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Introduction

The aim of this thesis is to present the construction of the Hilbert scheme and some of its
pathologies. We will present its fundamental properties and some standard examples, concluding
with a short discussion about unexpected behaviours and the Murphy’s Law for Hilbert schemes.

The notion of Hilbert scheme was first introduced by Alexander Grothendieck (1928 - 2014)
during a series of lectures given for the Séminaire Bourbaki between 1957 and 1962, which have been
then collected under the famous name of Fondements de la Géométrie Algébrique, familiarly known
as FGA. The intent of this collection was a “generalization” of algebraic geometry, which turned
out into the introduction of several notions and techniques, such as algebraic schemes, representable
functors, descent theory and étale topology, that are nowadays still central. Hilbert schemes were
presented to the public during the Séminaire Bourbaki of 1960/61, in a talk called “Technique de
descente et théorèmes d’existence en géométrie algébrique IV. Les schémas de Hilbert”, in continuity
with the previous seminar “Technique de descente et théorèmes d’existence en géométrie algébrique
III. Préschémas quotients”, which was held some months before. According to Grothendieck himself
their intent was “to replace the use of the Chow coordinates”, a generalization of Plücker coordinates,
that were formally introduced by Wei-Liang Chow (1911 - 1995) and Bertel Leendert van der
Waerden (1903 - 1996) less than thirty years earlier, in [W.-L. Chow and B. L. van der Waerden,
“Zur algebraischen Geometrie IX.”, Mathematische Annalen, vol. 113 (1937), pp. 692–704].

Hilbert schemes are named after David Hilbert (1862 - 1943), since one of the fundamental tools
needed in order to define them, as we will see, is Hilbert polynomial, introduced by Hilbert himself
using techniques coming both from commutative algebra (the study of modules) and complex
analysis (the study of zeros and poles of a function). Such polynomials were widely studied first by
Emmy Noether (1882 - 1935), Emanuel Lasker (1868 - 1941), B. L. van der Waerden and Pierre
Samuel (1921 - 2009), and then by Jean-Pierre Serre (1926 - ) and Alexander Grothendieck himself
after the introduction of the coherent sheaf cohomology and Čech cohomology, to which the notion
was adapted via the study of the Euler characteristic.

Together with Hilbert polynomials and a suitable cohomology theory, another fundamental
ingredient for the definition of the Hilbert schemes, again coming from commutative algebra, is
flatness. It was introduced by Serre for modules over rings in its groundwork [J.-P. Serre, ”Géométrie
algébrique et géométrie analytique”, Annales de l’Institut Fourier, tomes 6 (1956), pp. 1–42], widely
known as GAGA theory and then generalized to sheaves with the use of the so called Tor functors,
an homological tool that was developed to study abelian groups by Eduard Čech (1893 - 1960)
and then adapted to the case of modules over rings by Henri Cartan (1904 - 2008) and Samuel
Eilenberg (1913 - 1998).

The original construction of the Hilbert scheme made by Grothendieck was then slightly modified,
thanks to the contribution of David Mumford (1937 - ) and the introduction of the notion of
m-regularity. However, Mumford acknowledged to Guido Castelnuovo (1865 - 1952) the first
presentation of this concept, and so the notion is also known as Castelnuovo-Mumford regularity.

According to Grothendieck, the Hilbert scheme should become central in the further developement
of algebraic geometry, but already few years after their introduction, Mumford partially took down
this optimistic expectation. Indeed, in a series of articles during the 60’s, he provided some examples
of “pathologies” in algebraic geometry, including the first example of an Hilbert scheme that has
a bad behaviour in an open dense subset, even though it parametrizes well behaved curves. This
series was probably the starting point for a new research path involving pathologies in algebraic
geometry, to which many famous modern mathematicians contributed, including Grothendieck’s
student Michel Raynaud (1938 - 2018), Heisuke Hironaka (1931 - ), Philippe Ellia (1955 - ), Fabrizio
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Introduction ii

Catanese (1950 - ), Joe Harris (1951 - ), Ian Morrison (1951 - ) and, more recently, Ravi Vakil
(1970 - ).

Anyway, even if they turned out not to be always well behaved, Hilbert schemes are still
considered very relevant, as Grothendieck claimed and desired, not only because of their nicer
properties with respect to other parameter spaces. They are indeed often taken as a preliminary
and first construction of a Moduli space, that are now largely studied both for their relevance in
geometrical classification problems and, more recently, for their connection with theoretical physics,
and also a standard example in the study of deformation theory. Moreover, they are a key example
of the new functorial approach to algebraic geometry that became crucial after Grothendieck’s work.

In the first chapter of this work we recall the definition and construction of the Hilbert polynomial,
starting from the original approach dealing with modules over rings, and then moving to varieties
and its interpretation using cohomology theory, with a large number of examples. We then introduce
the base change operation and flatness and present the relations between these two notions and
Hilbert polynomials.

The second chapter is devoted to the definition and costruction of Hilbert schemes. We start
presenting briefly Grassmannians, since we will show the existence of the Hilbert scheme realizing
it as a closed subscheme of a Grassmannian, and then go on with the discussion of Castelnuovo-
Mumford regularity and flattening stratifications, that will directly lead us to the third section of the
chapter, in which the construction of Hilbert schemes is completely provided. For the construction
we will follow the approach by [Sernesi], who constructs directly the scheme, while Grothendieck,
in [FGA], originally obtained it as a particular case of the construction of Quot schemes. At
the end of the chapter we provide some first “easy” examples of Hilbert schemes, showing that
the Grassmannians are a special case of this construction and considering the Hilbert scheme of
hypersurfaces in the projective space. Some references to more recent generalizations of the notion
are also given.

The third chapter discusses some useful properties of Hilbert schemes. In the first section we will
follow the ideas presented by Robin Hartshorne (1938 - ), who in his Ph.D. thesis ([H66]) proved
that the Hilbert scheme of closed subschemes of projective space is connected. The second section
ends with two results that characterize the Zariski tangent space to the Hilbert scheme and includes
a short introduction to deformation theory. In particular, the last claim of the section will allow us
to give a better comprehension of the Hilbert scheme of n points X [n], that is of the Hilbert scheme
having Hilbert polynomial constantly equal to a positive integer n, which is the topic of the last
section of the chapter. We will state that this scheme is always connected if X is connected and
quasi-projective, generalizing Hartshorne’s theorem, and that when X is an irreducible, nonsingular
quasi-projective curve, or surface, also X [n] is nonsingular and irreducible.

Since the Hilbert scheme is a parameter space, our hope would be that it inherits at least
some of the good properties of the objects it parametrizes, for example smoothness, irreducibility,
connectedness or reducedness. We may also be guided to this idea by some results presented along
the third chapter, but even in some of the simpler cases, such as the Hilbert scheme of points,
we already find some first examples of bad behaviours, like singularity or a non reduced structure
at its points. These brief considarations will naturally guide us to the fourth, and last, chapter
of the thesis, in which pathologies take a central position. We will start the discussion, omitting
direct proof, with the famous Mumford’s Example of an Hilbert scheme parametrizing smooth
space curves of a given degree and genus, that has more than one irreducible component of same
dimension, and one of them is singular and nonreduced at its generic point. The second section
shortly presents some further pathologies of Hilbert schemes of curves, following [HM]. The final
section gives a small outline of the Murphy’s law for Hilbert schemes, introduced informally in [HM]
and then restated by Vakil in [Va2] into the Murphy’s law for Moduli spaces, trying to point out
the fundamental ideas of [Va2] regarding Hilbert schemes.

Terminology In this thesis, if it is not differently stated, we will use the following convention:
rings will always be considered commutative with 1 6= 0; k will always denote a field, not necessarily
algebrically closed, even though we will often have C in our minds; a variety will be an integral
separated scheme of finite type over k, as in [H].
Moreover, just for clarity, we underline that in this work we call scheme what in some references,
for example [H66] or versions of [FGA] published before 1971, used to be called prescheme, and we
call separated scheme the object that used to be called scheme.



Chapter 1

Hilbert polynomial

1.1 Hilbert polynomial of Noetherian local rings

We start this chapter giving an outline of the first approach to Hilbert polynomials and the
context in which they arose. The first results about such polynomials were provided by Hilbert at
the end of the 19th century, even though the name “Hilbert polynomial” was given by E. Lasker at
the beginning of the following one, while summarazing the most important results produced by
Hilbert in Invariant Theory (see [E. Lasker, “Zur Theorie der Moduln und Ideale”, Math. Ann.,
vol. 60 (1905), pp. 20–116]).
The original context was the study of dimension of Noetherian rings, as pointed out in [AM], and
the tools developed in this first approach have been generalized and improved later on using both
commutative algebra and category theory.
One of the basic notions behind dimension is the additivity of a function on short exact sequences
of class of modules. Let C be a class of modules over a ring A. A function λ : C → Z is additive on
short exact sequences if, for each short exact sequence

0 →M ′ →M →M ′′ → 0

of A-modules in C it holds
λ(M ′) + λ(M ′′) = λ(M).

For example the map giving the dimension of finite-dimensional vector spaces over a field k is an
additive function over the class of finite-dimensional vector spaces. This kind of functions is also as
well behaved as possible on long exact sequences of modules. That is given a long exact sequence

0 →M0 →M1 → · · · →Mn → 0

of A-modules such that all the kernels of the morphisms and all the elements of the sequence belong
to the same class C, then

n
∑

i=0

(−1)iλ(Mi) = 0.

After this general presentation without specifical assumptions on the rings and modules involved we
move to the particular case of Noetherian rings and finitely generated modules. For the remainder
of this section let A be a Noetherian ring and M a finitely generated A-module.
If A is also a graded ring, say A =

⊕∞
n=0An, it is a well-known fact that the subring of homogeneous

elements is itself Noetherian and A can be seen as an A0-algebra generated by homogeneous elements
(see [AM 10.7]). Moreover, if M is a finitely generated graded A-module, then each homogeneous
component Mn of degree n of M is finitely generated as an A0-algebra. Thus, we can consider an
additive function on the class of all the finitely generated A0-modules.
We may then define the Poincaré series of M (w.r.t. a given additive function λ) as the generating
function of λ(Mn), i.e. the power series

Pλ(M, t) :=

∞
∑

n=0

λ(Mn)t
n.

1



CHAPTER 1. HILBERT POLYNOMIAL 2

In the same setting given above, the Poincaré (or Hilbert-Poincaré) series turns out to be a rational
function, as proved first by Hilbert in 1890 using its Syzygy Theorem, and then by Serre.

Theorem 1.1. (Hilbert-Serre) Let A be generated, as an A0-algebra, by homogeneous elements
x1, . . . , xs with degree k1, . . . , ks, let M be a finitely generated A-module and λ and additive function.
Then Pλ(M, t) is a rational function in t of the form

Pλ(M, t) =
f(t)

∏s
i=1(1− tki)

,

with f(t) ∈ Z[t].
Furthermore if we call d(M) the order of the pole of Pλ(M, t) at t = 1 and we assume that ki = 1
for all i then, for all sufficiently large n, λ(Mn) is a polynomial in n of degree d(M)− 1.

Proof. See [AM, 11.1]. �

Definition 1. The function (or polynomial) obtained in Theorem 1.1 is usually called Hilbert-
Samuel function (or polynomial) of M w.r.t. λ. If we take as additive function the length, or
dimension, of a module, we speak just of Hilbert function (or polynomial) of M .

In the environment of Noetherian local rings we may define the characteristic polynomial of an
m-primary ideal q and prove that it is a numerical polynomial, i.e. a polynomial P (z) ∈ Q[z] s.t.
P (n) ∈ Z for all n sufficiently large.

Proposition 1.2. Let (A,m) be a Noetherian local ring, q an m-primary ideal, M a finitely
generated A-module and (Mn)n∈N a stable q-filtration of M . Call s the minimal number of
generators of q. Then:

i) M/Mn has finite length for all n ≥ 0;

ii) for all sufficiently large n, the length of (M/Mn) is a polynomial χq,M (n) ∈ Q[n] of degree
smaller than or equal to s;

iii) the degree and the leading monomial of χq,M (n) depend only on M and q, not on the chosen
filtration.

In particular, if we pick M = A, the polynomial correponding to the filtration (qn)n∈N is called the
characteristic polynomial of the m-primary ideal q and it is denoted by χq(n).

Proof. See [AM, 11.4] or [Eis, 12.2]. �

Once we have such results, with some additional work in commutative algebra, we may give
a first characterisation of the dimension of a Noetherian local ring, and thus a local notion of
dimension of a variety, linking three different objects:

1. the intuitive idea of dimension as “number of generators”;

2. the topologial idea of dimension as length of chains of suitable subsets, which in this case are
prime ideals;

3. the degree of the characteristic polynomial;

see e.g. [AM, ➜11] or [Bo, ➜2.4].

We proceed now considering Hilbert polynomials, with the goal of extending their defintion to
algebraic subsets of projective spaces. In order to do that, we give an “algebraic version” of
Hilbert-Serre’s Theorem involving the annihilator of a module. We recall that, if M is a graded
A-module, the annihilator of M is AnnM := {s ∈ A | sM = 0} and it is an homogeneous ideal in
A. Furthermore, for a graded A-module M and for any l ∈ Z we recall that the twisted module M(l)
is the A-module obtained by shifting “l places to the right each graded part”, i.e. M(l)k =Mk+l.
Due to this “shift to the right”, M(l) will be isomorphic to M as an A-module, but will generally
loose the grading isomorphism.
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Proposition 1.3. Let M be a finitely generated graded A-module. Then there exists a filtration by
graded submodules

0 =M0 ⊆M1 ⊆ . . . ⊆Mr =M

such that for each i we have an isomorphism M i/M i−1 ≃ (A/pi)(li), where pi is a homogeneous
prime ideal of A and li ∈ Z. Such a filtration is not unique, anyway for any such filtration the
following statements hold:

i) if p is a homogeneous prime ideal of A, then

p ⊇ AnnM ⇐⇒ p ⊇ pi

for some i. In particular, the minimal elements of {p1, . . . , pr} are exactly the minimal primes
of AnnM ;

ii) for each minimal prime p of M , the multiplicity of p in the sequence (p1, . . . , pr) is equal to
the length of Mp over the local ring Ap, and thus it does not depend on the chosen filtration.

Proof. See [H I , 7.4]. �

Consider now A = k[x0, . . . , xn] and M a graded A-module. We denote the Hilbert function of
M by

hM (l) := dimkMl

for each l ∈ Z. All such dimensions are finite, as a finitely generated module over a Noetherian ring
is itself Noetherian, and fields are trivially Noetherian, see e.g. [Eis, 1.4]. Furthermore, the Hilbert
function is an additive function on the category of finitely generated modules.

Theorem 1.4. (Hilbert-Serre algebraic version) Let A = k[x0, . . . , xn], and let M be a finitely
generated graded A-algebra. Then there exists a unique polynomial PM (z) ∈ Q[z] s.t. hM (l) = PM (l)
for all l sufficiently large. Moreover, it holds that degPM (z) = dimZ(AnnM), where Z(·) denotes
the zero set of a homogeneous ideal in Pn.

Proof. See [H I, 7.5] or [Eis, 1.11]. �

Definition 2. The polynomial PM given by Theorem 1.4 is called the Hilbert polynomial of M . If
Y ⊆ Pn is an algebraic set of dimension r, we define the Hilbert polynomial of Y , denoted by PY , to
be the Hilbert polynomial of its homogeneous coordinate ring A(Y ), which is indeed a polynomial
of degree r again by Hilbert-Serre theorem.

We end this section introducing two numbers strictly related to PM and that often appear while
working with varieties.

Definition 3. Let Y be an algebraic set of dimension r. We set the degree of Y , denoted simply
by deg Y , to be r! times the leading coefficient of PY . If p is a minimal prime of a graded A-module
M , we define the multiplicity of M at p, denoted by µp(M), as the length of Mp over Ap.

In particular it can be proved that deg Y is a positive integer for any non empty algebraic subset
of Pn and that the definition of degree given using the generating homogeneous ideal is consistent
with the one given via Hilbert polynomials (see e.g. [H I, 7.6]).

1.2 Hilbert polynomial of Varieties

Once we have developed all such tools for modules and algebraic subsets of Pn we can leave
behind the abstract setting and move to projective varieties.

Definition 4. We define the Hilbert function of any Zariski closed subset X ⊆ Pn to be

hX(m) := dim(A(X)m)

where A(X) = k[x0, . . . , xn]/I(X) and the subscript m denotes the m-th graded piece.

Hence, we may see that it is the codimension, in the vector space of all homogeneous polynomials
of degree m in Pn, of the subspace of those polynomials vanishing on X.
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Remark 1. If we consider a projective variety, i.e. an irreducible Zariski closed subset X ⊆ Pn, we
can give a “new” meaning to the degree of the variety X: since the leading term of the Hilbert
polynomial is (d/k!) ·mk, the degree d is exactly the number of points of intersection of X with a
general (n− k)-plane (see [H I, 7.3 and 7.7], or [Sh1, ➜6.2]).

We show now some first easy examples of computation of Hilbert polynomials.

Example 1.1 Consider three points in P2. Then we have that

hX(1) =

{

2 the three points are collinear

3 if not

as
hX(1) = dimk(A(X)1) = dimk(k[x0, x1, x2]1)− dimk(I(X)1)

and I(X)1 is the ideal consisting of all homogeneous linear polynomials vanishing at all three points
and so it is 1-dimensional if they are collinear, and 0 else.
If we now want to evaluate hX(2), it turns out that it is equal to 3, as we can always find a
homogeneous quadratic polynomial vanishing on two of the three points, but not on the third one.
Indeed if we fix a representative for each point in P2 and define a map ϕ : k[x0, x1, x2] → k3 given
by the evaluation at those representatives, its kernel will be exactly I(X)2 and the map is surjective
for the above argument about homogeneous quadratic polynomials, hence

hX(2) = dimk(A(X)2) = dimk(k[x0, x1, x2])− dimk kerϕ = dimk imϕ = 3.

Similarly, for all m ≥ 3 we conclude that hX(m) = 3.

Example 1.2 We pick now X ⊆ P2 consisting of four points. If the four points are collinear, then

hX(m) =











2 m = 1

3 m = 2

4 m ≥ 3

else

hX(m) =

{

3 m = 1

4 m ≥ 2

by the same argument as above.

Example 1.3 It is a general fact that given X ⊆ Pn consisting of d points, then for m ≥ d− 1 we
have hX(m) = d, see [AG, Lemma 6.1.4].

The next example allows us to see that different closed subsets, such as two distinct points and
a double-point, may have the same Hilbert function and Hilbert polynomial, which is not so good
for our theory, as we would like to be able to distinguish the two different cases.

Example 1.4 Consider X = V (x20) ⊂ P1. Then

S(X)m =

{

spank{1} m = 0

spank{x0x
m−1
1 , xm1 } m > 0

so that

hX(m) =

{

1 m = 0

2 m > 0

which is exactly the same Hilbert function as the one of two distinct points.

We move now from the almost elementary case of distinct points to the easiest varieties we are
used to work with: curves in P2.

Example 1.5 Let X ⊆ P2 be a curve described as the zero locus of a suitable polynomial f(x) of
degree d. In this case I(X)m consists of all polynomials of degree m which are divisible by f , so
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that we may identify I(X)m with the space of polynomials of degree m− d, thus, it is a well known
fact that

dim(I(X)m) =

(

m− d+ 2

2

)

.

Hence, for m ≥ d,

hX(m) =

(

m+ 2

2

)

−

(

m− d+ 2

2

)

= d ·m−
d(d− 3)

2
.

Example 1.6 Let X = Pd
k. In this case A(X) = k[x0, . . . , xd] and A(X)m is the vector space

generated by all monomials of total degree m in d indeterminates, so that

hPd(m) =

(

m+ d

d

)

.

We produce now an example which shows that Hilbert functions and polynomials dramatically
depend on the embedding into the given projective space.

Example 1.7 We compute the Hilbert polynomial of the Veronese embedding. Let νd : P1
k →֒ Pd

k

be the d-th Veronese embedding of P1
k and call X := νd(P

1
k).

The induced map ν∗d on homogeneous coordinate rings identifies the graded piece k[x, y]m with
k[x, y]dm, thus

hX(m) = dimk(A(X)m) = dimk(k[x, y]dm)) = dm+ 1

using previous examples.
We may generalize the previous account for the Veronese variety X = νd(P

n) ⊂ PN by observing
that polynomials of degree m on PN pull back via νd to polynomials of degree dm on Pn, exactly
as they did in the P1 case. Thus the dimension of A(X)m is the one of the space of polynomials of
degree dm on Pn, hence by Example 1.6 we have that

hX(m) = pX(m) =

(

md+ n

n

)

.

Example 1.8 Take now two disjoint projective varieties X and Y in Pn. Recall that

I(X) ∩ I(Y ) = I(X ∪ Y ) and V (I(X) + I(Y )) = V (I(X)) ∩ V (I(Y )) = X ∩ Y.

In particular, as we supposed X and Y to be disjoint, we have V (I(X) + I(Y )) = ∅. Therefore, if
we set A = k[x0, . . . , xn], starting from a short exact sequence

0 → A/(I(X) ∩ I(Y )) → A/I(X)×A/I(Y ) → A/(I(X) + I(Y )) → 0

where the first non trivial map is given by f 7→ (f, f) and the second one by (f, g) 7→ f − g, we
obtain that

hX∩Y + hX∪Y = hX + hY .

Since X and Y were supposed to be disjoint, we conclude that

hX∪Y = hX + hY .

So far we provided examples in which the smallest integer needed to obtain a polynomial in the
Hilbert function was not so difficult to find, although in general such a bound isn’t so simple to
evaluate.

There’s another way to compute Hilbert polynomials relying on twisted modules, following
[Ha, ➜13], that could be useful in same cases.

Example 1.9 Consider A := k[x0, . . . , xn] and take f ∈ Ad, by which we define a degree d
hypersurface X := V (f). Moving to the exact sequence of A-modules

0 → A(−d) → A→ A(X) → 0
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and taking the m-th graded pieces and their dimensions, we find out that

hX(m) = dimk(Am)− dimk(Am−d) =

(

m+ n

n

)

−

(

m+ n− d

n

)

generalising what we saw in Example 1.5.

The idea used in the previous example is the standard process that can be extended to a wider
collection of modules.

Definition 5. A map φ : M → N of graded A-modules such that φ(Mk) ⊂ Nk+d is said to be
homogeneous of degree d.

Consider now the ideal I(X) of a variety X ⊆ Pn. Such an ideal is generated by homogeneous
polynomials fα of degree dα, i.e. there is a surjection

⊕

α

A(−dα) → I(X) → 0

or, equivalently, the sequence

⊕

α≤r

A(−dα)
φ1
−→ A→ A(X) → 0

is exact, where φ1 is given by the vector (. . . , ·fα, . . .). The kernel of φ1 is the module M1 of all
r-tuples (g1, . . . , gr) such that Σgα · fα = 0 and it is called module of relations.

Remark 2. Such a module is a graded module and, avoiding the case in which X is a hypersurface,
it is always non empty as it contains all the relations of the form fα · fβ − fβ · fα.

Anyway, the module of relations M1 is also finitely generated, as it is a submodule of a finitely
generated module, so that we may consider a set of generators (fβ,1 . . . , fβ,r) for β ≤ s and for each
β and a suitable integer eβ we have deg(fβ,1) + d1 = · · · = deg(fβ,r) + ds = eβ , so we can lengthen
the previous exact sequence to

⊕

β≤s

A(−eβ)
φ2
−→

⊕

α≤r

A(−dα)
φ1
−→ A→ A(X) → 0

and so on.
This “weird procedure” comes to an end due to the Hilbert syzygy theorem (see [Eis, 1.13]), thus we
find a free resolution

0 → Nk → Nk−1 → · · · → N1 → A→ A(X) → 0 (1.1)

of A(X), with Ni = ⊕A(−ai,j), and 1.1 can be refined to a minimal resolution. If we consider

(

c

n

)

0

:=

{

c·(c−1)···(c−n+1)
n! c ≥ n

0 c < n

for all n ∈ N and c ∈ Z, we can provide, using resolution 1.1, a new description of the Hilbert
function of X as

dim(A(−a)m) = dim(Am−a) =

(

m− a+ n

n

)

0

.

Via this new construction it follows that, if Ni = ⊕A(−ai,j),

dim(A(X)m) =

(

m+ n

n

)

0

+
∑

i,j

(−1)i
(

m− ai,j + n

n

)

0

and this particular binomial coefficient is a polynomial in c, for c ≥ 0 and m ≥ max(ai,j) − n,
providing that the Hilbert function is a polynomial in m as already proved.
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1.3 Hilbert polynomials via Cohomology

The last part of Section 1.2 makes us think that, in order to deal with Hilbert polynomials, a
good setting might be cohomology theory. Indeed this is the most recent developement of the subject
and one of the most used nowadays. Using such approach, Hilbert functions (and polynomials)
are examples of a different object called Euler characteristic. The natural objects of cohomology
theory, in algebraic geometry, are schemes and coherent sheaves on them, and algebraic varieties
are a particular kind of schemes.
Let k be a field, X be a projective scheme over k and F a coherent sheaf on X. We set

hi(X,F ) := dimkH
i(X,F ).

Once we have fixed such a notation we define the Euler characteristic to be

χ(X,F ) :=

∞
∑

i=0

(−1)ihi(X,F ).

and we immediately see that Euler characteristic is an additive function on exact sequences of
coherent sheaves by the definition.
Moreover we can notice that for a fixed integer n and m ≥ 0 we find

h0(Pn
k ,OX(m)) =

(

n+m

m

)

which has leading coefficient mn

n! , even though such an equality does not hold for every m; indeed it
breaks down for m < −n. Neverthless we might check that

χ(Pn
k ,OX(m)) =

(

m+ n

n

)

.

Definition 6. Given a coherent sheaf F on a projective k-scheme X, we define the Hilbert function
of F as

hF (n) := h0(X,F (n))

and by Hilbert function of X we will mean the Hilbert function of its structure sheaf OX .

As we already know in a special case, the Hilbert function agrees, for large enough n, with a
polynomial, called Hilbert polynomial. After the introduction of Euler characteristic, we expect
that this “eventual polynomiality” arises because the Euler characteristic actually is a polynomial
and the higher cohomology vanishes for n >> 0.

Theorem 1.5. Let F be a coherent sheaf on a projective k-scheme X embedded in the projective
space Pn

k . Then χ(X,F (m)) is a polynomial in m of degree equal to dimk SuppF . Thus for m >> 0
we have that h0(X,F (m)) is a polynomial of degree dimk SuppF . In particular h0(X,OX(m)) is
a polynomial of degree equal to dimX.

Proof. See [Va1, 12.1]. �

According to the notation we introduced before, if F is a coherent sheaf on a projective k-scheme
X we define

pF (m) = χ(X,F (m))

and
pX(m) = χ(X,OX(m)) = pOX

(m).

By this definition we find out that

pPn(m) =

(

m+ n

n

)

.

If H is a degree d hypersurface in Pn, using the additivity of the Euler characteristic on the exact
sequence of closed subschemes

0 → OPn(−d) → OPn → OH → 0
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we can calculate

pH(m) = pPn(m)− pPn(m− d) =

(

m+ n

n

)

−

(

m+ n− d

n

)

following almost the same procedure of Example 1.9.

A priori Euler characteristic needs not to be finite, but using the so called Vanishing Theorems
(Serre, Grothendieck, Kodaira, see e.g. [H III]) we obtain some hypothesis under which higher
cohomology groups are equal to 0 or, as we usually say, “higher cohomology groups vanish”.
Notice that we did not ask k to be algebraically closed. The assumption is actually almost irrelevant,
as using base change theorems for affine morphism, or flat base change, we find that cohomology
groups do not change under field extensions. This idea, which will be discussed in the next section,
allows us to say that the Euler characteristic is invariant under base changes. Hence, we may
compute Euler characteristic, and the Hilbert polynomials, either on k or on its algebraic closure,
without the loss, or addition, of any information, which is very useful as for algebraically closed
field (such as C) we have more algebraic tools at our disposal.
Moreover, one can show that ifX ⊂ Pn

k is a Zariski closed subset, then the function d 7→ χ(Pn
k ,OX(d))

coincides with the earlier definition of Hilbert polynomial. Indeed they are projective subschemes
to which we may associate a coherent sheaf on the projective space Pn in a natural way using the
structure sheaf. Hence, using Theorem 1.5, we may define the Hilbert polynomial of a coherent
sheaf on Pn

k as the polynomial given by the map d 7→ χ(Pn
k ,F (d)) for d >> 0.

Example 1.10 Let X be a degree-d hypersurface in Pn
k and consider its ideal sheaf exact sequence

0 → OPn(−d) → OPn → OX → 0.

Twisting by OPn(m), passing to the long exact sequence in cohomology, and then taking dimensions,
we find out that

0 = h0(Pn,OPn(m− d))− h0(Pn,OPn(m)) + h0(Pn,OX(m))− h1(Pn,OPn(m− d)) + · · ·

which, by collecting terms, gives

χ(Pn,OX(m)) = h0(Pn,OPn(m))−h0(Pn,OPn(m−d))+(−1)nhn(Pn,OPn(m))−(−1)nhn(Pn,OPn(m−d)).

We know the first two dimensions as they are given by the usual binomial coefficient, and for
m− d > −n− 1 the terms hn vanish, so we are left with the polynomial

χ(Pn,OX(m)) =

(

m+ n

m

)

−

(

m+ n− d

n

)

which is exactly the Hilbert polynomial we found out in the previous computations.

1.4 Base Change and Flatness

In this section we introduce two important notions in algebraic geometry: base change, or
extensions, and flatness. In order to do that we briefly recall some preliminary concepts in the
category of schemes.

Let S be a scheme. We say that X is a scheme over S, shortly an S-scheme, if X is a scheme
together with a morphism X → S. If X and Y are two schemes over S, then a morphism of
S-schemes is a morphism X → Y compatible with the given morphisms to S. The underlying
scheme S is usually called base scheme. Once we are given two S-schemes X and Y we define the
fibered product of X and Y over S, denoted by X ×S Y , to be a scheme together with a pair of
morphisms p1 : X ×S Y → X and p2 : X ×S Y → Y called projections, which make a commutative
diagram with the given morphisms X → S and Y → S, satisfying the following universal property:
given any other S-scheme Z and morphisms f : Z → X and g : Z → Y that make a commutative
diagram with the given morphisms X → S and Y → S, there is a unique morphism θ : Z → X×S Y
such that f = p1 ◦ θ and g = p2 ◦ θ.
As, a priori, not all categories admit fibered products, also known as pullbacks, or Cartesian squares,
in category theory, we need a result ensuring us that, in our case, this a construction is possible.
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Theorem 1.6. For any two S-schemes X and Y the fibered product exists, and it is “essentially”
unique.

Proof. See [H II, 3.3]. �

The notion of fibered product is useful in order to translate the well-known analytical concept
of fibre of a function in the scheme context.

Definition 7. Let f : X → Y be a morphism of schemes and fix a point y ∈ Y . Let k(y) = Oy,Y /my

be te residue field of y on Y , where Oy,Y denotes the local ring at y and my its maximal ideal, and
consider the natural morphism Spec k(y) → Y . We define the fibre of the morphism f over y to be
the scheme

Xy := X ⊗Y Spec k(y).

This definition allows us to regard a morphism as a family of schemes, its fibres, parametrized
by the point of the image scheme. So we develop a useful tool to study such families of schemes,
which Hartshorne calls “a form of cohomology along the fibres” in [H III, ➜9].

Definition 8. Let f : X → Y be a continuous map between two topological spaces. As the
category of sheaves of abelian groups on a topological space X, denoted by Ab(X), has enough
injectives (see [H III, 2.3.]) and taking the direct image f∗ : Ab(X) → Ab(Y ) turns out to be a left
exact functor, we define the higher direct image functors

Rif∗ : Ab(X) → Ab(Y )

to be the right derived functor of the direct image functor.

In particular the following characterization holds.

Proposition 1.7. For each i ≥ 0 and each F ∈ Ab(X), the higher direct image sheaf Rif∗(F ) is
the sheaf associated to the presheaf

V 7→ Hi(f−1(V ),F |f−1(V ))

on Y . In particular, if V ⊆ Y is any open susbset then

Rif∗(F ) |V = Rif ′∗(F |f−1(V )),

where f ′ : f−1(V ) → V is the restriction of f .

Proof. See [H III, 8.1 and 8.2]. �

Recalling that a sheaf F on a topological space X is said to be flasque if for every inclusion
of open sets V ⊆ U , the restriction map F (U) → F (V ) is surjective and relying on the fact that
restrictions of flasque sheaves are flasque and they are acyclic for the globals section functor (see
e.g. [H III, 2.4, 2.5, 6.1]), the characterization provided by Proposition 1.7 produces the following
useful vanishing result.

Corollary 1.8. If F is a flasque sheaf on X, then Rif∗(F ) = 0 for all i > 0.

Proof. See [H III, 8.3].

This last result makes us capable of computing the higher direct image functor of a morphism
of ringed spaces not only on Ab(X), but also on the category Mod(X) of sheaves of OX -modules,
since to calculate the right derived functors we need injective resolutions, and injective objects are
flasque (see e.g. [H III, 2.4]), and thus acyclic for f∗ by Corollary 1.8.
In the case of Noetherian schemes we may provide a further outlining of the higher direct image
sheaf.

Proposition 1.9. Let X be a Noetherian scheme, f : X → Y a morphism of schemes, with
Y = SpecA. Then, for any quasi-coherent sheaf F on X we have the following isomorphism

Rif∗(F ) ∼= Hi(X,F )˜,

where the notation˜means taking the associated sheaf in Mod(Y ).
Moreover, in such a case the higher direct image sheaf is again quasi-coherent.
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Proof. See [H III, 8.5 and 8.6]. �

After this brief discussion, we go back to fibered products and their connection with Hilbert
polynomials.
From the concept of fibered product arises the notion of base extension, or base change ([H] uses
the first name while many other authors such as [Bosch] or [GW] the second one). We have already
used the idea of base when we said that for an S-scheme X, the scheme S is called “base scheme”.
The process of base extension will try to generalize the elementary concept of field extensions,
which is a well-known useful tool in ring theory.

Definition 9. Let k be a field and consider the scheme S = Spec k. If S′ is another base scheme
and if S′ → S is a morphism fo schemes, then for any S-scheme X we let X ′ = X ×S S

′ be another
scheme, defined using the fibered product, which is by construction an S′-scheme. We say that X ′

is obtained from X by a base extension, or a base change, S′ → S.

Taking base extension turns out to be transitive, as shown e.g. in [GW, Proposition 4.16].

Example 1.11 Linking this definition with the standard abstract algebra’s idea of enlarging the
field of the coefficients of polynomials introduced by van der Waerden, if k → k′ is a field extension
we may think to a base extension S′ → S, with S′ = Spec k′ and S = Spec k, induced by the
extension of fields.

Considering fibres and base extensions we shift the interest from studying one variety at a
time to studying properties of the morphism that defines its family. In this new view it becomes
important to study the behaviour of properties of f under base extensions and to relate properties
of the morphism to properties of its fibres. Hence, our attention should be given to properties that
are invariant, or stable, under base extensions, i.e. to properties P of a morphism of S-schemes
f such that for a given a base extension S′ → S, also the induced map f ′ : X ′ = X ×S S

′ → S′

satisfies P.
Several well known properties turn out to be stable under base change, such as being “locally of
finite type” or being “closed immersions”. For a presentation of most of them see e.g. [H II, ➜4,
➜9 and ➜10], [GW, ➜9, ➜10, ➜12, ➜13 and ➜14] or [Bosch, ➜7, ➜8 and ➜9]), by the way we will focus
on one particular property: being flat. The idea of flatness has been first introduced by Serre in
an algebraic context in his fundamental article [GAGA] and has been then reinterpretated in the
geometric context by the groundwork of Grothendieck [FGA].
We start defining flatness in the original case of modules and then we move on to schemes.

Definition 10. Let F be an A-module. If for every monomorphism M ′ →M of A-modules the
induced map M ′ ⊗A F →M ⊗A F is again a monomorphism we say that F is flat. An equivalent
condition is that tensoring by F on the right is exact.

By the equivalent definitions we gave, we get straightforwardly that flatness is a local property,
i.e. F is a flat A-module if and only if Fp is a flat Ap module for each prime ideal p, if and only if
Fm is a flat Am module for each maximal ideal m.

To study flatness the most valuable context is category theory, since in that case flatness turns
out to be equivalent to the vanishing of a specific functor, the so called torsion functor. Anyway
we will try to avoid as much as possible an explicit use of this functor, which would require an
important amount of space and time. Nevertheless, we will use some facts that can be proved
using the category theory approach, referring for a further and more complete treatment of the
subject to [Eis, ➜6], [Matsumura, ➜3.7 and ➜7], [Weibel, ➜3] or [Rotman, ➜7], even though some
useful properties of flat modules may be proved avoiding the use of Tor functor (see e.g. [Rotman,
➜3] and [AM, ➜3]). Here we recall simply that if M is a projective A-module, and in particular a
free one, as free implies projective, then it is flat (see [Rotman, 3.46]).
Even remaining in the context of modules, we may state a first result linking base change and
flatness, claiming that flatness is preserved by change of rings. For the proof, which is an easy
application of canonical morphisms between tensor products, see [Bosch 4.4, Proposition 1 iii)].

Proposition 1.10. Let M be an R-module and consider R→ R′ a ring homomorphism. If M is
flat as an R-module, then also M ⊗R R

′ is flat as an R′-module.

We consider now as a special family of schemes one provided by a flat morphism, a so called
flat family.



CHAPTER 1. HILBERT POLYNOMIAL 11

Definition 11. Let f : X → Y be a morphism of schemes, and let F be an OX -module. We say
that the sheaf F is flat at a point x ∈ X over Y if the stalk Fx is flat as an Oy,Y -module, where
y = f(x) and the stalk has a module structure via the natural map f ♯ : Oy,Y → Ox,X . If F is flat
at any point x ∈ X we say briefly that F is flat over Y . The morphism f itself is said to be a flat
morphism if the sheaf OX is flat over Y .

Example 1.12 If Y is of the form Y = Spec k, with k a field, then every morphism of schemes
X → Y is flat.

Some properties of flat modules extend to properties of flat sheaves.

Proposition 1.11. The following hold:

i) An open immersion is a flat morphism;

ii) let f : X → Y be a morphism, take F a flat OX-module over Y and let g : Y ′ → Y be
any morphism. Consider X ′ = X ×Y Y ′ and call f ′ : X ′ → Y ′ the second projection. Set
F ′ = p∗1(F ). Then F ′ is flat over Y ′ (Base Change Property);

iii) let f : X → Y and g : Y → Z be two morphisms. Suppose that F is a flat OX-module over
Y and that Y is flat over Z. Then F is flat over Z (Transitivity);

iv) let A→ B be a ring homomorphism and M be a B-module. Consider

f : SpecB = X → SpecA = Y

the corresponding morphism of affine schemes and set F = M̃ . Then F is flat over Y if and
only if M is flat over A;

v) let X be a Noetherian scheme and take a coherent OX -module F . Then F is flat if and only
if it is locally free.

Proof. See [H III, 9.2]. �

The fundamental result we state below tells us that “cohomology commutes with flat base
extensions”, and that is why we may find more convenient to take flat morphism instead of general
one.

Theorem 1.12. Let f : X → Y be a separated morphism of finite type of Noetherian schemes and
let F be a quasi-coherent sheaf on X. Let u : Y ′ → Y be a flat morphism of Noetherian schemes.
Consider the following cartesian diagram:

X ′ X

Y ′ Y

g

v

f

u

Then for all i ≥ 0 there are natural isomorphisms

u∗Rif∗(F ) ∼= Rig∗(v
∗
F ).

Proof. See [H III, 9.3]. �

Remark 3. If we drop the flatness assumption on u we find anyway that there is a natural map

u∗Rif∗(F ) → Rig∗(v
∗
F ),

but this map is not an isomorphism in general.

Corollary 1.13. Let f : X → Y and F be as in Theorem 1.12 and assume that Y is affine.
Consider for any point y ∈ Y the fibre Xy and let Fy be the induced sheaf. Denote by k(y) the
constant sheaf k(y) on the closed subset {y}˜of Y . Then, for all i ≥ 0 there are natural isomorphisms

Hi(Xy,Fy) ∼= Hi(X,F )⊗ k(y).
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Proof. See [H III, 9.4]. �

We provide now a relation between flatness and dimension of fibres.

Theorem 1.14. (Fibre dimension Theorem) Let f : X → Y be a flat morphism of schemes of
finite type over a field k and for any point x ∈ X set y = f(x). Then

dimxXy = dimxX − dimy Y

where for any scheme X by dimxX we mean the dimension of the local ring Ox,X .
If moreover Y is also irreducible, then the following are equivalent:

i) every irreducible component of X has dimension dimY + n;

ii) for any point y ∈ Y , every irreducible component of the fibre Xy has dimension n.

Proof. See [H III, 9.5, 9.6]. �

We have now almost every tool needed to prove the link between flatness and Hilbert polynomials.
We still need just two results about integral regular schemes of dimension 1.

Definition 12. Given a scheme X, a point x ∈ X is said to be an associated point of X if the
maximal ideal mx is an associated prime of 0 in Ox.X .

Proposition 1.15. Let f : X → Y be a morphism of schemes and Y be integral and regular of
dimension 1. Then X is flat over Y if and only if every associated point of X maps to the generic
point of Y .

Proof. See [H III, 9.7]. �

Proposition 1.16. Let Y be a regular integral scheme of dimension 1 and let P ∈ Y be a closed
point. Consider X ⊆ Pn

Y−P be a closed subscheme flat over Y − P . Then there exists a unique

closed subscheme X ⊆ Pn
Y , flat over Y , such that its restriction to Pn

Y−P is X.

Proof. See [H III, 9.8]. �

Now we are ready to state, and prove, the main result of the section.

Theorem 1.17. Let T be an integral Noetherian scheme and consider a closed subscheme X ⊆ Pn
T .

For each point t ∈ T consider Pt ∈ Q[z] the Hilbert polynomial of the fibre Xt taken as a closed
subscheme of Pn

k(t). Then X is flat over T if and only if the Hilbert polynomial Pt is independent
of t.

Proof. For all m >> 0 let
Pt(m) := dimk(t)H

0(Xt,OXt
(m))

be the Hilbert polynomial of the fibre Xt. We now make two simplifications of the problem:

1. we replace OX by any coherent sheaf F on Pn
T and use the Hilbert polynomial on Ft, so that

we may assume X = Pn
T ;

2. we point out that the question is local on T , as we may compare any point to the generic
point, thus it is sufficient to consider T = SpecA for a local Noetherian ring (A,m).

Once we have done this switch we show that the following are equivalent:

i) F is flat over T ;

ii) for all m >> 0, the cohomology group H0(X,F (m)) is a free A-module of finite rank;

iii) the Hilbert polynomial Pt of Ft on Xt = Pn
k(t) is independent on t for any t ∈ T .
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“i) ⇒ ii)” Using the standard open affine cover U of X we compute Hi(X,F (m)) via Čech
cohomology (see [H III, ➜4]), i.e. if Ci(U,F (m)) is the Čech complex, we set

Hi(X,F (m)) = hi(Ci(U,F (m))).

Since F is flat, also each term Ci(U,F (m)) of the Čech complex is a flat A-module, while the left
hand side is 0 for m >> 0 and i > 0 by Serre’s Vanishing Theorem. Thus the complex Ci(U,F (m))
is a resolution of the module H0(X,F (m)), indeed we have an exact sequence

0 → H0(X,F (m)) → C0(U,F (m)) → C1(U,F (m)) → · · · → Cn(U,F (m)) → 0.

If we split it into short exact sequences we may conclude that H0(X,F (m)) is a flat A-module
as all the Ci(U,F (m)) are. On top of that, Serre’s Vanishing ensures us that it is also finitely
generated, thus free of finite rank by properties of finitely generated flat modules.
“ii) ⇒ i)” Let S = A[x0, . . . , xn] and take the graded S-module

M :=
⊕

m≥m0

H0(X,F (m))

with m0 chosen large enough to have H0(X,F (m)) free for all m ≥ m0. Then F coincides with
the sheaf M̃ associated to M over ProjS, which for m ≥ m0 is the same as the sheaf associated to
Γ∗(F ), where Γ∗(F ) denotes the graded S-module associated to a sheaf F over ProjS (see [H II,
➜2 and ➜5]). Since M is a free, thus flat, A-module, F is also flat by point iv) of Proposition 1.11.
“ii) ⇐⇒ iii)” It will be enough to show that, for m >> 0,

Pt(m) = rkAH
0(X,F (m)).

In order to get the equivalence, we will show that, for any t ∈ T and for all m >> 0

H0(Xt,Ft(m)) ∼= H0(X,F (m))⊗A k(t).

Let us first denote by p the prime ideal corresponding to t ∈ T and consider T ′ = SpecAp. Now
we consider the flat base extension given by T ′ → T so, as cohomology commutes with flat base
changes by Theorem 1.12, we reduce to consider t to be the closed point of T .
Denote the closed fibre Xt by X0, the fibre Ft by F0 and the field k(t) by k. From a presentation
of k over A

Aq → A→ k → 0 (1.2)

we find an exact sequence of sheaves

F
q → F → F0 → 0 (1.3)

on X.
Now, for m >> 0, from (1.3) we may find an exact sequence

H0(X,F (m)q) → H0(X,F (m)) → H0(X0,F0(m)) → 0.

Tensoring (1.2) by H0(X,F (m)) and comparing the two sequences we deduce that for all m >> 0

H0(X0,F0(m)) ∼= H0(X,F (m))⊗A k.

For the converse it suffices to notice that the above argument is reversible as we can check the
freeness of H0(X,F (m)) by comparing its rank at the generic point and at the closed point of T
(see [H II, 8.9]). �

From this result we have in particular that, for a connected Noetherian scheme T and a closed
flat subscheme X over T , the dimension of the fibre and the degree of the scheme, as defined before,
are independent of t. Notice moreover that we have proved something more general along the proof,
i.e. that Euler characteristic itself is constant in flat families, which is “a first sign that cohomology
behaves well in flat families”, as Vakil says in ([Va1, ➜24.7]).
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The “second sign” will be the continuity of the function associating to a coherent sheaf its dimension
at a point, but it turns out to be a too optimistic request. Anyhow it can be proved that such a
function behaves not so badly in a neighbourhood of a point, under some not so strict assumptions.
As such result requires some work with suitable functors on the category of A-modules we just
provide the fundamental statement, omitting the proof which can be found in [H III, ➜12] (for some
further aspects one might see [Va1, ➜28]).

Definition 13. Let Y be a topological space. A function ϕ : Y → Z is upper semicontinuous if
for each y ∈ Y , there is an open neighbourhood U of y such that ϕ(y′) ≤ ϕ(y) for all y′ ∈ U or,
equivalently, if for any n ∈ Z the set {y ∈ Y | ϕ(y) ≥ n} is a closed subset of Y .

Theorem 1.18. (Semicontinuity Theorem for flat schemes) Let f : X → Y be a projective
morphism of Noetherian schemes and let F be a coherent sheaf on X, flat over Y . Then the
function

hi(y,F ) = dimk(y)H
i(Xy,Fy)

is an upper semicontinuous function on Y for all i ≥ 0.
If moreover Y is integral and, for some i, the function Hi(y,F ) is constant on Y , then Rif∗(F )
is locally free on Y and, for every y, the natural map Rif∗(F ) ⊗ k(y) → Hi(Xy,Fy) is an
isomorphism.

We end this first chapter stating one, last, theorem aboute the relations between cohomology
and base change, as it will be needed in the next chapters.

Theorem 1.19. (Cohomology and base change) Let f : X → Y be a projective morphism of
Noetherian schemes and let F be a coherent sheaf on X, flat over Y and take y ∈ Y .

a) If the natural map
ϕi(y) : Rif∗(F ⊗ k(y)) → Hi(Xy,Fy)

is surjective, then it is an isomorphism in a suitable neighbourhood of y;

b) Assume that ϕi−1(y) is surjective. Then, the following are equivalent:

i) ϕi−1(y) is also surjective;

ii) Rif∗(F ) is locally free in a neighbourhood of y.

Proof. See [H III, 12.11]. �



Chapter 2

Hilbert Schemes

The target of this second chapter is the construction of the Hilbert Schemes, that has been
introduced by Grothendieck in [FGA], one of his fundamental work about scheme theory, as schemes
representing a suitable functor. Since the contents of [FGA] were mostly schematic and sketched,
many authors have rearranged his work, trying to give it more formal consistency. In particular,
we will refer to [Sernesi] and to the collection of notes coming out from the “Advanced School in
Algebraic Geometry”, which was held at ICTP in Trieste (IT), July 7-18, 2003, collected by the
speakers in [FGAE].
We start our discussion introducing an older, well-known object of algebraic geometry, which are
Grassmannians; we go on discussiong a special regularity condition due to Mumford and a further
analysis about flatness, ending into the the construction of Hilbert Schemes.

Starting from this chapter, if not otherwise stated by a scheme we will always mean a Noetherian
separated scheme over a fixed field k, not necessarily algebraically closed.

2.1 Grassmannians

The ideas behind Grassmannians come from one of the first and most famous books written
by Hermann Günther Grassmann in 1844: Die Lineale Ausdehnungslehre ein neuer Zweig der
Mathematik and the construction of the projective space formalized by Julius Plücker.

While introducing an abstract notation for operations in a general set, including for the first time
the exterior product, Grassmann starts also a first analysis of particular subspaces of what will be
lately called a vector space over a field k: the linear subspaces of a given dimension d, which we
call d-planes. His idea is partially related to the homogeneous coordinates introduced by Plücker
for the space Pn of all lines through the origin in an n+ 1-dimensional affine space, reducing to
the computation of some minors of a given matrix. The construction made by Plücker is still
one of the techniques used today to introduce Grassmannians (or Grassmann varieties), as it
provides directly some useful properties, for example their dimension, and has a direct application
in Schubert calculus. However, this standard approach doesn’t allow to get other important fact
about Grassmannians, in particular that they are projective varieties, so that along the XIX century,
other techniques were introduced in order to study them. One of the most recent is due to the
groundwork by Grothendieck about scheme theory and the use of category theory. It turns out in
fact that Grassmann varieties are objects that “represent” a special functor linking the categories
of schemes to the one of sets.

As we will see along this chapter, Grassmann varieties are not only a particular case of Hilbert
scheme, but they are actually used in order to construct it: we will indeed regard them as closed
subschemes of a suitable Grassmannian. That’s why we start defining Grassmannians. For this
purpose we will follow [Ar], and just sketch other approaches, giving references along the text for a
more specific discussion. The functorial definition will be anyway obtained in the following sections.

Let us consider a vector space V of dimension n+ 1 over a field, which for simplicity we may take
to be C, and consider the projective space Pn = P(V ) with homogeneous coordinates x0, . . . , xn.
Usually this space is seen as the space of lines in V , but since Grothendieck’s work, the viewpoint

15
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of Pn as the space of all hyperplanes of V has become the most common one. One can also see
P(V ) as the set of lines in the dual vector space V ∗.

Definition 14. We set

G(k + 1, n+ 1) := { (k + 1)-dimensional linear subspaces ofV ∗},

or, equivalently,

G(k + 1, n+ 1) := { (n− k)-dimensional quotients ofV },

and we call it the Grassmannian of k-dimensional linear subspaces of Pn. In [Ar] it is underlined
that there is no standard notation for this object and that many authors denote it also by G(k, n)
or G(n+ 1, n− k), so we need to pay attention to what we are refering to.

It is a well known fact that to a k-dimensional linear subspace Λ, we may associate a (k+1)×(n+1)
matrix







a00 . . . a0n
...

...
ak0 . . . akn






(2.1)

called Plücker matrix, where the rows are the coordinates of a basis of Λ and at least one of the
k + 1 minors is non-zero. Of course this representation for Λ changes if we change its basis, which
implies that the Plücker matrix is multiplied on the left by a non-degenerate square matrix of order
k + 1 corresponding to such a change. This means that, once we provide that

∣

∣

∣

∣

∣

∣

∣

a00 · · · a0k
...

...
ak0 · · · akk

∣

∣

∣

∣

∣

∣

∣

6= 0

Λ can be represented in a “unique way” by a matrix







1 · · · 0 b0k+1 · · · b0n
. . .

...
...

0 · · · 1 bkk+1 · · · bkn






(2.2)

As at least one of the k + 1 minors in (2.1) is non-zero, computing all maximal minors we find
N + 1 “coordinates”, i.e. an N + 1-tuple, with N :=

(

n+1
k+1

)

. This is indeed a point in the projective

space PN = P(∧k+1V ), and the coordinates of this point are called Plücker coordinates, usually
denoted by pi0,...,ik . The map

ϕk,n : G(k + 1, n+ 1) → PN

that associates to Λ ∈ G(k + 1, n+ 1) the point given by the Plücker coordinates is called Plücker
embedding, this means that ϕk,n associates to the space generated by the row vectors v0, . . . , vk of
(2.1) the points in PN whose coordinates are the maximal minors of the matrix. It can be shown,
see [KL] or[Sh1], that this map is indeed an embedding of G(k + 1, n+ 1) in PN as an algebraic
variety and that Plücker coordinates satisfy particular quadratic relations, called Plücker relations
that provide homogeneous ideal of the projective variety (see again [KL] or [Ha, ➜6]).
Moreover, by (2.2), we see that G(k + 1, n+ 1) contains an open affine subset which is isomorphic
to an affine space of dimension (k + 1)(n− k), of coordinates b0k+1, . . ., bkn that can be described
as the set of k-planes not meeting the (n− k − 1)-plane of equations x0 = . . . = xk = 0.
If we call Ui0,...,ik those subsets and we set

Vi0,...,ik := {pi0,...,ik 6= 0},

we have that
ϕk,n(G(k + 1, n+ 1)) ∩ Vi0,...,ik = ϕk,n(Ui0,...,ik).

By the same consideration about maximal minors, G(k+1, n+1) can be covered by N affine pieces,
which allows us to say that Grassmannians are actually manifolds of dimension (k + 1)(n− k).
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Since the charts we obtained are affine spaces we find out also that Grassmannians are smooth,
and moreover they are compact as they are projective.

These two properties might be obtained also using a different approach, as it is suggested in [Bar].
Smoothness is provided showing that for every two charts (U,ϕ) and (V, ψ) such that U ∩ V 6= ∅
we have that

ϕ ◦ ψ−1 : ϕ(U ∩ V ) → ψ(U ∩ V )

is a diffeomorphism, i.e. a bijection with smooth inverse. Such a result is obtained working with
linear maps A : P → Q, where P and Q are complementary subspaces of the vector space V such
that V = P ⊕Q, considering maps of the form φ : L(P,Q) → UQ associating to each linear map
A its graph Γ(A), where L(P,Q) is the vector space of linear maps from P to Q and UQ denotes
the subset of the Grassmannian G(k + 1, n+ 1) consisting of (k + 1)-dimensional linear subspaces
interacting trivially with Q, and taking (UQ, φ

−1) as charts.
In order to achieve compactness it is used another approach involving orthogonal projections,
leading to a map Φ : G(k + 1, n + 1) → H(n + 1), with H(n + 1) the space on symmetric
(n+ 1)× (n+ 1)-matrices, that turns out to be an homeomorphism onto its image.

We last remark that it can be shown that Grassmannians are proper over SpecZ (see [FGA, ➜5]).

2.2 Castelnuovo-Mumford regularity and flattening stratifi-

cations

This second section will deal with a regularity condition on coherent sheaves over projective
spaces introduced by Mumford in [D. Mumford, Lectures on Curves on an Algebraic Surface, Annals
of Mathematics Studies vol. 59, Princeton University Press (1966)], recalling a result he attributes
to Guido Castelnuovo, from which the name Castelnuovo-Mumford regularity. We then proceed
with some further properties of flat families, keeping in mind what we have already seen in Section
1.4.

The following definition of Castelnuovo-Mumford regularity makes sense for a coherent sheaf F on
any projective scheme X endowed with a very ample line bundle O(1), but for simplicity we will
consider only the case X = Pr, as done in [Sernesi], which will be the main reference for all this
section.

Definition 15. Take m ∈ Z. A coherent sheaf F on Pr is said to be m-regular if Hi(F (m− i)) = 0
for all i ≥ 1.

We certainly have sheaves that are m-regular, as by Serre’s Vanishing Theorem, every coherent
sheaf F on Pr is m-regular for some integer m.

Theorem 2.1. (Mumford) Suppose that F is m-regular on Pr and set O = OPr . Then:

i) The natural map
H0(F (k))⊗H0(O) → H0(F (k + 1))

is surjective for all k ≥ m;

ii) Hi(F (k)) = 0 for all i ≥ 1 and k ≥ m − i; in particular, for all n ≥ m the sheaf F is
n-regular;

iii) F (m), and thus F (k) for all k ≥ m, is generated by its global sections.

Furthermore, if the sequence
0 → F (−1) → F → G → 0

is an exact sequence, then also G is m-regular.

Proof. We show just the first two conditions. For the remaning part of the proof see [Sernesi, 4.1.1].
We proceed by induction on r.
We first recall that the set of associated points to a quasi-coherent sheaf F on a scheme X, denoted
by Ass(F ), is the set of all points x ∈ X which are associated to F , i.e. whose maximal ideal mx

is associated to the Ox,X -module Fx.
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As in the case r = 0 we have nothing to prove, we assume r ≥ 1.
Consider an hyperplane H not containing any point of Ass(F ), which exists because Ass(F ) is a
finite set.
Tensoring now the exact sequence

0 → O(−H) → O → OH → 0

by F (k) and setting FH := F ⊗H, we get another exact sequence

0 → F (k − 1) → F (k) → FH(k) → 0.

Now, for each i > 0 we obtain an exact sequence

Hi(F (m− i)) → Hi(FH(m− i)) → Hi+1(F (m− i− 1)),

which implies that FH is m-regular on H, so that by induction both i) and ii) hold for FH .
Let us consider then the exact sequence

Hi+1(F (m− i− 1)) → Hi+1(FH(m− i)) → Hi+1(F (m− i)).

The two extremes are zero, the left one by the previous step, the right one by m-regularity, for
every i ≥ 0. Therefore F is (m+ 1)-regular. By induction this proves condition ii).
To prove the first condition consider the following commutative diagram

H0(F (k))⊗H0(O(1)) H0(FH(k))⊗H0(OH(1))

H0(F (k)) H0(F (k + 1)) H0(FH(k + 1))

u

w t

v

The map u is surjective when k ≥ m as H1(F (k − 1)) = 0; moreover, the map t is surjective for
k ≥ m by condition i) for FH . Hence v ◦w is surjective. It follows that H0(F (k+ 1)) is generated
by Im(w) and by H0(F (k)) again for k ≥ m. But, H0(F (k)) ⊂ Im(w) because the inclusion
H0(F ) ⊂ H0(F (k + 1)) is just the multiplication by H, hence w itself is surjective.

�

A first remarkable consideration coming out from the notion of m-regularity is the fact that if
a sheaf F is m-regular, then the associated graded ring Γ∗(F ) can be generated by elements of
degree smaller than or equal to m, as this condition is equivalent to the surjectivity of the map
at point i) of Proposition 2.1. In particular, if an ideal sheaf I in OPr is m-regular, then the
homogeneous ideal associated into the graded ring k[x0, . . . , xr] is again generated by elements of
degree smaller than or equal to m.

It can be proved also a kind of converse result.

Proposition 2.2. Let
0 → F (−1) → F → G → 0

be a short exact sequence of coherent sheaves on Pr, and assume that G is m-regular. Then:

i) Hi(F (k)) = 0 for i ≥ 2 and k ≥ m− i;

ii) h1(F (k − 1)) ≥ hi(F (k)) for k ≥ m− 1;

iii) H1(F (k)) = 0 for k ≥ m− 1 + h1(F (m− 1)).

On top of that, F is m+ h1(F (m− 1))-regular.

Proof. See [Sernesi 4.1.3]. �

We now proceed providing a characterization of m-regularity, which will allow us to relate the
definition to Hilbert polynomials via the introduction of a particular kind of resolution for coherent
sheaves on Pr.
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Theorem 2.3. A coherent sheaf F on Pr is m-regular if and only if it has a resolution of the form

· · · → O(−m− 2)b2 → O(−m− 1)b1 → O(−m)b0 → F → 0

for some nonnegative integers (bi)i∈Z.

Proof. See [Sernesi, 4.1.4]. �

Definition 16. Consider a sequence σ1, . . . , σN of N sections of OPr(1). This sequence will be
called F -regular if the sequences of sheaf homomorphisms induced by mutiplication by σ1, . . . , σN
are exact.

As it can be shown that F -regular sequences of any length exist by choosing a section σi+1 not
containing any poin of Ass(Fi), we see that any general N -tuple (σ1, . . . , σN ) ∈ H0(OPr(1))N is
an F -sequence.

Definition 17. Let F be a coherent sheaf on Pr, and let (b) = (b0, . . . , bN ) be a sequence
of nonnegative integers such that N > dim[Supp(F )]. We say that F is a (b)-sheaf if there
exists an F -regular sequence σ1, . . . , σN of sections of the twisting sheaf of Serre of Pr such that
h0(Fi(−1)) ≤ bi, for i = 0, . . . , N , where F0 = F and Fi = F/(σ1, . . . , σi)F (−1) for i ≥ 1.

From the definition we directly find that if F is a (b)-sheaf, then F1 is a (b1, . . . , bN )-sheaf and
it is almost clear that for every coherent sheaf F on Pr there is a sequence (b) such that F is a
(b)-sheaf. Moreover, a subsheaf of a (b)-sheaf is clearly a (b)-sheaf again, in particular, every ideal
sheaf of I ⊂ OPr is a (0)-sheaf, as OPr is itself a (0)-sheaf.
We link now (b)-sheaves to Hilbert polynomials.

Lemma 2.4. Let
0 → F (−1) → F → G → 0

be a short exact sequence of coherent sheaves on Pr. If the Hilbert polynomial of F is

pF (k) =

r
∑

i=0

ai

(

k + i

i

)

then

pG (k) =

r−1
∑

i=0

ai+1

(

k + i

i

)

.

Proposition 2.5. Let F be a (b)-sheaf, let s = dim[Supp(F )] and consider the Hilbert polynomial
of F

pF (k) =
r

∑

i=0

ai

(

k + i

i

)

.

Then:

i) for each k ≥ −1 it holds h0(F (k)) ≤
∑s

i=0 bi
(

k+i
i

)

;

ii) as ≤ bs and F is not only a (b)-sheaf, but also a (b0, . . . , bs−1, as)-sheaf.

Proof. i) We proceed by induction on s.
If s = 0, then a0 = h0(F ) = h0(F (−1)) ≤ b0.
Assume now s ≥ 1. We have an exact sequence

0 → F (−1) → F → F1 → 0

with F1 being a (b1, . . . , bN )-sheaf, and dim[Supp(F1)] = s− 1. Then

h0(F (k))− h0(F (k − 1)) ≤ h0(F1(k))

and using the inductive hypothesis

h0(F1(k)) ≤
s−1
∑

i=0

bi+1

(

k + 1

i

)

.
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Since h0(F (−1)) ≤ b0, by induction on k ≥ −1 we conclude.
ii) By Lemma 2.4 and proceeding by induction on s we conclude. �

Using this last result, we may produce a numerical criterion for m-regularity linked with the
Hilbert polynomials involved, using the following notion.

Definition 18. The following polynomials, defined by induction for each integer r ≥ −1 as

P−1 := 0

Pr(x0, . . . , xr) := Pr−1(x1, . . . , xr) +
r

∑

i=0

xi

(

Pr−1(x1, . . . , xr)− 1 + i

i

)

are called (b)-polynomials.

Theorem 2.6. Let F be a (b)-sheaf on Pr and let

pF (k) =

r
∑

i=0

ai

(

k + i

i

)

be its Hilbert polynomial. Let (c0, . . . , cr) be a sequence of integers such that ci ≥ bi − ai, for
0 ≤ i ≤ r and m = Pr(c0, . . . , cr). Then m ≥ 0 and F is m-regular. Furthermore, F is
Ps−1(c0, . . . , cs−1)-regular if s = dim[Supp(F )].

Proof. We prove the claim by induction on r.
If r = 0, then m = 0 and F is n-regular for every n ∈ Z.
Assume now that r ≥ 1. As in the proof of Proposition 2.5 take the exact sequence

0 → F (−1) → F → F1 → 0

with F1 a (b1, . . . , bN )-sheaf supported on Pr−1. From Lemma 2.4 and using inductive hypothesis
we deduce that n = Pr−1(c1, . . . cr) is greater than or equal to 0 and that F1 is n-regular. Now,
from Proposition 2.2 we obtain that F is [n+ h1(F (n− 1))]-regular, and hi(F (n− 1)) = 0 for
i ≥ 2. Thus

h1(F (n− 1)) = h0(F (n− 1))− χ(F (n− 1)) ≤
r

∑

i=0

(bi − ai)

(

n− 1 + i

i

)

by point i) of Proposition 2.5. It follows that F is [n+
∑r

i=0 ci
(

n−1+i
i

)

]-regular by Theorem 2.1,
which proves the first assertion.
The second part is just a direct consequence of part ii) of Proposition 2.5, using the fact that

Pr(x0, . . . , xt, 0, . . . , 0) = Pt(x0, . . . , xt).

�

The following corollary follows directly from the facts that a sheaf of ideals of OPr is a (0)-sheaf
and the use of Fr(x0, . . . , xr) = Pr(−x0, . . . ,−xr) as polynomials.

Corollary 2.7. For each r ≥ 0 there exists a polynomial Fr(x0, . . . , xr) such that every sheaf of
ideals I ⊂ OPr having the Hilbert polynomial

pI (k) =

r
∑

i=0

ai

(

k + r

i

)

is m-regular, where m = Fr(a0, . . . , ar), and m ≥ 0.

We will now add this new ingredient to go further in the study of flat families, as done in
[Sernesi, ➜4.2].
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We start fixing some notations. Fix a scheme S and a coherent sheaf F on Pr × S. Consider a
morphism of schemes g : T → S and the diagram

Pr × T Pr × S

T S

h

q p

g

where h = id× g. For every open set U ⊂ S we have homomorphisms

Hj(Pr × U,F ) → Hj(Pr × g−1(U), h∗F ) → H0(g−1(U), Rjq∗(h
∗
F ))

and therefore a homomorphism
Rjp∗F → g∗[R

jq∗(h
∗
F )]

which corresponds to a homomorphism

g∗(Rjp ∗ F ) → Rjq∗(h
∗
F ).

The following asymptotic result holds for j = 0.

Proposition 2.8. For m >> 0 the homomorphism g∗(p∗F (m)) → q∗(h
∗F (m)) is an isomorphism

and, if T is Noetherian, we have that Rjq∗(h
∗F (m)) = 0 for all j ≥ 1.

Proof. See [Sernesi, 4.2.4]. �

In particular, in [FGAE, Lemma 5.1], Nitin Nirsure emphasizes that we do not need any flatness
hypothesis in order to get this result, but we have to pay a little price, which is the fact that the
condition m >> 0 may depend on the morphism g : T → S, producing also a different proof from
the one given in [Sernesi, 4.2.4], following [D. Mumford, Lectures on Curves on an Algebraic Surface,
Annals of Mathematics Studies vol. 59, Princeton University Press (1966)].
If we consider the special case of g : Spec k(s) → S being the inclusion in S of a point s ∈ S, setting
F (s) := F |X×{s} and given a scheme X denoting by X (s) its fibre at s, for the homomorphism of
Proposition 2.8 we will use the notation

tj(s) : Rjp∗(F )s ⊗ k(s) → Hj(Pr(s),F (s)).

Adapting now Theorem 1.19 to our particular case we have the following results.

Theorem 2.9. Let F be coherent on Pr × S and flat over S, let s ∈ S and j ≥ 0. Then:

i) if tj(s) is surjective, then it is an isomorphism;

ii) if tj+1(s) is an isomorphism then Rj+1p∗(F ) is free at s if and only if tj(s) is an isomorphism;

iii) if Rjp∗(F ) is free at s for all j ≥ j0 + 1, then tj(s) is an isomorphism for all j ≥ j0.

Proof. See [Sernesi, 4.2.5]. �

Corollary 2.10. Let X → S be a projective morphism and consider a coherent sheaf F on X , flat
over S. Then:

i) if Hj+1(X (s), S(s)) = 0 for some s ∈ S and j ≥ 0, then Rj+1p∗(F )s = 0, and

tj(s) : Rjp∗(F )s ⊗ k(s) → Hj(S(s), S(s))

is an isomorphism;

ii) let j0 be an integer such that Hj(X (s), S(s)) = 0 for all j ≥ j0 + 1 and s ∈ S, then tj0(s) is
an isomorphism for all s ∈ S;

iii) let j0 ≥ 0 be an integer. Then there is a nonempty open set U ⊂ S such that tj0(s) is an
isomorphism for all s ∈ U .
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Proof. See [Sernesi 4.2.6]. �

After this brief recall about the first chapter, we move on with the notion of stratification of a
scheme, and in particular, flattening one.

Definition 19. Let S be a scheme. A stratification of S consists of a set of finitely many locally
closed subschemes {S1, . . . , Sn}, called strata, which are pairwise disjoint and satisfy the following
condition: S = ∪n

i=1Si, that is we have a surjective morphism

n
∐

i=1

Si → S.

Definition 20. Let F be a coherent sheaf on a scheme S. For each s ∈ S set

e(s) := dimk(s)[Fs ⊗ k(s)].

If we fix a point s ∈ S and call briefly e = e(s), we may consider a1, . . . , ae ∈ Fs such that
their images in Fs ⊗ k(s) form a basis. As a consequence of Nakayama’s lemma (see e.g. [Bo,
➜1.4] or [Eis, ➜4.1]), it follows that the morphism fs : Oe

S,s → Fs defined by the elements ai is
surjective, so that we find an open neighbourhood U of s to which f extends, defining a surjective
homomorphism f : Oe

U → F |U . Applying a similar argument to ker(fs) we may find an affine open
neighbourhood U(s) of s contained in U and an exact sequence

Od
U(s)

g
−→ Oe

U(s)

f
−→ F |U(s) → 0.

Using this easy construction, with some more work (see [Sernesi, 4.2.7]), it might be proved the
following result.

Theorem 2.11. Let S be a scheme and F be a coherent sheaf on S. There is a unique stratification
{Ze}e≥0 of S such that if q : T → S is a morphism, the sheaf q∗(F ) is locally free if and only if the
morphism q factors through the disjoint union of the Ze’s, i.e. we have a sequence T →

∐

e Ze → S.
Moreover, the strata are indexed so that for each e = 0, 1, . . . the restriction of F to Ze is locally
free of rank e. Furthermore, for a given e, we have that

Ze ⊂
⋃

e′≥e

Ze′ .

In particular, if E is the highest integer such that ZE 6= ∅, then ZE is closed.
On top of that, the stratification {Ze}e≥0 commutes with base change.

The above theorem describes a natural way to construct stratifications on schemes, and the
family of strata {Ze}e≥0 is usually called the stratification defined by the sheaf F . Furthermore, as
we can construct a stratification, we find out immediately that we are dealing with an object that
indeed exists.
Nevertheless, as we said before, we are interested in a particular type of stratifications, having some
further properties linked to flatness.

Definition 21. Let S be a scheme and F be a coherent sheaf on Pr × S. A stratification
{S1, . . . , Sn} of S for F such that for every morphism g : T → S the sheaf

Fg := (1× g)∗(F )

on Pr × T is flat if and only if g factors through
∐

Si, is called a flattening stratification for F .

A priori, this kind of stratifications needs not to exist. We surely gain the existence of a flattening
stratification if r = 0, as in this case the notion of flattening stratification and the stratification
defined in Theorem 2.11 coincide. We can also notice that, if such a stratification exists, then it is
unique. So, the tough part of the problem is proving that a flattening stratification exists for all
r ≥ 1.

Theorem 2.12. For every coherent sheaf F on Pr × S, a flattening stratification exists.
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Since the proof of this result is rather technical, involving also a result on generic flatness (see
[FGAE, Lemma 5.11]), we would like to avoid it, refering to [Sernesi, 4.2.11] or [FGAE, ➜5.4] for
the complete argument.
What is anyway remarkable is that, along the explicit construction of the flattening stratification
that is provided in the proof of Theorem 2.12, we find out that there are finitely many locally closed
subsets Y 1, . . . , Y k of S such that, for each i, if we consider on Y i the reduced scheme structure,
then F ⊗OY i×Pr is flat over Y i. This fact, joint with Theorem 1.17, ensures us that only finitely
many polynomials P 1, . . . , Ph occur as Hilbert polynomials of the sheaves F (s), for s ∈ S, and the
strata {Z1, . . . , Zh} obtained at the end of the proof are indexed by the Hilbert polynomials of the
sheaves F (s). This indexing on the Hilbert polynomials is the motivation for the name “Hilbert
schemes” of the structure we are going to build in Section 2.3.

2.3 Construction of Hilbert Schemes

Now we have developed all the tools we need in order to construct the so called Hilbert schemes.
Complete self-contained references on the construction of Hilbert schemes are rather rare, and
always refer to [FGA] and to [A. Grothendieck, “Techniques de construction et thèorémes d’existence
en géométrie algébriques IV: les schémas de Hilbert”, Séminaire Bourbaki, vol. 221 (1860/61)].

In [FGAE], Nitin Nisture underlines that the original result by Grothendieck relied on Chow
coordinates, and that the introduction of the notion of Castelnuovo - Mumford regularity led to a
simplification in the construction of Hilbert schemes. The underlying idea is a generalization of the
construction of Grassmannians (see Section 2.1) to a wider case of families of subschemes, so we
start defining what Hilbert schemes are, and then we will show that they actually exist.

Consider a projective scheme Y and a closed embedding of Y into Pr. Let us fix a numerical
polynomial (see p. 2) of degree smaller than or equal to r, say

P (t) =

r
∑

i=0

ai

(

t+ r

i

)

where P (t) ∈ Q[t] and ai ∈ Z for all i.

Definition 22. For every scheme S we define

HilbYP (t)(S)

to be the set of all flat families X ⊂ Y × S of closed subschemes of Y , parametrized by S, with
fibres having Hilbert polynomial P (t).

As in the first chapter we saw that flatness is preserved by base change, this association defines
a contravariant functor

HilbYP (t) : Schemesop → Sets

called the Hilbert functor of Y relative to P (t), where “Schemes” denotes the category of locally
Noetherian separated k-schemes.
If such a functor is representable by a scheme X, i.e. there is a scheme X and an isomorphism

ξ : Hom(X, ·) = hX → HilbYP (t)(·),

then the scheme X representing it will be called the Hilbert scheme of Y relative to P (t), will be
denoted by HilbYP (t) and thus it exists. In the case Y = Pr we may use the notation HilbrP (t) and

HilbrP (t). Hence, we have now, theoretically, defined the object we are interested in.

By this way of presenting the notion, it is clear that the hard part is not the idea behind the
structure, but the proof that such an idea is consistent. Before approaching this tough part, we
introduce some related concepts, assuming that Hilbert schemes truly exist.

Definition 23. There is a flat family of closed subschemes of Y having Hilbert polynomial equal
to P (t), say W ⊂ Y × HilbYP (t), parametrized by HilbYP (t) and possessing the following universal
property:
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for each scheme S and each flat family X ⊂ Y × S of closed subschemes of Y having Hilbert
polynomial P (t), there is a unique morphism S → HilbYP (t), called the classifying morphism, such
that

X = S ×HilbY
P (t)

W ⊂ Y × S.

The family W is called the universal family, and the pair (HilbYP (t),W) represents the functor

HilbYP (t).

This family is the universal element of the Hilbert functor, namely the element corresponding
to the identity under the identification

Hom(HilbYP (t),HilbYP (t)) = HilbYP (t)(HilbYP (t)).

If we recall that, given two covariant (contravariant) functors F and G, we may consider

Nat(F,G) := { natural transformations F → G}

we may also provide a further, well-known fact: given the existence, we immediately gain the
uniqueness of this object, by applying the following famous result (see e.g. [Rotman, 1.17])

Theorem 2.13. (Yoneda Lemma) Let C be a category, let A ∈ Obj(C), and let G : C → Sets be a
covariant functor. Then there is a bijection

y : Nat(HomC(A, ·), G) → G(A)

between the natural trasformations HomC(A, ·) → G and the set G(A), that associates to a functor
τ the object τA(1A), with τA : HomC(A,A) → G(A).

Indeed, the Yoneda lemma ensures us that given an object X ∈ C and given the functor
hX : Cop → Sets defined as hX(S) = HomC(S,X) the functor X 7→ hX is fully faithful. Thus, from
now on we may identify an object X with the functor hX .

So, we need a way to prove that the Hilbert functor is representable, which is not so immediate.
In order to reach this goal, we have to briefly introduce some notions and results, mostly due to
Grothendieck, concerning Zariski sheaves and covering by open functors. Our guiding text along
this part will be [GW, ➜8], as it focuses on our same purpose, but for a deepest insight in the theory
behind the results and the complete proof of many of them, we will refer to [FGAE, ➜1], in which
descent theory and Grothendieck topologies are treated.

Definition 24. A morphism f : F → G of contravariant functors from S-Schemesop → Sets is
called representable if for all schemes X and all morphisms g : X → G in S-Schemesop → Sets, the
functor F ×G X is representable.

Let F : S-Schemesop → Sets be a functor. If i : U → X is an open immersion of S-schemes and
ξ ∈ F (X) we will write, following what is usually done for sections of sheaves, simply ξ|U instead
of F (i)(ξ).

Definition 25. A functor F : S-Schemesop → Sets is a sheaf for the Zariski topology, or simply a
Zariski sheaf (on S-Schemes) if for every S-scheme X and for every open covering X = ∪i∈IUi we
have the following condition:
given ξi ∈ F (Ui) for all i ∈ I such that ξi|(Ui∩Uj) = ξj |(Ui∩Uj) for all i, j ∈ I, there exists a unique
element ξ ∈ F (X) such that ξ|Ui

= ξi for all i ∈ I.

The usual technique of gluing together morphisms allows us to state the following result.

Lemma 2.14. Every representable functor F : S-Schemesop → Sets is a sheaf for the Zariski
topology.

Proof. See [GW, Proposition 8.8]. �

We will now claim that every Zariski sheaf having a suitable Zariski covering by representable
functors is itself representable, providing a representability criterion for S-Schemes, which will allow
us to say that Hilbert schemes do exist.
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Definition 26. Suppose that the functor F : S-Schemesop → Sets is contravariant. An open
subfunctor F ′ of F is a representable morphism f : F ′ → F that is an open immersion, i.e. the
second projection F ′ ×F X → X is an open immersion of schemes for every morphism g : X → F
and every S-scheme X. If we have a family (fi : Fi → F )i∈I of open subfunctors such that for every
S-scheme X and every morphism g : X → F the images of the second projections Fi ×F X → X
form a covering of X, then the family is said to be a Zariski open covering of F .

Theorem 2.15. (Grothendieck) Let F : S-Schemesop → Sets be a functor such that

i) F is a sheaf for the Zariski topology;

ii) F has a Zariski open covering (fi : Fi → F )i∈I consisting of representable functors;

then, F is itself representable.

Proof. See [GW, Theorem 8.9]. �

So, we now state the main result of this chapter, again due to Grothendieck.

Theorem 2.16. (Grothendieck) For every projective scheme Y ⊂ Pr and every numerical polyno-
mial P (t), the Hilbert scheme HilbYP (t) exists and is a projective scheme.

The proof of Theorem 2.16 is provided via the use of Grassmannians, that’s why we outlined
their construction in Section 2.1 and we also stop now to prove that the so called Grassmann
functor is representable. Once we have this result, we will use it to gain the representability of the
Hilbert functor by realizing it as a subscheme of a suitable Grassmannian.
Moreover, as Grassmann varieties parametrize linear spaces of a fixed dimension n in kN , which are
the closed subschemes with Hilbert polynomials of the form

(

t+n−1
n−1

)

, they are a particular case of
Hilbert schemes too, as already hinted in section 2.1. For a more complete study of Grassmannians
of schemes see [Kleiman].

Definition 27. Fix a k-vector space V of dimension N and let 1 ≤ n ≤ N . Let

GV,n(S) = {locally free quotients of rank n of the free sheaf V ∨ ⊗k OS on S}.

We define a contravariant functor

GV,n : Schemesop → Sets

and call it the Grassmann functor. If no confusion arise, we will denote it simply by G.

Theorem 2.17. The Grassmann functor G is represented by a scheme Gn(V ), together with a
locally free quotient of rank n

V ∨ ⊗k OGn(V ) → Q.

The locally free quotient of rank n

V ∨ ⊗k OGn(V ) → Q

is called the universal quotient bundle of the Grassmann functor and the object Gn(V ) representing
it is called the Grassmannian of n-dimensional subspaces of V , or also the Grassmannian of
(n− 1)-dimensional projective subspaces of P(V ).

Proof. Take a scheme S and an open cover {Ui} of S. To give a locally free quotient of rank n
of V ∨ ⊗k OS is equivalent to give one such a quotient over each open {Ui}, so that they patch
together on the intersection Ui ∩Uj . Therefore G is a sheaf, satisfying this way the first assumption
we need to apply Theorem 2.15.
Let us fix now a basis {ek} of the dual vector space V ∨ and choose a set J of n distinct indices in
{1, . . . , N}. This way we have an induced decomposition V ∨ = E′ ⊕E′′, with E′ a vector subspace
of rank n and E′′ a vector subspace of rank N − n. Using this set of indices we define a subfunctor
GJ(S) of G(S) as the collection of locally free rank n quotients of V ∨ ⊗k OS → F such that the
induced map E′ ⊗k OS → F is surjective.
Let S be any scheme and f : Hom(·, S) → G be a morphism of functors corresponding to a locally
free rank n quotient V ∨ ⊗k OS → F . The fibered product SJ := Hom(·, S)×G GJ is represented
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by the open subscheme of S supported on the points where E′ ⊗k OS → F is surjective, as it can
be indeed identified with the set of such points, which is an open set in S (see [GW, Proposition 8.4]
for the proof of this fact). But now, as the SJ ’s cover S, we also have that the family of subfunctors
provided by GJ is an open covering of the functor G. So, it lasts to prove the representabilty of
each GJ .
If

q : V ∨ ⊗k OS → F

is an element of G(S), then the induced map

η : E′ ⊗k OS → F

is surjective if and only if it is an isomorphism (see [GW, Corollary 8.12]). In this case the
composition

η−1 ◦ q : V ∨ ⊗k OS → E′ ⊗k OS

restricts to the identity on E′ ⊗k OS , hence it is determined by the composition

E′′ ⊗k OS → V ∨ ⊗k OS → E′ ⊗k OS .

Thus we can identify the following objects:

GJ(S) = Hom(E′′ ⊗k OS , E
′ ⊗k OS) = Hom(E′′, E′)⊗k OS .

This proves that the funtor GJ is isomorphic to the functor Hom(·,An(N−n)), hence it is repre-
sentable by Theorem 2.15. �

By the construction above it is also clear that Gn(V ) is smooth over SpecZ and has relative
dimension n(N − n).

When V = kN , the Grassmannian Gn(k
N ) is denoted by G(n,N), recalling the notation we

introduced before, furthermore, if n = 1, the functor GV,1 is represented by

G1(V ) = Proj(Sym(V ∨)) = P(V ),

the (N − 1)-dimensional projective space associated to V and in this case Q = OP(V )(1).
From the theorem it follows that for all schemes S, the morphisms f : S → Gn(V ) are in one-to-one
correspondence via f ↔ f∗Q with the locally free quotients V ∨ ⊗k OS → F . This property is
called the universal property of Gn(V ).
The universal quotient bundle defines also an exact sequence of locally free sheaves on Gn(V )

0 → K → V ∨ ⊗k OGn(V ) → Q → 0

called the tautological exact sequence and K is called the universal subbundle.
Also in this environment one can introduce the Plücker morphism and use it in order to show
several properties, see again [Kleiman].

We are now ready to prove Theorem 2.16, following [Sernesi, 4.3.4]. The idea of the proof is the
following:

1. prove the claim assuming that Y = Pr realizing HilbrP as a closed subscheme of a Grassmannian,
which we know to be representable from Theorem 2.17, using the flattening stratification
given by Hilbert polynomials obtained from Theorem 2.12. In this first step we also get that
the Hilbert scheme is quasi-projective;

2. prove that the Hilbert scheme HilbrP is projective by proving that it is proper using the
valuative criterion for properness, see e.g. [H II, 4.7];

3. move to a general closed subscheme Y of Pr and show that the functor HilbYP is represented
by a closed subscheme of HilbrP , that is representable and projective by the previous steps;
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Proof. (of Theorem 2.16)
We first prove the theorem for Y = Pr.
By Corollary 2.7 it follows that there is an m0 ∈ Z such that for every closed subscheme X ⊂ Pr

having Hilbert polynomial P (t), the sheaf of ideals IX is m0-regular, indeed it suffices to take
m0 := Fr(−a0, . . . ,−ar−1, 1− ar). Hence for every k ≥ m0

hi(Pr,IX(k)) = 0 (2.3)

for i ≥ 1 and

h0(Pr,IX(k)) =

(

k + r

r

)

− P (k). (2.4)

We may notice now that if I is the sheaf of ideals of the closed subscheme X ⊂ Pr and it is
m-regular for m ≥ 0, then the sheaf OX is (m− 1)-regular. Conversely, if OX is (m− 1)-regular
and the restriction map

H0(Pr,OPr (m− 1)) → H0(X,OX(m− 1))

is surjective, then I is m-regular, as the sequence

0 → I (k) → OPr (k) → OX(k) → 0

is exact for k ≥ m− 1. Using this remark we have that for all k ≥ m0 and all i ≥ 1

hi(X,OX(k)) = 0. (2.5)

Set now N :=
(

m0+r
r

)

− P (m0), V := H0(Pr,OPr(m0)) and consider G = GN (V ) the Grassmann
variety of N -dimensional vector subspaces of V , with V ∨ ⊗k OG → Q its universal quotient bundle,
which is locally free of rank N on G. Call p : Pr ×G→ G the projection on the second component,
so that we may identify

V ⊗k OG = p∗[OPr×G(m0)].

Consider the composition

p∗Q∨(−m0) V ⊗k OPr×G(−m0) OPr×G

p∗p∗[OPr×G(m0)]⊗OPr×G(−m0)

The image of this composition is a sheaf of ideals, say J.

We will see that HilbrP (t) is a subscheme of the Grassmannian G, and we will do that using the
stratification defined by the Hilbert polynomials in Theorem 2.12. Let Z ⊂ Pr ×G be the closed
subscheme defined by J and denote by q : Z → G the restriction of the projection p to such a
scheme.
Consider a flattening stratification

∐
i
Gi ⊂ G

for OZ and let H be the stratum relative to the given polynomial P (t). Our purpose is now to
show that H = HilbrP (t) with universal family W := H ×G Z given by the pullback of q to H

H ×G Z Z

H G

π q

From the choice of H we have that W defines a flat family of closed subschemes of Pr with Hilbert
polynomial equal to P (t), thus we need to prove that it satisfies the universal property. Consider a
flat family X ⊂ Pr×S of closed subschemes of Pr with Hilbert polynomial P (t), with f : Pr×S → S.
From (2.3) and (2.5), using Theorem 2.9 and Corollary 2.10, it follows that

R1f∗IX (m0) = 0 = R1f∗OX (m0).
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In particular, we find the following exact sequence on S:

0 f∗IX (m0) f∗OPr×S(m0) f∗OPr×G 0

V ⊗k OS

If we apply again Theorem 2.9 and Corollary 2.10 taking j = −1 we find out that f∗IX (m0) and
f∗OX (m0) are locally free and moreover the first one has rank N .
From the universal property of G now we get a unique morphism g : S → G such that

f∗IX (m) = g∗Q∨. (2.6)

We then claim that for all m >> m0

f∗OX (m) = g∗p∗OZ(m). (2.7)

Indeed, for all m >> m0 the sequence

0 → p∗J(m) → p∗OPr×G(m) → q∗OZ → 0 (2.8)

is exact on G, while the sequence

0 → f∗IX (m) → f∗OPr×S(m) → f∗OZ → 0 (2.9)

is exact on S. Since by definition of the morphisms g, p and f it follows that

g∗p∗OPr×G(m) = f∗OPr×S(m), (2.10)

by (2.8) and (2.9) we only need to show that

f∗IX (m) ∼= g∗p∗J(m) (2.11)

for all m >> m0.
From the surjection of sheaves p∗Q∨(m −m0) → J(m) on Pr × G we may obtain the following
equality on G

p∗J(m) = Im[Q∨ ⊗ p∗O(m−m0) → p∗OPr×G(m)],

hence, for all m ≥ m0, by applying g∗ we have

g∗p∗J(m) = g∗Im[Q∨ ⊗ p∗OPr×G(m−m0) → p∗OPr×G(m)]

(2.10)
= Im[g∗Q∨ ⊗ p∗OPr×S(m−m0) → f∗OPr×S(m)]

(2.6)
= Im[f∗IX (m0)⊗ f∗OPr×S(m−m0) → f∗OPr×S(m)])

= f∗IX (m)

from which (2.11), and thus (2.7) holds.

Relation (2.7) implies the following two facts:

i) g factors through H.

Indeed, from Proposition 2.8 it follows that for all m >> m0

g∗q∗OZ(m) = f∗(1× g)∗OZ(m)

and since the first member of (2.7) is a locally free sheaf of rank P (m) for all such m, using
Theorem 1.17 we deduce that (1× g)∗OZ is flat over S and has Hilbert polynomial P (t), so
that g factors by the definition of H itself.
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ii) X = S ×H W.

Indeed we have that

X = Proj[
⊕

m>>0

f∗OX (m)]

= Proj[
⊕

m>>0

g∗q∗OZ(m)]

= Proj[
⊕

m>>0

g∗π∗OW(m)]

= S ×H Proj[
⊕

m>>0

π∗OW(m)]

= S ×H W

So, these two properties verify that H = HilbrP (t) and π is the universal family we were looking for.

Up to now, we have provided the existence of a scheme HilbrP (t) being quasi-projective. In order to
prove that it is projective, it suffices to show that it is proper over k and to check properness we
will use the valuative criterion for properness.
Let A be a discrete valuation k-algebra, with quotient field Q and residue field L, and let

ϕ : SpecQ→ HilbrP (t)

be any morphism. The condition to apply the criterion is that ϕ extends to a morphism

ϕ̃ : SpecA→ HilbrP (t).

Pulling back the universal family by ϕ we obtain a flat family

X ⊂ Pr × SpecQ

made by closed subschemes of the r-projective space with Hilbert polynomial P (t).
Since SpecA is nonsingular of dimension 1 and SpecL = SpecA \ {closed point}, by [H III, 9.8] we
get the existence of a flat family

X ′ ⊂ Pr × SpecA

extending X . But now we may use the universal property of HilbrP (t), which tells us that the family
X ′ corresponds to a morphism ϕ̃ : SpecA→ HilbrP (t) that extends ϕ. Thus, HilbrP (t) is projective
and this concludes the claim for Y = Pr.

We move now to the general case: assume that Y is an arbitrary closed subscheme of Pr; it will
suffice to show that the functor HilbYP (t) is represented by a closed subscheme of HilbrP (t), that we
proved to be projective.
If we apply twice Corollary 2.7 we can find an integer µ such that IY ⊂ OPr is µ-regular and such
that for every closed subscheme X of Pr having Hilbert polynomial P (t) the ideal sheaf IX ⊂ OPr

is µ-regular. Consider V := H0(Pr,OPr(µ)) and U := H0(Pr,IY (µ)). By Theorem 2.9 and its
Corollary 2.10 it follows that π∗IW is a locally free subsheaf of V ⊗k OHilbr

P(t)
, with locally free

cokernel.
Now, on HilbrP(t) consider the composition

ψ : U ⊗k OHilbr
P(t)

→ V ⊗k OHilbr
P(t)

→ V ⊗k OHilbr
P(t)

/π∗IW(µ).

Let Z ⊂ HilbrP(t) be the closed subscheme defined by the condition

U ⊗k OZ ⊂ π∗IW(µ)⊗OZ (2.12)

and let j : Z → HilbrP (t) be the inclusion. By condition (2.12) we have that

IY×Z ⊂ (1× j)∗IW ⊂ OPr×Z ,

hence
Z ×Hilbr

P(t)
W ⊂ Y × Z ⊂ Pr × Z.
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The inclusions above provide the universal family and Z = HilbYP (t). �

For any projective scheme Y in the r-projective space it is often convenient to consider the
functor

HilbY : Schemes→ Sets

defined as
HilbY (S) :=

∐

P (t)

HilbYP (t)(S).

This functor is naturally represented, using the construction above, by the disjoint union

HilbY :=
∐

P (t)

HilbYP (t)

which is called the Hilbert scheme of Y . It is a scheme locally of finite type, but not of finite
type, since it has (possibly) infinitely many connected components. This viewpoint is sometimes
convenient as this scheme doesn’t depend on the projective embedding of Y in Pr, even though its
indexing by P (t) does.

Remark 4. If our aim is to deal just with varieties, i.e. integral subschemes of a projective space,
there is a simpler way to parametrize them, taking as starting points their subvarieties.
The key ingredient to obtain this different structure is the notion of cycle, that is a formal linear
combination

∑

α nα[Vα] of subvarieties Vα of a given variety V , with just a finite number of the
coefficients nα being non-zero. If we have a cycle

∑

α nα[Vα], we can associate to it a number,
called degree of the cycle, given by

∑

α nαdα, where dα is the degree of the subvariety Vα. If all the
varieties of the cycle have the same dimension r, then we usually speak of r-cycles, or cycles of
dimension r. Cycles of dimension 0 are just linear combinations of distinct points on the variety V .
The divisors of a variety V are the cycles of dimension dimV − 1.
Recall from Section 2.1 that, given a d-dimensional linear subspace L of Pn, we can write it as the
intersection of n− d hyperplanes and the maximal minors of the associated (n− d)× (n+1)-matrix
determine L uniquely and return the so called Plücker coordinates, and that the set of all these
d-planes thus coordinatized is the Grassmannian G(d + 1, n + 1). The same d-plane L can also
be written as the span of d+ 1 points, obtaining this time an associated (d+ 1)× (n+ 1)-matrix
whose maximal minors are called dual Plücker coordinate, to distinguish them from the above one.
Standard Plücker coordinates and dual one with complementary indexing coincide up to a sign
change.
Then, the r-cycles of degree d of a k-variety V ⊆ Pn

k can be parametrized by a projective algebraic
variety over k, called Chow variety, see [Rydh1, 8.27]. This variety can be regarded as the set of all
(n− d− 1)-planes L of Pn such that V ∩L is nonempty and it can be proved to be an hypersurface
in the Grassmannian G(n − d, n + 1) whose coordinates are called Chow coordinates. Since the
Chow variety is an hypersurface in a Grassmannian, it can be expressed as the zero of a unique
polynomial in those coordinates, which is called the (Cayley-)Chow form for the variety V . So,
each Chow coordinate identify uniquely an r-cycle of V , and those coordinates are nothing else
than the coefficients of the Chow form for the variety. In particular, if V is itself a linear subspace
of Pn, then the Chow coordinates coincides with the dual Plücker coordinates of V .
This kind of construction is somehow easier then the one of Hilbert schemes, and often even more
handy, at least for calculations. So, why Hilbert schemes are generally prefered to Chow varieties,
even though they are much more complicated? The answer is rather simple, according to [HM,
p. 10]: “the most important difference is that the Hilbert scheme has a natural scheme structure
whereas the Chow variety does not”. Many authors tried to attach to the Chow variety a scheme
structure, even getting different characterizations of the obtained scheme. As pointed out in [Rydh2,
p. 1], “families” of cycles parametrized by a variety may have several “problems”. The main issues
are given by the following facts:

❼ the obtained family is not flat, so if ν is the cycle on V × S representing a family {νs}, then
νs is not simply the fibre of ν over s;

❼ even though it can be proved that the Chow variety is independent from the chosen projective
embedding in Pn in characteristic 0, this independence fails in positive characteristic;



CHAPTER 2. HILBERT SCHEMES 31

❼ we will see in Section 3.2 that the Hilbert scheme carries a suitable deformation theory, while
the Chow variety does not, preventing the study of its infinitesimal structure.

Anyway, they are largely studied and investigated, and a suitable notion of Chow schemes has been
recently produced. For a detailed and complete construction of the Chow variety and some of its
first properties, including a study of 0-cycles which we will meet in Section 3.3 (we will provide
further references in it) see [Rydh1], [DS] and [Ha, ➜21]. For the various approaches and the formal
notion of Chow scheme see [Rydh2]. For a more complete study on cycles and their operation we
refer to [Weil].

2.4 First examples of Hilbert schemes

We see now two easy examples of Hilbert schemes that are important in the general geometric
theory. We start discussing the case of linear systems, passing then to Grassmann varieties in order
to formalize what we often said about their relation with Hilbert schemes.

If X ⊂ Pr is a hypersurface of degree d then its Hilbert polynomial has the form

h(t) =

(

t+ r

r

)

−

(

t+ r − d

r

)

=
d

(r − 1)!
tr−1 + · · · . (2.13)

Conversely, suppose to have a projective scheme Y in Pr with Hilbert polynomial given by (2.13).
Then Y has dimension r − 1, so Y = Y1 ∪ Z, where Y1 is a hypersurface and Z has dimension
strictly smaller than the dimension of Y . Consider now the ideal sheaves IY of Y and IY1

of Y1
in OPr . The sequence

0 → IY1/IY → OY → OY1 → 0

is short exact, hence we deduce that

h(t) = h1(t) + k(t),

where h1(t) is the Hilbert polynomial of Y1 while k(t) is the Hilbert polynomial of IY1/IY . But
now, the latter sheaf is supported on Z, so the degree of the polynomial k(t) has to be strictly
smaller than r − 1, thus the claim as Y1 turns out to be a hypersurface of degree d and k(t) = 0.
Therefore Hilbrh(t) parametrizes a universal family of hypersurfaces of degree d in Pr. Let’s describe
it.

Let V := H0(Pr,O(d)) and in P(V ) take homogeneous coordinates

(. . . , ci(0),...,i(r), . . .)i(0)+...+i(r)=d.

Remark 5. Notice that if we write Pr as Pr = Proj(S) for a suitable graded algebra S, then
V = Sd = Symd(S1). If else Pr = P(W ), then V ∼= Symd(W∨). These statements follow quite
easily by the definition of H0(Pr,O(d)) and [H III, 5.1.].

The hypersurface H ⊂ Pr × P(V ) defined by the equation

∑

ci(0),...,i(r)x
i(0)
0 · · ·xi(r)r = 0

projects onto P(V ) with degree d fibres. Denote by p the projection H → P(V ) and consider
IH ⊂ OPr×P(V ) the ideal sheaf of H.
If we take t ∈ P(V ) we have that

1 = h0(Pr(t),IH(t)(d)) = h0(Pr(t),IH(d)(t))

and
0 = hi(Pr(t),IH(t)(d)) = hi(Pr(t),IH(d)(t))

0 = hi(H(t),OH(t)(d))

where the last equations hold for all i ≥ 1.
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Now, using as usual Theorem 2.9 and Theorem 1.17, we obtain the following three facts:

i) R1p∗IH(d) = 0;

ii) p∗IH(d) is an invertible subsheaf of p∗OPr×P(V )(d) = V ⊗k OP(V );

iii) p∗OPr×P(V )(d)/p∗IH(d) = p∗OH(d) is locally free.

Hence we deduce that p∗IH(d) is the tautological bundle of P(V ), and that the natural map

p∗p∗IH(d) → IH(d)

is an isomorphism. Therefore
IH = [p∗OP(V )(−1)](d). (2.14)

Let us prove that the family H is a universal family.
Suppose that

X ⊂ Pr × S
↓ f
S

is a flat family of closed subscheme of Pr having Hilbert polynomial given by (2.13) and let IX be
its ideal sheaf. Proceeding as above we find that f∗IX (d) is an invertible subsheaf of V ⊗k OS

with locally free cokernel f∗OX (d) and that

IX = [f∗f∗IX (d)](−d). (2.15)

We have an induced morphism g : S → P(V ) such that

f∗IX (d) = g∗[OP(V )(−1)]. (2.16)

The subscheme S ×P(V ) H ⊂ Pr × S is defined by the ideal sheaf

(1× g)∗IH = (1× g)∗[OP(V )(−1)(−d)]. (2.17)

where the equality follows by (2.14). Since

(1× g)∗[OP(V )(−1)(−d)] = f∗[g∗OP(V )(−1)](−d)

by relation (2.16) and (2.15) we obtain that

f∗[g∗OP(V )(−1)](−d) = [f∗f∗IX (d)](−d) = IX , (2.18)

hence joining (2.15) to (2.18) we proved that

(1× g)∗IH = IX ,

thus S ×P(V ) H = X .
To conclude we should verify that the function g acting as desired is unique, which is a consequence
of pullback’s properties.
In the end H ⊂ Pr × P(V ) is a universal family, and finally

Hilbrh(t) = P(V ).

As we said in Section 2.1, Grassmannians are a generalization of projective spaces and linear systems.
We pointed out along the construction of Hilbert schemes, that Grassmannians are a special case of
Hilbert scheme, in which the involved polynomials are of the form

(

r+n−1
n−1

)

, with n− 1 being the
dimension of the closed subschemes we are considering in Pr. Let us describe their universal family.
For some 1 ≤ n ≤ r let G = G(n + 1, r + 1) be the Grassmannian of n-dimensional projective
subspaces of Pr and call Q the universal quotient bundle on G. Define a projective bundle on G as

I := P(Q∨) = Proj(Sym(Q)).
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Using the surjection OG
r+1 → Q we find a closed embedding

I ⊂ Pr ×G
↓ p
G

and remark that
Q∨ = p∗II(1) ⊂ p∗OPr×G(1) = OG

r+1

For every closed point v ∈ G the fibre I(v) results to be the projective space P(v) ⊂ Pr, that’s why
I is usually called the incidence relation. Since all fibres of the morphism p have the same Hilbert
polynomial given by

(

t+n
n

)

, using Theorem 1.17 we deduce that p is a flat family.
Suppose now to have another flat family

Λ ⊂ Pr × S
↓ q
S

having Hilbert polynomial
(

t+n
n

)

at its fibres. We thus have an inclusion of sheaves on S

q∗IΛ(1) ⊂ q∗OPr×S(1) = OS
r+1

having locally free cokernel q∗OΛ(1). As we are dealing with the Grassmannian G, using its universal
property from the above inclusion we find a unique induced morphism g : S → G such that

g∗(Q∨) = q∗IΛ(1).

But now, since Λ = P(q∗IΛ(1)) it follows that

Λ = S ×G I

which means that the family q is obtained by base change via the morphism g starting from the
incidence relation I, making us conclude that

G(n+ 1, r + 1) = Hilbr(t+n
n ).

2.5 Generalization of Hilbert Schemes

We conclude the chapter refering to some generalizations of Hilbert schemes that appeared in
the last fifty years.

A first object, of which Hilbert schemes are a particular case, was already introduced by
Grothendieck himself in [FGA] and relies on a change of viewpoint in the construction. If we look
at a family Y of subschemes of Pn parametrised by a locally Noetherian scheme S as a coherent
quotient sheaf q : OPn

S
→ OY on Pn

S , with OY being flat over S, we may enlarge the idea of Hilbert
schemes to families of quotients having some properties, obtaining the Quot Schemes. In the
second chapter of [FGAE] Nitin Nitsure provides the construction of Quot schemes, the view of
Grassmannians and Hilbert schemes as Quot schemes and some variants, while in [Sernesi, ➜4.4]
their presentation is related to the construction of relative Hilbert schemes. In the same work,
Grothendieck uses quotients of open subschemes of Hilbert schemes in order to construct the Picard
scheme, whose history and relevance is explained in details in [FGAE, ➜9].

A further generalization are Hilbert-Flag schemes, introduced by Jan O. Kleppe in [J. O. Kleppe,
“The Hilbert-Flag scheme, its properties and its connection with the Hilbert scheme. Applications to
curves in 3-space”, Preprint, Inst. of Math. Univ. Oslo (1981)]. They are defined using length m
chains of S-flat closed subschemes of Pr ×S and such a definition clearly coincides with the classical
one for m = 1. See [Sernesi, ➜4.5] for a first approach to these objects and their first properties.

More recently, Mark Haiman and Bernd Sturmfels developed the concept of Multigraded Hilbert
scheme in [M. Haiman, B. Sturmfels, “Multigraded Hilbert schemes”, J. Algebraic Geom., vol. 13
(2004), no. 4, pp. 725–769], that again has the Hilbert scheme by Grothendieck as a special case.

Furthermore, we should notice that a non-commutative version of Hilbert schemes has been
introduced in the 70’s in [M.V. Nori, Appendix to an article “Desingularization of the moduli
varieties of vector bundles over curve” by C.S. Seshadri, Proceedings of the International Symposium
on Algebraic Geometry, Kyoto, 1977, pp. 155–184].





Chapter 3

Properties of Hilbert Schemes

Truly little is still known about the properties that are satisfied by a general Hilbert scheme.
If we focus on the case of Hilbert schemes on projective spaces, the only one we know that holds
always is connectedness, as proved by Robin Hartshorne in his Ph.D. thesis in 1963 ([H66]), under
the supervision of John Coleman Moore and Oscar Ascher Zariski. On top of that, Hartshorne
himself notices in the introduction to [H66], that “It also appears that the Hilbert scheme is never
actually needed in the proof”, introducing thus the notion of connected functor and proving that the
Hilbert functor is not only connected, but linearly connected.

If we move to Hilbert schemes on a general scheme Y even this small sparkle of good property
goes lost; if we look for a simple example we may consider Y to be two distinct points and p = 1
be the constant polynomial, then HilbYp = Y , which is clearly disconnected. Recently there have
been a lot of examples of connected, or irreducible, projective schemes whose Hilbert scheme is
disconnected, see e.g. [See-Hak Seong, “The Hilbert scheme of the Grassmannian is not connected”,
Comm. in Algebra, vol. 48 (2020), Issue 8, pp. 3439–3446].
Starting from the description by Grothendieck and the theorem by Hartshorne, many other
mathematicians tried to formulate and prove results about this kind of schemes, achieving just
results in special cases. One of the most studied, due to its use in several theories, is the Hilbert
scheme of points; for this particular Hilbert scheme we have some more informations.

In the first section we will briefly introduce the connectedness theorem by Hartshorne, without a
complete proof; in the second one we are going to introduce a little of deformation theory in order
to characterize the tangent space to the Hilbert scheme, while in the final one we will outline the
construction of the Hilbert scheme of points and some of its known properties.

3.1 Hartshorne’s Connectedness Theorem

The Ph.D. thesis by Robin Hartshorne is expanded and presented in [H66], and has the following
structure. He first defines connected and linearly connected functors and then recalls the definition
of Hilbert scheme and the notion of specialization of a subscheme. The central part of the work
deals with a specific kind of schemes called fans, the use of a special technique from commutative
algebra called distractions and some invariants linked to the support of a scheme. The last chapter is
devoted to the proof of the connectedness theorem as a corollary of a theorem about specializations
of a closed subscheme to a special type of fan called tight fan.

Recall that, given an arbitrary topological space X, a point x ∈ X is closed if the set {x} is closed,
a point η ∈ X is a generic point of the space if {η} = X. In particular, a point is called a maximal
point if its closure is an irreducible component of the space. If we take instead two points, say x
and x′, we say that x′ is a specialization of x, or that x is a generalization of x′, if x′ ∈ {x}.
All such definitions clearly apply to the case of schemes and have their immediate correspondence
with relations between ideals associated to points, saying that x′ is a specialization of x if px′ ⊆ px.
In his discussion Hartshorne uses the following, more general, notion of specialization adapted to
the scheme case.

Definition 28. Let x and x′ be two points of a scheme X. We say that x specializes linearly to x′

if there exists an extension field k1 of k, and a morphism f : Spec (k1[t](t)) → X, which sends the

35
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generic point to x and the special point to x′. We denote this operation by x′  x. Moreover, we
say that the x and x′ can be connected by a sequence of linear specializations if there is a sequence
of points x1 = x , x2 , . . . xn = x′, with xi ∈ X for all i, such that, for each i, either xi is a linear
specialization of xi+1 or xi+1 is a linear specialization of xi. We say that a scheme X is linearly
connected if any two points on X can be connected by a sequence of linear specializations.

Hartshorne goes on analysing the notions of connectedness by working with rational curves over
a fixed field k, which are one-dimensional integral schemes of finite type over k, whose function
field is a pure transcendental extension of k

Definition 29. Let X be a scheme over k. Two points x1 and x2 of X are said to be connected by
a rational curve if there exists an extension field k1 of k, a rational curve Y over k1, a morphism
f : X → Y and points y1 and y2 in Y , rational over k1, such that f(y1) = x1 and f(y2) = x2. As
for the linear specialization we may enlarge the notion to a sequence of rational curves; we say
that x1 and x2 are connected by a sequence of rational curves if there is a sequence of points of X
starting at x1 and ending at x2 that can be connected orderly by rationals curves.

It can be proved that rational curves over a field are linearly connected, see [H66, Lemma 1.5],
and that given a scheme X over k, if any two of its points can be connected by a sequence of
rational curves, then X is linearly connected. Furthermore the converse holds for X of finite type
over k, see [H66, Proposition 1.6.]. On top of that, in [H66, Proposition 1.7] it is proved that any
open subset of Pr

k is linearly connected.
We need the following definition to move our attention from schemes to morphisms of schemes.

Definition 30. A scheme X over k is geometrically connected if for every extension k′ of k, the
scheme Xk′ = X ⊗k k

′ is connected.

Definition 31. A morphism of k-schemes f : X → Y is universally submersive if it is surjective,
the image space has the quotient topology and these two facts are stable under base extensions. A
morphism of k-schemes that is universally submersive and such that its fibres are geometrically
connected is said to be connected.

Also for geometrical connectedness Hartshorne introduces the generalization of geometrically
linearly connected scheme and of linearly connected morphism following the same ideas.

What is fundamental in Hartshorne’s work is showing that the Hilbert scheme represents a connected
functor in the category of locally Noetherian schemes. This notion is not so simple to introduce
and requires some preliminar work involving relatively representable functors and disjoint sums of
functors. We avoid the introduction of all such definitions by using one of the three equivalent
characterization of connected functors provided in [H66], to which we anyway refer for a complete
analysis of the notion. To introduce it we shall explain what it is meant by a scheme over a functor.

Definition 32. If F is a functor, then a scheme over F is a pair (X, ξ) where X is a scheme and
ξ ∈ F (X); a morphism (X, ξ) → (Y, η) of schemes over F is a morphism X → Y for which the map
F (Y ) → F (X) sends η to ξ.

Remark 6. If F is a functor and X is a scheme, then the sets F (X) and Hom(hX , F ) are canonically
identified. Hence, to give a scheme X over a functor F is the same as to give a morphism of functors
hX → F , so if X is a scheme over a functor G, by X ×G F we will mean the product functor
hX ×G F , always using the identification given by the Yoneda Lemma (Theorem 2.13). Following
this way, if F is, for example, a functor of points of a scheme Y , a scheme X over hY turns out to
be a morphism of functors of points hX → hY , thus a morphism between the two schemes involved.

Definition 33. Let F be a functor of locally Noetherian schemes, then F is said to be a connected
functor if, whenever X and X ′ are two non-empty connected schemes over F , there exists a sequence
X1, . . . , Xn of non-empty connected schemes over F , with X1 = X and Xn = X ′, such that for
each i there is a morphism either Xi → Xi+1 or Xi+1 → Xi of schemes over F .

If F is representable, then F is connected if and only if the scheme representing it is connected.
As above, it is possible also to introduce the notion of linearly connected functor just replacing
“connected” with “linearly connected” in Definition 33, deducing also that a linearly connected
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functor is always connected and that, again, if F is a representable functor, then it is linearly
connected if and only if the scheme representing it is linearly connected.

Now, we need to fit all this discussion into the Hilbert scheme, and we will do it introducing
specializations. First of all, if X is a scheme over S, and Spec k → S is a morphism, we call a
generalized fibre of X over S the product Xk := X ⊗S Spec k.

Remark 7. As a morphism Spec k → S is the same as a k-valued point, we may give a geometrical
meaning to this construction. If we fix a point P ∈ S and k is the residue field k(P ) of the point
P , then we have a “natural” morphism Spec k → S that maps the unique point of Spec k to the
point P , while it pulls back a given section ϕ ∈ OS(U), with P ∈ U , to the element of the residue
field determined by the map OS → OP,S → k(P ). So, with the described morphism, if we have a
morphism X → S, Xk turns out to be the inverse image, or scheme-theoretic fibre, of X → S over
the point P ∈ S.

Definition 34. Let X be a scheme over S, and let Z1 ⊆ Xk1 and Z2 ⊆ Xk2 be closed subscheme
of some generalized fibres of X over S. We say that Z1 specializes to Z2, and we denote it by
Z1  Z2 as in the case of points, if either

a) Z1 is obtained from Z2 by a field extension k2 ⊆ k1, or

b) there exist a local domain A, with quotient field k1 and residue field k2, a morphism SpecA→ S
and a closed subscheme Z of XA = X ⊗S SpecA, flat over A, whose fibre over the generic point
of SpecA is Z1 and whose fibre over the closed point of SpecA is Z2.

If moreover S is a scheme over k, we say that Z1 specializes linearly to Z2 if either

a) Z1 is obtained from Z2 by a field extension k2 ⊆ k1, or

b) there exist a local domain A, with quotient field k1 and residue field k2, a morphism SpecA→ S
and a closed subscheme Z of XA = X ⊗S SpecA, flat over A, whose fibre over the generic point
of SpecA is Z1 and whose fibre over the closed point of SpecA is Z2 and SpecA is linearly
connected.

Definition 35. Let X be a scheme over S. A connected sequence of specializations in X is a
sequence of closed subschemes Z1, Z2, . . . , Zn of generalized fibres Xki

of X over S, where for each
i either Zi specializes to Zi+1, or vice versa. Similarly, if S is a scheme over a field k, one may
define a connected sequence of linear specializations in X following the same procedure as above.

So, we finally reached the first fundamental result of [H66]

Theorem 3.1. Let X be a projective scheme over a locally Noetherian scheme S and let p := p(z) ∈

Q[z] be a polynomial. Then the functor Hilb
X/S
p is connected, respectively linearly connected, if

and only if whenever Z ′ ⊆ Xk′ and Z ′′ ⊆ Xk′′ are closed subschemes of generalized fibres of X over
S, having Hilbert polynomials equal to p, then there exists a connected sequence of specializations,
respectively connected sequence of linear specializations, Z ′ = Z1, Z2, . . . , Zn = Z ′′ in X

Proof. See [H66, Proposition 1.12]. �

After this introduction to various connectedness properties for schemes and functor and their
relations, Hartshorne presents a collection of integers ni(F ) for i smaller than the dimension of
the ambient space, attacched to a coherent sheaf F , whose intent is to measure the sections of F

whose support is of dimension i. In particular for an integral subscheme Z ⊆ Pr
k of dimension q it

is proved that, taking F = OZ , it holds that ni(F ) = 0 for i 6= q, and nq(F ) is the degree of the
subscheme Z. If we work, as in the last example, in a projective space Pr

k, the collection we obtain
is an (r + 1)-tuple nr(F ), . . . , n0(F ) and it is denoted by n∗(F ). For the complete definition,
further details and properties, including the stability under base extensions, we refer to [H66, ➜2].

The third fundamental object Hartshorne presents are a special type of subschemes of the projective
space Pr

k, called fans.

Definition 36. Fix a set of homogeneous coordinates x1, . . . , xr of Pr
k. A fan X ⊂ Pr

k is a
subscheme of Pr

k whose ideal a can be written as an intersection of prime ideals p having the form

p = (x1 − a1x0, x2 − a2x0, . . . , xq − aqx0) (3.1)
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for various q ∈ N and ai ∈ k. If moreover the prime ideals involved have the form

p = (x1, x2, . . . , xq − aqx0) (3.2)

for various q and aq ∈ k, then X is said to be a tight fan.

This algebraic definition has the following geometrical interpetation.

Remark 8. If X is a fan, then its ideal can be written as intersection of prime ideals pi of the form
(3.1), so X is a reduced subscheme of the projective space, having irreducible components that
are all linear subspaces and, for each q ∈ N that appears in the decomposition of the ideal a, all
of the q-dimensional components of the subscheme contain a common (q − 1)-dimensional linear
subspace. That is the reason for the name “fan”. By (3.2), a tight fan is a fan having an additional
geometrical property: for each q ∈ N, all of its q-dimensional components are also contained in a
common (q + 1)-dimensional linear subspace.

What is relevant about tight fans is their behaviour with respect to their Hilbert polynomial
and linear specializations, as stated in the following result.

Theorem 3.2. Let X1 and X2 be two tight fans in Pr
k. Then, the following conditions are equivalent:

i) n∗(X1) = n∗(X2);

ii) X1 and X2 have the same Hilbert polynomial;

iii) there exists a subscheme X3 of Pr
K , for a suitable field K and linear specializations X3  X1

and X3  X2.

On top of that, the Hilbert polynomial of a tight fan X ⊂ Pr
k with n∗(X) = (nr−1, . . . , n0) is

f(z) =
r−1
∑

t=0

g(nt + · · ·+ nr−1, t), (3.3)

where, for any n ∈ Z and t ∈ N, the polynomial g(n, t) is defined by

g(n, t) :=

(

z + t

i+ 1

)

−

(

z + t− n

i+ 1

)

. (3.4)

Proof. See [H66, 3.3]. �

The proof of Theorem 3.2 is constructive, and actually proves something stronger in the
implication i) ⇒ ii). Infact, it shows that the tight fans X1 and X2 have the same Hilbert function
(see [H66, 3.2]). Relation (3.3) is obtained using the same strategy from the proof of the implication
i) ⇒ ii) using the Hilbert polynomial of hypersurfaces of degree n in Pr

k (see Example 1.9) and
some suitable functions and computations with binomial coefficients.

We stopped to hint some details about this result as it actually provides a necessary and sufficient
criterion for a numerical polynomial to be the Hilbert polynomial of a tight fan, since in [M. Nagata,
Local Rings, Interscience tracts in pure and applied math, 13, Wiley, New York (1962), p. 69] is
proved that any numerical polynomial f(z) of degree s can be written in the form

f(z) =

s
∑

k=0

g(mk, k)

with mk ∈ Z and g(mk, k) given by (3.4). On top of that such a form is unique.
So, we may rephrase the last part of Theorem 3.2 as follows.

Corollary 3.3. A necessary and sufficient condition for a numerical polynomial to be the Hilbert
polynomial of a tight fan is that when expressed in the form

f(z) =

s
∑

k=0

g(mk, k)

with g(mk, k) given by (3.4), we have that m0 ≥ m1 ≥ . . . ≥ ms ≥ 0.
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We should keep in mind this result as we will state later that this condition will allow us to
obtain “something more” then a tight fan.

Chapter 4 of [H66] is then devoted to the discussion of grading and properties of monomial ideals
and to the developement of a particular commutative algebra’s tool dealing with them, called
distractions, which result to link monomial ideals to fans via [H66, 4.9 and 4.10].

The last Chapter, after some brief remainders and results about group actions on schemes and the
triangular group schemes of matrices, presents the following, fundamental, results that leads to
Hartshorne’s Connectedness Theorem.

Proposition 3.4. Let p ∈ Q[z] be a numerical polynomial of degree at most r such that when we
write

p(z) =

∞
∑

t=0

g(mt, t),

with g(mt, t) given by (3.4), we have m1 ≥ m2 ≥ . . . ≥ mr−1 ≥ 0. Then there exists a proper
separated subscheme X of Pr

Z
, flat over Z, whose fibre at every point of Z has Hilbert polynomial

equal to p.

Proof. Let k be an infinite field. Then there is a tight fan X ′′ ⊆ Pr
k with

n∗(X
′′) = (mr−1,mr−2 −mr−1, . . . ,m0 −m1)

by [H66, 3.9 and 3.10]. Now, by Corollary 3.3 X ′′ has Hilbert polynomial equal to p.
Applying [H66, 5.3] we can find a second subscheme X ′ ⊆ Pr

k having the same Hilbert polynomial p,
as specializations preserves Hilbert polynomials, and whose ideal in the polyomial ring k[x0, . . . , xr]
is generated by monic monomials in the coordinates by [H66, 5.4].
Let now a ⊆ Z[x0, . . . xr] be the ideal generated by the same monomials as the one of X ′. So, a
defines a closed subscheme of Pr

Z
, flat over Z, whose Hilbert polynomial at every point is p, because

the Hilbert polynomials of the quotient of a polynomial ring by an ideal generated by monomials is
independent of the base field. �

Theorem 3.5. Let S be a scheme, r > 0 an integer and p ∈ Q[z] a numerical polynomial satisfying
the following property: whenever p is written in the form

p(z) =
∞
∑

t=0

g(mt, t) =
∞
∑

t=0

(

z + r

r + 1

)

−

(

z + r −mt

r + 1

)

it satisfies
m0 ≥ m1 ≥ . . . ≥ mr−1 ≥ 0

and
mj = 0 for all j ≥ r.

Then the morphism

f : Hilb
P
r
S/S

p (S) → S

is a linearly connected morphism of functors.

Proof. We give the idea of the proof, that is not so long but really deep.
Let X be a closed subscheme of Pr. It is proved that there is a connected sequence of linear
specializations from X to a subscheme X ′ that is stable under a particular action of the triangular
groups scheme of matrices T (r+1). The ideal this scheme is generated by monomials and balanced,
so we find a fan X2, and a linear specialization X2  X1, sucht that n∗(X1) = n∗(X2). Now, using
Theorem 3.2, we may find another connected sequence of linear specializations joining X2 to a third
subscheme X3 ⊆ Pr

k. At this point there are two options: if X3 is a tight fan we are done, else we
can repeat the process, that will necessarely terminates in a finite number of steps by [H66, 3.10].
So, given any scheme X with Hilbert polynomial p we can joint it to a tight fan having the same
Hilbert polynomial by a connected sequence of linear specializations. For a detailed proof of this
fact see [H66, 5.6].

This discussion, together with Theorem 3.1, proves that for any field k, the functor Hilb
P
r
k/k

p is
linearly connected over k, thus the fibres of the morphism f are geometrically linearly connected
functors by definition. Using now Proposition 3.4 and considering the base extension S → SpecZ,
we obtain that the morphism f has a section, hence it is linearly connected. �
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Corollary 3.6. (Connectedness Theorem for Hilbert schemes) Let S be a connected Noetherian
scheme, r > 0 and p ∈ Q[z] a numerical polynomial satisfying the following property: whenever p is
written in the form

p(z) =

∞
∑

t=0

g(mt, t) =

∞
∑

t=0

(

z + r

r + 1

)

−

(

z + r −mt

r + 1

)

it satisfies
m0 ≥ m1 ≥ . . . ≥ mr−1 ≥ 0

and
mj = 0 for all j ≥ r.

Then HilbP
r
S

p (S) is a connected non-empty scheme if and only if S in non empty.

Proof. It is a direct consequence of Theorem 3.5 and the properties of connected morphisms of
schemes under base extension, see [H66, 5.9]. �

Remark 9. In the previous result the word “connected” can always be replaced by one of the
following: “geometrically connected”, “linearly connected” and “geometrically linearly connected”.

Remark 10. The condition on the numerical polynomial given in Theorem 3.5 and 3.6 is a necessary
and sufficient condition for the polynomial p to be the Hilbert polynomial of a proper closed
subscheme of Pr

k, as proved in [H66, Corollary 5.7], generalizing what we stated in Corollary 3.3.

This result has been generalised in a paper by Alyson Reeves [A. A. Reeves, “The radius of the
Hilbert scheme”, J. Algebraic Geom., vol. 4 (1995), no. 4, pp. 639–657] using the notion of radius
of the component-graph of a scheme and lexicographic ideals.

3.2 Tangent Space to Hilbert Schemes

The main references for this section will be [Sernesi, ➜1] and [FGAE, ➜6]. Within this section
we will denote by k−Art the category of local Artinian k-algebras with residue field k, by k−Noeth
the category of local Noetherian k-algebras having residue field k and by k−Loc the category of
local k-algebras having residue field k. Moreover, notice that, geometrically, a k-algebra A lies in
k−Art if S := SpecA is a k-scheme of finite type such that Sred = Spec k. Finally, recall that if
R ∈ k−Loc, then the tangent space TR := (mR/m

2
R)

∨ is a finite dimensional k-vector space.

We need to recall shortly some algebraic tools in order to define deformation functors and spaces.
We start by defining extensions of algebras and than we move to extensions of schemes.

Definition 37. Let A→ R be a ring homomorphism. An A-extension of R (by I) is a short exact
sequence

0 → I → R′ ϕ
→ R→ 0

denoted shortly by (R′, ϕ) such that R′ is an A-algebra and ϕ is a homomorphism of A-algebras
having kernel I satisfying I2 = (0). The A-extension (R′, ϕ) is called trivial (or it is said that it
splits) if there exists an A-algebras homomorphism σ : R → R′, called section (or splitting) of ϕ,
such that ϕσ = 1R.

Example 3.1 Every A-extension of A itself is trivial. In particular if we take an indeterminate t,
the A-extension A[t]/(t2) is trivial, it is denoted by A[ǫ], with ǫ ≡ t (mod t2) satisfying ǫ2 = 0, and
it is called the algebra of dual numbers over A. The corresponding short exact sequence is

0 → (ǫ) → A[ǫ] → A→ 0.

Example 3.2 Take R ∈ k−Loc and denote by mR its maximal ideal. A k-extension R′ of R by k
is called a small extension of R, and its corresponding short exact sequence is

0 → ker(f) → R′ f
→ R→ 0,

i.e. the map R′ → R is a surjection whose kernel satisfies the following equality: ker(f) ·mR′ = (0).
If (R′, f) is a small k-extension, then every t ∈ mR′ is annihilated by mR′ , so that the ideal (t) is a
k-vector space of dimension one.
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Definition 38. For every A-algebra R and for every R-module I we define ExA(R, I) to be the set
of isomorphism classes of A-extensions of R by I, and we denote the class of an extension (R,ϕ) by
[R,ϕ]. Using the operations of pullback and pushout it is possible to define an R-module structure
on ExA(R, I), see e.g. [Sernesi, p. 13].
If we take the particular case I = R, then the R-module T 1

R/A := ExA(R,R) is called first cotangent

module of R over A. If A = k it is often abbreviated T 1
R.

We have the following result.

Lemma 3.7. Let A be a ring, f : S → R a homomorphism of A-algebras and I an R-module. If
we denote by DerA(R, I) the module of A-derivations from R to I, then there is an exact sequence
of R-modules

0 → DerS(R, I) → DerA(R, I) → DerA(S, I)⊗S R
ρ
→

→ ExS(R, I)
ν
→ ExA(R, I)

f∗

→ ExA(S, I)⊗S R.

Proof. Remark first that an A-extension

0 → I → R′ ϕ
→ R→ 0

is also an S-extension if and only if it exists a morphism f ′ : S → R making the triangle

R′ R

S
f ′

commute, which is equivalent to ask that f∗(R′, ϕ) is trivial.
So, ν is the application sending an S-extension to itself, regarded as an A-extension. By the last
observation we have the exactness at ExA(R, I).
We have now to define ρ. We start considering the A-module R⊕ I, with multiplication given by
(r, i)(s, j) := (rs, rj + si), and turning it into an A-algebra R⊕̃I. This A-algebra may be regarded
also as an S-algebra via the homomorphism s 7→ (f(s), d(s)), where d : R→ I is an A-derivation.
Sothat, the homomorphism ρ is defined by letting ρ(d) = (R⊕̃I, p), where p : R⊕̃I → R is the first
projection whose sections are nothing else then the A-derivations d : R→ I. By construnction we
have that νρ = 0.
For the proof of the exactness at ExS(R, I) and at DerA(S, I) see [Sernesi 1.1.5]. �

Definition 39. Let X → S be a morphism of schemes. An extension of X/S is a closed immersion
X ⊂ X ′, where X ′ is an S-scheme defined by a sheaf of ideals I ⊂ OX′ such that I2 = 0. It turns
out that I has naturally a structure of sheaf of OX -modules coinciding with the conormal sheaf of
X ⊂ X ′. So, to give an extension X ⊂ X ′ of X/S is the same as giving an exact sequence

E : 0 → I → OX′

ϕ
→ OX → 0

on X, where I is an OX -module such that I2 = 0 in OX′ and ϕ is a homomorphism of OS-algebras.
Such a sequence E is called an extension of X/S by I. In an analogous way to what we did in the
case of A-algebras, we denote by Ex(X/S, I) the set of isomorphism classes of extensions of X/S
having kernel I and it can be proved that Ex(X/S, I) has a structure of Γ(X,OX)-module with
identity element the class of the trivial extension

0 → I → OX⊕̃I → OX → 0.

The correspondence
I → Ex(X/S, I)

defines a covariant functor from the category of OX -modules to the one of Γ(X,OX)-modules.
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Now, by localizing as in [Sernesi, 1.1.8.], we find out that given a morphism of finite type of
schemes f : X → S we may define a quasi-coherent sheaf T 1

X/S on X with the following properties.

If U = SpecA is an affine open subset of S and V = SpecB is an affine open subset of f−1(U),
then

Γ(V, T 1
X/S) = T 1

B/A.

By the properties of the cotangent module the sheaf T 1
X/S is indeed coherent and it is called the

first cotangent sheaf of X/S, and similarly to the previous case, when S = Spec k we will write
shortly T 1

X .

Remark 11. There are several properties that might be proved for the first cotangent sheaf of X/S,
making clearer also some assumption we will do in the next results. We list here two of them,
refering for more details to [Sernesi, 1.1.9].

i) If X is an algebraic scheme, then the first cotangent sheaf T 1
X is supported on the singular

locus of X. If X → S is a morphism of finite type of algebraic schemes, then the first cotangent
sheaf T 1

X/S is supported on the locus where X is not smooth over S;

ii) If f : X → Y is a closed embedding of algebraic S-schemes, with Y nonsingular and S = Spec k,
then TX/Y = 0, NX/Y = T 1

X/Y and we have an exact sequence of coherent sheaves on X

0 → TX → TY/X → NX/Y → T 1
X → 0.

The following characterization of Ex(X/S, I) holds.

Theorem 3.8. Let X → S be a morphism of finite type of algebraic schemes and let I be a coherent
locally free sheaf on X. Suppose that X is reduced and has a dense open subset that is smooth over
S. There exists then a canonical identification

Ex(X/S, I) = Ext1OX
(Ω1

X/S , I)

associating to the isomorphism class of an extension

E : 0 → I → OX′ → OX → 0

the isomorphism class of the relative conormal sequence of X ⊂ X ′ given by

cE : 0 → I
δ
→ (Ω1

X′/S)|X → Ω1
X/S → 0.

In particular, there is a canonical isomorphism

T 1
X/S

∼= Ext1OX
(Ω1

X/S ,OX).

Proof. See [Sernesi, 1.1.10.] and [Sernesi, 1.1.11.]. �

At this point we introduce the notion of (local) deformation.

Definition 40. Let X be an algebraic scheme. A cartesian diagram of morphism of schemes

η :

X X

Spec k S

π

s

with π flat, surjective and S connected, is called a family of deformations, or simply a deformation
of X over S. The scheme S is called the parameter scheme, while the scheme X is called the total
scheme of the deformation. The deformation η will also be denoted by (S, η) to emphasize the role
of the parameter scheme, or by (A, η) in the case in which S = SpecA.
For each k-rational point t ∈ S, the scheme-theoretic fibre X (t) is a deformation of X. If S = SpecA
for A ∈ k−Art, and s ∈ S is the closed point, we say to have a local family of deformations, or a
local deformation, of X over A.
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Definition 41. A local deformation (A, η) is said to be infinitesimal if A ∈ k−Art, and it is said
to be a first order deformation if A = k[ǫ].

Observe that, for every algebraic scheme X, given a k-pointed scheme (S, s), i.e. a pointed
scheme (S, s) such that k ∼= k(s), there exists at least one family of deformations of X, over S,
called the product family, given by

X X × S

Spec k Ss

Definition 42. A deformation (S, η) is trivial if it is isomorphic to the product family, and X is
said to be rigid if every infinitesimal deformation of X over A is trivial for every A ∈ k−Art.
An infinitesimal deformation of X is locally trivial if for every x ∈ X there exists a neighbourhood
Ux ⊂ X such that

Ux X|Ux

Spec k Ss

is a trivial deformation of Ux.

Example 3.3 It can be proved that a nonsingular variety X is rigid if and only if H1(X,TX) = 0,
see e.g. [Sernesi 1.2.15]. Consider Pn for n > 0 and its Euler sequence

0 → OPn → OPn
n+1 → TPn → 0.

About this exact sequence there are several well known facts, one of which is that H1(Pn, TPn) = 0,
so that Pn is rigid for all n > 0.

Using these constructions we may now define a covariant functor D : k−Art → Sets with the
following idea: D(k) is the object we want to deform and D(A) is the set of isomorphism classes of
deformations over S = SpecA.

Definition 43. A deformation functor

Def : k−Art → Sets

is a covariant functor such that Def(k) is a single point. If ϕ : B → A is a homomorphism in
k−Art and α ∈ Def(A), we say that β ∈ Def(B) is a lifting of α if ϕβ = α.

Example 3.4 In [FGAE, ➜6], Barbara Fantechi and Lothar Göttsche remark that “many interesting
deformation functors arise as infinitesimal local versions of moduli functors”, including Hilbert
schemes. Indeed, if X is a scheme and Z is a closed subscheme we may define HZ,X(A) to be the
set of deformations of Z in X over S = SpecA, that is the set of S-flat closed subschemes ZS of
the product X × S having fibre over Sred in Z. Now, HZ,X(k) = Z and functoriality follows by flat
base-change properties.
There is also an immediate generalization of this construction for a general covariant functor
F : Schemes→ Sets defined as follows: let p ∈ F (Spec k) be a point in F , then we can associate
to the pair (F, p) a deformation functor DefF,p by letting

DefF,p(A) := {α ∈ F (SpecA) | α|SpecA/mA
= p}.

Indeed, the functor HZ,X we defined previously is associated to the point [Z] of the Hilbert functor

HilbX by letting HilbX(S) be the set of S-flat closed subschemes of X × S.

In particular, if X is a scheme and we fix a point p ∈ X, we can also view p as a point in
hX(Spec k), and write DX,p instead of DefhX ,p.
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Remark 12. To every object R ∈ k−Loc we can associate a deformation functor in an almost
natural way, taking hR(A) = Homk(R,A). We have a useful particular case if we consider a scheme
X and a point p ∈ X by letting R = Op,X . If A is an Artinian local ring, then hR(A) coincides
with the set of morphisms SpecA→ X mapping the closed point to p, i.e. hR = DefX,p. Moreover,
in this case dimTR is the minimal dimension of a smooth scheme containing, as closed subscheme,
an open neighbourhood of p in X. Such an integer is called embedding dimension of R.

We introduce a correspondence, named after two of the fathers of deformation theory, which
provides the relation between certain first-order deformations and the first-cohomology of the
tangent space to algebraic varieties.

Definition 44. LetX be an algebraic variety and recall that TX = Hom(Ω1
X ,OX) = Derk(OX ,OX).

Then there is a 1-1 correspondence

κ : {isomorphism classes of first-order loc. trivial def. of X} → H1(X,TX)

called Kodaira-Spencer correspondence, such that κ(ξ) = 0 if and only if ξ is the trivial deformation
class. On top of that, if X is nonsingular, then κ is a correspondence

κ : {isomorphism classes of first-order deformations of X} → H1(X,TX).

For the proof that such a 1-1 correspondence exists and is well defined we refer to [Sernesi, 1.2.6
and 1.2.9].
The next step is the introduction of a second particular space, called obstruction space, that is
strictly related to the tangent one; the two together form what is called a tangent-obstruction
theory.

Definition 45. A deformation functor Def is said to have a (generalized) tangent-obstruction
theory if there exist (finite dimensional) k-vector spaces T1, called tangent space and T2, called
obstruction space, such that the following holds:

1) For all small extensions 0 →M → B → A→ 0 there exists an exact sequence of sets

T1 ⊗k M → Def(B) → Def(A)
ob
→ T2 ⊗k M ; (3.5)

2) If A = k, the sequence (3.5) becomes

0 → T1 ⊗k M → Def(B) → Def(A)
ob
→ T2 ⊗k M ; (3.6)

3) The exact sequences (3.5) and (3.6) are functorial in small extensions in the sense of
[FGAE, 6.1.19 and 6.1.20].

If we now set

DefX(A) := {isomorphism classes of first-order deformations of X over A}

and
Def ′X(A) := {isomorphism classes of first-order loc. trivial def. of X over A}

we can introduce two new functors related to the Kodaira-Spencer correspondence.

Definition 46. Let X be an algebraic scheme. Then, for every A ∈ k−Art the functor

DefX(·) : k−Art → Sets

is called the local moduli functor of X; if X = SpecB, it is usually denoted by DefB . The subfunctor

Def ′X(·) : k−Art → Sets

is called the locally trivial moduli functor of X.
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Both functors are functors of Artinian rings in the sense of [Sernesi, ➜2.2].

Now we are able to conclude this section stating some results about the tangent space to Hilbert
schemes. Just for a matter of coherency, we claim here also one result about the tangent space to
the particular case of the Hilbert scheme of n points, refering to Section 3.3 for its definition.

Theorem 3.9. Let X be a scheme and Y a closed subscheme of X. The deformation functor HY,X

defined in Example 3.4 has a generalized tangent-obstruction theory, given by

T1 = HomOX
(IY ,OY ) and T2 = Ext1OX

(IY ,OY ).

Proof. See [FGAE, 6.4.10]. �

Theorem 3.10. Let Y be a projective scheme and consider a k-rational point [X] in HilbY

parametrizing a closed subscheme X ⊂ Y and call I ⊂ OY the ideal sheaf of X in Y . Then, there
is a canonical k-vector spaces isomorphism

T[X]HilbY ∼= H0(X,NX/Y )

where NX/Y = HomOX
(I /I 2,OX) is the normal sheaf of X in Y .

Proof. See [Sernesi, 4.3.5]. �

Theorem 3.11. Denote by X [n] the Hilbert scheme of n points and take Z ∈ X [n]. Then

TZX
[n] = HomOX

(IZ ,OZ).

Proof. For a short proof, which uses the local criterion for flatness, see [Bertin, Proposition 2.11
and 2.12]. For a “larger” idea of the proof, involving deformation theory see [Sernesi, ➜2.4], [HM,
➜1C] or [Lehn, ➜3.4]. �

3.3 Hilbert Scheme of Points

The “easiest” case of a Hilbert scheme might be the one in which the Hilbert polynomial is
constant equal to n ∈ Z>0. This is the so called Hilbert scheme of points and is one of the few cases
in which the Hilbert scheme is still almost well-behaved. The main references for this section will
be [Nak] and [FGAE].

We start defining the Hilbert scheme of points and we see some first relevant properties.

Definition 47. Let n be a positive integer and consider the constant polynomial P (m) = n. We
define

X [n] := HilbXP

the Hilbert scheme corresponding to the polynomial P , and we call it the Hilbert scheme of n points
on X.

If x1, . . . , xn are n distinct points in X, we may consider the closed subscheme Z := {x1, . . . , xn}
in X. As its structure sheaf OZ is the direct sum of the skyscraper sheaves of the points we find out
that OZ ⊗OX(m) = OZ for all m ∈ Z, and thus Z ∈ X [n], from which the name “Hilbert scheme
of points”. From a more general point of view, the Hilbert scheme of n points in X parametrizes all
0-dimensional subschemes of X having length n, where by length we mean the length of a module
over itself, i.e.

length(Z) := dimH0(Z,OZ) =
∑

p∈Supp(Z)

dimk(Op,Z)

for a scheme Z.

In this special case an “elementary” proof of the existence of the Hilbert scheme has been produced
in the paper, [T. Gustavsen, D. Laksov, R. Skjelnes, “An elementary, explicit, proof of the existence
of Hilbert schemes of points”, Journal of Pure and Appplied Algebra, vol. 210 (2007), no. 3, pp.
705–720], for X projective over an arbitrary base scheme S, avoiding the notion of Castelnuovo-
Mumford’s regularity. Moreover, the following result states that the Hilbert scheme of point X [n]

on any quasi-projective scheme X is always connected, generalizing Hartshorne’s Connectedness
theorem.
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Lemma 3.12. Let X be a a connected quasi-projective scheme. Then X [n] is connected for all
n ≥ 0.

Proof. See [Lehn, Lemma 3.7]. The proof in the case of projective varieties over a field k is discussed
in [FGAE, Lemma 7.2.1]. �

Example 3.5 We show two easy examples.

1. Let X be a (quasi)projective scheme over k, call Z its universal family and suppose that
n = 0. If f : T → Spec k is a locally Noetherian k-scheme and Y → X ×k T is a closed proper
subscheme, flat over T having Hilbert polynomial 0, then Y is the empty subscheme. Thus f
pullbacks Z to Y . On top of that, f is the only possible morphism over k, thus X [0] = Spec k
and its universal family Z is the empty subscheme of X ×k k = X.

2. Let X be a projective scheme over k and suppose that n = 1 is the Hilbert polynomial.

Take Y ∈ Hilb
X/Spec k
1 (T ), with T a locally Nooetherian k-scheme. All the fibres of the map

f : Y → T have Hilbert polynomial equal to 1, and so they consist of single points, so that f
is a bijection. If f were an isomorphism, then composing f−1 with the projection of Y to X
through its embedding in X ×k T gives a morphism from T to X. So we may construct the
following diagram

Y X ×k T T

X X ×k X X

X Spec k

∆

It is then immediate that the pullback of the diagonal through this map is Y and the morphism
X → Spec k is projective, hence proper. This implies that f itself is proper, as this property
is stable under base change, closed immersions are proper and composition of proper maps is
again proper. Thus f is finite since T is locally Noetherian and f has finite fibres (see e.g.
[Stacks, Lemma 30.21.1 (tag 02OG)]).

Now, fix a point t of the scheme T , let V ∼= SpecB be an affine open neighbourhood of t,
and call U := f−1(V ) ∼= SpecA, for A a finite, flat B-module, and say that t corresponds
to a point P of SpecB. Take elements a1, . . . ad ∈ A that map to a basis of A ⊗B BP /PP ,
which is a finite BP /PP -vector space and call r its dimension. Notice that the images of these
elements generate the module A/PA ∼= A⊗B BP /PP . Let now ϕ : Bd → A be the module
homomorphism sending the i-th base vector of Bd to ai, and let N be the image of ϕ in A.
By Nakayama’s Lemma, as P (A/N) = A/N , there exists some f ∈ 1 + P such that Nf = Af ,
that is ϕf : Bd

f → Af is surjective. By flatness we find an exact sequence

0 → ker(ϕf )⊗Bf
BP /PP → Bd

f ⊗Bf
BP /PP → Af ⊗Bf

BP /PP → 0

At this point, by the choice of ai it turns out that ker(ϕf )⊗Bf
BP /PP = 0 and so, again using

Nakayama’s Lemma, we get an element f ′ ∈ Bf such that ker(ϕf )f ′ = 0, and so Aff ′ is a free
Bff ′-module of rank r. In other words we have an affine neighbourhood V ′ ∼= SpecB′ of t
such that U ′ := f−1(V ′) ∼= SpecA′ and A′ is a free B′-module of rank r, which by definition
was the dimension, as a k-vector space, of the global sections of the fibre over t, finding that
r = 1, and so f is truly an isomorphism.

This allows us to show that X [1] = X having the diagonal as universal family.

There exists also another space that parametrizes sets of n points in X: the symmetric power
of X, which is defined as the quotient of the n-th power of X by the action of the symmetric group
Sn, and is usually denoted by X(n), SnX or SymnX, if it might be confused with X [n].
So, X(n) parametrizes effective 0-cycles of degree n on X. Recall from Remark 4 that 0-cycles are
formal sums

∑

i ni[pi], with pi ∈ X, ni ∈ Z>0 and
∑

i ni = n. It can be proved that SnX is an
algebraic variety and it is (quasi)projective if X does (see [Ha, Lecture 10]). In particular, it turns
out that SnX may be regarded as the Chow variety of 0-cycles (see [Ha, Lecture 21]).
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In some easier cases the relation between these the Hilbert scheme of points and the symmetric
power of a scheme is nice, as we can see with the following example.

Example 3.6 Consider the Hilbert scheme of n points on the affine line A. Then

A[n] = {a ⊆ k[z] | a ∈ Spec k[z] , k[z]/a = n}

= {f(z) ∈ k[z] | f(z) = zn + a1z
n−1 + . . .+ an , ai ∈ k}

= SnA.

Even if this example has a good behaviour, and it can be generalised to every nonsingular curve,
as we will state below, the identification between the Hilbert scheme of points and the symmetric
product of the scheme fails already in dimension two, as the following example shows.

Example 3.7 Let X be a nonsingular projective variety of dimension d and consider X [2]. If
{x1, x2} are two distinct points, then {x1, x2} is a point in X [2]. What if the two points collide?
As a nontrivial vector v ∈ TxX defines an ideal I = {f ∈ OX | f(x) = 0 , dfx(v) = 0} of OX for
all x ∈ X, that has codimension 2, the quotient OX/I is a 0-dimensional subscheme Z in X [2].
The geometric interpetation of this situation is that Z is a set of two infinitely near points in X
along the direction of v. So the two cases have a different behaviour as soon as dimTxX > 1. In
particular, if the two points coincide we find a non reduced structure. For a further, but rather
sketchy, analysis of this case, including a global description of X [2] see [FGAE, Example 7.3.1].

The true relation between the symmetric product and the Hilbert scheme of points is provided
by the so called Hilbert-Chow morphism.

Theorem 3.13. There exists a (surjective) morphism

π : X
[n]
red → SnX

defined by

π(Z) =
∑

x∈X

length(Zx)[x]

which is called Hilbert-Chow morphism.

Proof. See e.g. [D. Mumford, J. Fogarty and F. Kirwan, Geometric invariant theory, Third Enlarged
Edition, Springer-Verlag Berlin Heidelberg(1994), Theorem 5.4] as suggested in [Nak] or [FGAE,
Theorem 7.1.14]. �

Moreover, the Hilbert-Chow morphism turns out to be projective, see Remark 2.19. of [Bertin].

We stated above that for curves we have an identification between X [n] and SnX. Let us prove
this claim.

Theorem 3.14. Let C be a nonsingular quasiprojective curve. Then, the Hilbert-Chow morphism
is an isomorphism.

Proof. The local ring of the curve C at a point p is a discrete valuation ring, thus all ideals in Op,C

are powers of the maximal ideal mp. Therefore, for all [Z] ∈ C [n] we have

OZ =
⊕

i

Opi,C/m
ni
pi

for
∑

i ni = n. Then, π(Z) =
∑

i ni[pi], and so it is bijective. As π is also birational, it turns out
to be an isomorphism by Zariski’s Main Theorem. �

Remark 13. As there are several versions of Zariski’s Main Theorem we point out that we refer to
[Oldfield, Theorem 2.7] for the version we need in the proof of Theorem 3.14, even if it is claimed
without giving the proof. For a deeper insight on the argument, including the various formulation
of Zariski’s Main Theorem one may look at [Mumford III, ➜9].

Even though we lose the identification we have in dimension 1, also for 2-dimensional varieties
we can prove that X [n] maintains some good properties of the underlying scheme.
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Theorem 3.15. Let X be an irreducible nonsingular quasiprojective variety of dimension d ≤ 2
and take n ≥ 0. Then X [n] is nonsingular, irreducible and has dimension dn.

Proof. See [FGAE, Theorem 7.2.3] �

A crucial point of the proof of the previous theorem is the following remark.

Remark 14. Let X be a nonsingular quasiprojective variety of dimension d, and call Xn
0 ⊂ Xn the

open dense set of (p1, . . . , pn), with pi 6= pj for all i 6= j. Let X
(n)
0 denote its image in X(n), which

parametrizes effective 0-cycles of the form
∑

i[pi], with the pi distinct. This set is also dense and

open. As Sn acts freely on Xn
0 , we have that X

(n)
0 is nonsingular of dimension dn. Let now X

[n]
0

be the preimage of Xn
0 in X [n]. It can be proved that at any point of X

[n]
0 the dimension of the

tangent space is dn and that the Hilbert-Chow morphism, restricted to X
[n]
0 is an isomorphism,

thus the Hilbert scheme of n points in X contains a nonsingular open subset isomorphic to an open
subset of X(n) (see [Oldfield, ➜5.4] for a general argument, or [Nak, Theorem 1.8] for the case of
surfaces).

The following result, which was proved by John Fogarty in [J. Fogarty, “Algebraic families on an
algebraic surface”, Amer. J. Math (1968), pp. 511–521], restates Theorem 3.15 for d = 2, claiming
something more about the Hilbert-Chow morphism.

Theorem 3.16. Suppose that X is nonsingular and of dimension 2. Then:

i) X [n] is nonsingular of dimension 2n;

ii) the Hilbert-Chow morphism π : X [n] → SnX is a resolution of singularities.

Proof. i) Take Z ∈ X [n], consider the corresponding ideal IZ and take the Zariski tangent space of
X [n] at Z, which is given by

TZX
[n] = HomOX

(IZ ,OX/IZ) = HomOX
(IZ ,OZ)

by Theorem 3.11.
In order to prove the smoothness we need to show that the dimension of the Zariski tangent space
doesn’t depend on the point Z. By definition we have an exact sequence

0 → IZ → OX → OZ → 0.

Passing to the associated long exact sequence in cohomology and recalling that dimX = 2 we find
a sequence

0 → Hom(OZ ,OZ) → Hom(OX ,OZ) → Hom(IZ ,OZ)

→ Ext1(OZ ,OZ) → Ext1(OX ,OZ) → Ext1(IZ ,OZ)

→ Ext2(OZ ,OZ) → Ext2(OX ,OZ) → Ext2(IZ ,OZ) → 0

where all the Hom(·, ·) and Exti(·, ·) are taken over OX .

Since

n
∑

i=0

(−1)i dimExti(IZ ,OZ) in independent of Z, it is enough to prove that dimExti(IZ ,OZ)

in independent of Z for i = 1, 2.
Notice first that dimHomOX

(OZ ,OZ) = n and also dimHomOX
(OX ,OZ) = n, so that the first

arrow is an isomorphism kn → kn, and thus Hom(OX ,OZ) ∼= Hom(OZ ,OZ). This fact also implies
that Hom(IZ ,OZ) is a natural subspace of Ext1(OZ ,OZ).
Now, by definition of Exti and by Serre’s Vanishing theorem we have that

Exti(OX ,OZ) ∼= Hi(X,OZ) ∼= Hi(X,OZ(n)) = 0

for i ≥ 1 and n sufficiently large. Hence

Ext1(IZ ,OZ) ∼= Ext2(OZ ,OZ)

and
Ext2(IZ ,OZ) = 0.
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Using now Serre’s Duality Theorem (see e.g. [H III, ➜7]) we find out that

Ext2(OZ ,OZ) ∼= (Hom(OZ ,OZ ⊗KX))∨ = (Hom(OZ ,OZ))
∨

where KX is the canonical sheaf of X.
Using the fact that Hom(OX ,OZ) ∼= Hom(OZ ,OZ) we conclude that Ext2(OZ ,OZ) ∼= kn, thus
dimExt2(OZ ,OZ) = n.
All these facts together show that dimHom(IZ ,OZ) does not depend on Z, and thus the claim of
point i). Furthermore, notice that we also obtained that Hom(IZ ,OZ) ∼= Ext1(OZ ,OZ).

ii) By Remark 14 X
(n)
0 is nonsingular. We now show something more. X

(n)
0 is exactly the

nonsingular locus of X(n) if X is a surface. Let ∆ := ∪1≤i<j≤n∆i,j be the big diagonal in Xn,
where ∆i,j denotes the set {(x1, . . . , xn) ∈ Xn | xi = xj}, and let ∆0 be the open subset where
precisely two of the xi coincide.
Take now p ∈ ∆0 and notice that we may suppose p ∈ ∆1,2 wlog. Then its stabilizer is
{1, τ} ∈ Sn, where τ denotes the trasposition of the first two entries. Hence, a formal neigh-
bourhood of p in X(n), i.e. the completed local ring of X(n) at p, is isomorphic to the quotient
k[[u, v, w, x′, y′, x3, y3, . . . , xn, yn]]/(uw − v2) (see Example 7.1.3 of [FGAE]).

Now, the closure of the image of ∆0 is X(n) \ X
(n)
0 and finally, as the singular locus of X(n) is

closed, we conclude that X
(n)
0 is the nonsingular locus of X(n).

Therefore π is a resolution of singularities, as X [n] is nonsingular and irreducible by Theorem 3.13

and the Hilbert-Chow morphism is an isomorphism over the open subset X
(n)
0 that is nonsingular

in X(n) by Remark 14. �

We conclude the chapter providing an example that, together with Example 3.7, makes us aware
of “how things go easily wrong”, as it will be the fundamental philosophy of the next chapter.

Example 3.8 Let X be a nonsingular variety of dimension 3 and let [Z] ∈ X [4] be the point
OZ = OP /m

2, where m is the maximal ideal at the point P = Supp(Z) as in [FGAE, 7.2.5]. Then

HomOX
(IZ ,OZ) = Homk(m

2/m3,m/m2) = k18

and thus has dimension 18, that is clearly bigger than dn = 12, thus X [4] is singular. This
example has the following “generalization”: let X = Spec k[x1, . . . , xd], for d ≥ 3, and consider
m = (x1, . . . , xd) and Z the closed subscheme determined by m2. Then X [d+1] is singular at [Z] as

its tangent space, arguing similarly to the above equivalence, turns out to be isomorphic to kd
2(d−1),

see e.g. Example 5.1. of [Oldfield].





Chapter 4

Pathologies and Murphy’s Law for

Hilbert Schemes

In the third chapter we encountered some first examples of Hilbert schemes which did not have
a good behaviour, even if they belonged to one of the easiest cases of Hilbert schemes, the Hilbert
schemes of points. The reason of this bad behaviour lies in the fact that the dimension of the
deformation spaces related to those Hilbert schemes was not the expected one. So we may ask
ourselves “How bad can the deformation space of an object be?”. This is the starting question of
Ravi Vakil’s paper “Murphy’s law in algebraic geometry: badly-behaved deformation spaces”. Invent.
Math., vol. 164 (2006), no.3, pp. 569–590 (refered to as [Va2]), and it turns out that “unless there
is some a priori reason, the deformation space may be as bad as possible”.
The answer Vakil himself provides follows, and justifies, the philosophy David Mumford introduced
in a series of papers

i) D. Mumford, “Pathologies of Modular Algebraic Surfaces.”, American Journal of Mathematics
83 (1961), no. 2, pp. 339–342 (refered to as [MumP1]),

ii) D. Mumford, “Further Pathologies in Algebraic Geometry.”, American Journal of Mathematics
84 (1962), no. 4, pp. 642–648 (refered to as [MumP2]);

iii) D. Mumford, “Pathologies III”, American Journal of Mathematics 89 (1967), no. 1,
pp. 94–104. (refered to as [MumP3]);

in which he pointed out pathologies that appear already when considering moduli spaces of well-
behaved objects. The ideas presented in these papers are so relevant that we will devote a first
section just to present the gist of Mumford’s example of a pathological Hilbert scheme which is
singular, nonreduced and has multiple components of the same dimension. The second section will
shortly present some further pathologies of Hilbert schemes of curves, while the third section will
briefly present Vakil’s ideas.

4.1 Mumford’s Example

“There is no geometric possibility so horrible that it cannot be found generically on some
component of some Hilbert scheme.”

This so called “Murphy’s law for Hilbert schemes” was formulated by Joe Harris and Ian Morrison
in [HM, ➜1D], introducing the discussion about extrinsic pathologies of moduli of curves. The first
and main example they use to justify such a statement comes from [MumP2, Section II]. In this
section of the article the author provides the first example of a Hilbert scheme being nonreduced,
by analyzing the family A of curves γ ⊂ P3 having degree 14 and arithmetic genus 24.

The problem studied by Mumford relies deeply on the study developed by Kunihiko Kodaira in [K.
Kodaira, “A Theorem of Completeness of Characteristic Systems for Analytic Families of Compact
Submanifolds of Complex Manifolds”, Annals of Mathematics Second Series, vol. 75 (1962), no. 1,
pp. 146–162].
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As a consequence of his construction, Mumford claims that the family A of curves γ consists of
an example of Hilbert scheme which “has a multiple component, i.e. is not reduced at one of its
generic points” and is also singular. Moreover, he remarks that the blow-up of γ to a surface E
turns out to be a new three-dimensional variety V3, which is nonsingular, projective and whose
local moduli scheme is nowhere reduced, see [MumP2, pp. 643–644].
To present Mumford’s Example we will try to follow the original step by step construction of
[MumP2, Section 2], giving just some hints of the various proof, regarding also [HM, ➜1D] as a
fundamental reference, as the original article is often too concise. By the way, the approaches used
by the two reference are rather different, since in [MumP2] we start taking curves with the given
degree and arithmetic genus at the highest level of generality, ending with the particular case we
will see in Proposition 4.4, while in [HM, ➜1D] the authors procede from the particular case to the
most general one.

Let γ be a nonsingular curve having degree 14 and arithmetic genus 24 in P3. Call h the divisor
class on γ induced by plane sections, H the (Cartier) divisor class of a plane section of a cubic, or
quartic, surface in S ⊂ P3. Denote by KS and Kγ the canonical divisor on S and γ respectively.

The first step consists in showing that any nonsingular curve γ ⊂ P3 of degree 14 and arithmetic
genus 24 is contained in a suitable family of quartic surfaces, confirming the previous classification
obtained by Max Noether in 1882 ([M. Noether, “Zur Grundlegung der Theorie der algebraischen
Raumcurven”, Journal für die reine un angewandte Mathematik, n.93 (1882), Heidelberg, pp.
271–318]).

Lemma 4.1. Any nonsingular space curve γ of degree 14 and arithemtic genus 24 is contained in
a pencil P of quartic surfaces.

Proof. This follows easily by a degree computation, see [MumP2, (A)]. �

Then, the study splits up into two cases, distinguishing whether the obtained pencil P has a
fixed component or not:

❼ Curves of type (a): the pencil P obtained in Lemma 4.1 has no fixed component;

❼ Curves of type (b): the pencil P obtained in Lemma 4.1 has a fixed component.

The second step of the construction establishes an upper bound on the dimension of an algebraic
family of space curves of type (a).

Lemma 4.2. Every algebraic family of space curves of degree 14 and arithmetic genus 24 of type
(a) has dimension less than or equal to 56.

Proof. Show first that if we are working with curves of type (a) and we call F and F ′ the two
quartics that span the pencil P , then almost every quartic S ∈ P is nonsingular everywhere along
γ, see [MumP2, p. 644]. The result is now proved by showing that every family of pairs (γ, S)
consisting of curves γ of type (a) and quartics S ⊃ γ being non singular along γ has dimension at
most 57, see [MumP2, (B)]. �

These two lemmas complete the study of curves of type (a).

Suppose now to work with curves of type (b). Since a space curve γ of this type should be contained
in a reducible quartic, and it cannot be contained in a plane or in a quadric surface, it has to be
contained in a cubic surface. Moreover, by a matter of degree, it turns out that such a cubic is
unique and we call it, again, S. We have now two possibilities:

❼ Curves of type (b0): the cubic surface S containing γ is smooth;

❼ Curves of type (b1): the cubic surface S containing γ is singular.

The third step of the construction proves an estimate on the dimension of a maximal algebraic
family of curves of type (b0), i.e. of a family such that given any other family of curves B containing
a γ of the given type, this family B can be obtained from A taking pull-backs.
As it used along the proof of the next result and it will be needed also in the future, we provide
here the following definitions.



CHAPTER 4. PATHOLOGIES AND MURPHY’S LAW FOR HILBERT SCHEMES 53

Definition 48. Let D be a linear system of (Cartier) divisors on a variety X. A general member
of D is said to satisfy a property P if there is a Zariski dense open subset U of the projective space
parametrizing the system such that all divisors corresponding to points of U satisfy P . The generic
element of a linear system is the generic point of the projective space parametrizing it, and a given
property P is called generic if it is a property of the generic point.

For example, if we talk about a general curve we will mean an element in fixed dense open
subset of the component of the Hilbert scheme of curves we are dealing with.

Proposition 4.3. Every maximal algebraic family of curves γ of type (b0) has dimension 56.

Proof. Noticing that KS ≡ −H and that Kγ ≡ γ · (γ +KS), using Riemann-Roch’s and Serre’s
Duality Theorems (see e.g. [H IV, ➜1] for the version of the Riemann-Roch’s Theorem involving
curves, which is the one we need here) the claim follows by explicit computations on the family of
cubic and on the cohomology of OS(γ), proving that a generic curve γ of the given type is contained
in a generic cubic surface. See [MumP2, (C)]. �

Now, denote by C the Chow variety (see Remark 4) of nonsingular curves of degree 14 and
arithmetic genus 24. Call Cb ⊂ C the locus of curves of type (b) and Cb1

⊂ C the locus of curves
of type (b1). By definition it is clear that Cb1

⊂ Cb ⊂ C and that both are closed subvarieties of C.
By Lemma 4.2 and Lemma 4.3 every component of C \ Cb has dimension less than or equal to 56,
while every component of Cb \Cb1

has dimension exactly 56. So, if we call C0 := C \ (Cb1
∪C \ Cb),

it turns out that C0 is open in C, of dimension 56, and parametrizes almost all curves of type (b0).

In order to state the fourth step of the construction, we single out a set of components of C0.
Define now a curve γ to be of type (b′0) if it is of type (b0) and there exists a line E on S such that
γ ≡ 4H + 2E on the nonsingular cubic S. The locus C ′

0 of curves of type (b′0) will be both open
and closed in C0, see [MumP2, p. 646].
Hence, Mumford claims the following property to hold for curves in C ′

0.

Proposition 4.4. If N is the normal sheaf to a curve γ ⊂ S of type (b′0), then dimH0(N) = 57.

Proof. It is again a matter of computation of dimensions using Riemann-Roch’s Theorem and some
suitable intersection number. See [MumP2, (D)]. �

Proposition 4.4 implies that the Hilbert scheme of space curves of degree 14 and arithmetic
genus 24 is singular at γ and nonreduced, as γ is a generic element of the family of curves of type
(b′0). This means that, at least at first order, we may find deformations of the curve γ not lying on
cubics.
The last step of the construction proposed by Mumford shows that, if S is a smooth cubic, E one of
the 27 lines on it and H is the (Cartier) divisor class of a plane on S, then a curve which is linearly
equivalent to 4H + 2E exists and is a nonsingular curve of degree 14 and arithmetic genus 24.

Proposition 4.5. Let S be any nonsingular cubic surface and E ⊂ S any line. Then, there exist
nonsingular curves γ ∈| 4H + 2E | and they have degree 14 and arithmetic genus 24.

Proof. For the explicit computation of degree and genus see [HM, ➜1D], for the proof of the existence
see [MumP2, (E)]. �

Moreover one may also ask oneself if the curves of type (b′0) are the only one lying on a smooth
cubic surface S. The answer to this question is negative.

Proposition 4.6. There exists exactly one other component of the Hilbert scheme of space curves
of degree 14 and genus 24 whose general member lies on a smooth cubic surface.

Proof. We should prove existence and uniqueness of the component of the Hilbert scheme.
The key point to get the existence is that, again by a matter of dimensional computation, a curve
γ with the given degree and arithmetic genus that lies on a smooth cubic has to lie on a sextic
surface T not containing the given cubic S and is residual to a second curve γ′, of degree 4 in
the intersection of S with a sextic, and there is no chance that a generic γ lies on a surface of
higher degree than 6. Moreover, it can be proved that such a curve γ′ has arithmetic genus −1
and self-intersection 0 on the cubic S, hence it is reducible. If now γ′ contains two disjoint conics,
then we obtain Mumford’s component. Otherwise γ′ has to contain a, possibly multiple, line, from
which we see that the component given by this type of curves is different from Mumford’s one.



CHAPTER 4. PATHOLOGIES AND MURPHY’S LAW FOR HILBERT SCHEMES 54

For a sketch of the proof of uniqueness and for further details on the proof of existence we refer to
[HM, pp. 21–23]. �

In particular one can show that also this second component has dimension 56, so the Hilbert
scheme of curves of degree 14 and arithmetic genus 24 has at least two components of dimension 56.

4.2 Further pathologies on Hilbert schemes of curves

The example we cited in Section 4.1 is, probably, the most famous and well-known one in which
“things go bad”, but one may ask oneself if these unpleasant situations revealed by Mumford are the
exception, rather then the norm. Murphy’s law tells us that not only it is not an exception, but
it is indeed the general rule. On top of that Joe Harris and Ian Morrison teach us that we need
not to look for awful objects. In [HM, ➜1D], [HM, ➜1E] and in [HM, ➜2D], apart from the previous
example, they provide other examples of badly-behaved Hilbert schemes of curves, often focusing
to the study of the restricted Hilbert scheme.

Definition 49. Consider the Hilbert scheme H := HilbrP for a given Hilbert polynomial P . The
restricted Hilbert scheme of H is the open subscheme R ⊂ H consisting of those points [X] such that
every component D of H on which the point [X] lies has smooth, irreducible and nondegenerate
general element.

In all the following discussion denote by Hd,g the Hilbert scheme of curves of degree d and
arithmetic genus g.
The following problems are proposed:

❼ The locus of smooth curves in a Hilbert scheme can form a disconnected subvariety, see [HM,
Exercise (1.41)];

❼ Consider the Hilbert scheme Hd,g and its restricted Hilbert scheme Rd,g. Is it true that if
every curve γ on a component of Rd,g lies on a hypersurface S of degree d, then, for general
curve, we may choose S to be smooth? The answer, following Murphy’s law, should be clearly
“no”. A counterexample may be produced considering simply the scheme X of a double line
in P3. By direct a direct computation, in [HM, pp. 24–25] it is proved that that a general
curve in the component of Rd,g contaning a curve that is residual to X in a suitable complete
intersection of a quartic S and a surface T of degree n has to lie on a quartic and that this
quartic is always nonsingular for n ≥ 7;

❼ It is possible to construct a smooth, reduced and irreducible curve γ lying in the intersection
of two components of a Hilbert scheme Hd,g, so that in this case the deformation space
is reducible as a subscheme of Pr. An explicit example, for r ≥ 4, may be performed by
considering a cone S over a rational normal curve in Pr−1, a collection L1, . . . Lr−2 of lines
on S and T ⊂ Pr a general hypersurface of degree m containing L1, . . . Lr−2. The curves that
will satisfy the desired properties are the curves γ that are the residual intersection of T with
S. For the complete argument that involves a further deeper insight on the study of curves
using Castelnuovo theory see [HM, p. 25];

❼ We may provide a lower bound on the dimension of the Hilbert scheme Hd,g, given by

hd,g,r := (r + 1)d− (r − 3)(g − 1)

which is called Hilbert number, at least at those points of Hd,g parametrizing curves that are
locally complete intersections, in particular for smooth one. It is an immediate fact that the
Hilbert number hd,g,r is independent on g if r = 3, and that for r ≥ 4 it clearly decreases
with g. There are, by the way, examples in which we find only components having dimension
exactly the Hilbert number, while in some other all components have larger dimension. Hence,
about the dimension of Hd,g, or of its components, there are still open questions. For example,
does the lower bound given by the Hilbert number hd,g hold for any component of Hd,g?
Fixing the dimension of the projective space r, can we find an upper bound on the dimension
of the restricted Hilbert scheme Rd,g? For further remarks on the Hilbert number and some
other open problems about the dimension of the components of Hd,g see [HM, ➜1E];
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❼ There are some conjectures about lower cohomology of the Hilbert scheme Hd,g that “do
seem to hold” for P1 and P2, while they are surely false in general, see [HM, ➜2D].

4.3 Murphy’s Law for Hilbert schemes

“The moral of Murphy’s Law is as follows. We know that some moduli spaces of interest are well
behaved, often because they are constructed as Geometric Invariant Theory quotients of smooth
spaces, [...], (such as) the Hilbert scheme of divisors on projective space [...] In other cases, there has
been some effort to try to bound how bad the singuralities can get. Murphy’s Law in essence states
that these spaces can be arbitrarly singular, and gives a means of constructing an example where
any given behaviour happens”. This is the philosophy behind [Va2], supported by several examples
provided by researchers at the end of the nineteenth-century, not only the one by Mumford.
As mentioned in the introduction, singularity types are one of the two fundamental ingredients to
formulate Vakil’s results.

Definition 50. Consider the equivalence relation on pointed schemes generated by the following
condition: (X, p) ∼ (Y, q) if (X, p) → (Y, q) is a smooth morphism. Under this viewpoint, pointed
schemes will be called singularities, even if the point itself is regular, and the equivalence classes
under the above relation will be called singularity types.

The second fundamental ingredient is a particular “scheme-theoretic version” of Mnëv’s Univer-
sality Theorem, which requires the introduction of a further kind of schemes: the incidence schemes
of points and lines in P2.
The original technique behind this definition and result is due to Mnëv himself and can be found in his
Ph.D. thesis, as he states on his academic web page (http://www.pdmi.ras.ru/∼mnev/bhu.html),
in which he summarizes the history of this problem. The study made bu Mnëv relies on the
theory of matroids, a fundamental concept in the modern approach to combinatorics. The results
formulated in the case of matroids have been then restated and applied to some particular cases of
varieties, first by Mnëv himself in [N. E. Mnëv, “The universality theorems on the classification
problem of configuration varieties and convex polytopes varieties”, Topology and geometry, Rohlin
Semin. 1984-1986, Lect. Notes Math. 1346, pp. 527–543, (1988)] and then by other authors,
providing a combinatorial interpretation of the given geometrical data in P2. For a first easily
available discussion, including pictures of some simple incidence schemes of points and lines, see [J.
Richter-Gebert “Mnëv’s Universality Theorem Revisited”, Séminaire Lotharingien de Combinatoire,
vol. B34h (1995)] and [J. Richter-Gebert, “The universality theorems for oriented matroids and
polytopes”, Contemporary Mathematics, vol. 223 (1999), pp. 269–292].

Definition 51. Define an incidence scheme of points and lines in P2 to be a locally closed subscheme
of (P2)m × (P2∗)n = {p1, . . . , pm, l1, . . . , ln} parameterizing m ≥ 4 marked points and n marked
lines, satisfying the following conditions:

❼ Let p1 = [1; 0; 0], p2 = [0; 1; 0], p3 = [0; 0; 1] and p4 = [1; 1; 1];

❼ For each pair (pi, lj) either pi is required to lie on lj or pi is required not to lie on lj ;

❼ The marked points and the marked lines are required to be distinct;

❼ Given any two marked lines, there is a marked point required to be on both of them;

❼ Each marked line contains, at least, three marked points.

Note that, as we have no lower bound to the value of n, we could also have configurations made
just by marked points for m ≥ 4 and n = 0. Moreover, since the last condition of the definition
requires that each marked line contains (at least) three marked points, for n = 1, 2, 3 we need to
consider m ≥ 5, 6, 7 respectively. On top of that, the case m = 7 marked points is the first one that
allows the number n of marked lines to increase without adding extra marked points, as shown by
the following examples.
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Example 4.1 An easy example of an incidence scheme of points and lines in P2 can be elementarly
constructed as follows.

❼ Take p1 = [1; 0; 0], p2 = [0; 1; 0], p3 = [0; 0; 1] and p4 = [1; 1; 1];

❼ Take l1 := p2p3, l2 := p1p3 and l3 := p1p2, where by pipj we denote the line passing through
the points pi and pj ;

❼ Mark three other points taking p5 ∈ l3, p6 ∈ l2 and p7 ∈ l1, for example p5 = [1; 1; 0],
p6 = [1; 0; 1] and p7 = [0; 1; 1];

❼ For each pair (pi, lj) it is obvious by construction that either pi lies on lj or pi doesn’t lie on
lj . We may notice that p4 doesn’t lie on any line;

❼ By construction, for each pair of lines there is at least one marked point on both of them;

❼ Each marked line contains, in this case, exactly three points.

Example 4.2 Let p1, . . . , p7 be the same points and l1, l2, l3 be the same lines of Example 4.1.

❼ To the lines l1, l2 and l3 add the following: l4 := p4p1, l5 := p4p2 and l6 := p4p3;

❼ Again, for each pair (pi, lj) it is immediate that either pi lies on lj or pi doesn’t lie on lj ;

❼ Again, for each pair of lines there is at least one marked point on both of them;

❼ Again, each marked line contains exactly three marked points;

❼ This time, each marked point lies on at least one of the marked lines.

Now we are able to state the version of Mnëv’s theorem needed for the purpose.

Theorem 4.7. (Mnëv-Sturmfels Theorem) Every singularity type of finite type over Z appears on
some incidence scheme of points and lines in P2.

A first schematic proof of this fact was given in [Va2], but the author complained that several
readers of [Va2] couldn’t obtain this result so easily as he claims. Thus he provided a complete proof
of the result and the explicit construction of the desired incidence scheme, in a separated paper
written together with the South Korean mathematician Seok Hyeong Lee in 2012: [Seok-Hyeong Lee,
R. Vakil, “Mnëv-Sturmfels universality for schemes.” (English summary) A celebration of algebraic
geometry, Clay Math. Proc., vol 18, Am.er. Math. Soc., Providence, RI, 2013, pp. 457–468].

With Theorem 4.7 Vakil has a fundamental tool that allows him to give a new, formal and rigorous
formulation of “Murphy’s Law”, providing a statements that adapts for a larger collection of objects,
of which Hilbert schemes are a special case: moduli spaces.

A moduli space satisfies “Murphy’s Law” if every singularity type of finite type over Z appears on
that moduli space.

In [Va2, 1.1] it is claimed that about 15 “well-known” objects of algebraic geometry satisfy such a
formulation of Murphy’s Law, including some particular Hilbert schemes, and the various proof are
achieved “by drawing connections among various moduli spaces”, taking as starting point the result
by Mnëv.
This new viewpoint showed that Mumford’s philosophy is truly consistent, furthermore, even though

“our experience and intuition tells us that pathologies of moduli spaces occur on the boundary, and
that moduli spaces of good objects are also good, Murphy’s Law shows that this intuition is incorrect;
we should expect pathologies even where objects being parametrized seem harmless”.
Starting from the fact that surfaces in P3 have a well-behaved Hilbert scheme (see Section 2.4),

one may hope that also Hilbert schemes of surfaces, i.e. varieties of dimension 2, in P4, or in
higher-dimensional projective spaces, are well-behaved. Unfortunately, this is not the case.
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Theorem 4.8. The following Hilbert schemes satisfy Murphy’s Law for moduli spaces:

i) the Hilbert scheme of nonsingular surfaces in P5;

ii) the Hilbert scheme of surfaces in P4.

The idea of the proof is the following, see [Va2, M2]:

1) Fix a singularity type. By Theorem 4.7, there exists an incidence scheme exhibiting such a
singularity type at some configuration of m points and n lines. One can then show that there is
a suitable morphism from that incidence scheme to the moduli of surfaces with marked smooth
divisors, that is the moduli space whose points are given by pairs (S,C), where S is a smooth
surface and C is a family of smooth curves contained in S, both being flat on the base or, from
a functorial point of view, the moduli functor that associates to a base scheme the flat family
of smooth curves, with the embedding into a flat family of smooth surfaces. This object can be
proved to be well defined. The obtained morphism is in particular étale, so it doesn’t change
the type of the singularity;

2) Using Abelian covers and some intermediate deformation spaces (see the proof of M2a-c) obtain
a regular, nonsingular surface of general type S̃ presenting the same singularity type of (S,C)
inside the moduli space of surfaces of general type;

3) Show that the Hilbert scheme of nonsingular surfaces in P5 satisfies Murphy’s law by taking
six general sections of a sufficiently positive multiple of the canonical bundle, which is very
ample and with vanishing higher cohomology, and using this to embed the nonsingular surface
S̃ obtained at the previous point in P5 ([Va2, 4.6]);

4) Show that the Hilbert scheme of surfaces in P4 satisfies Murphy’s law by taking five general
sections of the bundle to map the nonsingular surface S̃ to P4 and by reducing to the previous
case if there are nonregular points ([Va2, 4.6]).

We will prove only that the morphism obtained at point 1) is étale, up to some results about
étale cohomology, and we will give a sketch of the proof of point 2), as a complete one would require
further investigation on the various moduli and deformation spaces involved in [Va2, 1.1].

Proof. (of point 1)
First of all we need to recall the definition of étale morphism. A morphism f : X → Y of schemes
of finite type over a field k is smooth of relative dimension n if:

❼ f is a flat morphism (see Definition 11);

❼ if X ′ ⊆ X and Y ′ ⊆ Y are two irreducible components such that f(X ′) ⊆ Y ′, then we have
that dim(X ′) = dim(Y ′) + n;

❼ for each point x of X we have dimk(x)(ΩX/Y ⊗ k(x)) = n, where we recall that ΩX/Y is the
sheaf of relative differentials of X over Y (see [H II, 8]). If X is also integral, this condition is
equivalent to ΩX/Y being locally free on X of rank n.

In particular, if f : X → Y is smooth of dimension 0, then is said to be an étale morphism. For
some first properties see [H III, 10] and for a comparison and motivations from differential geometry
see [Va1, ➜12.6]. For a more detailed reference that includes further different characterizations
of the notion see [Milne1, ➜1] or the open source notes of Milne’s course about étale cohomology
[Milne2].
Fix now a singularity type. By Theorem 4.7 there is an incidence scheme exhibiting this singularity
type at a certain configuration of points and lines, say {p1, . . . , pm, l1, . . . , ln}. Consider the surface
S given by the blow-up of P2 at the points {pi} and let C be the proper transform of the union
of the lines {lj}, which is a smooth curve as it is a union of P1’s. This construction induces a
morphism from the incidence scheme (P2, {pi}, {lj}) to the moduli space of surfaces with marked
smooth divisors.
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What we claim now is that this morphism is étale at (P2, {pi}, {lj}) 7→ (S,C). What we will
produce is an étale local inverse near (S,C). Once we have proved this we obtain that, locally, the
two have the same behaviour. Consider a deformation

(S,C) (S, C)

pt B
(4.1)

of (S,C).
Next, pull back to an étale neighbourhood of pt (see [Milne1, p. 12]), so that the components of the
curve C are labeled. Then, Vakil claims that the Hilbert scheme of (−1)-curves is étale over the
base (for the proof of this fact Vakil referes to [Z. Ran, “Deformations of maps in Algebraic Curves
and Projective Geometry”, Lect. Notes in Math. 1389 (1989), Springer-Verlag, pp. 246–253], in
particular to [loc. cit, Theorem 3.2], even though he admits to be aware of the fact that it is not the
original reference, and its generalization to the holomorphic category in [K. Kodaira, “On stability
of compact submanifolds of complex manifolds”, Amer. J. Math., vol. 85 (1963), pp. 79–94]).
Call Ei the (−1)-curve corresponding to the point pi. Pull back to an étale neighbourhood so that
the points of the Hilbert scheme corresponding to the (−1)-curve Ei extend to sections, that is
there are divisors Ei on the total space of the family that are (−1)-curves on the fibres, and by
abuse of notation denote the resulting family again as in (4.1).
Now, Vakil claims that the surface S can be blown down along the divisors Ei obtaining a smooth
surface, with marked sections extending the points {pi}, using Castelnuovo’s criterion over Artin
local schemes (again he says that he is unaware of an explicit reference for the fact, and refers to
[H V, 5.7] for Castelnuovo’s criterion over closed points, claiming that it can be extended either
directly, or using [Va2, 5.1]).
It turns out that the special fibre of this last family is P2, which is rigid (see Example 3.3), thus the
family is locally trivial. The marked points p1, . . . , p4 give a canonical isomorphism with P2, up to
restriction to smaller neighbourhood in order to get that those points are in general position. Hence
we are allowed to conclude since the lines {lj} pass through the necessary pi as their preimages
{Cj} in C necessarily meet several (−1)-curves by construction. �

Once that we have moved from the incidence scheme to the moduli space of surfaces with
marked divisors, we take another step connecting such marked surfaces to abelian covers, that form
the gist of point 2) of the proof.

Definition 52. Let G be a finite abelian group and Y an n-dimensional smooth variety. An abelian
cover of Y with the group G, or shortly a G-cover, is a finite map π : X → Y , together with a
faithful action of G on X, such that π exhibits Y as the quotient of X via G.

We focus on the case in which G = (Z/p)3, with p = 2 or p = 3 being prime to the characteristic
of the residue field of the fixed singularity type. Denote by G∨ the group of characters, or dual
group of G, and let 〈·, ·〉 : G × G∨ → Z/p be the pairing defined in [Pa, Proposition 2.1], after
choice of a root of unity. This pairing may also be extended to 〈·, ·〉 : G ×G∨ → Z by requiring
〈σ, χ〉 ∈ {0, . . . , p− 1}. For a smooth variety S, denote by Div(S) the free abelian group generated
by the prime divisors, i.e. by irreducible subvarieties of S of codimension 1, and by Pic(S) the
Picard group of S, which is given by Div(S) modulo the principal divisors.

Definition 53. (See [Pa, Proposition 2.1]) Suppose to have two maps D : G → Div(S) and
L : G∨ → Pic(S). We say that the pair (D,L) satisfies the cover condition if

1. D0 = 0;

2. pLχ =
∑

σ〈σ, χ〉Dσ for all σ and χ, and the equality should be considered in Pic(X).

Using the notation introduced above, we claim the following result.

Proposition 4.9. Suppose that the pair (D,L) satisfies the cover condition, and that the Dσ are
nonsingular curves, no three meeting in a point, such that if Dσ and Dσ′ meet, then they are
transverse and the elements σ and σ′ are linearly independent in G. Then:
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(i) There is a corresponding G-cover π : S̃ → S having branch divisor D = ∪Dσ;

(ii) The surface S̃ is nonsingular;

(iii) We have that π∗OS̃ = ⊕χOS(−Lχ);

(iv) Denote by KS̃ and KS the canonical sheaf of S̃ and S respectively. Then π∗KS̃
∼= ⊕χKS(Lχ).

Proof. See [Pa, Proposition 2.1], [Pa, Proposition 3.1] and [Pa, p. 193]. �

We provide now two short key examples, which apply to the marked surface (S,C) produced at
point 1).

Example 4.3 Consider a pair (S,C) as in point 1) of the proof of Theorem 4.8, take p = 2
and fix an element σ0 ∈ G different from 0. Let A be a sufficiently ample line bundle such that
A ≡ C (mod 2). We procede now defining the two maps D and L. Set Dσ0

= C, D0 = 0 and let Dσ

be a general section of A otherwise, satisfying the following condition: if σ 6= σ′, then Dσ and Dσ′

meet transversely. Let L0 = 0, Lχ = 2A if 〈σ0, χ〉 = 0 and χ 6= 0, and Lχ = (3A+ C)/2 else. The
pair (D,L) provided by the given data satisfies the hypothesis of Proposition 4.9 by construction.

Example 4.4 Consider a pair (S,C) as in point 1) of the proof of Theorem 4.8, take p = 3, fix an
element σ0 6= 0 in G and a character χ0 ∈ G∨ such that 〈σ0, χ0〉 = 1. Let again A be a sufficiently
ample line bundle such that A ≡ C (mod 3). We procede now defining the two maps D and L. Set
again Dσ0

= C and let Dσ be a general section of A when 〈σ0, χ0〉 = 1 and σ 6= σ0, and Dσ = 0
otherwise. Let now L0 = 0, L−χ0

= (16A+ 2C)/3, and for Lχ consider the following definition

Lχ =











(8A+ C)/3 if 〈σ0, χ〉 = 1

3A if 〈σ0, χ〉 = 0andχ 6= 0

(7A+ 2C)/3 if 〈σ0, χ〉 = 2andχ 6= χ0

As in the case of Example 4.3, again the pair (D,L) provided by the given data satisfies the
hypothesis of Proposition 4.9 by construction, as we may observe that if σ 6= 0, then at most one
between Dσ and D−σ is nonzero.

Moreover, Vakil remarks that if the character of the residue field is 2, then only Example 4.4
applies, while if the character of the residue field is 3 only Example 4.3 does.

Now, some particular results apply to both the examples above.

Proposition 4.10. Consider Example 4.3 and 4.4. If A is sufficiently ample, then:

1. the canonical sheaf KS̃ is very ample;

2. the G-cover S̃ given by Proposition 4.9 is a surface of general type, i.e. an algebraic surface
having Kodaira dimension 2;

3. the G-cover S̃ given by Proposition 4.9 is a regular surface, that is h1(S̃,OS̃) = 0;

4. the deformations of the surface S̃ are the same as the deformations of the pairs (S, {Dσ}),
and in particular deformations of G-covers are again G-covers;

5. the deformation space of S̃ has the same type as the deformation space of (S,C).

Proof. See [Va2, 4.4 and 4.5]. �

For a more detailed study of these consequences in the case of surfaces and the definition of
Kodaira dimension see [Perego, ➜3.2 and ➜4], and for the case of a variety of general type see the
preliminar draft of [Kol].

For the remaining two points of the proof of Theorem 4.8 see [Va2, 4.6].

Vakil then goes on proving Murphy’s law for some other deformation spaces, see [Va2, M3, M5].
Taking advantage of these facts and using the vanishing of some higher cohomology of the surface S̃
defined in Proposition 4.9, Vakil than obtains Murphy’s Law for a second class of Hilbert schemes
([Va2, M1]), regarding as a fundamental tool in its proof a result presented by Barbara Fantechi and
Rita Pardini in [B. Fantechi, R. Pardini, “On the Hilbert scheme of curves in higher-dimensional
projective space”, Manuscripta Mathematica 90 (1996), no. 1, pp. 1–15], in which the authors
proved that for n ≥ 3 there exist infinitely many integers r and, for each one of them, a curve Cr

lying exactly on n components of the Hilbert scheme of Pr.
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Theorem 4.11. The Hilbert scheme of nonsingular curves in projective spaces satisfies Murphy’s
Law for moduli spaces. In particular the space of curves with the data of a linear system of degree d
and projective dimension r does.

After this fact, other moduli spaces are proved to be badly behaved, but again they are far from
what we were interested to, see [Va2, ➜7].

As Vakil himself underlines in [Va2, 2.4], the results provided in [Va2], the philosophy behind it and
the history of such an algebraic problem beg some further questions. In particular he raised the
issue of whether the Hilbert scheme of curves in P3 and the Hilbert scheme of points on a smooth
3-fold do satisfy Murphy’s Law. Other even relevant cases of moduli spaces were left without any
answer. In the last twenty years many researchers focused their attention on Hilbert schemes, or
some suitable variants and generalization of them like the one indicated in Section 2.5, constructing
a huge literature on the subject.

Few years before the publication of [Va2], Robin Hartshorne provided a quick resume of what
was known about connectedness of the Hilbert scheme of curves in P3 in [R. Hartshorne, “Questions
of connectedness of the Hilbert scheme of curves in P3”, Algebra, arithmetic and geometry with
applications (West Lafayette, IN, 2000), pp. 487–495, Springer, Berlin, 2004] and some further
considerations about this problem, restricted to the case of locally Cohen-Maculay curves as proposed
by Hartshorne, were reached by Paolo Lella and Enrico Schlesinger in [P. Lella, E. Schlesinger,
“The Hilbert schemes of locally Cohen-Macaulay curves in P3 may after all be connected”, Collect.
Math., vol. 64 (2013), no.3, pp. 363–372], while about its reducibility several authors have proved
irreducibility in a wide range of cases for smooth and locally Cohen-Maculay curves in P3. Anyway,
as far as we are aware at the moment, nobody has either established or disproved the validity of
Murphy’s Law for those Hilbert schemes, lefting the problem about the Hilbert scheme of curves in
P3 posed by Vakil unsolved.

A different history involves Murphy’s law for the Hilbert scheme of points on a smooth 3-fold,
since recently Joachim Jelisiejew, in [J. Jelisiejew, “Pathologies on the Hilbert Scheme of Points”,
Inventiones mathematicae, vol. 220 (2020), pp. 581–610] has proved that “the Hilbert scheme of
points on a higher dimensional affine space is non-reduced and has components lying entirely in
characteristic p for all primes p. In fact, we show that Vakil’s Murphy’s Law holds up to retraction
for this scheme.”
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