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Abstract

MPC is a cutting-edge control technique which is nowadays deeply

studied, since it permits to overcome several disadvantages related to

simpler and more traditional control methods. In industry, Propor-

tional Integral Derivative controllers are still widespread, due to their

low complexity and tuning procedure. However, they do not have the

capability to cope with coupled multi-input multi-output systems, as

well as constrained and non-linear ones. On the other hand, Model

Predictive Control is able to deal with these features at the price

of computational complexity. The latter is related to its structure:

MPC is indeed an optimization-based control technique which require

to solve an optimization problem within every timeslice, and this im-

plies high computational burden. Therefore, its use has been so far

mainly limited to academic applications or chemical processes, where

the timescale is quite large (around the minute). However, recent ad-

vances in both embedded hardware and MPC software libraries have

made Model Predictive Control a viable candidate also for systems

with fast dynamics, e.g. robotics. With regard to this, the objective

of this master thesis is to explore the suitability of Model Predictive

Control for motion control applied to fast-timescale systems. The

hardware under test consists in a Stewart platform, i.e., a robotic sys-

tem governed by six servo-actuators which can move a flat plate. The

implemented controller aims at balancing a ball towards the middle

of the plate.

The used MPC library is based on acados, a collection of solvers for

fast embedded optimization. Although it is implemented in C, aca-

dos is able to interface with higher-level interfaces, such as Matlab,

Python and C++, feature which makes acados really flexible. On the

other hand, this library provides also efficiency, as its core is written

in a low-level language.

The project firstly develops simulations by the use of Matlab, in order

to observe the feasibility of MPC in terms of computational time and

capability to control the system. In a second time, the hardware is

employed to verify the simulation results. This includes the setting of

the communication in accordance to the serial protocol developed for

the embedded systems platform within the hardware.
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Introduction

Nowadays, manufacturing operations are quickly taking the direction of mod-

ernization and upgrade in order to meet the demand for improving quality and

just-in-time delivery. With regard to these requirements, a strong transition is

taking place from manual to automated processes. Motion control is crucial for

this shift, since it refers to that sub-field of automation whose goal is to move the

singular parts of a machine in a controlled way. Its main fields of application are

precision engineering, bio and nanotechnology, as well as plants such as produc-

tion lines, where robotics and automatic machines are involved.

Motion control relates to a set of individual components that together contribute

to the building of a controlled movement in machines. A first essential compo-

nent is the controller, i.e., an electronic-related device that implements the code

to control the motors and drives of the machines. According to the complexity of

the plant, the number of controllers may vary. Each controller is fed with instruc-

tions from the main computer and provides the latter with a feedback response.

A second part of motion control is comprised by the motors, which can assume

different characteristics and applications. Nevertheless, their main function is to

turn the received inputs into motion. One of the most widespread types of motors

is the servo, which provides high accuracy to control angular motion. In addition,

a linear actuator is often used to convert the rotational motion of a motor into

linear motion, which is needed e.g. in production lines. Finally, motor drives

act as a converting element between the controller and motors. They receive the

electrical signal from the controller and feed the motor with a reinterpreted power

signal. Moreover, other components like sensors and cabling are needed.

Motion control may be based on open or closed loop. The former does not im-

plement a feedback, so that the controller is only aware of the reference without

knowing the real motion of the final element. On the other hand, closed loop

represents a much more widespread control category, since it is able to achieve

better accuracy and disturbances rejection due to the feedback provided by a

1
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sensor and/or an estimator.

Control of robotic manipulators is a significant part of motion control, since the

greatest part of robotic manipulators are driven by electrical servos, which rep-

resent thus the final actuator comprising the motion control part. The following

subsection will focus on motion control dealing with robotic applications.

Motion Control in Robotics

Recently, robotics has been becoming a crucial part of composite systems often

responsible to carry out complex tasks, such as robotic-assisted surgeries or pro-

duction lines. The latter example often comprises a pick-and place manipulator

responsible for manipulating objects on a line. In this context, motion control

of robotic components enables the correct development of these complex tasks,

provided that the robot is equipped with the proper end effector and motion law.

The definition of the combined actions between the two of them to achieve the

correct way of solving the task is rarely trivial. The end effector is responsible for

executing the work on the manipulated element, while the joints of the robot are

controlled through motion control. The established relationship between these

two is often complex and may require several equations and control solutions

which are only solvable in an iterative way. Moreover, many robots possess more

degrees of freedom than necessary, resulting in kinematically redundant robots.

This feature increases both the power and the struggle in controling them. The

difficulty of control arises from the infinite number of ways to solve a task, for

instance the execution of a point-to-point path. To ensure the correctness of the

choice, a possibility is the inclusion of path constraints in it, which nonetheless

makes the motion control part much more complex and advanced. Robotic joints

have furthermore speed and acceleration limits, while actuators have upper and

lower bounds for torque and force. The combination of the latter constraints,

related to the power of the single devices, with the path constraints, renders

robot motion control quite challenging and gives rise to the need of relying on

cutting-edge control techniques.

Because of the previous considerations, a Stewart platform has been considered

as the hardware under test. This is indeed a robotic parallel manipulator with 6

degrees of freedom, even though the final task is to balance a ball in the middle

of the upper plate, which requires only two degrees of freedom (the angles α,

β in the x−, y− axes). This gives rise to several possibilities of achieving the
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two desired angles starting from a previous couple of them. Furthermore, the

path to reach the center of the plate starting from a different position is to be

constrained: the plate surface has indeed spacial limits and the ball has to always

remain attached to it. Therefore, the task of balancing a metallic ball through

a Stewart platform presents all the features that make the implementation of

motion control in robotics challenging and computationally demanding.

The next section will focus on the control techniques which may be applied in

robotics: previous works with respect to the Stewart platform will be summarized

and the implemented plant will be presented.

Control Techniques in Robotics: Overview and

Proposed Framework

Because of the increasing involvement of robotics within industrial processes, the

application of control theory in this field is currently one of the most popular

concerns in automation engineering. Therefore, several control techniques have

been tested within the robotic field, with both positive and negative outcomes.

Stewart platform represents a deeply utilized hardware to test that variety of

techniques, since it is a rather simple and cheap device which provides easiness in

its study and modelization. Nonetheless, it is capable of introducing the majority

of the struggles usually related to control applied to the robotics field. A compari-

son between different methods of controlling a Stewart platform has been carried

out by Kassem A., Haddad H., Albitar C. [1]. Their work models the system

through the Euler-Lagrangian equations and takes into consideration 4 control

methods: proportional integral derivative regulator (PID), linear quadratic regu-

lator (LQR), sliding mode controller and fuzzy controller. The first one has been

already mentioned within the abstract, since it is the golden standard in industry:

it consists of following a reference by evaluating its error through a proportional,

an integral and a derivative part. LQR is on the other hand an optimal control

technique which is still deeply employed in industry: it requires a linear model

of the system in state-space form and provides an input given two matrices Q,

R which express the penalties on the state, input variables through a cost func-

tion J(x(·), u(·)). If Q is positive semi-definite, R is positive definite and the

horizon length of the cost function is infinite, the output error and the optimal

input are related through a time-invariant coefficient K: u(k) = −K(y(k)−r(k)).

The third control technique, i.e., sliding mode control, falls within the category
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of variable structure controllers, which are characterized by a suite of feedback

control laws and a decision rule [2].In particular, sliding mode control provides

the system with a discontinuous control signal: the state-feedback control may

thus switch from one continuous structure to another, depending on the current

values of the state space variables. Eventually, a fuzzy controller is applied to the

platform. As the name suggests, a fuzzy control system is based on fuzzy logic

and fuzzy decision making [3]: the main feature is here the degree of membership

of the variables, which can contemporarely belong to different sets. Therefore,

fuzzy control may be defined as a rule-based control technique where the transi-

tions between different sets are not as well-established as in traditional rule-based

techniques. The results reached by Kassem et alii highlights the validity of slid-

ing mode control, thanks to the fact that the considered model is non-linear and

dynamic. Therefore, the main concern is to implement a control technique which

is able to correctly approximate the Stewart platform model, given that it is

variable with the configuration of the plate. To tackle this issue, Oravec M. and

Jadlovska A. proposed Model Predictive Control [4]. In their work, MPC faces

the space-varying behavior of the system by introducing constraints which allow

to linearize the model achieving sufficient consistency with the real model. The

control algorithm is verified in Matlab and Simulink with positive results.

Given this overview about the already explored control techniques applied to

the Stewart platform, the last mentioned control technique, i.e., MPC, has been

chosen as the candidate to be applied to the real hardware provided by Sioux

Technologies. After a deep study of the considered control technique, several

simulation tests have been carried out in Matlab, with the help of the library

acados. After the verification of its applicability and the implementation of a

Kalman filter to estimate the full state vector, a Qt application implementing

the controller and the communication has been developed in order to interact

with the hardware. Eventually, the experimental tests have been performed. The

next chapters will lead the reader throughout the steps of the project. Chapter

1 presents the Stewart platform in details: the equations of the ball-and-plate

system and the inverse kinematics are here illustrated. Afterwards, Model Pre-

dictive Control is deeply explained through chapter 2: its general formulation and

the algorithm are firstly explained, after which the stability and robustness issues

are tackled. Moreover, the principal involved solvers are underlined. Chapter 3

introduces two estimators which can work in strict correlation with the MPC:

the Kalman filter and the Moving Horizon Estimator. Model Predictive Control
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Figure 1: Block scheme structure of MPC and estimator communicating with the real plant

needs indeed to be provided with the full state vector, hence an estimation of cer-

tain components might be necessary, as fig. 1 illustrates. Subsequently, chapter

4 provides a description of the whole system: firstly, the hardware components

are highlighted, then the serial communication protocol and the interaction with

the hardware are explained; lastly, the software libraries and the design of MPC

are presented. Chapter 5 and 6 illustrate respectively the simulation and exper-

imental results. The former aims at verifying the feasibility of MPC and the

validity of the approximations for the model, as well as the possibility to combine

MPC with KF. The latter has the objective of validating the modelization of the

hardware and the MPC applied to the real platform. Finally, the whole project

is summarized and future works are proposed.
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Chapter 1

Stewart Platform

The origin of the Stewart platform dates back to 1954, when the automotive

engineer Eric Gough firstly designed it for tires testing. It consists of a parallel

manipulator for positioning and motion control which is made of two parallel

plates and a variable number of legs led by servo-motors. The legs connect the

two plates and aim at moving and controling the upper plate through the servos.

The base plate represents the static part of this device: it is indeed attached to

the floor. The number and the kind of servo motors may differ: the used platform

relies on six rotary servo actuators, as illustrated through the model in fig. 1.1.

Since the six-legged is its most widespread design, the Stewart platform is usu-

ally also referred to as hexapod. The rotary actuators may complicate the inverse

kinematics, i.e., the calculation of the servo motors position given the angles of

the upper plate. This process will be further explained within section 1.2. Each

servo is to move a leg which connects the static base plate and the moving upper

plate.

Figure 1.1: Stewart platform with 6 rotary servo-actuators

7
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Stewart platform classification as a parallel manipulator is due to the different

number of linkages between the upper and the base plate. A strong advantage re-

gards the cumulative error: serial manipulators accumulate indeed the positioning

error of each linkage, drawback which is not present within parallel manipulators.

As previously mentioned, the Stewart platform was initially employed in the test-

ing of tires. However, several different uses have arisen with time: nowadays this

robotic device is proficiently used for medical and surgical applications, wearable

items such as smart watches, training and entertainment simulators, engineering

research applications and positioners’ algorithm research. In our case, the Stewart

platform aims at balancing a metallic ball through a cutting-edge control algo-

rithm, i.e, Model Predictive Control, and thus combines the two last applications

of the list. The balancing of the ball is made through the movement of the center

point of the top plate in 3D space. To this end, every leg changes its configura-

tion and thus its virtual length (which in case of a linear actuator corresponds to

its real one). A desirable pose of the upper plate, i.e., the 6 degrees-of-freedom

vector values of the center of this plate, is reached through the inverse kinematics,

which calculates the position of the servos given the pose of the plate. Subse-

quently, every servo is controlled to achieve the required position. Therefore,

devices placed on the top plate can be moved and controlled in the six degrees of

freedom: the three linear movements x, y, z (lateral, longitudinal, vertical) and

the three rotations x, y, z (pitch, roll, yaw).

The main issues of every Stewart platform are the accuracy of the center loca-

tion and the response time against a position change command. The first critical

point mainly deals with the correctness of the implemented inverse kinematics,

which has to take into account extremely accurate values regarding the involved

mechanical parameters, such as the lengths of the legs and the rotations of the ser-

vos. If not, errors can cumulate and lead to a real configuration which is different

from the desired one. Furthermore, a position change command is to be put into

action as fast as possible, so that the configuration and thus the required optimal

position has not changed in the meantime. This mainly deals with applications

where an object must be controlled on the upper plate: the command concerning

the pose of the plate has to rely on a measurement of the object position which

should be as updated as possible. These applications are referred to a further

issue, i.e., the accuracy of the measured object position. This is entirely related

to the measurement process implemented within the platform, which is usually a

sensing camera or, as in the case under exam, a touch screen inside the plate.
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The next section will focus on the modelization of the system representing the

Stewart platform: first of all, the model of the ball and plate is obtained starting

from the Euler-Lagrangian equation. Secondly, the inverse kinematics is pre-

sented to reach the required position of the servos given the pose of the upper

plate.

1.1 Equations of the Ball-and-Plate System

The modelization may be done either by analyzing the forces and torques of the

system through the Newton-Euler formalism, as in [5] for the 1D case and [6] for

the 2D, or through the Euler-Lagrangian equation, as in The system expressing

a ball balancing table has been found here starting from the Euler-Lagrangian

equation:
d

dt

∂T

∂q̇i
− ∂T

∂qi
+

∂V

∂qi
= Qi (1.1)

Here, qi is the ith-direction coordinate, T is the kinetic energy of the system

and V the potential one. Q is the external force, which is assumed to be zero.

This preliminary system allows indeed to access the angles α, β directly. The

chosen coordinates are xb, yb, i.e., the cartesian components of a system in the

middle of the plate, and α, β, the angles which represent the inclination of the

plate (α is around x while β around y). Furthermore, several assumptions are

made: first of all, there is no slipping for the ball, which is homogeneous and

symmetric. Moreover, the friction is neglected and the plate and the ball are

always in contact. The energy equations need to be explicitly written:

Tb =
1

2
mb

(
ẋ2
b + ẏ2b

)
+
1

2
Ib
(
ω2
x + ω2

y

)
=

1

2

(
mb +

Ib
r2b

)(
ẋ2
b + ẏ2b

)
(1.2)

Tp =
1

2

(
Ip + Ib

)(
α̇2 + β̇2

)
+
1

2
mb

(
xbβ̇ + ybα̇

)2
(1.3)

V = mbgh = mbg(xb sin β + yb sinα) (1.4)

Where Tb is the kinetic energy of the ball, Tp is the kinetic energy of the plate,

V is the potential energy. Only the ball contributes to that last one. Therefore,

the following equations are achieved:

∂T

∂α̇
= (Ip + Ib)α̇ +mbxbybβ̇ +mby

2
b α̇ (1.5)



10 Chapter 1. Stewart Platform

∂T

∂β̇
= (Ip + Ib)β̇ +mbxbybα̇ +mbx

2
b β̇ (1.6)

∂T

∂ẋb

=

(
mb +

Ib
r2b

)
ẋb (1.7)

∂T

∂ẏb
=

(
mb +

Ib
r2b

)
ẏb (1.8)

Furthermore, chosen L = V − T , it results:

∂L

∂α
= mbgyb cosα (1.9)

∂L

∂β
= mbgxb cos β (1.10)

∂L

∂xb

= mbgsinβ +mbxbβ̇
2 +mbybα̇β̇ (1.11)

∂L

∂yb
= mbgsinα +mbybα̇

2 +mbxbα̇β̇ (1.12)

d

dt

∂T

∂α̇
= (Ip + Ib)α̈+mby

2
b α̈+2mbybẏbα̇+mbxbybβ̈ +mbẋbybβ̇ +mbxbẏbβ̇ (1.13)

d

dt

∂T

∂β̇
= (Ip+ Ib)β̈+mbx

2
b β̈+2mbxbẋbβ̇+mbxbybα̈+mbẋbybα̇+mbxbẏbα̇ (1.14)

d

dt

∂T

∂ẋb

=

(
mb +

Ib
r2b

)
ẍb (1.15)

d

dt

∂T

∂ẏb
=

(
mb +

Ib
r2b

)
ÿb (1.16)

The Euler Lagrange equations in scalar form are thus:

d

dt

∂T

∂α̇
+
∂L

∂α
= (Ip+Ib)α̈+mby

2
b α̈+2mbybẏbα̇+mbxbybβ̈+mbẋbybβ̇+mbxbẏbβ̇+mbgyb cosα = 0

(1.17)
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d

dt

∂T

∂β̇
+
∂L

∂β
= (Ip+Ib)β̈+mbx

2
b β̈+2mbxbẋbβ̇+mbxbybα̈+mbẋbybα̇+mbxbẏbα̇+mbgxb cos β = 0

(1.18)

d

dt

∂T

∂ẋb

+
∂L

∂xb

=

(
mb +

Ib
r2b

)
ẍb +mbgsinβ +mbxbβ̇

2 +mbybα̇β̇ = 0 (1.19)

d

dt

∂T

∂ẏb
+

∂L

∂yb
=

(
mb +

Ib
r2b

)
ÿb +mbgsinα+mbybα̇

2 +mbxbα̇β̇ = 0 (1.20)

As previously mentioned, the angles α, β, or rather their accelerations, are sup-

posed to be directly accessible, therefore the forces Qi are set to zero. The

non-linear system is reached by imposing the following state and input vectors:

x =
[
xb ẋb α α̇ yb ẏb β β̇

]T
(1.21)

u =
[
α̈ β̈

]T
(1.22)

The components of the vector ẋ =
[
ẋb ẍb α̇ α̈ ẏb ÿb β̇ β̈

]T
are expressed by the

equations below:

ẍb =
1

mb + Ib/r2b

(
mbxbβ̇

2 +mbybα̇β̇ +mbg sin β
)

(1.23)

ÿb =
1

mb + Ib/r2b

(
mbybα̇

2 +mbxbα̇β̇ +mbg sinα
)

(1.24)

and thus:

ẋ1 = x2, ẋ3 = x4, ẋ4 = u1, ẋ5 = x6, ẋ7 = x8, ẋ8 = u2 (1.25)

ẋ2 =
1

mb + Ib/r2b

(
mbx1x

2
8 +mbx5x4x8 +mbg sinx7

)
(1.26)

ẋ6 =
1

mb + Ib/r2b

(
mbx5x

2
4 +mbx1x4x8 +mbg sinx3

)
(1.27)

The system above is quite complicated and can be simplified withouth much loss

of generality. Centrifugal forces related to the angles rates are indeed usually
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much smaller than the gravity component. Hence, the equations expressing ẍb,

ÿb are:

ẍb =
1

mb + Ib/r2b

(
mbg sin β

)
(1.28)

ÿb =
1

mb + Ib/r2b

(
mbg sinα

)
(1.29)

The two equations are now decoupled, which means they can be treated as two

separate SISO systems.

In addition, the assumption of small angles, e.g. |α| ≤ 10o, |β| ≤ 10o, leads to a

linear system:

ẍb =
1

mb + Ib/r2b

(
mbgβ

)
(1.30)

ÿb =
1

mb + Ib/r2b

(
mbgα

)
(1.31)

The linearized system in state space form is the following:

x =
[
xb ẋb yb ẏb

]T
, u =

[
α β

]T
(1.32)

ẋ =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 · x+


0 0

0 mbg
mb+Ib/r

2
b

0 0
mbg

mb+Ib/r
2
b

0

 · u (1.33)

The moment of inertia of a solid ball of mass m and radius r is 2
5
mr2 and thus

mb + Ib/r
2
b =

7
5
mb. The linearized 4× 4 system is finally:

ẋ =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 · x+


0 0

0 5
7
g

0 0
5
7
g 0

 · u (1.34)

1.2 Inverse Kinematics Analysis

Since the inputs of the previously achieved system are the angles of the plate α,

β, inverse kinematics analysis is needed to establish the required angles of the six

servo-motors [7], [8].

The Stewart Platform makes use of 6 rotary actuators, which rely on servo-motors
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Figure 1.2: Schematic Illustration of a Stewart Platform. The coordinates of the system and the
vectors used for the inverse kinematics are illustrated

Figure 1.3: Illustration of the angles and the vector Bi

Figure 1.4: Upper plate and illustration of the vector Pi
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Figure 1.5: Virtual leg Li: illustration of the variable and constant parameters

and servo-horns. The rotation and translation matrixes Rb, Tb vary in accordance

to the angles and position of the plate:

Rb =

 cos β sinα sin β − cosα cosα sin β + sinα

0 cosα − sinα

− sin β sinα cos β cosα cos β

 , Tb =

xoP

yoP

zoP

 (1.35)

The position vector of joints attached to the plate is thus Pi = RbP
p
i + Tb,

while the length of the virtual legs (real if prismatic joints) is Li = Pi − Bi.

Here, P p
i is the position vector related to the plate reference system, while Pi

is referred to the base reference frame. Bi refers to the rotation center of each

servo motor. These vectors are illustrated within fig. 1.2. We can express Bi =

[rb cos ri + rd sin rti rb sin ri + rd cos rti 0]T , P p
i = [rp cos r

p
i rp sin r

p
i 0]T where rb

is the radius of the circle which touches every servo-motor, ri is the angle between

the x-axis and the line for the origin and the contact between the base and the

center line of the servo motor. Moreover, rti is the angle of the servo motor, rd

is the distance between the end of the base and the center of the joint attached

to the horn, rp is the distance between the center of the joint and the origin of

the plate, rpi is the angle of the joints attached to the plate. These quantities are

better visualized in fig. 1.3, 1.4.

The length of the equivalent prismatic actuators is therefore achieved. However,

the hardware requires the achievement of the rotation angles of the servo motors,

which are to be calculated starting from Li. The position vector of the joints

attached to the horns is Mi = Bi +Rz(rt)Ry(−∆i) · [|Rm| 0 0]T , where Rm is the
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length of the horn. The well-known y and z rotation matrixes are:

Ry(θ) =

cos θ 0 sin θ

0 1 0

sin θ 0 cos θ

 , Rz(θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (1.36)

∆i is the angle of the i-th servo motor, the variable of interest. From the explicit

expressions of Ry(θ), Rz(θ), Mi can be rewritten:

Mi =

|Rm| cos∆i cos rt + xi

|Rm| cos∆i sin rt + yi

|Rm| sin∆i + zi

 (1.37)

Moreover, as illustrated in fig. 1.5, the lengths Rm, D, |Li| follow the relationships

below:

R2
m = (Mi −Bi)

T (Mi −Bi)

D2 = (Pi −Mi)
T (Pi −Mi)

|Li|2 = (Pi −Bi)
T (Pi −Bi)

(1.38)

where D is the length of the leg. From 1.37 and 1.38 an implicit expression of ∆i

can be reached:

ci = ai sin∆i + bi cos∆i (1.39)

where:

ai = 2|Rm|(zpi − zi)

bi = 2|Rm|((xp
i − xi) cos rti + (ypi − yi) sin rti)

ci = |Li|2 −D2 +R2
m

(1.40)

Finally:

∆i = sin−1

(
ci√

a2i + b2i

)
−atan2

(
bi, ai

)
(1.41)
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Chapter 2

Model Predictive Control

As already underlined, several robotic systems, among which the Stewart plat-

form, are kinematically redundant and therefore not trivial to control. Con-

straints are one of the possibilities to guarantee a proper control choice. Further-

more, the achieved model of the system is in a state space form. As a consequence,

a control technique able to explicitly deal with constraints and state space sys-

tems should be chosen. Finally, optimization-based techniques have shown their

ability for automatic control in several circumstances [9]. The main candidate be-

comes therefore Model Predictive Control, whose capability to control a Stewart

platform has been already proven in several projects. MPC is an advanced control

technique which is nowadays of great interest. Its main limit is the high compu-

tational effort it requires, feature that has limited its deployment in industry and

confined its use mainly to academic applications. So far, industrial applications

of MPC have been restricted to slow varying processes, such as chemical plants.

Latter’s time steps are indeed long enough to easily allow the completion of the

control algorithm. MPC requires in fact to solve an optimization problem based

on the model of the system within every time slice. Moreover, it takes into ac-

count the values of the state vector as the initial condition. Therefore, when the

full state is not measured, MPC is combined with an estimate procedure, e.g.

Kalman filtering or Moving Horizon Estimator. The latter represents the dual of

MPC for estimates, as Kalman filter is for linear quadratic regulator. Although

MPC has been successfully applied to slowly variable systems, recent improve-

ments in embedded hardware and software libraries make it a valuable alternative

for motion control applied to high-dynamics plants, where the time scale is much

faster. Indeed, while chemical plants have time scales of minutes, motion ap-

plications require time scales of seconds. Therefore, the capability of controlling

17
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them by the use of MPC requires high-performance embedded hardwares and fast

embedded solvers.

2.1 Model Predictive Control Details

2.1.1 Overview

[10] provides an extensive overview of Model Predictive Control, including its

formulation, advantages and disadvantages, design choices, stability and robust-

ness. Model Predictive Control has an optimal control formulation, therefore it

handles systems represented through a state space form. A cost function J is

optimized which takes into account the state vector and the input of the system

within a finite horizon N . Moreover, it relies on a model of the system, which

may be either linear or non-linear. The first case leads to linear MPC, while the

second gives rise to the more complex non-linear MPC. Regardless the termi-

nology, MPC is always a non-linear control method, since it deals with system

constraints. This makes Model Predictive Control a non-exact control technique,

meaning that the achieved solutions may be only sub-optimal. Model Predictive

Control is also known as a combination of open loop and closed loop control. The

first is due to its reliance on a model of the system. This is to be as accurate

as possible, in order to not degrade the performance of the control technique.

Therefore, MPC internally optimizes an open loop finite horizon control prob-

lem. Nevertheless, the cost function takes into account the latest available values

of the state vector to compensate for any existing mismatch between the real and

the nominal model. There is therefore a state feedback. Indeed, if a feedback did

not happen, any difference between the model and the real system would create

time-increasing errors between the actual and the predicted state components.

On the other hand, the availability of the latest measured or estimated state vec-

tor allows to introduce some simplifications for the nominal model. For instance,

a non-linear system might be linearized around the working point, so that the

computational effort required by MPC decreases.

2.1.2 Pros and Cons

MPC has the objective to overcome several limitations related to more classical

and simpler control methods, such as PID or optimal control. First of all, it can

handle both input and state constraints. This is of great importance in several
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applications, especially in the field of motion control. For instance, in robotics,

the planned path of a robotic arm is always to be confined inside the workspace,

and this may be easily handled by setting constraints within the cartesian coordi-

nates. With regard to the system under test, the dimension of the plate provides

some constraints for the position of the ball, which must always be attached to

the plate. A second advantage of MPC is its capability to cope with coupled

MIMO systems, which nonetheless is not the case of the simplified system taken

into consideration. Furthermore, this control technique can push the plant to

its limits of performance. This is related to its predictive behavior: the cost

function J considers the state and input references within a finite time window,

starting from the current time instant, therefore a change of one of the reference

components is detected N time slices before and the provided inputs consider

this in advance. On the contrary, a PID controller relies only on the current

error between the references and the actual variables: a future reference is not

considered, hence an error needs to emerge before the PID changes the system

input. Therefore, PID does not have any predictive behaviour and this makes

the reference tracking less effective.

The complexity of MPC gives nevertheless birth to some disadvantages, e.g. its

high computational burden. The capability to handle system constraints, to-

gether with the optimization problem which is solved during every time-slice,

gives rise indeed to a high computational complexity if compared to PID or lin-

ear quadratic regulator. Hence, plants involving MPC call for extremely efficient

optimization solvers and libraries.

The next subsections will deeply dive into these concepts.

2.1.3 Formulation

Model Predictive Control optimizes the following cost function J :

J
(
x(·), u(·)

)
=

N∑
i=1

(
x(k + i)− xref (k + i)

)T
Q
(
x(k + i)− xref (k + i)

)
+

N−1∑
i=0

(
u(k + i)− uref (k + i)

)T
R
(
u(k + i)− uref (k + i)

) (2.1)

where x(·) is the state space vector and u(·) is the input vector of the system.

The system is thus to be expressed in a state space form. Even though MPC is

able to deal with non-linear systems, an effort towards achieving a linear system
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in the following form should be carried on:ẋ = Ax+Bu

y = Cx
(2.2)

Here, A, B, C are respectively the state, input and output matrices, while x, u,

y are the state, input and output vectors.

Moreover, the matrices Q and R handle the different weights regarding the state

and input components. As it can be inferred by 2.1, MPC optimizes the trajectory

of the state and input components within a finite time horizon N · T , where T

is the period of the discretized system. Furthermore, this technique requires an

accurate model of the system to be able to provide high quality performances.

The whole optimization problem solved by MPC can be summarized as follows:

J
(
x(·), u(·)

)
=

N∑
i=1

(
x(k + i)− xref (k + i)

)T
Q
(
x(k + i)− xref (k + i)

)
+

N−1∑
i=0

(
u(k + i)− uref (k + i)

)T
R
(
u(k + i)− uref (k + i)

) (2.3)

subject to:

ẋ = f(x, u), x ∈ X, u ∈ U (2.4)

The function ẋ = f(x, u) represents the dynamics of the system in a state space

form. Furthermore, X and U are sets of allowable values for the state and input

vectors x, u, taking into account the system constraints.

As visible in 2.1, the cost function considers the state, input references of the next

N time steps. Therefore, a change within them is detected N steps in advance

and can be better followed. On the contrary, the majority of control methods,

e.g. PID and LQR, take into account only the reference of the present time slice.

The time window considered by the cost function covers N time steps, however

its beginning (and thus its end) changes every time step, making this window

sliding: it always starts from the present instant and considers the next N ones,

feature also referred to as receiding horizon.

After solving the optimization problem, a sequence of N inputs u(k), u(k + 1),

. . . , u(k+N − 1) is achieved. Nonetheless, only the first input u(k) is applied to

the plant, since during the next time step another optimization problem will be

solved and thus a new sequence will be obtained. This last sequence could rely
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Figure 2.1: Illustration of the sliding horizon concept of MPC

on more updated values for the state vector, which might be essential in order

to compensate for a plant-model mismatch. Fig. 2.1 provides an illustration of

MPC concept: the time line is discretized into time samples and the prediction

horizon involves N of them. A piecewise control input trajectory is performed

within this prediction horizon and the first piece of this trajectory is applied. The

goal is to have a measured output as closer as possible to the reference trajectory.

2.1.4 Implementation Details

In case of linear MPC with quadratic cost function and symmetric constraints,

the optimization problem can be rewritten as a linearly constrained quadratic

problem. The original optimization problem is as follows:

min
xN ,uN

N∑
i=1

(
x(k + i)− xref (k + i)

)T
Q
(
x(k + i)− xref (k + i)

)
+

N−1∑
i=0

(
u(k + i)− uref (k + i)

)T
R
(
u(k + i)− uref (k + i)

) (2.5)

subject to:

x(k + i+ 1) = Ax(k + i) +Bu(k + i), i = 0, 1, . . . , N − 1 (2.6)

|u(k + i)| ≤ umax, i = 0, 1, . . . , N − 1 (2.7)

|x(k + i)| ≤ xmax, i = 0, 1, . . . , N − 1 (2.8)
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The following matrices of values are defined:

xN =


x(k + 1)

x(k + 2)
...

x(k +N)

 , uN =


u(k)

u(k + 1)
...

u(k +N − 1)

 (2.9)

These matrices arise from the state, input vectors considered within subsequent

time samples. The achieved linearly constrained quadratic problem is represented

by the following expressions:

min
x̃

1

2
x̃THx̃+ fT x̃ (2.10)

subject to

Aex̃ = be, Aix̃ ≤ bi (2.11)

where the following matrix has been defined:

x̃ =

[
xN

uN

]
(2.12)

The matrices and vectors in the linearly constrained quadratic problem are as

follows:

H = 2



Q
. . .

Q

R
. . .

R


(2.13)

f = −H



xref (1)
...

xref (N)

uref (0)
...

uref (N − 1)


(2.14)
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Ai =


Inx×N

−Inx×N

Inu×N

−Inu×N

 (2.15)

bi =



xmax

...

xmax

umax

...

umax


(2.16)

Ae =


Inx −B

−A Inx −B
. . . . . . . . .

−A Inx −B

 (2.17)

be =


Ax(k)

0
...

0

 (2.18)

The problem is convex if the matrices Q, R are positive semi-definite. Further-

more, the matrices Ae, Ai are sparse, which means less computational burden.

However, the optimization variables are N · (nx + nu): these may be reduced to

N ·nu, but at the cost of sparsity. The Matlab function to solve this optimization

problem is the following one:

x_tilde = quadprog(H, f, Ai, bi, Ae, be)

2.1.5 MPC Design Choices

The optimization problem related to MPC has been so far represented by a

quadratic cost function subject to a plant model and some constraints. Nonethe-

less, the cost function and the constraints may be expressed in different forms,

as well as the prediction model.
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Prediction Model

Given that the system representing the plant is to be in a state space form,

several types of model are possible. The most straightforward and less critical is

the linear state space system, resulting in the linear MPC. On the contrary, a non-

linear state space system is related to the non-linear MPC and increases a lot the

computational complexity of the optimization problem. Finally, a linear model

with uncertainties results in the robust MPC. It must be remembered that MPC

is always a non-linear control technique, even tough the model of the plant may

be linear. Moreover, a linear system leads to a much more efficiently solvable

optimization problem. Therefore, an effort should be done towards reaching a

linear model which fits the plant sufficiently well.

Cost Function

So far, the cost function has always been represented through a quadratic form

with weight matrices Q and R. This is by far the most common form, how-

ever different kinds of cost function J are possible. The general cost function is

expressed through the following expression:

J(xN ,uN) =
N−1∑
i=0

l(xk, uk) + F (xN) (2.19)

Even though the most widespread cost function is the quadratic one, a linear form

is also possible, i.e., wx|xk−xref,k|+wu|uk−uref,k|. In alternative, cost functions

in terms of ∆xk, ∆uk are viable candidates. Another tuning parameter of J is the

horizon length N . Its increase leads to a more computationally complex problem,

since the number of optimization variables N · (nx + nu) increases. However, the

problem is more likely to be stable. Therefore, N should be chosen big enough

with regard to all the dynamics of the system.

Constraints

The most common constraints limit the state and the input vectors x, u to convex

sets X, U . Moreover, a combination of these two vectors represents a possibility,

e.g. when an output constraint is present: y = Cx + Du ∈ Y . Typically, the

constraint is expressed in the following form, depending on whether it is a state,
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an input or an output constraint:

|xk| ≤ xk,max, |uk| ≤ uk,max, |yk| ≤ yk,max (2.20)

Furthermore, constraints on rates of change can occur as well: |∆uk| ≤ uk,max.

The previous constraints are referred to as hard constraints, since they are to

be strictly satisfied. However, setting too many hard constraints may make the

system infeasible. In order to overcome infeasibility, soft constraints can be in-

troduced: these are related to the cost function J by a parameter ϵ. An example

of soft constraints regarding the state vector can be set as follows:

|xk| ≤ xk,max + ϵk, Jsc = J + ρklϵ(ϵk) (2.21)

In this case, constraints may be violated and therefore they are introduced for

less important limitations. Generally, hard constraints are used until there is no

degree of freedom left. After that, all the other constraints are to be soft ones.

2.1.6 Stability

The classical way to determine whether a closed loop system is stable involves the

transfer functions of the controller C(z) and the plant P (z). There are several

methods to do that, such as through the Bode or Nyquist diagrams, or simply by

analyzing the poles of C(z)P (z). However, the system comprised by the MPC

and the plant does not provide an easy way to achieve transfer functions. There-

fore, new ways to determine the stability of the plant are needed. The most

widespread stability verification is based on two steps: the first proves the recur-

sive feasibility, i.e., determines whether the controller is well-defined for all the

time instants k. The second step involves the Lyapunov function to check if the

trajectories converge to an equilibrium point.

Recursive Feasibility

Recursive feasibility means that, an optimization problem which is feasible for

time k, is also feasible for k + 1, therefore for all k + i with i ≥ 0. The feasible

region is defined as the one in state space comprised by all states x for which

the MPC problem results feasible. The problem requires thus to build a feasible

optimal solution for the time k + 1, given the optimal solution at time k, i.e.,
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x(k) ∈ X. The optimal solution at time k is feasible, since it is optimal. The

cost function is expressed in the generic form:

J = min
xN (k),uN (k)

N−1∑
i=0

l(x(k + i|k), u(k + i|k)) + F (x(k +N |k)) (2.22)

To simplify the recursive feasibility verification, a strong assumption is made,

i.e., there is no plant-model mismatch. Therefore, the state vector at time k + 1

predicted at k is equal to the real state vector at time k + 1: x(k + 1|k) =

x(k+1|k+1). This last equation is valid also for the next time steps k+ i, with

i = 1, . . . , N . In order to achieve recursive feasibility, three conditions are to be

verified: firstly, the final state vector predicted at time k, i.e., x(k +N |k) ∈ XN ,

has to be part of the feasible region X. This is satisfied if XN ⊆ X. Secondly, the

two terminal vectors at time k+1, which are x(k+N +1|k+1), u(k+N |k+1),

are to be inside the feasible region:

x(k +N + 1|k + 1) ∈ XN , u(k +N |k + 1) ∈ U (2.23)

To do that, a locally stabilizing controller kN is supposed to be known: uK =

kN(xk). This implies that xk+1 = f(xk, kN(xk)) is locally stable. By choosing

u(k+N |k+1) = k(x(k+N |k)), x(k+N+1|k+1) = f(x(k+N |k), k(x(k+N |k))),
conditions expressed by 2.23 are satisfied.

Lyapunov Stability

The Lyapunov stability principle states that, if ∃V (x) such that for some region

Xf around 0 it results V (xnext) < V (x), ∀x ∈ Xf \ 0, V (0) = 0, then all

trajectories starting within Xf asymptotically evolve towards 0. With regard to

the MPC application,Xf is chosen as the feasible region, while V (x) is the optimal

cost value of the MPC optimization problem for a given x ∈ Xf . The goal is thus

to prove that V (x) is a Lyapunov function, i.e., V (x(k+1)) < V (x(k)), ∀x(k) ̸= 0.

This corresponds to verify the following inequality:

J(x(k + 1), xN(k + 1), uN(k + 1)) < J(x(k), xN(k), uN(k)) (2.24)
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The following relationship between the two cost expressions can be set:

J(x(k + 1), xN(k + 1), uN(k + 1))− J(x(k), xN(k), uN(k)) =

F (f(x(k +N |k), kN(x(k +N |k)))− F (x(k +N |k))+

+l(x(k +N |k), kN(x(k +N |k)))− l(x(k), u(k))

(2.25)

This should be < 0. Since l(x(k), u(k)) ≥ 0, a straightforward condition, even

though conservative, to achieve Lyapunov stability is the following:

F (x)− F (x, kN(x)) ≥ l(x, kN(x)), ∀x ∈ XN (2.26)

2.1.7 Robustess

The stability of the whole plant is a requirement even in presence of uncertainties.

Concerning this issue, Robust MPC is able to deal with both uncertain models

and disturbances. Its aim is to keep recursive feasibility once the size of the model

uncertainties and disturbances is approximately known. The uncertainty of the

model can be expressed through a time-variant state space system:

xk+1 = A(k)xk +B(k)uk (2.27)

There are mainly two ways to express this uncertainty. The first is through

a politopic region with apexes [A1 B1], . . . , [AL BL], also referred to as lin-

ear parameter-varying state space model with politopic uncertainty description.

The second is known as linear parameter-varying state space model with norm-

bounded uncertainty description and the matrices are expressed as follows:A(k) = A0 +Bp∆kCq

B(k) = B0 +Bp∆kDqu

(2.28)

On the other hand, the disturbances are typically bounded, wk ∈ W . The latter

set may be described in two ways: either though a politope,W = Co{w1, . . . , wn},
or with a simple inequality, W = {w| Aww ≤ 1v}. A trivial condition to achieve

well-posedness is W ⊆ X, i.e., the bounded set W is to be a subset of the one

describing the constraints. This way, the recursive feasibility is ensured, since

the set X is part of the feasible region. To guarantee the stability of the plant

in presence of uncertainties and disturbances, some modifications are necessary.

Firstly, the predictions become uncertain, however the constraints are to be sat-
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isfied anyway. This is referred to as worst-case constraint satisfaction over all

predictions:

x(k + i|K) ∈ X ∀[A(k + j|k) B(k + j|k)],

j = 0, . . . , i− 1, i = 0, . . . , N
(2.29)

The state components x(k + i|K) depend linearly on [A(k + j) B(k + j)], j =

0, . . . , i − 1, while Ω is a polytopic set. As a result, a sufficient condition is to

impose constraints on the vertices of the polytopic region:

x(k+i|k) ∈ X,
∀[A(k + j) B(k + j)] ∈ {[A1 B1], . . . , [AL BL]}

j = 0, . . . , i− 1, i = 0, . . . , N
(2.30)

Moreover, the optimization problem relies on uncertain matrices A(k), B(k),

therefore the cost function needs to take into account a worst-case scenario as

well:

min
xN (k),uN (k)

max
[A(k + j|k) B(k + j|k)] ∈ Ω

j = 0, . . . , N − 1

N−1∑
i=0

l(x(k+i|k), u(k+i|k))+F (x(k+N |k))

(2.31)

Fortunately, once again it is sufficient to take into account only the vertices of

the uncertainty polytope.

Additionally, the terminal cost has now to satisfy multiple Lyapunov inequalities.

The non-robust stability condition for terminal cost is expressed by 2.26. To

reach an explicit inequality in presence of uncertainties, some simplifications are

considered. First of all, the stabilizing feedback controller is supposed to be linear,

i.e., uk = kN(xk) = −kxk. Secondly, the quadratic cost is expressed through a

quadratic form, J(x, u) =
∑N−1

k=0 xT
kQxk + uT

kRuk + xT
NQNxN . Hence, the robust

stability condition for terminal cost becomes:

xTQNx− xT (A−BK)TQN(A−BK)x ≥ xTQx+ xTKTRKx

∀x ∈ XN ,∀[A B] ∈ Ω
(2.32)

or, equivalently:

QN − (A−BK)TQN(A−BK) ⪰ Q+KTRK

∀[A B] ∈ Ω
(2.33)
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The inequality is satisfied if and only if:

QN − (Ai −BiK)TQN(Ai −BiK) ⪰ Q+KTRK

i = 1, . . . , L
(2.34)

Finally, the terminal constraint has to be a robust invariant set. Recursive feasi-

bility is indeed guaranteed by three conditions, as presented within the previous

subsection. The first two remain unchanged, i.e., XN ⊆ X, kN(x) ∈ U . However,

the third condition f(x, kN(x)) ∈ XN , is to be modified to take model uncertainty

into account and to result in a robust positive invariance condition. If a linear

stabilizing controller is considered, i.e. kN(x) = −kx, the closed loop system

results as follows:

xk+1 = Φ(k)xk, Φ(k) ∈ Ω∗ = Co{Φ1, . . . , ΦL}, Φi = Ai −Bik (2.35)

The robust positive invariance is satisfied if, for x ∈ S, it results Φx ∈ S, ∀Φ ∈
Ω∗. Once again, the inclusion is to be satisfied only for the apexes, i.e., ∀Φi,

i = 1, . . . , L.

2.1.8 MPC and LQR

This subsection has the objective to compare two optimization-based control

techniques, Linear Quadratic Regulator and Model Predictive Control. The goal

is to highlight the flexibility of the second, which allows the user to tackle a variety

of critical characteristics. Linear Quadratic Regulator, i.e., the most popular

control method based on the optimization of a cost function, has the following

formulation:

J
(
x(·), u(·)

)
=

∞∑
i=1

(
x(k + i)− xref (k + i)

)T
Q
(
x(k + i)− xref (k + i)

)
+

∞∑
i=1

(
u(k + i)− uref (k + i)

)T
R
(
u(k + i)− uref (k + i)

) (2.36)

subject to:

ẋ(k) = Ax(k) +Bu(k) (2.37)

If existing, the optimal solution can be expressed by the form u(k) = Kx(K), and

therefore LQR provides an explicit and linear solution. Furthermore, it does not

require any computational effort, since the values of the gain matrix K can be
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performed off-line by solving the Riccati equation. These are two advantages if

compared with MPC, which does not provide any explicit solution and possesses

high computational complexity. These cons of MPC are due to its complexity

and its power to cope with constraints, as well as non-linear systems. Moreover,

the predictive behaviour of MPC illustrated within subsection 2.1.2 is not a fea-

ture possessed by LQR, since every input is obtained based on the present state

estimate and reference.

Hence, even though both are based on the minimization of a cost function and on

a state-space system, MPC and LQR are really different in applications and re-

quirements. The first is more complex and advanced, it requires high-performance

solvers and may be difficult to apply to systems with really small discretization

time steps. On the other hand, Linear Quadratic Regulator is more straight-

forward since it does not require powerful processors. However, the limitations

of LQR, e.g. the inability to deal with constraints and the lack of predictive

behaviour, are overcome by MPC, which thus results in a more complex and

performing control technique.

2.2 Dynamic Optimization Methods

As stated above, MPC is an optimization-based control technique. Before further

diving into the relation between the MPC problem and dynamic programming, it

is proper to illustrate some concepts used in the optimization theory. Secondly,

the available methods will be presented.

2.2.1 Optimization Basics

An optimization problem can be expressed through the following general form:

minxf(x)

s.t. h(x) = 0

g(x) ≤ 0

(2.38)

Here, f is the cost function with x ∈ Rn vector of optimization variables; h deals

with the equality constraints, while g handles the inequality constraints. x∗ is

the solution of the problem, with the optimal function value f ∗ = f(x∗). Two

important concepts regarding the cost function are the gradient vector and the
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Hessian matrix. They are specified through the following equations:

∇f(x) =


∂f
∂x1
∂f
∂x2
...
∂f
∂xn

 , ∇2f(x) =


∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
. . .

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n

 (2.39)

After choosing a n−dimensional point x0 ∈ Rn, the gradient vector points in the

direction of the steepest ascent of f(x0), while the Hessian describes the local

curvature of f(x0) through its eigenvectors v1, . . . , vn and eigenvalues λ1, . . . ,

λn. With regard to an unconstrained problem, a n−dimension point x∗ is optimal

if ∇f(x∗) = 0. This optimal point is a minimum if ∇2f(x∗) ≺ 0, a maximum if

∇2f(x∗) ≻ 0, a saddle point otherwise.

On the other hand, if the problem is constrained, two additional sets of parameters

are needed: the Lagrange multipliers of the inequality constraints λi and of the

equality constraints µi. Afterwards, the Lagrangian can be defined as follows:

L(x, λ, µ) = f(x) +
l∑

i=1

λigi(x) +
m∑
i=1

µihi(x) (2.40)

The constrained optimum of equation 2.38 can be found solving the problem

below: maxλ,µminx L(x, λ, µ)

s.t. λ ≥ 0
(2.41)

Therefore, a min-max problem is to solved: the minimization is over the variable

x, while the maximization over λ, µ. The problem can be split into two parts: a

first order optimality condition in x and a maximization problem over λ, µ. The

first consists of finding the optimal solution x∗ of the following equation:

∇f(x∗) +
l∑

i=1

λi∇gi(x
∗) +

m∑
i=1

µi∇hi(x
∗) = 0 (2.42)

The two additional terms act as forces against the gradient of the function: their

aim is to keep the optimum either on or on the right side of respectively the

equality and inequality constraints.

If l(λ, µ) is defined as l(λ, µ) = infx L(x, λ, µ), the following maximization prob-
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lem may be solved: maxλ,µ l(λ, µ)

s.t. λ ≥ 0
(2.43)

Hence, x is pointed out as the primal variable, while λ, µ are the dual variables.

Lastly, the Karush-Kuhn-Tucker conditions specify the ones necessary to achieve

constrained optimality:

∇f(x∗) +
∑l

i=1 λi∇gi(x
∗) +

∑m
i=1 µi∇hi(x

∗) = 0

hi(x
∗
i ) = 0

gi(x
∗
i ) ≤ 0

λ∗
i ≥ 0

λ∗
i g(x

∗
i ) = 0

(2.44)

2.2.2 Convex Optimization

A constrained optimal problem can be either convex or non-convex. Nevertheless,

the first is much more widespread and straightforward to be solved. First of all,

instead of providing local solutions, it guarantees a global optimum. Moreover,

several efficient solvers are available, according to the specific convex optimal

problem. An optimization problem in the form of 2.38 is convex if and only if,

for any two feasible points x, y, the following apply:

λx+ (1− λ)y is feasible ∀λ ∈ [0, 1]

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)g(x), ∀λ ∈ [0, 1]
(2.45)

These are satisfied if and only if the following conditions are true:

� the cost function is convex

� the equality constraints are either linear or absent

� the inequality constraints define a convex region

The main kinds of convex optimization problems are, from the more computation-

ally efficient to the more general: linear programming, quadratic programming,

second order cone programming, semi-definite programming.
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Linear Programming

A linear programming problem (LP) is described as follows:

min
x

fTx

s.t. Aex = be

Aix ≤ bi

(2.46)

In this case, the optimal solution is at a corner of the region of inequality con-

straints. Linear programming permits furthermore to eliminate the equality con-

straints by reparametrizing the optimization vector x = Cy+d, where d = A−1
e be,

AeC = 0 with C full-column rank matrix. The optimization problem thus be-

comes:

min
y

fTCy

s.t. AiCy ≤ bi − Aid
(2.47)

Quadratic Programming

A more general class of constrained optimal problems is referred to as quadratic

programming (QP), described in the following way:

min
x

xTHx+ 2fTx

s.t. Aix ≤ bi
(2.48)

To be convex, the problem is required to count on a semi-positive definite matrix

H ⪰ 0. Quadratic programming is widespread in several engineering domains. It

is worth noting that linear programming is a special case of quadratic program-

ming with H = 0.

Second Order Cone Programming

The general form for second order cone programming (SOCP) is expressed below:

min
x

fTx

s.t. Aix ≤ bi

||Mix+ ni|| ≤ cTi x+ di, i = 1, . . . , N

(2.49)
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The symbol ||·|| stands for the norm of a vector, ||u|| =
√
uTu. The last inequality

represents the second order cone constraint. This form of optimal problem is al-

ways convex and it is employed within engineering applications which involve sum

of squares or robust programming. In particular, quadratic programming (and

indeed linear programming) is a special case of second order cone programming.

Semi-Definite Programming

The general form of SDP is:

min
x

fTx

s.t.F (x) ⪰ 0
(2.50)

where F (x) = F0 +
∑n

i=1 xiFi, Fi symmetric ∀i = 1, . . . , n. This kind of op-

timal problem is widely used in systems and control theory, since it is able to

reformulate problems involving eigenvalues as an inequality constraint. In partic-

ular, second-order cone programming is a special case of semi-definite program-

ming. Therefore, the four types of optimization problems may be seen through a

set representation, from the least general (linear quadratic programming) to the

broadest (semi-definite programming). Figure 2.2 gives a visual representation

of the four types of optimal programming. The four kinds refer to the class of

LP

QP

SOCP

SDP

Convex Optimization

Figure 2.2: Set representation of the main kinds of optimal problems

convex optimization, which nonetheless are not entirely described by these. How-

ever, a convex optimization problem not representable through one of these four
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forms is really difficult to be solved, since it involves a high degree of complexity.

On the contrary, a problem enclosed in one of the previous classes can be easily

solved, as many toolboxes have been developed that provide high efficiency and

low computational time.

2.3 Dynamic Programming and MPC

As already stated above, the MPC algorithm provides that an optimal input se-

quence uN(k) is calculated within every time step k. This sequence is found by

means of dynamic programming. Depending on the specific structure of the op-

timal problem describing the MPC algorithm, there may be several formulations.

For instance, in case of least squares cost function and linear state space system,

the optimization problem can be represented through a quadratic programming

formulation. The typical MPC problem is indeed stated as follows:

min
xN ,uN

N∑
k=1

(xT
kQxk) +

N−1∑
k=0

(uT
kRuk)

s.t. Auuk ≤ 1v, k = 0, . . . , N − 1,

Axxk ≤ 1v, k = 1, . . . , N,

xk+1 = Axk +Buk, k = 0, . . . , N − 1

(2.51)

The optimization vector is thus xopt =
[
u0 . . . uN−1 x1 . . . xN

]
, while the

cost function is expressed below:

J(xopt) = xT
optHxopt + 2fTxopt

H =



R
. . .

R

Q
. . .

Q


, f = 0

(2.52)
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The condition for convexity is H ⪰ 0, thus Q ⪰ 0, R ⪰ 0. The equality and

inequality constraints rely on the following matrices and vectors:

Ae =


−B I

−B −A I
. . . . . . . . .

−B −A I

be =

Ax0

0
...

0



Ai =



Au

. . .

Au

Ax

. . .

Ax


bi =



bu
...

bu

bx
...

bx



(2.53)

Alternatively, in case of linear model, constraints and objective function, MPC

may be represented by linear programming:

min
xN ,uN

N∑
k=1

wT
x |xk − rk|+

N−1∑
k=0

wT
u |uk|

s.t. |uk| ≤ umax, k = 0, . . . , N − 1,

|xk| ≤ xmax, k = 1, . . . , N,

xk+1 = Axk +Buk, k = 0, . . . , N − 1

(2.54)

This option provides a slightly faster but more chattering solution. The latter

indeed jumps around, therefore is less smooth.

Finally, in presence of a non-linear model, the optimization problem falls into the

field of non-linear programming. This means much more computational complex-

ity, hence a linear model should be chosen which approximates the real plant in

the most accurate way.

2.3.1 Optimization Algorithms

To solve one of the optimization constrained problems previously presented, two

main kinds of algorithms are employed: active set methods and interior methods.
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Active Set Methods

Active set methods rely on the following steps:

� choose an initial feasible point x0

� make an initial guess about the active constraints employed for the optimal

solution

� convert these into equality constraints, ignore the other constraints

� solve the resulting equality constrained quadratic programming

� use the result as a search direction and proceed until a new constraint is

met

� add the latter to the active set of constraints

� repeat from the second step until convergence

Two relevant advantages of active set methods regard hot start, which means

that previous information, e.g. the active set of constraints, is reused in the next

iterations, and the fact it provides feasible intermediate results.

Interior Point Methods

The steps regarding interior point methods are specified below:

� choose an initial point (x, λi, µi)

� linearize the Kasush-Kuhn-Tucker conditions around the current point

� solve the linearized KKT system to reach a search direction

� calculate the step length such that λi ≥ 0, gi(x) ≤ 0

� repeat from the second step until convergence

The main advantage of interior point methods is that they can exploit sparsity.
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2.4 Sequential Quadratic Programming

2.4.1 Overview

To solve any non-linear programming problem in the form of 2.38, a possibility

is to make use of Sequential quadratic programming. SQP refers to an iterative

method for constrained non-linear optimization. It aims to find the optimal triple

(x∗, λ∗, µ∗), according to what illustrated within subsection 2.2.1. In order to be

suitable for SQP, a mathematical problem is to possess an objective function and

contraints which are twice continuously differentiable. The procedure consists in

solving a sequence of optimization subproblems that optimize a quadratic model

of the objective subject to a linearization of the constraints. An embedded SQP

algorithm should provide the following features:

� numerical integration of the continuous-time dynamics

� generation of first and second-order sensitivities of the objective subject,

constraints

� an approximation of the Hessian matrix

� a QP solver

� strategies for warm-starting the algorithm for the next problem

Chapter 4 will focus on acados, the software library used to implement the model

predictive control. The SQP algorithm implemented in acados has the following

structure [11]:

w(i+ 1) = w(i) + ∆wQP , i = 0, 1, . . .

π(i+ 1) = πQP , i = 0, 1, . . .

µ(i+ 1) = µQP , i = 0, 1, . . .

(2.55)

Here, w(i) =
[
x0(i)

T . . . u0(i)
T . . . xN(i)

T
]T

is the primal iterate at SQP

iteration i, π(i) and µ(i) are the dual iterates. ∆wQP is found by solving the
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following quadratic programming problem:

min
∆x0, . . . , ∆xN

∆u0, . . . , ∆uN

s0, . . . , sN

N−1∑
k=0

[
∆xk ∆uk

]T [
Qk Sk

Sk Rk

] [
∆xk ∆uk

]
+
[
qk rk

]T [
∆xk

∆uk

]

+∆xT
NQN∆xN + qTN∆xN

+
N∑
k=0

sTkPksk + pTk sk

(2.56)

subject to:

∆x(k + 1) = Ak∆x(k) +Bk∆u(k) + Φ(k)x − x(k + 1), k = 0, . . . , N − 1

∆x0 = x̄0 − x0,

−g(k) ≥ G(k)x∆x(k) +G(k)u∆u(k) + s(k), k = 0, . . . , N − 1

−g(N) ≥ G(N)x∆x(N) + s(N), k = 0, . . . , N − 1

0 ≤ s(k), k = 0, . . . , N − 1

(2.57)

In this notation, x : R → Rnx indicates the differential states, u : R → Rnu the

control inputs, while s : R → Rns denotes the slack variables. The latter are

introduced to reach a formulation with soft constraints.

2.4.2 The Online Dilemma

The computational time for an SQP iteration varies in a small range and, given

an initial value x(t0), several SQP iterations are required to achieve a sufficiently

exact solution. Supposing that n iterations are needed, each of ones taking a

time ϵ, the optimal feedback control u∗
0(x(tk)) is available only at time tk + nϵ,

i.e., with the delay nϵ. Nevertheless, by the time tk + nϵ, the system state has

already moved to a different system state x(tk + nϵ) ̸= x(tk). Hence, u
∗
0(x(tk)) is

not the exact feedback anymore, being the exact value equal to u∗
0(x(tk + nϵ)).

Best case scenario, the system state has not changed much meanwhile, so that

u∗
0(x(tk)) ≈ u∗

0(x(tk + nϵ)). If not, a possibility is to predict the most probable

system state x(tk+nϵ). However, this approach increases the reliance on the open-
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Figure 2.3: Division of the computational time made by the real time iteration scheme: a prepara-
tion and a feedback phase are present

loop part of MPC, since the future state is a prediction based on the nominal

model of the system. Moreover, the feedback regarding a disturbance comes with

a delay δd of one full sampling time: δd = δ = nϵ. In addition to this, another

problem related to the execution of several SQP iteration is the respect of the

time limits. A specific answer to these problems is presented within the following

subsection.

2.4.3 Real Time Iteration

As already mentioned, embedded applications require to make use of real-time

control settings and thus to deal with solving NLP in sequence and under rigid

time conditions. Because of the continuously changing environment, an approx-

imate solution is much more useful than a high-accuracy solution obtained after

the deadline. In this regard, one online method of great interest is the real-

time iteration scheme, [13], [14]. Its peculiarity consists in solving an inequality-

constrained QP in each iteration. Hence, within each real-time iteration, only

one full iteration of an SQP-type scheme is performed. Moreover, its feasibility

for controlling a ball-and-plate system has been proven in [15].

It is possible to divide the computation time of each cycle into a short feedback

phase and a usually much longer preparation phase. The first is only used to eval-

uate the accuracy of the approximation ũ0(x(tk)), while the second is to prepare

the next feedback ũ0(x(t)k + 1) without the knowledge of x(tk+1). This aims at

achieving delays δd which are much smaller than the ones presented within the

previous subsection, i.e., nϵ. A critical choice regards the best approximation

ũ0(tk). According to the NLP notation, the problem to be solved is the following:
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P (x(tk)) : min
w

a(w) subject to bx(tk)(w) = 0, c(w) ≥ 0 (2.58)

The aim is to achieve the solution w∗(x(tk)) of each problem P (x(tk)) as fast as

possible. At the basis of the real-time iteration scheme there are two ideas, which

make the algorithm even quicker:

� Most of the operations needed for the first iteration can be done before the

initial value x(tk) is known. Hence, the delay time can be further reduced

if the majority of the computations are performed before tk. At time tk

the feedback response ũ0(x(tk)) is computed, so that the feedback delay δd

turns to be even smaller than a single SQP iteration, δd < ϵ.

� An approximate solution of the optimal control problem has been considered

so far. Therefore, instead of iterating the SQP until convergence, a single

iteration per sampling time would considerably decrease the preparation

time. This would also permit shorter sampling intervals with the duration

of one SQP iteration, δ = ϵ. A strong advantage is the much smaller

difference between subsequent states x(tk) and x(tk+1) due to the shorter

sampling time.

Therefore, the real-time iteration scheme allows to reach feedback delays δd that

are much smaller than a sampling time, as well as sampling times δ equal to a

single SQP iteration ϵ. All these achievements are of great interest in the field of

embedded optimization.
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Chapter 3

State Estimators

As discussed within chapter 2, MPC needs the full state vector components at

every time instant k, so as to provide an optimal sequence of inputs uN of which

the first one is applied to the plant. Nonetheless, the state is rarely fully mea-

sured. With regard to the system under test, i.e., the Stewart platform, the only

measurements come from the touch screen of the plate, which indeed provide the

user with the position of the ball. The remaining vector components, such as the

velocity of the ball, as well as the angles of the plate, are not available. More-

over, in order to achieve an offset-free behaviour, modeled disturbances are to

be introduced, estimated and afterwards compensated, as tackled in [16], [17].

Therefore, an estimator is needed to be combined with MPC. Several kinds of

estimators are available in literature, however two candidates have been chosen to

be better deepened: the Kalman filter and the moving horizon estimator. These

are indeed both optimal estimators, i.e., they rely on a cost function as MPC and

LQR do. The former estimator is the dual of LQR: starting from three matrices

Q, R, P0, it minimizes a cost function J in order to provide a state estimate in a

noisy environment. The latter, on the other hand, is strictly correlated to MPC:

it provides an optimal sequence of state vectors within a finite horizon N , hence

the concept of receiding horizon is present. In addition to a state estimate, both

are able to estimate modeled disturbances. The following subsections further

deep into the concepts related to these two estimation techniques.

43
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3.1 Kalman Filter

3.1.1 Overview

The ability of Kalman filter to provide MPC with a trustworthy estimate of the

full state vector has already been proven in [18]. Moreover, its capability of

estimating modeled disturbances in order to achieve an offset-free behaviour has

been faced in [19]. Kalman filtering is an algorithm that provides the estimates

of some unknown variables given the measurements observed over time. This

kind of estimators possesses a relatively straightforward form and requires low

computational burden. Its main advantage is the capability of dealing with a

noisy environment, where both the state and the output components are affected

by an aleatoric disturbance. The following equations express a state space system

where the state and the output are corrupted by two random disturbances wc, v.ẋ(t) = Ax(t) +Bu+ w(t)

y(t) = Cx(t) + v(t)
(3.1)

The signals w(t), v(t) are to be white noise processes, i.e., zero-mean, stationary

and indipendent. The challenge of KF is to build a variable gain estimator that

provides an optimal estimate of x(k). Figure 3.1 illustrates the plant: KF receives

the discrete signals u(k), y(k) and gives back an estimate of the full state xest(k)

and if necessary of modeled disturbances dest(k). The algorithm of Kalman fil-

Figure 3.1: Block scheme of the plant comprising Kalman filter and MPC

tering takes origin from the concept of least squares estimation, illustrated in the

next subsection.
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3.1.2 Least Squares Estimation

Least squares estimation aims at achieving an optimal estimate of unknown com-

ponents, starting from p corrupted measurements. y(k) ∈ Rp is the measurements

vector, related to the not-fully known vector x(k) ∈ Rn through the following re-

lationship:

ym(k) = Hx(k) + v(k) (3.2)

where v(k) is the disturbance to be minimized in order to achieve an optimal

estimate xest(k). The cost function is thus J = 1
2
vTv and results minimized if its

partial derivative in x is zero:

J =
1

2
vTv =

1

2
(y −Hx)T (y −Hx)

∂J

∂x
= (y −Hx)T (−H) = 0

(3.3)

which implies HTy = HTHx and thus:

xest = (HTH)−1HTy (3.4)

From 3.4, the square matrix HTH ∈ Rn×n needs to be invertible. Therefore, the

number of measurements p is to be greater than the dimension of the vector x,

p ≥ n. The error between the estimate xest and the real quantity x is:

xest − x = (HTH)−1HT (Hx+ v)− x = (HTH)−1HTv (3.5)

Hence, if v is a zero-mean quantity, the error is zero-mean as well. Therefore, xest

is an unbiased estimate, since a zero-mean disturbance leads to a zero-mean error

within the estimation. The error covariance matrix is P = E[(xest−x)(xest−x)T ],

while the disturbance covariance matrix is R = E[vvT ] = σ2I. σ is the variance

of every random variable v(k), k = 0, . . . , t, since these variables are supposed to

be indipendent and identically distributed. Therefore, the following expression

for P is reached:

P = E[(HTH)−1HTvvTH(HTH)−1]

= (HTH)−1HTE[vvT ]H(HTH)−1 = σ2(HTH)−1
(3.6)

An alternative is to use a weighted least squares estimation, in the sense that not

every measurement contributes with the same weight. Assuming W as the weight
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matrix, the cost function becomes J = 1
2
vTWv. The estimate and the covariance

of the error are expressed below:

xest = (HTWH)−1HTWy (3.7)

P = (HTWH)−1HTWE[vvT ]WH(HTWH)−1 (3.8)

If E[vvT ] = R, an approach is to choose W = R−1, so that:

xest = (HTR−1H)−1HTR−1y (3.9)

P = (HTR−1H)−1 (3.10)

In order to achieve a more useful algorithm, a recursive formulation should be

used. This means that an estimate reached from p measurements needs to be

changed after another measure is available, but without repeating the whole

process from the very beginning. For instance, a vector of p measurements

y0 = H0x+ v0 is the starting point, to which a new measurement y1 = H1x+ v1

is added. The weights are based on the inverses of the covariance matrices,

W0 = R−1
0 , Wn = R−1

n . By rearranging eq. 3.9, the following equation is ob-

tained: [
H0

Hn

]T [
R−1

0 0

0 R−1
n

][
H0

Hn

]
xest =

[
H0

Hn

]T [
R−1

0 0

0 R−1
n

][
y0

yn

]
(3.11)

The plan is to provide a formulation of the updated estimate xest which relies on

the old one x0 and a variation dependent only on the new measurement: xest =

xest,0 + δx. Since x0 is the solution at the previous step, i.e., (HT
0 R

−1
0 H0)xest,0 =

HT
0 R

−1
0 y0, from eq. 3.11 it results:

δx = (HT
0 R

−1
0 H0 +HT

nR
−1
n Hn)

−1HT
nR

−1
n (yn −Hnxest,0) =

= (P−1
0 +HT

nR
−1
n Hn)

−1HT
nR

−1
n (yn −Hnxest,0)

(3.12)

The covariance of the new estimate is:

E[(xest − x)(xest − x)T ] = Pn = (P−1
0 +HT

nR
−1
n Hn)

−1 (3.13)

Therefore, the whole procedure could be summarized as follows:
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� Obtain P0, xest,0 from the first p measurements

� Collect another measure yn

� Calculate Pn = (P−1
0 +HT

nR
−1
n Hn)

−1, xest = xest,0+PnH
T
nR

−1
n (yn−Hnxest,0)

Therefore, if P0 has high values, which means that xest,0 is quite inaccurate,

Pn ≈ (HT
nR

−1
n Hn)

−1, xest ≈ (HT
nR

−1
n Hn)

−1HT
nR

−1
n yn. On the contrary, if P0 ≈ 0,

i.e., xest,0 is really accurate, Pn ≈ P0, xest ≈ xest,0.

3.1.3 Formulation

Kalman filter takes the form of a current estimator:

xest(k|k) = xest(k|k − 1) + L(k)[y(k)−Hxest(k|k − 1)] (3.14)

Hence, the system expressed by 3.1 is to be discretized:x(k + 1) = Φx(k) + Γu(k) + Γ1w(k)

y(k) = Hx(k) + v(k)
(3.15)

where w(k), v(k) are the discretized noises. They must be indipendent, zero-

mean, stationary random processes. KF aims at estimating the state vector x(k)

minimizing the quadratic sum of the innovation e(k) = y −Hxest. Therefore, it

is a least square estimation technique and thus takes origin from the algorithm

presented in subsection 3.1.2. Regarding the symbols, the updated innovation

covariance matrix is Pn = P (k) while the open loop one isM(k), the measurement

covariance matrix is Rn = Rv and the output matrix Hn = H. Hence, the

estimator gain and the innovation covariance matrix are expressed as follows:

L(k) = P (k)HTR−1
v (3.16)

P (k) = (M(k)−1 +HTR−1
v H)−1 (3.17)

The open loop and closed loop estimates of the state are respectively:

xest(k|k − 1) = Φx(k − 1|k − 1) + Γu(k − 1) (3.18)
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xest(k|k) = xest(k|k − 1) + L(k)(y(k)−Hxest(k|k − 1)) (3.19)

The open loop innovation covariance matrix is:

M(k) = E[(x(k)− xest(k|k − 1))(x(k)− xest(k|k − 1))T ]

= E[Φ(x(k − 1)− xest(k − 1|k − 1))(x(k − 1)− xest(k − 1|k − 1))TΦT+

+Γ1w(k − 1)w(k − 1)TΓT
1 ]

= ΦP (k − 1)ΦT + Γ1RwΓ
T
1

(3.20)

Hence, the knowledge of P (k − 1) is needed firstly to achieve M(k) and then

P (k).

In summary, the Kalman filter algorithm comprises two steps: the prediction,

or a-priori estimate, and the update, or a-posteriori estimate. The former is

performed before the measurement y(k) is available, while the latter takes place

afterwards. The starting point is the initial guess of the state xest,(0), its co-

variance matrix P (0) and the covariance matrices Rw, Rv, of the i.i.d. random

processes w(k), v(k).

A-priori estimate

� Perform the open loop estimation xest(k|k−1) = Φxest(k−1|k−1)+Γu(k)

� Calculate the open loop innovation covariance matrix

M(k) = ΦP (k − 1)ΦT + Γ1RwΓ
T
1

A-posteriori estimate

� Calculate the closed loop innovation matrix P (k) = M(k)−M(k)HT (HM(k)HT+

Rv)
−1HM(k)

� Achieve the KF gain L(k) = P (k)HTR−1
v

� Perform the closed loop estimation xest(k|k) = xest(k|k − 1) + L(k)(y −
Hxest(k|k − 1))

3.1.4 Tuning

The main drawback concerning KF is the difficulty of tuning. From the previ-

ous subsection, the quantities xest(0), P (0), Rw and Rv are to be known as a
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starting point. Furthermore, from the continuous system 3.1, a discretized one

is achieved expressed by 3.15. However, the disturbances are continuous-time

signals, not piecewise-constant such as the input u(t), therefore achieving two

discrete quantities w(k), v(k), as well as the matrix Γ1, is not trivial. v(k) repre-

sents any output disturbance, hence it can be imputed to e.g. the quantization

of the output. On the contrary, w(k) is the model disturbance, which might

be related to random disturbances or uncertainty of the parameters. To achieve

a more straightforward way of tuning the covariance matrices, the lowest num-

ber of tuning parameters should be involved. The simplest tuning method of KF

arises from the following hypothesis: differences between the nominal and the real

model, thus imputable to w(t), can be represented with an equivalent input dis-

turbance wc(t). However, as already highlighted, wc(t) is not piecewise-constant

like u(t) is. Hence, achieving a discretized matrix which explains a relationship

between the discretized signals x(k) and wc(k) is not elementary. Starting from

the continuous system, the discretization happens as follows:

ẋ(t) = Ax(t) +B(u(t) + wc(t)) (3.21)

x(k + 1) = Φx(k) + Γu(k) +

∫ T

0

eAσBwc(σ)dσ

= Φx(k) + Γu(k) +Wd(k)

(3.22)

The expression of the matrix M(k + 1) = ΦP (k)ΦT + Γ1Rwd
ΓT
1 illustrates how

the quantity of interest is Qw = Γ1Rwd
ΓT
1 , not directly Rwd

. Therefore, instead

of trying to reach a relation between wd(k) and x(k), the representation of the

discretized input disturbances makes use of Wd(K) and its covariance matrix

Qw = E[Wd(k)Wd(K)T ]:

Qw = E

[ ∫ T

0

∫ T

0

eAσBwc(σ)w
T
c (η)B

T eA
T ηdσdη

]
=

∫ T

0

∫ T

0

eAσBE
[
wc(σ)w

T
c (η)

]
BT eA

T ηdσdη

= σ2
wc

∫ T

0

∫ T

0

eAσBδ(η − σ)BT eA
T ηdσdη

= σ2
wc

∫ T

0

eAσBBT eA
T σdσ

(3.23)
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Ωn
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0

(a) Ideal diagram: the trajec-
tory refers to a cumula-
tive periodogram of a white
noise process

Ωn

1
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(b) Non-ideal diagram: the
trajectory refers to a
cumulative periodogram
with dominance of high-
frequency components

Ωn

1

0

(c) Non-ideal diagram: the tra-
jectory refers to a cumula-
tive periodogram with domi-
nance of low-frequency com-
ponents

Figure 3.2: Different possible trajectories for the cumulative periodogram of the innovation e(k)

E[wc(σ)w
T
c (δ)] = σ2

wc
δ(η−σ) is due to the fact that wc is supposed to be a white

noise, thus its covariance matrix is a diagonal matrix with the variance σwc as di-

agonal value. Another important remark regards the integral
∫ T

0
eAσBBT eA

T σdσ,

which happens to be the controllability Gramian Qw.

On the other hand, the measurement noise is usually well-featured as it can be

ascribed to well-known causes, such as the quantization of the output. Consid-

ering a SISO system, the tuning parameters are σ2
wc

for Qw, σ
2
v for RV , and only

their ratio is relevant. A starting point can be to set σ2
v = q2/12 and modify

σwc according to the observations. The procedure of tuning these parameters is

referred to as whiteness test. The innovation e(k) is indeed to be a white noise,

therefore the Kalman filter is considered well-tuned when the resulting innova-

tion behaves like a white noise. To verify that, the cumulative periodogram is

analyzed, cumsum|fft(e(k))|. Figure 5.23 illustrates the three possible kinds of

cumulative periodograms achieved. 3.2a refers to the ideal one, while 3.2b, 3.2c

represent undesired trajectories. The first has an excess of high-frequency com-

ponents: this means that σ2
wc

must be lowered. On the other hand, an excess of

low-frequency components, like in 3.2c, points out that σ2
wc

must be highered.

3.2 Moving Horizon Estimator

Another possibility for estimating the full state vector and possible modeled dis-

turbances or unknown parameters is the use of moving horizon estimator, which

is an optimal state estimator, similarly to the Kalman filter. However, it is able

to deal with state and input constraints, and therefore it is considered the dual

of model predictive control. Hence, MHE solves a dynamic optimization prob-

lem within every time slice which can easily cope with state constraints. The
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non-linear discrete time system is described as follows:

x(k + 1) = f(x(k), u(k), p(k))

y(k) = h(x(k))
(3.24)

where x(k) ∈ Rnx , u(k) ∈ Rnu , p(k) ∈ Rnp y(k) ∈ Rny are respectively the state,

input, uncertainty and output vectors. In case p(k) = 0, the considered system

is equal to the nominal one. The feasibility of MHE in embedded applications

has been proven in [20], where a real time algorithm has been proposed. Fur-

thermore, its combination with Model Predictive Control has been tackled within

[21].

Two different formulations of MHE in combination with MPC are possible, as

explained in [22]. The first supposes that the uncertainty structure of the model

is unknown. Therefore, state and output disturbances are to be introduced to

compensate for any plant-model mismatch. This approach is similar to the one

used with the Kalman filter. The second formulation requires instead the knowl-

edge of the uncertainty structure, i.e., which parameters inside the system are

uncertain. In this latter case, the MHE provides the estimation of both the plant

state and the uncertainty parameters. The following subsections present the two

possible approaches.

3.2.1 MHE with State and Output Disturbances

In the first scenario, which expects that the uncertainty structure is unknown, the

parameter p(k) is set to zero and the offset-free behaviour is achieved taking into

account state and output disturbances. The MHE problem is therefore expressed

as follows:

min
N∑
i=0

(ηTk−N+iWyηk−N+i + wT
k−N+iWwwk−N+i)+

(x̂k−N − x̄k−N)
TWx(x̂k−N − x̄k−N)

(3.25)
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subject to:

x̂k−N+i+1 = f(x̂k−N+i, uk−N+i, 0) + wk−N+i

ŷk−N+i = h(x̂k−N+i)

ηk−N+i = yk−N+i − ŷk−N+i

x̂k−N+i ∈ X, ηk−N+i ∈ Ωη, wk−N+i ∈ Ωw,

j = 0, . . . , N

(3.26)

Wy, Ww, Wx represent the weight matrices, that are to be symmetric positive

definite, while N is the estimation horizon length. The estimated state and

output are x̂k and ŷk, while wk and ηk are the state and output disturbances.

x̄k−N is the most likely prior value of xk−N , i.e., the estimated state evaluated

within the previous timeslice.

3.2.2 MHE with State and Parameter Estimation

In case the uncertainty parameter structure is known, MHE is able to simulta-

neously estimate both the state and the uncertain parameters. This means that

the model is modified online. The formulation of MHE is described through the

following expressions:

min
N∑
i=0

(ηTk−N+iWyηk−N+i) + p̂TKWpp̂K+

(x̂k−N − x̄k−N)
TWx(x̂k−N − x̄k−N)

(3.27)

subject to:

x̂k−N+i+1 = f(x̂k−N+i, uk−N+i, p̂k)

ŷk−N+i = h(x̂k−N+i)

ηk−N+i = yk−N+i − ŷk−N+i

x̂k−N+i ∈ X, ηk−N+i ∈ Ωη, p̂k ∈ Ωp

j = 0, . . . , N

(3.28)

p̂k is here the estimated uncertainty parameter. Moreover, similarly to the pre-

vious formulation, ηk−N+j is the output disturbance. However, it is worth noting

that the state disturbance is not present. The model of the system f(x̂k, ûk, p̂k)

is updated online since the parameter p̂k is estimated by the MHE. The solution
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of the optimization problem leads thus to the optimal p̂k that minimizes the dif-

ference between the estimated output ŷ and the measured one y over the entire

horizon N .
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Chapter 4

System Description

The considered motion system is a Stewart platform, i.e., a parallel manipulator

with six servo actuators attached to two flat plates. While the first plate repre-

sents the base of the platform, the other is moved by the actuators according to

the inputs provided externally. The six degrees of freedom of the platform are

the rotations and the traslations within the three axes x, y, z. Furthermore, a

ball is placed on the top of the upper plate. The whole plant, comprised by the

platform, the MPC solver and the serial communication between them, aims at

balancing the ball in the middle of the plate. The communication happens with

the use of an USB cable that connects the laptop to the hardware. The Stewart

platform provides the latest measures of the position of the ball on the upper

plate, while MPC feeds the plant with the inclination of the plate according to

the received outputs. Since Model Predictive Control requires the knowledge of

the full state vector, a Kalman filter is implemented to achieve it starting from

the ball position in the x, y-axes. The whole plant comprises therefore an imple-

mentation of the MPC algorithm by the use of the acados library and the creation

of a multi-threading Qt program where the control technique is combined with

the communication process and a thread to periodically print useful results, as

the state vector components and the inputs. Moreover, a small graphical user

interface is created to start and stop the program. The software library acados

is a collection of solvers able to provide both high performance and embedded

deployability and this justifies its choice. Regarding the language, Qt creator

relies on C++. A deeper description of the several components will take place in

the following sections.
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GPIOs groups 8
Operating Voltage 1.8v − 3.3V
Type of GPIO Integrated 4−wire touchscreen controller

ADC 6−input 12−bit
Buffer depth 128
System Level 25kV air-gap ESD protection
Device Level 4kV HBM ESD protection

Table 4.1: Features of the STMPE610 GPIO

4.1 Components of the Stewart Platform

The Stewart platform employed for this project comprises different components,

described in the following part of the section.

The upper plate of the platform under test is able to detect the position of an

object through a touch screen. The sensing ability of the touch panel varies in

accordance with the weight of the object, which in this case is a metallic ball.

Therefore, the position of a heavier ball is more easily detected. The touch screen

is controlled by an Adafruit STMPE610, i.e., an advanced touch screen controller

with 6-bit port expander. It is a general purpose input-output port expander

able to interface a main digital ASIC via a two-line bidirectional bus. A 4-wire

touchscreen controller is built into the STMPE610, which is enhanced with a

movement tracking algorithm to avoid excessive data. Furthermore, it possesses

a 128×32 bit buffer and a programmable active window feature. Being a general

purpose input-output, its function is to allow the microcontroller to interact with

another peripheric, in this case the touch screen panel. Table 4.1 summarizes the

characteristics of the implemented GPIO.

The six utilized servo actuators are Savox SC-0254MG, i.e., 3-pole DC motors

which provide an accurate and fast response with fine resolution. Table 4.2 de-

scribes in further details these servo actuators.

Moreover, the hardware relies on an embedded systems platform development

board and a polar PCB (printed circuit board). The resulting system makes use

of a serial protocol, i.e., specifics rules to set up a connection between the platform

and an external device. This protocol is described in the following subsection.

4.2 Serial Protocol

A universal asynchronous receiver-transmitter (UART) is a computer hardware

device for asynchronous serial communication. The data format of this com-
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Servo Technology Digital Low Voltage
Servo Case Composite

Input Voltage 4.8V − 6.0V
Servo Type Standard
Motor Type Brushed DC Motor
Gear Material Metal Gears
Ball Beared Yes

Servo Power-Torque 5− 10Kg/cm
Servo Speed 0.10− 0.15s/60o

Length 40.7mm
Width 20.0mm
Height 39.4mm
Weight 49g
Speed 0.14s/60o

Torque 7.2Kg/cm
Connector Type JR

Spline Size 25T Spline

Table 4.2: Technical Specifications of the Savox SC-0254MG servo motors

Baudrate 115200
Parity Odd

Data Bits 8
Stop Bits 1

Hardware Flow Control None

Table 4.3: UART settings

munication is configurable. The settings used in the considered application are

summarized in table 4.3 Moreover, the message structure must be set. The im-

plemented packet is described in 4.1. The start byte value is 0x02, while the

stop and the esc values are respectively 0x03 and 0x10. The latter is used to

point out that the following byte is not to be interpreted as a special one, i.e.,

it is not a start, stop or an esc byte even though the value may indicate one of

these. Before a message is accepted, its 8−bit XOR-checksum is to be checked

Figure 4.1: Serial message structure
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Field Bytes

Frame inf
Start 1
Stop 1
ID 1
MID 1

Length 1
Data 127

Checksum 1

Table 4.4: Size of message components

ID Type Content Min Max Comment

1 Position Uint32 t X t 0 4000 Ball position
Uint32 t Y 0 4000

2 Get set point Uint32 t X 800 3400 Target ball position with boundaries
Uint32 t Y 600 3500

3 Orientation Int32 t tX - - Set platform orientation
Int32 t tY - -
Int32 t tZ - -
Int32 t rX - -
Int32 t rY - -
Int32 t rZ - -

4 Set set point Uint32 t X 800 3400 Target ball position with boundaries
Uint32 t Y 600 3500

5 Mode Uint8 tM 0 4 Mode select/update

Table 4.5: Content of the message according to the ID field

against the content of the message, START and STOP bits excluded. Hence, if

the checksum is correct the message can be processed further. Moreover, each

message has a specific ID which determines its function, as welll as an MID which

is only used in Multi-Point systems. The size of the different components of a

message is explicited within table 4.4. The content of the message depends on the

ID field, as showed in tab. 4.5. Moreover, several operating modes are planned:

� Balancer: the ball is balanced om the set point in the middle of the platform

through the PID regulator previously implemented.

� Entertain: the ball moves along a predetermined path on the platform

thanks to the PID regulator previously implemented.

� Follow: The user can decide a path using a Nunchunk controller or an

external program.
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� Stewart: An external interface can be used to manually set the orientation

of the platform.

� Extern: An external interface can be used to manually set a new set point

where the platform will balance the ball.

A message regarding the orientation of the plate, i.e., the one with ID 3, works

only if the platform is in mode Stewart. In that mode indeed a program can

set the orientation of the platform once the position of the ball is known. This

is also the goal of this project: to write a code that, given the position of the

ball, calculates the orientation of the plate with the use of the Model Predictive

Control.

4.3 Interaction with the Hardware

The hardware is commanded through a serial communication that involves a

laptop (and in particular a Qt program) and a cable to interact with the platform.

The latter connects the embedded systems platform of the hardware to the laptop

via usb communication.

4.3.1 Utilized Laptop

The used notebook is an HP Pavilion 15-ec1020nl. It provides an AMD Ryzen 7

4800H processor, a 8 gb ram, a solid state drive of 512 gb. Moreover, the graphics

card is a NVIDIA geForce GTX 1650 4 gb.

4.3.2 Qt Program State Flow

To interact with the hardware Qt creator is used. This is a software that integrates

C++, Javascript and QML with the possibility of creating graphical user interface

applications. A small window is indeed created with three buttons: start, stop,

end program. The user can command the flow of the program through these

buttons. The start button starts the control of the platform, the stop one ends

it, while the button end program closes the program.

The code implements a multi-threading program, where one thread is dedicated

to the MPC controller, one to the serial communication, one to the log, i.e.,

the printing of the variables values, while the last one is the main thread. Qt

creator provides signals and slots, which establish a clean and efficient way to
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slot 1
...

emit signal 1
...

slot 2
...

Figure 4.2: Signals and slots graphical representation: the slot 1 emits a signal 1 which has been
previously connected to a slot 2. Therefore, the latter starts as soon as the signal 1 is
emitted

move between threads. Signals and slots are connected: when either a slot or a

function emit a signal, the slot connected to this signal starts to execute from

the proper thread. Therefore, signals and slots define the flow of the program.

Figure 4.2 gives a graphical representation of the signals-and-slots concept.

The flow of the program is not trivial and is to be illustrated graphically. The class

state machine, which is driven by the three buttons previously presented, executes

four slots: start(), set timer(), stop() and clean threads(). The first is connected

to the signal emitted by starting the start button and does a series of operations

which are useful to initialize every other class, i.e., the controller class, the log

class and the serial communication class. Furthermore, it gives the controller

access to both the log and the serial communication and moves every class to its

own thread. Once the slot comes to its end, the signal start comm() is emitted,

which is connected to the serial communication class slot reset(). This resets

the communication by doing proper operations and eventually emits the signal

reset done(), that is connected to the state machine class slot set timer(). This

connects the log to a timer, so that the variables values are printed on a regularly

basis. After the reset of the serial communication, the hardware regularly sends

a signal specifying the position of the ball (every 10ms). This interval may

be adjusted by modifying the firmware of the platform. When the signal is

recognized to be in position, it is decoded and the serial communication class slot

msgPositionChanged(position) is executed, which emits the signal newPosition().

The latter is connected to the controller class slot mpc solve(). Therefore, every

10ms a new position is sent and the mpc controller calculates the optimal input.

Since the controller has the angular acceleration as input of the model, while the

platform needs to be fed with an orientation, the angles are calculated from the

just calculated angular accelerations and the previous knowledge of the angular
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START
start pressed

StateMachine::start()

initialize classes
give controller access to log
give controller access to communication
move each class to its own thread

start comm

Communication::reset()

(a) Flow consequent to pressing start

Communication::msgPositionChanged(position)

newPosition()

Controller::mpc solve()

solve completed(orientation)

Communication::set orientation(orientation)

(b) Flow once the communication is set

STOP
stop pressed

stop log timer
cleanup all classes

StateMachine::stop()

StateMachine::clean threads()

disconnect mpc solve()
from newPosition()

(c) Flow consequent to pressing stop

Figure 4.3: Flow of Qt creator program. Once the start button is pressed, the classes controller,
communication and log are initialized. Also, the controller is given access to log, commu-
nication and the three classes are moved to their own threads. After the communication
is set, a new position received by the platform starts the mpc solving which eventually
sends the orientation achieved. Once the stop button is pressed, the connection be-
tween the mpc solver and the received position is ended, the log timer is stopped and
the classes are cleanup. Finally, the threads are quit.

velocities, amplitudes:

α̇(k) = α̈(k) · Ts + α̇(k − 1),

β̇(k) = β̈(k) · Ts + β̇(k − 1)

α(k) = (α̇(k) + α̇(k − 1)) · Ts/2 + α(k − 1),

β(k) = (β̇(k) + β̇(k − 1)) · Ts/2 + β̇(k − 1)

(4.1)

Once the angles are reached, the signal solve completed(a, b) is emitted: this

is connected to the serial communication class slot send orientation(a, b) which

sends the angles to the platform. Afterwards, once a new position of the ball is

received, the procedure is repeated again. This loop can be stopped by pressing

the stop button, which calls the state machine slot stop(). This disconnects the

slot mpc solve() from the signal newPosition() and does the cleanup. Finally, it

calls the state machine function clean threads(), which quits every thread.

4.4 acados

4.4.1 Overview

To implement the MPC functions, as well as the simulation solver, a software

library called acados is used. This is a collection of solvers for fast embedded op-
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timization, intended for fast embedded applications. The main advantage of this

library is its combination of both flexibility and efficiency. The former arises from

its ability to interface with high-level languages, such as Matlab and Python.

This makes also acados user-friendly. On the other hand, the core of acados is

written in C, which provides efficiency. The prerequisite for implementing MPC

with real-time application is indeed the use of efficient optimal control methods

written in low-level languages, e.g. C. Therefore, acados represents a strong can-

didate to implement an embedded optimal control method, like MPC is, for a

motion control system, as the Stewart platform. acados does not rely on auto-

matic code generation. This choice is due to the lack of flexibility that often rises

subsequently to an automatic code generation process: the generated code works

only for the fixed dimensions of the problem, so that any change requires the

user to regenerate and recompile the whole solver. Moreover, an automatically

generated code is sometimes hard to be read by the user, thus the debugging

becomes a demanding procedure. Instead of an automatic code generation, with

regard to the linear algebra operations, acados relies on the high-performance

linear algebra package blasfeo. On the other hand, the used library defining

the quadratic programming problem is hpipm. It defines three QP types (dense

QP, OCP QP and tree-structured OCP QP), in addition to a broad set of rou-

tines to create, manage and solve the QPs. hpipm uses the blasfeo library

to implement the QP solvers. Furthermore, the code is organized in a modu-

lar fashion, with formal interfaces between the different algorithmic components.

This aims at reaching a straightforward way to interchange solvers, routines and

libraries needed for the embedded control algorithm. Finally, the CasADi mod-

eling language is used. This is based on expression graphs, which often leads to

shorter instruction sequences and smaller and faster code. This is also crucial for

embedded applications.

4.4.2 BLASFEO

Embedded optimization libraries always rely on linear algebra operations: their

implementation may be either through a small set of linear algebra routines or

a call to a specialized linear algebra library. In this sense, blasfeo is a linear

algebra package which achieves good performances with regard to small matrices,

the ones typically encountered in embedded optimization [23]. Moreover, a

packed matrix format called panel major is used: this optimizes the cache usage

so that high performance is achieved for matrices of sizes uo to hundreds. In
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conclusion, blasfeo defines a complete linear algebra framework and enables a

considerable speedup in the matrix computations, except for really small sizes

matrices.

4.4.3 HPIPM

As previously mentioned, hpipm is a quadratic programming library that devel-

ops three QP types, i.e., dense QP, OCP QP, tree-structured OCP QP [24].It

also defines several routines to deal with the QPs and to convert between the

different QP types. For instance, condensing routines convert an OCP QP into a

dense QP, while expansion routines transform a dense QP solution ino an OCP

QP solution. The reliance on hpipm leads therefore to a wide set of QP types

and routines, which render acados pretty flexible and suitable for different opti-

mization applications.

4.4.4 acados Core Library

In order to be both user-friendly at a high level and efficient at a low level, acados

has a core library written in C with Python and Matlab interfaces. A modular

fashion exists between the embedded optimization algorithms, which means there

are clear interfaces between these algorithms. Each of these algorithmic compo-

nents are designed as separate modules, some of which may be used by themselves

while others need to be combined together. Table 4.6 illustrates an overview of

all modules present in acados and their algorithmic variants. All modules look

identical in their signature, so that an extension of acados through the insertion

of another module is straightforward. Moreover, some modules may comprise

other modules, e.g. an integrator is needed by an SQP solver. In this case, the

comprised module , i.e., the integrator, takes the name of submodule. An exam-

ple of the relationship between an NLP solver and its submodules is showed in

figure 4.4. In summary, the core library of acados contains mostly a collection of

modules, each with variants of solvers and different data types. However, directly

using the core library can be error-prone and cumbersome, reason why high-level

interfaces are present as well.

4.4.5 C Interface

The low-level constructs of the acados core are encapsulated by the acados C

interface. One of these regards the choice of the solvers. All the functions within
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Module Variants
HPIPM

qpDUNES
OCP QP HPMPC

OOQP
OSQP
HPIPM

Dense QP qpOASES
OOQP

Condensing Full condensing (HPIPM)
Partial condensing (HPIPM)

ERK
Simulation IRK

GNSF-IRK
lifted IRK

Gauss-Newton SQP
OCP NLP Gauss-Newton SCQP

Exact-Hessian SQP
RTI

Projection
Regulatization Mirroring

Convexification
Nonlinear function CasADi generated functions

C-code functions

Table 4.6: Software modules in acados

OCP NLP solver
(SQP)

dynamics
(continuous)

cost

(nonlinear)
constraints
(nonlinear)

OCP QP solver
(HPIPM)

simulation
(ERK)

external
function

external
function

external
function

Figure 4.4: Example of the relation between modules and submodules in acados
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the core library are indeed specific to one variant of a module. The goal is thus

to facilitate the switch between solvers, and this is reached through the definition

of a plan. The latter is a struct that incorporates several fields representing a

particular combination of solvers.

In addition, a structure for passing the chosen options is to be implemented. Since

dictionaries are not available in C, a specific struct is used where functions are

represented via strings. The strings encapsulate both the modules of the options

and the names of the options.

Another aspect concerns the memory management. Since allocating memory

manually might be cumbersome, some routines that manage the process are avail-

able. Finally, the C interface provides the user with some helper routines, called

setters and getters. Their function is to access the low-level structs of the acados

core.

4.4.6 High-Level Interfaces

acados offers interfaces to three popular languages for scientific computing: C++,

matlab and Python. This aims at offering the possibility to use the acados

library even to non-expert users, that may face difficulties in writing C code

manually. These high-level interfaces use CasADi, a C++ code, as a modeling

language. The first benefit of using CasADi is the modeling and code genera-

tion of non-linear functions and derivatives. Furthermore, the solution provided

by acados can be compared with solutions from different optimization libraries,

given that these are interfaced with CasADi too. The workflow provides that

firstly a description of the OCP to be solved is implemented by the high-level in-

terfaces. Secondly, a self-contained C project can be generated that contains all

the necessary function evaluations and the OCP and NLP solvers. In addition,

a matlab S-function and a build system are generated which can be utilized

in order to compile the code. Therefore, a high-performance and self-contained

solver is reached from a description in a high-level interface. This can be finally

deployed with reference to embedded applications.

4.5 Design of the MPC

As already illustrated in section 2.1, and in particular within subsections 2.1.3

and 2.1.5, several design choices are necessary to obtain a proper controller. In

particular, crucial decisions concern the modelization of the plant to control, the
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Figure 4.5: acados structure: its dependencies, the core C library and its high-level interfaces

form of the cost function and the form of the constraints. Other possible decision

options, such as the tuning of the cost function and constraints and the features

of the solver, will be tackled directly within the chapters regarding the simulation

and experimental results.

4.5.1 Prediction Model

The employed model of the system, referred to as prediction model in subsection

2.1.5, is the linearized one presented in 4.5.1. However, the 4×4 system expressed

through equation 1.34 does not allow to set a proper set of constraints, since these

may concern only the state and the input vectors components. The considered

system permits indeed to set constraints on the two angles of the upper plate,

while its angular velocities and accelerations are free. However, the servos are

subject to velocity and acceleration restrictions, according to the data sheet, and

therefore the upper plate has limitations regarding velocity and acceleration as

well. In order to set angular velocities and accelerations constraints, the system
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is augmented to a 8× 8 linear one:

x =
[
xb ẋb α α̇ yb ẏb β β̇

]T
,

u =
[
α̈ β̈

]T
,

ẋ =



0 1 0 0 0 0 0 0

0 0 0 0 0 0 5
7
g 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 5
7
g 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0


· x+



0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 1


· u

(4.2)

The modified system is now able to deal with constraints regarding the angu-

lar velocities and accelerations of the plate, that translate also in velocity and

acceleration constraints of the servo-motors.

4.5.2 Cost Function

A quadratic cost function is employed according to the following expression:

J(x()̇, u()̇) =
N∑
i=0

(x(k + i)TQx(k + i)) +
N−1∑
i=0

(u(k + i)TRu(k + i)) (4.3)

The weighting matrices Q, R are to be positive semi-definite. A quadratic cost

function permits to solve the problem through the use of quadratic programming

and consequently to employ sequential quadratic programming, possibly with the

real time iteration scheme. The latter allows to solve the MPC with higher speed

and is crucial to control the experimental system in a proper way, as will be clear

from the experimental results.

4.5.3 Constraints

As explained in subsection 4.5.1, the model is augmented to include also the

angular velocity and acceleration within respectively the state and the input

vector. The main reason is the willing to set constraints also for these quantities.

Therefore, the constraints regard the following physical variables:



68 Chapter 4. System Description

� The position of the ball within both the x− and y− axes, i.e., xb and yb

� The velocity of the ball within both the x− and y− axes, i.e., ẋb and ẏb

� The angular rotation of the plate within both the x− and y− axes, i.e., α

and β

� The angular velocity of the plate within both the x− and y− axes, i.e., α̇

and β̇

� The angular acceleration of the plate within both the x− and y− axes, i.e.,

α̈ and β̈

For all these variables, the chosen form of the constraints is the classical one,

which is a bound between two limits:

amin ≤ a ≤ amax (4.4)

where a is the variable trajectory and amin and amax are respectively the lower

and upper limits.
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Simulation Results

The simulation attempts are carried out in Matlab with the use of the acados

library. The latter includes an ocp model, which represents the MPC, and a simu-

lated model. The first calculates the optimal inputs starting from the knowledge

of the actual state, which is provided either by the simulated system or by a

combination of it and the Kalman filter. Indeed, at first the simulation trials

pretend to have full access to the state vector. A comparison between different

choices for the ocp model is made: within section 5.1 the MPC relies on the

real model, i.e., the same as the simulation system. This first sections aims at

verifying the applicability of Model Predictive Control with the required time

and variables constraints. On the contrary, section 5.2 will introduce a mismatch

between the two models: in particular, several approximations will be made for

the ocp model, such as the neglect of some force components as well as a lin-

earization of the system. Subsequently, section 5.3 will analyze the best choice

for the angles constraints and section 5.4 the best one for the control sample rate.

Moreover, an angle calibration error will be taken into account within section 5.5,

which brings to steady state error in position. To compensate for this error, two

methods are proposed: section 5.6 includes the integral of the position inside the

state vector, while section 5.7 implements a Kalman filter with an augmented

state space vector. This filter is useful in case of unmeasured state components,

which is the case of the experimental setup. It is indeed able to estimate the

full state vector in presence of a noisy environment. Its behaviour will be shown

within the section.
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5.1 Behaviour of the Nominal System

The first MPC simulation relies on the same simulation and ocp models, which

are expressed by equations 1.25, 1.26, 1.27. The initial state is fixed at x0 =[
xb ẋb α α̇ yb ẏb β β̇

]T
=

[
0.03 0 0 0 0.05 0.1 0 0

]T
. The weight matrices of this

first simulation, as well as the ones used in the subsequent sections, are:

Q =



105

102

10−2

10−3

105

102

10−2

10−3


,

R =

[
10−5

10−5

]
(5.1)

On the other hand, the following constraints are set:

|x| ≤ x̄, |u| ≤ ū

x̄ =



0.2

2

0.4

20

0.2

2

0.4

20


, ū =

[
200

200

]
(5.2)
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Figure 5.1: Trajectory of the states

Figures 5.1, 5.2 and 5.3 illustrate respectively the state and input trajectories

and the required computational time. The final state error is:

ex =



0.0011

−0.0018

0.0180

−0.2202

0.0025

−0.0063

−0.0383

0.5161


· 10−3

This error is due to the sub-optimal solution found by the MPC, due to con-

straints. The computational time is TCOMP = 1.0781ms, split into t = 0.725944ms

for the linearization of the system, t = 0.15991ms for the QP solution and

t = 0.191982 for remaining actions. These values are quite high, especially the

time required for the linearization. A better solution would demand a smaller

computation time and in particular a quicker linearization process. In the follow-

ing section an effort is thus carried out in that direction.
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Figure 5.2: Trajectory of the input
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5.2 Consistency between the simplified and the

real systems

In this section an examination will be carried out of the errors and the imperfec-

tions which the simplification of the model leads to, as well as the improvements

in the computational time. In order to do that, the ocp model is based on a sim-

plified system, while the sim model relies on the nominal system. The final state

error, together with the state and input trajectories and the computation time,

are analyzed. The initial state is always fixed at x0 =
[
0.03 0 0 0 0.05 0.1 0 0]T .

5.2.1 Real Sim vs Simplified OCP

Within this subsection the simulation is built on the following equations:

ẋ1 = x2, ẋ3 = x4, ẋ4 = u1, ẋ5 = x6, ẋ7 = x8, ẋ8 = u2

ẋ2 =
5

7

(
x1x

2
4 + x5x4x8 + g sinx7

)
ẋ6 =

5

7

(
x5x

2
8 + x1x4x8 + g sinx3

)
On the other hand, the OCP follows the equations below:

ẋ1 = x2, ẋ3 = x4, ẋ4 = u1, ẋ5 = x6, ẋ7 = x8, ẋ8 = u2

ẋ2 =
5

7
g sinx7

ẋ6 =
5

7
g sinx3

The state error is represented by the following vector:

ex =



0.0014

−0.0048

0.0207

−0.3075

0.0032

−0.0070

−0.0515

0.6666


· 10−3
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Figure 5.4: Trajectory of the states with the simplification of the ocp model equations
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Figure 5.5: Trajectory of the input with the simplification of the ocp model equations

Fig. 5.4, 5.5, 5.6 illustrate the trajectories of the state, input and the com-

putational time. In particular, the required computation time is TCOMP =

0.936604ms: t = 0.617481ms for the linearization, t = 0.145668ms for the QP

solution and t = 0.173243 for the remaining actions. The decrease of the time

required by the linearization process is visible, even though still quite big. On

the other hand, the final error state shows a deterioration regarding some com-

ponents, e.g. x2 = ẋb, being nonetheless still acceptable.

5.2.2 Real Sim vs Discretized OCP

An even bigger simplification of the ocp model is now provided, i.e., the lineariza-

tion and the discretization of it. Therefore, the new ocp model is described by
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Figure 5.6: Computation time with the simplification of the ocp model equations

the equations below:

ẋ1 = x2, ẋ3 = x4, ẋ4 = u1, ẋ5 = x6, ẋ7 = x8, ẋ8 = u2 (5.3)

ẋ2 =
5

7
gx7 (5.4)

ẋ6 =
5

7
gx3 (5.5)

The sim model is always represented through what is supposed to be the real

system, i.e. equations 1.25, 1.26, 1.27. The final state error becomes:

ex =



0.0014

−0.0047

0.0208

−0.3062

0.0032

−0.0058

−0.0522

0.6501


· 10−3

This is very similar to the previous one, showing some small improvements or de-

teriorations according to the different state variables. Fig. 5.7, 5.8, 5.9 illustrate

the trajectories of the variables and the computation time. The latter in partic-

ular shows a significant improvement, becoming indeed TCOMP = 0.426027ms:

the QP solution requires t = 0.144074ms, the remaining t = 0.161077 and the

discretization t = 0.120778. However, the latter is referred to the discretization
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Figure 5.7: Trajectory of the states with the discretization of the ocp model equations
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Figure 5.8: Trajectory of the input with the discretization of the ocp model equations
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of the simulation model rather than the ocp model, which is already a discrete

system. Therefore, this time would not be present with an experimental system

replacing the simulated one. The concern about the high computation burden

required by the linearization of the ocp model seems therefore to be solved.

5.3 Angles Constraints

As it can be seen from fig. 5.7, β rages between −0.4rad and 0.3rad. These values

are a bit too far from the origin, which means that the approximation sin θ ≈ θ

is not so precise. In particular, sin(0.4rad) = 0.389 and sin(0.3rad) = 0.295.

Constraints are therefore to be established for the angles amplitudes. In partic-

ular, the stricter the constraints are, the smaller the final state error is. How-

ever, a smaller interval [θmin, θmax] requires more computational time and the

convergence results to be slower. Anyway, constraints are to be set, since a dif-

ferent initial state could require even bigger angles and therefore unacceptable

inaccuracies. The trade-off between computational effort and accuracy of the

approximation is to be analyzed and properly set. In order to do this, the initial

state is always set to x0 =
[
0.03 0 0 0 0.01 0.5 0 0]T and different behaviours are

compared. Initially, the acceptable interval is [−π π], which is equivalent to not

having any constraint. Secondly, a pretty strict interval is set, i.e., [−0.05 0.05].

This would almost perfectly satisfy the approximation sin θ ≈ θ, giving rise how-

ever to other issues. These are compared to [−0.4 0.4] and [−0.5 0.5]. The first

choice, i.e., setting no constraints, results in an unstable system, as expected.

Figures 5.10 illustrate the different state trajectories according to the chosen

constraints. The final state errors are respectively:

e0.05 =



0.0000

0.0000

0.0000

0.0001

−0.0592

−0.0045

0.0500

−0.0002


, e0.4 =



−0.0009

−0.0013

−0.0196

0.2419

−0.0030

0.1540

0.2506

0.5993


· 10−5, e0.5 =



−0.0001

−0.0016

−0.0046

0.0178

−0.0023

0.0873

−0.0954

−0.6547


· 10−4
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(a) Constraints set at |θ| ≤ 0.05
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(b) Constraints set at |θ| ≤ 0.4
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(c) Constraints set at |θ| ≤ 0.5

Figure 5.10: State trajectory according to the different constraints
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(a) Constraints set at |θ| ≤ 0.05
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(b) Constraints set at |θ| ≤ 0.4
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(c) Constraints set at |θ| ≤ 0.5

Figure 5.11: Computation time according to the different constraints
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The higher error e0.05 is due to the more time required to achieve the setpoint with

stricter constraints. In addition, the computation times are T0.05 = 7.34723ms,

T0.4 = 4.28977ms, T0.5 = 4.50007ms. As one would expect, the computation

time decreases from |θ| ≤ 0.05 to |θ| ≤ 0.4. The fact T0.5 ≥ T0.4 is related to the

random component included in the computation time: the latter depends indeed

from e.g. initial guesses and their suitability to the optimal trajectory, so that

it may slightly vary from one execution to the other. It may be assumed thus

T0.05 ≈ T0.04. From these considerations, the constraints αmin = βmin = −0.4,

αmax = βmax = 0.4 are chosen for the next simulations.

5.4 Control Sample Rate

The aim is now to compare different control sampling rates and to select the

most proper one. The degree of freedom is thus the number of control steps

N , which determines also the time slice Ts = TOCP/N . The minimum value is

N = 5, due to the QP solver. Different values which have been tested are N = 10,

N = 20, N = 50, N = 100, N = 500, N = 1000. A higher N does not allow the

software to properly solve the problem. With the increase of the number of steps,

the trajectories become smoother at the expense of the computational time. The

different state trajectories are highlighted through figures 5.14, 5.15, while images

5.12 illustrate the different computation times. The initial state is always fixed

at
[
0.03, 0, 0, 0, 0.05, 0.1, 0, 0

]T
. As illustrated in fig. 5.12, the computational

time deeply increases with the number of time steps. In particular, the QP

solution is the most affected part. Figure 5.13 illustrates the esponential trend

of the required computational time. Therefore, a too high number of N is not

acceptable. Figures 5.14, 5.15 show the different trajectory of the state vector.

Increasing N leads to a behavior which is closer to the reality. However, since the

computation time increases as well, the choice is directed towards a number of

steps that permits to have an acceptable reality approximation without requiring

too much computational burden. In order to do that, also the final error is

evaluated. The errors related to N = 50, N = 100 are similar, despite a double

computation time for N = 100. Therefore, the best choice seems to be N = 50.

5.4.1 Finer Grid for the Simulation Model

Another possibility provided by the software consists in using a finer grid for

the sim model. This means that the simulation divides the single time step of
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Figure 5.12: Computation time according to different control steps

the optimal control problem in sub-slices in order to better approximate the real

plant, which operates in the continuous time. However, if the number of timesteps

N is properly chosen, the finer grid does not provide different behaviors. The final

error changes indeed only if N = 5 or N = 10, switching for instance between

N ′ = 1 and N ′ = 10 for the finer grid. This means that, by choosing a proper

number of time steps, the software is able to simulate properly the whole system

without the need of a finer grid for the simulation model. Therefore, N = 50,

N ′ = 1 can be used.

5.5 Angle Calibration Error

MPC is a control technique where open-loop and closed-loop coexist: the cost

function is indeed based on an open-loop system, however the state feedback is

assumed as an initial condition in every time step. There should be therefore

a certain grade of rejection regarding plant-model mismatch or unmeasured dis-

turbances. This can be observed by assuming the angles amplitudes are wrong:

in simulation, this can be easily implemented by writing sin(θ + e) instead of

sin θ within the sim model, without modifying the ocp model. Fig. 5.16 show

the behaviour of the system in presence of an error e = 0.2rad. Thanks to the

state feedback and its weight, the system is capable of detecting the presence of a

disturbance (in this case an angle calibration error) and tries to stabilize the sys-
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Figure 5.13: Computation time trend

tem. In particular, at steady state the two estimated angles become α = −0.2rad,

β = −0.2rad in order to stop the ball velocity. With these values the plate is

indeed horizontal. Nevetheless, there is a steady state offset, since the ball is now

still but not at its setpoint, i.e., xb,f ̸= 0, yb,f ̸= 0. The amplitude of this steady

state error depends on the cost function J, the constraints and the equations of

the system. This is exactly what one would expect, as an MPC without any

extension is similar to a PD controller regarding the rejection of disturbances.

Therefore, a method to reject modeled disturbances is to be included. This will

be illustrated in the following sections through two different approaches: firstly,

the integral component of the position is included in the state vector. This way,

the steady state error moves from the position of the ball to its integral, leading

to zero steady state error in position. This is the same principle of passing from

a PD regulator to a PID. Secondly, a Kalman filter is included to estimate the

modeled disturbances.

5.6 Inclusion of the Integral Component

In order to achieve zero steady state offset, the integral of the ball position is

initially included in the state vector. Therefore, the state space system becomes
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(a) State vector trajectory with N = 5
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(b) State vector trajectory with N = 20

Figure 5.14: State vector trajectory according to different control steps (N = 5, N = 20)

as follows:

x =



∫
xbdt

xb

ẋb∫
ybdt

yb

ẏb


, u =

[
α

β

]
(5.6)
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(a) State vector trajectory with N = 50
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(b) State vector trajectory with N = 100

Figure 5.15: State vector trajectory according to different control steps (N = 50, N = 100)
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Figure 5.16: System behaviour without any compensation of the angle calibration error
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ẋ =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0


· x+



0 0

0 0
5
7
g 0

0 0

0 0

0 5
7
g


· u (5.7)

That way, the integral is weighted as well. The crucial point is that now the

input relies not only on the current state, but also on the past history of the

system. Fig. 5.17 illustrate the result: the position offset is now zero. Sup-

posing to access the angles accelerations, the weighting matrices are now Wx =

diag(104, 102, 10−1, 10−2, 10−3, 104, 102, 10−1, 10−2, 10−3), Wu = diag(10−5, 10−5),

while the setpoint is xref = [0 0 0 0 0 0 0 0 0 0]T . On the other hand, if the

inputs are the two angles, the last values of the cost functions disappear.

So far the integral weight has been used only to carry the ball to the origin start-

ing from an angle calibration error. If this error is combined with a position

setpoint different from the origin, the setpoint of the integral component is to

be changed as well. The position and its integral must indeed have consistent

references, as they are not indipendent. In particular, x∗
1 =

∫
x∗
2dt. Therefore,

if the position reference is a non-zero constant number, the integral reference

will be a ramp with slope ∆ = x∗
2, i.e., x∗

1 = x∗
2 · t. To show the behaviour

of the system, the setpoint position is changed to x∗
b = 0.05, y∗b = 0.03, thus

x∗
1 = 0.05 · t, x∗

6 = 0.03 · t. Fig. 5.18 illustrates the trajectory of the state compo-

nents with weights Q = diag(104, 102, 10−1, 10−2, 10−3, 104, 102, 10−1, 10−2, 10−3),

R = diag(10−5, 10−5). The integral trends reach respectively 0.05 · 2 = 0.1,

0.03 · 2 = 0.06 as final values.

5.6.1 Choice of the Proper Weight

As already mentioned within the previous section, fig. 5.17 presents the weights

Q = diag(104, 102, 10−1, 10−2, 10−3, 104, 102, 10−1, 10−2, 10−3), R = diag(10−5, 10−5).

These however give rise to excessive overshoots and undershoots within the po-

sition, which means that the position and the velocity weights should be in-

creased. Therefore, an adjustment of the weights is necessary. A possibility

is to use the values Q = diag(104, 103, 100, 10−2, 10−3, 104, 103, 100, 10−2, 10−3),

R = diag(10−5, 10−5), which allow to achieve a better behaviour. However, the

behaviour provided by the latter matrices is excessively overdumped. This is
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Figure 5.18: state vector trajectory with weights
Q = diag(104, 102, 10−1, 10−2, 10−3), R = diag(10−5, 10−5)
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Figure 5.19: Position of the ball yb according to the weights matrices. The initial and the final
positions are the origin. The angle calibration error initially displaces the ball from
the equilibrium point
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shown in fig. 5.19: the ball weights 104, 103, 100 allow to have a smaller move-

ment of the ball, however the recovery time is higher. On the other hand, the

weights 104, 102, 3 and 104, 2 · 102, 3 lead to a slightly underdamped behaviour.

The perfect choice thus seems to be 104, 3 · 102, 3, with a critically damped tra-

jectory.

5.7 Inclusion of the Kalman Filter

As already presented in chapters 2 and 3, model predictive control needs the

knowledge of the full state vector. So far, the assumption of directly being able

to access the state vector from the simulation model has been made. However, to

reach a more realistic simulation, the only accessible state components are now the

ball positions in the x−, y− axes. The remaining state components are estimated

through a Kalman filter, whose structure has been presented within section ??.

In addition to the inaccessible state components, this filter is implemented to

estimate the modeled disturbances, i.e., the angles calibration errors: the state

vector is thus augmented to include the disturbances as well. The Kalman filter

relies on the following discrete model of the system:

ξ =
[
x dα dβ

]T
=

[
xb ẋb α α̇ yb ẏb β β̇ dα dβ

]T
u =

[
α̈ β̈

]T
ξ(k + 1) =

[
Ad Ad(:; 3, 7)

0nx×nx I

]
ξ(k) +

[
Bd

0np×nu

]
u(k), y(k) =

[
xb yb

]T (5.8)

The notation Ad(:; 3, 7) means that the third, seventh columns of the matrix Ad

are selected. Kalman filter aims thus at estimating both the inaccessible state

components and the disturbances, which are then fed to the ocp model.

Figures 5.20, 5.21, 5.22 illustrate the state and input trajectories, as well as

the required computational time. These are achieved by setting the following

matrices:

Wx = diag(105, 104, 10−2, 10−3, 105, 104, 10−2, 10−3), Wu = diag(10−4, 10−4),

P (0) = diag(10−10, 10−5, 10−10, 10−10, 10−10, 10−5, 10−10, 10−10, 10−10, 10−10),

Q = diag(10−10, 10−10, 10−10, 10−10, 10−10, 10−10, 10−10, 10−10, 10−7, 10−7),

R = diag(10−7, 10−7)

(5.9)



90 Chapter 5. Simulation Results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

-5

0

5

x
b
 [
m

]

10-3

x
b

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.1

-0.05

0

v
x
b
 [
m

/s
]

x
b
 dot

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.2

-0.1

0

0.1

 [
ra

d
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-2
0
2
4

 d
o
t 
[r

a
d
/s

]

 dot

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

-5

0

5

y
b
 [
m

]

10-3

y
b

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.1

-0.05

0

v
y
b
 [
m

/s
]

y
b
 dot

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.2

-0.1

0

0.1

 [
ra

d
]

 dot

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-2
0
2
4

 d
o
t 
[r

a
d
/s

]

 dot

Figure 5.20: State trajectory with the use of Kalman filter to estimate the full state vector and the
modeled disturbances

The bigger weights for the velocities within P (0) are due to the initial uncertainty

of them, which are generically set to zero. On the other hand, the modeled

disturbances require a faster estimation with respect to the other augmented

state components, hence the disturbances weights inside Q are bigger than the

other components. The next subsection will focuses on a proper tuning of the

Kalman filter matrices Q and R with the cumulative periodogram method, which

has been explained within subsection 3.1.4.

5.7.1 Tuning of the Kalman filter

As presented in subsection 3.1.4, the tuning parameters of the Kalman filter are

the two covariance matrices Q, R (or better, their ratio). The correctness of

the tuning may be analyzed through the cumulative periodogram of the innova-

tion e(t) = y(t) − ŷ(t). Therefore, the trajectory of cumsum|fft(e(k))| is to be a

straight line between the frequencies 0 and the Nyquist frequency ΩN . The main

limit of tuning the Kalman filter through simulation regards the introduction of

disturbances. These are indeed modeled directly by the user, while an experi-

mental setup would introduce these disturbances by itself without the need to

model them. Therefore, a more useful tuning procedure will be carried out with

the use of the platform.

The simulation provides an open loop test where the simulation model returns

the measure of the ball position and the other state variables are estimated. A
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Gaussian output disturbance N(0, 10−7) is considered. As it can be seen from

figures 5.23a, 5.23b, the augmented state covariance matrix Q is to have smaller

weights than the output matrix R, especially for the components of the vector x,

due to the lack of state disturbances. The implemented Kalman filter is also able

to correctly estimate the modeled disturbances, as shown in fig. 5.24 for the x−
axis disturbance.

5.8 Simulation Results: Summary

This section aims at summarizing the simulation results. First of all, an approxi-

mation of the model can be made in order to decrease the computational time and

therefore to be applied to an embedded application. Albeit the real model pro-

vides smaller steady state errors, the computational time is indeed too big to an

embedded application. Secondly, the proper constraints and control sample rate

are chosen. The first is due to the approximation of the ocp model, which consid-

ers sin(θ) ≈ θ. For this approximation to be valid, the angle θ is to be small. The

control sample rate is on the other hand crucial to achieve a good approximation

of the continuous model, without increasing the computational time too much.

Indeed, increasing the sample rate leads to an exponential growth of the compu-

tation burden, while a too small value of it is not able to properly discretize the

model. Moreover, by introducing angles calibration errors a steady state error

is seen to appear in position. A rejection of it might be reached through the

integral inclusion of the ball position within the state vector. An additional issue

concerns the availability of the state components: the experimental setup only

measures the position of the ball, while the MPC requires to have access to the

full state vector, including the velocity of the ball and the angular components.

The proposed solution is a Kalman filter, able to estimate both the unmeasured

state components and the modeled disturbances. The next chapter will validate

the latter system, i.e., the coexistence of the Kalman filter and Model Predictive

Control, with the use of the real hardware.
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Chapter 6

Experimental Results

As explained in subsection 4.3.2, the laptop interfaces with the hardware through

a Qt program. Since the MPC provides the optimal angular accelerations while

the hardware requires the angles directly, equations 4.1 are implemented within

the code.

At first, the chosen parameters take into account the simulation results, in par-

ticular the ones presented in section 5.7. However, the experimental results will

be seen to differ from the simulation ones. Therefore, some adjustments will be

deployed in order to enhance the behaviour. The chapter is organized as fol-

lows: the first section will illustrate the trajectories with the same parameters

as the optimal ones reached in simulation. The next ones will try to enhance

the trends: first, a change for the angular weights of the cost function is imple-

mented; afterwards, a compensation of the modeled disturbances is taken into

consideration to decrease the steady state error. Finally, a blending between the

angular weights is implemented to trade off between speed of convergence and

steady state oscillation. Some conclusions will be presented at the end of the

chapter.

6.1 First Attempt: Same Parameters as in

Simulation

As one might expect, the first attempt is carried out tuning the MPC controller

according to the best behaviour achieved in simulation. The only difference re-

gards the angle constraints, which are set at ±0.14rad to not make the plant

unstable. On the other hand, the Kalman filter is now working in a real environ-
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Figure 6.1: Trajectory of measured (green) and estimated (blue) position of the ball in the x− axis

Figure 6.2: Trajectory of measured (green) and estimated (blue) position of the ball in the y− axis

ment, with real disturbances inherent of the touch screen panel, cables and the

mismatch between the nominal and the real model. Therefore, its tuning hap-

pens as explained in subsection 3.1.4, i.e., through the controllability Gramian.

Furthermore, as the angles are calculated from the angular accelerations provided

by the MPC, the KF model differs from the one within simulation, in the sense

that it estimates both the position and velocity of the ball from the calculated

angles. The controllability Gramian is as follows:

W0→T =

∫ T

0

eAσBBT eA
T σdσ =


α2

3
T 3 α2

2
T 2 0 0

α2

2
T 2α2T 0 0

0 0 α2

3
T 3 α2

2
T 2

0 0 α2

2
T 2 α2T

 (6.1)

The tuning of the Kalman filter is done in open loop by keeping Q = W0→T and

by changing R. The most proper output covariance matrix is R = 10−10I, as the

cumulative periodograms of the innovation in images 6.1, 6.2 illustrate.

The weights matrices of the MPC cost function are

Q = diag(104, 103, 10−2, 10−3, 104, 103, 10−2, 10−3), R = diag(10−5, 10−5).

Although these matrices lead to the best behaviour in simulation, the experimen-
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Figure 6.3: Trajectory of the position of the ball in the x− axis with the weights matrices from
simulation

tal results are inacceptable, as shown in figures 6.3, 6.4, 6.5, 6.6 Indeed, the

steady state trajectory of the ball is oscillating and not even around the origin.

The communication delay is the main reason of the oscillating behaviour, since

the inputs are related to previous state values. On the other hand, the offset is

due to the lack of measurement of the angular calibration errors eα, eβ. The next

sections will try to correct these undesired features.

6.2 Increase of the Angles Weights

The first effort is towards the elimination of the steady state oscillations. Given

that the delay cannot be decreased unless a change of the set comunication is

provided, the dynamics of the system can be lowered through modifying the

weighting matrices, and in particular the weights concerning the angles α, β.

Therefore, they are set at qα = qβ = 5 · 104, which is a value bigger than the

velocity weights and smaller than the position ones. The strategy is to have

smaller inclinations of the plate so that the ball moves with lower acceleration.

As shown through figures 6.7, 6.8, 6.9, 6.10, the oscillations at steady state

are disappeared. The angles indeed do not oscillate between the upper and the

lower bound anymore. Nevertheless, the settling time increases, because of the
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simulation
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Figure 6.8: Trajectory of the position of the ball in the y− axis with the angular weights increased
to qα = qβ = 5 · 104
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Figure 6.9: Trajectory of the angle of the plate in the x− axis with the angular weights increased
to qα = qβ = 5 · 104
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Figure 6.10: Trajectory of the angle of the plate in the y− axis with the angular weights increased
to qα = qβ = 5 · 104

decrease in the plate inclinations. From these considerations, a mediation between

the absence of oscillations and a proper settling time is to be found. This will be

tackled within subsection

6.3 Compensation of the Modeled Disturbances

The second issue regards the steady state offset, which can be better analyzed

withouth steady state oscillations, therefore by setting qα = qβ = 5 · 104. The

offset is due to the lack of the estimation of the disturbances: hence, an estimation

procedure is supposed to enhance the performance. The procedure is divided in

two steps:

� The constant part of this disturbance is estimated through a calibration

procedure, since it corresponds to the opposite of the related steady state

angle. Therefore, an average of the steady state angles is done and the

opposite is set as the estimated constant disturbance d̄.

� The variable part of the disturbance is estimated through the Kalman filter

which relies on an augmented state vector, as explained within section 5.7.

Fig. 6.11, 6.12 show the improvements. Although the steady state error is not

zero, the values are much smaller than the previous ones. The non-zero values
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Figure 6.11: Trajectory of the position of the ball in the x− axis with the angular weights increased
to qα = qβ = 5 · 104 with compensation of modeled angular disturbances
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Figure 6.12: Trajectory of the position of the ball in the x− axis with the angular weights increased
to qα = qβ = 5 · 104 with compensation of modeled angular disturbances
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Figure 6.13: Trajectory of the angular weight qβ in relation to the value of the ball position in the
x− axis xb

can be due to several factors, such as the mismatch between the nominal model

and the real hardware, due e.g. to the unconsidered friction of the plate.

6.4 Blending between the two Angular Weights

Throughout this chapter a solution to the steady state oscillation and how to

decrease the steady state offset have been presented. However, a trade off between

the velocity of convergence and the steady state oscillation is to be found, since

by just increasing the angular weights the settling time deeply increases as well.

The proposed solution takes into account a weighting matrix Q variable with the

position of the ball with the following characteristics:

� With |xb| ≥ 0.07m, qβ = 10−2. Similarly, with |yb| ≥ 0.07m, qα = 10−2.

� With |xb| < 0.01m, qβ = 5 · 104. Similarly, with |yb| < 0.01m, qα = 5 · 104.

� Between |xb| = 0.01m and |xb| = 0.07m, a blending process is employed: the

weight qβ follows a linear trend with angular coefficient m = qmax−qmin

xb,min−xb,max
,

where qmax = 5 · 104, qmin = 10−2, xb,max = 0.07m, xb,min = 0.01m. The

offset of the interpolating straight line is equal to qmax − m · xb,min. The

blending procedure is exactly the same for yb, qα.

The relationship between the position of the ball and the weight of the angle is

visualized within fig. 6.13. Figures 6.14, 6.15, 6.16, 6.17 illustrate the final

achieved behaviour: the convergence of the ball towards the origin is much faster

than setting high angles weights from the beginning, however the oscillations

are not present since high angular weights are considered when the ball is close

to the middle of the plate. Hence, the blending procedure is able to eliminate

both the disadvantages related to low and high angle weights, due to the fact
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Figure 6.14: Trajectory of the position of the ball in the x− axis with the blending procedure and
the disturbance compensation
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Figure 6.15: Trajectory of the position of the ball in the y− axis with the blending procedure and
the disturbance compensation
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Figure 6.16: Trajectory of the angle of the plate in the x− axis with the blending procedure and
the disturbance compensation
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Figure 6.17: Trajectory of the angle of the plate in the y− axis with the blending procedure and
the disturbance compensation
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that they appear in different areas of the plate: the convergence problem must

be tackled with the ball far from the center, while the steady state oscillations

appear when the ball is really close to it. A crucial point is here the reliance on

the real-time iteration technique explained in subsection 2.4.3. Indeed, the online

update of the Q matrix increases the computational burden and thus the required

computational time. In order to achieve a fast enough update which does not

make the controller infeasible, the real time iteration scheme to find the optimal

input provided by the MPC is implemented.

6.5 Experimental Results: Summary

Throughout this chapter, different experimental results with the use of the real

hardware have been faced. The introduction of the hardware in the loop leads to

some non idealities which were unconsidered before, such as the communication

delay. This is the main reason of the inadequacy of the simulation parameters

for the cost function J and the constraints. Firstly, the angles constraints have

been decrease in order to reach a stable behaviour of the plant. Subsequently, the

problem of steady state oscillation in position has been tackled: its elimination

is related to increased angular weights qα, qβ for the cost function J , which

nonetheless worsen the convergence behaviour. The solution corresponds to a

position-varying weight matrix Q, where the weights qα, qβ are set according

to the ball position. When the ball is far from the middle of the plate the main

concern is to bring it towards the center in a fast way, the weights are thus set at a

small value. On the contrary, when the ball is close to the center, the elimination

of oscillations is achieved through big values for qα, qβ. With intermediate values

for the position of the ball, qα and qβ follow a linear interpolation between the

upper and the lower values. The whole procedure is able to provide a proper

trajectory, where the ball converges fast to the center of the plate without any

steady state oscillation. A last problem is about the steady state error, due to the

lack of compensation for the disturbances. This is faced through an estimate of

the angular disturbances, which can be split into a constant part, easily estimated

from the steady state angular values, and a variable one, which can be estimated

through the Kalman filter.

The final controller is thus able to balance the ball in the middle of the plate

with high dynamics and without any steady state oscillation. Moreover, the

steady state offset is deeply decreased through the estimation and subsequent
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compensation of the angular disturbances.
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Conclusion and Future Works

The objective of this last chapter is to summarize the previous considerations

about the implemented plant and the simulation and experimental results, as well

as to focus on possible future works to enhance the control of the implemented

hardware, i.e., the Stewart platform.

Model Predictive Control Applied to the Stewart

Platform

The project aims first of all at exploring new control techniques applied within

a field of increasing interest, i.e., manifacturing process. The automation of the

latter sector is the current direction, since it allows to achieve higher efficiency

and therefore save a huge amount of money. In this sense, robotic deviced are

one of the major applications of interest since they allow to automate industrial

processes. However, apart from the increasing automation, robots also provide

some struggles: one of the largest concerns their frequent redundancy, which

means that they have more degrees of freedom than the required ones. This is

related to the possibility of executing a predefined path in different ways, which

nonetheless are not always possible. The considered hardware, which is a Stewart

platform, possesses indeed a higher number of DOFs with respect to the ones

necessary to move the end-effector, the upper plate. The latter indeed only the

rotation around two axes, x and y, to balance the ball, while the six servo-motors

provide six degrees of freedom. Therefore, a grade of redundancy is present

within the considered hardware. Control techniques which are able to deal with

this are necessary. In this sense, Model Predictive Control is able to deal with

constraints, which is a method to properly deal with the impossibility of executing

certain paths, because of e.g. a fixed workspace, obstacles or delimitations. The

following sections thus will face the results of the application of MPC to the

Stewart platform, touching the simulation results, the need of an estimator and
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the final experimental results.

Simulation Results

After the modelization of the platform, a first attempt to apply Model Predictive

Control to control the plant has been carried out in simulation. The goal is to

verify the applicability of MPC and the consistency between the achieved models.

The positive results allow to carry out further investigations, which nonetheless

require a method to estimate the missing state components which are not provided

directly by the plant. Indeed, Model Predictive Control requires to have access

to the full state vector, while the application under consideration measures only

the position of the ball. The main need is thus to estimate its velocity. The

considered estimation technique is a Kalman filter, since it is able to deal with a

noisy environment, which is the case of a real hardware. Moreover, the considered

Kalman filter has also the possibility to estimate modeled disturbances, which in

this case are within the considered angles. This is related to imperfections of

the considered plate angles, arising from errors of the servo motors positions as

well as light inclinations of the basement of the platform. Therefore, Kalman

filter is a strong candidate to work in strict collaboration with MPC to estimate

and subsequently control the plant. The simulation results have been once again

positive, therefore the insertion of the real hardware in the loop has been carried

out.

Experimental Results

The initial experimental attempt has not been so encouraging, since the use of

the same weights as in simulation have given rise to steady state oscillations in

position. This is due to several non-idealities which arise with the simulation,

like the communication delay. Therefore, the dynamics of the plant has been

decreased by considering higher penalties for the angles of the plate, so that

the ball moves more slowly. By doing this, the steady state oscillations have

disappeared, at the cost of a much slower convergence of the ball. The objective

has become thus to find a proper tuning of the weights matrices to tackle both

convergence speed and steady state oscillation. The proposed solution consists in

angular weights qα, qβ which vary with the position coordinates of the ball xb, yb.

In particular, when the ball is far from the middle of the plate, the weights qα,β
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are set at low values, hence the angles α, β are not highly penalized and the ball

can quickly move towards the center. This aims at having a better convergence

behavior. On the contrary, qα,β are highly increased so that α, β are more strictly

penalized. The objective of this change is to slow down the dynamics of the

whole plant so that the oscillations stop. Furthermore, a blending procedure has

been planned to interpolate the two values for qα,β, in order to not have sudden

changes which might possibly degrade the performance. The results have been

encouraging, since both the issues have been eliminated or at least their effect

deeply reduced. This is because these issues happen in different areas, therefore

control tunings varying with the position represent a valuable solution.

Another challenge regards the compensation of disturbances, whose lack leads to

a steady state offset in position. In order to take them into account, two steps

have been carried out. Firstly, the constant part of the angular disturbances is

estimated looking at the steady state angles α and β: the angles indeed balance for

that constant part and thus their values are the opposite of them. Secondly, the

Kalman filter considers an augmented state vector that includes the disturbances.

Therefore, the varying parts of the angular disturbances are estimated by the

KF and subsequently included in the MPC, together with the constant part, to

compensate for them. The highlighted procedure is able to decrease the steady

state offset from around 0.03m, as shown in fig. 6.7, to less than 0.01m, as

appears in fig. 6.11.

Future Works

To conclude, some considerations about possible future steps which might en-

hance the performance of the plant are presented. A first unsolved issue concerns

the communication delay, which has not been measured or considered within the

model of the plant. A solution to deeply decrease the delay is to directly im-

plement the MPC within the microcontroller. Alternatively, the delay might be

measured and easily included in the discrete linear system.

Another possibility is to substitute the Kalman filter with another kind of es-

timator: a suitable one is Moving Horizon Estimator (MHE), which has been

described within section 3.1. MHE is considered the dual of MPC, since it shares

the moving horizon concept. Moreover, its coexistence with MPC has been al-

ready tackled in many works.

In order to tackle the problems of steady state oscillation and velocity of con-
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vergence, a blending procedure has been implemented. However, the linear in-

terpolation could be replaced by a smoother one, such as an spline. This might

probably enhance the performance of the experimental results.

Finally, the capability of MPC to deal with non-linear state space systems has

already been discussed in chapter 2. Since the Stewart platform has been found

to be easily represented through non linear equations, a non-linear MPC may be

explored to compare its performance with respect to the linear one.
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