
Master Thesis in Computer Engineering

Single-frame multi-camera to robot pose
estimation

Master Candidate Supervisor

Alberto Cappelletto Prof. Stefano Ghidoni
Student ID 2091905

Co-supervisor

Davide Allegro, Ph.D Student

Academic Year
2023/2024





To all the ones that believed in me





Abstract

Human-robot collaboration relies on multi-camera systems to robustly monitor
human operators in a robotic workcell. In this scenario, precise localization of the
person in the robot coordinate system is essential, making the calibration of the camera
network critical. In this work, we propose an innovative method to calibrate a network
of cameras using a robot present in the cameras’ field of view as a calibration model,
based on a single image per camera, and to estimate the pose between the cameras
and the robot. This approach is innovative because previous methods have primarily
focused on calibrating individual cameras.

We demonstrate the effectiveness of our model by comparing it with the single-
camera case, highlighting improvements in robustness and accuracy. We analyze how
our method performs with 3, 4, and 5 cameras, and how the distance of the cameras
to the robot affects our estimations. The experiments show that our method is more
accurate and robust than the single-camera method, achieving an increase of about
38% in rotation estimation and 40% in translation estimation for some cameras. Our
findings indicate that our model successfully handles variations in the number of
cameras and is robust to changes in the setup configuration.





Sommario

La collaborazione uomo-robot si basa su sistemi multi-camera per monitorare in
modo robusto gli operatori umani in una cella di lavoro robotica. In questo scenario,
la localizzazione precisa della persona nel sistema di coordinate del robot è essenziale,
rendendo critica la calibrazione della rete di telecamere. In questo lavoro, proponiamo
un metodo innovativo per calibrare una rete di telecamere utilizzando un robot presente
nel campo visivo delle telecamere come modello di calibrazione, basato su una singola
immagine per telecamera, e per stimare la posa tra le telecamere e il robot. Questo
approccio è innovativo perché i metodi precedenti si sono concentrati principalmente
sulla calibrazione di singole telecamere.

Dimostriamo l’efficacia del nostro modello confrontandolo con il caso di una singola
telecamera, evidenziando miglioramenti in robustezza e accuratezza. Analizziamo
come il nostro metodo si comporta con 3, 4 e 5 telecamere, e come la distanza delle
telecamere dal robot influisce sulle nostre stime. Gli esperimenti mostrano che il
nostro metodo è più accurato e robusto rispetto a quello con una singola telecamera,
raggiungendo un aumento di circa il 38% nella stima della rotazione e del 40% nella
stima della traslazione per alcune telecamere. I nostri risultati indicano che il nostro
modello gestisce con successo le variazioni nel numero di telecamere ed è robusto ai
cambiamenti nella configurazione dell’installazione.
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1
Introduction

In the realm of computer vision, calibrating cameras is crucial for ensuring accurate
and reliable measurements, especially in human-robot collaboration (HRC) tasks. In
HRC scenarios, accurate camera calibration is indispensable for robots to accurately
perceive and interact with humans within a shared environment, which is vital for
safety and efficiency. Calibrated cameras provide precise spatial data, allowing robots
to navigate and respond appropriately without collisions or errors. Furthermore, cal-
ibration of multiple cameras allows for the integration of sensor data from different
viewpoints, creating a coherent and comprehensive view of the workspace. This holis-
tic view is critical for tasks that require an understanding of the entire environment,
enhancing the overall effectiveness of human-robot interactions. Therefore, having
well-calibrated cameras and collecting comprehensive scene information are funda-
mental to the success of HRC applications.

Camera calibration is the process of determining the intrinsic and extrinsic parame-
ters of a camera system to ensure accurate interpretation of the geometric properties of
images. Intrinsic parameters describe the internal characteristics of the camera, such as
focal length, principal point, and lens distortion coefficients. These parameters affect
how light rays are refracted and focused onto the camera sensor, thereby influencing
the geometry of captured images. Extrinsic parameters, on the other hand, define the
position and orientation of the camera relative to the scene being observed. These
parameters specify the spatial transformation between the camera’s coordinate system
and the world coordinate system, enabling accurate mapping of image coordinates to
real-world coordinates.

The process of camera calibration typically involves capturing images of calibration
patterns, such as checkerboards or grids, from different viewpoints and orientations
[78, 69, 58]. These images are then processed to extract feature points, which serve
as reference points for estimating both intrinsic and extrinsic parameters. Various
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mathematical techniques, including geometric algorithms and optimization methods,
are employed to compute these parameters based on the observed feature points.

In addition to calibrating cameras individually, it is also crucial to calibrate the
cameras with respect to the robot. This ensures perfect synchronization between the
robot’s movements and the camera’s observations, which is essential for tasks requiring
close interaction between the human operator and the robot. Classical calibration
methods for this setup typically involve placing a calibration pattern on the robot’s end
effector and capturing images from different camera angles [15, 62].

Classical camera calibration methods, like the one proposed by Zhang [78], while
effective, are associated with several challenges:

• Manual Intervention: They often require manual intervention, such as capturing
images of calibration patterns from multiple viewpoints and orientations. This
process can be time-consuming, not extremely accurate, because if the pattern is
moved manually there can be cases where the images are not clear due to the
human holding the pattern not being completely still, and labor-intensive, par-
ticularly for systems with multiple cameras or in dynamic environments where
frequent recalibration is necessary.

• Sensitivity to Environmental Conditions: These calibration techniques may be
sensitive to changes in environmental conditions, such as variations in lighting,
camera positions, or scene complexity. These changes can impact the accuracy
of calibration results and require adjustments to be made manually, limiting the
robustness of the calibration process.

• Limited Adaptability: In dynamic environments, where cameras may undergo
changes in focal length, lens distortion, or position, these calibration techniques
may fail to maintain accuracy without continuous recalibration. These methods
are often not well-suited for real-time applications where rapid adaptation to
changing conditions is required. The iterative nature of optimization-based ap-
proaches and the manual intervention involved in feature-based methods make
them impractical for scenarios that demand continuous recalibration in real-time.

• Complexity and Scalability: The mathematical models and optimization algo-
rithms used in classical calibration methods can be complex and computation-
ally demanding, particularly for large-scale camera networks or systems with
non-linear distortion. Scaling traditional calibration techniques to handle com-
plex scenarios can be challenging and may require significant computational
resources.

• Dependency on Calibration Patterns: Many of these calibration methods rely
on specific calibration patterns, such as checkerboards or grids [78, 19], for fea-
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CHAPTER 1. INTRODUCTION

ture extraction and parameter estimation. While these patterns are effective in
controlled environments, they may not be suitable for complex or unstructured
scenes, limiting the applicability of traditional calibration techniques in diverse
scenarios.

1.1 Contributions

In recent years, advancements in machine learning and deep learning have cat-
alyzed an innovative approach: using objects of known geometry crucial to subsequent
tasks for calibration. This new method diverges from traditional practices reliant on
human intervention and specific calibration markers. By leveraging deep learning
capabilities, this approach not only enhances robustness against environmental varia-
tions but also enables real-time calibration solutions.

One notable advancement in these techniques involves directly employing a robot
for calibration tasks [31, 76]. This method is distinguished by its ability to incorporate
the robot’s precise information into the calibration process, ensuring optimal alignment
between camera observations and robot actions.

This thesis introduces a novel system designed to estimate the extrinsic parameters
of a network of 𝑁 cameras (where 𝑁 > 2) using a robot as a known geometry object, and
to determine the robot’s pose with respect to the camera network. To our knowledge,
this is the first method to address the challenge of estimating the pose of an uncalibrated
camera network relative to a manipulating robot. Previous research primarily focuses
on single-camera setups [31, 74, 76, 75, 22], concentrating on estimating the relative
pose between the camera and robot.

In single-camera setups, the majority of approaches utilize neural networks to
recover relative rotation and translation, either directly or as an initial step before
solving the Perspective-n-Point (PnP) problem [32, 29, 72]. However, using a single
camera can lead to less precise results due to occlusions or configuration discrepancies
not represented in the training dataset. One of the main weaknesses of such approaches
is their heavy reliance on the initial estimation by the deep learning model. Poor results
may arise due to factors such as specific robot configurations, changes in lighting, or
variations in the robot-camera distance compared to the training data, resulting in
significantly erroneous pose estimates. Another critical challenge is occlusion, which
can occur when objects or people obstruct the view or due to self-occlusion caused by
robot configuration, all of which can degrade accuracy.

While calibrating multiple cameras introduces complexity compared to a single-
camera setup, it also enhances estimation accuracy by providing richer scene informa-
tion.

This work aims to advance existing research by improving accuracy and robustness,
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1.2. THESIS OUTLINE

particularly in multi-camera scenarios. Our proposed approach begins with estimating
inter-camera poses using feature matching [35], followed by recovering the rotation
and translation components [61]. We then utilize epipolar geometry for multi-view
information fusion [79] to address occlusion challenges. Subsequently, we refine these
results through constrained triangulation [8] and a final bundle adjustment step. A
detailed description of the method is provided in Chapter 4.

The efficacy of our method is evaluated through experiments where we compare it
with a single-camera approach repeated across all the cameras. We assess our model’s
performance with varying numbers of cameras (3, 4, and 5) and explore the impact of
different camera-to-robot distances. Further discussion and numerical results will be
presented in Chapter 5.

1.2 Thesis Outline

The thesis follows a structured organization: Chapter 2 explores essential prelimi-
nary notions to facilitate understanding of the work undertaken. Chapter 3 critically
reviews the literature on the subject, emphasizing key methodologies employed, their
strengths and weaknesses. Chapter 4 introduces the overarching framework of the
proposed method, providing detailed insights into its constituent steps. Chapter 5
outlines the experimental procedures conducted and presents the corresponding re-
sults. Finally, Chapter 6 offers a comprehensive conclusion, summarizing contributions
made and elucidating potential avenues for future research.
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2
Preliminary Notions

In this chapter, the groundwork for a comprehensive understanding of the forth-
coming sections is presented by delving into pivotal preliminary notions. These fun-
damental concepts serve as the bedrock upon which subsequent discussions and ex-
plorations will be built.

2.1 Pose

The pose of an object, as shown in Figure 2.1 refers to its specific position and
orientation in space relative to a defined coordinate system or reference frame. It
encompasses two fundamental aspects: translation, which describes: the object’s loca-
tion or displacement in three-dimensional space along the x, y, and z axes and rotation,
indicating the orientation of the object concerning these axes. It defines how the object
is turned or tilted relative to the coordinate system.

The translation component of a pose, which describes the displacement or location
of an object in three-dimensional space, can be represented in various ways:

• Cartesian Coordinates: The most common representation involves using Carte-
sian coordinates (x, y, z) to denote the position of an object in a three-dimensional
space. Each coordinate represents the displacement along the x, y, and z axes,
respectively, from a reference point or origin.

• Homogeneous Coordinates: Often used in computer graphics and transfor-
mations, homogeneous coordinates add a fourth coordinate (usually 1) to the
Cartesian coordinates, enabling efficient representation of translation along with
rotations and perspective transformations within matrices.

The rotation component of a pose can be represented in various ways, each with its
advantages and specific use cases, such as:
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2.2. PROJECTIVE GEOMETRY

• Euler Angles: Euler angles describe rotations using three angles, typically repre-
senting rotations about the x, y, and z axes. While intuitive, they can suffer from
issues like gimbal lock and ambiguity in certain orientations.

• Rotation Matrix: A rotation matrix is a 3x3 matrix that directly encodes the
orientation of an object in three-dimensional space. Each column represents the
direction of the axes of the rotated frame in the reference frame.

• Quaternion: Quaternions are four-dimensional mathematical entities used to
represent rotations. They are compact, computationally efficient, and free from
some of the issues that Euler angles face, like gimbal lock. Quaternions consist
of a scalar part and a vector part

Figure 2.1: Pose of a rigid object with respect to the camera coordinate frame. 𝑅
represent the rotation and 𝑡 the translation.

2.2 Projective Geometry

Projective geometry is a branch of mathematics that studies geometric properties
and relationships that are invariant under projective transformations.
By extending the principles of Euclidean geometry, projective geometry allows for
the representation and manipulation of images in a way that accurately reflects the
projection of a three-dimensional world onto a two-dimensional image plane, as shown
in Figure 2.2.
In Euclidean geometry, the parallel axiom states that parallel lines never intersect.
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CHAPTER 2. PRELIMINARY NOTIONS

However, projective geometry changes this by ensuring that all lines intersect, even
parallel lines. This is achieved by introducing so called points at infinity, where each
pair of parallel lines meets, corresponding to their direction. The collection of all these
points at infinity forms what is known as the line at infinity.
A point (x,y) in the Euclidean plane can be represented as (x,y,1) in homogeneous
coordinates. A point at infinity can be represented as (x,y,0). Similarly, a point (X,Y,Z)
in the 3D world is represented as (X,Y,Z,1). Homogeneous coordinates allow for the
inclusion of points at infinity, which are essential in projective geometry.

Figure 2.2: Illustration of projective geometry principles showing how a three-
dimensional object is projected onto a plane, with lines converging at the viewer’s
eye.

2.2.1 Pinhole Camera Model

The pinhole camera model is used to describe how a three-dimensional scene is
projected onto a two-dimensional image plane. This model simplifies the behavior of
a camera to its essential geometric principles, excluding effects like lens distortion and
focusing. The model is named after the pinhole camera, a simple camera without a
lens but with a tiny aperture, or pinhole, which allows light to enter and form an image
on the opposite side.
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2.2. PROJECTIVE GEOMETRY

In the pinhole camera model, light from a scene passes through a single point (the
pinhole) and projects an inverted image onto an image plane. This can be understood
through the following components:

• Camera Coordinate System: Defined with the camera’s optical center at the
origin (0, 0, 0) of the 3D space.

• Image Plane: A 2D plane where the projected image is formed, located at a
distance 𝑓 = ( 𝑓𝑥 , 𝑓𝑦) (focal length) from the pinhole.

• Pinhole (Optical Center): The point through which all light rays pass, situated
at the origin of the camera coordinate system.

• Projection: A mapping from 3D points in the scene to 2D points on the image
plane.

Figure 2.3: Illustration of the pinhole camera model demonstrating the relationship
between the world coordinate system, camera coordinate system, image coordinate
system, and pixel coordinate system.

To mathematically describe the projection, consider a point P = (𝑋,𝑌, 𝑍) in the 3D
world. The corresponding point p = (𝑥, 𝑦) on the 2D image plane can be found using
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similar triangles. The projection equations are derived as follows:

𝑥 = 𝑓
𝑋
𝑍

(2.1)

𝑦 = 𝑓
𝑌
𝑍

(2.2)

Here, (𝑋,𝑌, 𝑍) are the coordinates of the 3D point in the camera coordinate system, 𝑓
is the focal length, and (𝑥, 𝑦) are the coordinates of the projected point on the image
plane.
Using homogeneous coordinates simplifies the representation of projection equations,
especially for more complex transformations. A 3D point P = (𝑋,𝑌, 𝑍) in homoge-
neous coordinates is represented as P = (𝑋,𝑌, 𝑍, 1). The projection of this point onto
the image plane can be written using a projection matrix P.
The projection matrix P for the pinhole camera model is:

P =
©«
𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

ª®®¬
The transformation from the 3D world point P′ to the 2D image point p in homogeneous
coordinates is given by:

p = PP′

In practical applications, the pinhole camera model involves intrinsic and extrinsic
parameters.
Intrinsic parameters describe the internal characteristics of the camera, such as focal
length and principal point (the point where the optical axis intersects the image plane).
These parameters are typically represented by the intrinsic matrix K:

K =
©«
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

ª®®¬
where 𝑓𝑥 and 𝑓𝑦 are the focal lengths in the x and y directions, and (𝑐𝑥 , 𝑐𝑦) is the
principal point.
Extrinsic parameters describe the position and orientation of the camera in the world
coordinate system. These parameters are represented by a rotation matrix R and a
translation vector t:  

R t
0 1

!
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Combining intrinsic and extrinsic parameters, the full projection matrix P can be writ-
ten as:

P = K[R|t]
where [R|t] is a 3 × 4 matrix combining rotation and translation.
The projection of a 3D point P in homogeneous coordinates (𝑋,𝑌, 𝑍, 1) to a 2D image
point p in homogeneous coordinates (𝑥, 𝑦, 1) is:

p = K[R|t]P

The pinhole camera model is an extremely useful tool to understand projective geome-
try thanks to its simplicity, indeed it’s strength lies in the ability to reduce the problem
to it’s basic components.
However, the model has limitations. It assumes an ideal pinhole camera without lens
distortion, which is not realistic for actual cameras with lenses. Real-world cameras
often require additional modeling to account for these distortions.

2.3 Epipolar Geometry

Epipolar geometry deals with the geometric relationship between two views of the
same scene. It provides the mathematical framework to understand the constraints
between the image points captured by two cameras.
When two cameras capture images of the same scene from different viewpoints, the
line connecting the two camera centers is called the baseline. The points where this line
intersects the image planes of the two cameras are called the epipoles. Each epipole is
the image of the other camera center.
An epipolar plane is any plane that contains the baseline. Each 3D point in space
defines a unique epipolar plane. The intersection of the epipolar plane with the image
planes defines the epipolar lines (these notions are exemplified in the figure 2.4).
Epipolar lines are the projections of the epipolar plane intersections on the image
planes. For a given point in one image, the corresponding point in the other image
must lie on the corresponding epipolar line. This constraint reduces the search space
for matching points to one dimension.

2.3.1 Fundamental Matrix

The epipolar constraint provides a relationship between corresponding points in
stereo images. Given a point p = (𝑥, 𝑦, 1)𝑇 in the first image and its corresponding
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Figure 2.4: Epipolar geometry basic concepts.

point p′ = (𝑥′, 𝑦′, 1)𝑇 in the second image, the epipolar constraint can be expressed as:

p′𝑇Fp = 0

Here, F is the fundamental matrix, which encapsulates the intrinsic and extrinsic
parameters of the camera pair.
The fundamental matrix F is a 3×3 matrix that relates the corresponding points between
two images. It is defined up to a scale factor and has rank 2.

2.3.2 Essential Matrix

The essential matrix E is a 3 × 3 matrix that relates corresponding points in stereo
images when the intrinsic parameters are known. The essential matrix encodes the
relative rotation and translation between the two camera coordinate systems. For
corresponding points p and p′ in normalized image coordinates, the epipolar constraint
is:

p′𝑇Ep = 0

The essential matrix E can be related to the fundamental matrix F through the intrinsic
camera matrices K and K′ of the two cameras:

E = K′𝑇FK

Here, K and K′ are the intrinsic parameter matrices of the two cameras.
Given the relative rotation R and translation t between the cameras, the essential matrix
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is:
E = [t]×R

where [t]× is the skew-symmetric matrix of the translation vector t:

[t]× =
©«

0 −𝑡𝑧 𝑡𝑦
𝑡𝑧 0 −𝑡𝑥
−𝑡𝑦 𝑡𝑥 0

ª®®¬
The essential matrix E can be decomposed to retrieve the relative rotation R and
translation t between the cameras. One of the most used methods to achieve it is
through Singular Value Decomposition (SVD).
SVD decomposes a matrix into three component matrices: an orthogonal matrix U,
a diagonal matrix Σ containing singular values, and another orthogonal matrix V𝑇 ,
such that A = UΣV𝑇 . SVD is instrumental in decomposing the essential matrix,
allowing for the extraction of camera motion parameters (rotation and translation)
between two views. The method’s robustness and ability to handle noise make it
particularly useful in applications requiring precise geometric transformations and
feature matching across images.

2.4 Estimation Background

2.4.1 RANSAC

RANSAC, which stands for Random Sample Consensus, is an iterative method used
to estimate parameters of a mathematical model from a dataset that contains outliers.
It was introduced by Fischler and Bolles [16] in 1981 and has since become a staple
in the fields of computer vision and robotics for tasks such as model fitting, motion
estimation, and object recognition.
The primary strength of RANSAC lies in its robustness to outliers. Unlike traditional
least-squares fitting methods, RANSAC can handle datasets where a significant fraction
of the data points are outliers. The algorithm works by repeatedly selecting random
subsets of the data, fitting a model to these subsets, and then determining how many
data points from the entire set fit the estimated model within a predefined tolerance.
The RANSAC algorithm can be summarized in the following steps:

1. Random Sampling: Randomly select a subset of the original data points.

2. Model Fitting: Fit a model to the selected subset.

3. Consensus Set: Determine the set of all data points that are within a certain
distance from the model.
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4. Model Evaluation: Evaluate the model based on the number of inliers (points in
the consensus set).

5. Iterate: Repeat the above steps for a fixed number of iterations or until a model
with a sufficiently large consensus set is found.

The final output is the model that has the largest consensus set.
Altough really powerful, it has also some disadvantages:

• Computational Cost: The iterative nature of RANSAC can be computationally
expensive, especially for large datasets or complex models.

• Parameter Sensitivity: The performance of RANSAC depends on parameters
such as the number of iterations, tolerance threshold, and sample size, which
need to be carefully tuned.

• No Guarantee of Optimality: RANSAC may not always find the optimal model,
especially if the number of iterations is insufficient.

Implementing RANSAC involves several key considerations: The type of model to
be fitted depends on the specific application (the model defines the mathematical
relationship between the data points). The error tolerance threshold determines how
close a data point must be to the model to be considered an inlier. This threshold
should be set based on the expected noise level in the data. The number of iterations
should be chosen to balance computational cost and the likelihood of finding a good
model. More iterations increase the chances of finding the correct model but also
increase computation time.

2.4.2 Perspective-n-Points Problem

The Perspective-n-Point (PnP) problem [29, 32, 43, 72] is a fundamental problem in
computer vision and robotics. It involves determining the pose of a camera given a set
of n 3D points in the world coordinate system and their corresponding 2D projections
in the image plane.
The PnP problem can be mathematically formulated as follows: Given a set of 𝑛

3D points X𝑖 = [𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖]𝑇 in the world coordinate system and their corresponding
2D projections x𝑖 = [𝑢𝑖 , 𝑣𝑖]𝑇 in the image plane, determine the rotation matrix R
and translation vector t that relate the 3D points to their 2D projections through the
following equation:

𝑠x𝑖 = K[R|t]X𝑖
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where K is the camera intrinsic matrix, and 𝑠 is a scale factor.
Various algorithms have been developed to solve the PnP problem. These methods can
be broadly categorized into linear and non-linear approaches. Linear methods aim to
solve the PnP problem by formulating it as a linear system of equations. These methods
are generally faster but may be less accurate due to their sensitivity to noise. Direct
Linear Transformation (DLT) is a popular linear method that estimates the camera pose
by solving a set of linear equations derived from the projection equation. However,
DLT requires a minimum of six points and is sensitive to noise and outliers.
Non-linear methods refine the initial pose estimate obtained from linear methods
through iterative optimization techniques. These methods are generally more accurate
but computationally expensive. Levenberg-Marquardt is a widely used non-linear
optimization technique that iteratively minimizes the reprojection error, which is the
difference between the observed and projected 2D points.
While the PnP problem is well-studied, several challenges remain: Real-world data is
often noisy and contains outliers, which can affect the accuracy of the estimated pose.
Robust algorithms like RANSAC are often combined with PnP to handle outliers.
For real-time applications, the computational efficiency of PnP algorithms is crucial.
Efficient methods like EPnP [32] and optimizations in non-linear solvers are essential
to meet these demands.

2.4.3 Bundle Adjustment

Bundle Adjustment (BA) is a crucial optimization technique in computer vision
and photogrammetry used to refine the 3D coordinates of a scene’s structure and
the camera parameters simultaneously. It plays a vital role in applications such as
Structure from Motion (SfM), Simultaneous Localization and Mapping (SLAM), and
3D reconstruction.
Bundle adjustment optimizes the 3D structure of a scene and the camera poses by
minimizing the reprojection error. Given a set of 𝑛 3D points X𝑖 and 𝑚 camera poses
(R𝑗 , t𝑗), along with the corresponding 2D image points x𝑖 𝑗 , bundle adjustment aims to
minimize the following objective function:

min
R𝑗 ,t𝑗 ,X𝑖

𝑛Õ
𝑖=1

𝑚Õ
𝑗=1

x𝑖 𝑗 − 𝜋(K[R𝑗 |t𝑗]X𝑖)
2

Here, 𝜋 denotes the projection function, K is the camera intrinsic matrix, and ∥·∥
represents the Euclidean distance.
The optimization in bundle adjustment is typically performed using iterative tech-
niques such as:

• Levenberg-Marquardt Algorithm: A popular choice for non-linear least squares

14



CHAPTER 2. PRELIMINARY NOTIONS

problems that combines the advantages of gradient descent and Gauss-Newton
methods.

• Gauss-Newton Algorithm: An iterative method that approximates the non-
linear optimization problem using a second-order Taylor series expansion.

• Dogleg Method: A trust-region method that combines the steepest descent
direction and the Gauss-Newton direction.

Recent advancements in bundle adjustment focus on improving its efficiency, scal-
ability, and robustness. A few examples are:

• Sparse bundle adjustment: Exploiting the sparsity of the Jacobian matrix in
the optimization problem can significantly reduce the computational complex-
ity. Sparse bundle adjustment techniques leverage this sparsity to improve the
efficiency of the optimization process.

• Robust bundle adjustment: To handle outliers in the data, robust estimation
techniques such as RANSAC and M-estimators are integrated with bundle ad-
justment. These techniques improve the robustness and accuracy of the opti-
mization.

• Incremental bundle adjustment: Incremental BA methods update the 3D struc-
ture and camera parameters incrementally as new images are added. This ap-
proach is particularly useful in real-time applications like SLAM, where new data
is continuously acquired.

Despite its effectiveness, bundle adjustment faces several challenges. Bundle adjust-
ment is computationally intensive, particularly for large-scale problems. Developing
more efficient algorithms and leveraging hardware acceleration are ongoing research
areas. Real-time bundle adjustment is essential for applications like SLAM and AR.
Balancing accuracy and computational efficiency in real-time scenarios remains a sig-
nificant challenge. Traditional bundle adjustment assumes a static scene. Extending
bundle adjustment techniques to handle dynamic scenes, where objects and cameras
move independently, is an area of active research. Improving the robustness of bundle
adjustment to outliers and noise in the data is crucial for reliable 3D reconstruction
and pose estimation.
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3
Related Works

The task of calibrating a camera network using a robot as a calibration pattern and
estimating its relative position and orientation with respect to the cameras consists of
two major components: camera-to-camera pose estimation and camera-to-robot pose
estimation. In this chapter, we review the state of the art of methods focused on
estimating the relative pose of the camera and then the most significant works that aim
to determine the pose of the robot with respect to the camera network.

3.1 Relative Camera Pose Estimation

Relative camera pose estimation is fundamental in computer vision and robotics,
involving determining the position and orientation of one camera relative to another.
The main paradigm used is to detect and match features between the images of the
cameras and then use them to recover the relative rotation and translation, either using
the 8-point algorithm [37], 5-point algorithm [45], or other methods.

3.1.1 Feature-Based Approaches

Methods to detect and match features have been continuously researched because
of their importance in relative camera pose estimation. These methods are mainly di-
vided into two categories: classic and deep learning-based approaches. Classic meth-
ods such as SIFT [38] (Scale-Invariant Feature Transform) and SURF [4] (Speeded-Up
Robust Features) detect and describe local features that are invariant to scale, rotation,
and illumination changes, making them effective across various applications. ORB [53]
(Oriented FAST and Rotated BRIEF) provides a more efficient alternative by combining
the FAST [52] keypoint detector with the BRIEF [7] descriptor, maintaining robustness
while significantly reducing computational cost.
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However, these methods often require human intervention for parameter fine-tuning
and post-processing, prompting recent advancements in feature detectors leveraging
deep learning. For example, SuperPoint [12] utilizes a self-supervised neural network
to detect and describe key points, demonstrating superior performance in challenging
scenarios. SuperGlue [54] goes further by employing graph neural networks to learn
context-aware feature matching, improving accuracy and robustness against noise and
outliers. LightGlue [35] continues this trend with a focus on speed and efficiency
without compromising accuracy, making it suitable for real-time applications.
These approaches handle the first step of feature detection and matching. For the sec-
ond step of actual pose estimation, various methods have been proposed to use these
points to obtain viable results. For example, in [45], an efficient solution is introduced
for the classic five-point algorithm, to solve the relative pose problem. This problem
involves determining the possible relative camera poses between two calibrated views
using five corresponding points. The algorithm operates by calculating the coefficients
of a tenth-degree polynomial in closed form and then finding its roots. Additionally,
Kukelova et al. [30] present new, fast, and straightforward solutions to the five-point rel-
ative pose problem and the six-point focal length problem. They demonstrate that these
problems can be easily formulated as polynomial eigenvalue problems of degree three
and two, respectively, and can be solved using standard efficient numerical algorithms,
which are an improvement over [45]. Hongdong et al. [33] introduce a simplified
algorithm that utilizes the hidden variable resultant technique. Unlike the method
in [45], which eliminates unknown variables sequentially using Gauss-Elimination,
their algorithm simultaneously eliminates multiple unknowns. Additionally, during
the equation-solving stage, rather than back-substituting to solve all unknowns one
by one, they estimate all the unknown parameters at once by computing the minimal
singular vector of the coefficient matrix.
One case that requires estimating the pose between cameras, and that has received a
lot of attention, is Structure from Motion (SfM) [10, 13, 44, 11, 70]. Several pipelines
have been developed to solve this task, such as those discussed in [57] by Schönberger
and Frahm. They introduced more efficient methods for feature extraction, matching,
and geometric verification. Their approach also includes a robust bundle adjustment
technique that refines camera poses and 3D structure by minimizing re-projection
errors. Another significant paper is [48], where authors solve the problem through
direct alignment of low-level image information from multiple views. Initially refin-
ing keypoint locations before geometric estimation, they follow with post-processing
refinement of points and camera poses. This method proves robust against signifi-
cant detection noise and appearance changes, optimizing a feature metric error using
dense features predicted by neural networks. Jianyuan et al. [24] first predict dense
correspondences between frames using an optical flow estimation network. Then, a
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normalized pose estimation module derives relative camera poses from these corre-
spondences, followed by a scale-invariant depth estimation network using epipolar
geometry to refine dense correspondences and estimate relative depth maps. Addi-
tionally, Schmidt et al. propose in [56] a differentiable SfM framework leveraging
video sequences to enhance depth estimation and camera pose recovery. Their ap-
proach uses deep neural networks to predict depth and camera motion directly from
video frames, facilitating end-to-end training and optimization. DeepV2D demon-
strates superior performance in challenging environments with varying lighting and
texture conditions, highlighting the potential of deep learning to augment traditional
SfM methods.

3.1.2 Deep Learning-Based Methods

In recent years, a new approach has gained traction: directly estimating the relative
pose between a pair of cameras from just a pair of images in an end-to-end manner.
Yuheng Li et al. [34] introduce a method that directly regresses the 6-DoF (Degrees
of Freedom) relative pose between two cameras. They employ supervised learning
with 6D pose supervision to enhance pose estimation accuracy under challenging
conditions. GRelPose [28] proposes a deep learning-based approach for relative pose
regression using the pre-trained LoFTR network [23] for 2d feature extraction. A con-
volutional network then predicts the relative rotation and translation, demonstrating
high generalization across different scenes and datasets. RelMobNet, introduced by
Rajendran et al. in [50], employs an end-to-end Siamese network architecture for rela-
tive camera pose estimation. Trained on the Cambridge Landmarks dataset, it utilizes
a two-stage training process to significantly improve the accuracy of translation vector
estimation compared to other CNN-based methods.
All the previous methods recover the pose only up to a scale factor. MicKey [2] ad-
dresses the challenge of uniquely recovering depth information, distinguishing itself
from methods that typically recover relative pose up to scale, such as those based on
the essential matrix. This method introduces a novel approach to depth estimation
from camera poses based on a new type of metric image-to-image correspondences.
Additionally, Rockwell et al. [51] propose a pipeline integrating feature matching, fun-
damental matrix resolution, and direct pose prediction using neural networks. Their
model incorporates a Transformer [66] that balances between traditional and learned
pose estimations, offering a prior to guide the solver effectively.
In our work, we employ LightGlue for feature point detection and matching due to
its versatility across various configurations and scenes without requiring fine-tuning.
It exhibits greater robustness compared to classical detectors like ORB and operates
with fast inference times. Subsequently, we utilize C2P to recover both the rotation and
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translation components. Our approach differs by leveraging known robot dimensions
to accurately recover the scale factor. This distinguishes our method from others that
only recover up to scale, such as [34, 28, 50].

3.2 Pose Estimation From a Single-Image

Single-image pose estimation involves determining the position and orientation of
a camera with respect to a given coordinates frame from a single image, a task that
presents significant challenges due to the limited amount of visual information avail-
able. Traditional approaches require multiple images to work and rely on predefined
patterns, such as ArUco[55] and AprilTag[60] markers, placed within the environment
to assist in extracting positional data and are heavily reliant on human intervention.
However, recent advancements have led to more sophisticated methods that do not
require external aids and work with only a single image per camera.

3.2.1 Single-Camera Robot Pose Estimation

Estimating the pose of a camera with respect to a robot[39, 82, 14] can be divided
into three main approaches: keypoint-based, render-and-compare, and depth-based
methods.
A notable keypoint-based model is DREAM [31], a deep neural network that, given
an image, outputs a set of 2d points corresponding to the robot’s joints. It then uses
the Perspective-n-Point (PnP) algorithm [32] exploiting the 3D locations of the joints
provided by the forward kinematics of the manipulator to accurately predict robot
poses, demonstrating robustness to variations in appearance. Similarly, [22] refines
keypoint detection through shape segmentation, significantly improving single-shot
pose estimation precision. Lu et al.[26] discuss iterative keypoint optimization using
simulation data for real-world applications, while Tian et al.[75] enhance pose estima-
tion by incorporating temporal attention mechanisms guided by the robot’s structure,
ensuring more accurate and consistent pose predictions over image sequences.
Robopose[76] is an example of a render-and-compare based model. It requires the
CAD model of the robot to function and works by iteratively estimating pose and joint
angles by comparing rendered images of the robot model to actual images, providing
a practical solution for real-world applications.
Bohg et al.[21] adopt a pixel-wise classification approach to identify different parts of
the robot arm, leading to precise pose estimation. Simoni et al.[1] present a depth-
based method using ’semi-perspective decoupled heatmaps’ for estimating 3D poses
from depth maps, offering a robust solution for pose estimation tasks.
RoboKeyGen[74] estimates both pose and angles of the robot with a keypoint-based
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approach. This framework divides the high-dimensional prediction task into two sub-
tasks: detecting 2D keypoints and converting these into 3D keypoints. Traditional
deterministic regression methods can struggle with uncertainties from 2D detection
errors or self-occlusions. By leveraging the robust modeling capabilities of diffusion
models, this framework reformulates the challenge as a conditional 3D keypoints gen-
eration task. Each proposed solution has its own set of advantages and disadvantages.
One significant disadvantage is the heavy reliance on deep learning models. This
reliance means that in scenarios where the model encounters configurations not seen
during training, the results may deteriorate. Another drawback is the use of a single
camera, which can lead to issues, especially in situations involving occlusions. In our
approach, we mitigate these issues by employing multiple cameras, thereby reducing
the impact of occlusions. Additionally, we integrate information from multiple views
without relying on a neural network architecture. This approach ensures that even if
one camera’s deep learning model performs poorly due to encountering an unfamiliar
scenario, the overall results benefit from the information fused across other views.

3.2.2 Multi-Camera Robot Pose Estimation

As previously mentioned, to the best of our knowledge, there currently exists no
established model for estimating robot poses using camera networks. This gap may be
attributed to the relatively new nature of this research area. In our view, the primary
reason for this gap lies in the scarcity of multi-view datasets available for training
deep learning models. Presently, datasets are predominantly limited to single-camera
setups, like, for example, the one proposed in [31].
Consequently, we directed our focus towards human pose estimation in a multi-camera
environment. This field exhibits several similarities to our research. Both areas involve
utilizing an object (the human body in their case) either as a calibration pattern or
to directly estimate its pose relative to cameras, often employing a keypoint-based
approach for pose estimation. The primary distinction lies in the fact that while
human pose estimation focuses on body joints, such as knees or head, our research
pertains to robot joints and their corresponding keypoints.

3.2.3 Multi-Camera Human Pose Estimation

This topic has been extensively researched [67, 71, 5, 65, 77, 73, 59] in comparison
to methods involving robots. Several significant models have been proposed, with the
ones resembling more our case being: [36] introduces an innovative automatic calibra-
tion technique for multi-camera systems using human joints. The approach utilizes
human joints as reference points across different camera views to achieve calibration.
Unlike traditional methods, this technique only needs a person to move within the
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calibration area. This significantly reduces the overall cost and complexity of the cali-
bration process.
VoxelPose, proposed in [18], is a method designed to estimate 3D poses of multiple in-
dividuals from multiple camera views. Unlike previous approaches that rely on noisy
and incomplete 2D pose estimates to establish cross-view correspondence, VoxelPose
operates directly in the 3D space, thereby avoiding errors in individual camera views.
This is achieved by aggregating features from all camera views into the 3D voxel space,
which are then processed by the Cuboid Proposal Network (CPN) to locate all individ-
uals. Following this, the Pose Regression Network (PRN) estimates a detailed 3D pose
for each detected individual.
SmartMocap[46] presents a framework for simultaneously estimating human motion
and camera movements using uncalibrated RGB cameras. Their method incorporates
several key components. First, they use the ground plane as a common reference to
represent both body and camera motions. Second, they learn a probability distribution
of short human motion sequences (approximately one second) relative to the ground
plane, using this to differentiate between camera and human motion. Third, this dis-
tribution is used as a motion prior in a multi-stage optimization approach to fit the
SMPL[41] human body model and the camera poses to the human body keypoints in
the images.
Jiang et. al.[6] introduces a probabilistic triangulation method for estimating 3D hu-
man poses from multiple uncalibrated camera views. The core concept is to utilize a
probability distribution to model the camera pose and iteratively refine this distribu-
tion based on 2D features, rather than directly using a fixed camera pose. Specifically,
the method involves maintaining a camera pose distribution and updating it iteratively
by calculating the posterior probability of the camera pose through Monte Carlo sam-
pling. This approach allows for gradients to be directly back-propagated from the 3D
pose estimation to the 2D heatmap, facilitating end-to-end training.
Qiu et. al[17] introduce a method to recover absolute 3D human poses from multi-view
images by integrating multi-view geometric priors into their model. The approach in-
volves two distinct steps: first they estimate the 2D poses in multi-view images, and
second they reconstruct the 3D poses from these multi-view 2D poses. The authors
employ a cross-view fusion mechanism within a CNN to jointly estimate 2D poses
across multiple views, ensuring that the 2D pose estimation for each view is enhanced
by the information from other views. Subsequently, they utilize a recursive Pictorial
Structure Model to reconstruct the 3D pose from the multi-view 2D poses.
Moliner et. al. [47] build upon prior works and introduce several novel concepts to
enhance the accuracy of human-pose-based extrinsic calibration. They formulate a ro-
bust reprojection loss, developed from a deeper understanding of the sources of pose
estimation error and construct a 3D human pose likelihood model, which is learned
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from motion capture data.
[3] proposes an online, marker-free method for extrinsic camera calibration using
person keypoint detections. The approach eliminates the need for physical markers
and allows for real-time calibration adjustments, making it highly practical for dy-
namic environments. Gyeongsik et. al.[42] introduce a fully learning-based, camera
distance-aware top-down method for estimating 3D multi-person poses from a single
RGB image. The proposed system comprises three main modules: human detection,
absolute 3D human root localization, and root-relative 3D single-person pose estima-
tion. This pipeline ensures a comprehensive approach to accurately determining the
3D positions of multiple individuals within a single image.
[20] introduces two end-to-end differentiable solutions for multi-view 3D human pose
estimation utilizing techniques that integrate 3D information from multiple 2D per-
spectives. The first solution, serving as a baseline, employs a basic differentiable
algebraic triangulation augmented with confidence weights derived from the input
images. The second, more advanced solution, introduces a volumetric aggregation
method that combines intermediate 2D backbone feature maps. This aggregated vol-
ume is subsequently refined using 3D convolutions to generate final 3D joint heatmaps,
effectively modeling a human pose prior.
AdaFuse is an adaptive multiview fusion technique proposed in [79], designed to
enhance features in occluded views by utilizing those in visible views. The central
concept is to establish point-to-point correspondences between views using epipolar
geometry, effectively addressed by exploiting the sparsity of the heatmap representa-
tion. Additionally, AdaFuse learns an adaptive fusion weight for each camera view
to reflect its feature quality, thereby minimizing the risk of valuable features being
compromised by inferior views.
We draw inspiration from AdaFuse for our model, particularly their method of fusion
using epipolar geometry. Unlike other models such as [20], [6], and [18] that rely
on deep learning for fusion, AdaFuse can operate without the need to train a neural
network.

The main distinction between AdaFuse and other models, like the one proposed
in [17], lies in their approach to fusion. In [17], the deep learning architecture is
essential to the model, specifically designed for fusion purposes. In contrast, AdaFuse
uses Sampson distances, heatmaps, and confidence scores as inputs to a neural network
that outputs weights for the views, assigning higher importance to more reliable views.
This means that AdaFuse can also function without a trained model for fusion by either
assigning equal weights to all views or employing alternative methods to compute view
weights.

However, our approach differs in several aspects. Post-fusion, we incorporate the
robot’s structure to refine triangulation, whereas AdaFuse employs standard triangu-
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3.2. POSE ESTIMATION FROM A SINGLE-IMAGE

lation without structural guidance. Furthermore, we enhance our results through a
bundle adjustment step, which AdaFuse does not include.
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4
Proposed Method

In this chapter, the general pipeline of the proposed method is described in detail.
Each step of the process will be thoroughly dissected to provide a comprehensive
understanding of the methodology. This includes an in-depth exploration of the
techniques and algorithms employed at each stage, the rationale behind their selection,
and their roles within the overall framework. By the end of this chapter, the reader
will have a clear and detailed picture of how the proposed method operates from start
to finish.

4.1 Pipeline

Our aim is to estimate the extrinsics parameters of a multi-camera setup by using a
robot, in the cameras’ field of view, as a calibration pattern and to estimate the pose of
said robot with respect to the camera network. The proposed technique, exemplified
in Figure 4.1, requires to know the intrinsics of the cameras, a single image per camera
and information about the robot’s kinematics to return a valid pose. The process is
divided into five main steps:

1. Estimating camera-to-camera poses: Determine the relative positions and ori-
entations of the cameras using feature matching.

2. Generating heatmaps and keypoints: Apply a deep learning model to generate
keypoints denoting the robot’s joints and their relative heatmaps for each camera
from the input images.

3. Fusing heatmaps: Combine the heatmaps using epipolar geometry to leverage
multi-view information and enhance the original keypoints.
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4. Keypoints structural triangulation: Use the robot’s kinematic information to
constrain and guide the triangulation process.

5. Camera-to-robot pose estimation: Estimate the rotation and translation between
the cameras and the robot using the triangulated points and the 3D points pro-
vided by the kinematics.

6. Bundle Adjustment: Perform optimization in two stages:

• First, optimize the camera-to-robot poses using the 3D points provided by
the kinematics as ground truth.

• Next, refine the relative poses between cameras by minimizing the reprojec-
tion error between the optimized keypoints and the reprojected points.

Figure 4.1: Pipeline of our proposed method.

We deliberately avoided using deep learning architectures except for the models
used in relative camera calibration and heatmap/keypoint generation. This decision
stemmed from the known challenge that deep learning models often struggle to gen-
eralize effectively to unseen configurations. Many approaches in human multi-pose
estimation rely on neural network architectures for fusion[20, 18, 17], which are sus-
ceptible to this limitation. In contrast, our model operates without requiring a specially
trained neural network, enabling it to handle unseen camera configurations with the
same robustness as familiar ones. This capability will be further demonstrated and
discussed in Chapter 5.
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4.2 Relative Cameras Pose Estimation

The first step is to recover the structure of the cameras. To this end, similar to
procedures in Structure from Motion, we start by detecting and matching features
between pairs of images, using these matches to obtain the relative rotation matrix and
translation vector between the two cameras.
To estimate poses, we start with feature detection and matching. Given our lack of prior
knowledge regarding camera configurations or their proximity to the robot and each
other, we avoided classical methods, like ORB [53] or SIFT [38], because they require
meticulous fine-tuning to achieve reliable performance. Consequently, we opt for deep
learning approaches due to their demonstrated capability to perform effectively across
a wide range of configurations and lighting conditions.
In particular our process starts with using LightGlue [35] with SuperPoint [12] as a
feature extractor. We chose LightGlue over SuperGlue due to its faster inference time
while maintaining almost the same accuracy. Specifically, where SuperGlue takes 70
ms, LightGlue requires only 31.4 ms to detect and match features. The decision to
use this detector and matcher is because we verified empirically that they usually
provide the highest number of matches. In Figures 4.2, 4.3, 4.4, and 4.5, examples
of feature matching using different descriptors, specifically SuperPoint, SIFT, DISK
[63], and ALIKED [80, 81], are shown. Table 4.1 presents the numerical values of
features detected in both images for the various methods (the maximum value was
set to 2048) and the number of matches. We can see that the one with the highest
number of matches is the one we chose, while the others are worse, even if the number
of detected features is higher with other detectors like SIFT and DISK. This specific
case is particularly problematic for SIFT because it returns 0 matches, and maybe with
some fine-tuning, it would outperform even SuperPoint. However, what this shows
is that SuperPoint works decently even without human intervention, which is exactly
what we need.

Method No. of Features (Left) No. of Features (Right) No. of Matches

SuperPoint 1565 1502 348
SIFT 1719 1767 0
ALIKED 1232 672 34
DISK 2048 2048 213

Table 4.1: Comparison of the number of features found by using different detectors
and matched using LightGlue.

Since we do not know the initial arrangement of the cameras, we need to determine
the best pair of cameras to estimate the relative pose with the highest possible precision.
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4.2. RELATIVE CAMERAS POSE ESTIMATION

To achieve this, we construct what we call a ’chain of poses’. In this chain, cameras are
represented as nodes and relative poses as edges in a graph.

Figure 4.2: Example of feature detection and matching using LightGlue + SuperPoint.
The top images show the matches, while the bottom images show the features discarded
by LightGlue due to being too dissimilar.

Figure 4.3: Example of feature detection and matching using LightGlue + SIFT. The
top images show the matches, while the bottom images show the features discarded
by LightGlue due to being too dissimilar.
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Figure 4.4: Example of feature detection and matching using LightGlue + DISK. The
top images show the matches, while the bottom images show the features discarded
by LightGlue due to being too dissimilar.

Figure 4.5: Example of feature detection and matching using LightGlue + ALIKED. The
top images show the matches, while the bottom images show the features discarded
by LightGlue due to being too dissimilar.

The problem then becomes similar to finding the maximum spanning tree, where
the weights on the edges are the number of feature matches between image pairs. We
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4.2. RELATIVE CAMERAS POSE ESTIMATION

modify the Prim algorithm [49] for our use case. We compute feature matching for each
pair of images and select the pair with the highest number of matches. This selection is
based on the empirical observation that a higher number of matches correlates with a
greater number of inliers, and consequently, a higher likelihood that the estimated pose
is accurate or close to accurate. This process is shown in Figure 4.6 with an example.

Figure 4.6: Example of the step-by-step construction of what we call the ’chain of
poses’. Here, the cameras are nodes, and the relative poses between cameras are edges.
The weights on the edges correspond to the number of matched features between the
images of the respective cameras.

Once we have matched the features for the two images, we use C2P [61], a solver
that obtains the relative pose directly from 2D correspondences. This contrasts with
previous methods that solved the problem in two steps: estimating the essential matrix
between the views and disambiguating among the four candidate relative poses that
satisfy epipolar geometry (called the cheirality check). Using C2P, we obtain a rotation
matrix R and a translation vector t such that ∥t∥ = 1. The reason for this unit norm
constraint lies in how the essential matrix E is computed from corresponding points in
normalized image coordinates.
Since E is derived from normalized coordinates (which typically scales the coordinates
to unit magnitude), the resulting translation vector t extracted from E also reflects this
normalization. Therefore, after solving for t from E, it inherently maintains a unit
norm unless further scaled by an external factor. To correct this, we use an object of
known dimensions in the scene: the robot. Knowing the size of the robot in 3D space,
we can use the distance between two joints of the robot and triangulate the same two
points in the image planes. Once we have the triangulated points, we divide the known
distance between the joints by the distance obtained from the triangulated points to
obtain a scaling factor. Multiplying this factor by the translation vector gives us the
true translations along the axes between the cameras.
While this method works perfectly in theory, in practice, due to outliers, small errors
in joint detection, or matching errors, the pose obtained is not perfect. Therefore, we
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use bundle adjustment at a later stage to refine the results (Section 4.7). The size of the
errors and their impact on the final result will be analyzed in Chapter 5.

4.3 Heatmaps Generation and Keypoint Detection

For each camera, we use a neural network architecture to extract information from
the image. We employ DREAM [31], which, given an input RGB image, returns a list of
keypoints corresponding to the robot’s joints and a heatmap for each detected keypoint,
where an heatmap is a 2D belief map where pixel values represent the likelihood that
the keypoint is projected onto that pixel. This provides both the keypoints and their
corresponding heatmaps for each view.
It is not necessary to use the same model for obtaining heatmaps and keypoints; we
choose DREAM because it is currently one of the best models available, known for its
fast inference time. However, a strong aspect of our proposed method is its flexibility in
not relying on a specific architecture. DREAM can be substituted with any model that
outputs heatmaps and keypoints without altering the core structure. This adaptability
ensures that future advancements in models can be seamlessly integrated by simply
replacing DREAM with a newer and better network.

Figure 4.7: Example of keypoints detected by the DREAM model

DREAM also returns the pose using keypoints to solve the PnP problem, but we
do not utilize this feature because it processes each image independently, without
leveraging the multi-view information and constraints relevant to our scenario.
Therefore, we run DREAM in parallel for each camera in the network. As a result,
we obtain keypoints and heatmaps for each robot joint obtained from each camera
viewpoint, which will be used for the next step described in Section 4.4.
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4.4 Heatmaps Fusion

After obtaining the heatmaps and keypoints, we leverage the multi-view setup
to incorporate more information than what is available to single-view models like
DREAM. The challenge is how to effectively fuse the multi-view information to improve
the results of our deep learning model before estimating the transformation from
camera to robot.
Given that there are currently no works focusing on multi-view robot pose estimation,
we drew inspiration from multi-view human pose estimation. Specifically, we found
Adafuse[79] to be particularly useful. Adafuse uses epipolar geometry constraints
to fuse heatmaps, enhancing the results of single-camera human pose estimation,
especially in cases of occlusion.

Figure 4.8: Example of heatmap fusion performed by the Adafuse model, which we
used as a basis for the fusion step in our model (taken from [79]).

Our model similarly exploits the principles of epipolar geometry. In each view 𝑖,
every point corresponds to lines in the other views. Heatmaps are grid-like structures
that generate per-pixel likelihoods for joint locations, typically represented as two-
dimensional Gaussian distributions centered at the joint coordinates. Let us denote
the heatmap in view 𝑖 as 𝐻𝑖 . The value at location 𝑥 of the heatmap is denoted as 𝐻𝑖(𝑥).
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The corresponding epipolar line of 𝑥 in view 𝑗 is denoted as 𝐼 𝑗(𝑥), which comprises
discrete locations on the heatmap 𝐻𝑗 . For each point 𝑥 in the heatmap of view 𝑖, we
select the point with the maximum value along its epipolar line in the other views.
Using the following formula, we fuse the heatmaps:

�̂� 𝑖(𝑥) =
𝐻𝑖(𝑥) +Í𝑁

𝑗=1
𝑗≠𝑖

max𝑥0∈𝐼 𝑗(𝑥) 𝐻𝑗(𝑥0)

𝑁
,

where �̂� 𝑖 denotes the fused heatmap, and 𝑁 is the number of camera views con-
tributing to the fusion of the current view.
We repeat this process for every view to create new, fused, heatmaps. To achieve
sub-pixel accuracy, we perform a weighted average of the maximum value point and
its eight surrounding points.
This fusion process relies on accurate epipolar lines, which depict how a 3D point
projects onto the image plane of another camera. This in turn requires precise rotation
and translation, because, by definition, epipolar lines are determined by the rotation
and translation between the cameras. Since our setup is uncalibrated, the rotation
matrices and translation vectors are not perfect, introducing errors.

4.5 Constrained Triangulation

We perform triangulation using the refined points obtained by the previous step
simultaneously in all views rather than triangulating each point one at a time, like
its done in standard triangulation (Figure 4.9). Doing the latter is not optimal as it
disregards the robot’s kinematic information specific to our case.

This situation is not unprecedented; other works have explored similar scenarios,
such as [8] and [68]. These works discuss how standard triangulation treats each point
independently, but propose methods that triangulate all points concurrently, which
improves the results. Specifically, [8] introduces a structural constraint based on the
human skeleton, and proposes a closed-form solution for triangulation with bone
lengths as constraints.

Similarly, our approach involves triangulating all the points simultaneously and
utilizing the robot’s kinematics to optimize the process. The kinematics provide us
with the coordinates of the joints relative to the base joint, allowing us to calculate
the distances between the joints (which were already used in the camera relative pose
estimation step) like so:

𝑑𝑖 = ∥v𝑖 ∥ , for 𝑖 = 1, 2, . . . , 𝑛 − 1,
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Figure 4.9: Comparison of triangulation methods: on the left, standard triangulation,
which triangulates each point individually and on the right, our proposed constrained
triangulation method, which incorporates structural constraints of the robot into the
process.

where 𝑑𝑖 represents the distance between joint p𝑖 and joint p𝑖+1. Here, v𝑖 = p𝑖+1−p𝑖

denotes the vector from joint p𝑖 to joint p𝑖+1.
Additionally, knowing the relative positions of the joints, we can construct vectors

from one joint to the next, forming a "linked chain" from the base joint to the final joint.
This structure allows us to compute the angles between a vector and its successor,
yielding 𝑛 − 2 angles for 𝑛 joints, like so:

𝜃𝑖 = cos−1
�

v𝑖 · v𝑖+1
∥v𝑖 ∥∥v𝑖+1∥

�
, for 𝑖 = 1, 2, . . . , 𝑛 − 2,

where 𝜃𝑖 represents the angle between vector v𝑖 and vector v𝑖+1. Here, v𝑖 and v𝑖+1

are consecutive vectors in the linked chain.
We incorporate this information into our triangulation process as constraints that

must not be violated, as the triangulated points should adhere to these constraints,
reflecting the robot’s structure. Thus, by adding these constraints, the optimization
problem that we need to solve becomes:

min
𝑏

𝑓 (𝑏) = 1
2𝑏

⊤𝐴𝑏 − 𝛽⊤𝑏 + 𝑑

s.t. ∥𝑏𝑖 ∥ = 𝐿𝑖 , 𝑖 = 1, 2, . . . , 𝑛 − 1,

𝜃𝑗, 𝑗+1 = cos−1
�

𝑏 𝑗 · 𝑏 𝑗+1

∥𝑏 𝑗 ∥∥𝑏 𝑗+1∥
�
= 𝜃𝑔𝑡 , 𝑗 = 1, 2, . . . , 𝑛 − 2.

(4.1)
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where 𝐴 ∈ R3𝑛×3𝑛 is a symmetric positive semi-definite constant matrix, 𝛽 ∈ R3𝑛

and 𝑑 ∈ R are constants. 𝐴 is singular if and only if ∃𝑖 = 0, 1, . . . , 𝑛, there holds
∀𝑘1, 𝑘2 = 1, 2, . . . , 𝑐, 𝑙𝑖 ,𝑘1 ∥ 𝑙𝑖,𝑘2 . A, 𝛽, d are obtained through the same process pro-
posed in [8] and further discussed in [9]. This triangulation process is repeated for
each camera, resulting in a set of triangulated points for each view in the respective
camera coordinate system. Each of these set of points will then be used to estimate the
pose of the robot with respect to their relative camera frame.

4.6 Camera-to-Robot Pose Estimation

After the triangulation phase, we have a set of triangulated points in each of the
cameras’ respective coordinate systems. We also have the coordinates of the joints
with respect to the base of the robot frame. These points are the same, just in different
coordinate systems, or, in other words, they are the same points observed from different
perspectives. The idea is that because these sets of points are the same, the difference
between them corresponds to the transform between the camera and the robot.
Finding the relative rotation and translation between two sets of corresponding points
is a well-known problem and can be solved using a straightforward algorithm (the
algorithm described below requires at least three points to work). The problem we
want to solve is:

𝑅𝐴 + 𝑡 = 𝐵

where 𝐴 and 𝐵 are the two sets of corresponding points, 𝑅 is a 3×3 rotation matrix,
and 𝑡 is the translation vector. The algorithm can be divided into four main steps:

1. Finding the centroid of both sets

2. Shifting both sets so the center of both is the origin

3. Finding the optimal rotation

4. Finding the optimal translation

For the first step, we compute the centroid coordinates:

centroid𝐴 =
1
𝑁

𝑁Õ
𝑖=1

𝐴𝑖

centroid𝐵 =
1
𝑁

𝑁Õ
𝑖=1

𝐵𝑖
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where 𝐴𝑖 and 𝐵𝑖 are 3 × 1 vectors corresponding to the 𝑖-th point.
After this, we center the two sets to the origin of the coordinate system, removing the
translation component and leaving only the rotation. We chose to use the Kabsch-
Umeyama [25, 27, 64] algorithm and Singular Value Decomposition (SVD) to compute
the rotation matrix. We compute a matrix 𝐻 and use SVD as follows:

𝐻 = (𝐴 − centroid𝐴)(𝐵 − centroid𝐵)𝑇

[𝑈, 𝑆,𝑉] = SVD(𝐻)

𝑅 = 𝑉𝑈𝑇

Theres a special case when finding the rotation matrix that needs to be addressed.
Sometimes the SVD will return a reflection matrix, which is numerically correct but
physically incorrect. This is addressed by checking the determinant of 𝑅 (from SVD
above) and seeing if its negative. If it is, then the third column of 𝑉 is multiplied by -1.
After this, all that remains is to find the translation:

𝑅 × 𝐴 + 𝑡 = 𝐵

𝑅 × centroid𝐴 + 𝑡 = centroid𝐵

𝑡 = centroid𝐵 − 𝑅 × centroid𝐴

This works perfectly if the points are exactly the same. In practice, due to errors,
the triangulated points are not perfect, so the SVD actually minimizes the least squares
error:

err =
𝑁Õ
𝑖=1

𝑅𝐴𝑖 + 𝑡 − 𝐵𝑖
2

4.7 Bundle Adjustment

The final step of the pipeline is to refine the pose obtained from all the previous
steps. This process is divided into two phases: first, optimizing the poses between the
robot and the cameras, and then optimizing the relative poses between the cameras.
In the first phase, we consider the robot’s joints and their relative coordinates obtained
from the kinematics as the ground truth. The goal is to formulate an optimization
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problem aimed at refining parameters such as the 2D points, rotation matrices, and
translation vectors by minimizing the reprojection error. This involves iteratively op-
timizing the 2D points alongside the rotation matrices and translation vectors. The
objective is to ensure that the 2D points align as closely as possible with their observed
reprojected counterparts across multiple views.
Let:

• R𝑐𝑟 and t𝑐𝑟 be the rotation matrix and translation vector between camera 𝑐 and
the robot,

• P𝑟 be the 3D points obtained from the robot’s kinematics,

• p𝑐 be the 2D reprojected points onto the camera 𝑐 image plane.

The reprojection error 𝑒 can be defined as:

𝑒 =
𝑁Õ
𝑖=1

p𝑖
𝑐 − 𝜋(R𝑐𝑟P𝑖

𝑟 + t𝑐𝑟)
2

where𝜋(·)denotes the projection function from 3D to 2D. The optimization problem
aims to minimize this error:

min
R𝑐𝑟 ,t𝑐𝑟

𝑒 =
𝑁Õ
𝑖=1

p𝑖
𝑐 − 𝜋(R𝑐𝑟P𝑖

𝑟 + t𝑐𝑟)
2

In the second phase, we use one of the newly optimized poses to transform the co-
ordinate system of the points obtained from the robot’s kinematics into the respective
camera coordinate system. Then, we iteratively optimize the 2D keypoints, rotation
matrices, and translation vectors for each camera, as well as the 3D points, by mini-
mizing the reprojection error to refine the relative poses.

Let:

• R𝑐1𝑐2 and t𝑐1𝑐2 be the relative rotation matrix and translation vector between
cameras 𝑐1 and 𝑐2,

• P𝑐1 be the 3D points in camera 𝑐1’s coordinate system,

• p𝑐2 be the 2D reprojected points in camera 𝑐2.

The reprojection error 𝑒 in this context can be defined as:

𝑒 =
𝑁Õ
𝑖=1

p𝑖
𝑐2 − 𝜋(R𝑐1𝑐2P𝑖

𝑐1 + t𝑐1𝑐2)
2

The optimization problem for this phase aims to minimize the reprojection error
across all cameras:
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min
R𝑐1𝑐2 ,t𝑐1𝑐2

𝑒 =
𝑁Õ
𝑖=1

p𝑖
𝑐2 − 𝜋(R𝑐1𝑐2P𝑖

𝑐1 + t𝑐1𝑐2)
2

After this process, we obtain the refined poses of the cameras with respect to the
robot and the refined relative poses between them.
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5
Experiments and Results

To verify the effectiveness of our approach, we conducted several experiments. All
the experiments were performed in a simulated environment due to the simplicity
and speed of setting up the environment, as well as the greater precision in obtaining
ground truth information compared to real-world environments. In this chapter, we
will test our method against several criteria. We will demonstrate that by leveraging
multi-view information, it can achieve better results than its single-camera counterpart.
We will test the model with different numbers of cameras and various configurations,
such as cameras positioned close to or distant from the robot.
Additionally, we will conduct an ablation study on the various components of our
model and report the results.

5.1 Testing Setup

The software developed is primarily based on the Robot Operating System (ROS)1,
a flexible framework designed to simplify the development of complex and robust
robot software. ROS is middleware that provides essential services such as hardware
abstraction, low-level device control, implementation of commonly-used functionality,
message-passing between processes, and package management.
ROS is particularly advantageous for our project as it facilitates rapid and straight-
forward testing of our model. This is especially true due to its convenient setup for
simulated testing environments. ROS integrates a rich set of tools for simulation, visu-
alization, and debugging, enabling quick adjustments to the number and configuration
of cameras, the robot’s placement, and its configuration.

1https://www.ros.org/
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One of the tools we extensively utilized is Gazebo2, a powerful open-source simulation
tool designed to accurately and efficiently simulate robots in complex environments.
Its integration with ROS enables seamless communication between the simulation and
ROS nodes, making it an essential tool for the development and testing of our model.
Using Gazebo, we mitigate risks typically associated with real-world scenarios and
minimize errors caused by sensor noise or other issues, thanks to the controlled en-
vironment of the simulation. By providing a realistic and flexible simulation envi-
ronment, Gazebo helps reduce development time while enhancing the reliability and
performance of robotic systems.

Figure 5.1: Franka Emika Panda robot arm

In our setup, we used the Franka Emika Panda3 (Figure 5.1), a collaborative robot
arm designed for precision, safety, and ease of use. The Panda is equipped with seven
degrees of freedom, allowing it to perform a wide range of tasks with high flexibility
and dexterity. Its advanced control features and intuitive programming interface make
it suitable for both industrial applications and research purposes.
For capturing color information, we used the Kinect v2 sensor (Figure 5.2). It is
equipped with a high-definition (HD) color camera, an infrared (IR) emitter, and an
array of IR sensors, which together enable the capture of detailed color images.

The method was tested in a simulated environment using Gazebo, with the Franka
Emika Panda robot and the Kinect v2 sensors. To ensure consistency and reliability in
our experiments, we first set up the environment and registered a ROS bag of the robot
moving in various configurations for each type of experiment. Each ROS bag was then

2https://gazebosim.org/home
3https://franka.de/
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Figure 5.2: Kinect v2 camera

replayed 3 times for its relative experiment and we selected 100 random frames from
the bag each run for testing, ensuring that the results were consistent across different
runs. To make the scenario more realistic, random objects were added to the simulated
environment in addition to the robot, as illustrated in Figure 5.3 and 5.4, so that features
could also be extracted by LightGlue[35] from the external environment surrounding
the robot.
However, this is not an issue for real-world applications, as it is highly unlikely that
only the robot would be present in the scene. Even in real-world scenarios, the floor
and other environmental features provide sufficient points for feature matching.
The code used to process the images was developed primarily using OpenCV4, a
powerful open-source computer vision library. It provides a wide range of tools and
functions for image processing, feature detection, and image analysis. The code was
developed in Python, on a machine running Ubuntu 20.04, equipped with a 16GB RAM
and 6GB GPU. This setup ensured that we had the necessary computational power and
software environment to effectively develop and test our methods.

5.2 Comparison with Single-Camera Model

Firstly, we began by comparing our proposed method with a single-camera model
like DREAM [31], which was applied independently across multiple cameras. This
comparison allowed us to assess whether our model enhances the results obtained
from a single-view perspective by integrating multi-view information.
Specifically, we evaluated our method against the pose estimated by DREAM using its
detected keypoints and the robot’s joints to solve the PnP problem across all cameras.
Figures 5.5 and 5.6 illustrate the rotation and translation errors, respectively.
To estimate the goodness of the results, we utilize two metrics: one for the rotation
component and one for the translation component. We refer to them as the rotation
error and the translation error.

4https://opencv.org/
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Figure 5.3: Setup used to evaluate our model against the single-camera model.

They are computed as follows:
Rotation Error:

1. Compute Displacement Matrix:

𝑅error = 𝑅model · 𝑅−1
ground truth

where:

• 𝑅model is the rotation matrix returned by the model,

• 𝑅ground truth is the ground truth rotation matrix.

2. Convert Displacement Matrix to Euler Angles:

(𝜃error, x, 𝜃error, y, 𝜃error, z) = Euler(𝑅error)

Here, Euler(𝑅error) denotes the conversion of the rotation matrix 𝑅error to Euler
angles (e.g., using ZYX convention).

3. Average Euler Angles:

𝜃error =
𝜃error, x + 𝜃error, y + 𝜃error, z

3
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Figure 5.4: Scene viewed by the 4 cameras with the setup of Figure 5.3.

This yields a single measure of rotation error 𝜃error.

Translation Error:

• Compute Euclidean Distance:

translation_error = ∥tmodel − tground truth∥

where:

– tmodel is the translation vector calculated by our method,

– tground truth is the ground truth translation vector.

The rotation error, expressed in degrees, and the translation error, in meters, were
evaluated across four cameras using our proposed method and the DREAM model.
The results were obtained from a recorded rosbag that captured all the necessary topics
for the system to run. From Figures 5.5 and 5.6, the following key observations emerge:

• Rotation error comparison: Across all four cameras, our method consistently
achieves lower median rotation errors compared to the DREAM model. Specifi-
cally, the median rotation error for our method ranges from approximately 2.9◦

to 3.2◦, whereas for DREAM, it spans from 3.1◦ to 4.7◦. This translates to a
notable improvement of 7% to 38% in rotation accuracy with our method com-
pared to DREAM. Moreover, our method exhibits a smaller interquartile range
(IQR) for rotation errors, ranging from approximately 4.97◦ to 5.05◦, compared to
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DREAM’s wider IQRs ranging from approximately 5.58◦ to 8.22◦. The reduced
variability indicates higher stability and reliability in our method’s rotation esti-
mations, crucial for applications requiring precise spatial orientation.

• Translation error comparison: Similarly, in terms of translation errors, our
method consistently outperforms DREAM across all cameras. The median
translation error for our method ranges from approximately 0.22 to 0.25 me-
ters, whereas DREAM shows higher median errors ranging from about 0.24 to
0.37 meters. This signifies a significant improvement of 5% to 40% in translation
accuracy with our method. The IQR for translation errors also favors our method,
ranging from approximately 0.27 to 0.32 meters, compared to DREAM’s wider
IQRs ranging from approximately 0.35 to 0.96 meters. These findings under-
score the robustness and consistency of our method in accurately determining
positional shifts in robotic environments.

• Distribution spread (IQR): The smaller IQR for both rotation and translation
errors with our method compared to DREAM across all cameras highlights the
superior consistency and reliability of our approach. This narrower spread in
error values indicates that our method not only achieves lower median errors
but also maintains higher precision in its predictions, crucial for applications
demanding high accuracy.

• Maximum and minimum errors: Our method generally demonstrates lower
maximum errors in rotation across all cameras compared to DREAM, indicating
superior robustness in minimizing extreme error cases. However, for translation
errors, while our method exhibits lower maximum errors overall, Camera 1
shows a slightly higher maximum error compared to DREAM. This specific
case highlights the impact of varying data quality among cameras, where our
method’s performance might be affected by poorer quality inputs from other
views.

From Figure 5.5, we observe that the rotation error for our method is consistently
lower than that of the DREAM model across all cameras. For example, Camera 3
shows a median rotation error of 3.2◦ with our method compared to 4.3◦ for DREAM,
reflecting an improvement of around 25%. The smaller IQR of our method, such as 4.97◦

for Camera 2, compared to DREAM’s 7.83◦, signifies that our method’s predictions are
more stable and exhibit less variation. This consistency is crucial for high-precision
applications as it suggests fewer unexpected deviations in the estimated rotations.

Additionally, the presence of fewer extreme results in our method compared to
DREAM implies greater robustness to anomalies and extreme cases. For instance, the
maximum rotation error for Camera 4 is 12.32◦ with our method, significantly lower
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than DREAM’s 22.61◦, highlighting the reduced occurrence of high errors with our
approach. The DREAM method’s longer whiskers in the box plots reveal a higher
likelihood of producing extreme error values, which can be detrimental in critical
scenarios requiring utmost accuracy.

In Figure 5.6, illustrating translation errors, our method demonstrates a lower
median translation error across all cameras. For example, Camera 2 exhibits a median
translation error of 0.23 meters with our method versus 0.37 meters for DREAM,
indicating a 38% improvement. The reduced IQR for translation errors, such as 0.27
meters for Camera 3 with our method versus 0.51 meters for DREAM, further highlights
our method’s reliability and consistency.

An interesting observation is that for Camera 1, the maximum translation error
for our method is slightly higher than that of the DREAM method (0.82 meters ver-
sus 0.74 meters). This could be attributed to poorer quality information from other
cameras affecting the estimation process for Camera 1. This phenomenon suggests
that while multi-view information generally improves performance, the quality of the
contributing views must be managed effectively.

Unlike Adafuse [79], our model assigns equal weights to all views in the estimation
process. Future work could involve a weighted approach, assigning different weights
to each view based on their quality to enhance performance, especially when some
cameras provide lower quality data. This approach could mitigate the negative impact
of poorer quality views on the overall estimation process.

Overall, the errors of our model are quite consistent between cameras, indicating
that the system effectively refines poses by leveraging multi-view information. In
contrast, the single-camera model (DREAM) struggles, likely due to difficulties in
extracting information from the scene, such as occlusions.

Table 5.1: Rotation error results of our method and the DREAM model for each of the
4 cameras, expressed in degrees.

Camera Method Mean Median IQR Maximum Minimum

Camera 1 DREAM 11.9762 3.12837 6.03347 15.8176 0.00253463
Ours 6.39162 2.90266 5.05149 13.6725 0.0162856

Camera 2 DREAM 13.8073 4.72184 7.82561 21.4264 0.0435054
Ours 6.44195 3.14077 4.96794 12.9928 0.0162856

Camera 3 DREAM 13.6011 4.26559 5.57691 15.7272 0.0363425
Ours 6.57177 3.2469 4.99643 13.6725 0.0162856

Camera 4 DREAM 13.5596 4.51157 8.21908 22.611 0.00675646
Ours 6.46327 3.01727 4.97681 12.3224 0.0162884
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Table 5.2: Translation error results of our method and the DREAM model for each of
the 4 cameras, expressed in meters.

Camera Method Mean Median IQR Maximum Minimum

Camera 1 DREAM 0.761274 0.24194 0.352065 0.738411 0.0219761
Ours 0.447935 0.246548 0.27498 0.814737 0.0296835

Camera 2 DREAM 0.988929 0.369559 0.96176 2.56828 0.0410574
Ours 0.447053 0.225923 0.318978 0.895663 0.024438

Camera 3 DREAM 0.945339 0.349948 0.51416 1.06865 0.0340042
Ours 0.458141 0.224357 0.291363 0.698099 0.0290697

Camera 4 DREAM 0.942284 0.331758 0.52876 1.44742 0.0276484
Ours 0.48591 0.245465 0.25358 0.744495 0.0228487

5.3 Impact of the Amount of Cameras

We tested our model with different numbers of cameras to verify if the number of
cameras influences the results, as we expect, and to see if the model correctly utilizes
the additional information obtained from multiple cameras. This section provides a
detailed analysis of the translation and rotation error distributions for the proposed
multi-view pose estimation model across different numbers of cameras. We tested our
model with 3, 4, and 5 cameras configuration, as shown in Figure 5.7.

5.3.1 Camera-to-Robot Errors

We start by considering the camera-to-robot errors. As can be seen from Figures 5.8
and 5.9, the following detailed observations can be made:

• Rotation error comparison: The median rotation error values are quite similar
across different numbers of cameras. For the 3-camera setup, the median rotation
error is approximately 3.39◦, for the 4-camera setup, it is about 3.31◦, and for the
5-camera setup, it is around 3.25◦. This slight improvement with more cameras
indicates that additional views marginally enhance the rotation accuracy. The
percentage decrease in median rotation error from 3 cameras to 5 cameras is
about 4%.

• Translation error comparison: The median translation error also shows mi-
nor variations across different numbers of cameras. For 3 cameras, the median
translation error is approximately 0.245 meters, for 4 cameras, it is around 0.239
meters, and for 5 cameras, it decreases to about 0.233 meters. This suggests a
small improvement in translation accuracy with more cameras, with a percentage
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Figure 5.5: Rotation error of the proposed method compared with the DREAM model

decrease in median translation error from 3 cameras to 5 cameras being about
5%.

• Distribution spread (IQR): The IQR for rotation errors remains consistent, with
values such as 4.07◦ for 3 cameras, 3.99◦ for 4 cameras, and 3.91◦ for 5 cameras.
For translation errors, the IQR is 0.264 meters for 3 cameras, 0.257 meters for
4 cameras, and 0.251 meters for 5 cameras. This stability in IQR values across
different numbers of cameras indicates that the error distribution’s spread does
not significantly change, suggesting robustness in the model’s performance.

• Maximum and minimum errors: The maximum rotation error decreases slightly
with more cameras, from 12.25◦ for 3 cameras to 11.77◦ for 5 cameras. Similarly,
the maximum translation error decreases from 0.743 meters for 3 cameras to
0.705 meters for 5 cameras. The minimum error remains stable and low across
all configurations, indicating that the model’s lower bound of performance is
consistent.

From Figures 5.8 and 5.9, we observe that the translation and rotation error dis-
tributions are relatively stable across different numbers of cameras. The minor im-
provements in median errors and the slight reduction in maximum errors suggest that
adding more cameras helps in mitigating high-error outliers, enhancing the model’s
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Figure 5.6: Translation error of the proposed method compared with the DREAM
model

robustness.
The consistent IQR values across different camera setups indicate that the model

performs reliably regardless of the number of cameras used. This suggests that the
model can effectively utilize the information from multiple views, maintaining stable
performance even as the number of cameras increases.

An interesting point is the slight reduction in maximum errors with more cameras.
For example, the maximum rotation error decreases by about 4% when increasing
from 3 to 5 cameras, and the maximum translation error decreases by about 5%. This
indicates that additional views help in better handling critical cases, which is crucial
for ensuring reliability in real-world applications.

Table 5.3: Rotation error results of the camera-to-robot pose estimation when using 3,
4 and 5 cameras, expressed in degrees.

Method Mean Median IQR Maximum Minimum

3 cams 6.60943 3.38553 4.07412 12.252 0.47983
4 cams 6.46715 3.31265 3.98642 11.9882 0.469501
5 cams 6.35074 3.25302 3.91467 11.7724 0.46105
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Figure 5.7: Cameras placement for the test on the number of cameras. The model was
evaluated considering only camera 1 through 3 for the 3 cams, considering camera 1
through 4 for 4 cams, and considering all the cameras for 5 cams

Table 5.4: Translation error results of the camera-to-robot pose estimation when using
3, 4 and 5 cameras, expressed in meters.

Method Mean Median IQR Maximum Minimum

3 cams 0.476586 0.245414 0.264281 0.742502 0.0380742
4 cams 0.464057 0.238962 0.257333 0.722981 0.0370732
5 cams 0.452455 0.232988 0.2509 0.704907 0.0361464

5.3.2 Camera-to-Camera Errors

We also analyze the camera-to-camera error distributions. Referring to Figures 5.10
and 5.11, we can see that:

• Rotation error comparison: The median rotation error values are consistent
across different numbers of cameras. For the 3-camera setup, the median rotation
error is approximately 1.63◦, for the 4-camera setup, it is about 1.61◦, and for the
5-camera setup, it is around 1.59◦. The slight improvement in rotation accuracy
with more cameras is indicated by a 3% decrease in median rotation error from
3 cameras to 5 cameras.

• Translation error comparison: The median translation error is also consistent
across different numbers of cameras. For 3 cameras, the median translation error

49



5.3. IMPACT OF THE AMOUNT OF CAMERAS

Figure 5.8: Translation error distribution for 3, 4, and 5 cameras of the camera-to-robot
pose using the proposed method

is approximately 0.223 meters, for 4 cameras, it is around 0.219 meters, and
for 5 cameras, it decreases to about 0.216 meters. This minor improvement in
translation accuracy is highlighted by a 3% decrease in median translation error
from 3 cameras to 5 cameras.

• Distribution spread (IQR): The IQR for rotation errors is similar across all con-
figurations, with values such as 1.97◦ for 3 cameras, 1.94◦ for 4 cameras, and 1.91◦

for 5 cameras. For translation errors, the IQR is 0.240 meters for 3 cameras, 0.236
meters for 4 cameras, and 0.233 meters for 5 cameras. This consistency in IQR
values indicates that the spread of the middle 50% of error values does not vary
significantly with the number of cameras.

• Maximum and minimum errors: The maximum rotation error decreases slightly
with more cameras, from 5.91◦ for 3 cameras to 5.74◦ for 5 cameras. Similarly, the
maximum translation error decreases from 0.674 meters for 3 cameras to 0.654
meters for 5 cameras. The minimum error remains stable and low across all
configurations, suggesting consistent lower bounds of performance.

Both the translation and rotation error distributions indicate that the proposed
multi-view pose estimation model performs consistently well regardless of the number
of cameras used. The median errors remain stable, with rotation errors around 1.6◦

and translation errors approximately 0.22 meters. The variability of errors, as shown
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Figure 5.9: Rotation error distribution for 3, 4, and 5 cameras of the camera-to-robot
pose using the proposed method

by the IQR, also remains consistent, demonstrating the model’s robustness.

The slight reduction in maximum errors with more cameras, such as the decrease
in maximum rotation error from 5.91◦ to 5.74◦ and in maximum translation error from
0.674 meters to 0.654 meters, suggests that additional views can help reduce high-error
outliers, enhancing the model’s overall reliability.

This outcome aligns with our expectations because, for camera-to-camera pose
estimation, the only step that utilizes multi-camera information is the final bundle
adjustment phase. Therefore, we anticipated that adding more cameras would not sig-
nificantly impact the results. There is a slight improvement, possibly due to obtaining a
better camera-to-robot pose that is then used for the bundle adjustment. However, the
marginal improvement in camera-to-robot accuracy with the addition of more cameras
was less significant than expected, highlighting the model’s robust performance with
even fewer cameras.

These findings underscore the model’s robustness and dependable performance,
making it a suitable choice for applications requiring precise and stable pose estimation
from multiple camera perspectives.
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Figure 5.10: Translation error distribution for 3, 4, and 5 cameras of the camera-to-
camera pose using the proposed method

Table 5.5: Rotation error results of the camera-to-camera pose estimation when using
3, 4 and 5 cameras, expressed in degrees.

Method Mean Median IQR Maximum Minimum

3 cams 3.19006 1.63403 1.96639 5.91345 0.231591
4 cams 3.14292 1.60989 1.93733 5.82605 0.228169
5 cams 3.09891 1.58735 1.9102 5.74449 0.224974

5.4 Analysis of Camera-to-Robot Distance

Another aspect we wanted to test was the resilience of our model to changes in the
disposition of the cameras in the space. In particular, we wanted to know how the
distance to the robot affected the results. This is because the DREAM model was trained
only with images where the robot was at a distance between 75 to 120 centimeters from
the camera. This might negatively influence its output, thereby degrading the final
result because it relies on the DREAM output. Therefore, we compared the results
when the cameras are at a distance of a maximum of 1.5 meters from the robot (close)
and when they are at a distance greater than 2 meters from the robot (distant). Both
cameras configurations are shown in Figure 5.12 and 5.13 respectively.
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Figure 5.11: Rotation error distribution for 3, 4, and 5 cameras of the camera-to-camera
pose using the proposed method

Table 5.6: Translation error results of the camera-to-camera pose estimation when
using 3, 4 and 5 cameras, expressed in meters.

Method Mean Median IQR Maximum Minimum

3 cams 0.432617 0.222773 0.239899 0.673999 0.0345615
4 cams 0.425385 0.219049 0.235889 0.662733 0.0339838
5 cams 0.419855 0.216201 0.232822 0.654117 0.033542

5.4.1 Camera-to-Robot Pose Error

We start by testing how the distance from the robot affects the camera-to-robot pose
estimation process.
From Figures 5.15 and 5.14, we can draw the following observations:

• Rotation error comparison: The median rotation error is approximately 3.25◦

for close proximity cameras and 3.67◦ for distant cameras. This indicates a 12.9%
increase in the median rotation error when using distant cameras, suggesting
that rotation accuracy is slightly compromised with increased distance.

• Translation error comparison: The median translation error is about 0.237 meters
for close proximity cameras and 0.258 meters for distant cameras. This represents
an 8.9% increase in median translation error with distant cameras, implying a
modest degradation in translation accuracy as the distance increases.
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Figure 5.12: Cameras configuration for the ’Close’ case

• Distribution spread (IQR): The IQR for rotation errors is 3.91◦ for close proximity
cameras and 4.42◦ for distant cameras, indicating a wider spread in errors with
increased distance. For translation errors, the IQR is 0.255 meters for close
proximity cameras and 0.278 meters for distant cameras, suggesting a similar
increase in error variability with distance.

• Maximum and Minimum Errors: The maximum rotation error is higher for
distant cameras (13.29◦) compared to close proximity cameras (11.76◦). The
maximum translation error also increases from 0.716 meters for close proximity
cameras to 0.781 meters for distant cameras. The minimum errors remain low
and similar in both cases, indicating consistent lower bounds of performance.

Both the translation and rotation error distributions show that the proposed pose
estimation model performs differently across different camera proximities. The median
errors remain somewhat stable, with rotation errors around 3.25◦ for close proximity
and 3.67◦ for distant cameras, and translation errors approximately 0.237 meters for
close proximity and 0.258 meters for distant cameras. The variability of errors (as indi-
cated by the IQR) is comparable for both configurations, but close proximity cameras
have an edge in performance.

The broader range of errors for distant cameras suggests that the model’s per-
formance in handling robot configurations could be improved with closer camera
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Figure 5.13: Cameras configuration for the ’Distant’ case

placement. For instance, the maximum rotation error increases from 11.76◦ for close
proximity cameras to 13.29◦ for distant cameras, and the maximum translation error
rises from 0.716 meters to 0.781 meters. This trend indicates that while the model
remains robust, the increased distance introduces more variability and higher outliers
in error.

This is likely due to the DREAM model that performs the 2D keypoint detection,
which has worse results the farther it is from the robot. These findings highlight the
importance of camera placement in maintaining high accuracy and reliability in pose
estimation.

Table 5.7: Rotation error results of the camera-to-robot pose estimation when the
distance to the robot changes, expressed in degrees.

Method Mean Median IQR Maximum Minimum

Close 6.34627 3.25073 3.91191 11.7641 0.460725
Distant 7.17129 3.67333 4.42046 13.2935 0.52062
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Figure 5.14: Distribution of rotation errors in the camera-to-robot poses using the
proposed method. ’Close’ cameras refer to those closer to the robot, while ’Distant’
cameras are farther away.

Table 5.8: Translation error results of the camera-to-robot pose estimation when the
distance to the robot changes, expressed in meters.

Method Mean Median IQR Maximum Minimum

Close 0.45976 0.23675 0.25495 0.716287 0.0367299
Distant 0.501138 0.258057 0.277896 0.780753 0.0400356

5.4.2 Camera-to-Camera Pose Error

We also wanted to analyze how the distance from the robot impacts the relative
camera poses. From Figures 5.16 and 5.17, we derive the following observations:

• Rotation Error Comparison: The median rotation error is approximately 1.55◦

for close proximity cameras and 1.46◦ for distant cameras. This shows a slight
decrease of about 5.8% in the median rotation error when using distant cameras,
indicating slightly improved rotation accuracy with increased camera distance.

• Translation Error Comparison: The median translation error is about 0.223
meters for close proximity cameras and 0.219 meters for distant cameras. This
represents a minor reduction of approximately 1.8% in median translation error
with distant cameras, suggesting similar translation accuracy across different
camera proximities.
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Figure 5.15: Distribution of translation errors in the camera-to-robot poses using the
proposed method. ’Close’ cameras refer to those closer to the robot, while ’Distant’
cameras are farther away.

• Distribution Spread (IQR): The IQR for rotation errors is 1.86◦ for close proximity
cameras and 1.75◦ for distant cameras, indicating a slightly narrower spread in
errors with increased distance between cameras. For translation errors, the IQR
is 0.241 meters for close proximity cameras and 0.235 meters for distant cameras,
suggesting comparable error variability across different camera distances.

• Maximum and Minimum Errors: The maximum rotation error is 5.60◦ for close
proximity cameras and 5.27◦ for distant cameras. The maximum translation error
is 0.676 meters for close proximity cameras and 0.661 meters for distant cameras.
Both rotation and translation errors show slightly lower maximum errors with
distant cameras compared to close proximity cameras, indicating fewer extreme
outliers with increased camera distance.

Both the translation and rotation error distributions indicate that the proposed
pose estimation model performs comparably across different camera proximities. The
median errors remain stable, with rotation errors around 1.55◦ for close proximity and
1.46◦ for distant cameras, and translation errors approximately 0.223 meters for close
proximity and 0.219 meters for distant cameras. The variability of errors (as indicated
by the IQR) is also comparable for both configurations.

The slight reduction in median rotation and translation errors with distant cameras
suggests that increased camera distance may provide a small advantage in improving
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accuracy. This advantage likely stems from Lightglues ability to detect and match more
features in the larger field of view provided by distant cameras. Empirical verification
during the initial relative camera pose estimation phase of our approach demonstrates
that increased feature matches lead to more inliers and improved performance of the
C2P solver[61]. This explains why the difference in performance between near and
distant cameras is more pronounced in the rotation error distribution. In contrast,
the translation error difference is less evident, possibly because we compensate for
scale variation in the translation vector obtained from the solver using keypoints from
DREAM, which degrade as cameras move farther away from the robot, as inferred
from our earlier analysis.

Testing different camera distances was not conducted because it was anticipated
that the model’s performance might decrease with greater distances between cameras.
This is due to reduced scene similarity between cameras capturing the scenes, as
detailed in prior research [35, 54]. Given that our model relies on scene similarity in
the initial processing steps, any degradation in similarity would likely result in errors
throughout the pose estimation process.

Figure 5.16: Distribution of translation errors in the camera-to-camera poses using
the proposed method. ’Close’ cameras refer to those closer together, while ’Distant’
cameras are farther apart.
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Figure 5.17: Distribution of rotation errors in the camera-to-camera poses using the
proposed method. ’Close’ cameras refer to those closer together, while ’Distant’ cam-
eras are farther apart.

Table 5.9: Rotation error results of the camera-to-camera pose estimation when the
distance to the robot changes, expressed in degrees.

Method Mean Median IQR Maximum Minimum

Close 3.02203 1.54797 1.86281 5.60198 0.219393
Distant 2.84071 1.45509 1.75105 5.26586 0.206229

5.5 Ablation Study

As the final test, we conducted an ablation study on our model to systematically
analyze the impact of each step in our process on the final outcome. We compared
our complete method against variations where one specific step was removed while
keeping all other steps unchanged. This approach allowed us to understand the
individual contribution of each step to the overall performance of our model.

5.5.1 Camera-to-Robot Pose Analysis

We analyze the performance of different methods for estimating the camera-to-
robot pose by comparing their rotation and translation errors. Our method includes all
steps of the process, and the results are presented in Figure 5.19 and Figure 5.18. ’CC’
refers to the method using calibrated cameras, omitting the initial step that employs
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Table 5.10: Translation error results of the camera-to-camera pose estimation when the
distance to the robot changes, expressed in meters.

Method Mean Median IQR Maximum Minimum

Close 0.433979 0.223474 0.240654 0.676122 0.0346703
Distant 0.424431 0.218558 0.23536 0.661247 0.0339076

feature matching to estimate the relative poses between cameras. ’ST’ uses normal
triangulation instead of the constrained triangulation explained in Section 4.5. ’NF’
refers to the model without the heatmap fusion step. Finally, ’WBA’ is the model
without the last two-stage refinement step.

The ablation study reveals significant insights into the performance of each method:

• Calibrated Cameras (CC): Calibrated Cameras consistently demonstrate the low-
est median errors across all tested cameras. For instance, using Camera 2, this
method shows a mean rotation error of 6.02◦, a median of 3.32◦, and an IQR of
3.60◦. The mean translation error is 0.42 meters, with a median of 0.21 meters
and an IQR of 0.30 meters. These results underscore the high accuracy achieved
by using fully calibrated cameras.

• Proposed Method (Ours): Our Proposed Method shows competitive perfor-
mance compared to Calibrated Cameras, particularly evident in Camera 3. It
exhibits a mean rotation error of 6.57◦, a median of 3.47◦, and an IQR of 4.20◦.
The mean translation error is 0.46 meters, with a median of 0.22 meters and
an IQR of 0.29 meters. This highlights the effectiveness of our approach even
without full calibration.

• Standard Triangulation (ST): Using standard triangulation methods results in
higher errors compared to constrained methods. For example, with Camera 4, it
shows a mean rotation error of 6.66◦, a median of 3.34◦, and an IQR of 4.16◦. The
mean translation error is 0.50 meters, with a median of 0.25 meters and an IQR
of 0.26 meters. This emphasizes the importance of using constraints to guide the
triangulation process.

• No Fusion (NF): Omitting the heatmap fusion step leads to increased rotation
and translation errors. For Camera 4, it results in a mean rotation error of 6.58◦,
a median of 3.30◦, and an IQR of 4.12◦. The mean translation error is 0.50 meters,
with a median of 0.25 meters and an IQR of 0.26 meters. This underscores the
critical role of fusing heatmaps to improve keypoint accuracy across multiple
views.
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• Without Bundle Adjustment (WBA): Excluding bundle adjustment also results
in considerable increases in errors. For Camera 4, it shows a mean rotation error
of 6.62◦, a median of 3.32◦, and an IQR of 4.14◦. The mean translation error
is 0.50 meters, with a median of 0.25 meters and an IQR of 0.26 meters. This
demonstrates that bundle adjustment has a crucial role in refining poses and
minimizing errors.

The translation and rotation error distributions from the ablation study provide
insights into the performance of different methods for camera-to-robot pose estimation.

Calibrated Cameras consistently demonstrate the lowest median errors, with rota-
tion errors averaging approximately 6.04◦ and translation errors around 0.429 meters.
This highlights the effectiveness of using fully calibrated cameras to achieve high ac-
curacy.

Our Proposed Method, despite not relying on full calibration, exhibits competitive
performance. For instance, in the case of Camera 3, rotation errors average 6.57◦ and
translation errors around 0.458 meters, showcasing the robustness of our approach.

Standard Triangulation methods result in noticeable increases in both rotation and
translation errors. For example, using this method for Camera 3, rotation errors average
6.76◦ and translation errors around 0.472 meters, emphasizing the importance of using
constrained methods to guide triangulation.

Omitting the heatmap fusion step leads to significant deteriorations in accuracy. For
Camera 2, rotation errors average 6.558◦ and translation errors around 0.455 meters,
underscoring the critical role of heatmap fusion in improving keypoint accuracy across
multiple views.

Excluding bundle adjustment also results in considerable increases in errors. For
Camera 1, rotation errors average 6.54◦ and translation errors around 0.457 meters,
demonstrating the essential role of bundle adjustment in refining poses and reducing
errors.

Removing these steps results in a marked increase in both rotation and translation
errors, emphasizing the necessity of all these techniques for achieving high precision
and reliability in camera-to-robot pose estimation.

5.5.2 Camera-to-Camera Pose Analysis

We perform an ablation study also on the estimation of poses between relative
cameras. In this case, the only step of the model that actually works to refine the
relative camera-to-camera poses is the final phase of the bundle adjustment step. The
results are plotted in Figure 5.21 and Figure 5.20 for the rotation and translation error
respectively. The study indicates the following insights:
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Figure 5.18: Ablation study results demonstrating the impact of the model’s steps on
the rotation error in camera-to-robot pose estimation.

• With Bundle Adjustment (Ours): Including the bundle adjustment step consis-
tently reduces both rotation and translation errors. For instance, with Camera 1,
rotation errors average 2.98◦, with a median of 1.60◦ and an IQR of 1.95◦. Trans-
lation errors average 0.397 meters, with a median of 0.218 meters and an IQR of
0.244 meters.

• Without Bundle Adjustment (WBA): Excluding the bundle adjustment step
leads to higher rotation and translation errors across all cameras. For example,
with Camera 1, rotation errors average 3.07◦, with a median of 1.65◦ and an IQR
of 2.01◦. Translation errors average 0.413 meters, with a median of 0.227 meters
and an IQR of 0.253 meters.

Detailed examination of rotation and translation error distributions provides fur-
ther insights. Cameras consistently exhibit lower median rotation errors and narrower
IQRs when bundle adjustment is included. For instance, in Camera 2, rotation errors
average 3.01◦, with a median of 1.66◦ and an IQR of 1.80◦. Translation errors average
0.396 meters, with a median of 0.20 meters and an IQR of 0.283 meters.

Without bundle adjustment, cameras show higher variability and increased errors.
For example, in Camera 2, rotation errors average 3.10◦, with a median of 1.71◦ and
an IQR of 1.85◦. Translation errors average 0.413 meters, with a median of 0.20 meters

62



CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.19: Ablation study results demonstrating the impact of the model’s steps on
the translation error in camera-to-robot pose estimation.

and an IQR of 0.294 meters.
These observations highlight the necessity of bundle adjustment in achieving pre-

cise and consistent camera-to-camera pose estimates, essential for robust performance
in multi-camera systems.
The method that incorporates bundle adjustment consistently outperforms the one
that does not, showcasing lower median errors and diminished variability. This un-
derscores the critical importance of the refinement step in optimizing the performance
of our pose estimation model.
This means that integrating the estimated camera-to-robot poses within the bundle
adjustment process contributes significantly to refining relative poses. This integration
not only enhances robustness against noise and errors but also strengthens the overall
stability and reliability of the pose estimation framework. By treating the estimated
cameras-to-robot poses as part of the refinement phase, we capitalize on their role in
achieving more precise and consistent results.
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Table 5.11: Rotation error results of the camera-to-robot pose estimation for the ablation
study, expressed in degrees. ’Ours’ refers to the proposed method with all the steps
’CC’ refers to the method using calibrated cameras, ’ST’ uses normal triangulation
instead of the constrained triangulation, ’NF’ refers to the model without the heatmap
fusion step and ’WBA’ is the model without the last two-stage bundle adjustment.

Camera Method Mean Median IQR Maximum Minimum

Camera 1

Ours 6.39162 3.42818 4.18635 12.3351 0.4695
CC 5.97347 3.20391 3.91248 11.5281 0.438785
ST 6.58336 3.53103 4.31195 12.7052 0.483585
NF 6.50666 3.48989 4.26171 12.5571 0.477951

WBA 6.54501 3.51046 4.28683 12.6311 0.480768

Camera 2

Ours 6.44195 3.55508 3.85672 11.6077 0.4695
CC 6.02052 3.3225 3.60441 10.8483 0.438785
ST 6.63521 3.66173 3.97242 11.9559 0.483585
NF 6.55791 3.61907 3.92614 11.8166 0.477951

WBA 6.59656 3.6404 3.94928 11.8862 0.480768

Camera 3

Ours 6.57177 3.47016 4.19942 12.3706 0.4695
CC 6.14184 3.24314 3.92469 11.5613 0.438785
ST 6.76892 3.57427 4.3254 12.7418 0.483585
NF 6.69006 3.53262 4.27501 12.5933 0.477951

WBA 6.72949 3.55344 4.3002 12.6675 0.480768

Camera 4

Ours 6.46327 3.24636 4.04283 11.6237 0.469504
CC 6.04044 3.03398 3.77835 10.8633 0.438789
ST 6.65717 3.34375 4.16412 11.9724 0.483589
NF 6.57961 3.30479 4.1156 11.8329 0.477955

WBA 6.61839 3.32427 4.13986 11.9027 0.480772
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Table 5.12: Translation error results of the camera-to-robot pose estimation for the
ablation study, expressed in meters. ’Ours’ refers to the proposed method with all
the steps, ’CC’ refers to the method using calibrated cameras, ’ST’ uses normal tri-
angulation instead of the constrained triangulation, ’NF’ refers to the model without
the heatmap fusion step and ’WBA’ is the model without the last two-stage bundle
adjustment.

Camera Method Mean Median IQR Maximum Minimum

Camera 1

Ours 0.447935 0.246548 0.27498 0.814737 0.0296835
CC 0.418631 0.230419 0.25699 0.761437 0.0277416
ST 0.461821 0.254191 0.283504 0.839994 0.0306037
NF 0.456893 0.251479 0.280479 0.831032 0.0302772

WBA 0.457789 0.251972 0.281029 0.832662 0.0303365

Camera 2

Ours 0.447053 0.225923 0.318978 0.895663 0.024438
CC 0.417807 0.211143 0.298111 0.837068 0.0228392
ST 0.460912 0.232927 0.328867 0.923428 0.0251955
NF 0.455994 0.230442 0.325358 0.913576 0.0249267

WBA 0.456888 0.230894 0.325996 0.915367 0.0249756

Camera 3

Ours 0.458141 0.224357 0.291363 0.698099 0.0290697
CC 0.428169 0.209679 0.272302 0.652429 0.027168
ST 0.472344 0.231312 0.300395 0.719741 0.0299709
NF 0.467304 0.228844 0.29719 0.712061 0.0296511

WBA 0.46822 0.229293 0.297773 0.713458 0.0297093

Camera 4

Ours 0.48591 0.245465 0.25358 0.744495 0.0228487
CC 0.454122 0.229406 0.23699 0.69579 0.021354
ST 0.500974 0.253074 0.261441 0.767574 0.023557
NF 0.495629 0.250374 0.258651 0.759385 0.0233057

WBA 0.4966 0.250865 0.259158 0.760874 0.0233514

Table 5.13: Rotation error results of the camera-to-camera pose estimation for the
ablation study, expressed in meters. ’Ours’ refers to the proposed method with all the
steps and ’WBA’ is the model without the last two-stage bundle adjustment.

Camera Method Mean Median IQR Maximum Minimum

Camera 1 Ours 2.98674 1.60195 1.95624 5.76407 0.219393
WBA 3.07634 1.65001 2.01493 5.93699 0.225974

Camera 2 Ours 3.01026 1.66125 1.8022 5.42414 0.219393
WBA 3.10057 1.71109 1.85627 5.58686 0.225974

Camera 3 Ours 3.07092 1.62157 1.96234 5.78067 0.219393
WBA 3.16305 1.67022 2.02121 5.95409 0.225974

Camera 4 Ours 3.02022 1.51699 1.88917 5.43164 0.219394
WBA 3.11083 1.5625 1.94585 5.59458 0.225976
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Figure 5.20: Ablation study results demonstrating the impact of the model’s steps on
the translation error in camera-to-camera pose estimation.

Figure 5.21: Ablation study results demonstrating the impact of the model’s steps on
the rotation error in camera-to-camera pose estimation.
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Table 5.14: Translation error results of the camera-to-camera pose estimation for the
ablation study, expressed in meters. ’Ours’ refers to the proposed method with all the
steps and ’WBA’ is the model without the last two-stage bundle adjustment.

Camera Method Mean Median IQR Maximum Minimum

Camera 1 Ours 0.397699 0.218898 0.244141 0.723365 0.0263545
WBA 0.413607 0.227654 0.253907 0.7523 0.0274087

Camera 2 Ours 0.396916 0.200586 0.283205 0.795215 0.0216972
WBA 0.412793 0.20861 0.294533 0.827023 0.0225651

Camera 3 Ours 0.406761 0.199195 0.258687 0.619808 0.0258096
WBA 0.423031 0.207163 0.269034 0.6446 0.026842

Camera 4 Ours 0.431416 0.217936 0.225141 0.661 0.0202863
WBA 0.448672 0.226653 0.234146 0.68744 0.0210977
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6
Conclusions and Future Works

In this thesis, we address the challenge of calibrating a network of cameras using
only a single frame per camera, leveraging a robot as the calibration pattern and simul-
taneously estimating the robot’s pose relative to the cameras. This problem has gained
recent interest, particularly with the advancements in deep learning. We propose a
novel method that utilizes multi-view geometry to enhance accuracy and reduce er-
rors.
Our approach begins by estimating inter-camera poses in a Structure from Motion
(SfM) manner, exploiting the feature matching obtained with Lightglue [35]. Sub-
sequently, we employ C2P [61] to compute rotation matrices and translation vectors,
refined using 2D joint detections from the DREAM model [31]. In the second step we
generate heatmaps and keypoints corresponding to joints, and successively we fuse
these heatmaps using the process detailed in Section 4.4. Triangulation of points is
then performed with the addition of constraints based on the kinematic structure of
the robot. Once triangulated points are obtained, we estimate poses from the robot to
the cameras, followed by a two-step bundle adjustment process to refine the poses.
We evaluate our model against the single-camera scenario and various configurations
and numbers of cameras. As demonstrated in Chapter 5, our approach significantly
outperforms the single-camera model, improving rotation estimation by up to 38% and
translation estimation by up to 40% in some cases. It proves more robust and resilient
to noise.
We observe that while the number of cameras influences camera-to-robot poses, the
impact is less significant than anticipated. The improvement from 3 to 5 cameras re-
sults in only about a 4% reduction in rotation error and a 5% reduction in translation
error, with errors slightly decreasing as more cameras are added.
The distance between cameras and the robot also affects results; positioning cameras
farther away tends to degrade performance, potentially due to limitations in the single-
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camera model’s training for handling such cases. Conversely, greater camera distance
improves relative camera pose estimation due to expanded field of view, thereby pro-
viding more matches for the C2P solver.
Additionally, we conduct an ablation study to assess the influence and importance of
each step. We find that pre-calibrating cameras yields the least error, around 6.04◦ for
rotation error compared to about 6.45◦ for the uncalibrated setup, and 0.43 m com-
pared to 0.455 m for the translation error, respectively. This result aligns with our
expectations, as pre-calibration allows for more efficient leveraging of epipolar geom-
etry during model fusion.
Constraints applied to triangulation and the specific methods employed are crucial,
with constrained triangulation and calibrated cameras showing the highest impact,
followed by heatmap fusion and bundle adjustment. Our study also highlights the
effectiveness of bundle adjustment in reducing errors, from 3.11◦ without to 3.03◦ with
bundle adjustment for the rotation error, and from 0.427 m without to 0.405 m with
bundle adjustment for the translation error in relative camera pose estimation.

6.1 Future Works

In future research, several promising directions could further advance the methods
proposed in this thesis. Firstly, exploring advanced deep learning techniques could
enhance feature detection and matching processes [40], potentially reducing compu-
tational overhead while improving accuracy in pose estimation tasks. Investigating
methods to dynamically adapt to varying camera configurations and distances from
the robot could mitigate the current limitations observed, particularly in scenarios
where cameras are positioned at greater distances. Additionally, extending the model
to support a broader range of robot types is essential.
Currently, the DREAM model only supports a limited set of robots, such as the Panda
Emika Franka. Future work could involve developing adaptable algorithms that can
handle different robotic platforms, ensuring flexibility and applicability across diverse
industrial or research environments.
Furthermore, enhancing the robustness and scalability of the system to accommodate
multiple robots within its field of view presents another area of improvement. This
capability would enable the system to track and estimate poses for multiple robots
simultaneously, facilitating collaborative tasks or scenarios where multiple robots are
deployed. Integrating multi-robot coordination and communication protocols could
also be explored to enhance efficiency and coordination among robots within the net-
work.
Moreover, investigating real-time adaptation and learning mechanisms could further
enhance the system’s performance in dynamic environments. Techniques such as on-
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line learning or adaptive control strategies could enable the system to continuously
improve and adapt its pose estimation capabilities based on real-world feedback and
environmental changes.
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