 0 will

ensure the absence of such problematic situations.
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Invertibility: the conditions by which the inverse and the volume element are never

singular. Searching for an inverse metric of the form

ḡµν =
1

A
gµν + x∂µφ∂νφ, (7.6)

contracting one index of the latter with one index of the disformal transformed

metric (7.4) and requiring δ̄µν = δµν , one finds x = −B
A

ω
2X or

ḡµν =
1

A
gµν − B(φ,X)

A(φ,X)

ω

2X
∂µφ∂νφ, ω = gµν∂µφ∂νφ (7.7)

and
√
−ḡ = A2(1 + 2XB/A)1/2√−g.

As already pointed out, the Horndeski action gives rise to second-order equations of mo-

tion and this is because of a fine cancellation between higher derivative terms from the

non-minimally coupled part of the Lagrangian and those produced from derivative coun-

terterms. This happens because of the antisymmetric structure of L4 = G4(φ,X)R −

G4X(φ,X)[(�φ)2 − (∂µ∂νφ)2] that can be rewritten as

L4 = (gµβgνα − gµνgαβ)[G4(φ,X)Rµναβ −G4X(φ,X)∇µ∂νφ∇α∂βφ], (7.8)

whit clearly an antisymmetric structure.

A conformal transformation of the type gµν 7→ A(X)gµν will spoil the main feature

of Horndeski theory, namely second-order equations of motion. In fact the conformal

transformations will produce on ∇µ∂νφ a contribution that inserted into (7.8) gives rise

to a symmetric term responsible for altering the Horndeski action antisymmetry. Thus

we are forced to conclude that in order to guarantee the peculiarity of LHor we have to

restrict the attention on trasformations of the type

gµν 7→ ḡµν = A(φ)gµν +B(φ)∂µφ∂νφ, (7.9)

where the dependence of the two functions A and B onX is dropped [23]. It can be shown

that the effect of the latter class of transformations on the Horndeski Lagrangian is only
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a rescaling of the four functions (K and Gis) while no modification to the antisymmetry

properties are introduced by (7.9). Moreover, LHor also admits the field redefinition

φ 7→ s(φ)φ symmetry.

The invariance of the action under disformal transformations means that (7.9) is a

symmetry of LHor and all functions are defined modulo a conformal and a disformal

transformation.

7.1.1 Special cases

Setting A 6= 0 and B = 0 will produce a purely conformal transformation that alters in

a non trivial way two of the four functions, while it only rescales G4 and X and leaves

unchanged G5, respectively

K̄(φ,X) = A2K(φ,XC) + f(X,A,A′, A′′, G3, G4, G5) (7.10)

Ḡ3(φ,X) = AG3(φ,XC)− g(X,A,A′, A′′, G4, G5) (7.11)

and

Ḡ4(φ,X) = AG4(φ,XC), XC =
X

A
(7.12)

Ḡ5(φ,X) = G5(φ,XC). (7.13)

The form of the two functions f and g are rather complicated and the key point is that if

one starts with zero K or G3, they would appear after a purely conformal transformation.

In fact Lj<i receives contributions from all the Lis, while L5 cannot be generated in

this way. Given that, a purely conformal transformation cannot eliminate non minimal

couplings (NMC) for any choice of the conformal factor A(φ).

On the other hand, purely disformal transformations are achieved setting A = 1 and

B 6= 0 and the corresponding transformations on the two NMC functions G4, G5 reads

Ḡ4(φ,X) = (1 + 2XB)1/2G4(φ,XD) +m(X,B,B′, G5)− ∂HR

∂φ
(φ,X)X (7.14)
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and

Ḡ5(φ,X) =
G5(φ,XD)

(1 + 2BX)1/2
+HR(φ,X), (7.15)

where

XD =
X

1 + 2BX
,

HR = B

∫
dX

G5(φ,XD)

(1 + 2BX)3/2
.

The resulting transformation appears to be richer than in the purely conformal case and

the form of m(X,B,B′, G5)

m(X,B,B′, G5) =
G5(φ,XD)B′(φ)X2

(1 + 2BX)3/2

forces one to conclude that even in this case NMC terms cannot be generically eliminated

with a purely disformal transformation. Imposing that the NMC terms disappear from

the action, i.e. Ḡ4 = 1 and Ḡ5 = 0, leads for G5 to the relation∫
dX

G5X(φ,XD)

(1 + 2BX)1/2
= 0 (7.16)

satisfied for example if

G5 = G5(φ) (7.17)

and if G4 is

G4(φ,X) = (1− 2BX)1/2 − ∂G5

∂φ
X. (7.18)

It can be concluded that the NMC part of the action

SNMC =

∫
d4x
√
−g[G4(φ,X)R−G4X [(�φ)2 − (∇µ∂νφ)2] +G5(φ)Gµν∇µ∂νφ], (7.19)

where G4 is given by (7.18), is the only one that admits a disformal map able to eliminate

all the NMC terms in the context of Horndeski theory. The more general transformation

with A = A(φ) would simply result in a conformal rescaling of G4.
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7.1.2 Disformal Frames

The analysis of modified theories of gravity as for example f(R), Horndeski and Brans-

Dicke among the others, can be exploited in two different frames, dubbed the Jordan

frame and the Einstein frame that correspond to somewhat opposite situations:

Einstein frame in which the gravitational dynamics is described by an Einstein-Hilbert

action and matter field are coupled to gravity via some functions of the scalar field

and its derivatives.

Jordan frame in which the gravitational sector Lagrangian includes a NMC scalar

field.

Given the following action

S =

∫
d4x
[
G(φ)R− f(φ)

2
∂µφ∂µφ− V (φ)

]
+ Sm[e2α(φ)g, ψ], (7.20)

in which the gravitational coupling have been promoted to a function of a scalar field

G(φ), while f(φ), V (φ) and α(φ) are general functions of their argument, the difference

between the Jordan and the Einstein frame can be appreciated fixing two out of four of

the latter functions. The Einstein frame is defined by the choice

G(φ) = 1, f(φ) = 1 (7.21)

while the Jordan frame by

G(φ) = φ, α(φ) = 0. (7.22)

Recalling the total action for which is possible to eliminate all the NMC terms with a

disformal transformation and completing that form including an action for matter fields

leads to

S =

∫
d4x
√
−g[G(φ,X)R−GX [(�φ)2− (∇µ∂νφ)2]+K(φ,X)+G3(φ,X)�φ]+Sm[ḡ, ψ],

(7.23)



7.2. DISFORMAL TRANSFORMATION METHOD 91

where the function G(φ,X) is parametrized by the two functions C(φ) and D(φ) as

G(φ,X) = C(φ)2
(

1− 2
D(φ)

C(φ)
X
)1/2

and Sm[ḡµν ] is the total matter action defined in terms of the physical metric

ḡµν = eα(φ)gµν + β(φ)∂µφ∂νφ. (7.24)

The above definitions leave us with six free functions, four from the previous argument

about Horndeski theories and two from the physical metric definitions. Choosing appro-

priately A(φ) = eα(φ) and B(φ) = β(φ), a disformal transformations allows to fix two

out of the four functions C(φ), D(φ), α(φ), β(φ) and in this way it is possible to select

a particular frame in which different features of the theory can emerge. For example, as

well as the Jordan and the Einstein frames discussed above, as pointed out by [23], there

exist also others two frames, namely the Galileon frame and the Disformal frame which

can be seen as a sort of intermediates states between the former. The name Galileon is

given because the conformal part enters the matter Lagrangian explicitly and the field

couples directly to gravity as a DBI Galileion, [25]. The Jordan frame is given setting

α = 1 and β = 0, the Einstein frame correspond to the choice C(φ) = 1 and D(φ) = 0,

on the other hand the Galileon frame is given by C(φ) = 1 and β(φ) = 0 while the Dis-

formal frame is choosen setting D(φ) = 0 and α(φ) = 1. In conclusion, the equivalence

of the frames allows to claim the equivalence of many apparentely unrelated models

given that one can move from one to another through appropriately chosen disformal

transformations and field redefinitions.

7.2 Disformal Transformation Method

Recalling the form of the inverse metric

ḡµν =
1

A
gµν − B(φ,X)

A(φ,X)

ω

2X
∂µφ∂νφ, ω = gµν∂µφ∂νφ,
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contracting the latter with ∂µφ∂νφ allows one to find

ω =
2XA

1− 2XB
=

Agµν∂µφ∂νφ

1−Bgµν∂µφ∂νφ
(7.25)

where clearly 1−B∂µφ∂νφ 6= 0. Using (7.25), as in [3], it is possible to define a function

G of ω and φ of the form

G(φ, ω) ≡ ω1−B(φ, ω)gµν∂µφ∂νφ

A(φ, ω)
= ḡµν∂µφ∂νφ. (7.26)

For fixed φ, if

dG(φ, ω)

dω

∣∣∣
ω=ω∗

6= 0, (7.27)

the inverse function theorem ensure that the inverse function G−1 exists near ω∗, and it

is possible to write ω = G−1(ḡµν∂µφ∂νφ). On the other hand dG(φ,ω)
dω

∣∣∣
ω=ω∗

= 0 implies

the non existence of G−1. The latter is solved for example [3, 24] by

G(φ, ω) =
1

b(φ)
, (7.28)

and in this exceptional case of non invertibility, the relation between ḡµν and gµν cannot

be inverted. Moreover from (7.25) one has

B(φ, ω) = −A(φ, ω)

ω
+ b(φ). (7.29)

Then the disformal transformation can be written as

ḡµν = A(φ, ω)gµν +
(
b(φ)− A(φ, ω)

ω

)
∂µφ∂νφ, (7.30)

and so, it is possible to claim, as the authors of [24] does, that mimetic gravity - for

which A = A(φ, ω) and b(φ) = 1 - emerges as particular case of a non invertible disformal

transformation of the phisical metric ḡµν in term of an auxiliary metric gµν and a scalar

field φ.
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7.2.1 Equations of motion

Given the relation between the physical metric and the auxiliary metric, it is possible

to calculate the generalized field equations taking variations of the total action, [3]. If

the latter is

S =

∫
d4x
√
−gL[ḡµν , ∂ḡµν , φ, ∂φ] + Sm[ḡµν , ψm] (7.31)

where ψm are matter fields, then the variation reads

δS =
1

2

∫
d4x
√
−ḡ(Eµν + Tµν)δḡµν +

∫
d4xΩφδφ+

∫
d4xΩmδψm, (7.32)

where

Ωφ =
δ(
√
−ḡL)

δφ
, (7.33)

Eµν =
2√
−ḡ

δ(
√
−ḡL)

δḡµν
, (7.34)

and

Tµν =
2√
−ḡ

δ(
√
−ḡLm)

δḡµν
. (7.35)

On the other hand, taking variations of the metric ḡµν , disformally related to gµν , the

result would be

δḡµν = Aδgµν −
(
gµν

∂A

∂ω
+ ∂µφ∂νφ

∂B

∂ω

)
[(gαρ∂αφ)(gβσ∂βφ)δgρσ − 2gρσ∂ρφ∂σδφ]+

+
(
gµν

∂A

∂φ
+ ∂µφ∂νφ

∂B

∂φ

)
δφ+B(∂µφ∂νδφ+ ∂νφ∂µδφ). (7.36)

Inserting the last relation in (7.32) then the generalized Einstein equations of motion

δS
δḡµν = 0 read

A(Eµν + Tµν) =
(
α1
∂A

∂ω
+ α2

∂B

∂ω

)
gµρ∂ρφg

νσ∂σφ (7.37)

and the generalized Klein-Gordon equation δS
δφ = 0

1√
−g

∂ρ

{√
−g∂σφ

[
B(Eρσ+T ρσ)+

(
α1
∂A

∂ω
+α2

∂B

∂ω

)
gρσ
]}
−

Ωφ√
−g

=
1

2

(
α1
∂A

∂φ
+α2

∂B

∂φ

)
,

(7.38)
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where the following quantities have been defined

α1 ≡ (Eρσ + T ρσ)gρσ, α2 ≡ (Eρσ + T ρσ)∂ρφ∂σφ. (7.39)

Contracting the metric equation of motion (7.37) with gµν and with ∂µφ∂νφ gives the

following two-dimensional linear system

α1

(
A− ω∂A

∂ω

)
− α2ω

∂B

∂ω
= 0, α1ω

2∂A

∂ω
− α2

(
A− ω2∂B

∂ω

)
= 0. (7.40)

One may write the latter system of equations in matrix form as

M

α1

α2

 = 0, M =

A− ω ∂A∂ω −ω ∂B∂ω

ω2 ∂A
∂ω −A+ ω2 ∂B

∂ω

 (7.41)

and the determinant of the system is

detM = ω2A
∂

∂ω

(
B +

A

ω

)
. (7.42)

In the generic case, when the determinant is not vanishing, the only solution is α1 =

α2 = 0 and the two field equations reads

Eµν + Tµν = 0, Ωφ = 0. (7.43)

It is possible to conclude that in the general case, it does not matter with respect to

what metric one takes variations, using the metric gµν or its disformally related ḡµν one

always recovers General Relativity: Gµν = −Eµν = Tµν . As pointed out by [24], this

fact corresponds to a generalizations of standard veiled General Relativity where the

disformed metric reduces to a conformal metric ḡµν = P (φ)gµν .

7.3 Mimetic Gravity

In the case of vanishing determinant, one finds that

B(φ, ω) = −A(φ, ω)

ω
+ b(φ), (7.44)
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with a non-zero constant of integration b(φ). The latter relation between the coefficients

of the disformal map, is the same condition that follows from the non-invertibility of the

disformal map itself. Equations of motion in this case are

Eµν + Tµν =
α1

ω
(gµα∂αφ)(gνβ∂βφ) (7.45)

and

∂α(
√
−ḡbα1g

αβ∂βφ)− Ωφ =

√
−ḡ
2

α1ω
db

dφ
. (7.46)

Taking into account that the inverse metric in this case is found to be

ḡµν =
1

A

(
gµν +

A− ωB
Abω2

(gµα∂αφ)(gνβ∂βφ)
)
, (7.47)

with the latter inverse and the starting metric ḡµν it is possible to find, using contractions

with ∂µφ, gµα∂αφ = bω∂µφ, α1 = (E + T )/(bω) and

b(φ)ḡµν∂µφ∂νφ = 1. (7.48)

Inserting these results into the equations of motion leads to the already known set of

equations

Eµν + Tµν = (E + T )b∂µφ∂νφ, ∇α[(E + T )b∂αφ]−
Ωφ√
−g

=
1

2
(E + T )

d ln b

dφ
. (7.49)

These equations correspond to the case of Mimetic Matter already analyzed. It is clear

that the realizing transformations dubbed ”mimetic disformal transormation”, drasti-

cally change the set of equations one finds varying with respect to the metric gµν in place

of the disformally related ḡµν .
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Chapter 8

Conclusions

Within this thesis work I presented a (relatively) new way of modifying General Relativ-

ity emerged in recent years, see for example [1], [2]. Since the first Einstein’s formulation

of gravitation, possible modifications of the theory started to get appeal within the sci-

entific comunity. Einstein itself was among the first who started to modify the theory

of GR in order to explain his static version of the Universe. Today people start to think

to modifications of the same theory in order to accomodate observational evidences for

the existence of dark components. Several aspects of these components, as we saw in

this work, can be mimicked once one accepts the idea to add a scalar degree of freedom

to the metric. Provided that one consider the possibility that the physical metric can

have a scalar degree of freedoom φ, considering also a potential V (φ) for this scalar al-

lows the description of Dark Matter and Dark Energy. As discussed, the mimetic model

offer a wide range of applications: besides the dark sector, it provide us also a possi-

ble description of an inflationary mechanism. It is important to stress that, differently

from the inflationary paradigm or to other tensor-scalar theories, mimetic matter is a

modification of GR that offer a solution without appealing to the existence of a new

propagating field. The scalar field of mimetic matter it is thought to be a new degree of

97
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freedom of the metric, and in his first appearance and easier formulation [1, 2] it is not

a propagating field.

A symmetric metric, in general, possesses ten independent components so, allowing

a relation between the physical metric ḡµν and a combination of a scalar field φ and an

auxiliary metric gµν , generally reduces to a map from ten elements to eleven. Let me

recall that the disformal map is given by

ḡµν = A(φ, ω)gµν +B(φ, ω)∂µφ∂νφ, ω = gµν∂µφ∂νφ.

We saw that two cases exists. They are related to the possibility that the quantity

detM = ω2A
∂

∂ω

(
B +

A

ω

)
,

associated with the sets of field equations following from the action, vanishes or not.

When detM 6= 0 then this version of the theory reduces to standard General Relativity,

showing that the theory itself is disformally invariant. On the other hand, when the

determinant vanishes, i.e. when the relation

B(φ, ω) = −A(φ, ω)

ω
+ b(φ),

holds, then we are in the presence of a modified version of General Relativity with a

mimetic dust fluid component.

The Hamiltonian view provides a further insight at the heart of this new idea. In

fact, once the Hamiltonian is written, conditions for positive energy definiteness can be

written in order to avoid the presence of UV ghosts in the theory. What emerged is that

the Hamiltonian related to Mimetic Gravity turns out to be linear with respect to one of

its conjugate momenta, namely that of φ. Time evolution in the phase space is given by

the Hamiltonian flow, and it is clear that orbits live on a subspace of the total constant

energy surface given by the set of primary constraints emerging from the formalism.
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The idea of a scalar degree of freedom of the metric fit well into a general theory

called Horndeski theory. This theory describe how a scalar degree of freedom can be

accomodated into a theory of gravitation. As we saw, the Horndeski action is generally

invariant under disformal transformations and gives rise to second-order equations of

motion.

The different representations of a theory, written in terms of disformally related

metrics, are often referred to as being written in different ‘frames’. In some cases these

transformations can be used to remove non-minimal coupling between the scalar field

and the Ricci scalar at the level of the action, leaving only a canonical Einstein-Hilbert

term. This particular frame, if it exists, is referred to as the Einstein frame. In other

words, the formulation in the Einstein frame represents one conformal gauge of the

mimetic theory, as usual there exist alternative gauges.

In conclusion, despite the potential problem of the presence of ghosts discussed above,

the original theory of mimetic dark matter could be useful for astrophysical and cosmo-

logical modeling, provided that one considers only those initial configurations that do

not cross the critical line under time evolution leading to negative energy states. All

the ideas presented in this work must be tested not only in their ability of describe the

dark sector of cosmology, the key feature of Mimetic Gravity, but they must also agree

with Solar System measurements. As we have seen, when one consider the action of the

Mimetic Model, the only modification with respect to Einstein GR it is reduced to the

appearance of a perfect-fluid that can mimic the observed behavior of Dark Matter and

Dark Energy. It is possible to claim that no modifications are given to gravity at scales

of the Solar Sistem.
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