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Abstract

The main objective of this master thesis project is to apply Proper Orthogonal Decomposition

(POD) to the results obtained from a Large-Eddy Simulation of a rigid supersonic parachute

trailing behind a descent module as it travels through the atmosphere of Mars. The most

important goal is to obtain an accurate reconstruction of the original dynamics using the least

amount of modes that compose the flow field. This will preserve the entire time- evolving

nature and behaviour of the system while filtering and reducing the amount of data required

to represent the whole phenomenon. We observe that ten flow modes are enough to achieve

this target. The results obtained are examined in terms of instantaneous and mean fields. The

reconstruction of instantaneous fields reveals the presence of canonical flow regions around

the parachute, like normal shock and the turbulent wake. In particular, specific attention

is given to the interaction between the turbulent wake produced by the capsule and the

bow shock ahead of the parachute; fluctuations of the wake are amplified as they cross the

shock, leading to strong flow oscillations and potential system instability, due to the so

called parachute ‘breathing’ cycle. The comparison of the POD results was performed both

by evaluating the instantaneous two dimensional fields and one-dimensional profiles of the

reconstructed flow and also by addressing the root-mean-square fluctuations associated to the

results averaged in time. The ultimate intention related to the performed research activity

was to show how POD data analysis proves to be an excellent candidate to provide a low order

reconstruction of flow unsteadiness. The results obtained can be potentially implemented in

static aerodynamic databases to aid in the description of the flight instabilities related to

parachute oscillations that contribute to the deviation from the nominal reentry trajectory.
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1 | Introduction
Since their discovery, Navier-Stokes equations cannot be analytically solved and this causes

the necessity of using iterative methods. The problem of those methods dwells essentially in

the these two issues:

• we get the almost exact solution1 (for instance, with DNS [20]), but with a huge com-

putational cost;

• we obtain a less accurate solution (e.g. with RANS [15]), instead requires a reasonable

computational time.

In particular, turbulence flows involve the interaction of many degrees of freedom over broad

ranges of spatial and temporal scales [5], so the intricacy of the problem increases further.

At the present day, many computational methods that deal with turbulence flows (e.g. wall

modeled large eddy simulation, modal analysis methods, etc.) were developed by researchers,

but this is still a strongly developing sector.

The motivation of this thesis work lies in the recent failure of the ESA’s ExoMars 2016 mis-

sion. We will provide more details regarding the ESA’s ExoMars mission in the first section,

together with its specifics, evaluating also the related problem of breathing cycle connected to

the parachute device. Modal analysis techniques and Proper orthogonal decomposition will

be then presented.

1.1 ESA’s ExoMars mission

ExoMars program consists of two mission:

1. the deliver of Trace Gas Orbiter (TGO)2 and Schiaparelli EDL demonstrator,3 launched

in 2016;

1
Almost exact solution just because there is the necessity to iterate to obtain the solution (which is not

exact); this is due to the fact that, as already said, there is no analytical solution.
2TGO is an orbiter launched to investigate on subsurface water and atmospheric trace gases with the goal

to acquire information on possible on-going biological or hydrothermal processes.[28]
3EDL is an European Entry, Descent, and Landing demonstrator equipped to perform measurements during

descent and on the martian surface.[28]
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2 CHAPTER 1. INTRODUCTION

2. the launch of two science elements to the martian surface, which are Kazachock -a

surface platform instrumented to perform environmental and geophysics measurements-

and Rosalind Franklin -a rover tasked with conducting a search for signs of life.-

To date, owed to the suspension of collaboration with Russian space agency, this second

part of the mission might be delivered to 2028.

1.1.1 ExoMars 2016

The ExoMars 2016 mission was launched on March 2016 and after six months of interplanetary

cruise, TGO delivered Schiaparelli toward Mars. On October 2016, Schiaparelli flew in the

Mars atmosphere and after a successful entry, it failed the last part of the descent, crashing

on Mars ground [1]. A hypersonic entry should have been followed by a passive parachute

descent and an active proximity phase: thanks to the activation of retrorockets, horizontal

accuracy of the landing would have been improved. Schiaparelli would have finally landed on

a crushable structure, designed to soften the impact [13].

Figure 1.1: Representation of the EDL sequence of ESA’s ExoMars 2016 mission [1].

However, the capsule began to oscillate with an angular rates that exceeded the saturation

limit of the Inertial Measurement Unit (IMU), immediately after the parachute inflation; so,

the sensor saturated, providing to the control software the wrong attitude of the module.

This caused an incorrect altitude calculation and a premature activation of the final descent

phase. Hence, Schiaparelli impacted the surface at a speed over the 300 km/h. Schiaparelli

Anomaly Inquire report [27] attributes the main cause of the failure to the coupling of the

large parachute motion (due to the unsteady wake dynamics) and the force oscillation on the
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riser (owed to the parachute area variation) because they were not sufficiently studied during

the design phases.

1.1.2 Rosalind Franklin (former ExoMars 2022)

ESA’s ExoMars 2022 mission foresaw the departure at the end of September 2022, with an

arrival on June 2023. The spacecraft composite was to consist of a carrier module (CM) and

a descent module (DM) [28]:

• CM must execute all maneuvers during the interplanetary transfer and release the DM

for landing on Mars;

• DM had to decelerate due to the atmospheric frictional drag and then, a guidance

navigation and control algorithm had to trigger the opening of the first supersonic

parachute. A second subsonic canopy had to be deployed around 540 km/h and at

2 km of altitude the DM had to start to monitor the distance to the ground and the

vertical/horizontal velocity vector, in order to perform the soil relative navigation. At

1 km above the surface, the lander had to detach from back shell and parachute, going

into a free-fall. In the end, the lander had to decelerate by using the main engines,

obtaining a dampen touch down.

Figure 1.2: Representation of the EDL sequence of ESA’s ExoMars 2022 mission.

Because of the current developments in the geopolitical situation4, the launch scheduled

for 2022 has been aborted and the new take-off is planned for 2028, with the new mission

name of Rosalind Franklin.

4ExoMars mission had to be an international project between ESA and Roscosmos, the Russian space
agency.
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rately, can aid in the analysis of the dynamics and highlight different flow properties. Proper

Orthogonal Decomposition (POD) is the most widely used method: it categorizes modes by

their relative energy content, separating them from their temporal dependency [19].

As highlighted in [26], there are strengths and weaknesses of POD.

Strengths:

• It provides an orthogonal set of basis vectors with the minimal dimension. This property

is useful in constructing a reduced-order model of the flowfield.

• POD modes are simple to compute; notably, the snapshots POD method is mainly

attractive for high-dimensional spatial datasets.

• Data incoherent noise generally appears at high-order of energy modes, provided that

the noise level is lower than the signal level. POD analysis may be used to remove that

disturb from the dataset by removing high-order modes, as is generally done.

• POD analysis is extensively used in a wide spectrum of studies.

Weaknesses:

• Since POD is based on second-order correlation, higher-order correlations are left out.

• Temporal coefficients of spatial POD modes generally contain a mix of frequencies: a

single mode cannot identify a specific energy content.

• POD modes are not dynamically arranged, but are sorted from the most energetic mode

to the least one.
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2 | Methodology

In this chapter we explain theory and methods behind Proper Orthogonal Decomposition and

Large Eddy Simulation (hints), starting by balance equations. Then we show the numerical

method used, exhibit the simulation setup and explain the POD method.

2.1 Balance equations

The mathematical model [2] [25] describing the problem is based on the Navier-Stokes equa-

tions, which express the balance for a Newtonian, isotropic fluid. These equations are derived

from three fundamental principles of physics:

1. mass conservation;

2. momentum conservation;

3. energy conservation.

In particular, Navier-Stokes equations consist of the momentum equations only, but as it

often happens for convenience, we call Navier-Stokes equations the entire system made by

mass, momentum and energy conservation equations.

For a compressible, viscous and heat-conducting gas (neglecting heat exchanged by radiation),

we can write Navier-Stokes equations using index notation as:

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0 (2.1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
+

∂p

∂xj
− ∂σij
∂xj

= 0 (2.2)

∂(ρe)

∂t
+
∂(ρeuj + puj)

∂xj
+
∂qj
∂xj
− ∂(σijui)

∂xj
= 0 (2.3)

where ρ is the gas density, t is the time, xj is the j-th direction (with j = 1, 2, 3), uj is the

velocity component in the j-th direction, p is the thermodynamic pressure, σij is the viscous

stress tensor, e is the total energy per mass unit and qj is the total heat flux.

We can express σij and qj as:

σij = µ

(

∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)

(2.4)

9
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qj = λ
∂T

∂xj
(2.5)

where µ is the gas dynamic viscosity, δij is the Kronecker delta, λ is the heat transfer coeffi-

cient, and T is the gas temperature.

This model consists of 5 equations with 7 unknowns, which are ρ, uj , p, e and T : we need to

add some equations in order to complete the system and we can do that using the following

equations. In particular, we assume the gas as an ideal gas, so we use a state equation and

a constitutive equation for total energy:

p = ρRT (2.6)

e = cvT +
uiui
2

(2.7)

whereR is the specific gas constant (which is defined asR = R/M , with R = 8.314 Jmol−1K−1

universal gas constant, and M [kgmol−1] molar mass of the gas) and cv is the heat coefficient

at constant volume.

Navier-Stokes equations is now self sustained. We can re-write these equations in a non-

dimensional form, so that known dimensionless groups can be introduced.

2.1.1 Non-dimensional Navier-Stokes equations

The adimensional form of Navier-Stokes equations is useful to minimize the number of inde-

pendent parameters which control the system, as well as normalize the relevant quantities to

be order one, thus reducing the computational cost. Non-dimensional quantities (indicated

with the superscript ’ ) are obtained through a change of variables: each dimensional variable

is expressed as the product between the corresponding dimensionless variable and a reference

quantity (which is indicated with the subscript 0 ). So we have the following adimensional

values:

x′ =
x

l0
, u′i =

ui
u0

, ρ′ =
ρ

ρ0
, t′ =

t

t0

e′ =
e

e0
, T ′ =

T

T0
, µ′ =

µ

µ0
, λ′ =

λ

λ0

(2.8)

Reference values are arbitrary and we have defined them as:































ρ0 = ρ∞

p0 = p∞

T0 = T∞

l0 = D0

====⇒















































































R0 =
p0

ρ0T0

u0 =
√
R0T0

t0 =
l0
u0

µ0 = ρ0u0l0

λ0 = µ0R0

cp0 =
γR0

γ−1

cv0 =
R0

γ−1

e0 = cv0T0 +
u2
0

2

(2.9)



2.1. BALANCE EQUATIONS 11

where cp is the heat coefficient at constant pressure, cv is the heat coefficient at constant

volume, l0 is the reference length (set equal to the parachute diameter D0 = 2R0) and γ is

the specific heat ratio. With this choice we obtain unitary free-stream quantities:

ρ′
∞

= p′
∞

= T ′

∞
= R′

∞
= 1

We can now introduce 4 fundamental non-dimensional groups using the Buckingham’s theo-

rem (also said Π thoerem), starting from reference values of 2.9:

Specific heat ratio ←→ Enthalpy

Internal energy
←→ γ =

cp0
cv0

Mach number ←→ Velocity

Speed of sound
←→ M∞ =

u∞
a∞

Reynolds number ←→ Inertial forces

Viscous forces
←→ Re =

ρ0l0u∞
µ∞

Prandtl number ←→ Viscous diffusion

Thermal diffusion
←→ Pr = cp0

µ∞
λ∞

where the free-stream speed of sound a∞ can be expressed as:

a∞ =
√

γR0T0 (2.10)

From these groups we can now compute the non-dimensional free-stream quantities of the

velocity (u′
∞
), gas dynamic viscosity (µ′

∞
) and heat transfer coefficient (λ′

∞
). As we did in

2.8, we normalize those values and obtain:

u′
∞

=
u∞
u0

=
M∞a∞√
R0T0

=
√
γM∞ (2.11)

µ′
∞

=
µ∞
µ0

=
ρ0l0u∞
Re

· 1

ρ0l0u0
=

√
γM∞

Re
=
u′
∞

Re
(2.12)

λ′
∞

=
λ∞
λ0

= µ∞
cp0
Pr
· 1

ρ0l0u0R0
=

γ

γ − 1
· 1

Pr
·
√
γM∞

Re
=

γ

γ − 1
· µ

′

∞

Pr
(2.13)

In order to be clearer, we now use non-dimensional quantity only, omitting the superscript

used so far. It is now possible re-write the Navier-Stokes equations in the dimensionless form:

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0 (2.14)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
+

∂p

∂xj
−
√
γM∞

Re
· ∂σij
∂xj

= 0 (2.15)

∂(ρe)

∂t
+
∂(ρeuj + puj)

∂xj
−
√
γM∞

Re

[

∂(σijui)

∂xj
− γ

γ − 1
· 1

Pr
· ∂qj
∂xj

]

= 0 (2.16)

Prandtl number and heat specific ratio are considered constant, using the hypothesis of

calorically perfect gas - it is possible to use this one until the temperature is lower than

1000K; in this case, the maximum temperature of the gas is about 400K.

Simulation and reconstruction parameters were set to replicate the Martian atmosphere,
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considering CO2 as a perfect gas, hence we utilize the following parameters:

γ = 1.30 , P r = 0.72 , M∞ = 2 , Re = 106

We have chosen this value of free-streamMach number because it corresponds to the parachute

deployment Mach number (that is a critical stage of the re-entry maneuver). From these val-

ues, non-dimensional free-stream velocity and viscosity can be easily calculated in this way:

u∞ =
√
γM∞ ≈ 2.28 (2.17)

µ∞ =
u∞
Re
≈ 2.28 · 10−6 (2.18)

Dynamic viscosity and heat transfer coefficient both depend on the gas temperature, so that

they are expressed as (all quantities are normalized by their reference values):

µ = µ(T ) = µ∞T
0.76 (2.19)

λ = λ(T ) =
γ

γ − 1
· µ
Pr
≈ 1.37 · 10−5 T 0.76 (2.20)

We assume that viscosity follows the Power-law of a generalized flow: we decide not to use

the Sutherland’s law because its constant is not calibrated for the Martian atmosphere.

2.2 Turbulent regime scales

In this section we briefly explain the energy cascade theory and the Richardson and Kol-

mogorov model (also said K41 model), then we understand the phenomenon which charac-

terizes the eddy viscosity.

The energy cascade concept consists of transferring the energy content of large vortex

structures to smaller ones, until the phenomenon reaches sufficiently small scales, such that

the viscosity becomes relevant in order that energy can be dissipated. For Re >> 1, is known

that viscosity is negligible at larger scales, but in the smaller scales (known as universal

scales), - where vortexes are ever smaller - local gradients grow increasingly and so, viscosity

get a dominant role.

It is possible to subdivide the energy cascade region in 3 macro areas:

1. big scales, also known as l0 scale;

2. mid scales, or inertial range;

3. small scales, known as Kolmogorov microscale or K41 model.
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2.2.1 l0 scale

This scale is the biggest one, where there are the largest vortrex structure with the major

quantity of energy. The requirements to be defined as l0 scale are these:

l0 ≃ L0 , ul0 ≃ u′rms =

√

2

3
k (2.21)

where l0 is the characteristic dimension of the biggest vortex, L0 is the characteristic dimen-

sion of the case, ul0 is the characteristic velocity of the biggest vortex, u′rms is the root mean

square value of the fluctuating velocity - it is experimentally found that u′rms ≈ (0.1÷ 0.3)U0

-, U0 is the undisturbed flow velocity and k is the turbulent kinetic energy.

It is possible to define the Reynolds number for the big scales as Rel0 :

Rel0 =
ul0 l0
ν
≃ u′rmsl0

ν
≃ U0L0

ν
= Re (2.22)

where ν is the cinematic viscosity (ν = ρ/µ).

Another fundamental concept to consider is how much energy can be transfer from the big

scale, to the smaller one. Considering l0 = L0 and calling τl0 as the characteristic life time

(i.e. the time during which energy exchange occurs), the turbulent kinetic energy introduced

per time unit is proportional to:
kl0
τl0
≃
u3l0
l0
≃ U3

0

L0
(2.23)

2.2.2 Kolmogorov microscale

Kolmogorov microscale consist of the dissipative range, where the dimension l of this region

is proportional to the smallest vortex dimensions η; in particular:

l ≃ η ≪ l0

At this scale, the behavior of the vortex structures becomes universal, - which means vortexes

are not affected by the main flow (so neither from geometry) - thus flow turn to isotropic and

homogeneous.

In the K41 model, the following two hypotheses apply:

Hypothesis 0: if Re≫ 1 and l≪ l0, then flow is locally isotropic and homogeneous, statistics

of these scales are universal and they depend at best on ν and ε (that is the dissipation

term of turbulent energy equation);

I similarity hypothesis: smallest scales depend on ν and ε only.
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With this knowledge, we can define characteristic dimension, velocity and time of Kolmogorov

scale respectively as:

η =

(

ν3

ε

)
1

4

, uη = (ν η)
1

4 , τη =
η

τη
=

(

ν

ε

)
1

2

(2.24)

Considering these relations, we can also define the Reynolds number and the dissipation as:

Reη =
uηη

ν
=
ν

ν
= 1 , εη ≃ ν

(

uη
η

)2

=
ν

3

2

ν
3

2

ε1 = ε (2.25)

So, it is clear that kinematic viscosity ν plays a key role at these scales, thus dissipation due

to Kolmogorov scales εη is approximately equal to the turbulent flow dissipation ε.

2.2.3 Inertial range

The inertial range (also known as Taylor microscale) is the scale between l0 and Kolmogorov

scales, where the characteristic length l is:

η ≪ l≪ l0

Also for this mid scale, we need to add a hypothesis:

II similarity hypothesis: if Re≫ 1 and η ≪ l≪ l0, statistics are universal, but independent

by the kinematic viscosity ν; hence, there is only turbulent flow dissipation ϵ dependence

(and implicitly by l).

This dissipation is not a real term of ”consumption” of energy because, as said before, at

these scales there is the energy transfer to the smallest vortex structures.

Therefore, characteristic velocity of these structures is:

ul = (ε l)
1

3 (2.26)

To confirm the second similarity hypothesis we have to verify that the Reynolds number of

inertial range Rel ≫ 1; thus:

Rel =
ul l

ν
=

(

l

η

)
4

3

==⇒ Rel ≫ 1 (2.27)

Again, the transferred energy from big scales to smallest ones εl is:

εl ≃
kl
τl
≃ u2l

l
ul

= ε
l

l
= ε (2.28)

where kl is the turbulent kinetic energy and τl is the time of the scale.

After this brief explanation of the energy cascade theory, we show it in the following

picture:
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• T0 is the big scales time;

• ∆t is the time-step;

• τη is the Kolmogorov microscales time.

It is clear that, to date, DNS can only be used for the simplest cases.

2.3.2 Reynolds Averaged Navier-Stokes

Reynolds Averaged Navier-Stokes is a flow simulation technique that consists of solving the

time-averaged Navier-Stokes equations; these equations need a turbulence closing model be-

cause of the presence of the Reynolds Stress tensor. RANS represents the standard of industry

simulation given the low computational cost connected, but it provides mean fields only and

turbulence modeling requires particular attention.

Before analyzing RANS, we have to introduce the Reynolds average operation (also said

time-averaging). Taking velocity as reference (just for simplicity’s sake), this average consists

of:

u(x, t) = U(x, t) =
1

N

N
∑

k=1

u(k)(x, t) (2.29)

where N is the experiment number (N ≫ 1), u(k)(x, t) is the measured velocity of each

experiment and U(x, t) is the Reynolds-averaged velocity.

It is possible to decompose instantaneous velocity u(x, t) in two terms: the Reynolds-averaged

velocity U(x, t) and u′(x, t), that is the velocity fluctuations term; hence:

u(x, t) = U(x, t) + u′(x, t) (2.30)

For all this section, capital letters refer to the time-averaged quantities, while terms with

superscript [ ’ ] refer to fluctuating quantities. For compressible, the density weighted Favre

averaging (indicated by [ .̃ ])

ũi =
ρui
ρ̄

(2.31)

is a more useful concept than the traditional Reynolds averaging (note that ρui is the

Reynolds-averaging of (ρui) and ρ̄ is the Reynolds-averaged density). Nevertheless, RANS

equations are written using the traditional Reynolds-averaging concept instead of the Favre

averaging, although the mean-flow solution method used is suitable for compressible flows.

So, dimensionless RANS for incompressible flow may be written as [15]:

∂Ui

∂xi
= 0 (2.32)

∂Ui

∂t
+ Uj

∂Ui

∂xj
+

1

ρ

∂P

∂xi
− ∂

∂xj

(

ν
∂Ui

∂xj

)

+
∂
(

u′iu
′

j

)

∂xj
= 0 (2.33)

The only difference between RANS and Navier-Stokes equations is the last term, which is

the divergence of u′iu
′

j : this is known as Reynolds stress tensor and it tends to even out the
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flow (opposing the gradient ∂Ui/∂xj). That term is a second order symmetric tensor, but it

depends on a three-fold correlation - that problem persists even if the initial equation order

raise up and it called closure problem:

D
(

u′iu
′

j

)

Dt
= F (u′iu

′

ju
′

k)

where D
Dt is the material derivative1 and F is a generic function.

This issue for the Reynolds stress tensor can be solved using an energy transport equation,

so it is:
D
(

u′iu
′

j

)

Dt
= Pij − εij +Φij +Dij (2.34)

where:

• Pij = −u′ju′k ∂Ui

∂xk
− u′iu′k

∂Uj

∂xk
−→ Pij = Production

• εij = 2ν
∂u′

i

∂xk

∂u′
j

∂xk
−→ εij = Dissipation

• Φij =
1
ρ p

′

(

∂u′
i

∂xj
+

∂u′
j

∂xi

)

−→ Φij = Redistribution

• Dij =
∂

∂xk

(

−u′iu′ju′k − 1
ρ

(

δikp′u
′

j + δjkp′u
′

i

)

+ ν
∂u′

iu
′
j

∂xk

)

−→ Dij = Fluxes

Pij is the rate at which energy is fed from the mean flow to each stress component, εij is a

viscous dissipative term which cannot be computed from available variables (hence it must

be modeled), Φij is the redistribution term, because its trace is zero and thus it neither intro-

duces nor subtract mechanical energy and, in the end, Dij is the sum of three fluxes (i.e. the

transport by velocity fluctuations, the pressure transport flux, and the viscous flux of each

stress component).

Equation 2.34 explains the behavior of the aforementioned energy cascade (section 2.2), start-

ing from the largest vortexes to the dissipation range, passing through the inertial range.

To solve RANS equations, it is necessary to use a turbulence model. There are a lot of

them, as k − ε model, k − ω model (both based on Boussinesq hypothesis2), Menter model,

Spalart-Allmaras model and so on. Just to understand how a turbulence model is made, we

very briefly describe the k − ε model [21].

The k − ε model belongs to the class of two-equation models, in which model trans-

port equations are solved for two turbulence quantities (the turbulent kinetic energy k and

the viscous dissipation ε). From these quantities, reference values may be calculated such

a length-scale (L = k3/2/ε), a time-scale (τ = k/ε), etc. In addition to the Boussinesq

hypothesis, this model consists of:

1. a model transport equation for k ;

1Material derivative is defined as DUi

Dt
= ∂Ui

∂t
+ Uj

∂Ui

∂xj
2Boussinesq hypothesis introduces a turbulence viscosity νt and it defines Reynolds stress tensor and

molecular stress tensor as similar.
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2. a model transport equation for ε;

3. the explanation of the turbulent viscosity as νt = Cµ
k2

ε .

Cµ = 0.09 is one of the five calibration constants of the model; these five constants are

arbitrary and properly tuned according to the type of flow analyzed.

2.3.3 Large Eddy Simulation

Large Eddy Simulation (or simply LES) is a flow simulation technique which allows to solve

unstationary cases: it solves large vortex structures, while filtering and smothering the smaller

ones (only the universal scales).

To obtain LES, we introduce a low-pass filter to the Navier-Stokes equations. Filtering is

done by decomposing a generic variable (e.g. X-direction velocity u) as:

u = ū+ u′ (2.35)

where:

• u is the instantaneous velocity;

• ū is the filtered velocity and represents the flow field of LES;

• u’ is the subgrid velocity; it is composed by high frequencies of the flow, which are the

modeled quantities.

The filtering of the equations can be done in explicit (e.g. Top-Hat filter, Gauss filter, etc)

or implicit way; in this work, we use an implicit filter, taking advantage of fact that the grid

acts as a filter for structures smaller than it. So, we call ∆ as grid-step and it is:

∆ = 3
√

∆x∆y∆z

It is convenient to express values in terms of density-weighted variables (Favre variables)

because, in this way, we avoid the appearance of sub-grid terms in the mass balance equation

(eq. 2.14) and ensure the filtered governing equations a structurally similar form to the

unfiltered one equations. So, a general variable x can be decomposed as:

x = x̃+ x′′ (2.36)

where:

• x̃ = ρx
ρ̄ is the density-weighted resolved part;

• x” is the modeled part of x.
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Non-dimensional Navier-Stokes equations can be re-written as:

∂ρ̄

∂t
+
∂(ρ̄ũj)

∂xj
= 0 (2.37)

∂(ρ̄ũi)

∂t
+
∂(ρ̄ũiũj)

∂xj
+

∂p̄

∂xj
−
√
γM∞

Re
· ∂σ̄ij
∂xj

+
∂τ̄SGij

∂xj
= 0 (2.38)

∂(ρ̄ẽ)

∂t
+
∂(ρ̄ẽũj + p̄ũj)

∂xj
−
√
γM∞

Re

[

∂(σ̄ij ũi)

∂xj
− γ

γ − 1
· 1

Pr
· ∂q̃j
∂xj

]

+
∂ēSGj
∂xj

= 0 (2.39)

This is the system after the application of the spatial filter ( .̄ ) and the definition of the

Favre filter ( .̃ ), known as dimensionless filtered Navier-Stokes equations. In particular, the

main difference to non-dimensional Navier-Stokes (eq. 2.14, 2.15, 2.16) is the presence of the

sub-grid stress tensor (τ̄SGij ) and the sub-grid energy term (ēSGj ), that are:

τ̄SGij = ρ̄(uiuj − ũiũj) , ēSGj = ρeui + pui − (ρ̄ẽũi + p̄ũi) (2.40)

These two quantities have to be modeled and represent the unresolved turbulent contributions

arising from the filtering process. Using the Boussinesq’s hypothesis we can assume that

turbulence fluctuations act in a dissipative way through a residual viscosity, known as eddy

viscosity (νt). This parameter contains the sub-grid stress tensor and sub-grid energy and it

can be modeled as:

νt = csu∆∆ (2.41)

where:

• cs = 0.12± 0.06 is the Smagorinsky’s constant;

• ∆ is the grid-step;

• u∆ is the characteristic velocity on ∆ scale.

STREAmS solves the compressible Navier-Stokes equations in dimensionless form (eq. 2.14)

without adding any external model, but in order to use this approach we have to discretize

Navier-Stokes equation in both space and time. Spatial discretization is based on finite-

difference method (see 2.47), but this type of discretization causes a numerical dissipation

that can be exploited to achieve an effect similar to eddy viscosity: this is known as artificial

viscosity. In particular, the discretization of convective terms is characterized by low-pass

filters, which provide an implicit sub-grid model naturally coupled to the solvable scales of

the flow. So, using this implicit sub-grid model, we can omit conventional LES turbulence

modeling. This model is known as Implicit Large Eddy Simulation (ILES).

It is now possible to understand the choice to use ILES as reference: there is no turbulence

models, nor empirical equations which damage the solution, so we obtain reliable results

without the inaccessible times of DNS.
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central flux with classical shock-capturing reconstructions, based on Lax–Friedrichs flux split-

ting3[11]; the components of the positive and negative characteristic fluxes are reconstructed

at the interfaces using a Weighted Essentially Non-Oscillatory (WENO) reconstruction. To

judge on the local smoothness of the solution and switch between the two type of discretiza-

tion, STREAmS relies on a modified version of the Ducros shock sensor4 [6]:

θ = max

(

−∇ · u
√

∇ · u2 +∇× u2 + u2
0

L0

, 0

)

∈ (0, 1) (2.46)

where u0 L0 are the reference velocity and length. This sensor is designed to be θ ≈ 0

in smooth flow regions, and θ ≈ 1 in the presence of shockwaves. The viscous terms are

expanded to Laplacian form and approximated with sixth order central schemes, to avoid

odd–even decoupling phenomena. So, the numerical discretization of the spatial derivative in

X-direction of the viscous fluxes at the i-th node is:

[

∂

∂x

(

µ
∂u

∂x

∣

∣

∣

∣

i

)]

i

=
1

∆x2

L
∑

l=−L

(

a2l µi+lui+l + µiblui+l

)

(2.47)

where bl coefficients are the finite-difference coefficients for the second derivative of order 2L.

2.3.4.2 Time integration

From discretization of the spatial derivatives, we obtain a semi-discrete system of ordinary

differential equations of the type [6]:

δw

δt
= R(w) (2.48)

where w = [ρ, ρu, ρv, ρw, ρE] is the vector of the conservation variables and R is the vector

of the residuals.

Time integration relies on a three stage, third order Runge-Kutta scheme, that is:

w(l+1) = w(l) + αl∆tR
(l−1) + βl∆tR

(l) , l = 0, 1, 2 (2.49)

where l is the sub-step, w(0) = wn is the solution at n-th step, w(3) = wn+1 is the so-

lution at (n+1)-th step and the integration coefficients are αl = (0, 17/60,−5/12), βl =

(8/15, 5/12, 3/4) [6].

3Lax-Friedrichs flux splitting consists of dividing flux into two components (up-wind propagation f+ and
down-wind propagation f−) -so that f(u) = f+(u) + f−(u)- and then using the local maximum velocity of
propagation as splitting elements. So, we can write this flux splitting method as: f±(u) = 1

2

(

f(u)±αu
)

, with
α = maxu|f

′(u)|.
4See F. Ducros, V. Ferrand, F. Nicoud, C. Weber, D. Darracq, D. Gacherieu, T. Poinsot, ”Large-Eddy

Simulation of the Shock/Turbulence Interaction” J. Comput. Phys. 152 (2),1999, 517–549.
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2.3.5 Immersed boundary method

The simulation used as reference consists of the solution of the flow around two bodies:

capsule and parachute. Therefore, it is necessary to apply the boundary conditions (BCs) of

no-slip and no-penetration on the surface of those bodies; we do it by applying the Immersed

Boundary Method, also known simply as IBM.

The concept of IBM is that the solid surfaces of the immersed bodies do not coincide with

the nodes of the computational grid, hence, instead of applying directly BCs (i.e. by setting

u = 0), a fictitious force (fibm) is applied to the flow in the proximity of the interfaces, such

that the flow is locally forced to move with the same local velocity of solid walls. If the

relative velocity between the flow and the the body is zero, no-slip and no- penetration BCs

are indirectly satisfied. The Navier-Stokes system is solved on a fixed grid -which does not

conform to the immersed solid surfaces- to represent the dynamics of the flow:

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0 (2.50)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
+

∂p

∂xj
− ∂σij
∂xj

− ρfibm = 0 (2.51)

∂(ρe)

∂t
+
∂(ρeuj + puj)

∂xj
+
∂qj
∂xj
− ∂(σijui)

∂xj
− ρfibmui = 0 (2.52)

In particular, fibm = fibm(xi, t).

IBM is divided into two main groups: continuous forcing method and discrete forcing method.

The first one is represented in the 2.51 system and it is accurate and straight-forward to

implement, but it works with Dirichlet BCs only. Therefore, since compressible Navier-Stokes

equations require both Dirichlet and Neumann boundary conditions, it is necessary to use

the discrete forcing method, which which is able to work with both BCs. This method may

be direct or indirect : the second one exploits a force distribution function, which introduces

a spreading effect on the interfaces (undesirable when great accuracy is needed). The direct

boundary conditions imposing is applied through the Ghost Point Forcing Method (GPFM),

allowing a sharp representation of the body surface [11].

2.3.5.1 Ghost Point Forcing Method

The method is more suitable for the applications where the natural boundary conditions are

specified as a gradient of some fluid variables as in thermal and compressible flows problems.

It needs to discern if a computational node is a fluid, a ghost, or a solid one and to pursue

this target, some automatic solid-detection techniques must be employed (e.g. ray tracing

algorithm). Thus, the boundary can not be represented by a collection of Lagrangian points,

but the surface must be discretized by a mesh with elements like triangles in 3D cases.
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2.4.3 Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD) determines the optimal set of modes to represent

data, based on L2 norm, that is the energy. The goal of POD is to decompose a set of data

into a minimal number of basis functions or modes to capture as much energy as possible; so

we call the modes of this modal decomposition technique as energy modes.

Assume that the unsteady component of the vector field may be decomposed as the difference

between a vector field q(ξ, t) (e.g. velocity) and its temporal average q̄(ξ), so that:

q(ξ, t)− q̄(ξ) =
∑

j

ajϕj(ξ, t) (2.60)

ϕj(ξ, t) are the modes, aj are the expansion coefficients, ξ is the spatial vector and t is the

time. Equation 2.60 represents the flow-field in terms of generalized Fourier series for some

set of basis function, as ϕj(ξ, t) are, and we clearly searching for the optimal set of basis

functions for the given stream data. This approach led to modes which are functions of space

and time (or even frequency). As for the aeroelasticity methods [29], we can decompose the

right hand side of the previous equation 2.60 in order that the expansion coefficients aj will

be time-dependent, while the modes will be only space-dependent (so they will be spatial

modes). Re-writing the equation we obtain:

q(ξ, t)− q̄(ξ) =
∑

j

aj(t)ϕj(ξ) (2.61)

It is noticeable that the fluctuations in the original field are re-defined as a linear combination

of the modes and their corresponding temporal coefficients. The inputs are snapshots of scalar

(e.g. pressure) or vector (e.g. velocity) field q(ξ, t), over up to three-dimensional discrete

spatial points ξ at discrete times ti. Instead, the outputs are a set of orthogonal modes

ϕj(ξ) with their corresponding temporal coefficients aj(t) and the energy levels λj (which are

arranged in the order of their relative amount of energy). We mean there are three outputs:

the matrix of modes, the matrix of temporal coefficients and the matrix of the energy.

There are two main approaches to fulfill the POD of the fluid-flow data:

• spatial POD method;

• snapshot POD method;

2.4.3.1 Spatial pod method

This approach is also called classical POD method and it starts from the preparation of the

flow-field snapshots (where the flow-field is q(ξ, t)), in order to obtain a collection of column

vectors x(t). These vectors are the fluctuations of the fluid-flow and we can express them

-considering a collection of finite dimensional data vectors- as:

x(t) = q(ξ, t)− q̄(ξ) ∈ R
n , t = t1, . . . , tm (2.62)
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In order to find the optimal basis vectors that can best represent the given data, we are

searching for ϕj(ξ) such that q(ξ) is represented in an optimal way and with the least number

of modes. So, we need modes with the maximum energy content so that we can use minimum

number of them. It is possible to do it by calculating the eigenvalues λj and the eigenvectors

ϕj :

Rϕj = λjϕj , ϕj ∈ R
n , λ1 ≥ · · · ≥ λn ≥ 0 (2.63)

In this case, eigenvalues are in descending order: since each eigenvalue represents the growth

(or decrease) rate along one direction, the bigger the mode, the more important it is from an

energy point of view.

R is defined as the covariance matrix8 of vector x(t):

R =
m
∑

i=1

x(ti)x
T (ti) = XXT ∈ R

n×n (2.64)

where X is the matrix which represents the m snapshot data that are stacked into a matrix

form:

X = [x(t1) x(t2) . . . x(tm)] ∈ R
n×m (2.65)

X is essentially a matrix made by stacking all the points of the domain in columns and

flanking them with the different snapshots/time-steps m. The size of the covariance matrix

depends by the spatial degrees of freedom of the data: in fluid-flow application, that data-size

n is generally equal to the number of grid points, multiplied by the number of variables to

be considered in the data.

The eigenvectors ϕj are called POD modes and they are orthonormal; so it means that scalar

product between the modes satisfies the following condition:

⟨ϕj, ϕk⟩ ≡
∫

V
ϕj · ϕk dV = δjk , j, k = 1, . . . , n (2.66)

where δjk = 0 if j ̸= k. It notice that we consider that the flow-field data are placed on a

uniform grid, such that scaling due to the size of the cell volume, does not need to be taken

into account9 [26]. So, the eigenvalues λk indicate how much each eigenvector ϕk captures

the original data in the L2 norm sense,10 scaled by m. If velocity vector is associated to

x(t), the calculated eigenvalues coincide to the kinetic energy captured by the POD modes.

Thanks to this correspondence, we may use the eigenvalues to determine the optimal modes

number (r), necessary to represent the fluctuations in the fluid-flow data. In order to satisfy

8Covariance matrix is defined as R = XXT /m: just not to burden the writing, we lump the factor 1/m in
the eigenvalues.

9If we consider the size of the cell volume, the covariance matrix should be written as R = XXTW , where
W contains the spatial weights. The same approach is used for the 2.4.3.2 paragraph where, in the equation
2.70, matrix XTX should be XTWX.

10We remember that L2 norm is defined as ∥f∥ =
√

∑

i f
2
i
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this requirement, we have to obtain

∑r
j=1 λj

∑n
j=1 λj

≈ 1 (2.67)

which means that the partial/total energy ratio must be similar to one.

So, it is possible to re-define the fluctuations of the fluid-flow in terms of the truncated (and

so finite) series as:

q(ξ, t)− q̄(ξ) ≈
r
∑

j=1

aj(t)ϕj(ξ) (2.68)

It is clear the power of this result: we reduce the high-dimensional (n) flow-field into only r

modes, which represent it.

The temporal coefficients aj(t) may be calculated by:

aj(t) = ⟨x(t) , ϕj(ξ)⟩ , x(t) = q(ξ, t)− q̄(ξ) (2.69)

2.4.3.2 Snapshot pod method

The snapshot POD method is used when the spatial size of the data (n) is very broad.

Because of the covariance matrix R = XXT is an n×n matrix, evaluating the eigenfunctions

using the spatial POD method is unrealizable. This method takes a collection of snapshots

x(ti) at discrete time levels ti, (i = 1, . . . ,m, with m ≪ n) and it solves an eigenvalue case

of a narrower size (m×m) to find the POD modes. The number of snapshots (m) must be

defined such that principal fluctuations of the flow-field are well resolved in time. In order to

be more formal, we can write:

XTXψj = λjψj , ψj ∈ R
m , m≪ n (2.70)

where XTX is anm×m matrix (instead of n×n) and ψj are the eigenvectors of the ”reduced”

eigenvalues. From these eigenvectors, POD modes may be recovered by

ϕj = Xψj
1
√

λj
∈ R

n , j = 1, . . . ,m (2.71)

and it may be written in the matrix form as:

Φ = XΨΛ−1/2 (2.72)

where:

• Φ = [ϕ1 ϕ2 . . . ϕm] ∈ R
n×m

• Λ = [λ1 λ2 . . . λm] ∈ R
m×m

This method is widely used for the fluid-mechanics problems because, since those problems

are high-dimensional data, it allows to get a big reduction in the required computation and
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Figure 2.8: Dimensions of capsule and parachute, not to scale.

The typical inflation ratio of a DGB parachute is De/D0 = 0.65, where De is the the

projected diameter of the inflated parachute and D0 = 15m (nominal diameter) is a fictitious

diameter obtained by assuming that the nominal area of the canopy is a circle [7] [9]; thus,

the diameter of the inflated parachute results De = 9.75m. Normalizing De by D (maximum

capsule diameter), we obtain that the maximum dimensionless diameter of the inflated canopy

is Dp = 2.57. In order to get results for the parachute, it was designed with an increased

thickness of 0.12 (in non-dimensional term) and with a rounded leading edge.11

In the same way of Dp, we normalized the diameter of the vent Dv, so that Dv = 0.26.

2.5.1 Computational LES domain

The non-dimensional dimensions -and their respective coordinates- of the LES domain are:

• Lx = 20D −→ [-1;19]

• Ly = 10D −→ [-5;5]

• Lz = 10D −→ [-5;5]

In the following figure 2.9 it is shown the domain; as already said, the origin of the coordinates

system is centered on the capsule tip:

11During the simulation, if an object is smaller than the ghost region, it cannot be simulated, as in the case
of cables; this is why we have increased the parachute thickness.
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Figure 2.9: Representation of the 3D domain of the LES simulation.

The number of the grid nodes is set as: Nx = 2560, Ny = 840, Nz = 840, where Nx,

Ny and Nz are respectively the number of points on the x, y and z direction. This grid is a

rectangular elements structured grid, increases its density toward the center of the domain,

in order to satisfy the local requirement. For example, flow regions near the solid bodies are

provided with the finest resolution to better describe the fluid-solid interaction, while the

frontier zone is less dense. Considering the x direction, capsule and parachute regions have

a contraction factor equal to 0.2: this means that the grid-step is 0.2∆0, where ∆0 = Lx/Nx

is the reference value of the grid-step. Grid-step varies from ∆0 to 0.2∆0 sharply in front of

the bodies, while smoothly behind the bodies. In fact, bow shocks are in proximity to the

bodies, while the turbulent wake (that requires a fine resolution) extends over a long distance

behind the bodies. The refinement along y and z directions ensures that the region around

the symmetry axis has the best resolution: along both y and z axis, contraction factor is 0.3

and symmetrical with respect to x axis.

Simulations are performed on CINECA’s Marconi100 cluster, using the parallelization of the

domain on 64 GPUs.

2.6 Grid uniformity

Every discrete analysis requires a grid on which to unfold the calculations. The domain taken

for the POD reconstruction is smaller than the entire LES domain because, in this work, we

are analyzing the parachute behavior only; hence, we cut the domain in order to reduce the

calculation time and to focus on the canopy. In particular, we change the dimensions of the

grid as it shown in the following table 2.1; note that there is no Y/D dimension for POD

analysis because we calculated the reconstruction on a 2D domain.
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Dimension LES POD

X/D 20 → 12
Y/D 10 → -
Z/D 10 → 4.5

Table 2.1: Non-dimensional LES and POD grid size

Consider now the 2D grid for both LES and POD. The grid of the LES is quite uniform

because it is divided in 9 zones:

• Five uniform zones where grid elements are constant;

• Four zones where grid elements are gradually changing their size.

These 4 regions are small and hypothetically negligible, in fact their sum covers about 3% of

the entire domain, in particular, these four regions are allocated at these positions:

• before the capsule, at X/D = −0.5;

• behind the capsule, at X/D = 4.5;

• in front of the parachute, at X/D = 8.5;

• after the parachute, at X/D = 13.5.

Nevertheless, in order to obtain more valid results we calculated the area of each grid element

and we evaluate the variation of it. These areas were calculated by creating a second fictitious

grid, where X and Z dimensions correspond to the distance between two adjacent nodes;

this distribution of values associated to each node can be considered as a scalar field which

represent the rate of change in the dimensions of the grid cells. An important detail is in the

correspondence of borders of the domain: on these positions, with this method, we do not

consider the last grid cell; however, this does not represent a relevant issue given the position

of the parachute, which is located in the middle of the control area.

To obtain a meaningful value, these areas were normalized by the average value of the area

of the all grid cells, in order to assess the change of every cell, compared to a reference value.

In particular, what was important to assess was not the absolute rate of change, but the

non-dimensional area variation between two adjacent cells.
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For each case we chose to evaluate the RMS at snapshot 0. In the first case (figure

3.13(a)), the trend of the velocity fluctuations are calculated before the parachute shock-

wave: as expected, POD peaks are lower than the LES ones2 and they are mainly developing

in the Z/D = ±1.2 range. This is due to the fact that, on this position, there is the capsule

wake which causes fluctuations in the field; also the RMS peaks are higher than the other

cases, since the amplitudes connected to higher frequencies of oscillations are cut out from

the reconstruction given by the POD. In figure 3.13(b), Urms/U0 is calculated forthwith after

of the normal shock-wave due to the vent. At X/D = 12, POD RMS shows close resemblance

with the peak position to LES RMS; these peaks, compared to figure 3.13(a), have a lower

amplitude due to the position on the X-axis. Note that those higher values are located on

different Z/D: this is clearly owed to the unsteady behavior of the turbulence in the wake

regions and to the normal shock-wave; in particular, ”vent-shock” reduces velocity without

allowing too much fluctuations. We attribute the closer resemblance of the two profiles to

the lower quantity of high frequency content in the recirculation patterns. In the last picture

of figure 3.13, we evaluate the fluctuations in the fully developed wake region, at X/D = 16;

once again peaks are located on different position (compared to previous cases), but they

begin to regain intensity since higher frequency contents develop as the flow traverses the

recompression shock behind the parachute.

2The reason of lower peak values is the same of the figure 3.6: POD stores only a percentage of the all
energy content (more than 74% in our case), so we get a solution quicker, but we have to accept a lower
accuracy. Anyway, the resolution of the reconstruction is high and trustworthy.
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4 | Conclusion

This work has been drafted with the intention to evaluate the efficiency of modal analysis

techniques applied to supersonic turbulent flows. In particular, we employ Proper Orthogonal

Decomposition on the results obtained from the Large Eddy Simulation of a supersonic rigid

parachute trailing behind a descent capsule. The technique provided satisfactory results when

applied to the simulated flow field. Specifically, we observe how a limited amount of energy

modes extracted from the POD analysis (more precisely, ten modes) are able to provide a

fairly high amount of the total energy (more than 74%) compared to the starting flow. This

allow us to obtain an accurate representation of the original flow field using the reconstructed

dynamics. We observe how energy fluctuations (related to the turbulent kinetic energy of the

flow) follow the expected wake multiscale dynamics, as pattern of recirculations connected

to larger energy contents also correspond to cycles of lower frequencies and smaller regions

instead are related to higher frequencies but are associated to a lower intensity. The fidelity

in the reconstruction of the dynamics is furtherly explored in the one-dimensional profiles

along X and Z directions.

To better evaluate the overall precision in representing the dynamics of oscillations around the

canopy over time, root mean square profiles of reconstructed quantity have been compared

with the original LES RMS time-averaged fluctuations. Once again, it has been observed a

close resemblance of the profiles, despite the existence of a very small gap in the intensity

caused by the excluded POD modes.

Proper orthogonal decomposition, together with other modal analysis methods, might become

an important aid in the foreseeable future of computational fluid dynamics given its capability

to provide an immediate insight in the dynamics of complex turbulent flows. The data

analysis performed shows how it can become an excellent candidate for approaching via low

order modeling the flow unsteadiness. The results obtained can be potentially implemented

in static aerodynamic databases to aid in the description of the flight instabilities related to

parachute oscillations that contribute to the deviation from the nominal reentry trajectory of

the probe. Further development on the subject can involve the use of different modal analysis

techniques such as Dynamic Mode Decomposition or the implementation of machine learning

strategies [14] [22] to additionally improve the extrapolative capabilities of a connected flow

model.
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[13] F. Ferri, Ö. Karatekin, S.R. Lewis, F. Forget, A. Aboudan, G. Colombatti, C. Bettanini,

S. Debei, B. Van Hove, V. Dehant, et al. “Exomars atmospheric mars entry and landing

investigations and analysis (AMELIA)”, In: Space Science Reviews 215.1 (2019), pp.

1–21.

[14] S. Fresca, A. Manzoni. “POD-DL-ROM: Enhancing deep learning-based reduced order

models for nonlinear parametrized PDEs by proper orthogonal decomposition”, In: Com-

put. Methods Appl. Mech. Engrg. 388, 114181, 2022.

[15] A. Hellsten. “New two-equation turbulence model for aerodynamics applications, Report

A-21”, Helsinki University of Technology, Laboratory of Aerodynamics, 2004, pp. 21-24.

[16] H. Johari, K. J. Desabrais. “Vortex shedding in the near wake of a parachute canopy” In:

J. Fluid Mech., 2005, vol. 536, pp. 185-207.

[17] K. Karagiozis, R. Kamakoti, F. Cirak, C. Pantano.“A computational study of supersonic

disk-gap-band parachutes using Large-Eddy Simulation coupled to a structural membrane”

In: Journal of Fluids and Structures 27 (2011), pp. 175–192.

[18] R. Mittal, G. Iaccarino. “Immersed boundary methods” In: Annu. Rev. Fluid Mech., 37

(2005), p. 249.

[19] A. T. Mohan, D. V. Gaitonde, M. R. Visbal. “Model reduction and analysis of deep dy-

namic stall on a plunging airfoil using dynamic mode decomposition”, In: AIAA SciTech,

53rd AIAA Aerospace Sciences Meeting, 5-9 January 2015.

[20] P. Moin, K. Mahesh “Direct Numerical Simulation: a tool in turbulence research”, Annu.

Rev. Fluid Mech., 1998, 30:539–578, pp. 539-543.

[21] S. B. Pope. “Turbulent Flows”, Cambridge Univ. Press, 2000, pp. 188, 373-375.

[22] J. Roth. “Proper orthogonal decomposition for fluid mechanics problems”, Master thesis,

2021, pp. 53-54.

[23] C. W. Rowley, S. T. M. Dawson. “Model reduction for flow analysis and control”, In:

Annu. Rev. Fluid Mech. 2017, 49:387-417, p. 388.

[24] A. Sengupta. “Fluid structure interaction of parachutes in supersonic planetary entry”,

In: AIAA Paper 2011-2541, 2011.



BIBLIOGRAPHY 55

[25] G. Soldati. “Numerical investigation of the parachute-capsule aerodynamics in a Mars

atmosphere reentry”, MSC thesis, 2022, pp. 13-23.

[26] K. Taira, S. L. Brunton, S. T. M. Dawson, C. W. Rowley, T. Colonius, B. J. McKeon, O.

T. Schmidt, S. Gordeyev, V. Theofilis, L. S. Ukeiley, “Modal analysis of fluid flows: an

overview”, In: AIAA journal, Vol. 55, No. 12, December 2017, p. 4015-4018, 4020-4023.

[27] T. Tolker-Nielsen. “ExoMars 2016 - Schiaparelli anomaly inquiry”, Report. European

Space Agency, 2017.

[28] J. L. Vago (SCI-S). “ExoMars 2022 mission. Brief description of the rover and surface

platform”, In: European Space Agency unclassified, Document, 30 November 2020, pp.

5-6.

[29] J. R. Wright, J. E. Cooper. “Introduction to aircraft aeroelasticity and loads”, 2nd ed.,

John Wiley & Sons, 2015, pp. 30, 34.

[30] X.P. Xue, H. Koyama, Y. Nakamura, and C.Y. Wen. “Effects of suspension line on flow

field around a supersonic parachute”, In: Aerospace Science and Technology 43 (2015),

pp. 63–70.

[31] X. Xue, C. Y. Wen. “Review of unsteady aerodynamics of supersonic parachutes”, In:

Progress in Aerospace Sciences 125 (2021), 100728, pp. 3-4, 15, 22-23.


	Abstract
	Introduction
	ESA's ExoMars mission
	ExoMars 2016
	Rosalind Franklin (former ExoMars 2022)

	Supersonic parachute
	Breathing cycle

	Modal decomposition

	Methodology
	Balance equations
	Non-dimensional Navier-Stokes equations

	Turbulent regime scales
	l0 scale
	Kolmogorov microscale
	Inertial range

	Numerical method
	Direct Numerical Simulation
	Reynolds Averaged Navier-Stokes
	Large Eddy Simulation
	Discretization
	Spatial discretization
	Time integration

	Immersed boundary method
	Ghost Point Forcing Method


	Modal analysis for fluid flows
	Eigenvalue decomposition
	Singular Value Decomposition
	Proper Orthogonal Decomposition
	Spatial pod method
	Snapshot pod method


	Simulation setup
	Computational LES domain

	Grid uniformity

	Results
	Energy modes field
	Energy fluctuation

	Pod - Les comparing
	Root mean square comparison


	Conclusion
	Bibliography

