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Introduction

As the development of quantum computing starts to seem closer, it ap-
pears imperative to find new protocols able to stay sound under a potential
quantum attack. In fact, most traditional methods heavily rely on factor-
ization or discrete logarithm, and a polynomial-time quantum algorithm is
known for both. On the other hand, some problems arising from lattices
seem to be difficult both from a classical and quantum point of view.

In addition to the conjectured quantum resistance, lattice-based schemes
yield some other interesting properties:

• they are simple to implement and highly parallelizable: due to the
very nature of lattices, the operations involved are usually only sums
or matrix-vector multiplication. On top of that, these operations are
modulo a relatively small integer, giving an even stronger bound to
running times;

• they usually enjoy strong security guarantees from worst-case hardness.
This means that breaking their security is proved at least as hard as
solving some lattice problems in any of its instances, including the
worst ones;

making them appear as very desirable and viable alternatives to traditional
methods.

In 1996 Hoffstein, Pipher ad Silverman presented NTRUEncrypt [HPS98],
which is to date the fastest known lattice-based encryption scheme. Its moder-
ate key-sizes, excellent asymptotic performance and conjectured resistance to
quantum attacks make it a perfect candidate to succeed where factorization
and discrete log fail. Unfortunately, no security proof has been produced for
NTRUEncrypt nor for its signature counterpart NTRUSign.

In 2013 Stehlé and Steinfield in [SS11] proposed to apply some mild
modification to the encryption and signature scheme to make them provably
secure in the standard (resp. random oracle) model, under the assumed
quantum (resp. classical) hardness of standard worst-case lattice problems,
restricted to a family of lattices related to some cyclotomic fields. In particu-
lar they showed that if the secret key polynomials of the encryption scheme
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are chosen from discrete Gaussians, then the public key, i.e their ratio, is
statistically indistinguishable from uniform. The security will then follow
from the hardness of the R-LWE problem, proved in [LPR12] and described
in Chapter 2.

The aim of this thesis is to present [SS11] in a slightly more accessi-
ble form, providing some more background and details in some points. On
the other hand, a basic knowledge of algebraic number theory is taken for
granted, and sometimes, to make the work more digestible to the reader,
some not-strictly-necessary or rather technical proofs and details have been
flew over in Chapter 2.

The outline of this work is the following:

• Chapter 1 will be devoted to all the necessary preliminaries;

• Chapter 2 to the presentation of R-LWE problem;

• Chapter 3 to the actual main results in Stehlé’s and Stenfield’s paper.
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Notation

Before getting started, let’s fix some notation:

• If q is a non-zero integer, and (R,+,×) a ring, we let Rq denote the
R/qR and R× the set of invertible elements of R.

• If x,y ∈ Rn, ‖x‖ will always denote the Euclidean norm of x and 〈x,y〉
the Euclidean inner product of x and y.

• If E is a set, we let U(E) denote the uniform distribution over E.

• We will write z ∼ D when the random variable z is sampled from the
distribution D.

• Given two functions f, g : N→ R we will use the following notations:

– f(n) = O(g(n)) if there exist some k > 0 and n0 > 0 such that
for any n ≥ n0, |f(n)| ≤ k · |g(n)|;

– f(n) = Θ(g(n)) if there exist k1, k2 > 0 and n0 > 0 such that for
any n ≥ n0, k1 · g(n) ≤ f(n) ≤ k2 · g(n);

– f(n) = ω(g(n)) if there exist k > 0 and n0 > 0 such that, for any
n ≥ n0, |f(n)| ≥ k · |g(n)|;

– f(n) = Ω(g(n)) if there exist k > 0 and n0 > 0 such that, for all
n ≥ n0, f(n) ≥ k · g(n).

We will also say f(n) = Õ(g(n)) (or Θ̃(g(n)), ω̃(g(n)), Ω̃(g(n))) if
f(n) = O(g(n)) (or Θ(g(n)), ω(g(n)),Ω(g(n)) respectively) up to a
log(n) factor.

• A function f(n) is said negligible if f(n) = n−ω(1) and a sequence of
events En holds with overwhelming probability if Pr[¬En] ≤ f(n) for
a negligible function f .

In practice, we consider negligible an amount < 2−30.

• We will say a cryptosystem has n bits of security when on average at
least 2n operations are required to break it.

• K will be used for number fields, OK for the ring of integers of K.
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Chapter 1

Preliminaries

In this chapter we collect some results that are crucial to the under-
standing of what follows. We will start by giving the definitions and briefly
illustrating some of the properties of lattices, to move to the depiction of
the problems that make them interesting for cryptographic purposes. After
that some probability and number theory tools will be given, since they
are necessary to describe LWE problem. These can be found in literature
in [Reg09], [HPSS08], [Pei16]. We will continue by illustrating the NTRU
cryptosystem in a slightly different form than the original, as presented in
[MR08], and conclude by providing some technical results on random q-ary
lattices, where q is an integer number.

1.1 Lattices

1.1.1 Definitions and first properties

Definition 1.1.1. An n-dimensional (full-rank) lattice L is the free abelian
group generated by a basis b1, . . . ,bn of Rn. The integer n is called the
dimension of the lattice.

The set {b1, . . . ,bn} is still called a basis of L and can be written in the
form of a matrix B = [b1, . . . ,bn] ∈ Rn×n whose columns are the vectors of
the basis. From this we can obtain the lattice generated by B as L(B) = {Bx |
x ∈ Zn}. The fundamental domain of L is F(L) = {

∑n
i=1 tibi | ti ∈ [0, 1]}

and its volume is a constant of the lattice, called det(L).

Remark 1.1.2. Once a basis is given, another can be obtained through an
invertible matrix with integer coefficients (i.e. an element of GLn(Z)), which
has determinant ±1. Though very rigid, these transformations are of great
interest, as the problems we are going to see in the next section can be very
hard or very easy depending on the used basis. Typically we will call a “good”
basis one composed by short and almost orthogonal vectors (according to
the euclidean norm).
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Definition 1.1.3. The minimum of a lattice L is the euclidean norm of any
of its non-zero shortest vectors, namely the positive real number

λ1(L) := min{‖x‖ | x ∈ L}.

This notion can be generalized to define the i-th successive minimum λi(L)
as the smallest r ∈ R such that L has exactly i linearly independent vectors
of length at most r.

Definition 1.1.4. The dual lattice L∨ of a lattice L is

L∨ := {v ∈ Rn | 〈v,x〉 ∈ Z, ∀x ∈ L}.

Definition 1.1.5. A lattice L ⊆ Zn is said q-ary for some integer q if
qZ ⊆ L.

Let us denote R = Z[x]/Φ, where Φ ∈ Z[x] is a monic irreducible
polynomial of degree n. For a ∈ Rmq , consider the following families of
R-modules:

L(a) = {(t1, . . . , tm) ∈ Rm | ti = ais mod q for i = 1, . . . ,m and s ∈ Rq} ;

a⊥ =
{

(t1, . . . , tm) ∈ Rm |
∑

aiti = 0 (mod q)
}
.

These correspond to mn-dimensional lattices via the map sending an
element of Rm to the concatenation of the vectors of coefficients. Since these
lattices are obviously q-ary, they are called module q-ary lattices.

1.1.2 Computational problems

Most of the time, proving the security of a cryptosystem means to show
that breaking it is as hard as solving some computational problem known -
or assumed - to be hard. Here we present those problems arising from lattices
that are useful to our purposes.

Definition 1.1.6. Given an arbitrary basis B of a lattice L = L(B), the
Shortest Vector Problem (SVP) consists in finding a shortest non-zero lattice
vector, i.e. a vector v ∈ L such that ‖v‖ = λ1(L).

Definition 1.1.7. Given an arbitrary basis B of a lattice L = L(B) and
a point x in Rn, the Closest Vector Problem (CVP) consists in finding the
lattice vector whose distance from x is minimal.

In most practical applications, we use an approximation of this problems
for the average case to worst case reductions. In particular, these instances
are parametrized by an approximation factor γ ≥ 1, usually polynomial in
the dimension n of the lattice.
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Definition 1.1.8. Given an arbitrary basis B of an n-dimensional lattice
L = L(B), the Approximate Shortest Vector Problem (SVPγ) consists in
finding a non-zero lattice vector v such that ‖v‖ ≤ γ(n) · λ1(L).

Definition 1.1.9. Given a basis B of an n-dimensional lattice L = L(B),
the Approximate Shortest Independent Vector Problem (SIVPγ) requires to
find a set S = {s1, . . . , sn} of n linearly independent lattice vectors with
‖si‖ ≤ γ(n) · λn(L) for all i = 1, . . . , n.

A key point in the next chapter will be the possibility to reduce from the
search problems defined in Definition 1.1.8 and 1.1.9 to the relative decision
problem.

Definition 1.1.10. Given an arbitrary basis B of an n-dimensional lat-
tice L = L(B), the Decisional Approximate SVP (GapSVPγ) consists in
distinguishing whether λ1(L) ≤ 1 or λ1(L) > γ(n).

Remark 1.1.11. We can see that GapSVPγ is a promise problem, i.e it is a
decision problem in which the “yes” and “no” instances do not exhaust the
set of all possible inputs. In particular, nothing can be said if 1 < λ1(L) ≤ γ,
therefore the choice of the parameter becomes crucial.

The last problem we present is very important for the Learning with
Errors problem and asks to find the unique lattice vector that is the closest
to a given point t ∈ Rn, which is known to be “sufficiently” close to the
lattice.

Definition 1.1.12. Given a basis B of an n-dimensional lattice L = L(B),
and a target point t ∈ Rn such that dist(t, L) < d = λ1(L)/(2γ(n)), the
Bounded Decoding Distance problem (BDDγ) consists in finding the unique
lattice vector v ∈ L such that ‖t− v‖ < d.

To the best of our knowledge, when the approximation factor γ is polyno-
mial in n the problems presented so far turn out to be intractable both with
a classical and a quantum approach. Therefore, it is conjectured that there
is no polynomial-time classical or quantum algorithm that solves worst-case
approximated lattice problems when γ = poly(n).

1.2 Discrete Gaussian distributions

Many modern cryptographic protocols make use of a discrete form of
the Gaussian distribution over lattices, called discrete Gaussian distribution.
Here we present the results we are going to need in the rest of the treatise.

Definition 1.2.1. For any positive integer n, vector c ∈ Rn and real s > 0,
the Gaussian function ρs,c : Rn → R+ of parameter (or width) s and centered
in c is defined as

ρs,c(x) := exp

(
−π‖x− c‖2

s2

)
,
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where ‖x‖ denotes the euclidean norm of x.
Since the total measure associated to ρr is R

∫
x∈Rn ρs,c(x)dx = sn, by

normalizing we get the continuous Gaussian distribution, defined by the
probability density,

Ds,c(x) :=
ρs,c(x)

sn
.

We will omit s if s = 1 and c if c = 0.

Remark 1.2.2. It’s easy to see that ρs is invariant under rotations of Rn
and that ρs(x) =

∏n
i=1 ρs(xi). This means that a sample from the Gaussian

distribution Ds can be obtained by taking n independent samples from the
1-dimensional Gaussian distribution.

Definition 1.2.3. For any countable set A and any real parameter (width)
s > 0, the discrete Gaussian probability distribution DA,s is defined as

∀x ∈ A, DA,s(x) :=
ρs(x)

ρs(A)
;

with ρs(A) =
∑

x∈A ρs(x).

As we will be working with number fields, let s1 and s2 be natural
numbers, we introduce

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 | xs1+s2+j = xs1+j ∀j ≤ s2} ⊆ Cn.

Let n = s1 + 2s2 and let us define the following basis {hi}i≤n of H:
hj = ej for j ≤ s1

hj = 1√
2
(ej + ej+s2) for s1 < j ≤ s1 + s2

hj = i√
2
(ej−s2 − ej) for s1 + s2 < j ≤ s1 + 2s2 = n.

This basis makes H isomorphic to Rn as an inner product space and
allows us to give the following definition:

Definition 1.2.4. Given r = (r1, . . . , rn) ∈ (R+)n, with n = s1 + 2s2 and
such that rj+s1+s2 = rj+s1 for each j ∈ {1, . . . , s2}, a sample from the
elliptical Gaussian distribution Dr is given by

∑n
i=1 xihi, where each xi is

chosen independently from the 1-dimensional Gaussian distribution Dri over
R.

Definition 1.2.5. For a lattice L and a real ε > 0, the smoothing parameter
η(L) is the smallest λ > 0 such that ρ1/λ(L∨ \ {0}) ≤ ε.

Definition 1.2.6. Let D1,D2 be two probability density functions on Rn;
the statistical distance between them is

∆(D1, D2) :=

∫
Rn
|D1(x)−D2(x)|dx
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in the continuous case and

∆(D1, D2) :=
∑
x∈S
|D1(x)−D2(x)|

in the case of a discrete set S.

Here we state some technical lemmas that are more or less classical in
literature, see e.g. [Ban93],[HPSS08], [Pei16].

Lemma 1.2.7. Let f : Rn → C be a function and f̂ denote its Fourier
transform. Then for any lattice L, it holds that f(L) = det(L∨)f̂(L∨).

Lemma 1.2.8. For any lattice L, positive real s > 0 and vector c, we have
ρs,c(L) ≤ ρs(L).

Lemma 1.2.9. For any full-rank lattice L ⊆ Rn and δ > 0, we have

ηδ(L) ≤
√

log(2n(1 + 1/δ))

π
λn(L).

Proof. Let s =

√
log(2n(1+1/δ))

π . We want to show that ρ1/s(L
∨ \ {0}) ≤ δ.

Let v1, . . . ,vn be linearly independent vectors in Rn of length at most
λn(L) and define the set Si,j = {x ∈ L∨ | 〈vi,x〉 = j ∈ Z}. For any
fixed i these sets form a partition of L∨, and since v1, . . . ,vn are linearly
independent, every x ∈ L∨ must have non-zero product with at least one of
the vectors. Hence L∨ \ {0} =

⋃n
i=1(L∨ \ Si,0).

For every i = 1, . . . , n, let ui = vi/‖vi‖2 be a vector of length 1/‖vi‖ ≥
1/λn(L) pointing the same direction as vi. For all j ∈ Z, we obtain

ρ1/s(Si,j) = exp(−π‖jsui‖)2ρ1/s(Si,0 − jui)

and since Si,j − jui is a shift of the set Si,0, there exists some vector w
(orthogonal to ui) such that Si,j − jui = Si,0 − w. Now, by the previous
lemma

ρ1/s(Si,j − jui) = ρ1/s(Si,0 −w) = ρ1/s,w(Si,0) ≤ ρ1/s(Si,0)

and, using ‖ui‖ ≥ 1/λn(L) and the bound
∑

j 6=0 x
−j2 ≤ 2

∑
j>0 x

−j =
2/(x− 1) (for x > 1), we get

ρ1/s(L
∨ \ Si,0) =

∑
j 6=0

ρ1/s(Si,j)

≤
∑
j 6=0

e−π(s/λn)2j2ρ1/s(Si,0)

≤ 2

eπ(s/λn)2 − 1
ρ1/s(Si,0)

=
2

eπ(s/λn)2 − 1
(ρ1/s(L

∨)− ρ1/s(L
∨ \ Si,0)).
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Since ρ1/s is positive, we can write

ρ1/s(L
∨ \ {0}) ≤

∑
j 6=0

ρ1/s(L
∨ \ Si,0) ≤ 2n

eπ(s/λn)2 + 1
ρ1/s(L

∨)

and, using ρ1/s(L
∨) = 1 + ρ1/s(L

∨ \ {0}), we get

ρ1/s(L
∨ \ {0}) ≤ 2n

eπ(s/λn)2 + 1− 2n
<

2n

eπ(s/λn)2 − 2n
:= δ,

which concludes the proof.

Lemma 1.2.10. Let B denote the unitary ball centered in 0. For each
t ≥ (2π)−1/2 and u ∈ Rn, one has:

1. ρ(L \ t
√
nB) < (t

√
2πe e−πt

2
)nρ(L),

2. ρ(L+ u) \
√
nB < 2(t

√
2πe e−πt

2
)nρ(L).

Lemma 1.2.11. For any n-dimensional full-rank lattice L, c ∈ Rn and reals
σ ≥ ηδ(L), δ ∈ (0, 1), we have

Pr
x∼DL,σ,c

[
‖x− c‖ > σ

√
n
]
≤ 1 + δ

1− δ
· 2−n.

Proof. It is enough to prove the statement for σ = 1. Let us write

Pr
x∼DL,σ,c

[
‖x− c‖ > σ

√
n
]

=
ρ((L− c) \

√
nB)

ρc(L)
,

where B indicates the unitary ball centered in the origin. By Lemma 1.2.10,
with a constant t = 1 the numerator is bounded by 2−nρ(L), and by Lemma
1.2.7 we get

ρc(L) = det(L∨)ρ̂c(L∨)

= det(L∨)
∑
y∈L∨

ρ̂c(y)

= det(L∨)
∑
y∈L∨

e−2πi〈c,y〉ρ̂(y)

= det(L∨)(1 + ε)

where |ε| ≤ |ρ(L∨) \ {0}| ≤ δ. Hence we have ρc(L
∨) ≥ det(L∨)(1 − δ),

ρ(L) ≤ det(L∨)(1 + δ) and thus 2−nρ(L)/ρc(L) ≤ 2−n 1+δ
1−δ .

Corollary 1.2.12. For any full-rank lattice L ⊆ Rn, c ∈ Rn, δ ∈ (0, 1) and
σ ≥ ηδ(L), we have ρσ,c′(L

′) = σn

det(L)(1 + ε) for some |ε| < δ, and therefore

ρσ,c(L)

ρσ(L)
∈
[

1− δ
1 + δ

, 1

]
.
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Corollary 1.2.13. For any n-dimensional full-rank lattice L, c ∈ Rn, reals
δ ∈ (0, 1), σ ≥ 2ηδ(L) and b ∈ L we have

DL,σ,c(b) ≤ 1 + δ

1− δ
· 2−n.

Corollary 1.2.14. Let L′ ⊆ L ⊆ Rn be full-rank lattices. Then for any
c ∈ Rn, δ ∈ (0, 1/2) and σ ≥ η(L′),

∆(DL,σ,c mod L′, U(L/L′)) ≤ 2δ,

where DL,σ,c mod L′ means that the samples of DL,σ,c (which are elements
of L) are then reduced modulo L′.

Lemma 1.2.15. There exists a polynomial-time algorithm that takes as
input any basis {bi} of any lattice L ⊆ Zn and σ = ω(

√
log n) max ‖bi‖

and returns samples from a distribution whose statistical distance to DL,σ is
negligible with respect to n.

Lemma 1.2.16. For any full-rank lattice L ⊆ Rn, c ∈ Rn, δ ∈ (0, 1) and
σ ≥ ηδ(L), t ≥

√
2π, σ ≥ t/

√
2π and unit vector u ∈ Rn, we have

Pr
b∼DL,σ,c

[
|〈b− c,u〉| ≤ σ

t

]
≤ 1 + δ

1− δ

√
2πe

t
.

Moreover, if σ ≥ ηδ(L),

Pr
b∼DL,σ,c

[|〈b− c,u〉| ≥ σt] ≤ 1 + δ

1− δ
te−πt

2√
2πe.

Proof. Let U be an orthonormal matrix, uT its first row and choose b′ ∼
DL′,σ,c′ , with L′ = UL and c′ = Uc. Defining X as the random variable that
corresponds to the first component of b′ − c′ we have

Pr
[
|X| ≤ σ

t

]
=

(ρσ,c′ · 1σ/t,c′)(L′)
ρσ,c′

where 1σ/t,c′(x) has value 1 if |x1 − c′1| ≤ σ/t and 0 otherwise. To estimate
the denominator we use that ηδ(L

′) = ηδ(L) and det(L′) = det(L), so by
Corollary 1.2.12 we have ρσ,c′(L

′) = σn

det(L)(1 + ε) for some |ε| < δ. For the

numerator, for any x ∈ Rn we have 1σ/t,c′(x) ≤ eK(1− |x1−c
′
1|

2

σ2/t2
)

for a constant

K = 1
2 −

π
t2
∈ [0, 1

2 ]. As a consequence we have

(ρσ,c′ · 1σ/t,c′)(L′) ≤ eKρσ,Dc′(DL
′),

where D is a matrix with the upper left element equals to
√

1 + Kt2

π and is the

identity elsewhere. A straight-forward computation shows that det(DL′) =
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√
1 + Kt2

π det(L′) =
√

1 + Kt2

π det(L) and ηδ(DL
′) ≤

√
1 + Kt2

π ηδ(L
′), there-

fore σ respects the hypotheses and we can apply Corollary 1.2.12 again to
get

Pr
[
|X| ≤ σ

t

]
=

(ρσ,c′ · 1σ/t,c′)(L′)
ρσ,c′

≤
eKρσ,Dc′(DL

′)
σn(1+ε)
det(L)

≤ e
1
2 e−

π
t2√

1 + Kt2

π det(L′)

1 + ε

1− ε

≤ e
1
2 e−

π
t2√

1 + Kt2

π det(L′)

1 + δ

1− δ

Now by the hypotheses on t we have that e−
π
t2 < 1, and since

√
1 + Kt2

π =√
1 +

(
1
2 −

π
t2

)
t2

π = t/
√

2π we obtain

e
1
2 e−

π
t2√

1 + Kt2

π det(L′)

1 + δ

1− δ
≤ 1 + δ

1− δ

√
2πe

t
,

which is the result we wanted.
The proof of the second statement is completely analogous to the first

one.

1.3 Ideal lattices

In this section we present a special class of lattices, that correspond to
ideals in the ring of integers of a number field.

Definition 1.3.1. Let K be a number field of degree n, R = OK and let σ
be any additive injective map σ : R → Cn. The family of ideal lattices for
the ring R and the embedding σ is the set of lattices σ(I) for integral ideals
I ⊆ R.

Traditionally, when we work with lattices this embedding is the component-
wise immersion, sending the polynomial f =

∑
fix

i to the component vector
f = (f1, . . . , fn), which, by the definition of number field, is an element of
Rn. In order to present the Ring-Learning With Errors problem, though, we
are going to consider the canonical embedding, more often used in algebraic
number theory.
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Given any number field K = Q(ζ) of degree n we can consider n field
homomorphisms σi : K → C that fix any element of Q and map ζ to each of
its conjugates. We indicate the number of real embeddings with s1 and the
number of pairs of complex embeddings with s2, hence n = s1 +2s2. Moreover
we can sort them in such a way that σj with j ≤ s1 is a real embedding and
for j > s1 the embeddings are the complex ones and σj+s1+s2 = σj+s1 .

Definition 1.3.2. The canonical embedding is the map

σ : K −→ Rs1 × C2s2

x 7−→ σ(x) = (σ1(x), . . . , σn(x)).

This canonical embedding has the property that both addition and
multiplication are component-wise. Moreover, due to the pairing of the
complex embeddings, σ maps to the space H defined in the previous section
and given an integral ideal I with Z-basis {u1, . . . , un}, we have that σ(I) ⊆ H
is an ideal lattice with basis {σ(u1), . . . , σ(un)}.

Another advantage using this embedding is that it allows to think of
the Elliptical Gaussian Distribution as a distribution over KR := K ⊗Q R,
identifying KR with H and defining the distribution Dr of x⊗ s ∈ KR as the
distribution Dr of σ(x)s ∈ H with r′i = ri|σi(x)|.

1.4 NTRU cryptosystem

NTRU is a public key cryptosystem introduced in [HPS98] by Hoffstein,
Pipher and Silverman, and it is up-to-date the most efficient lattice-based
cryptosystem and the most used in practice. Even though no proof of security
supporting NTRU is known, the inefficiency of the best currently known
attacks seems to suggest confidence in the security of the scheme. We will
first present it in its original form, but then we will also show a different
interpretation provided in [MR08], i.e. we will see it as a particular instance
of the more general GGH framework.

1.4.1 The original NTRU

Let us fix a prime number n, two integers p and q such that gcd(N, q) =
gcd(p, q) = 1 and denote R = Z[x]/(xn − 1).

Definition 1.4.1. For any positive integers d1 and d2, we define

T (d1, d2) =


f has d1 coefficients equal to 1,

f ∈ R : f has d2 coefficients equal to −1,

f has all other coefficients equal to 0


as the set of ternary polynomials.

9



The NTRUEncrypt key with (public) parameters (N, p, q, d) is built as
follows: we first randomly choose two polynomials

f ∈ T (d+ 1, d) and g ∈ T (d, d),

where f is discarded and resampled until it is invertible both in Rp and Rq.
We store f as the secret key sk and then compute fp

1 and fq, the inverses
of f respectively in Rp and Rq, to obtain the public key pk:

h = fqg ∈ Rq.

Remark 1.4.2. A polynomial f ∈ T (d, d) is never invertible in Rq, because
for such f we have f(1) = 0, so gcd(f, xn − 1) = x− 1 6= 1.

Algorithm 1 Encryption Key Generation

Input: N , p primes, q, d positive integers, with gcd(p, q) = gcd(N, q) = 1.

1: Choose f ∈ T (d+ 1, d) invertible both in Rp and Rq
2: Choose g ∈ T (d, d)
3: Compute fq, the inverse of f in Rq
4: Compute fp, the inverse of f in Rp
5: Return secret key sk = f and public key pk = h = fqg

Output: The key pair (sk, pk)

Let us now encode our plaintext through a polynomial m ∈ R whose
coefficients all lie in the interval [−p/2, p/2], i.e. the center-lift of an element
in Rp. To encrypt our message we randomly choose s ∈ T (d, d) and compute

c = phs+m mod q.

Proposition 1.4.3 (NTRU Decryption). If the NTRUEncrypt parameters
(N, p, q, d) satisfy

q > (6d+ 1)p,

then it is always possible to recover the message m from the ciphertext c.

Proof. Let the ciphertext be c = phs+m mod q as above. To decrypt the
message we first multiply both sides by f :

fc = pgs+ fm mod q.

We now want to reduce further modulo p, but we first have to make sure fc
mod q is the same as fc in R. To prove this, we need to bound its coefficients
when computed before the reduction modulo q. Let us use the notation
‖f‖∞ := max0≤i≤n{fi}.

1fp is not really needed for the key generation, but, since it will be used in the decryption
process, it is usually stored at this stage to gain in efficiency.
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By construction we have g, s ∈ T (d, d), so ‖gs‖∞ ≤ 2d. On the other
hand, f ∈ T (d+1, d) and the coefficients of m are in [−p/2, p/2], so ‖fm‖∞ ≤
(2d+ 1)p2 . Combining the two we obtain

‖pgs+ fm‖∞ ≤ p‖gs‖∞ + ‖fm‖∞ ≤ p · 2d+ (2d+ 1)
p

2
= p

(
3d+

1

2

)
.

Our assumption implies that all the coefficients of fc are also smaller than
q/2, which means we can look at it as an element in R rather than Rq. We
can now finally reduce modulo p:

(fc mod q) mod p = fm mod p,

and multiplying by fp we get m mod p. Now being all the coefficients of m
in [−p/2, p/2], we have that m mod p is exactly m.

Remark 1.4.4. The bound in the result above is actually very strong, because
it is very unlikely to have the coefficients line up in such a way to reach the
maximum in the products. For this reason, much smaller values of q are used
in practice, chosen to verify that the decryption failure probability is smaller
than 2−80.

Algorithm 2 Encryption and Decryption

Encryption
Input: The NTRU parameters (N, p, q, d), the public key pk = h, a message
m ∈ R with coefficients in [−p/2, p/2]

1: Choose random s ∈ T (d, d)
2: Compute c = phs+M mod q

Output: The ciphertext c

Decryption
Input: The NTRU parameters (N, p, q, d), the secret key sk = f (and
eventually fp), the ciphertext c.

1: Compute fc = pgs+ fm mod q
2: Reduce both sides modulo p: (fc mod q) mod p = fm mod p
3: Compute fpfm mod p

Output: The plaintext m

1.4.2 The GGH/HNF public key cryptosystem

The GGH cryptosystem was proposed by Goldreich, Goldwasser, and
Halevi in [GGH97], and it is the analogue for lattices of the McEliece cryp-
tosystem in [McE78] which was based on the hardness of decoding linear
codes over finite fields. We will here present it quickly:
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• The private key is a“good” lattice basis B. Good basis have the property
to make the solution of CVP easy, provided that the target s very close
to the lattice.

• The public key is a “bad” lattice basis H of the same lattice L(B) =
L(H). In a sense, the “worst” possible basis is the Hermite Normal
Form (HNF) of B, as it can be efficiently computed from any basis B′

of L(B). Moreover any attack on the HNF public key can be easily
adapted to work with B′ simply by first computing H from B′ itself.

• The encryption consists in encoding the message into a short noise
vector r and adding it to chosen lattice point v.

• The decryption requires to find the lattice point v which is closest to
the ciphertext c = (r mod H) = v+r, to get the error vector r = c−v.

• The signature is obtained applying Babai’s round-off CVP approx-
imation algorithm2 to get a lattice vector close to the message m:
s = BbB−1me. To verify the signature, one needs to check that
s ∈ L(H) and compute the distance ‖s − m‖ to assure that it is
sufficiently small.

The correctness of this cryptosystem relies on the fact that the error
vector r is short enough for the lattice point v to be recovered from c using the
private basis B, e.g., by using Babai’s round-off method, v = BbB−1(v + r)e.

On the other hand, the security depends on the assumption that solving
this instance of the closest vector problem in L(B) = L(H) is computationally
hard without knowing of B.

Even though no asymptotically good attack to GGH is known, some
attacks break the cryptosystem in practice for moderately large values of the
security parameter. This can be avoided by making the security parameter
even bigger, but that makes the cryptosystem impractical. In fact, Ω(n2)
storage is needed for the lattice basis, so the encryption/decryption running
times also grow quadratically in the security parameter. This issue raises the
need of a more compact representation, and it will be addressed in the next
section.

1.4.3 NTRU cryptosystem as a GGH method

Let T be the linear transformation that given a vector v = (v1, . . . , vn)
cyclically permutes its entries, i.e. Tv = (v2, . . . , vn, v1). For every vector

2Let b1, . . . ,bn be a basis for a full rank lattice in Rn and a target w ∈ Rn. We
can write w =

∑n
i=1 libi with li ∈ R where the li’s are found computing the vector

l = (l1, . . . , ln) = B−1w. Babai’s round-off consists in setting v =
∑n
i=1bliebi, (where bxe

indicates the closest integer to x) i.e. computing v = BbB−1we. This procedure can be
performed using any basis for the lattice, but it works only for a “good” basis.
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v ∈ Zn define T ∗v = [v, Tv, . . . , Tn−1v] to be the circulant matrix of v.
NTRU uses 2n-dimensional lattices satisfying the following properties:

• they are closed under the linear transformation that maps the vector
(x,y) (where x and y are n-dimensional vectors) to (Tx, Ty), i.e.,
the vector obtained by cyclically rotating the coordinates of x and y
individually;

• they are q-ary lattices, so the membership of (x,y) in the lattice only
depends on (x,y) mod q.

The parameters of the system are a prime number n and three integers q,
p and df , and it works as follows:

• private key : the private key is a short vector (f ,g) ∈ Z2n. To this vector
one associates a lattice Λq = L((T ∗f , T ∗g)T ), which is the smallest
lattice with the properties above to contain (f ,g). For a correct and
efficient functioning of the public key computation, encryption and
decryption, these vectors must comply to the following restriction:

– the matrix [T ∗f ] shall be invertible modulo q;

– the secret vectors f ∈ e1 + {p, 0,−p}n and g ∈ {p, 0,−p}n are
randomly chosen in such a way that f − e1 and g have exactly
df + 1 positive entries, df negative ones and all others will be
zeros.

• public key : in accordance with the general GGH/HNF case, the public
key for NTRU corresponds to the HNF of the lattice Λq defined by the
private key. Due to the properties of such lattice and the restriction
we imposed on the choice of f , the public key ends up looking as the
following: [

I 0
h qI

]
,

where h = [T ∗f ]−1g. Therefore it can be represented in a compact way
through the only vector h ∈ Z2n.

• encryption: first the message is encoded as a vector m ∈ {1, 0,−1}n
with exactly df + 1 positive entries and df negative ones. It is then
concatenated to a randomly chosen vector r ∈ {1, 0,−1}n also with
exactly df + 1 positive entries and df negative ones, so in the end we
have a short vector (−r,m) ∈ {1, 0,−1}2n. We can consider this as the
error vector used in the general GGH case and reduce it modulo the
public basis H to get a new vector (0, (m + [T ∗h]r) (mod q)). Since
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the first n coordinates of such vector are always 0, we can store the
ciphertext using only the n remaining entries and get c = m + [T ∗h]r
(mod q).

• decryption: for the decryption, we first notice that for any vectors f ,h
holds [T ∗f ][T ∗h] = [T ∗([T ∗f ]h)]. Thus we perform

[T ∗f ]c mod q = [T ∗f ]m+[T ∗f ][T ∗h]r mod q = [T ∗f ]m+[T ∗g]r mod q

and since all the coordinates of [T ∗f ]m+[T ∗g]r are bounded in absolute
value by q/2, so they are also the exact integers values. To conclude,
we reduce

[T ∗f ]m + [T ∗g]r mod p = I ·m + 0 · r = m.

It is important to remark that we need df < (q/2 − 1)/(4p) − (1/2)
for the bound on the coordinates to hold, even though the decryption
might work with high probability for larger values of df .

Like for GGH, no security proof is known for NTRU, and the confidence
in the scheme is due to the inefficiency of the currently known attacks.

Remark 1.4.5. In the table, we find listed some of the current set of suggested
parameters for NTRU. The security is expressed in bits, where k bits of
security means that the best known attack needs to perform at least the
equivalent of 2k NTRU encryptions operation. On the other hand, the
parameter df is chosen in such a way that a honest user decryption errors
happen with probability less than 2−k.

Estimated security (bits) n q df key size (bits)

80 257 210 77 2570

80 449 28 24 3592

256 797 210 84 7970

256 14303 28 26 114424

We are not going to dive any deeper into the standard choice of parameters,
but more on the the topic and the table above can be found in [HG07].

1.5 Additional results

Here we introduce some more technicalities that will be necessary in
Chapter 3.
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1.5.1 Random q-ary lattices

In this section we are going to generalize the defiintions of a⊥ and L(a)
to comprehend also the ideals of Rq = Z[x]/〈q,Φ〉. Let Φ =

∏
i<kq

Φi be the
factorization in irreducible factors modulo q, where in fact all the factors
have the same degree dq = n/kq. Any ideal of Rq is of the form

IS :=

(∏
i∈S

Φi

)
Rq = {a ∈ Rq | ∀i ∈ S, a = 0 mod Φi},with S ⊆ {1, . . . , kq}

and we can call LS the lattice corresponding to the ideal 〈q,
∏
i∈S Φi〉, i.e.

LS = {x ∈ R | (x mod q) ∈ IS}.
Given a ∈ Rmq let us define the following families of R-modules:

a⊥(IS) :=
{

(t1, . . . , tm) ∈ Rm | ∀i, (ti mod q) ∈ IS ,
∑
i

tiai = 0 mod q
}
,

L(a⊥, IS) :=
{

(t1, . . . , tm) ∈ Rm | ∃s ∈ Rq,∀i, (ti mod q) = ai · s mod IS
}
,

where S ⊆ {1, . . . , kq}. We remark that a⊥(IS) is the intersection of a⊥

with the cartesian product of m copies of LS , and that if S = ∅ (resp.
S = {1, . . . , n}) then a⊥(IS) = a⊥ (resp. L(a⊥, IS) = L(a)).

We are now going to show that these two modules are one the dual of
the other. In the ring R we have x−1 = −xn−1, so the map R→ R, a(x) 7→
a?(x) = a(x−1) is a ring automorphism. This map induces a bijection from
the set of factors Φi to itself and it has a useful matrix interpretation: let A
denote the n×n matrix having as its i-th row the coefficient vector of xi ·a(x)
for i = 0, . . . , n−1, then a?(x) has coefficient vector the first column of A. For
an ideal IS =

(∏
i∈S Φi

)
Rq of R, we let I?S denote the ideal

(∏
i∈S Φ?

i

)
Rq.

Lemma 1.5.1. Let S ⊆ {1, . . . , kq}, S be the complement of S, a ∈ Rmq and
a? ∈ Rmq be defined by a?i = ai(x

−1), for all i ≤ m. Then considering both
sets mn-dimensional lattices:

a⊥(IS)∨ =
1

q
L(a?, I?

S
).

Proof. Let us first prove that 1
qL(a?, I?

S
) ⊆ a⊥(IS)∨. Take t = (t1, . . . , tm) ∈

a⊥(IS) and u = (u1, . . . , um) ∈ L(a?, I?
S
), write ti =

∑
j<n ti,jx

j and

ui =
∑

j<n ui,jx
j for any i ≤ m, we want to show that

∑
i≤m,j≤n ti,jui,j = 0

mod q. This is equivalent to show that the constant coefficient of the polyno-
mial

∑
i≤m tiu

?
i is 0 modulo q, therefore it is enough to show that 〈t,u?〉 = 0

mod q.
By definition of the ui’s, there exists s ∈ Rq such that (ui mod q) =

a?i s+ bi for some bi ∈ I?S . Hence, modulo q,

〈t,u?〉 = s?〈t,a〉+ 〈t,b?〉 = 0,
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where b = (b1, . . . , bm). The previous equality holds because 〈t,a〉 = 0 mod
q by the definition of t and 〈t,b?〉 = 0 mod q because (ti mod q) ∈ IS and
b?i ∈ IS for each i ≤ m. Thanks to this, we have the inclusion we wanted.

The inverse inclusion 1
qL(a?, I?

S
) ⊇ a⊥(IS)∨ is equivalent by duality to

1
qL(a?, I?

S
)∨ ⊆ a⊥(IS), and to show the latter, we just have to consider the

elements of L(a?, IS) corresponding to s = 1 and repeat a process analogous
to the previous inclusion.

The next step is to show that for a uniformly chosen a ∈ (R×q )m , the
lattice L(a, IS) is extremely unlikely to contain unusually short vectors
for the infinity norm, i.e. remarkably shorter than the Minkowski upper

bound det(L(a, IS))
1
mn = q

(1− 1
m

)
|S|
kq on λ∞1 (L(a, IS)). Observe that we have

that det(L(a, IS)) = q(m−1)|S|dq because there are q|S|dq+m(n−|S|dq) points of
L(a, IS) in the cube [0, q − 1]mn .

We are then going to give two lower bounds for short vectors: the first
lower bound is useful for all parameter settings and matches the Minkowski
upper bound up to a factor 1√

n
q−ε for an arbitrarily small constant ε > 0;

the second is specific to the case |S| = kq and matches the Minkowski bound
up to a factor q−kqε, improving on the first by a factor ≈

√
n in the case

kq = O(1).

Lemma 1.5.2. Let n ≥ 8 be a power of 2 and q ≥ 5. Assume that Φ = xn+1
splits into kq distinct irreducible factors modulo q of degree dq = n/kq. Then,
for m ≥ 2 and ε > 0, we have

λ∞1 (L(a, IS)) ≤

 1√
n
q

(m−1)
|S|
dq
−ε

for any 0 ≤ |S| ≤ kq

q1− 1
m
−kqε for |S| = kq

with probability greater than 1−24mnq−εmn over the uniformly random choice
of a ∈ (R×q )m.

Proof. By the Chinese Remainder Theorem, we know that Rq and R×q are

isomorphic respectively to (Fqdq )kq and (F×
qdq

)kq through the isomorphism

t 7→ (t mod Φi)i≤kq . Let ΦS =
∏
i∈S Φi: it is a generator of IS of degree

|S|dq.
Let p denote the probability over the randomness of a that L(a, IS)

contains a non-zero vector t whose infinity norm is strictly smaller than B.
We can give an upper bound for p using the union bound, summing the
probabilities p(t, s) = Pra[∀i, ti = ais mod IS ] over all possible values for t
of infinity norm less than B and s ∈ Rq/IS . Since the ai’s are independent,
we have p(t, s) =

∏
i≤m pi(ti, s), where pi(ti, s) = Prai [ti = ais mod IS ].

If gcd(s,ΦS) 6= gcd(ti,ΦS), there must be some j ≤ n such that either ti
mod Φj = 0 and s mod Φj 6= 0, or ti mod Φj 6= 0 and s mod Φj = 0. In
both cases, we have pi(ti, s) = 0 because ai ∈ R×q , therefore we can assume,
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without losing generality, that gcd(s,ΦS) = gcd(ti,ΦS) (up to multiplication
by an element of F×

qdq
).

We now assume that gcd(s,ΦS) = gcd(ti,ΦS) = ΦS′ for some S′ ⊆ S
of cardinality 0 ≤ k ≤ |S|. For any j ∈ S′, we have ti = ais = 0 mod Φj

regardless of the value of ai mod Φj , while for j ∈ S \ S′, we have s 6= 0
mod φj and there exists a unique value of ai mod Φj such that ti = ais
mod Φj . Moreover, for any j /∈ S, the value of ai mod Φj can be arbitrary
in F×

qdq
. So in the end there are (qdq − 1)kq+k−|S| distinct ai’s in R×q such

that ti = ais mod IS . This means that pi(ti, s) = (qdq − 1)k−|S|. Therefore
we can give the following bound for the probability p:

p ≤
∑

0≤k≤|S|

∑
S′⊆S
|S′|=k

∑
s∈R/IS
ΦS′ |s

∑
t∈Rmq

∀i,0<‖ti‖∞<B
∀i,ΦS′ |ti

(qdq − 1)m(k−|S|).

For |S′| = k, let N(B, k) denote the number of t ∈ Rq such that ‖t‖∞ < B
and t = ΦS′t′ for some t′ ∈ Rq of degree less than n − kdq = n(1 − k/kq).
We are now going to consider two upper bounds for N(B, k), from which we
obtain the claimed bounds on λ∞1 (L(a, IS)).

First, for B = 1√
n
qβ , we say that N(B, k) ≤ 22nq(β−k/kq)n for k < βkq and

0 otherwise. For this, we observe that N(B, k) is the number of points of the
lattice IS′ + qZn = 〈ΦS′ , q〉 in the hypercube C(2B) = {v ∈ Rn | ‖v‖∞ < B}.
Let’s denote λ := λ∞1 (IS′+qZn). If we center a hypercube C(λ) on each of the
N(B, k) points of IS′ + qZn in C(2B), the resulting N(B, k) hypercubes will
not intersect, but they will all be contained within the enlarged hypercube
C(2B + λ), thus giving N(B, k) ≤ vol(C(2B+λ))

vol(C(λ)) = (2B
λ + 1)n. To derive

a lower bound on λ, note that for any t ∈ IS′ we have that the norm
N (t) = N (〈t〉) ≥ N (〈ΦS′ , q〉) = qkdq , where the inequality holds because
〈t〉 ⊆ 〈ΦS′ , q〉 as an ideal, and the last equality is because deg ΦS′ = kdq.

It follows from the arithmetic-geometric inequality that ‖t‖ = 1√
n
T2(t) ≥

N (t)1/n ≥ qk/kq . By equivalence of norms, we can conlude that ‖t‖∞ ≥
λ ≥ 1√

n
qk/kq . Finally, using B = 1√

n
qβ, for k ≥ βkq, we have λ ≥ B, so

N(B, k) = 0, while for k < βkq, we have

N(B, k) ≤
(

2B

λ
+ 1

)n
≤ (2qβ−k/kq + 1)n ≤ 22nq(β−k/kq)n

as claimed.
For the second bound we claim thatN(B, k) ≤ (2B)n−kdq = (2B)n(1−k/kq).

In fact, the degree of ΦS′ is kdq, so the vector t formed by the n− kdq low-
order coefficients of t = ΦS′t

′ is related to the vector t′ formed by the n−kdq
low-order coefficients of t′ by a lower triangular (n− kdq)× (n− kdq) matrix
whose diagonal elements are the non-zero constant coefficients a of ΦS′ . That
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means this matrix is non-singular modulo q and the mapping from t′ to t is
one-to-one providing the claim.

Since the number of s ∈ Rq/IS divisible by ΦS′ is qdq(|S|−k), the upper
bound given above implies that

p ≤ 2(m+1)|S| max
0≤k≤|S|

N(B, k)m

q(m−1)(|S|−k)dq
.

Using the first bound we gave on N(B, k) with B = 1√
n
qβ we get

p ≤ 2(m+1)(|S|+2n) max
0≤k<βkq

q
n
(
m(β− k

kq
)−(m−1)

|S|−k
kq

)
.

Viewing the exponent on the right hand side as a function of k, it is clear
that it reaches its maximum for k = 0, assuming the value −mnε when
β = (1− 1

m) |S|kq − ε and giving therefore the first wanted bound. If |S| = kq

we can use the second bound we gave on N(B, k) with B = qβ . Since in this
case N(B, k) = 0, we have

p ≤ 2(m+1)(|S|+2n) max
0≤k<βkq

q
n((1−β)m−1)

(
k
kq
−1

)
= 2(m+1)(|S|+2n)q

− n
kq

((1−β)m−1)

where the last equality holds for any β ≤ 1− 1
m . Using β = 1− 1

m − kqε, we
obtain the wanted result on λ∞1 (L(a, IS)).

In our analysis of the distribution of the NTRU key g/f with kq = O(1),
we will also use the following lower bound on λ1(a⊥(IS)).

Lemma 1.5.3. Let n ≥ 8 be a power of 2 and q ≥ 5. Assume that Φ = xn+1
splits into kq distint irreduible factors modulo q of degree dq = n/kq. Then,
for m ≥ 2 and ε > 0, we have

λ∞1 (a⊥(IS)) ≥

 1√
n
q

1
m

+(m−1)
|S|
dq
−ε

for any 0 ≤ |S| ≤ kq

q
1
m
−kqε for |S| = 0

with probability greater than 1−24mnq−εmn over the uniformly random choice
of a ∈ (R×q )m.

Proof. Let p denote the probability over a that L(a⊥(IS)) contains a non-zero
vector t of infinity norm less than B. We can bound p from above summing
the probabilities p(t) = Pra[

∑
i≤m aiti = 0 mod q] over all possible values

for t with ‖t‖∞ < B and ti ∈ IS for i = 1, . . . ,m.
By the Chinese Remainder Theorem, we have p(t) =

∏
j≤kq pj(t), where

pj(t) = Pra[
∑

i≤m aiti = 0 mod Φj ]. Let ΦS =
∏
i∈S Φi, ΦS =

∏
i∈S Φi

and ΦS′ = gcd(t1, . . . , tm,ΦS) =
∏
i∈S′ Φi for some S′ ⊆ S of cardinality

0 ≤ k ≤ |S|. For any j ∈ S ∪ S′, we have
∑

i≤m tiai = 0 mod Φj regardless
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of the value of ai mod Φj . On the other hand, or any j ∈ S \S′, there exists
i ≤ m such that ti 6= 0 mod Φj so that for any choice of {aj}j 6=i, there is
a unique value of ai mod Φj such that

∑
i≤m tiai = 0 mod Φj . From this

follows that pj(t) = 1
qdq−1 . As a consequence, we have p(t) = 1

(qdq−1)|S|−k
and

p ≤
∑

0≤k≤|S|

∑
S′⊆S
|S′|=k

∑
t∈Rmq

∀i,0<‖ti‖∞<B
∀i,ΦSΦS′ |ti

1

(qdq − 1)|S|−k
.

For S′ with |S′| = k, let N(B, k) denote the number of t ∈ Rq such
that ‖t‖∞ < B and t = ΦSΦS′t

′ for some t′ ∈ Rq of degree less than
n(1− (k+ |S|)/kq). Like for the previous lemma, we derive two upper bounds
for N(B, k), from which we get the wanted bounds on λ∞1 (L(a, IS)). The
first upper bound, with B = 1√

n
qβ , shows that N(B, k) = 0 for k ≥ βkq−|S|,

while N(B, k) ≤ 22nq(β−(|S|+k)/kq)n for k < βkq − |S|. The second bound is
N(B, k) ≤ (2B)n(1−(|S|+k)/kq). The first bound on N(B, k) with B = 1√

n
qβ,

leads to

p ≤ 22|S|+2n max
0≤k≤kq

q
n
(
m(β− |S|+k

kq
)− |S|−k

kq

)
.

Viewing again the right hand side exponent as a function of k, it is maximized
for k = 0 with value −mnε when β = 1

m + (1 − 1
m) |S|kq − ε giving the first

bound.
In the case |S| = 0, using our second bound on N(B, k) with B = qβ and

noting that N(B, kq) = 0, we get

p ≤ 22|S|+n max
0≤k<kq

q
n(1−mβ)

(
k
kq
−1

)
= 22|S|+nq

n(1−mβ)
(

1− 1
kq

)

where the last equality holds for any β ≤ 1
m . Using β = 1

m − kqε we have the
seond claimed bound.

1.5.2 Regularity bounds for ring Rq

In this section we want to study the closeness to uniformity of the distri-
bution of (m+1)-tuples from (R×q )m×Rq of the form (a1, . . . , am,

∑
i≤m tiai),

where the ai’s are independent and uniformly random in R×q , and the ti’s
are chosen from some distribution on Rq concentrated on elements of small
height. Similarly to [Mic07], we call regularity of the generalized knapsak
funtion (ti)i≤m 7→

∑
i≤m tiai the statistical distance of such distribution to

the uniform one on (R×q )m×Rq. In our particular case, for NTRU applications
we are interested in the case where m = 2.

The result in [Mic07] yelds that when the ai’s are uniformly random
in the whole ring Rq and the ti’s are uniformly random on the subset of
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elements of Rq of height at most d (for some d < q), the regularity bound
is Ω(

√
nq/dm). Unfortunately, for small values of m and q (as in our case

m = O(1) and q = poly(n)) this bound is non-negligible. In order to make
it exponentially small in n one needs to set m log(d) = Ω(n), which in turn
would lead to inefficient cryptographic functions. Now Rq contains n proper
ideals of size qn−1 = |Rq|/q, and the probability ≈ n/qm that all of the
ai’s fall into one such ideal (which implies

∑
tiai to also be in the proper

ideal) is non-negligible for small m. This means that when the ai’s are chosen
uniformly from the whole ring Rq with q = 1 mod 2n, the effective regularity
bound we have to deal with is not much better than the one given above. To
avoid this problem, we will restrict the ai’s to be uniform in R×q and choose
the ti’s from a discrete Gaussian distribution, using a different argument to
prove an exponentially small bound in n.

As a direct consequence of Lemmata 1.2.9, 1.2.14, 1.5.1 and 1.5.2, we
have the following:

Lemma 1.5.4. Let n ≥ 8 be a power of 2 such that Φ = xn + 1 splits into kq
irreducible factors modulo a prime q ≥ 5. Let S ⊆ {1, . . . , kq}, m ≥ 2, ε > 0,
δ ∈ (0, 1/2) and t ∼ DZmn,σ, c ∈ Zmn with

σ ≥


√
n log(2mn(1 + 1/δ))/πq

1−(1− 1
m

)(1− |S|
kq

)+ε
for any 0 ≤ |S| ≤ kq√

n log(2mn(1 + 1/δ))/πq
1
m

+kqε for |S| = 0.

Then for all but a fraction at most 24mnq−εmn of a ∈ (R×q )m we have

∆
[
t mod a⊥(IS), U(R/a⊥(IS))

]
< 2δ.

Using the previous result, we can finally prove our bound.

Theorem 1.5.5. Let n ≥ 8 be a power of 2 such that Φ = xn + 1 splits into
kq irreducible factors modulo a prime q ≥ 5. Let m ≥ 2, ε > 0, δ ∈ (0, 1/2)

and t ∼ DZmn,σ, with σ ≥
√

log (2mn(1 + 1/δ))/πmin(
√
nq

1
m

+ε, q
1
m

+kqε).
Then for all except a fraction at most 24mnq−εmn of a ∈ (R×q )m, we have

ηδ(a
⊥) ≤

√
log (2mn(1 + 1/δ))/πmin(

√
nq

1
m

+ε, q
1
m

+kqε), and the distance
to uniformity of

∑
i≤m tiai is at most 2δ. As a consequence

∆

[(
a1, . . . , am,

∑
i≤m

tiai

)
, U
(

(R×q )m ×Rq
)]
≤ 2δ + 24mnq−εmn.

Proof. For each a ∈ (R×q )m, let Da denote the distribution of
∑

i≤m tiai
where t is sampled from DZmn,σ. If we call ∆a the distance to uniformity of
Da, the above statistical distance is exactly 1

|R×q |m
∑

a∈(R×q )m ∆a. To prove the

theorem it is then enough to show a uniform bound ∆a ≤ 2δ, for all except a
fraction of at most 24mnq−εmn of the possible a ∈ (R×q )m. Now, the mapping
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φ : t 7→
∑

i tiai induces an isomorphism from the quotient group Zmn/a⊥
to Rq, which is the image of φ for to the invertibility of the ai’s. Hence, the
statistical distance ∆a is equal to the distance to uniformity of t mod a⊥.
Since it is needed to study the NTRU key generation algorithm, we will also
study the distance to uniformity of t mod a⊥(IS) for any S ⊆ {1, . . . , kq}.
By Lemma 1.2.14, we already have ∆a ≤ 2δ if σ > ηδ(a

⊥(IS)). Applying
Lemma 1.2.9 we can bound ηδ(a⊥(IS)) from above, reducing ourself to bound
from below the minimum of the dual lattice. By Lemma 1.5.1 we know said
lattice to be a⊥(IS)

∨
= 1

qL(a?, I?
S

), and we know how to do this by Lemma
1.5.2. To conclude, it is enough to use Lemma 1.5.4 with S = ∅ and c = 0.
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Chapter 2

Modern lattice problems

In [Reg09], Regev introduced the average-case problem called Learning
with Errors Problem (LWE). Since then it has appeared as the most suitable
lattice problem to support an encryption scheme and it has also enabled to
build a chosen ciphertext-secure cryptosystem [PW11] and identity based
encryption schemes [CHKP12, GPV08].

We will here give some details and properties on LWE, then we discuss
its hardness and efficiency. Unfortunately, a loss in efficiency was necessary
to prove the hardness in the classical case, making LWE-based protocols
impractical for real-life use. For this reason in [LPR12] Lyubashevsky, Mic-
ciancio and Regev added algebraic structure (namely a ring structure) to
LWE, and this is what we will study in the second part of this chapter.

2.1 Learning With Errors Problem (LWE)

Let n, q and m be integers, ψ an error distribution over Z.

Definition 2.1.1. For a vector s ∈ Znq , called secret, the LWE distribution
As,ψ over Znq × Zq is sampled by choosing a ∈ Znq uniformly at random,
choosing e ∼ ψ, and giving in output (a, b = 〈s,a〉+ e mod q) ∈ Znq × Zq.

In practice ψ can be thought as a discrete Gaussian of width αq for some
α < 1, i.e. ψ = DZ,αq.

Definition 2.1.2. Given m independent samples {(ai, bi)}mi=1 ∈ Znq × Zq
drawn from the LWE distribution As,ψ, with s chosen uniformly at random,
the search version of the Learning With Error Problem consists in finding s.

An intuitive way to see the problem is to consider it as trying to find the
solution s ∈ Znq of the system of linear equations with “errors”:
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〈s,a1〉 = b1 − e1 (mod q)

〈s,a2〉 = b2 − e2 (mod q)
...

〈s,an〉 = bn − en (mod q),

where each ai is uniformly random and ei ∼ ψ for i = 1, . . . , n. The same
problem can be given a compact matrix expression

bT = sTA+ eT mod q.

Definition 2.1.3. Given an error distribution ψ over Z and m independent
samples {(ai, bi)}mi=1 ∈ Znq ×Zq, where every sample is either drawn according
to As,ψ for a fixed and uniformly random s ∈ Znq , or the uniform distribution,
distinguish which is the case.

As suggested by the matrix expression, Search-LWE can be equivalently
presented as an average case of BDDγ over the q-ary lattices Lq(A) =
{y ∈ Zm | y = AT s mod q for some s ∈ Zn}. In this setting, the vector b is
relatively close only to one vector Lq(A) and we can notice that LWE problem
consists in finding this “target”. In [Reg09] Regev proved the following worst-
case to average-case reduction involving the decision version of LWE :

Theorem 2.1.4. For any m = poly(n), q ≤ 2poly(n) and any discrete Gaus-
sian error distribution ψ of parameter αq ≥ 2

√
n, with 0 < α < 1, solving

the Decision-LWE with parameters n, q, ψ,m is at least as hard as solv-
ing GapSVPγ and SIVPγ on arbitrary n−dimensional lattices, for some

γ = Õ(n/α), using quantum computation.

In [Pei09], Peikert managed to make the above reduction completely
classical, but only with the following conditions:

1. the classical reduction only involves GapSVPγ , while the quantum
works also for SIVPγ ;

2. q has to be exponentially large, more precisely q ≥ 2n/2, as opposed to
q ≥ 2

√
n/α with 0 < α < 1.

Such an undesirable bound on q forces the key size to be larger, and
therefore leads to less efficiency for all cryptographic protocols based on
this problem. Nevertheless, the techniques applied by Peikert were used
by Lyubashevski and Micciancio in [LM09] to prove that, for γ = poly(n),
GapSVPγ , SVPγ and BDDγ are equivalent problems.
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2.2 Learning With Errors Problem over rings (R-
LWE)

To improve efficiency of LWE-based protocols, Lyubashevsky, Peikert
and Regev introduced the ring-learning with errors problem [LPR12], an
analogue problem of the LWE in the ring setting, whose hardness can be
linked to some worst-case problem over ideal lattices. In this section we will
introduce this problem and give some ideas on the worst-case to average-case
reduction as in [LPR12, LPR13].

2.2.1 Error distributions

Here we the introduce the family of error distributions we need using in
order to define the problem and for which the worst-case to average-case
reduction effectively works.

Definition 2.2.1. Let α > 0 be a real number, the family of error distri-
butions Ψ≤α is the set of all elliptical Gaussian distributions Dσ over KR,
where, for any parameter σ = (σ1, . . . , σn), we have σi ≤ α.

Definition 2.2.2. The gamma distribution Γ(2, 1) with shape parameter 2
and scale parameter 1 is the distribution with the following density:

f(x) =

{
xe−x for x ≥ 0

0 for x < 0.

Definition 2.2.3. Let α be a positive real number, then a distribution sam-
pled from Υα is an elliptical Gaussian distribution Dσ over KR whose param-
eters ri > 0 are such that σ2

i = σ2
i+n/2 = α2(1 +

√
nxi), with x1, . . . , xn ∈ R

chosen independently from Γ(2, 1).

2.2.2 The general instance

The parameters of Ring-LWE are a number field K with R = OK and a
prime q ≥ 2. We here define the problem in the most general case in which
K is a number field, even though the worst-case to average-case reduction
for R-LWE has been proved only for cyclotomic fields.

Let us denote T = KR/R
∨ (remark that R∨ is seen as the codifferent

ideal).

Definition 2.2.4. Let s ∈ R∨q be the secret and ψ an error distribution
over KR, then a sample from the ring-LWE distribution As,ψ over Rq × T
is generated by choosing a ∼ U(Rq), e ∼ ψ and giving the output (a, b =
(as)/q + e mod R∨).
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Definition 2.2.5 (Search R-LWEs,Ψ). Let Ψ be a family of distributions
over KR. Given arbitrarily many independent samples from As,ψ, for some
s ∈ R∨q and ψ ∈ Ψ, the search version of ring-LWE is the problem of finding
s.

Definition 2.2.6 (Decision, R-DLWEs,Υ). Let Υ be a distribution over a
family of error distribution over KR. The average-case decision ring-LWE
problem consists in distinguishing with non-negligible advantage between
arbitrarily many independent samples from As,ψ, with (s, ψ) ∼ U(R∨q )×Υ,
and the same number of uniformly random and independent samples from
Rq × T.

2.2.3 Hardness

Just as for the LWE, the reduction from the R-LWE to some worst-case
lattice problem involves quantum computing. Here we give the statement of
the hardness problem and the idea of the proof.

Theorem 2.2.7. Let K be the m-th cyclotomic number field, of dimension
n = ϕ(m) and let R = OK be its ring of integers. Let α = α(n) > 0 and let
q = q(n) ≤ poly(n), q = 1 mod m be a prime such that αq ≥ ω(

√
log n).

Then there is a polynomial time quantum reduction from approximate SIVPγ
with γ = Õ(

√
n/α) over ideal lattices to the decision R-LWEq,Υα.

The proof composes of two (basically independent) parts.

Part I: Worst-case hardness of the search problem
For an opportune choice of parameters, the R-LWEq,ψ is at least as hard

as quantumly solving SIVPγ on ideal lattices of R. It is important to notice
that this reduction actually works in any number field, not only for cyclotomic
ones. More precisely we have the following result.

Theorem 2.2.8. Let K be an arbitrary number field of degree n, R = OK ,
α = α(n) > 0 and q = q(n) ≥ 2 be such that αq ≥ ω(

√
log n). Then there is

a probabilistic polynomial time quantum reduction from approximate SIV Pγ,

with γ = Õ(
√
n/α), to R-LWEq,Ψ≤α.

The proof of this result follows the line of [Reg09] for general lattices,
applying repeatedly an iterative step with the goal of finding shorter and
shorter vectors. There is to notice that, as of the time of this work, no way
has been found to replace the use of quantum computing in the proof.

Part II: Decision-to-Search reduction
The second part consists in showing that solving the decision version

of R-LWE is at least as hard as solving its search variant. This implies
that if SIVPγ is hard to solve in the quantum setting, then the Ring-LWE
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Distribution is pseudorandom. Such reduction is entirely classical and it relies
on cyclotomic number fields being Galois fields and on the particular choice
of the modulus q, such that qOK splits completely into n prime ideals qi.

The formal result is the following:

Theorem 2.2.9. Let R and q be as above and let αq ≥ ηε(R
∨) for some

negligible ε = ε(n). Then there is a randomized polynomial time reduction
from R-LWEq,Ψα to R-DLWEq,Υα.

The proof is composed as the concatenation of four different reductions,
which we will now present briefly. Full details can be found in [LPR12].

R-LWEq,Ψ
(1)−−→ qi-LWE

(2)−−→WDLWEiq,Ψ
(3)−−→ DLWEiq,Υ

(4)−−→ DLWEq,Υ

(1) (R-LWEq,Ψ to qi-LWE) Given access to As,ψ for some arbitrary s ∈ R∨q
and ψ ∈ Ψ≤α for some α > 0, we call qi-LWE the problem of finding s
mod qiR

∨. This can be seen as a local variant of the general problem,
and the reason why this reduction works is the fact that the Galois
group acts transitively on the qi’s.

Lemma 2.2.10. For every i ∈ Z×m there is a deterministic polynomial-
time reduction from R-LWEq,Ψα to qi-LWEq,Ψα.

(2) (qi-LWE to WDLWEiq,Ψ) For i ∈ Z×m and a family of distributions Ψ

and given access to Ajs,ψ for arbitrary s ∈ R∨q , ψ ∈ Ψ and j ∈ {i−, i},
the worst-case decision qi-LWE is the problem of finding j and it is
denoted as WDLWEiq,Ψ.

Lemma 2.2.11. For any i ∈ Z×m there is a probabilistic polynomial
time reduction from qi-LWE to WDLWEiq,Ψ.

(3) (WDLWEiq,Ψ to DLWEiq,Υ) Since we start from WDLWEiq,Ψ being
a local worst-case problem, we want move to an average-case local
problem first.

For any i ∈ Z×m and Υ distribution over error distributions, the average-
case decision qi-LWE is denoted as DLWEiq,Υ and it is the problem
to distinguish, over random choices (s, ψ) ∼ U(R∨q ) × Υ and with
non-negligible advantage, between inputs from Ais,ψ versus inputs from

Ai−s,ψ.

Lemma 2.2.12. For any α > 0 and any i ∈ Z×m, there is a randomized
polynomial time reduction from WDLWEiq,Ψ≤α to DLWEiq,Υα.

(4) (DLWEiq,Υ to DLWEq,Υ) The last reduction finally removes the depen-
dence on a specific qi.
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Lemma 2.2.13. Let Υ be a distribution over a family of error dis-
tributions such that for any ψ ∈ Υ and any s ∈ R∨q the distribution

Am−1
s,ψ is within negligible statistical distance from the uniform. Then

for any oracle solving the DLWEq,Υ problem, there exist an i ∈ Z×m and
an efficient algorithm that solves DLWEiq,Υ using this oracle.

2.2.4 Variants of R-LWE

For our purposes, we want to use the polynomial representation rather
than the one just defined, and have a discrete noise distribution. Therefore
we need to rephrase the definition of the problem and adjust the noise
distribution to better suit our necessities.

Definition 2.2.14. Let Υ be a distribution over a family of distributions
on R. The Ring Learning With Errors Problem with parameters q and Υ
R-LWEq,Υ is as follows: let ψ be sampled from Υ and s be chosen uniformly in
Rq. Given access to an oracle O that produces samples in Rq×Rq, distinguish
whether O outputs samples from the distribution As,ψ or U(Rq ×Rq) with
non-negligible advantage.

Again, R-LWE an be interpreted as a problem over module q-ary lattices.
Let m be the number of samples asked to the oracle, and let {(ai, bi)}mi=1

be the samples. Then solving R-LWE consists in distinguishing whether the
vector b is generated uniformly modulo the (module) lattice Lq(a) or around
the origin according to some Gaussian-like distribution and then reduced
modulo the lattice. We can also adapt a result in [LPR12] in the following
form:

Theorem 2.2.15. Assume αq = ω(n
√

log n) with α ∈ (0, 1) and q = poly(n)
prime with q = 1 mod 2n. Consider then the distribution Υα. There exists
a randomized polynomial-time quantum reduction from Ideal-SVPγ to R-

LWEq,Υα (denoted by R-LWEq,α in the sequel), with γ = ω(n
3
2 log n)/α.

For s ∈ Rq and ψ a distribution in Rq, we denote as A×s,ψ the distribution

obtained by sampling the pairs (a, as + e) with a ∼ R×q and e sampled
independently from ψ. When q = Ω(n), the probability for a uniform element
of Rq of being invertible is non-negligible, so R-LWE remains hard even when
As,ψ and U(Rq × Rq) are respectively replaced by A×s,ψ and U(R×q × Rq).
Moreover, we can add the secret s to be chosen from the error distribution
without any security reduction. We will refer to this variant as R-LWE×HNF.

We need to define what is Υα, and that’s what we will do now. For
σ ∈ (R+)n, we define the elliptical Gaussian ρσ like before as the row vector of
independent Gaussians (ρσ1 , . . . , ρσn), where σi = σi+n/2 for 1 ≤ i ≤ n/2. At
this point, since we want to use the polynomial representation rather than the

space H, we multiply ρσ from the right first by M = 1√
2

(
1 1
i −i

)
⊗ Idn/2 ∈
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Cn×n, and then V ∈ Cn×n, where V is the matrix whose upper half is
1
n(ζ−(2j+1)k)0≤j<n/2,0≤k<n and the bottom half is the complex conjugate
of the upper half. We will call the result ρ′σ. We then define a sample
from ρ′σ computing a sample from ρ′σ with the absolute error which is at
most 1/n2. If said sample is within distance 1/n2 of a half integer, we
resample, otherwise we round it to the closest integer and reduce it modulo
q. Finally, a distribution sampled from Υα for α ≥ 0 is defined as ρ′σ, where
σ2
i = σ2

i+n/2 = α2q2(1 +
√
nxi), with the xi’s sampled independently from

the distribution Γ(2, 1) for i ≤ n/2.

Remark 2.2.16. This definition ends up being very close to the original one
in Section 2.2.2, but with the fundamental difference that the sampling now
uses a rejection process to round to R. Nonetheless, the problem remains
hard because samples pass the rejection step with non-negligible probability,
and the rounding can be performed on the oracle samples without considering
the actual error.

All sampling from these distributions can be computed in quasi-polynomial
time, moreover samples from Υα are very small.

Lemma 2.2.17. Let y, r ∈ R, y be sampled accordingly to Υα, with αq ≥
n1/4. Then

(a) Pr
[
‖yr‖ ≥ αqn1/4ω(

√
log n)‖r‖

]
≤ n−ω(1);

(b) Pr
[
‖yr‖∞ ≥ αqn−1/4ω(log n)‖r‖

]
≤ n−ω(1).

Proof. Define Υα as Υα without the rejection step, because of the bound on
the rejection probability, it is enough to show the result with Υα. Let (r(k))k
be the embedding vector of r. Multiplying y by r is the same as sampling
from ρσ′ with σ′k = σ′k+n/2 = σk|r(k)| (see [LS15] for a proof), thus we have

σ′k ≤ αqn1/4ω(
√

log n)|r(k)| for all k ≤ n, with a probability which is at least
1− n−ω(1).

To obtain the coefficients of yr, we apply M and V to the vector of
the samples. The magnitude of the entries of the product matrix is at most
O(1/n), so the coefficients of the polynomial yr are distributed as statistically
independent (one-dimensional) Gaussians of standard deviations at most
αqn−1/4ω(

√
log n)‖r‖, implying the Euclidean norm of the n-dimensional

vector to be at most αqn1/4ω(
√

log n)‖r‖ with probability greater than
1− nω(1).

Now all the coordinates are bounded by αqn−1/4ω(log n)‖r‖ with proba-
bility at least 1− n−ω(1). The additional rounding error O(

√
n) only changes

the hidden constant factor in the ω(log n) factor, thanks to the hypothesis of
αq ≥ n1/4, so the proof is complete.
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Chapter 3

A provably secure variant of
NTRU cryptosystem

As seen in section 1.4, the public key h for an NTRU instance is the ratio
of two randomly generated polynomials f and g both with small coefficients.
Our goal is to modify the original scheme in order to derive IND-CPA
(Indistinguishability under Chosen-Plaintext Attack)1 security from R-LWE
by making sure the distribution of h is statistically very close to the uniform
distribution over R×q .

Doing so we will provide new key generation algorithms as well as a new
NTRUEncrypt scheme.

3.1 A revised key generation algorithm for NTRU-
Encrypt

We now want to use the results of the previous chapter to derive key
generation algorithms for the NTRU scheme, to be able to generate public
keys following the distributions for which Ideal-SVP is known to reduce to
R-LWE.

The secret key polynomials f and g will be generated using the Gentry et
al. sampler of Lemma 1.2.15, and rejected until the output polynomials are
invertible modulo q. This sampler may not exactly sample from discrete Gaus-
sians, but since the statistical distance can be made negligible, the impact on
our results is also negligible. Moreover the conditions we will use on standard
deviations are much stronger than the one in Lemma 1.2.15. That being
said, from now on we will assume we have a perfect discrete Gaussian sampler.

1Suppose to have two plaintext messages M0, M1, and a bit b, and let Mb be encrypted
to a ciphertext C. Having IND-CPA means that no method for recovering b from C without
knowledge on the secret key has a success probability non-negligibly greater than 1/2.
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In the notation above, the algorithm is the following:

Algorithm 3 Encryption Key Generation

Input: n, q ∈ Z, p ∈ R×q , σ > 0

1: Sample f ′ from DZn,σ and compute f = pf ′ + 1
2: if (f mod q) /∈ R×q then
3: resample

4: Sample g from DZn,σ
5: if (g mod q) /∈ R×q then
6: resample

7: Return secret key sk = f and public key pk = h = pg/f ∈ R×q
Output: The key pair (sk, pk) ∈ R×R×q

Remark 3.1.1. By choosing a large enough standard deviation σ, we can
apply the results of Section 1.5 and obtain the (quasi-)uniformity of the
public key. We sample f of the form pf ′ + 1 so that it has inverse 1 modulo
p, making the decryption process of NTRUEnrypt more efficient (as in the
original NTRUEnrypt scheme). There is to note that the rejection condition
on f at Step 1 is equivalent to the (f ′ mod q) /∈ R×q − p−1, where p−1 is the
inverse of p in Rq.

The following result ensures that, for an appropriate choice of the param-
eters, the algorithm terminates in an expected polynomial time in n.

Lemma 3.1.2. Let n ≥ 8 be a power of 2 such that Φ = xn + 1 splits into kq
irreducible factors modulo a prime q ≥ 5, σ ≥

√
n log(2n(1 + 1/δ))/πq1/kq ,

for an arbitrary δ ∈ (0, 1/2). Let finally a ∈ R and p ∈ R×q . Then

Pr
f ′∼DZn,σ

[
(pf ′ + a mod q) /∈ R×q

]
≤ kq(q−n/kq + 2δ) ≤ n(q−1 + 2δ).

Proof. By the Chinese Remainder Theorem we can proceed by bounding
the probability that pf ′ + a belongs to an ideal I := 〈q,Φk〉 by q−n/kq + 2δ,
for any k ≤ kq. We have N (I) = qn/kq , so by Minkowski’s theorem we get
that λ1(I) ≤

√
nq1/kq . Since I is an ideal of R, we have λn(I) = λ1(I), and

Lemma 1.2.9 gives that σ ≥ ηδ(I). Finally by Lemma 1.2.14, we obtain that
f mod I is within distance at most 2δ to uniformity on R/I, so we have
pf ′ + a = 0 mod I with probability at most q−n/kq + 2δ, as we wanted. To
conclude, the union bound given in the previous section leads to the wanted
result.

As a consequence of the bound we just found on the rejection probability,
we have also the following result ensuring that the generated secret key is
small.
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Lemma 3.1.3. Let n ≥ 8 be a power of 2 such that Φ = xn + 1 splits into
kq irreducible factors modulo a prime q ≥ 8n. Let σ ≥ q1/kq

√
nlogn. Then,

with probability at least 1− 2−n+3, the secret key polynomials f, g returned
by the algorithm satisfy the following estimates

‖f‖ ≤ 2n‖p‖σ and ‖g‖ ≤
√
nσ

with probability at least 1− 2−n+3.
Moreover, if deg p ≤ 1, then ‖f‖ ≤ 4

√
n‖p‖σ with probability at least

1− 2−n+3.

In the algorithm given above, the polynomials f ′ and g are independently
sampled from the discrete Gaussian distributionDZn,σ restricted (by rejection)
to R×q − p−1 and R×q respectively.

Letting z ∈ Rq, we denote by D×σ,z the discrete Gaussian DZn,σ restricted
to R×q + z and y = −zp−1 mod q. We want to apply the results of Section
1.5.2 to show the statistical closeness to uniformity of a quotient of two
distributions (z + pD×σ,y), like in the the case of our public key g/f mod q
computed by Algorithm 3.

Since p ∈ R×q , multiplication by p induces an automorphism of Rq, so the
statistical closeness to uniformity is preserved on the public key h = pg/f .
The theorem we are about to see gives two bounds: the first one is most
useful for large kq = Ω(n), while the second is better for small kq = O(1),
allowing a smaller σ by a factor of the order of

√
n with respect to the first

bound.

Theorem 3.1.4. Let n ≥ 8 be a power of 2 such that Φ = xn + 1 splits into
kq irreducible factors modulo some prime q ≥ 5, ε′ ∈ (0, 1/3), yi ∈ Rq and
zi = −yip−1 mod q for i = 1, 2. Then the following two bounds hold:

(a) if σ ≥ n
√

log(8nq)q
1
2

+ε′, then

∆

[
y1 + pD×σ,z1
y2 + pD×σ,z2

mod q, U(R×q )

]
≤ 210nq

− bε
′kqc
kq

n
;

(b) if σ ≥
√
n log(8nq)q

1+kqε
′

2 and q ≥ n
kq

1−2kqε′ , then

∆

[
y1 + pD×σ,z1
y2 + pD×σ,z2

mod q, U(R×q )

]
≤ 210nq−ε

′n.

Proof. For a ∈ R×q , define Pra = Prf1,f2 [(y1 + pf1)/(y2 + pf2) = a], where
fi ∼ D×σ,zi for i = 1, 2. We want to show that |Pra−|R×q |−1| ≤ ε′′, where

ε′′ = 22n+5q−nbε
′kqc/kq |R×q |−1 for (a) and ε′′ = 26n+4q−ε

′n|R×q |−1 for (b).
Letting a = (a1, a2) ∈ (R×q )2, we have that a1f1 + a2f2 = a1z1 + a2z2
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is equivalent to (y1 + pf1)/(y2 + pf2) = −a2/a1 (in R×q ) and −a2/a1 is
uniformly random in R×q if a ∼ U((R×q )2). This implies that the fraction of
a ∈ R×q such that |Pra−|R×q |−1| ≤ ε′′ is equal to the fraction of a such that
|Prf1,f2 [a1f1 + a2f2 = a1z1 + a2z2]− |R×q |−1| ≤ ε′′.

Moreover, since (f1, f2) = (z1, z2) =: z satisfies a1f1 + a2f2 = a1z1 + a2z2,
the set of solutions (f1, f2) ∈ R2 to the latter equation is z + a⊥×, where
a⊥× = a⊥ ∩ (R×q + qZn)2. This gives

Pr
f1,f2

[a1f1 + a2f2 = a1z1 + a2z2]

=
DZ2n,σ(z + a⊥×)

DZn,σ(z1 +R×q + qZn)DZn,σ(z2 +R×q + qZn)
.

For any t ∈ a⊥, we have t2 = −t1a1/a2 , and since −a1/a2 ∈ R×q , t1
and t2 must be in the same ideal IS of Rq for some S ⊆ {1, . . . , kq}. This
leads to a⊥× = a⊥ \

⋃
∅6=S⊆{1,...,n} a⊥×(IS), and a similar reasoning gives

R×q +Zn = Zn \
⋃
∅6=S⊆{1,...,n}(IS + qZn). By the inclusion-exclusion principle

we obtain

DZ2n,σ(z + a⊥×) =
∑

S⊆{1,...,n}

(−1)|S|DZ2n,σ(z + a⊥(IS)), (1)

and

DZn,σ(zi +R×q + qZn) =
∑

S⊆{1,...,n}

(−1)|S|DZn,σ(zi + IS + qZn). (2)

The rest of the proof will be dedicated to show that, except for a fraction
at most 29nq−ε

′n of a ∈ (R×q )2, we have

DZ2n,σ(z + a⊥×) = (1 + δ0)|R×q |q−2n (*)

DZn,σ(zi +R×q + qZn) = (1 + δi)|R×q |q−n (**)

where the |δi| ≤ 22n+2q−nbε
′kqc/kq in the first case and |δi| ≤ 26n+1q−ε

′n

in the second. Once proved this, the result follows by a straightforward
computation.

We will now work separately to get the two bounds just claimed.

Let us start by assuming that (1) holds. First off, since z ∈ Z2n, for any
S ⊆ {1, . . . , kq} we have

DZ2n,σ(z + a⊥(IS)) =
ρσ(z + a⊥(IS))

ρσ(Z2n)

=
ρσ(z + a⊥(IS))

ρσ(z + Z2n)

= DZ2n,σ,−z(a⊥(IS)).
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For the terms of (1) with |S| ≤ ε′kq, by setting δ = q−n(1+bε′kqc/kq) we
fall under the assumptions of Lemma 1.5.4. Moreover, since a ∈ (R×q )2, there

are qn(1−|S|/kq) elements of a⊥(IS) in [0, q − 1]2n, and thus det(a⊥(IS)) =
qn(1+|S|/kq). Using the first bound of Lemma 1.5.4 with m = 2 and ε = ε′/2,
we then conclude that∣∣∣DZ2n,σ,−z(a⊥(IS))− q−n(1+|S|/kq)

∣∣∣ ≤ 2δ

for all except a fraction at most 28nq−ε
′n of the a ∈ (R×q )2.

For a term of (1) with |S| > ε′kq, we choose S′ ⊆ S with |S′| =
bε′kqc. Then we have a⊥(IS) ⊆ a⊥(IS′) and hence DZ2n,σ,−z(a

⊥(IS) ≤
DZ2n,σ,−z(a⊥(I ′S)). By using with S′ the above result for small |S|, we obtain

DZ2n,σ,−za
⊥(IS) ≤ 2δ+ q−n(1+bε′kqb/kq). Hence, except possibly for a fraction

at most 29nq−ε
′n of a ∈ (R×q )2, we have∣∣∣∣∣DZ2n,σ(z + a⊥×)−

n∑
k=0

(−1)k
(
n

k

)
q−n−k

∣∣∣∣∣
≤ 2n+1δ + 2

∑
k=dεkqe

(
kq
k

)
q
−n
(

1+
bε′kqc
kq

)

≤ 2n+1

(
δ + q

−n
(

1+
bε′kqc
kq

))
.

So, in this case, we finally get that

|δ0| ≤
q2n

(qn/kq − 1)kq
2n+1(δ + q

−n(1+
bε′kqc
kq

)
) ≤ 22n+2q

− bε
′kqb
kq

n
,

which is what we wanted.
Let’s now take a look at (b). For the term of (1) with |S| = 0, by hypothesis

we get that σ falls under the assumptions of Lemma 1.5.4, so we can apply
it (in particular: its second part) with δ = q−2n and ε = ε′/2. We obtain
|R/a⊥(IS)| = det(a⊥(IS)) = qn and hence |DZ2n,σ,−z(a

⊥(IS)) − q−n| ≤ 2δ

for all except a fraction at most 28nq−ε
′n of a ∈ (R×q )2.

Assuming |S| ≥ 1, we need to change our approach. In fact, for |S| = 1,
we cannot choose an IS′ with S′ ⊆ S and det(a⊥(IS′)) of the order of q(1+ε)n:
the only possible choice for S′ is the empty set, which gives a too small
det(a⊥(IS′)) = qn. Let then L′ = NZ2n, where N = d1

4q
1/2+ε′/2e. Note that

detL′ = N2n ≥ 2−4nq(1+ε′)n, and since λ2n(L′) = N ≤ 1
2q

1/2+ε′/2, we have

by Lemma 1.2.9 with δ = q−2n that ηδ(L
′) ≤

√
nlog(8nq)q1/2+ε′/2. Now, by

Lemma 1.2.14 and the choice of σ, we have DZ2n,σ(L′) ≤ 24nq−(1+ε′)n + 2δ.
We want to use this latter bound to conclude; we will do so by showing that
DZ2n,σ(z + a⊥(IS)) ≤ DZ2n,σ(L′).
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Define the map φ : Z2n → L′ via v = (v1, . . . , v2n) 7→ φ(v) = (v′1, . . . , v
′
2n),

where v′i = b |vi|N cNsign(vi). What this function does is namely round each
coordinate vi of v to the nearest multiple of N whose absolute value is less
or equal to |vi|, and it has the following properties:

(i) for each v ∈ Z2n, then ‖φ(v)‖ ≤ ‖v‖;

(ii) φ is a one-to-one correspondence on z + a⊥(IS) for all but a fraction of
at most 24nq−ε

′n of a ∈ (R×q )2.

Whilst (i) follows easily from |v′1| ≤ |v1| by definition, the property (ii) is
less immediate. First off, let’s observe that ‖φ(v)−v‖∞ < N for all v ∈ Z2n.
By contradiction, let us suppose that φ is not one-to-one on z+a⊥(IS). Then
there exist two vectors v1 6= v2 ∈ z + a⊥(IS) with φ(v1) = φ(v2). By the
triangular inequality we have that v1−v2 is a non-zero vector of a⊥(IS) with
‖v1−v2‖ < 2N ≤ q1/2+ε′/2. On the other hand, by the first bound of Lemma

1.5.3 with m = 2, |S| = 1, and ε = ε′/2, we have λ∞1 (a⊥(IS)) ≤ 1√
n
q

1
2

+ 1
2kq
− ε
′
2 ,

except for a fraction at most 24nq−ε
′n of a ∈ (R×q )2. This contradicts the

condition on q, thus giving us (i).
Since DZ2n,σ(w) ≥ DZ2n,σ(v) for any v,w ∈ Z2n with ‖w‖ ≤ ‖v‖, the

property (i) of φ implies that DZ2n,σ(z + a⊥(IS)) ≤
∑

v∈z+a⊥(IS)(φ(v)), and
by the property (ii) we get that the points {φ(v)}{v∈z+a⊥(IS)} are distinct
points of L′, so that

∑
v∈z+a⊥(IS)(φ(v)) ≤ DZ2n,σ(L′), as required.

To conclude, for the terms with |S| ≥ 1, we have DZ2n,σ,−z(a
⊥(IS)) ≤

24n+1q−(1+ε′)n. Arguing analogously to what we did to get the first bound,

we obtain our second bound |δ0| ≤ q2n

(qn/kq−1)kq
25n+1q−(1+ε)′)n ≤ 26n+1q−ε

′n.

Let’s take care of (2). For the bounds on δ1 and δ2, we want to proceed in a
similar way to handle the zi’s, i.e. we look for a bound on DZn,σ,−zi(IS+qZn),
and by Lemma 1.2.14 this reduces to finding a good bound on the smoothing
parameter of the ideal lattice LS = IS + qZn.

First, observe that if m = 1 and a1(x) =
∏
i∈S Φi(x), with S = {1, . . . , n}\

S, we have LS = a⊥(IS). Then, since a1(x) 7→ a?1(x) induces a bijection on
the factors Φi(x), by Lemma 1.5.1 the dual lattice L∨S = 1

qL(a?1, I
?
S

) = 1
qL

?
S
′

is also an ideal lattice for some S
′ ⊆ {1, . . . , kq}, with |S′| = |S|. Now,

since detLS′ = qn|S|/kq , Minkowski’s theorem gives that λ∞1 (L
S
′) ≤ q|S|/kq .

Moreover, since IS + qZn is an ideal lattice, for δ = q−n/2 and |S| ≤ kq/2,
Lemma 1.2.9 gives that

ηδ(IS + qZn) ≤ 1

q

√
log(2n(1 + 1/δ))/πλ∞1 (L

S
′) ≤

√
n log(4nq)q|S|/kq ≤ σ.

Using Lemma 2.4, we conclude that for a term of (2) with |S| ≤ kq/2, we
have ∣∣∣DZn,σ,−zi(IS + qZn)− q−n|S|/kq

∣∣∣ ≤ 2δ.
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For terms of (2) with |S| > kq/2, we choose S′ ⊆ S with |S′| = bkq/2c ≥
kq/3 for kq ≥ 2. Using the above result for small |S| with S′, we obtain
DZn,σ,−zi(IS + qZn) ≤ DZn,σ,−zi(IS′ + qZn) ≤ 2δ + q−n/3. Summarizing, we
have ∣∣∣∣∣∣DZn,σ(zi +R×q + qZn)−

kq∑
k=0

(−1)k
(
kq
k

)
q−k

∣∣∣∣∣∣
≤ 2n+1δ + 2

kq∑
k=dkq/2e

(
kq
k

)
q−n/3

≤ 2n+1
(
δ + q−n/3

)
,

which leads to the desired bound on δi.

3.2 A revised NTRUEncrypt scheme

In this section we use the new key generation algorithm to build a provably
secure variant of the NTRUEncrypt scheme. We will denote the new scheme
with NTRUEncrypt(n, q, p, α, σ) in which the parameters are chosen in the
following way:

• n is a power of 2;

• q > 3 is a prime;

• define Φ = xn + 1, R = Z[x]/Φ, Rq = R/qR;

• p ∈ R×q , from which we get the plaintext message space as P = R/pR;

• α is the R-LWE noise distribution parameter;

• σ is the standard deviation of the discrete Gaussian distribution used
in the key generation process defined in the previous section.

There is to note that p must be a polynomial with small coefficients with
respect to q, but at the same time we require N (p) = |P| = 2Ω(n) to be able
to encode multiple bits at once. By reducing modulo the pxi’s, any element
of P can be written as

∑
0≤i<n εix

ip, with εi ∈ (−1/2, 1/2]. We can then
assume that any element of P is an element of R with infinity norm at most
1
2

√
deg(p) + 1‖p‖.
We are ready to give the new NTRUEncrypt scheme:
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Algorithm 4 Encryption

Input: The parameters n, q, p, α, σ, a message M ∈ P
1: Sample s, e from Υα

2: return C = hs+ pe+M ∈ Rq
Output: The ciphertext C

For the decryption process, it is enough to compute C ′ = fC ∈ Rq and
return M = C ′ mod p.

Let us now prove the correctness of this scheme and the actual conditions
for it to be sound.

Lemma 3.2.1. If deg p ≤ 1, ω(n
1
4 log n)α‖p‖2σ < 1, and αq ≥ n

3
4 , then the

decryption algorithm of NTRUEncrypt recovers M with probability 1−n−ω(1)

over the choice of s, e, f, g.

Proof. Let C ′′ = p(gs+ ef) + fM in R, i.e. before the reduction modulo q
that would give C ′ as in the decryption step. If ‖C ′′‖∞ < q/2, then C ′ = C ′′

in R. This means that, since f = 1 mod p, we would have C ′ mod p = C ′′

mod p = M mod p, that is a success in the decryption. For this reason it
will be enough to give an upper bound on the probability that ‖C ′′‖∞ > q/2.

For deg p ≤ 1, we know from Lemma 3.1.3 that both f and g have
Euclidean norms at most 4

√
n‖p‖σ with probability not less than 1− 2−n+3,

so ‖pf‖, ‖pg‖ ≤ 8
√
n‖p‖2σ, with probability at least 1−2−n+3. Now, we know

that ‖fM‖∞ ≤ ‖fM‖ ≤
√
n‖f‖‖M‖ ≤ 4n‖p‖2σ, and moreover Lemma 2.2.17

grants that both ‖pfs‖∞, ‖pge‖∞ ≤ 8αqn
1
4ω(log n)‖p‖2σ with probability at

least 1− n−ω(1).
From these two facts, since αq ≥ n

3
4 , we conclude that

‖C ′′‖∞ ≤ 20αqn
1
4ω(log n)‖p‖2σ

with probability 1− n−ω(1).

With Theorem 3.1.4 we proved that the public key is basically uniform
in R×q . Now we want to use such result to reduce the security of our scheme

to a decisional instance of R-LWE×HNF.

Lemma 3.2.2. Let n be a power of 2 such that Φ splits into n linear factors
modulo q, ε ∈ (0, 1/3), δ > 0, p ∈ R×q and σ ≥ n

√
log(8nq)q

1
2

+ε. If there
exists an IND-CPA attack against NTRUEncrypt that runs in time T with
success probability 1

2 +δ, then there exists an algorithm that solves R-LWE×HNF

with parameters q and α running in time T ′ = T +O(n) and with success
probability δ′ = δ − q−Ω(n).

Proof. Let’s call A the IND-CPA attack algorithm given in the statement;
we will use it to build an algorithm B against R-LWE×HNF. Let ψ ∼ Υα,
s ∼ ψ and O be an oracle that samples from either U(R×q × Rq) or A×s,ψ.
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First, algorithm B would call the oracle O to get a sample (h′, C ′) ∈ R×q ×Rq
and use h = ph′ ∈ Rq as a public key to run algorithm A. This would
output challenge messages M0,M1 ∈ P , and algorithm B picks b ∼ U({0, 1}),
computes the challenge ciphertext C = pC ′ +Mb ∈ Rq, and returns C to A.
So in the end, A outputs its guess b′ for b, and B outputs 1 if b′ = b and 0
otherwise.

We should observe that since p is invertible modulo q, the h′ used by
B is uniformly random in R×q , and so is the public key h given to A. This
implies (by Theorem 3.1.4) that the public key given to A is within statistical
distance q−Ω(n) from the public key distribution in the attack. Moreover, the
ciphertext C given to A has the right distribution as in the IND-CPA attack,
because C ′ = hs+e with s, e ∼ ψ. So if the output of O is a sample from A×s,ψ,

then A succeeds and B returns 1 with probability at least 1/2 + δ − q−Ω(n).
On the other hand, if O outputs samples from U(R×q × Rq), the value

of pC ′ − and hence C − is uniformly random in Rq and independent of b,
because p ∈ R×q . This means algorithm B outputs 1 with probability 1/2.

Putting together the two possibilities we get the advantage we claimed
for B.

We finally get for free to our main result:

Theorem 3.2.3. Let n be a power of 2 for which Φ splits into n linear
factors modulo a prime q = poly(n) such that q

1
2
−ε = ω(n

9
8 log 2n)‖p‖2,

with ε = ω(1/n) < 1/3 and p ∈ R×q with deg(p) ≤ 1. Let moreover

σ = n
√

log(8nq)q
1
2

+ε and α−1 = ω(n
1
4 logn)‖p‖2σ. If there exists an IND-

CPA attack against NTRUEncrypt running in polynomial time in n and
with success probability at least 1

2 + 1/poly(n), then there exists a poly(n)-

time quantum algorithm for Ideal-SVPγ with γ = ω(n
11
8 log

5
2 n)‖p‖2q

1
2

+ε.
Moreover, the decryption algorithm succeeds with probability 1− n−ω(1).

Proof. The result follows directly by the Lemmata above and Theorem
2.2.15.

For a choice of ε = 1/(logn), the smallest q for which this analysis

holds is of the order of Ω̃(n
9
2 ), and the smallest value of γ we can obtain is

Õ(n5). Finally, the problem of finding the best set of parameters to make this
encryption practical while still satisfy the security hypothesis is still open.
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