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Abstract

The emission of carbon dioxide is one of the main current environmental challenges due to its
impact on the climate. Additionally, the intermittent character of renewable energy sources
imposes a need of energy storage. The main idea to tackle these problems is to convert
temporary electrical energy surplus into chemical fuels that are advantageous in terms of
high energy density. In this framework, at IPP-Garching, a new group called Plasma for
Gas conversion (P4G) has started in February 2017 with the aim of studying the possibility
of converting CO2 into chemicals fuels that can be easily transported and stored using the
current distribution systems. Central in the approach is the use of a plasma to store energy
in chemical bonds and enhance the overall conversion. Progress in the understanding the
underlying physics and chemistry can only be done by significant support from modelling
and simulations.

The study presented in this thesis has been performed in IPP-Garching during the summer
semester period of the academic year 2016-2017, in the framework of the Erasmus+ exchange
between University of Padova and Ludwig-Maximilians-Universität of Munich.

In Chapter 1 a brief introduction about CO2 conversion is presented. Particular focus will be
dedicated on the utilization of a plasma as a medium to ease chemical reactions. An overview
of both physical and technological aspects is introduced.

Chapter 2 provides an overview on plasma chemistry global models explaining both physical
assumptions and numerical implementation in the software plasimo.

The rich chemistry implemented in a CO2 model leads to difficulties both in the interpretation
of data and in the computational load. For this reason, two parts are presented in this thesis.
The first one deals with studying a simplified version of a 0-D CO2 kinetic model, while the
second part present an analysis and characterization of numerical reduction techniques useful
to reduce the chemistry and reactions considered.

In Chapter 3 the role of neutral heavy particle interactions in the CO2 dynamics are studied.
Some hints about thermal quenching are highlighted in order to improve the conversion
efficiency. Moreover, a study of oxygen dynamics is presented by comparing the oxygen
chemistry present in the CO2 model with a state-of-the art complete oxygen model. Some
hints on carbon chemistry are also presented.

In Chapter 4 an analysis of a CO2 kinetic model is given. A simplified CO2 kinetic model, in
which excited levels are neglected, is studied by means of steady-state calculations with fixed
electron density and temperature. This Chapter presents also results from pulsed calculations
that aim on highlighting the principal pathways in both high power density and low power
density regime. In conclusion, the effect of adding electronically and vibrationally excited
states is highlighted.

The implementation of a numerical reduction method called Principal Component Analysis
on plasma chemistry models is the focus of the second part of the thesis. Starting from
benchmarking results from literature, the final aim was to compare linear and nonlinear
methods that are useful to handle the intrinsic complexity of plasma chemistry systems.
Results of these methods and suggestions for future improvements are given in Chapter 5
and 6.

In the Conclusion the main results are summarized together with possible future improve-
ments and experimental techniques useful to benchmark the model.
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Sommario

L’emissione di anidride carbonica è una delle principali sfide ambientali attuali per l’impatto
sul clima. In aggiunta, l’intermittente disponibilità di energia da risorse rinnovabili impone
il bisogno di un deposito di energia. La principale idea per affrontare questi problemi è di
convertire l’intermittente energia elettrica prodotta in surplus in combustibile chimico che è
vantaggioso dal punto di vista di un’elevata densità di energia. In questo contesto, presso
IPP-Garching, un nuovo gruppo chiamato Plasma for Gas conversion (P4G) ha iniziato
l’attività di ricerca da Febbraio 2017 con lo scopo di studiare la possibilità di convertire
CO2 in combustibile chimico che può essere facilmente trasportato e immagazzinato usando
l’attuale sistema di distribuzione. Fondamentale in questo approccio è l’utilizzo di un plasma
per immagazzinare energia in legami chimici e aumentare la conversione totale. Un progresso
nella comprensione della fisica e chimica in questi processi può essere fatto solo tramite un
significativo contributo da attività modellistiche e simulazioni.

Lo studio presente in questa tesi è stato effettuato a IPP-Garching durante il secondo semestre
dell’anno accademico 2016-2017, nel contesto dello scambio Erasums+ tra l’Università di
Padova e la Ludwig-Maximilians-Universität di Monaco di Baviera.

Nel Capitolo 1 è presentata una breve introduzione riguardo la conversione di CO2. Par-
ticolare attenzione verrà dedicata all’utilizzo di un plasma come mezzo per incrementare le
reazioni chimiche. È presentato inoltre una panoramica su aspetti fisici e tecnologici.

Nel Capitolo 2 è presentata una descrizione riguardo modelli globali in chimica del plasma con
particolare attenzione su assunzioni fisiche e implementazione numerica nel software plasimo.

La ricca chimica implementata nel modello di CO2 porta a difficoltà sia per l’interpretazione
dei dati che per il costo computazionale. Per questa ragione, due parti sono presentate in
questa tesi. La prima riguarda lo studio di una versione semplificata di modello cinetico 0-D
di CO2, mentre la seconda parte presenta un’analisi e caratterizzazione di tecniche numeriche
utili per la riduzione della chimica e reazioni considerate.

Nel Capitolo 3 è studiato il ruolo delle interazioni tra specie neutre nella dinamica di CO2. È
sottolineata, inoltre, l’importanza di processi termici per incrementare l’efficienza di conver-
sione. In aggiunta, uno studio sulla dinamica dell’ossigeno è presentata tramite il confronto
tra la chimica dell’ossigeno presente nel modello di CO2 e quella presente in un modello
completo di ossigeno. Sono presentati, inoltre, spunti riguardo la chimica del carbonio.

Nel Capitolo 4 è presente un’analisi riguardo un modello cinetico di CO2. Inizialmente è stato
studiato un modello cinetico semplificato di CO2, in cui i livelli eccitati sono stati trascurati,
tramite calcoli steady-state in cui sono fissate densità e temperatura elettronica. Questo
capitolo presenta inoltre risultati riguardo calcoli per plasmi modulati ad impulsi che hanno
lo scopo di rivelare le reazioni principali sotto l’effetto di elevata o ridotta densità di potenza.
Infine, è discusso l’effetto dell’aggiunta di livelli eccitati elettronici e vibrazionali.

L’obiettivo della seconda parte della tesi è l’implementazione di un metodo numerico di
riduzione chiamato Analisi delle Componenti Principali applicato a modelli di chimica del
plasma. Inizialmente è presentato un confronto con risultati noti in letteratura e in seguito
è sviluppato un confronto tra metodi lineari e non-lineari che sono utili per affrontare la
complessità intrinseca presente in sistemi di chimica del plasma. Nel Capitolo 5 e 6 sono
presentati i risultati di questi metodi e suggerimenti per sviluppi futuri.

Nelle Conclusioni sono riassunti i risultati principali, possibili miglioramenti futuri nel settore
e a tecniche sperimentali utili per un benchmark del modello.
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CHAPTER 1

Introduction

A resource-efficient Europe is the flagship initiative of the Europe 2020 Strategy, with the
CO2 emissions control issue as its backbone activity [1] [2]. Within this framework, the
main idea of this study is to investigate a novel approach that aims to convert biogas (i.e.
CO2 and CH4) into chemicals and fuels. The fuel produced can be easily transported and
stored using the current distribution systems. Central in the approach is the use of plasma
to store energy in chemical bonds. This approach is compatible with the intermittency of the
available sustainable energy sources. In addition, CO2 recycling can be a possible contributor
to a solution for reducing the anthropogenic emissions of greenhouse gases (GHG) into the
atmosphere.

1.1 Production of CO2 neutral fuels

To make the electricity generation carbon neutral and thereby holding back the carbon emis-
sions, renewable energy systems (i.e. wind and solar) have the best potential because of
their zero carbon emissions. However, a constant level of power production with wind and
solar energy cannot be achieved due to temporal and spatial mismatch between production
and demand. The main actual disadvantage is that these fluctuations of the power genera-
tion by renewable energy sources demand both high-capacity distribution systems as well as
intermittent source possibilities. On the other hand, renewable energy production may be
located in areas with limited transport capacities. In this framework, a different approach is
needed that provides a sustainable system which can be integrated in the actual existing grid
system. According to [3], three important requirements have to be fulfilled for the choice of
the optimal technology:

◦ High storage capacity.

◦ High storage efficiency.

◦ Flexible site-specific modifiability.

1



1. Introduction

Pumped hydro storage, for example, provides high storage energy efficiency (i.e. around
70% − 80%) but limited storage capacities which will be not suitable for higher share of
renewable energy. On the contrary, all these three parameters are well covered by chemical
storage. Within this category, a Power to Gas scheme (P2G) has been developed [3] that
aims to split feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. This
method is described in the following Section.

1.2 Power to Gas

The main idea of Power to Gas scheme (P2G) is to introduce renewable energy into the
existing chemical energy infrastructure by synthesis of chemicals from CO2 that are easy to
transport and store. The basic starting process is the CO2 splitting that can be described by
process (1.1):

CO2 → CO+
1

2
O2 (1.1)

In this category, another process has to be mentioned that is the so called dry reforming of
methane. This process (1.2) utilises CO2 and CH4 to produce syngas (i.e. a mixture of H2

and CO) that can then be converted into methanol.

CO2 +CH4 → 2CO+ 2H2 (1.2)

The main advantages of this last process is the production of high purity syngas and the fact
that the reaction consumes two different types of GHG. However, current studies are ongoing
to tackle the principal limitations due to the presence of a sustinable catalyst and the higher
temperatures required. Moreover, one of the obstacles for utilizing CO2 as feedstock to in-
dustrial processes is that CO2 is a highly stable molecule. Consequently, a substantial input
of energy and often catalysts are necessary for its chemical conversion. Studies to optimize
the CO2 conversion are ongoing and this will be the main topic of the present thesis. The
schematization of P2G method can be seen in Fig.(1.1). The necessary CO2 can be derived
from exhaust or process gases of industrial production processes or fossil power plants. The
splitted CO2 (and H2O) synthesize to methane. The produced methane is called synthetic gas
(i.e. syngas) and plays a central role in the production of hydrocarbons, including methanol,
diesel and dimethyl ether. CO2 neutral fuel cycle is established by powering the conversion
step by renewable energy and recapture CO2 emitted after combustion. Thus, the overall
process described includes two steps: a first P2G scheme that converts and stores excess elec-
tricity by wind/solar into hydrocarbon based fuels and a second step called Carbon Capture
and Utilization (CCU) that aims to recapture and reuse the CO2 emitted by burning these
fuels.

According to [5], an important advantage of the P2G−CCU scheme is the use of existing
infrastructures for gas and oil storage, transport and distribution, whilst mobility technology
remains hydro-carbon fuel based. However, the critical step in this scheme is the conversion
of feedstock CO2 and H2O into syngas, which forms the starting point of chemical processing
to obtain methane (Sabatier) or diesel (Fischer-Tropsch).

On the technological point of view, two different methods can be differentiated depending on
the conversion process of feedstock H2O and CO2 into fuel [6]:

◦ Direct Conversion: It converts solar photons directly into fuel. Examples of that process
is photo-chemical and thermo-chemical conversion.

2



1.3 Why plasma?

Figure 1.1: Schematization of Power-to-Gas (P2G) and Carbon Capture and Utilization
(CCU), from [4].

◦ Indirect Conversion: Conversion step is done indirectly indirectly through the interme-
diate of electricity. Example of this method are electrolysis and plasmolysis.

Because the energy efficiency is at least one order of magnitude higher (i.e. around 18− 20%
for the overall process) with respect to the direct methods, this study will focus on indirect
methods that are presented in the next Section.

1.3 Why plasma?

In this section, the two main methods of indirect conversion will be presented (i.e. electrolysis
and plasmolysis). According to this scenario, it will be seen that plasma sources have a great
potential mainly due to the strong non-equilibrium conditions that may lead to higher energy
efficiencies compared to thermal processes.

1.3.1 Electrolysis and plasmolysis

Electrolysis This method is based on the electro-chemical conversion of CO2. In this
mode, gaseous oxides such as steam and carbon dioxide are supplied to one electrode and a
voltage is applied across the cell. This technique drives the electrolysis of the CO2 by removal
of an oxygen atom, which is transported as an oxide ion across the electrolyte to the other
electrode where the oxide ions recombine to produce gaseous oxygen [7]. The diagram of a
Solid Oxide Electrolizer Cell (i.e. SOEC) is shown in Fig.(1.2) where the net process (1.3)
produces CO that can be reformed into other fuels such as methane or liquid hydrocarbons.

2CO2 + electricity → 2CO+O2 (1.3)

According to [5], even if the energy density of a SOEC is high (1 A/cm2 at 1.5 V), it operates
at relatively high temperatures (i.e. 700−800 ◦C), which is not well suited to fast switching
because of thermal mechanical stress and corrosion at molecular interface layers.

3



1. Introduction

Figure 1.2: A scheme of a Solid Oxide Electrolyzer Cell, from [7].

Plasmolysis The main idea of plasma chemical conversion (or plasmolysis) is to use a
plasma to ease CO2 splitting. The main advantages of using plasmas with respect to elec-
trolysis can be summarized in the following:

◦ High power density is applied in order to produce an high concentration of chemically
active species (i.e. ions, excited species, radicals, etc.) that permit to intensify chemical
processes.

◦ High gas flow rates allow upscaling to high CO production rates at MW level, moreover
the reactor is compact and does not employ scarce materials.

◦ Plasma allows fast switching that can follow the availability of energy surplus. The
main reason for this is the low inertia of a plasma reactor such that the plasma can
be turned off and on and the input power can be regulated quickly (in sub-second time
scale, no heating of catalytic surfaces is required).

In order to understand how plasma technology can help in advancing the energy efficiency
and CO2 conversion, let’s consider a simplified model. In this model, the plasma is formed
by applying a power to a gas that causes breakdown (i.e. electrons, ions and other reactive
species are formed). Energetic electrons that are formed can activate the CO2 gas by electron
impact processes. Moreover, the ionization degree of these plasmas (i.e. the ratio of major
charged species and neutral ones) is on the order of 10−7−10−4. In this range, the plasma is
called weakly ionized, such that the energy to produce the plasma is relatively low contribution
in the overall energy balance. In this way, even processes like (1.1) can occur with reasonable
energy consumptions. In such type of plasmas, it is possible to define a characteristic time
tr, the so called residence time, that the particles spend inside the reactor volume, according
to the expression (1.4).

tr =
V

Φ
(1.4)

where V is the reactor volume and Φ is the particle flow rate (usually expressed standard
liters-per-minutes, then converted in m3/s). To give some numbers: for a typical reactor
with a cylindrical volume of radius 1 cm and length 10 cm, at a pressure of 20 Torr, gas
temperature 300 K and particle flow rate of 5 slm, a residence time of tr = 9.03 ms is
calculated. Moreover, by knowing the gas density n of a plasma, it is possible to deduce
the gas density flow rate (1.5) that represents the number of particles per seconds that are
contained in a specific volume:

Qn =
n

tr
=

p

kBTgtr
(1.5)
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1.3 Why plasma?

where e is the elementary charge, p is the gas pressure, kB is the Boltzmann constant and
Tg is the gas temperature. For the case of the example before, a gas density flow rate of
Qn = 7.13 · 1025 m−3s−1 is calculated. In order to calculate the energy efficiency of the
process, the specific energy input (i.e. SEI) is calculated according to (1.6):

SEI =
ρ

eQn
(1.6)

for a characteristic power density of ρ = 1·107 W/m3, a SEI = 0.88 eV/molecule is calculated.
The conversion rate of CO2, XCO2 , is calculated as (1.7):

XCO2(%) =

(
1−

nCO2,tot(tr)

nCO2,tot(0)

)
· 100% (1.7)

where nCO2,tot is the sum of the number densities of CO2 and all its excited states. The
energy efficiency η is then calculated from (1.8):

η(%) =
2.9 eV

SEI
·XCO2 (1.8)

where 2.9 eV is the standard reaction enthalpy of the reaction CO2 → CO+1/2O2 [8]. Results
from Russian literature [9] has been demonstrated to achieve high energy efficiencies (i.e. up
to 90%), but only at moderate conversion efficiencies (i.e. around 20%). Conversely, the
highest conversion efficiencies were achieved at a moderate energy efficiency. These results
were obtained in particular conditions at strongly sub-atmospheric pressures. At elevated
pressures, the energy efficiency remain very low, typically below 10% [10].

1.3.2 Non-equilibrium nature of plasmas

Plasma are chemically active media that are created by applying energy to a gas in order to
re-organize the electronic structure of the species (atoms, molecules) and to produce excited
species and ions. This energy can be thermal, or carried by either an electric current or
electromagnetic radiations [11]. The electric field transmits energy to the gas electrons. This
energy is then transmitted from the electrons to the neutral species by collisions. These
collisions can be divided into two types:

◦ Elastic collisions: that do not change the internal energy of the neutral species, but
contributes only to the change of the kinetic energy.

◦ Inelastic collisions: in which high energy electrons can modify chemical bonds in
molecules and the electronic structure of neutral species without heating the gas.

Depending on the type of energy supply and the amounts of energy transferred to the plasma,
the properties of the plasma change, in terms of electronic density or temperature. These
two parameters distinguish plasmas into different categories [11]:

◦ Local thermodynamic (or thermal) equilibrium plasmas (LTE).

◦ Non-local thermodynamic equilibrium plasmas (non-LTE).

In LTE plasmas, transitions and chemical reactions are governed by collisions and not by
radiative processes. Moreover, each collisions in this plasma are described by one temperature
equal for each species. In LTE, heavy particles temperature (i.e. Th) is equal to the electronic
one (i.e. Te). These conditions are well represented by an arc plasma where Te = Th ∼ 104

5



1. Introduction

K and the electron density is high (i.e. ≫ 1021 m−3). In fact, at higher pressures, collisions
intensify and a thermal plasma is obtained where the temperatures are almost all equal. On
the contrary, in low pressure plasmas (of the order of 1 mbar), the difference in temperatures
can become very high and therefore a non-equilibrium plasma is achieved. In particular,
non-LTE plasmas are characterized by an electron temperature much higher than the gas
temperature, such that it can be described by a two temperature model (i.e. with Te ≫
Th). In this type of plasmas, the electron density is lower (i.e. ≤ 1020 m−3) such that
heavy particles are moderately heated by a few elastic collisions. The purpose of the current
researches is, thus, to find the optimal condition to obtain a non-equilibrium character in the
case of a CO2 plasma1.

Figure 1.3: Different modes of vibration of a CO2 molecule. Red spheres represent the O
atoms, while black ones represent C atoms. From [13].

If molecules are considered, even internal vibrational and rotational degrees of freedom have
to be considered. That internal modes can be populated by inelastic collisions. In particular,
considering a CO2 plasma, three primary mechanisms are responsible for the vibrational
energy exchange between different modes or degrees of freedom:

• VV relaxation: this process is responsible for exchange o vibrational energy among two
molecules in the same mode of vibration.

• VV’ relaxation: this process is responsible for losses of vibrational energy among two
modes of vibration of the same molecule.

• VT relaxation: with this process the vibrational energy is lost to translational degrees
of freedom.

As shown in Fig.(1.4), since CO2 is a polyatomic molecule, different modes of vibration has to
be considered that can be populated by inelastic collisions (see Chap. 4). These modes can be
divided into symmetric modes of vibration, which are further divided into symmetric stretch
mode and two degenerate bending modes, and antisymmetric mode of vibration. A key to
obtain high energy efficiency is to create a thermodynamic non-equilibrium condition between
vibration and translational/rotational energy distribution of the molecule by channeling the
energy mainly into the asymmetric stretch mode2 [9]. In this way, CO2 splitting proceeds

1The non-equilibrium character of plasmas was for a long time best realised by low pressure plasmas, but
now atmospheric pressure plasmas are emerging as an attractive alternative and generated a huge interest
over the last decade. The non-equilibrium character of these plasmas can be controlled by large gas flows or
by short pulsed excitation assuring strong cooling mechanisms or combinations of both [12].

2Symmetric modes have lower cross sections in the range of energy of interests (i.e. between 0.4 and 2 eV).

6



1.4 State of the art technology

according to the stepwise reactions (1.9). CO2 molecule in ground state (i.e. 1Σ+) are excited
by electron impact vibrational excitation of the lowest vibrational level. Higher vibrational
states are gradually populated by vibrational-vibrational (VV) collisions, until the 3B2 state
is reached, at the point where energy level and molecular distance of the O = CO bond
coincide. The energy cost of this process is 5.5 eV, leading to CO and O in the ground state.
This process is called ladder climbing and is schematically shown in Fig.(1.4).

Figure 1.4: Potential energy diagrams (as a function of one OCO bond length). Red
arrows represent a stepwise vibrational excitation, while blue arrow represent a direct
dissociation.

CO∗
2(

1Σ+) → CO∗
2(

3B2) → CO(1Σ+) +O(3P ) (1.9)

Moreover, the oxygen atoms produced undergo secondary reactions with CO2 producing one
more CO molecule with energy cost of 0.3 eV. Since vibrational excitation leads to dissociation
at energies around 5.5 eV that are significantly lower than the ones normally needed for direct
electron impact processes (i.e. > 7 eV), higher energy efficiencies can be obtained.

1.4 State of the art technology

Several types of plasma source have been explored [11]. These sources differ from each other
mainly for the geometry and coupling power methods that lead to different energy efficiencies
and conversion. In this thesis, particular focus will be paid to two types of plasma sources
(i.e. Dielectric Barrier Discharges and Microwave sources).

Dielectric Barrier Discharges The DBD device is composed by two electrodes in cylin-
drical or plane geometry. The gap is limited to a few millimetres wide and a plasma gas flow

7



1. Introduction

in the gap. A sinusoidal or pulsed power source ignite the discharge that can present either
homogeneous or filamentary modes, depending on the nature of the gas, the electrodes, the
pressure and the electrodes gap [14]. Despite the simple design, this type of source can be
easily scaled up to industrial applications while operating at atmospheric pressure. Conver-
sion efficiencies up to 35% were measured [15]. However, opposite trends of CO2 conversion
and energy efficiency are reported as a function of the SEI, such that the higher conversion
efficiency corresponds to a lower value of energy efficiency of a few %. This dependence is
shown in Fig.(1.5) and it is due to the high reduced electric field (i.e. typically greater than
200 Td) that is applied and limit intrinsically the achievement of energy efficiencies higher
than 10%.

Figure 1.5: Measured CO2 conversion (A) and energy efficiency (B) in a DBD reactor,
as a function of the specific energy input (SEI). From [15].

Microwave Sources In this configuration, microwaves are guided along the system and
transmit energy to the electrons and heavy particles. After several elastic collisions, the
electrons gain enough energy to undergo inelastic processes of excitation and ionization. As
example, a scheme of a microwave source used in Stuttgart is shown in Fig.(1.6) and it
consists of:

◦ A MW power source (i.e. power supply, magnetron, etc.).

◦ The microwave is supplied to the resonator via a rectangular waveguide from the mag-
netron.

◦ Wave guides and tuning system are used to achieve the ignition of the plasma by the
resonator. During this operation, the resonance frequency of this resonator has to
perfectly match the frequency of the microwave provided by the used magnetron. The
microwave discharge operates usually at a frequency of 915 MHz or 2.45 GHz.

◦ The plasma is ignited and confined in a MW transparent tube (e.g. a quartz tube3).

3The permittivity of the quartz tube also affects the resonance frequency. Since it is greater than one, the
volume of the cylindrical resonator is virtually enlarged which leads to a lower resonance frequency.

8



1.4 State of the art technology

Figure 1.6: Discharge with resonant cavity.

MW plasma have been demonstrated to be the most suitable solution to obtain high energy
efficiency and CO2 conversion due to the low reduced electric field present in the microwave
plasma (typically around 50 Td) that is most appropriate for vibrational excitation of CO2.
Moreover, microwave discharges can be sustained in non-equilibrium conditions at high SEI.
Just to give an example, a microwave discharge can be sustained in CO2 at a frequency of
2.45 GHz, power of 1.5 kW, pressure from 50 to 200 Torr, flow rate of 0.15 to 25 l/min, while
keeping an SEI from 0.2 to 2 eV/mol and a specific power up to 500 W/cm3 [9]. In addition,
Recent studies [9] reported the highest efficiency for a microwave plasma (i.e. around 90%),
even if this was achieved under specific conditions (i.e. supersonic gas and reduced pressure
around 100− 200 Torr). However, recently huge interest is emerging concerning atmospheric
pressure plasmas that can be an attractive alternative. In order to control the non-equilibrium
nature of atmospheric plasmas several studies are ongoing. The two most promising methods
involve plasma control by large gas flows or by short pulsed excitation assuring strong cooling
mechanisms or combinations of both.

Effect of flow According to [16], the effect of gas flow affects the plasma extent. In
particular, the extent of the plasma has been demonstrated to be reduced by increasing the
gas flow at fixed input MW power. The benefits of high flow rates are typically exploited in
atmospheric (or high pressure) MW plasmas with the utilization of a converging-diverging
nozzle where the the gas flows from a high pressure to a lower pressure. As shown in Fig.(1.7),
the gas enters the converging section at a much lower velocity and, during passage of the gas
through the nozzle, there will be a rapid transformation of thermal energy to kinetic energy.
This kinetic energy will give rise to a very high gas velocity after discharging from the
nozzle [17].

Figure 1.7: Schematic of plasma fast quench reactor with nozzle technology, from [17].

When the gas accelerates through the nozzle throat, the temperature of the gas will simulta-
neously drop rapidly. This rapid temperature quenching freezes the equilibrium products of
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1. Introduction

a high temperature gas phase reaction, thus preserving the maximum product yield. Recent
studies [5] showed an increased energy efficiency up to 50% with a nozzle placed after the
plasma.

Vortex stabilized plasma Interesting applications for a stabilization of a plasma are the
forward and reverse vortex flow. As shown in Fig.(1.8), in forward-vortex configuration,
the swirl generator is placed upstream with respect to discharge, whereas in reverse-vortex
configuration the outlet of the plasma is directed along the axis to the swirl generator side.
According to [9], reverse-vortex configurations are demonstrated to be effective for increasing
conversion efficiency. In fact, in this configuration it is expected that cold incoming gas moves
at first by the walls providing cooling and insulation and only after that, it goes to the central
plasma zone and becomes hot.

(a) Forward vortex
configuration.

(b) Reverse vortex
configuration.

Figure 1.8: Plasma stabilization with a forward vortex (left) and reverse vortex (right)
configuration, from [9].

Effect of pulsing Recent studies [18] showed a benefit of pulsed system where the power
is transferred preferentially to excited levels leading to dissociation. Benefit of pulsing are
recognized to be beneficial for an accumulation effect of excited species. Determination of
an optimal duty cycle for pulsed mode is matter of timescales. In fact, in the discharge very
different timescales are present, ranging from the fast electronic excitation (i.e. in the order
of ns) to the slow neutral gas dynamics (i.e. in the order of ms to s).
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CHAPTER 2

Description of the model

In this Chapter a first introduction on Global Models is presented starting from the physical
point of view and focusing on the numerical implementation on the software plasimo. These
models calculate the volume-averaged plasma quantities such as the particle densities and
the electron temperature that are deduced from particle balance equations and an electron
energy balance equation integrated over the plasma volume. These type of models have
become popular tools for of chemists and spectroscopists in the last two decades since they
have proven to be predictive [19], within a few multiplicative factors, and they are widely used
to study discharges of many types due to the possibility of implementing complex chemistry
and plasma processes.

2.1 Global model for plasma chemistry

The general framework of the global model that will be introduced here is schematized in
Fig.(2.1). From this diagram it is possible to see that there is a gas inlet of CO2 molecules and
an electrical power source that create some plasma with a certain electron temperature and
density. These molecules are dissociated by the plasma to create neutral radicals (i.e. C and
O), molecules (i.e. CO and O2), positive and negative ions and some excited species (i.e. in
the electronic or vibrational excited states). All these species can undergo secondary reactions
which create a wide variety of plasma species. In this bulk plasma, transport is mainly
determined by diffusion processes. There is also transport to the sheath, where positive ions
are transported to the surface and negative ions are trapped inside the plasma. Moreover,
with the substrate itself there are also surface interactions that change the composition of
the plasma. The resulting species are then pumped out through the exhaust.

In order to describe this complex system, a statistical approach is needed. This is introduced
by defining a distribution function f(r⃗, v⃗, t) such that, once multiplied by the infinitesimal
volume dr⃗dv⃗, it gives the number of particles at time t that are contained in the phase space
volume1 centred in r⃗ and v⃗. Actually, there is a distribution function for each species s such

1Phase space is a 6-D space with three dimensions in velocity and three dimensions in configuration space.
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2. Description of the model

Figure 2.1: General scheme of a plasma chemistry model.

that their evolution in time in the phase space volume is defined by the so called Boltzmann
equation (2.1):

∂fs
∂t

+ v⃗s · ∇⃗xfs +
F⃗s

ms
· ∇⃗ufs =

(
∂fs
∂t

)
C

(2.1)

where F⃗s is the force field, ms is the mass of the particles, ∇⃗xfs and ∇⃗ufs are the spatial and
velocity derivative of the distribution function fs. The term on right hand side of (2.1) is
the so called collision operator which takes into account elastic and inelastic processes such
that it gives the evolution of the distribution function due to collisions. The equations used
in model comes from the moments of Boltzmann equation that are defined by integrating
(2.1) over the velocity component of the phase space. In particular, global models include
particle balance equations and an electron energy balance equation that are integrated over
the plasma volume. In order to define the set of equations, some important approximations
are made about the plasma considered such that:

◦ Plasma is homogeneous (i.e. its quantities do not significantly differ spatially compared
to their volume average) so all spatial derivatives are zero. This means that there is no
transport (in configuration space) considered in the model

◦ Electrons are first in getting energy from electric fields, because of their low mass and
high mobility. So that they transmit the energy to all other plasma components. In
this way it is assumed that all input power is directly coupled to the electrons

◦ The power deposition is approximated by an averaged value over the plasma volume

◦ In this model it is assumed that gas temperature is fixed, thus only energy balance for
electrons is solved

A more detailed description is given in many classical physics textbooks, such as [20]
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2.1 Global model for plasma chemistry

If transport is neglected, the zeroth moment of Boltzmann equation (2.1) deals with conser-
vation of mass (or particles) and it is defined as (2.2):

∂ns
∂t

= Ss (2.2)

where Ss is the net source term that takes into account all the chemical reactions that create
or destruct the particles. The particle balance equations (2.2) determine the volume-averaged
densities except for the electrons, the density of which is computed from the quasi-neutrality
requirement. According to [21], if a reaction j is considered, which can be written as:∑

s

αj,sXs →
∑
s

βj,sXs (2.3)

where Xs represents a species s, αj,s and βj,s are the stoichiometric coefficients of the reac-
tions. For the generic reaction (2.3), the source term of equation (2.2) is generally expressed
as (2.4) with a summation of the reaction rates Rj , with j the specific reaction considered:

Snet,s =
n∑

j=1

(βj,s − αj,s)Rj (2.4)

where the rates Rj are given by (2.5):

Rj = kj(Te, Th)
∏
s

n
νjs
s (2.5)

where the product runs over all species s with densities ns and νjs is the stoichiometric
coefficient for the j reaction. In this expression, kj is the rate coefficient for the jth reaction
that can be constant or temperature dependent. In this respect, the source terms (2.4)
depend on the species densities and on the rate coefficients of every reaction. For calculating
the rate coefficients, the electron energy balance equation (2.6) (i.e. from the second moment
of Boltzmann equation) is coupled to the continuity equation and provides the time evolution
of the mean electron energy density ϵ:

∂ϵ

∂t
= Pinput(t)−Qelas −Qinelas (2.6)

where Pinput(t) is the input power density that can be time dependent and it is defined
externally. Qelas and Qinelas are the net energy losses from elastic and inelastic processes
respectively that are calculated according to (2.7) and (2.8):

Qelas =
∑
j,elas

3

2
kB(Te − Tg)

2me

ms
Rj (2.7)

Qinelas =
∑

j,inelas

Uth,jRj (2.8)

where the summations in (2.7) and (2.8) run over all elastic and inelastic processes respec-
tively, Uth,j is the threshold energy of reaction j, Tg the gas temperature and me/mi the
ratio of electron mass over the mass of the colliding species [21].

The goal of the model is to solve simultaneously the species density balance (2.2) and the
electron energy balance (2.6) as a function of time. For this purpose, the model needs as
an input the rate coefficients of all reactions as a function of energy. As shown in (2.9), if
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2. Description of the model

processes involving electrons are considered, the rate coefficients kj are determined by the
convolution of a cross section with the electron energy distribution function (EEDF) [21], at
least for binary processes2.

kj =

∫ ∞

ϵth

v(ϵ)σj(v)f(ϵ)dϵ (2.9)

where ϵ is the mean electron energy, v(ϵ) the velocity of the electrons, σj(v) the cross section of
collision j, ϵth the threshold energy of the collision and f(ϵ) is the electron energy distribution
function (EEDF). For the calculation of the EEDF, the Boltzmann solver BOLSIG+ was
used [22]. In particular, if the EEDF is described by the Maxwell-Boltzmann distribution
function3, the mean electron energy density ϵ is proportional to the electron temperature via
(2.10):

ϵ =
3

2
nekBTe (2.10)

where kB is the Boltzmann constant. On the contrary, when all the reacting species are heavy,
or non-electronic, there is usually a presumption that the reacting species have a Maxwell-
Boltzmann distribution of energies with a common temperature T , and the rate constant may
then be expressed as a parametric function of this temperature. The form usually chosen is
of the extended Arrhenius type [23]:

kj(T ) = ATBexp(−C/T ) (2.11)

where A, B and C are constants.

Input chemistry The input chemistry used is taken from Koelman et al. [21] who adapted
the chemistry from the works of Kozak and Bogaerts [8]. The species, both in ground state
and in excited states, are included in the model are given in Tab.(2.1).

Table 2.1: Plasma species included in CO2 chemical model.

CO2 Model: input species

Molecules

CO2, CO, O2, O3

Charged Species

CO+
2 , CO

+
4 , CO

+, C2O
+
2 , C2O

+
3 , C2O

+
4

C+, C+
2 , O

+, O+
2 , O

+
4

CO−
2 , CO

−
3 , CO

−
4 , O

−, O−
2 , O

−
3

O−
4 , e

−

Radicals

C2O, C, C2, O

Excited Species

CO2(e1), CO2(e2), CO2(νa . . . νd), CO2(ν1 . . . ν21)
CO(e1), CO(e2), CO(e3), CO(e4), CO(ν1 . . . ν10)

O2(e1), O2(e2), O2(ν1 . . . ν3)

2Ternary processes typically are convenient representation of a chain of binary processes involving transient
intermediate states.

3This is the distribution function of the electron (and ions) once the thermal equilibrium between them is
attained.
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2.1 Global model for plasma chemistry

The list of electronically excited species included is reported in Tab.(2.2) together with the
notation given by Aerts [18] and the identification based on the cross sectional data. As
referred in Koelman et al. [21], some states represent the sum of various excited states.
Moreover, according to Phelps database [24] and Lowke [25], the 7 eV threshold process of
CO2 excitation is considered as a dissociative channel, while the electronic excitation is limited
to a process with energy threshold of 10.5 eV. For species in the electronic ground state but

Table 2.2: Identification of electronically excited states included in the CO2 model.

Model
Notation

Aerts
Notation

States
Identification

Threshold
Energy [eV]

Reference

CO2(e1) CO2(
1Πg) 7.0 [24]

CO2(e2) CO2(
1∆u) 10.5 [24]

CO(e1) CO(A3Π) CO(a3Π) 6.22 [24]
CO(e2) CO(A1Π) CO(A1Π) 7.90 [24]
CO(e3) CO(A3Σ),

CO(D3∆),
CO(E3Σ),
CO(B3Σ)

CO(a’ 3Σ+) 6.80 [24]

CO(e4) CO(C1Σ),
CO(E1Σ),
CO(E3Σ),
CO(I1Σ),
CO(D1Σ)

CO(C1Σ++E1Π) 10.60 [24]

O2(e1) O2(a
1∆) and

O2(b
1Σ)

O2(A
1∆g) 0.977 [26]

O2(e2) O2(B
3Σ) and

higher triplets
O2(B

1Σg
+) 1.627 [26]

vibrationally excited, the energy of the corresponding vibrational states are calculated via
the anharmonic oscillator approximation, as given in [8]. For example, the CO2 molecule
exhibits vibrations in three main modes (i.e. symmetric stretching, bending and asymmetric
stretching). In this model, species that represent the asymmetric vibrationally excited states
of the CO2 molecule are denoted as CO2νi with ν = 1, . . . , 21, while CO2να with α = a, . . . , d
represent collections of symmetric vibrational modes. The effective energy levels of CO2

vibrational states included in the model are presented in Tab.(2.3). Only vibrational levels
that are assumed to be important for CO2 dissociation are included. In particular, since
theoretical background [9] concludes that the asymmetric stretch mode provides the most
important channel for dissociation, thus asymmetric mode levels of CO2 up to a dissociation
energy of 5.5 eV are taken into account.

The reaction set included for electrons, ions, neutrals and excited species is reported in
Appendix A. As referred in [8], most electron impact reactions are described by cross sections
in Tab.(1) and (2). The electron attachment and electron-ion recombination reactions are
given in Tab.(3) and are characterized by rate constants. Moreover, neutral species reactions
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2. Description of the model

Table 2.3: Vibrational levels of CO2 included in the model. The levels denoted by letters
represent symmetric modes of vibration, while the levels denoted by numbers correspond
to asymmetric modes. Energies are taken from [8].

Model notation States Energy (eV)

CO2 (0 0 0) 0.00
CO2(νa) (0 1 0) 0.08
CO2(νb) (0 2 0) + (1 0 0) 0.17
CO2(νc) (0 3 0) + (1 1 0) 0.25
CO2(νd) (0 4 0) + (1 2 0) + (2 0 0) 0.33
CO2(ν1) (0 0 1) 0.29
CO2(ν2) (0 0 2) 0.58
CO2(ν3) (0 0 3) 0.86
CO2(ν4) (0 0 4) 1.14
CO2(ν5) (0 0 5) 1.43
CO2(ν6) (0 0 6) 1.70
CO2(ν7) (0 0 7) 1.97
CO2(ν8) (0 0 8) 2.24
CO2(ν9) (0 0 9) 2.51
CO2(ν10) (0 0 10) 2.77
CO2(ν11) (0 0 11) 3.03
CO2(ν12) (0 0 12) 3.29
CO2(ν13) (0 0 13) 3.55
CO2(ν14) (0 0 14) 3.80
CO2(ν15) (0 0 15) 4.04
CO2(ν16) (0 0 16) 4.29
CO2(ν17) (0 0 17) 4.53
CO2(ν18) (0 0 18) 4.77
CO2(ν19) (0 0 19) 5.01
CO2(ν20) (0 0 20) 5.24
CO2(ν21) (0 0 21) 5.47

are presented in Tab.(ref) and reactions with charged species are reported in Tab.(5), (5)
and (5). In conclusion, reactions that involve vibrational energy exchange are reported in
Tab.(2.3). Due to a lack in rate coefficients for charge exchange reactions with electronically
excited species, a scaling law is adopted and suggested in [21]. This scaling is reported to be
as:

k = k0
E2

i

(Ei − Ee)
2 (2.12)

with k0 the ground state rate coefficient, Ei the ionization potential of the excited species
and Ee its excitation energy. Furthermore, since there is little rate coefficients data available
in literature for energy exchange between vibrational levels, a scaling law is needed as well.
The SSH (Schwartz, Slawsky and Herzfeld) theory is adopted and described in details in [9].
Cross sections for excitation into higher asymmetric mode vibrational levels are scaled as
well using the Fridman approximation [9] to obtain the cross section σnm for excitation from
CO2(νn) to CO2(νm) as:

σnm = exp

(
−α(m− n− 1)

1 + βn

)
σ01(ϵ+ E01 −Enm) (2.13)
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2.2 Numerical implementation

where σ01 is the cross section for excitation from the ground state to CO2(ν1), E01 = E0−E1

and Enm = En − Em are the corresponding threshold energies for excitation. Thus, this
approxiamtion shifts the cross sections according with two parameters α and β. In this model
α is set to 0.5 for CO2 and 0.6 for CO, while β is fixed at 0, according to [8]. Vibrational
excitation can also lower the energy barrier for chemical reactions between neutral species.
To account this effect, the following general formula for rate coefficients is used:

k(Ev, T ) = A0exp

(
−(Ea − αEv)

T

)
(2.14)

where Ea is the activation energy of the reaction, Ev is the energy of the vibrational level
and α a parameter determining the efficiency of lowering the energy barrier of the reac-
tion considered. The value for α is taken according to the Fridman-Macheret α model [9]
(see Tab.(4)) and depends on reactions considered. For example, for the most important
dissociation reaction (N1) a value of 0.8 is used.

2.2 Numerical implementation

In this thesis, the platform plasimo was used to unravel principal pathways in CO2 plasmas.
In this part, a general overview on the structure of this software is done, focusing on numerical
aspects, inputs and outputs of the model.

The plasimo (i.e. PLasma SImulation MOdel) code is a toolbox that provides support for
the numerical simulation of plasma sources of various degrees of equilibrium [27]. It was
written in C++ and developed in the Eindhoven University of Technology in the groups of
Plasma and Material Processing (PMP) and Elementary Procecess of Gas discharges (EPG)
of the department of Applied Physics. The main feature of this code is that it is modular,
meaning that it is designed as a collection of modules that can be combined together to
form a new model. Examples of such models are those for calculating the gas temperature,
the chemical composition of a Local Thermodynamic Equilibrium (LTE) mixture or the flow
field [28]. The advantage of this configuration is that these specific modules can be combined
to form larger models. The main focus of this thesis is about Global Models in order to
investigate the principal pathways in a CO2 discharge. The general structure of these type
of models can be seen in Fig.(2.2).

This general structure can be schematized in three main blocks:

◦ Governing Equations: it includes the particle balance equations (2.2) and electron
energy balance equation (2.6) that are solved simultaneously.

◦ External Parameters: those are external inputs defined by the user, such as: input
power density and control parameters (that allows, for example, to set some constant
densities or temperatures or to use the quasi-neutrality condition)

◦ Chemistry: it includes all the species densities and reactions involved. Moreover it
is possible to define the initial conditions (such as initial densities and temperatures).
This part takes into account all the reaction rates coefficients as inputs (taken from
literature or calculated from a database)

Once solved the corresponding particle balance (2.2) and electron energy balance equations
(2.6), the following outputs are obtained:
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2. Description of the model

Figure 2.2: General structure of a Global Model in Plasimo.

◦ Time evolution of species densities and electron temperature (i.e. gas temperature is
fixed during simulation time)

◦ Source terms (2.4) of the particle balance equation for each species and reaction rates

◦ Sinks and sources (2.7) (2.8) of the energy balance equations due to elastic and inelastic
processes

In this Section, the first two main blocks are described concerning governing equations and
their numerical implementation in plasimo and the external input parameters, while the
chemistry was already introduced in Sec.(2.1).

Governing Equations The equations included in the Global Model used in this work are
introduced in Sec.(2.1). These equations consider balance processes that lead to the evolution
of specie densities and electron temperature in time. Following the approach of [29], on the
point of view of numerical implementation, the balance equation for all species densities can
be implemented in a vector equation (2.15):

∂n(t)

∂t
= S(n(t)) (2.15)

where n(t) is a vector containing all species densities and S(n(t)) is the corresponding source
vector that depends on the densities of the other species. In general, the source terms are
determined through a summation of all reaction rates that are weighted by the corresponding
stoichiometric coefficient. This procedure can now be expressed using a more convenient
matrix-vector multiplication to derive the source vector S, according to (2.16):

S = WR (2.16)

where W is the stoichiometric matrix whose rows refer to the species and columns to the
reaction rates and R is a vector of rates (one per reaction). In the same way source and sink
terms of the electron energy balance equation (2.6) can be constructing starting from the
calculation of the rates vector R. In this formulation, the backward processes are not included
and must be defined either by including it explicitely or by applying detailed balancing. The
following steps are performed once the simulation has started:
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2.2 Numerical implementation

1. Calculate the rate vector R

2. Calculate the source vector S from (2.5) for the particle balance equations

3. Calculate the source and sink terms for the electron energy balance equation

The result of this calculation will be a vector of species densities and the electron energy
density as a function of time. Just as the densities and electron energy densities, the rates of
each reactions are stored at each time steps so the dominant reactions can be analyzed.

Solver The resulting vectors aforementioned at each time step are provided to a solver that
calculates the values for the next time step. The particular choice of solver is made depending
on the numerical characteristic of the problems. In general, the stiffness of the problem define
of type of differential equations for which certain numerical methods are unstable, unless the
step size is extremely small. Thus, it is very important to use a solver that solves stiff
equations efficiently without an excessive computational load for the simulation. Numerous
solvers are available to handle this specific type of problems. In particular, in this version of
plasimo the solver used is called Livermore Solver for Ordinary Differential equations, with
Automatic method switching (LSODA) [30]. This solver classifies the problem based on the
previous time step, then automatically choses the optimal algorithm based on the maximum
time step4. Usually a maximum time step of 1 s is used, absolute and relative tolerances are
set to 1·10−8 s.

External input parameters Several number of options can be specified by the user before
performing the simulations. These options can be defined directly in the input files or through
a Grafical User Interface (GUI) that facilitates the implementation. The main external
parameters that can be set are:

◦ Species List and Reaction List are usually defined externally by including a file where
each species is characterized by a unique name, while each reactions has a correspondent
format and is associated to a rate coefficient (that are calculated from an Arrhenius
form or implemented through a lookup table as a function of electron energy)

◦ Input Power Density can be included as a lookup table in an external file by defining
the power as a function of time. The application of a constant power density is also
possible within the model

◦ Other Options are possible such as it is possible to add a species to a constant density,
in this way the source term for that species will be set to zero (i.e. it will remain at its
initial value). Electron temperature can be also set as a constant (i.e. so it will be not
computed from the energy balance equation), while gas temperature is already fixed by
default

◦ Quasi-Neutrality can be assumed so that the electron density ne is not solved separately
but set equal to the ion density, as (2.17):∑

i

(qini)− ne = 0 (2.17)

where qi is the charge of the ion i with correspondent density ni.

4To be more precise the solver implements two different methods: Adams method for non-stiff problems
and Backward Differentiation Formula (BDF) for stiff problems. The solver automatically switches between
these two methods depending on results from the previous time steps
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2. Description of the model

2.3 Stepwise Approach

The Global Model presented above include a self-consistent description of the plasma.

Figure 2.3: Self-consistent description of a plasma.

This procedure is schematized in Fig.(2.3) and it starts with noticing that the electron tem-
perature determines the plasma composition of species via the electron impact reactions.
Moreover, once the composition is calculated (i.e. for each time step) it is possible to evalu-
ate the electron temperature from the energy balance equation (2.6) since source and sinks
terms of this equation are dependent in turn on the rates of elastic and inelastic processes,
according to (2.7) and (2.8). This description is very complete since all the parameters of the
plasma (i.e. except the gas temperature) are determined by solving a coupled set of balance
equations. However, in order to unravel principal pathways and species in CO2 discharges, a
simplified stepwise approach was adopted here and presented in the following. Starting from
the model presented in [21] and [8], new input files have been created and run in plasimo

in order to study several different subsets of the model. All different subsets considered are
schematized in Fig.(2.4).

Figure 2.4: Stepwise approach adopted in this thesis.

In total, four datasets are taken into account that differ between each other for the chemistry
or input parameters considered:

◦ Dataset 1: It aims on studying the effect of heavy particle interactions due to change in
the gas temperature of the system. In this dataset, only neutral species in their ground
state are considered. Their interaction is governed by gas temperature. Understanding
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2.3 Stepwise Approach

the equilibration of those reactions is fundamental for explaining processes happening
in afterglow phase of a pulsed CO2 discharge.

◦ Dataset 2: It deals with studying the chemistry oxygen separately in order to unravel
principal reactions and species that are (or should be) implemented for an accurate
description of CO2 discharges. In this part a comparison between a full oxygen global
model and a reduced version is presented. Moreover, some hints about carbon chemistry
are highlighted.

◦ Dataset 3: It aims to study the influcence of electron involving processes in neutrals and
ionic species on a reduced version of CO2 model in which excited species were neglected.
Steady-state calculations were performed in which electron density and temperature
were fixed as an external parameters. From those calculations it is possible to derive
the equilibrium composition of species and the relevant timescales.

◦ Dataset 4: The effect of pulsing is studied in a reduced CO2 model in which excited
species were neglected. First of all, the time evolution of the electron temperature were
imposed externally as input. Then, other simulations were performed in which electron
temperature was calculated self-consistently by the energy balance equation (2.6). In
those simulations, the effect of applying high power density (more similar to a DBD
case) and low power density (for the MW case) is studied.

Module 1 and 2 are presented in Chapter 3, while Module 3 and 4 are described in Chapter
4, together with the calculations using the complete CO2 model that take into account even
vibrational kinetics.

Furthermore, due to the huge amount of species and reactions included, in plasma chemistry
it is important to determine the minimum set of relevant species in order to describe properly
the system. It can be attractive to simply remove species with lower densities. However, these
species can react with other species via fast reactions such that the net contribution on the
chemistry will be not negligible. In order to develop a proper technique, detailed studies
on CO2 plasma chemistry are of fundamental importance. In addition, numerical reduction
techniques can be applied to determine a smaller dataset that takes into account the essence
of the system. The implementation of some of these numerical methods (i.e. like Principal
Component Analysis) will be presented in Chapter 5 and 6 together with the application on
different plasma chemistry datasets.
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Part I

Principal pathways in CO2 plasmas
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CHAPTER 3

Test of the model

In order to study the full CO2 model, a stepwise approach was taken into account that aims
to find the relevant principal pathways that governs carbon and oxygen dynamics. In ad-
dition, studies of heavy particle collisions between neutrals are of fundamental importance
for describing thermal (or warm) plasmas used in CO2 splitting and/or relevant processes
happening during afterglow of pulsed simulations at high pressure (i.e. 1000 mbar). Further-
more, a comparison with other models is introduced here to check the auto-consistency of
the reactions implemented.

3.1 Influence of heavy particle collisions

In this section, calculations to determine the equilibrium compositions are presented for
different temperatures and a fixed pressure. Those calculations are performed with a ther-
modynamic model that minimise the Gibbs free energy for a given composition. Results of
this model will be compared with a 0-D kinetic model implemented in plasimo. Furthermore,
considerations on CO thermal production are deduced at the end of the section.

Note: In this section all the species taken into account are considered in thermodynamic
equilibrium. As a matter of fact, this means that all the species have the same temperature
and that the chemical processes are so fast that the densities can be expressed by analytical
relations of statistical mechanics. Furthermore, in this section, only interactions between
neutral species are considered, meaning here that the equilibrium condition refers always to
heavy particles.
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3. Test of the model

3.1.1 Comparison with thermodynamic model

Chemical equilibrium is usually determined in two ways: one is to define rate constants
that determine the temporal evolution of the reactions; the other is the minimisation of free
energy. Comparison between those two methods is useful to have a correct description of
the system for different values of pressure and temperatures. This comparison is done here
using the NASA computer program CEA [31] [32], that calculates the equilibrium composition
minimising the Gibbs free energy, and a version of 0-D kinetic model implemented on plasimo.
Both methods will be presented in this section.

Thermodynamic CEA model As referred in literature [33], the chemical state of a sys-
tem is completely determined by temperature T , total volume V and number of moles Nj

for each species. Those quantities uniquely identify a number of function of state, such as
internal energy U , entropy S, enthalpy H and Gibbs free energy G such that the state of the
system (at any time) can be completely determined by a specific number of state variables.
If one wishes to use temperature and pressure to characterise a thermodynamic state, Gibbs
energy is most easily considered since temperature and pressure are usual variables for de-
scribing a chemical system. In order to give an example, let’s consider a chemical reaction of
the form:

A+B ⇔ C +D (3.1)

where A, B, C and D in (3.1) are the chemical species considered. In order for this reactions to
proceed spontaneously (either to the left or to the right), the Gibbs free energy must decrease
according to the second law of thermodynamics, as described by the inequality (3.2):

dG = dH − TdS = V dp− SdT ≤ 0 (3.2)

where the final equality holds for reversible processes. In those conditions, the system will
relax into a state in which the concentration of various species do not change spontaneously.
This can be seen in Fig.3.1 where the the equilibrium state of reaction (3.1) is the minimum
of the Gibbs free energy as a function of the composition of the system.

Figure 3.1: Schematic representation of the mimization of Gibbs free energy of the system
along one reaction coordinate in the composition space, from [33].
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3.1 Influence of heavy particle collisions

In this section the program used to calculate the equilibrium composition is called CEA
(Chemical Equilibrium with Applications) and it was developed by the NASA Lewis Research
Center [31]. This program requires two inputs to be run:

1. Chemical species composition (type of atoms or molecules, initial number of mole frac-
tions, etc.)

2. Thermodynamic state variables to control and describe the equilibrium properties (i.e.
two thermodynamic state functions to be chosen between Temperature, Pressure, En-
thalpy, Entropy, Volume and Internal Energy)

since this model is based on thermodynamic calculations and it is not a kinetic model, reaction
rate constants are not included. Thus, the final output composition of species is determined
via a minimisation technique of the Gibbs free energy, as described in [31]. The following
Tab.(3.1) summarises the initial input parameters used for the simulations.

Table 3.1: Input parameters used in the CEA program.

Input Parameters

Species: CO2, CO, C2O, C, C2, O, O2, O3

Temperature: fixed values in the range [1000:6000] K
Pressure: 100 mbar

All the simulations were performed for a fixed pressure of 100 mbar that is a typical value
for MW plasma discharges [34] and for different fixed values of temperature. The initial mole
fractions of different species were set in order to have a pure CO2 mixture as input parameter.

0-D kinetic model The kinetic model is included here to study the temporal evolution
of the CO2 composition. Such model was implemented on plasimo using the same input
parameters as defined in Tab.(3.1) and run until steady-state equilibrium composition is
reached. In addition of those inputs, the kinetic model requires the definition of a set of re-
actions. This set is schematised in Appendix A and it includes only heavy particle collisions
between neutral species present in the model of Koelman et al. [21]. Rate coefficients of these
reactions are dependent on gas temperature via their Arrhenius form.
As a matter of fact, in order to understand CO2 splitting processes it is important to con-
sider not only electronic (or vibrational) excitation processes, but even interactions between
neutrals that may play a role for longer times since neutral species tends to accumulate as a
results of longer lifetimes with respect to excited species. Those interactions are considered
separately in this kinetic model and their importance is highlighted in the following part. In
particular, the principal reaction involving CO2 dissociation is the following (3.3):

CO2 +O → CO+O2 (3.3)

The rate of this reaction increases with the increase of input energy of the system or with
the increase of gas temperature. As a consequence, this means that atomic oxygen is a
relevant species driving dissociation processes during pulse-phase. In fact, as it will be shown
in Chapter 4, in microwave discharges, the collisions between CO2 and O will be crucial to
improve the CO2 conversion.
Moreover some O atoms can recombine with CO via the following reaction (3.4):

O+CO+M → CO2 +M (3.4)
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3. Test of the model

where M can be a third body like CO2, O2 and CO. As pointed out in Section (3.1.2),
in order to improve energy efficiency and conversion, this backward recombination reaction
involving CO and O has to be minimised in the study. Other relevant pathways of oxygen
have to be mentioned. Those are mostly recombination processes that leads to a formation
of O2 and O3 as described by (3.5) and (3.6) respectively.

O+O+M → O2 +M (3.5)

O+O2 +M → O3 +M (3.6)

The relevance of those reactions is mostly due to the formation of O2 and O3, whose impor-
tance in CO2 splitting and their equilibrium compositions have to be tested experimentally.

In this section, in order to find the equilibrium composition, different simulations were per-
formed at fixed values of gas temperature in the range from 1000 to 6000 K for a constant
pressure of 100 mbar, as mentioned before. The results of this comparison can be seen in
Fig.(3.2) where the relative mole fraction of species are plotted as a function of different
gas temperatures. In this plot the continuous lines refers to different simulations using CEA
program, while dots refer to different simulations from the kinetic model used on plasimo.
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Figure 3.2: Calculated equilibrium composition of CO2 mixture at 100 mbar as a function
of gas temperature.

While the equilibrium composition is directly calculated in the thermodynamic model, this
is reached after a characteristic time in the kinetic model in which the reactions start to
be in steady-state. This time is defined here as the equilibration time. Thus, the values of
mole fraction of species deduced from plasimo and plotted in the graph before are the ones
deduced after this typical equilibration time (i.e. see Fig.(3.3)). Species having mole fraction
below the value of 10−3 were not plotted in Fig.(3.2). As can be seen in Fig.(3.2), the overall
behaviour between the two models is generally comparable except some deviations mainly
present in oxygen atomic and molecular species at higher temperatures (above 3000 K). Those
deviations can mainly be attributed to missing backward reactions involving atomic oxygen,
like the following (??):

O2 +O → O+O+O (3.7)

Reaction rate coefficient (3.7) is reported on [35] and [34] and it can contribute to the loss
of O2 and formation of O atoms mainly at higher temperatures. A more detailed discussion
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3.1 Influence of heavy particle collisions

on oxygen chemistry will be presented in Sec.(3.3) in order to point out relevant pathways.
Furthermore, another relevant deviation it is present for temperatures above 5000 K in which
atomic carbon starts to become relevant mostly due to thermal dissociation processes in-
volving CO. This effect is not present in the kinetic model mostly because of the lack of
balancing reactions involving C, C2 and C2O implemented. The importance of those species
and the effect of carbon chemistry will be pointed out in Sec.(3.2) and it is relevant in order
to describe thermal plasmas at higher gas temperatures (above 5000 K).

The equilibration time for different species is deduced from different simulations at different
fixed temperature. In particular, the value for the CO species is shown in Fig.(3.3) as a
function of different gas temperatures. This is the typical equilibration time even for the
other species. Higher the temperature, lower the equilibration time, as shown in Fig.(3.3).
This is essentially due to the increase of rate coefficients of the reactions that are strongly
dependent on gas temperature. Anyway, as reported in [34], the fact that equilibration times
are typically longer than residence times (that are of the order of some milliseconds) may
lead the plasma composition to be not in steady-state if the plasma is thermal.
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3.1.2 CO loss fraction

As mentioned in Sec.(3.1), one way to improve the CO2 conversion is to minimise the reverse
reaction between O and CO into CO2. This section is dedicated to providing some possible
answers about the way to handle this problem. In order to find a method to reduce the
relevance of the recombination reaction aforementioned, different simulations were performed
with plasimo to deduce the CO loss fraction. In these simulations, a constant profile of gas
temperature is imposed until the composition reach a steady-state and then suddenly the
temperature is decreased in time to 300 K. The variation of temperature in time determines
the so called cooling rate and five different values of cooling rates were defined in the range
between 104 and 108 K/s. Higher the cooling rate, faster the plasma cools down to room
temperature. In these simulations, the CO loss fraction is deduced as the percentage value
of CO lost after the temperature dropped to 300 K with a specific cooling rate.
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Figure 3.4: Densities of dominant neutral species under imposed temperature profile with
a cooling rate of 104 K/s.

The results of one of these simulations can be seen in Fig.(3.4). In this case, the temperature
was kept constant at 3000 K until 1 s, when all the composition reach a steady-state. Dom-
inant species like CO, O2 and O increase due to a dissociation processes involving CO2,
as the one described by reaction (3.3). On the contrary, during relaxation phase (after 1
s), the atomic oxygen density abruptly decreases. This effect is mainly due to the drop of
temperature that increases the rate of 3-body recombination reactions between O2 and O,
leading to the formation of O3 as described by (3.6). Moreover, oxygen atoms can recombine
into O2 via reaction (3.5). These effects suggest a first consideration:

Lowering the gas temperature during pulsed-phase experiments can lead to a formation
of O2 and O3 reducing the density of O atoms, which may prevent the recombination
reaction (3.4) between O and CO to happen and thus improve CO2 conversion.

Further experimental investigation is needed to determine the equilibrium composition of
O2 and O3. In particular, as described in [18], experimental measurements of O3 density
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3.1 Influence of heavy particle collisions

would be fundamental to understand the balance of O2 and O3 in a CO2 discharge. Further
considerations about the effect of gas temperature during pulsing are discussed in Chapter 4.

From the same calculations performed for different cooling rates, the CO loss fraction was
deduced, as described in the first part of this section. The percentage of CO lost for different
cooling rates can be seen in Fig.(3.5a) for different initial values of gas temperatures and a
fixed pressure of 100 mbar. As stated in the previous consideration, a lower gas temperature
can suppress backward recombination reactions involving CO to happen leading to a lower
percentage of CO lost during cooling processes. Furthermore, as can be seen at 3000 and
4000 K, higher the cooling rates lower the CO fraction lost. This indicates the need of fast
quenching to happen since only at low temperatures reaction (3.4) is effectively suppressed.
The calculated fraction of CO loss is clearly dependent on the initial value of gas temperature
assumed due to the different equilibrium compositions between the species reached in steady-
state. In fact, some species, like oxygen, are effectively dependent on temperature variations
as will be shown in Sec.(4.1). Since CO losses are directly related toCO2 formation by (3.4),
further experimental investigations may highlight the effect of fast temperature relaxation in
thermal plasmas during afterglow phase.
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Figure 3.5: CO loss fraction at different cooling rates: effect of fast quenching (left) and
effect of removal of molecular oxygen before the cooling (right). In both cases a pressure
of 100 mbar is assumed.

Another way to reduce the effect of the recombination reaction (3.4) is to reduce the presence
of O atoms (or O2) available in the system, so there are not enough reactants available
for the reaction to happen [36]. In Fig.(3.5b) the results of removing reactants to prevent
recombination to happen is shown by studying the effect on the CO loss fraction for different
cooling rates at an initial temperature of 3000 K. For these calculations, different simulations
were performed removing 2/3 of the O2 density after equilibrium conditions were reached.
The CO loss fraction deduced after cooling are then compared with respect to the normal
condition (the red line in Fig.(3.5b)). As can be seen from the graph, lower CO values of loss
fraction are deduced when O2 is removed from the mixture. Negative values of loss fraction
obtained correspond to CO formation after cooling and are mostly due to CO2 conversion
that happens even for longer times when the temperature drops. Experimentally, the removal
of O atoms or O2 can be addressed essentially in two ways:

1. Addition of catalytic interaction (i.e. for example adding CH4 or H2) faster than the
recombination reaction between CO and O.
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2. Utilisation of solid oxide electrolyser cell (SOEC) in combination with a plasma tech-
nology in a hybrid reactor in order to capture O2 in the plasma setup that can possibly
transported away from the plasma mixture.

The first method was mainly studied numerically and experimentally by Aerts et al. [36]
which describe the addition of H2 and CH4 leading to O2 trapping mechanism. The sec-
ond one, was performed recently with an experimental investigation by Mori and Tun [37],
where they show an increase of CO2 conversion up to 80% by removing oxygen on an hybrid
DBD+SOEC reactor. However, this technology has the drawback of utilising high temper-
ature and a limited low energy efficiency of 0.17% can be achieved, suggesting that further
experimental investigation is needed for removing O2 efficiently and improving CO2 conver-
sion. To summarise, in this section the effect of CO loss fraction was studied using a kinetic
model implemented on plasimo. Focusing on neutral collisions it is possible to deduce a
second consideration:

CO loss fraction can be minimised using higher cooling rates (≥ 106 K/s), thus
lowering the rate of (3.4), or by removing reactants like O2. The advantage of this
second method is that it can provide higher CO2 conversion at lower cooling rates.

3.2 Hints on carbon chemistry

In this section, the chemistry involving C and C2 present in the model of Koelman at al. [21]
is discussed. In particular, the following questions will be addressed:

◦ Which pathways lead to C-atoms increase in high temperature conditions?

◦ What is the role of C2 chemistry and its relations to heavy particle species?

Suggestions for Question 1: From thermodynamic calculations (i.e. see Fig.(3.2)), it was
already pointed out that C atoms are present in high temperature (above 5000 K) plasmas.
In Koelman model, the main neutral reactions leading to C-atoms losses and CO production
are the following (3.8) and (3.9), whose rates are taken from [38]:

C+CO2 → CO+CO (3.8)

C+O2 → CO+O (3.9)

Here some additional reactions not included in Koelman model are suggested that will take
better into account the carbon dynamics. Studies on low temperature carbon nanofibers [39]
suggest that disproportionation reaction (3.10) may be thermodynamically favorable in low
temperature plasmas:

CO+CO → CO2 +C (3.10)

This reaction may be relevant in afterglow processes that lead to CO2 formation due to
relaxation. Moreover, reaction like (3.11) is found to be relevant in the temperature range
between 10 and 8000 K:

C2 +O → CO+C (3.11)

Reaction rate coefficient of (3.11) is reported in [40] from a theoretical study of a molecular
synthesis in interstellar clouds. Net result of reactions (3.10) and (3.11) is the decrease in C2

density and the corresponding formation of C-atoms and CO2.
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Suggestions for Question 2: Experimental studies on hydrocarbon discharges and com-
bustion flames by emission spectroscopy (OES) reveal the most prominent presence of Swan
Bands (d3Πg → a3Πu) of C2, but uncertainties are still present on the influence of heavy
particle interactions of emission from C2 molecules. According to [39] and [41], emission in-
tensity of C2 molecules is strongly related with the presence of C2O. In particular, in Koelman
model, presence of C2O is related to the following three reactions:

C+CO+M → C2O+M (3.12)

O+C2O → CO+CO (3.13)

O2 +C2O → CO2 +CO (3.14)

Reaction (3.12) leads to formation of C2O, while (3.13) and (3.14) are the prevalent sink
terms. From these reactions, it is possible to deduce the C2O concentration via the relation
(3.15):

[C2O] =
k3.12 · [C][CO][M]

k3.13 · [O] + k3.14 · [O2]
(3.15)

where k3.12, k3.13 and k3.14 are reaction rate coefficient for (3.12), (3.13) and (3.14) respec-
tively. This relation suggest that reduction of C2O is mostly due to increase in O density
when O2 is increased. Thus, according to the model, higher concentration of O (or O2) leads
to enhancement of emission from C2 molecules. Correlation between emission from 3p5P
oxygen level and d3Πg state of C2 has been recently experimentally observed from measure-
ments of optical emission spectroscopy [42]. Moreover, according to (3.15), higher the CO
concentration higher the presence of C2O, showing that CO density and C2 emission are thus
related. Further experimental and theoretical investigations are needed to highlight produc-
tion mechanisms of C2 emission. For the sake of completeness, two more pathways has to be
mentioned:

C+C+M → C2 +M (3.16)

C+C2O → C2 +CO (3.17)

Effects of reactions (3.16) and (3.17) are studied in the framework of MW discharges [41] to
explain the production of metastable C2 levels and the origin of high-pressure bands. Analo-
gous studies for determining the relevant pathways leading to Swan Bands will highlight the
contribution of the reactions aforementioned. From this section, the following consideration
can be deduced:

Higher the oxygen (i.e. O-atoms or O2 molecules) concentration, lower the C2O density.
Furthermore, since emission from C2 molecules is supposed to be due to the presence of
C2O, oxygen dynamics would influence emission intensities.

Oxygen dynamics appears to be relevant driving not only dissociation processes of CO2, but
even emission from excited molecules. Thus, in the following section particular attention will
be paid on the pathways governing oxygen chemistry.

3.3 Hints on oxygen chemistry

As pointed out in Sec.(3.1) and (3.2), oxygen chemistry plays a key role in driving dissociation
processes of CO2, but better understanding is needed to highlight conditions and relevant
reactions. In order to do that, an oxygen plasma model was implemented on plasimo based on
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the reaction set taken from [21] and tested against the global model developed by Kemaneci
et al. [43] that was validated experimentally, in order to highlight the relevant reaction and
species in an oxygen discharge. This comparison is aimed to answer the following questions:

◦ What are the dominant species in a pure oxygen discharge?

◦ In which timescales their evolutions happen?

In order to understand that, the effect of a square power pulse was investigated on both
chemistries and is presented in the following.1

The input chemistry datasets are discussed below briefly in order to understand differ-
ences and relevant reactions implemented. The complete dataset of reactions included in
the Koelman model can be found in Appendix A, while here the most relevant processes are
summarised:

Note: In this section the notation O for atomic oxygen always refers to the ground state
species O(3P). When other different electronic excited states will be taken into account a
different notation specifying the excited state will be used, while vibrationally excited states
are not considered in both models.

Electron Impact Processes Cross section for electronic excitation of molecular oxygen
from ground state in the model of Koelman et al. [21] are mostly taken from [24], those
processes include:

e− +O2 → e− +O2(a
1∆g) (3.18)

e− +O2 → e− +O2(b
1Σ+

g ) (3.19)

where O2(a
1∆g) and O2(b

1Σ+
g ) refer to the first and second electronic excited states at

0.977 and 1.627 eV respectively. Higher electronic states are not included in this model. At
high power density, if O atom wall recombination is negligible, the O atom density may be
dominant. The latter is mainly generated by electron impact dissociation of O2 (3.20) whose
cross sections are taken from Itikawa database [46].

e− +O2 → e− +O+O (3.20)

Reaction (3.20) assumes that dissociation contributions arises mainly from fragments distri-
bution that are consistent with 6 eV states (c1Σ1

u, A
′3∆u and A3Σ+

u ) to O(3P)+O(3P)
atoms. Other relevant processes to be mentioned are ionization and dissociative attachment,
whose cross sections are taken from [24] and are described by (3.21) and (3.22) respectively:

e− +O2 → 2e− +O+
2 (3.21)

e− +O2 → O− +O (3.22)

Electron impact reaction with atomic oxygen includes mainly ionization (3.23) :

e− +O → 2e− +O+ (3.23)

1The aim of this section is not to discuss a complete study on oxygen plasma discharges, but to highlight
differences and principal pathways in presence of oxygen datasets. For other complete studies it is suggested
to look at [33], [44], [23] and [45].
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In this model, electronic excitation to higher O-states is not included. Although a complete
set of cross sections for electron impact processes involving ozone does not exist [23], the
ones included in the model of Koelman are mostly taken from [47]. Those include mostly
processes like dissociative attachment and dissociation into O and O2. Electronic excited
states of O3 are not included in this model since either weakly bound or dissociative.

Neutral Processes Neutral processes included are mainly interaction between O, O2 and
O3. Those processes include oxygen recombination into O2 and O3 as described previously
from (3.5) and (3.6). According to [44], process (3.5) is exothermic by some 5 eV, thus
several electronic excited states can be a product of this reaction. In this work, the simplified
approach was chosen to include only the single net effect of formation of O2 in the ground
state. Ozone can also react with oxygen mainly through reaction (3.24):

O3 +O2 → 2O2 +O (3.24)

Interaction between electronically excited states of O2 is not directly included in the model.
As discussed in Chapter 2, the form used for the expression of the rate coefficients of heavy par-
ticles interactions is of the Arrhenius type, assuming the species have a Maxwell-Boltzmann
distribution of energy with a common temperature.

Charged Species One of the most important processes involving charged particles is the
following mutual neutralization (3.33):

O− +O+
2 → O+O2 (3.25)

Reaction rate coefficients of those processes are mostly taken from Gudmundsson et al. [48]
and Beuthe at al. [49].

Main Input Differences This part discuss the main differences present in the chemistry
between the model of Koelman et al. [21], discussed above, and the model of Kemaneci et
al. [43]. It is worth noticing here that the Kemaneci model was completely built to model
a MW oxygen discharge and to benchmark the results against experiements, thus a more
complete set of reactions between species is included, while in the original chemistry of
Koelman, especially interactions between CO and CO2 (even including vibrational states) is
taken into account. This comparison, however, is useful to understand possible limitations
and improvements for future CO2 global models taking into account only oxygen chemistry
aforementioned.

The species considered in both models are summarised in Tab.(3.2):

Table 3.2: Species considered in Koelman and Kemaneci oxygen model.

Species Considered

Koelman Model Kemaneci Model

Neutrals Ground State O(3P), O2, O3 O(3P), O2, O3

Electronically Excited O2(a
1∆g), O2(b

1Σ+
g )

O(1D), O2(a
1∆g), O2(b

1Σ+
g ),

O2(A
3Σ+

u , A
3∆u, c

1Σ−
u )

Charged Species
e−, O+, O+

2 , O
+
4 ,

O−, O−
2 , O

−
3 , O

−
4

e−, O+, O+
2 , O

−,
O−

2 , O
−
3
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The main difference that can be seen from Tab.(3.2) is the presence of O(1D) states and
lumping of electronically excited states of molecular oxygen as O2(A

3Σ+
u ,A

3∆u, c
1Σ−

u )
that are included in the Kemaneci model. Furthermore, in Koelman model, O+

4 and O−
4 ions

are present even if they are not dominant both in discharge and post-discharge conditions.
The differences in the species considered suggest the presence of different pathways in the
chemistry model of Kemaneci. The main differences are reported below.

1. As considered by [50], electron impact dissociation of O2 is faster through the following
channel that leads to the formation of O(1D):

e− +O2 → e− +O+O(1D) (3.26)

According to crossed beam experiments, the channel of dissociation proceeds through
optically allowed electronically excitation of O2 (B3Σ−

u , B
′3Σ−

u and 23Πu), each of
these excited states then dissociate to form O(3P) and O(1D) atoms. This channel is
faster than the only process (3.20) due to 6 eV states included in the model of Koelman

2. Interactions between electronically excited states and ground states species are widely
included in the model of Kemaneci. Those interactions include, for example, processes
like charge exchange:

O− +O2(a
1∆g) → O+O−

2 (3.27)

3. Radiative processes that lead to de-excitation of O2 electronical levels are included in
Kemaneci model, like the following:

O2(A
3Σ+

u ,A
3∆u, c

1Σ−
u ) → O2 + ℏν (3.28)

4. In addition to (3.39), reaction (3.29) is included in the model of Kemaneci. This reaction
leads to the formation of O3

O2 +O+O → O+O3 (3.29)

In order to model an oxygen MW discharge, both models were run on plasimo. A constant
input power of 250 W were imposed until 50 µs, then switched off to zero. The plasma
is supposed to be confined in a volume of radius R = 7.5 mm and total axial length L
= 144 mm. The gas temperature is fixed and set to 2000 K, while the time evolution
of the electron temperature is determined from the electron energy balance equation. The
electron density is not computed from the continuity equation, but calculated from the quasi-
neutrality condition. In both models, heat transport, flow and wall interactions are neglected.
A comparison between those two models can be seen from Fig.(3.6) where time resolved
particle densities are shown.

• During the pulse, in both models, the evolution of neutral species is mostly deter-
mined by electron impact reaction leading to dissociation of O2. In fact, processes like
(3.18), (3.19) and (3.20) contribute to the steep increase of O2(a

1∆g), O2(b
1Σ+

g ) and
O respectively. Ion species, like O+ that is dominant during the pulse, are mainly
produced by ionization processes, like (3.21).

• After the pulse, due to the drop of electron temperature, ion species and electrons tend
to vanish. Evolution of electron density is mainly determined by the evolution of the
dominant ion O+

2 .
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Figure 3.6: Comparison of time evolution of densities between Kemaneci model (left) and
Koelman model (right) in a power pulsed discharge of 50 µs at 250 W. Gas temperature
is fixed at 2000 K and an initial pressure of 2.76 mbar is used.

Important differences between the two models have to be mentioned and can be summarised
by three statements and discussed in the following:

◦ In Koelman model, O-atom density is higher during the pulse-phase from 10−6 s
(Fig.(3.6b)) with respect of Kemaneci model

◦ O(1D) and O2(A
3Σ+

u ,A
3∆u, c

1Σ−
u ) are not taken into account in Koelman model.

Better understanding is needed to highlight the net effect of including those species

◦ O3 density appears to be constant in the afterglow of Kemaneci model (Fig.(3.6a)),
while it drops in Koelman (Fig.(3.6b))

O densities comparison Larger increase of O atomic density in Koelman model can be
attributed to the higher value of electron temperature reached during the pulse. Further-
more, as will be discussed in Sec.(4.1) of Chapter 4, O-atom density is particular sensitive
to variations of electron temperature. As can be seen in Fig.(3.7), in the pulse-phase of
Koelman model, electron temperature reaches a peak value around 4 eV, then quickly drops
to gas temperature in 0.1 µs the drops of electron density in around 1 ms, together with the
dominant ion O+

2 . Steep increase of electron temperature in the model may be due to a low
electron density or to an improper balance of inelastic processes included in the model.

In particular, reaction (3.30) is the main source of production of oxygen in the 3P ground
state, as discussed previously:

e− +O2 → e− +O+O (3.30)

At the same time, the second relevant contribution (according to the net rate of reactions
involved) is the following dissociative attachment:

e− +O2 → O− +O (3.31)

As expected, in Koelman model electron impact reactions drive the dissociation of the main
species during pulse-phase. However it is worth noticing here that other reactions have an
important contribution to the dynamics, those are mainly the following charge exchange and
mutual neutralization:

O+ +O2 → O+O+
2 (3.32)
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3. Test of the model

Figure 3.7: Time evolution of electron densities and temperatures calculated from Koel-
man and Kemaneci model.

O− +O+
2 → O+O+O (3.33)

In the same time period during pulse-phase, different pathways are present and become rele-
vant in Kemaneci model. Those pathways does not involve only electron impact reactions,
but the presence of O(1D) is particularly relevant for oxygen dynamics. The main difference
here is that electron impact dissociation of O2 proceeds faster through the following channel
leading to the formation of O(1D) whith respect to the process (3.30):

e− +O2 → e− +O(1D) +O (3.34)

This process balances together with (3.32) and (3.33) between 10−7 and 10−4 s. Moreover, at
the end of the pulse, interaction (3.35) between O2 and O(1D) is dominant. The net result is
a formation of O atoms in the 3P state, but with a slower time with respect Koelman model.

O2 +O(1D) → O2 +O (3.35)

The following consideration can be deduced, considering oxygen dynamics:

During pulse-phase, reaction (3.34) was demonstrated to be one of the fastest channel of
oxygen production with respect to reaction (3.30). O atom production in the afterglow
is most likely to be due to interaction (3.35) between O2 and O(1D).

Electronic states of O and O2 As seen from the discussion of the previous statement,
production of O(1D) is mainly due to electron impact reaction with O2 happening until 10−5

s. Here the effect of this O-metastable state and higher electronically excited states on the
O2 dynamics are presented. The energy level diagram of O2 species is presented in Fig.(3.8)
based on a study of Thorsteinsson at al. [51]. In particular, in both models, electron impact
excitations to O2(a

1∆g) and O2(b
1Σ+

g ) states are the dominant processes involving sinks of
O2 during the pulse. However, while in Koelman formation of O atoms due to (3.30) is one of
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3.3 Hints on oxygen chemistry

Figure 3.8: Energy levels of O2 plasma species considered in Kemaneci model.

the fastest channel, in Kemaneci model electronic excitation reactions to 4.2 eV metastable
states is becoming relevant:

e− +O2 → e− +O2(A
3Σ+

u ,A
3∆u, c

1Σ−
u ) (3.36)

During afterglow, O2 losses in Koelman model proceed with slower rate due to reaction
(3.18) that is is still the dominant one. On the contrary, Kemaneci model presents a much
more complex dynamics involving the presence of O3. The main difference is that reaction
like (3.18) looses importance around 10−3 s and heavy particle collisions become important
sources of O2, like it is shown by the pathways involving (3.37) followed by (3.38):

O2 +O2(A
3Σ+

u ,A
3∆u, c

1Σ−
u ) → 2O2(b

1Σ+
g ) (3.37)

O2(b
1Σ+

g ) +O3 → 2O2 +O (3.38)

These considerations leads to the following conclusions:

At high electron temperatures during pulse-phase, electronic excitation of O2 is the
dominant mechanism causing O2 dissociation. Furthermore, presence of higher molecular
excited states of oxygen can enhance the production of O2 in the afterglow, mainly
through interaction between O3. Thus, detection of ozone species seems relevant in
order to understand the principal pathways happening in the afterglow.

Ozone kinetics in the afterglow

Fig.(3.9) shows the evolution of densities of species with relative slow kinetics (O, O2(a
1∆g),

O(1D), O3 and O2(A
3Σ+

u , A
3∆u, c

1Σ−
u )). Moreover, from this plot we can deduce that the

time evolution of these species is long compared to the time in which the plasma is excited.
This graph suggest that their densities may be relevant during afterglow. As a consequence,
the chemistry during afterglow then consists predominantly of reactions between those species
or it is mediated by other states that may appear transiently. In particular, comparison
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3. Test of the model

Figure 3.9: Densities of 5 species with relative slow kinetics, from Kemaneci model. Den-
sities of those species fall slowly during afterglow, suggesting that their contribute in
post-discharge conditions may be relevant.

between Fig.(3.6a) and (3.6b) suggests that different pathways play a role in ozone production
during afterglow. Since this species can enhance O2 formation, as mentioned before, a correct
implementation of ozone dynamics seems to be relevant for reactions happening in the
afterglow.

During the pulse, in both models the increase of O3 production is mainly due to the following
(3.39):

O− +O2 → O3 + e− (3.39)

Furthermore, in Kemaneci model, electronically excited states can enhance O3 production at
the end of the pulse via reaction (3.40):

O− +O2(a
1∆g) → O3 + e− (3.40)

The main differences between the two models, can be seen in the afterglow-phase. In Koelman,
in fact, sinks of O3 are mainly due to reaction (3.41):

O3 +M → O2 +O+M (3.41)

On the contrary, in Kemaneci model, the dominant process regarding O3 is mostly the source
term reaction :

O2 +O+O → O3 +O (3.42)

This reaction aforementioned is indeed not included in the model of Koelman. From these
considerations, the following conclusion can be deduced:

Ozone is one neutral radical species that is likely to be important in the afterglow. In par-
ticular, when O-atoms density is large, three-body association reaction (3.42) is fast and
leads to the production of O3. Furthermore, quenching (3.38) by ozone with O2(b

1Σ+
g )
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3.3 Hints on oxygen chemistry

is fast and the density of O2(b
1Σ+

g ) remains small compared to the first electronically
excited level of O2.

As mentioned in [44], recent works [52] [53] suggest a more probably formation of O3 in
vibrationally excited states. These excited molecules are far more reactive than the ones in
the ground state, in particular with oxygen atoms. This suggest that the net effect of those
processes is a retardation of production of ozone. However, in the model considered here, a
simplified approach was adopted neglecting the presence of vibrational levels. The relevance
of this pathway has to be tested in future models and by experimental techniques.
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CHAPTER 4

Analysis of CO2 kinetic model

Focus of this Chapter is studying the state-to-state CO2 kinetic model described in Chapter
2. Here a parametric study is presented, according to Sec.(2.3). First of all, steady-state
calculations will be presented in order to study the dynamics of electrons that drives dissoci-
ation processes. Second, a reduced CO2 model is run in pulsed mode in order to investigate
the pulse and afterglow phases. Third approach will be the study of the full kinetic model in
which electronically and vibrationally excited levels are included.

4.1 Steady-state calculations

For performing steady-state calculations, three important initial assumptions were made:

◦ For sake of simplicity, negative ions and excited states are not included: the first being
a reasonable simplification, since negative ions will be seen to not influence relevantly
CO2 splitting processes. On the contrary, the effect of excited states will be discussed
in Sec.(4.3).

◦ Gas temperature is fixed during all simulation time at a value of 600 K.

◦ Electron temperature and electron density are also fixed externally and not deduced
from energy balance equation and quasi-neutrality condition respectively.

Sixteen different simulations have been run by fixing progressively the electron temperature
at one value chosen between 1, 1.5, 2 and 2.5 eV for each different value of electron density
assumed (i.e. chosen between 1018, 1019, 1020 and 1021 m−3). The gas pressure is set at 1000
mbar, that determines an initial CO2 density of 1.21·1025 m−3 (at 600 K). Moreover, the
initial neutral species densities are set at 1015 m−3, while initial ion densities are deduced
from previous running by fixing only the electron temperature until composition equilibrium
is reached. All the simulations aforementioned were run until equilibrium is reached due to
net balancing of reaction rates.
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4. Analysis of CO2 kinetic model

4.1.1 Influence of electron density

Results of calculations fixing electron temperature at 2 and 2.5 eV are shown in Fig.(4.1),
where the steady-state equilibrium density of neutral species is plotted as a function of four
fixed values of electron density. From those results the following observations can be deduced:

◦ Statement 1: ne affects the increase of O and C atom densities (with almost linear
dependence)

◦ Statement 2: Conversion of CO2 into CO is increased with increasing ne

◦ Statement 3: At ne ≥ 1020 m−3, O-atom density exceed molecular oxygen density
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(a) Steady-state calculations at 2 eV.
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(b) Steady-state calculations at 2.5 eV.

Figure 4.1: Dependence of steady-state neutral densities on electron density, for fixed Te

at 2 eV (left) and 2.5 eV (right). An initial pressure of 1000 mbar was assumed together
with a gas temperature of 600 K.

Discussion of these observations is presented here, by looking at the reaction rates for pro-
duction and destruction processes:

Statement 1 discussion Densities of atomic oxygen and carbon are shown to increase by
three orders of magnitude in Fig.(4.1), for electron density going from 1018 to 1021 m−3. Key
processes for O-production are mainly electron impact dissociation of CO2 (4.1) and O2 (4.2):

e− +CO2 → e− +CO+O (4.1)

e− +O2 → e− +O+O (4.2)

C-production is mainly dominated by dissociative ionization (4.3) of CO2:

e− +CO2 → e− + e− +O+
2 +C (4.3)

Even if 4 orders of magnitude lower than O-atoms density, carbon density is shown in Chapter
3 to play a relevant role in quenching processes between CO2 and O2 leading to formation of
CO. Naturally, higher the electron density, greater the reaction rate of (4.1), (4.2) and (4.3).

Statement 2 discussion: Electron impact processes drive the CO2 conversion through
dissociation and/or ionization. In particular, even if conversion is limited by neglecting
electronic and vibrational excitations, it is interesting to see which processes play a major
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4.1 Steady-state calculations

role. In these calculations, the rate of dissociation (4.1) is found to be around 5 orders of
magnitude higher than dissociative ionization (4.4) and around 2 times more than ionization
(4.5):

e− +CO2 → e− + e− +CO+ +O (4.4)

e− +CO2 → e− + e− +CO+
2 (4.5)

In order to summarise, if we neglect electronic excitation, the following inequality governs
electron impact processes that lead to CO2 conversion at atmospheric pressure::

Rdiss > Rioniz > Rdiss ion (4.6)

where Rdiss, Rioniz and Rdiss ion are the reaction rates for dissociation (4.1), ionization (4.5)
and dissociative ionization (4.4) respectively.

Statement 3 discussion: As mentioned before, dissociation of CO2 and O2 lead to an
enhancement of O-production with increasing electron density. Together with these processes,
quenching (4.7) is also responsible of sinks of O2 molecules that lead to the production of
O-atoms with increasing electron density.

O2 +C → CO+O (4.7)

Moreover, three-body recombination of O-atoms through (4.8) and (4.9) is very sensitive to
electron processes if O2/O balance ratio is so strongly affected by ne.

O+O+M → O2 +M (4.8)

O+CO+M → CO2 +M (4.9)

One idea to increase the overall conversion efficiency is to prevent those reactions to happen
either by working at lower pressure where O2 formation is decreased or by cooling down the
plasma very fast (i.e. ≥ 106 K/s) exploiting a nozzle effect.

Observations about carbon chemistry Studies by means of optical emission spec-
troscopy (OES) [54] detected strong emissions of C2 Swan band, suggesting that atomic
and molecular carbon may play a relevant role in CO2 discharges. For this reason, a correct
implementation of C2 chemistry is necessary. In the present model, only the two reactions
(4.10) and (4.11) are causes of sinks of C2:

e− +C2 → e− +C+C (4.10)

e− +C2 → e− + e− +C+
2 +C (4.11)

Reaction (4.10) is the dominant channel that leads to C2 splitting since its reaction rate is
always higher than (4.10). Moreover, reactions (4.12) and (4.13) are the only sinks of the
correspondent ion C+

2 :

e− +C+
2 → C+C (4.12)

C+
2 +C → C2 +C+ (4.13)
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4. Analysis of CO2 kinetic model

In particular, reaction (4.13) is the only source of C2 molecules. Thus, by fixing electron
density and temperature production and destruction processes of C2 and C+

2 are not balanced
and will not lead to an equilibrium density. On the contrary, in pulsed calculations with lower
electron density, the relative importance of (4.13) has seen to increase leading to source terms
of C2. These results suggest that a refined version of CO2 model is needed to understand
when C2 chemistry may play a role. In this framework, implementation of reactions taken
from astrochemistry [40] together with a coupled radiative model seem necessary to explain
the strong molecular and atomic carbon emission.

Ions production Positive ions are also included in the model. These ions are plotted in
Fig.(4.2) for a fixed electron temperature of 2 eV. Since also the electron density is fixed,
quasi neutrality is not respected meaning that ionization processes continuously happen.
From those calculations, it is possible to infer some informations about reaction rates of ions
production in a CO2 discharge.
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Figure 4.2: Dependence of ion steady-state densities on electron density at Te = 2 eV. A
pressure of 1000 mbar and Tg of 600 K was assumed.

◦ Higher the ne, more oxygen-based ions (i.e. O+
4 , O

+ and O+
2 ) are produced. Densities

of those ions seems to follow the inequality (4.14):

nO+
2
> nO+ > nO+

4
(4.14)

Ionization processes with O2 and O are the dominant sources of O+
2 and O+ respectively.

However, the density of O+
2 is higher than O+ because of its lower ionization potential

(i.e. 12.07 eV for O+
2 against 13.62 eV for O+, according to NIST). On the contrary,

O+
4 ion is not produced from ionization processes since O4 is not stable. Thus, its main

production channel is the three-body reaction (4.15):

O+
2 +O2 +M → O+

4 +M (4.15)

Anyway, at atmospheric pressure, reaction rate of (4.15) is lower than ionization rates
of O2 and O that drive the formation of O+

2 and O+ respectively, meaning that O+
4 it

remains a negligible species.
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4.1 Steady-state calculations

◦ Density of C2O
+
3 is slightly higher than C2O

+
4 for the whole electron density range,

while C2O
+
2 density appears to be almost 4 orders of magnitude higher.

Clusters of ions like C2O
+
2 , C2O

+
3 and C2O

+
4 are related via the combination of the

following pathways:
C2O

+
4 +CO → C2O

+
3 +CO2 (4.16)

C2O
+
3 +CO → C2O

+
2 +CO2 (4.17)

Production of C2O
+
3 is driven by reaction (4.16) that is followed by C2O

+
2 production via

reaction (4.17). This reaction chain is also observed in the following pulsed calculations.

◦ CO+
4 is the dominant ion for the whole electron density range. This ion seems to

decrease slightly with increasing electron density.

According to theoretical studies on thermal plasmas [49], at Te ≥ 9000 K, CO+
4 is the

dominant positive ion as a result of three-body reaction (4.18):

O+
2 +CO2 +M → CO+

4 +M (4.18)

However, recent measurements in Bochum in He+CO2 plasmas powered by an RF
supply at atmospheric pressure, presents also high signal from C2O

+
2 ion, with detected

CO+
2 and C2O

+
4 .

4.1.2 Influence of electron temperature
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Figure 4.3: Dependence of steady-state neutral densities on electron temperature, for fixed
electron densities. Pressure of 1000 mbar and Tg of 600 K is considered.

Fig.(4.3) shows the equilibrium densities of neutral species for different values of electron
temperature and fixed electron density at 1018 and 1020 m−3. In both plots, higher densities
are achieved for higher electron temperature. This can be easily explained since cross sections
of electron impact processes increase with electron temperature.

In Fig.(4.4) is shown the equilibration time1 for CO species deduced from different simula-
tions at different fixed values of electron density and temperature. The higher the electron
temperature (or electron density), the lower the time for CO molecules to reach steady-state
conditions. Values around 5 s are found at ne = 1019 m−3 and Te = 1 eV, while it decreases to
2·10−3 s for ne = 1021 m−3 and Te = 2.5 eV. This is due to faster reactions that happens when

1As shown in Chapter 3, this is the time in which the species starts to become in equilibrium
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Figure 4.4: CO equilibration time for fixed values of electron density and temperature.

electron temperature (or density) is increased. Typical values of electron density around 1019

m−3 and electron temperature of 2.5 eV were obtained in microwave discharges [54]. In these
conditions, shorter timescales by optical emission spectroscopy are expected with respect the
values reported here. This mismatch is mainly due to the missing excitation channels that
are the dominant pathways in MW discharges.

Effect of electronically excited states
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Figure 4.5: Equilibrium composition of dominant neutral species for fixed values of elec-
tron densities and temperature. A pressure of 1000 mbar was assumed, Tg of 600 K.
Electronically excited states are here included in the calculations.

Results of steady-state calculations including electronically excited states are reported in
Fig.(4.5). In this scenario, electron-impact excitation dissociation (4.19) is seen to have the
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4.1 Steady-state calculations

strongest effect on CO2 conversion.

CO2 + e− → CO2(7eV) + e− (4.19)

In addition, four electronic excited states of CO are included but they do not have much
effect, except the first one (i.e. CO(a3Π)) whose population is enhanced while increasing the
electron temperature, as expected. In addition, the presence of O2 excited states appears
to be relevant for CO2 dissociation. Further dissociation of O2 creates O-atoms that can
enhance the overall conversion rate. Moreover, excitation of O2 metastable levels appears to
lead population inversion. This fact suggest that some depopulation methods (i.e. radiation
or detailed balancing) has to be included in the model.

4.1.3 Influence of gas temperature

Gas temperature is a crucial parameter in gaseous discharges since it determines the energy
distribution of the heavy particles. As shown in Sec.(3.1.2), lowering the temperature in
the afterglow with fast variations may affect positively the conversion efficiency. Moreover,
according to [55], imposing a fixed gas temperature may be a strong limitation in MW
discharges which are characterised by an higher temperature in the core of the discharge. In
order to understand the role of gas temperature in the chemistry, steady-state calculations
were performed by fixing the gas temperature at four different values (i.e. 300, 600, 1000
and 3000 K). Fig.(4.6) shows the equilibrium composition of neutral ground state species2 for
these different values of gas temperature, fixed electron density (i.e. at 1018 and 1020 m−3)
and fixed electron temperature at 2 eV.
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Figure 4.6: Dependence of steady-state neutral densities on gas temperature, for fixed ne

and Te. Pressure of 1000 mbar is assumed and gas temperature of 600 K. Excited states
are not included in these calcualtions.

Assuming fixed electron temperature and density, the variation in the equilibrium composition
for different gas temperatures is mainly due to neutral collisions whose rate coefficient is
dependent on the gas temperature. Thus, analyzing the respective rates helps to infer the
following considerations:

◦ Descreasing the gas temperature from 1000 K to 300 K leads to smaller three-body
recombination rates (4.20) that form CO2. In the same conditions, O2 and O3 are

2Note that here excited states are again neglected
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produced via the enhancement of three-body reactions (4.21) and (4.22).

O+CO+M → CO2 +M (4.20)

O+O+M → O2 +M (4.21)

O+O2 +M → O3 +M (4.22)

◦ At higher temperatures (i.e. > 1000 K), O-atoms react back with CO2 producing CO
and O2 again via reaction (4.23). Higher CO2 splitting, in fact, is achieved by thermal
processes like (4.23), even if the discharge will be not energy efficient

CO2 +O → CO+O2 (4.23)

4.2 Pulsed Calculations

In order to study the effect of pulsing on the CO2 kinetic model, the following assumptions
were made:

◦ A reduced kinetic model is considered where negative ions and excited states are ne-
glected. However, their effect on the chemistry will be pointed out at the end of the
Chapter.

◦ In the first simulations, time evolution of electron temperature is imposed externally
as input, while in the others its value is calculated self-consistently from the energy
balance equation by imposing a power density profile.

◦ Electron density is deduced from quasi-neutrality assumption.

Effect of electron temperature Aim of this part is to study the effect of a long pulse on
a CO2 discharge. This effect is obtained by fixing the electron temperature (i.e. at 2 eV, as
shown in Fig.(4.7)) until equilibrium composition is reached. After that, Te is dropped down
to gas temperature (i.e. at 600 K) in tenths of microseconds in order to study post discharge
conditions.

Initial pressure considered is again around atmospheric pressure (i.e. 1000 mbar in this case)
that leads to an input CO2 density of 1.21·1025 m−3, while the other densities are set to a
value ten orders of magnitude lower. Initial electron density is set at 1.1·1016 m−3 in order
to fulfil the quasi-neutrality requirement.

The dynamics of CO2 discharge can be divided in two parts: discharge and post-discharge
(or afterglow) conditions that are defined by the electron temperature profile, as shown in
Fig.(4.7).

1) Discharge Conditions: In this phase, electron temperature was fixed at 2 eV. The
dynamics of neutral species is dominated by electron impact reactions, as already mentioned
in Sec.(4.1) for steady-state calculation. In particular, electron impact dissociation of CO2

(i.e. (4.1)) plays the major role. This process lead to the formation of CO molecules, O and
C atoms that increase with almost the same rate until about 10−5 s.

Time-evolution of ion densities is shown in Fig.(4.8). Since electron density is calculated
from quasi-neutrality assumption, its value is around 1016 m−3 during discharge conditions.
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Figure 4.7: Time evolution of principal neutral species in CO2 pulsed discharge with in-
put electron temperature of 2 eV. Electron density is calculated from quasi-neutrality
assumption.
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Figure 4.8: Evolution of ion densities for pulsed calculations at input electron temperature
of 2 eV.

For electron densities below 1020 at 2 eV, steady-state calculations already showed that O+
4 ,

C+ and O+ species are negligible. From this model, it has been observed that O+ and C+

densities drop in 10−10 s, thus are not visible in Fig.(4.8). Principal causes of that are charge
exchange reactions (4.24) and (4.25) with CO2:

C+ +CO2 → CO+ +CO (4.24)

O+ +CO2 → CO+
2 +O (4.25)
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4. Analysis of CO2 kinetic model

In addition, a similar trend can be seen between clusters of ions like C2O
+
3 and C2O

+
4 . As

pointed out in steady-state calculations, this is mainly due to the reaction chain including
(4.16) and (4.17). The net result of those reactions is the production ofC2O

+
2 , whose increase

in time can be seen after 10−4 s. Furthermore, C2O
+
2 and CO+ ions show similar evolution

trends. This behaviour is mostly due to the fact thatC2O
+
2 is source forCO+ due to reaction

(4.26):

C2O
+
2 +M → CO+ +CO+M (4.26)

However, the rate of this reaction is lower than the rate of C2O
+
2 formation(4.17). Further-

more, CO+
4 is shown to be the dominant ion of the discharge. Production of this ion is mostly

due to (4.27):

O+
2 +CO2 +M → CO+

4 +M (4.27)

2) Post-Discharge Conditions: This part describes the afterglow phase of the pulsed
simulation aforementioned (i.e. where input Te was fixed at 2 eV). The sudden drop of
electron temperature to gas temperature causes electron impact reactions to become negligible
compared to heavy particle collisions. Thus densities of some neutral atoms (like O and C)
and ions drop immediately after the pulse since their main source is due to electron impact
dissociation and ionization processes respectively. Some small effect can be noticed from
Fig.(4.7). In particular, CO2 density increases slightly during afterglow mostly due to three-
body recombination betweenCO andO (i.e. reaction (4.9)). This reaction is even responsible
for the consequent small drop in CO density after the pulse. Furthermore, recombination of
O-atoms via (4.8) is the dominant loss channel and causes a small increase in O2 density that
stays constant during afterglow. Moreover, since O3 is mainly produced by (4.28), a sudden
drop to 1011 m−3 is observed in the afterglow. This is mostly due to a decrease of O-atom
reservoirs.

O+O2 +M → O3 +M (4.28)

Moreover, while all ion densities drops in tenths of microseconds due to the fast drop of
electron temperature, CO+

4 ion appears to be more stable in the afterglow. This effect
suggests that charge exchange processes and higher dissociative recombination rates for this
ion have to be implemented.

4.2.1 High power density

As only difference with respect the pulsed simulations above, here the electron temperature
is calculated self-consistently within the model. In order to do that, a square power pulse
in time of 50 µs is defined, with a maximum input power density of 2·1011 W/m3 during
pulse phase. These conditions are more similar to a DBD case in which high reduced electric
field (more than 200 Td) is applied. Initial pressure of 1000 mbar is assumed, together with
a fixed gas temperature of 600 K. Electron density is still calculated from quasi-neutrality
assumption, while negative ions and excited states are removed.

Neutral species Time evolution of neutral species density is shown in Fig.(4.9a) during
pulsed and afterglow conditions. Since oxygen species can drive dissociation processes in CO2

plasmas, most of results of this section are related on oxygen dynamics and how this is
correlated with the evolution of other species.
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(a) Neutral species.
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Figure 4.9: Time evolution of neutral species (left) and positive charged ions (right) under
a power pulse in time of 2·1011 W/m3 (DBD conditions) for a 1000 mbar gas pressure
and 600 K of gas temperature.

During discharge conditions, the high power density applied influences the evolution of elec-
tron temperature. In particular, a steep increase of electron temperature above 7 eV is
observed in the first nanoseconds during the pulse due to low electron density, then quickly
settles to a constant value around 3.15 eV. For this reason, electron-impact reactions with
ground state molecules dominate the chemistry during pulse-phase. Created CO and O
species follow the same trend and are mainly produced by electron impact dissociation of
CO2 via reaction (4.1).

At high electron temperatures, production of C atoms is mostly determined by electron
impact dissociation of CO that leads to the production of C and O atoms. However, the rate
of this reaction is lower than the one of (4.1). The result is a net production of CO, O and
C that increase with similar trends during discharge phase.
Electron temperature sharply decreases when the power is turned off and it drops to gas
temperature in tenths of µs. This drop causes the competition of several processes involving
oxygen that happens in different timescales. Those effects are summarized in the following:

1. from 50 µs to 50 ms: O-atoms recombine quickly into O2 and O3 due to the following
reactions (4.29), (4.30) and (4.31) that happen almost with the same rate and lead to
the formation of CO2:

O+O+M → O2 +M (4.29)

O+CO+M → CO2 +M (4.30)

O+O2 +M → O3 +M (4.31)

2. from 50 ms to 200 ms: ozone produced from reaction (4.31) is relatively stable, but
at long enough time it dissociates via reaction (4.32):

O3 +M → O2 +O+M (4.32)

Charged species Fig.(4.9b) shows the time evolution of the positively charged ions in-
cluded in the model. From this plot, the following observations can be done:

◦ CO+
4 is the dominant ion during discharge at atmospheric pressure and Te > 2 eV

due to three-body reactions with O+
2 and CO2 (i.e. (4.18). This ion appears to be stable
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4. Analysis of CO2 kinetic model

in afterglow due to lack of charge exchange processes and its lower recombination rate
implemented in the model

◦ Production of C2O
+
2 is mostly due to quenching of C2O

+
3 and C2O

+
4 with CO. More-

over, evolution of C2O
+
2 follows the same trend of CO+ due to reaction (4.26)

◦ Production of O+
2 and CO+

2 are mostly due to ionization of O2 and CO2 respectively.
Furthermore, CO+

2 is source of O+
2 due to the following reaction (4.33):

CO+
2 +O → O+

2 +CO (4.33)

Effect of negative ions In this part the effect of adding negative ions in the discharge is
studied. In order to do that, different simulations were performed in the same conditions as
before just adding processes that involves the presence of negative ions. The time evolution
of negative charged species is shown in Fig.(4.10).
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Figure 4.10: Evolution of electron density and negative ion densities for a 50 µs power
pulse of 2·1011 W/m3 at 1000 mbar and 600 K of fixed gas temperature.

The following observations can be deduced from the analysis of dominant negative ion path-
ways:

◦ O− is mostly produced by dissociative attachment processes, like (4.34):

e− +CO → O− +C (4.34)

◦ CO−
3 is produced mainly by three-body association (4.35):

O− +CO2 +M → CO−
3 +M (4.35)

◦ CO−
4 is mainly produced by three-body collisions (4.36):

O−
2 +CO2 +M → CO−

4 +M (4.36)

According to Beuthe [49], theoretical studies on thermal plasmas show significant concentra-
tion of CO−

3 , O
−
2 and CO−

4 at Te between 6000 K and 18000 K. Moreover, at Te > 12000 K

54



4.2 Pulsed Calculations

also O−
3 become greater. Even if the presence of negative ions is seen to not have large effect

on evolution of the other species (except to the minor ion O+
4 ), it is worth mentioning here

that their presence can lead to release of kinetic energy by electron detachment processes. In
particular, if negative ions are included in the model, the electron temperature is seen to stay
constant around 0.5 eV, while not relaxing to gas temperature during afterglow phase. This
unphysical effect influences even the evolution of ions in the afterglow that appears still to be
produced from ionization processes. More studies are needed to understand how balancing of
reactions rates while including negative ions influence the evolution of electron temperature
through the electron energy balance equation. In particular, one reactions should be men-
tioned. This is the electron impact attachment of O2 (4.37), whose rate coefficient is deduced
from studies of thermal electron attachment to O2 [56] for M = O2:

e− +O2 +M → O−
2 +M (4.37)

Electron impact attachment reaction (4.37) is essential as it will induce a decrease in CO2

conversion since less electrons will be available for electron impact splitting of CO2. In
conclusion, even if evolution of negative ions barely influence CO2 conversion, more studies
are needed to understand balancing processes happening in the afterglow. This understanding
appears to be fundamental for a correct implementation of a self-consistent model where the
electron temperature is deduced from the electron-energy balance equation.

4.2.2 Low power density

In this Section, another simulation is performed with the same input parameters as before,
while reducing the input power density from 2·1011 W/m3 (DBD case) to 107 W/m3. This
latter case is more similar to the MW range of operations. A reduced CO2 model is still
applied, where excited states are not included.
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Figure 4.11: Evolution of electron density and temperature for a 50 µs power pulse of 107

W/m3 at 1000 mbar and 600 K of fixed gas temperature.
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4. Analysis of CO2 kinetic model

Electron kinetics Fig.(4.11) shows the time evolution of electron temperature and density.
Electron temperature increases steeply up to 3.5 eV in the first nanoseconds, then it stabilise
at a value around 1.5 eV during the pulse-phase. The steep increase is due to the electron
energy balance equation that does neither take into account the presence of negative ions
nor excited states. Inclusion of those species contributes to the balance of reaction rates of
inelastic processes, thus lowering the value of Te. As expected, lower value of power density
with respect the DBD case leads to lower value of electron temperature. This fact influence
the importance of electron-impact collisions and enhance the role of oxygen dynamics as a
key driving process leading to dissociation, as shown in the next paragraph. Furthermore,
electron density is calculated via quasi-neutrality assumption and it appears to increase dur-
ing pulse-phase due to ionization processes. However, electron density values in the afterglow
appear to be overestimated for long timescales (i.e. around some ms and later). This process
is not realistic since ambipolar diffusion will take over ultimately.
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(a) Neutral species.
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Figure 4.12: Time evolution of neutral species (left) and positive charged ions (right)
under a power pulse in time of 107 W/m3 (MW conditions) for a 1000 mbar gas pressure
and 600 K of gas temperature.

Neutral dynamics During pulse-phase, electron impact process (4.38) is the dominant
dissociative channel of CO2:

e− +CO2 → e− +CO+O (4.38)

AtTg = 600 K, production of CO is enhanced by neutral reactions (4.39) and (4.40) involving
carbon atoms:

CO2 +C → CO+CO (4.39)

O2 +C → CO+O (4.40)

Interestingly, if gas temperature is enhanced up to 2500 K during the pulse, enhancement
of reaction rate (4.41) during pulse-phase is observed with respect to the case at 600 K.
Moreover, higher gas temperature during discharge leads to enhancement of production of
O-atoms that improve the CO2 conversion.

CO2 +O → CO+O2 (4.41)

In conclusion, if vibrational excitation is not relevant, higher gas temperature during the
discharge lead to higher CO2 dissociation due to increase of oxygen collisions. Moreover,
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4.3 Influence of vibrational kinetics

reduction of gas temperature in the afterglow with fast cooling rates, can help to reduce
three-body collisions between CO and O leading to re-formation of CO2 again.

After the pulse, balancing of interactions between CO2 and CO still increase the production
of O2 and O. The result is that three-body recombination reactions (4.20) and (4.21) happen
later than 0.1 s.

Ion dynamics Time evolution of positively charged ions are shown in Fig.(4.12b). Since
the electron temperature is lower than the DBD case, presence of C2O

+
4 ion is enhanced

during the pulse, as predicted in Sec.(4.2). Production of CO+
4 and C2O

+
4 ions are mainly

due to reactions (4.42) and (4.43):

O+
2 +CO2 +M → CO+

4 +M (4.42)

CO+
2 +CO2 +M → C2O

+
4 +M (4.43)

Moreover, with power density of 107 W/m3 the C+
2 density appears to stay constant during

pulse and afterglow phase, as a difference with respect the DBD case before, where an higher
power density of 2·1011 W/m3 was applied. This suggest the fact that in pulsed calculations,
with low electron density, molecular carbon production is enhanced due to a lower reaction
rates of slitting processes.

4.3 Influence of vibrational kinetics

The aim of this Section is to investigate the role of pulsing in the full kinetic CO2 model. For
doing that, two different types of discharge are considered that differ between each other for
initial gas pressure and specific energy input (SEI):

◦ DBD discharge: High pressure of 1000 Torr is assumed together with high SEI up to
14 eV/molec. These assumptions are justified by the fact that DBD can easily operate
at atmospheric conditions while an high reduced electric field is applied.

◦ MW discharge: Lower pressure of 20 Torr is assumed and lower values of SEI (i.e. up
to 8 eV/molec) are typical with respect the DBD case.

For the following simulations, a cylindrical discharge volume is considered with radius of 1 cm
and discharge length of 10 cm. Moreover, a constant fixed gas temperature is set at 400 K. If
a particle flow rate of 5 slm is assumed, a residence time tr = 6.8 ms and a gas density flow
rate Qn = 7.1 ·1025 m−3s−1 are obtained from (1.4) and (1.5). In this model, even vibrational
excitation is included where the corresponding de-excitation processes are defined explicitly
as new reactions (so detailed balancing is not applied).

Role of pulsing Four different simulations were performed both for DBD and MW case.
In both cases, a long pulse power pulse in time of 40 µs is applied, while electron temperature
and density are calculated from the energy balance equation and quasi-neutrality assumption
respectively. Knowing the SEI and gas density flow rate, the correspondent input power
density ρ is calculated for DBD and MW cases, from (1.6). Results of these calculations are
reported in Tab.(4.1).

57



4. Analysis of CO2 kinetic model

Table 4.1: SEI assumed for DBD and MW case and corresponding calculated power den-
sity.

Table 4.2: MW case.

SEI (eV/molec) ρ (W/m3)

0.9 1.0·107
1.75 2.0·107
3 3.4·107
8 9.1·107

Table 4.3: DBD case.

SEI (eV/molec) ρ (W/m3)

1.5 1.7·107
3 3.4·107
7 8.0·107
14 1.6·108

Fig.(4.14) shows the CO2 conversion (i.e. calculated according to (1.7)) and its energy effi-
ciency (i.e. calculated with (1.8)) as a function of the SEI for both the simulated discharges.
CO2 conversion around 10 % is obtained in the case of DBD, while it increases from 4 to 18

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

18

DBD conditions

MW conditions

 

C
O

2 C
on

ve
rs

io
n 

(%
)

SEI (eV/molec)

0

5

10

15

20

En
er

gy
 E

ffi
ci

en
cy

 (%
)

Figure 4.13: Total CO2 conversion (in black) and corresponding energy efficiency (in red)
as a function of the SEI for the simulated DBD and MW discharges.

% in MW conditions even if lower SEI are assumed. This fact is mainly due to difference
in pressure. In fact, at lower pressure, VT relaxation processes are less effective and VV
up-pumping to higher vibrational levels can help to increase the overall conversion efficiency.
In both cases, however, a CO2 conversion below 20% is obtained. In fact, it is possible that
the vibrationally excited states return to the ground state by relaxation, without resulting
in CO2 splitting. Opposite trend is observed for the energy efficiency that is always below
18% and decreases with SEI. Slightly higher values for the energy efficiency are obtained for
the MW conditions fro SEI>4 eV/molec, due to the correspondent higher increase of CO2

conversion.

Effect of excited states In order to study quantitatively how vibrational and electronic
excited states influence CO2 conversion and energy efficiency, different simulations were per-
formed. In those simulations a pressure of 20 Torr and gas temperature of 300 K is assumed.
If a flow rate of 15 slm is present in a cylindrical volume of radius 0.01 m and length 0.1
m, a residence time of 3 ms is obtained. As done in the paragraph before, assuming three
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4.3 Influence of vibrational kinetics

different input values of SEI, then the correspondent power density is calculated and reported
in Tab.(4.4):

Table 4.4: Input SEI assumed and correspondent power density calculated for a 15 slm,
20 Torr, Tg=300 K and a cylindrical volume of radius 0.01 m and 0.1 length.

SEI (eV/molec) ρ (W/m3)

0.1 3.4·106
1 3.4·107
10 3.4·108

In these simulations, a square pulse in time of 40 µs was simulated with an initial constant
power density taken from Tab.(4.4). Results are shown in Fig.(4.14) where the CO2 con-
version and energy efficiency are plotted as a function of the three different values of SEI
assumed. Results obtained from the complete CO2 model are compared with the ones ob-
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Figure 4.14: Total CO2 conversion (in black) and corresponding energy efficiency (in red)
as a function of the SEI for the simulated discharge. Results with the complete CO2

model are compared with the ones obtained by removing the vibrational excited states
and the 7 eV electronic excitation process. An initial pressure of 20 Torr and gas
temperature of 300 K.

tained removing the vibrational states and the ones obtained by removing only the electronic
excitation channel to the 7 eV states (i.e. Phelps database [24]). All the results show an
increase of the CO2 conversion from around 1% at 0.1 eV/molec to a value around 30% at
10 eV/molec. Moreover, if vibrational levels are neglected lower CO2 conversion and energy
efficiency are obtained. This results shows that vibrational excitation processes cannot be
neglected if a MW discharge is taken into account. However, still limited CO2 conversion
and energy efficiencies are obtained and far from the results in literature [9], suggesting that
in this model the vibrational excitation mechanism to higher levels is limited by VV’ and VT
relaxation processes.

Concerning the electron impact cross section, in the current model two main processes that
lead electronic excitation are considered: the first one corresponds to the excitation of an
electron state with a threshold energy of 7 eV, while the second corresponds to higher ex-
citation to 10.5 eV states (i.e. see Tab.(2.2)). The cross section of the first process are not
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4. Analysis of CO2 kinetic model

considered in the Itikawa database [46], which considers only a dissociation channel with a
threshold energy of 12 eV. Moreover, the experimental dissociation cross section by Cosby
et Helm [57] partially confirms the Itikawa cross section being, however, up to a factor 5
larger [58]. For this reason, the effect of removing the 7 eV excitation channel on the CO2

conversion is investigated in this model. Results in Fig.(4.14) show that removing the 7 eV
excitation channel, however, leads to negligible effect in the overall CO2 conversion and en-
ergy efficiency. This means that vibrational excitation processes are dominant mechanisms
in these conditions with respect electronic excitation.

Vibrational Distribution Function One of the aim of vibrational kinetics is to study
the possibility of achieving vibrational distribution far from the Boltzmann one [59]. In order
to study this effect, a discharge of 40 µs pulse period is applied to a MW-case (i.e. where the
pressure is set at 20 Torr, Tg = 400 K). Results of these calculations are compared with the
ones obtained by Capitelli [55] where an input reduced electric field of 50 Td is assumed. In
the calculations reported here, however, a power density of 1·107 W/m3 is used as input that
is deduced from considerations above and leads to a comparable value of electron temperature
and density with respect the calculations of Capitelli.
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Figure 4.15: Vibrational distribution functions of the asymmetric mode vibrational levels
of CO2 in the MW case for 40 µs discharge at different times during discharge and
post-discharge conditions.

Results plotting the vibrational distribution function (i.e. vdf) of the CO2 asymmetric mode
levels are shown in Fig.(4.15) in both discharge and post-discharge conditions. During the
discharge, the vdf is governed by vibrational excitation due to electron impact processes up
to 10−2 µs, while for higher times a plateaux is formed due to VV processes that populate
higher vibrational levels. As reported in [55], from 10 µs to 40 µs the long plateaux in the vdf
is formed by the predominant VV rates against the VT ones. The higher energy part of the
distribution (ν > 18) is controlled by VT rates, which push the vdf tail to a Boltzmann one at
Tgas. In post-discharge conditions, the VT relaxation rates increase, thus higher vibrational
levels are underpopulated until Boltzmann distribution is recovered after few tenths of ms.
In this case, the vdf decreases since eV processes reduce their importance as compared to
VT ones because of the strong decrease of the electron density. Results of these calculations,
however, show that vibrational excited levels are less efficiently populated with respect to
the case of Capitelli [55]. In particular, mayor differences with respect Capitelli calculations
can be seen during discharges where the vdf in Fig.(4.15a) appears to not change from 10
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4.3 Influence of vibrational kinetics

to 40 µs. Moreover, fast relaxation to the Boltzmann distribution in 0.2 ms is observed
in Fig.(4.15b), while in Capitelli it relaxes after 1 ms. The main differences between these
results are mainly due to the electon energy distribution function (EEDF) that is assumed
Maxwellian in the current state model, while it is calculated self-consistently in the model of
Capitelli. Different EEDF leads to a computation of different rate coefficients that influence
the relative importance of VV and VT processes. Besides the method for determining rate
coefficients for electron impact reactions, in plasimo the power density is assumed as input,
while in Capitelli the reduced field is used. For this reason, a one-to-one comparison between
the two models is not appropriate and only major differences are considered here. The last
minor effect that can contribute to differences is the numerical precision that is assumed for
the constants used in the model.
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CHAPTER 5

Linear Principal Component Analysis

In Part I of this thesis a description and systematic analysis of a CO2 kinetic model is pre-
sented. This approach is based on a State-To-State description (STS) where all the different
excited levels (i.e. electronic and vibrational) are treated independently as different species.
Time evolution of those species is calculated via a set of partial differential equations that
involve particle and energy balance conservations. However, the prodigious number of reac-
tions and species implemented leads to high computational loads and difficulties for the data
analysis and output interpretation. In order to overcome those problems, two methods have
been developed to reduce the number of species equations:

1. Reduction techniques: it is accomplished by determining the minimum set of rele-
vant species and dominant reaction rates in the original kinetic mechanism. An example
of this category is the work presented by de La Fuente et al. [60] who proposed a method-
ology for the reduction of vibrational kinetics by lumping of excited levels. Moreover,
a different chemical reduction technique called Intrinsic Lower Dimensional Manifolds
(ILDM) was developed by Maas and Pope [61]. This technique is based on the fact
that a reaction system usually includes different timescales. Since fast timescales are
assumed in quasi-steady state (i.e. they are so fast that any changes in the systems
occur quickly), the system can be described only by slow timescales without any signif-
icant loss of information

2. State space parametrization: This approach is based on the assumption that the
thermodynamic state of a reacting system relaxes onto a low-dimensional manifold in
chemical state space. Thus, if a set of optimal variables is identified, the whole thermo-
chemical state can be reparametrized with a lower number of variables, which never-
theless must provide a satisfactory approximation of the system in a lower dimensional
space. An example of this technique is Principal Component Analysis (PCA)1 [62]

Both those methods have been widely applied in combustion community (e.g. by A. Parente

1Note: In this Chapter PCA will always refers to the linear version in which linearity is assumed between
original variables and the new ones, according to Assumption I of Sec.(5.1). Different nonlinear techniques
will be exploited in the next Chapter.
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[63]) and only recent studies at Eindhoven University of Technology by Rehman et al. [64]
and Peerenboom et al. [65] shine light about the possibility of applying ILDM and PCA
respectively in plasma chemistry datasets. The present work focuses on the second approach.
In this Chapter, according to the work of Peerenboom et al. [65], a mathematical derivation
of PCA is presented followed by an application on a CO2 kinetic model describing a plasma
discharge. The aim is to develop a fundamental understanding on this numerical technique
and its applicability on plasma chemistry datasets. Advantages and limitations of this method
will be explained at the end of this Chapter.

In order to dispel the magic under the black-box of PCA, all the results of the analysis
written here have been performed with codes written in MATLAB R⃝ and exchange of ideas
and opinions with Peter Koelman and Stef Bardoel was of fundamental importance and useful
for code-to-code benchmarking, thus they are here gratefully acknowledged.

5.1 Aim and assumptions

One of the primary goals dealing with multivariate data is to reduce the dimensionality of
the datasets for data explorations and further processing. PCA can be successfully used for
this purpose. The main aim of PCA is to map the data into a space of lower dimensionality
while preserving as much of the information as possible for describing the overall dynamics
of the system. In this Section, the mathematical derivation and nomenclature used in PCA
are introduced. Even if a more rigorous mathematical derivation can be found in [66] and
some tutorials are also available in [67], here a step-by-step approach is explained in order to
highlight advantages/disadvantages and assumptions of the method for a correct numerical
implementation.

Mathematical background PCA is a mathematical tool first introduced by Pearson [68]
and used to reduce the dimensionality. Even if the link between the physical intuition and
mathematics may sometimes be hard to catch, every PCA starts from a training set as input.
In practise, a training set is composed of a sample of n observations of p variables, where p
is the number of variables before reduction2:

Xi = (xi1, . . . , xip) i = 1, . . . , n (5.1)

where Xi in (5.1) is a vector storing the values of the p variables for the ith observation. If
you are performing an experiment or a simulation, each of the p-variables of X can be seen
as measurements of multiple quantities (i.e. density, temperature, voltage, etc.) recorded for
n different times. Generally speaking, X is a n× p matrix that contains all the training data
that comes from experiments or simulations. Starting from this point, the aim of PCA is the
following:

Aim
PCA is concerned with finding a few (≪ p) derived variables, called Principal Compo-
nents (PCs), which nevertheless preserve most of the information present in the original
data

2This is an approximation for a finite population even if this theory can be extended for infinite population
of measures
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In order to do that, PCA detects relationships among a set of correlated variables. If the orig-
inal variables are highly correlated, it means that they are ’saying the same thing’, thus some
redundancy is present in the system. This redundancy may be eliminated by an appropriate
change of basis in order to transform the original variables in a new set of uncorrelated vari-
ables called principal components. In its linear version, PCA makes an important assumption
for finding this new set of variables:

Assumption
The new variables are linear combinations of the original variables. Moreover, they are
uncorrelated (i.e. orthogonal) and derived so that the variance of one component is
maximum.

This assumption vastly simplifies the problems by restricting the possible number of basis
only to linear combinations of them. In practise, for a single observation of X, Xi, the first
new variable zi1 is given by the linear relation (5.2):

zi1 = Xia1 i = 1, . . . , n (5.2)

where the vector of coefficients a1 is chosen to maximize the variance of zi1. In addition, a
normalization is superimposed such that aT1 a1 = 1. In the same way, a second variable zi2 is
determined by choosing a2 in order to maximize the variance of zi2, subject to the constraint
aT2 a2 = 1. In addition to the normalization constraint, it is now imposed a second constraint
that zi2 should be uncorrelated with zi1, such that their covariance is zero:

cov(Xa1,Xa2) = 0 (5.3)

Equation (5.3) is equivalent to the simpler constraint: aT2 a1 = 0, thus vectors a1 and a2 are
taken as orthogonal. According to this method, the following property can be pointed out:

Property
Members of basis set are orthogonal and normalized such that linear combination of
them can express any arbitrary object in the space of interest.

The procedure aforementioned can be summarized in the following points:

◦ PCA first select the direction along which the variance of X is maximized and it saves
as a1.

◦ Second, it finds another direction along which the variance is maximized, however,
according to the orthonormality condition, it restrict its search only to directions per-
pendicular to the previous one.

Numerical implementation This part focuses on the numerical aspect of PCA aiming
to define a series of steps that can be followed for a correct code implementation.

1. Construction of the training set: The first input that has to be provided to PCA
is the training set. As mentioned before, a training set is a matrix whose columns
are associated with different variables (e.g. different species densities) and whose rows
represent the observables (e.g. different temporal values of the same variable). All
variables and observations are stored in a n × p matrix X. Someone may argue that
PCA has the drawback of depending on the availability of a data set for extracting
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5. Linear Principal Component Analysis

the PCs. However, it has been demonstrated [63] that this technique has the potential
to extract the PCs from a target system and to apply them to a similar system. In
this context, it is possible to say that PCA has a predictive power that is potentially
attractive for plasma chemistry simulations.

2. Data preprocessing: Data manipulation is a determinant step of PCA since it may
affect the final results, as it will be shown in Sec.(5.2). Usually, centering is applied by
subtracting the mean of each variable calculated from all observables. The advantage of
this procedure is that all the observables are converted to fluctuations, thus leaving only
the relevant variations for the analysis. In addition, the centered matrix is scaled with
an appropriate matrix of coefficients D. The choice of this D matrix is essential when
the elements of X have different units or when they span in a large range of validity
(i.e. have large variance). This may be the case of temperatures that may range from
room temperature to several electronvolts or densities that have a wide time evolution.
After centering and scaling processes a new matrix X̃ is defined according to (5.4) that
takes into account those manipulations of data:

X̃ = (X− X̄)D−1 (5.4)

whereX is the original matrix, X̄ contains the mean of each variable andD is a diagonal
matrix containing the scaling coefficients for all the variables. It is worth noting that
data preprocessing affects the final results of PCA such that the principal components
are generally changed by scaling and they are not a unique characteristic of the system.

3. Finding the PCs: This step is part of the proper PCA algorithm. This algorithm
proceeds first by calculating the covariance matrix S from (5.5), in order to measure
the correlation among different variables:

S =
1

n− 1
X̃TX̃ (5.5)

where S is a square symmetric p × p matrix whose diagonal terms are the variance
of a variable and the off-diagonal terms are the covariance between particular vari-
ables. Once the principal components are calculated, the off-diagonal terms should be
zero such that each variable co-vary as little as possible with other variables. There-
fore, removing redundancy is equivalent to diagonalizing S. Recalling the eigenvector
decomposition, S can be written as (5.6):

S = ALAT (5.6)

where A is a p× p orthogonal matrix whose columns are the eigenvectors of S and L is
a p× p diagonal matrix containing the eigenvalues of S in descending order, l1 > l2 >
· · · > lp. In this framework, eigenvalues can be interpreted as the measures of variances
of different components. According to this procedure, principal components (PCs) are
defined as the ordered eigenvectors of S, each of them associated with a particular
eigenvalue. Once calculated the principal components, a new set of variables, Z, can
be defined in matrix form as (5.7):

Z = XA (5.7)

where Z is a n× p matrix of new variables usually called PC scores, that represent the
projection of the processed data onto the PC basis.
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5.2 PCA on plasma chemistry

4. Backward transformation and reduction: Since PCA assumes a linear transfor-
mation between variables, the original variables can be stated as a function of the PCs
via the backward transformation (5.8):

X = ZA−1 (5.8)

Considering only q < p components, which account for the larger fraction of variance
originally contained in the data, a new truncated dataset of PC scores can be defined
by (5.9):

Zq = XAq (5.9)

Finally, original data can be expressed in a more compact form that takes into account
components with larger variance by using the following linear backward transformation
(5.10):

Xq = ZqA
−1
q (5.10)

Since eigenvalues can be interpreted as variance measures, it is possible to define some
criterion to determine how small q can be taken without serious information loss. One
of these criteria is based on the definition of the cumulative fraction tp of the total
variance through (5.11):

tp =

∑q
k=1 lk∑p
k=1 lk

(5.11)

since the eigenvalues lk represent a measure of variance of the different components,
the smallest number of q PCs is chosen in order to have a a percentage value of tp that
exceed a level of 80% or 90% with respect to the total value. Since principal components
with larger variances are associated with interesting dynamics, while lower variances
indicate PCs with lower auto-correlation, this approximate procedure ensures that with
the reduced numbers of PCs it is still possible to describe the principal features of the
system.

Fig.(5.1) represents a schematic illustration of PCA applied to data in two dimensions that
presents a correlation along Y = X line. As shown in those figures, the method starts
from the training set illustrated in Fig.(5.1a) that is composed by a system of 250 random
numbers with two variables correlated along one direction. Fig.(5.1b) shows that PCA finds
the optimal change of basis in which variances of the components are maximized. Firstly,
the main direction a1 which present most of the signal is found. Secondly, direction a2 is
determined restricting the search only to the ones perpendicular to a1. Fig.(5.1c) represents
the change of basis in which new data are expressed. In this case, the transformation is a
simple rotation of coordinate system. Lastly, Fig.(5.1d) shows the results of the backward
transformation and reduction described in Step 4. In this transformation, only one component
is taken into account, thus even if some information are lost, the main dynamics of the system
(i.e. along X = Y ) is clearly identified.

5.2 PCA on plasma chemistry

This section describes the application of PCA on global models, following the work of
Peerenboom et al. [65]. As described in the method above, PCA is a possible solution to
reduce the dimensionality of a dataset by reparametrizing the chemical state space into a
lower dimensional manifold containing the essential kinetics. The final goal of this method is
to solve continuity equations only for a reduced number of PCs, thus leading to a reduction
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Figure 5.1: Application of PCA method to random data correlated along one direction.

of computational load for future applications in 2-D or 3-D models. However, in this Chapter
the input training set is a 0-D kinetic model developed by Peerenboom et al. [65] that is
particularly interesting for understanding basics assumptions and steps of the method which
was implemented using MATLAB R⃝.

Initial conditions In this case, the input training set of PCA is derived from a 0-D kinetic
model that describes the time evolution of species densities in a CO2 discharge. This model
was developed in Eindhoven University of Technology to study the STS vibrational kinetics
of CO2 [65] and it was run on ZDPlaskin [69], a plasma kinetic solver that incorporates the
BOLSIG+ solver for solving the electron Boltzmann equation for the calculations of rate
coefficients. The species considered in the model are presented in Tab.(5.1):

In particular, only only two different charged species are considered (i.e. CO+
2 and e−). The

electronically excited levels are denoted as CO2(ei) with i = 1, . . . , n the progressive electron-
ically excited state considered. Most of the focus is given on vibrational kinetics, where the
first four symmetric mode levels of CO2 are included together with the 21 asymmetric mode
levels (i.e. CO2(νa . . . νd) and CO2(ν1 . . . ν21) respectively). Moreover, the first 10 vibrational
levels of CO and 4 vibrational levels of O2 are considered in the kinetics. Input reactions
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5.2 PCA on plasma chemistry

Table 5.1: Input species used for the kinetic CO2 model in [65].

Input Species

Neutrals

CO2, CO, O2, O3

Charged Species

CO+
2 , e

−

Excited Species

CO2(e1), CO2(e2), CO2(νa . . . νd), CO2(ν1 . . . ν21)
CO(e1), CO(e2), CO(e3), CO(e4), CO(ν1 . . . ν10)

O2(e1), O2(e2), O2(ν1 . . . ν4)

implemented are of three types: electron-impact and heavy particle collisions involving vibra-
tional energy exchange or formation of new neutral species. Electron impact cross sections
are implemented and given as an input to the Boltzmann solver for the calculations of rate
coefficients of electron impact reactions, while other reactions have an expression of rate
coefficient in the typical Arrhenius form. It is worth noting here that ZDPlaskin, as a differ-
ence with the model implemented on plasimo does not solve the energy balance equation for
electrons3, but a routine is implemented that calculates the reduced electric field from the
plasma parameters, as discussed in [21]. Fixed pressure (i.e. 100 Torr), gas temperature (i.e.
300 K), electron density and reduced electric field (i.e. 50 Td with a frequency of 2.45 GHz)
were assumed for the simulations aforementioned. Seven different simulations were run with
different ionization degree (i.e. different electron densities), those are: 10−7, 2·10−7, 5·10−7,
10−6, 2·10−6, 5·10−6 and 10−5. This situation refers to an homogeneous plasma similar, in
first approximation, to a microwave surfaguide discharge [70].

All the 7 different simulations aforementioned are included in the training set for the formation
of the input matrix X. This matrix is constructed such that each column is associated to the
different species reported in Tab.(5.1) and each row represents different observations in time of
the correspondent density. It is worth noting that in the following PCA calculations a proper
time range was chosen in which the ionization degrees are constant for each simulations.
Effect of steps in the ionization degree will be analyzed in Sec.(5.3).

Scaling Centering is always applied in conjunction with scaling. In this analysis five dif-
ferent scaling methods were used and are identifies by the following names, according to [71]:

◦ Auto scaling: it uses the standard deviation si such that all the elements of X have
standard deviation equal to one. Diagonal elements Dii of the scaling matrix are then
defined as (5.12):

Dii = si (5.12)

◦ PARETO scaling: it scales the variables as the square root of the standard deviations,
as shown in (5.13). In this case, the variables have a variance equal to the standard
deviation.

Dii =
√
si (5.13)

3This means that electron temperature is not calculated from this model, thus is not included as a variable
in the PCA procedure
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◦ VAST scaling: it is an acronym of variable stability scaling and it is an extension of
auto scaling. It is relevant for stable variables that does not show strong variations,
thus have small relative standard deviation. The scaling factors are defined as (5.14):

Dii =
s2i
X̄i

(5.14)

where X̄ contains the mean of each variables of the original input matrix (i.e. before
scaling and centering).

◦ Range scaling: it uses the difference between the maximum and minimum value, as
shown in (5.15). With this definition, range scaling is more sensitive to the presence of
outliers since only two variables are used to estimate the scaling factors.

Dii = max(Xi − X̄i)−min(Xi − X̄i) (5.15)

◦ Level scaling: it uses the means of the original variables, as defined in (5.16). Like
the previous scaling method, this one is also affected by the presence of outliers. Thus,
compared to scaling methods based on standard deviations, it is more sensitive on
species that appears with small concentrations in the datasets.

Dii = X̄i (5.16)

Manifold shape The task of PCA is to transform correlated species densities into un-
correlated variables called PC scores. These new variables parametrize a low dimensional
manifold in the density-space that is governed by relaxation and fast processes, thus if a
species interacts with these reactions it can be ignored in order to reduce the number of
equations. It is generally possible to visually represent the manifold by plotting the scores
of the first two components that are associated with larger variances. This technique can
be also informative to determine the best scaling method to be applied and give information
about the reconstruction error. In particular, uniqueness is necessary to assign a single value
of species density for each couple of PCs. This means that, if the manifolds are overlapping
each other, more PCs are needed to describe uniquely the density-space. In addition, smooth-
ness is a key parameter to determine the best transformation that leads to a more accurate
reconstruction. Manifolds for all the 7 different ionization degrees (i.e. from 10−7 to 10−5)
are plotted in Fig.(5.2) in the case of range scaling. According to the considerations above,
this transformations cannot uniquely describe the system, even if the manifolds for each ion-
ization degree can be visually separated, these are not smooth nor equally distributed. If
this is the case it qualitatively means that more PCs are needed to accurately describe the
chemical state space.

Reconstruction In this part, reconstruction from the PCs scores to the original densities is
performed using the backward transformation (5.10). Fig.(5.3) shows a comparison between
original densities (i.e. from the kinetic model) and reconstructed ones for the asymmetric
stretch mode of CO2 and a constant ionization degree of 10−6, range scaling was used for both
plots. Solid red lines represents original densities, while the black dots are the reconstructed
ones using 5 and 10 PCs. As expected from the considerations above, increasing the number
of PCs leads to better reconstruction, even if Fig.(5.3b) shows that more than 10 PCs are
needed for an accurate reconstruction of densities for times below 10−5 s.
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Figure 5.2: Manifold shape using range scaling. Different manifold are associated to
different simulations in which the ionization degree was fixed.

10-7 10-6 10-5 10-4
1012

1013

1014

1015

1016

1017

1018

 original data
reconstructed data

 = 21

 = 4

 = 3

 = 2

Sp
ec

ie
s 

D
en

si
tie

s 
(c

m
-3

)

Time (s)

 = 1

(a) 5 PCs.

10-7 10-6 10-5 10-4
1012

1013

1014

1015

1016

1017

1018

 original data
reconstructed data

 = 21

 = 4 = 3

 = 2

Sp
ec

ie
s 

D
en

si
tie

s 
(c

m
-3

)

Time (s)

 = 1

(b) 10 PCs.

Figure 5.3: Reconstruction of densities of asymmetric mode levels of CO2 with 5 and 10
PCs. Range scaling was applied.

Log-Transformation From considerations above, it is evident that a new method has to be
found to improve the reconstruction using a lower number of PCs. In this paragraph a possible
solution is presented in the form of log-transformation. This is an a-priori transformation
applied by taking the logarithm of all species densities in the original matrix, before scaling
and centering is applied. The numerical advantage of this method is the decrease of the
dynamic range of the datasets, thus a reduction of gradients in species densities. The results
of applying this log-transformation are evident looking at the manifold shapes. A comparison
between the manifold shapes deduced with different scaling methods (and log-transformation)
are shown in Fig.(5.4).

Moreover, results of density reconstruction using 5 and 10 PCs, range scaling and a log-
transformation are shown in Fig.(5.5). From those figures, some considerations can be de-
duced:

◦ Range scaling gives better results by uniquely determining manifold shapes with less
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Figure 5.4: Manifold shapes for different scaling methods, using log-transformation.

gradients.

◦ Comparing results from Fig.(5.3) and Fig.(5.5) and the correspondent manifold shapes
(i.e. Fig.(5.2) and Fig.(5.4a)) it is evident that log-transformation greatly improves
reconstruction results by decreasing the dynamic range of the variables.
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Figure 5.5: Reconstruction of densities of asymmetric mode levels of CO2 with 5 and 10
PCs. Range scaling and log-transformation were applied.

Time integration Once the scores have been calculated and the number of principal com-
ponents to be considered have been determined, the 0-D continuity equation can be solved
for the PCs. This equation is derived in [65] and it is presented in the form (5.17):

∂Zk

∂t
= SZk

(5.17)

where Sk is the source term of the kth PC for Zk. The source terms for the principal
components can be thus determined by (5.18):

SZk
=

∑
i

aik
Sni

Dii
(5.18)

where the source term for the densities, Sni , is multiplied by the ith component of the kth
PC aik and divided by the scaling factor Dii. If log-transformation is applied the following
modified formula (5.19) has to be taken into account for calculating the PC source terms:

SZk
=

∑
i

aik
Sni

Diini
(5.19)

In principle, it is possible to calculate the source terms for PC continuity equations from
(5.18) or (5.19). However, it has been shown [65] [72] that even small errors in the new
reconstructed densities strongly affects the accuracy of the source terms when the number
of the retained PCs is decreased. This fact is due to the strong non-linearities in the source
terms, thus a possible methods to handle this problem will be presented in Chapter 6.

5.3 Characterisation of the method

Sec.(5.2) was mainly focused on studying the different steps and assumptions of PCA ap-
plied on a CO2 kinetic model. On the contrary, this Section is mostly related on discussing
limitations and considerations about the method itself for future improvements.
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Physical interpretation The PC scores are, by construction, linear combinations of the
original variables. Therefore, their physical interpretation is usually not straightforward. In
the model presented by Peeremboom et al. [65], the first two PC scores are shown to be
correlated with the CO yield conversion and the ionization degree respectively. However,
their interpretation in terms of physical quantities is not usually possible. For this reason,
PCA generally is not useful to give insight about principal reactions or species, while it is
an appropriate tool for finding a proper set of variables that describe a sub-manifold of the
chemical state space.

Failures of the method Some important limitations of the method were found and one of
these is underlined in this paragraph. In particular, all the simulations mentioned above are
taken within a time range between 1.6·10−7 s and 7.3·10−5 s. This choice was appropriate
to obtain better results from PCA, since a constant ionization degree (i.e. constant electron
density) is present in that time range and no steep gradients on species densities are present.
On the contrary, the PCA method seems to fail if the time range is extended up to the interval
2·10−9 s − 1.6·10−4 s, where the electron density drops to zero. Results of reconstruction of
densities using this extended time range are shown in Fig.(5.6b) for the case of range scaling
and log-transformation (together the correspondent manifold shape in Fig.(5.6a)).
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Figure 5.6: Reconstruction of densities of asymmetric mode levels of CO2 (right) and
correspondent manifold shape (left) using 10 PCs. Range scaling and log-transformation
were applied.

In Fig.(5.6b), it is possible to see that the reconstruction error of densities of asymmetric
mode levels of CO2 is enhanced. Moreover, problems of non-uniqueness in the manifold
shape are found and are shown in Fig.(5.6a). These problems are mainly due to an intrinsic
limit of PCA dealing with variables that present steep gradients (i.e. like the electron density
on this case), since they can influence the reduction accuracy.

Future improvements According to [63], the PCA transformation can suffer from its
reliance on second order statistics. In fact, the PCs are uncorrelated (i.e. their second-
order product moment is zero), but they can still be highly statistically dependent. This
is particularly important when relationships among the correlated variables are nonlinear,
as it usually happens for a reacting system. In this case, PCA method fails and it need
higher number of PCs for an accurate description. Different techniques were developed in
combustion community to overcome this problem. One interesting method is known as Local
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Principal Component Analysis (LPCA) and it was developed by Parente et al. [63]. Moreover,
in this thesis a different approach was taken into account to overcome this problem and it is
based on an extension of linear PCA to its non-linear version, which is presented in Chapter
6.
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CHAPTER 6

Nonlinear Principal Component Analysis

Chapter 5 showed a complete PCA modelling approach whose principal consideration can be
summarized here:

◦ PCs are identified according to the procedure in Sec.(5.1)

◦ A reduced number of PCs is selected in order to have enough accuracy with which the
state variables are represented

◦ Continuity equations may be derived for each PCs

This procedure is schematized in Fig.(6.1) in which a backward linear transformation is ap-
plied to recover the original state variables.

Figure 6.1: Schematic representation of standard PCA procedure: original state-space
variables are used as input to perform PCA and to extract PCs scores. Linear backward
transformation is applied to reconstruct the original variables from a reduced dataset of
PCs.

However, since high nonlinearities can be present in the system, the assumption of linearity
in the PCA may be not suitable for an accurate description of the system. For this reason,
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6. Nonlinear Principal Component Analysis

different approaches must be explored. In this Chapter, two different approaches to handle
nonlinearities present in the system are proposed and applied for the first time to a simplified
molecular argon plasma model. The aim is to compare different methods and suggest possible
future implementations.

6.1 Nonlinear regression

In Chapter 5, studies about linear PCA showed that increasing the number of PCs will
lead to more accurate reconstruction results to the detriment of the computational load.
Moreover, inaccuracies on species densities will dramatically propagate on the calculation of
the source terms. A recent studies [65] proposed a solution to these problems in a form of
linear interpolation where species densities and source terms are tabulated as a function of two
principal scores. In this Section, a different approach is presented using nonlinear regression
to reconstruct species densities and source terms that are thus tabulated as a function of the
PCs scores. The scheme of this method is shown in Fig.(6.2) , where the backward linear
transformation in here substituted by the nonlinear regression to reconstruct the original
dataset.

Figure 6.2: Schematic representation of PCA + nonlinear regression procedure: original
state-space variables are used as input to perform PCA and to extract PCs scores. In
this case, nonlinear regression is used to tabulate the PC scores as a function of the
original variables in order to obtain better reconstruction (yellow path in figure).

The advantage of this method is that the linear basis derived from the PC analysis allows
to determine simple continuity equations, while using nonlinear functions within this basis
allows capturing the nonlinearities that are always present in plasma chemistry systems.

6.1.1 Aim and assumptions

This section aims to show that source terms and species densities can be parametrized by PCs
scores and tabulated a-priori to avoid run-time calculations. Moreover, accurate parametriza-
tion of source terms is fundamental for a successful application of PCA on plasma chemistry
datasets.
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6.1 Nonlinear regression

The input model In this Section, nonlinear PCA methods are tested on a dataset consist-
ing of a 0-D kinetic argon model where different non-linearities can be inserted on purpose
on the system1. This model contains five levels [64]: the ground level (Ar), 4s metastable
(Ar(4s)m), 4s resonance (Ar(4s)r), 4p (Ar(4p)), ion level (Ar+). In addition molecular argon
(Ar2) and electrons are considered as input species leading to a total number of 7 species.
The initial electron temperature is set at 32400 K, while the gas temperature is fixed dur-
ing simulation time at a value of 300K. The gas pressure is set around 1.73 mbar and the
electron density is calculated from quasi-neutrality conditions. The reactions included are
mainly excitation, de-excitation and ionization processes included in Tab.(7) of Appendix B.
Three different simulations were included in the training dataset for PCA input including
different degrees of non-linearities in the system:

◦ Simulation 1: Non linearities in the reactions are considered by including three-body
reactions. Rate coefficients are constant by fixing the electron temperature to the initial
value during all simulation time.

◦ Simulation 2: Nonlinear dependence of rate coefficients on electron temperature is
included by calculating the temperature run-time via the energy balance equation.
Three-body reactions were removed by eliminating a species that occurs on both sides
of the reaction and by multiplying the rate coefficient with the order of magnitude of
the density of this species.

◦ Simulation 3: Both non-linearities in the reactions and rate coefficients discussed in
Simulation 1 and 2 are considered via the inclusion of three-body reactions and evolution
of electron temperature run-time.

Nonlinear MARS regression Nonlinear regression is used here to model the highly non-
linear state-space variables Φ (i.e. densities or source terms) as a function of the PC scores
Zq, as expressed generally by (6.1):

Φ = fΦ(Zq) (6.1)

where fΦ is the nonlinear regression function used as a model. In this Section, a specific
regression method was used called Multivariate Adaptive Regression Splines (i.e. MARS)
implemented in MATLAB R⃝. The implementation of MARS present in the ARESLab package
[73] was used and it is based on the method introduced by Friedman [74]. This method is
able to fit local features in the curves by using β-splines. A β-spline consists of a set of fixed
positions, called knots, and a piecewise smooth curve, called basis function, connecting each
knot positions. The choice of this method is mainly due to three advantages:

◦ No assumptions are made about the specific regression function

◦ The method is adaptive so it selects the best combinations of basis functions that results
in the largest reduction of the regression error.

◦ The method is also multivariate meaning that it is able to generate models based on
several input variables (i.e. high dimensionality)

1Even if reaction rate coefficients are taken from literature [64], this is not a realistic argon model, but
a simplification made in order to test the nonlinear methods in a contest where different nonlinearities are
present
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6. Nonlinear Principal Component Analysis

A fitted curve f to the data x can be represented with a linear combination of n β-splines,
as referred in (6.2):

f(x) = a0 +
n∑

j=1

ajBj(x, q) (6.2)

where a0 and aj represents the different coefficients estimated by minimizing the residual
sum of squares and they can be considered weights that represent the importance of the
variable. Moreover, Bj(x, q) is the corresponding basis function at the point x of degree
q. The MARS algorithm iteratively selects a basis function that minimize the regression
error until convergence is achieved. In this work, a lower order basis function (i.e. cubic)
was selected to avoid overfitting of the data, while the training parameters for the fit are
calculated automatically using the standard procedure implemented. A piecewise-cubic model
was applied implementing a maximum large number of basis function (i.e. n is more than
100) to take into account all possible different non-linearities in the chemistry2.

6.1.2 Application of the method

PCA is here applied to reconstruct a-priori both species densities and source terms. Com-
parison between results obtained from a standard version of linear PCA and PCA+MARS
are given. It is important to notice that, in the case of linear PCA (i.e. Fig.(6.3a)), Ar and
Ar2 original and reconstructed densities are not even compatible.

Reconstruction of species densities In this part reconstruction of species densities using
a coupled method of linear PCA and nonlinear MARS regression is performed as a test case for
a first application. The training input dataset for PCA consists of 7 species aforementioned
whose time evolution is calculated for 3 different simulations including some implicit nonlinear
dependence between the variables. As expected, at least 5 PCs are required to accurately
reconstruct the dataset when range scaling and log-transformation is applied. Example of
species densities reconstruction for the dataset of Simulation 3 (i.e. with nonlinearities in
both rates and reactions) using 2 PCs and the backward linear transformation is shown
in Fig.(6.3a). On the contrary, results applying PCA and MARS techniques are shown in
Fig.(6.3b) and present a clearly enhanced reconstruction of species densities using only 2
PCs.

In order to quantify the error in representing the data in low-dimensional space parametrized
by Z, the R2 statistic parameter is calculated, according to (6.3):

R2 = 1−
∑n

i=1(yi − y∗i )
2∑n

i=1(yi − ȳi)2
(6.3)

where y is the original variable value, y∗ is the predicted value from reconstruction, and ȳ is
the mean value of y. The values of R2 for different species densities measure the accuracy
with which the model represents the original data and are reported in Tab.(6.1).

The results of comparison between these two methods can be summarized in the following
statements:

2Note that this is the maximum number of basis functions in the forward phase. This is arbitrary since it
may not be reached by the model. The recommended value by Friedman [74] for this parameter is about two
times the expected number of basis functions in the final model
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(a) Standard PCA.
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(b) PCA+MARS regression.

Figure 6.3: Comparison between reconstruction of species densities of Simulation 3 using
standard PCA (left) and PCA+MARS (right) with 2 PCs. Range scaling and log-
transformation were applied.

Table 6.1: Comparison of R2 values for the reconstruction of densities of 7 different
species (of Simulation 3) using backward linear transformation implemented in standard
PCA and PCA+MARS regression. In both cases log-transformation and range scaling
were used.

Species R2 (Standard PCA) R2 (PCA+MARS)

Ar - 0.980
Ar(4s)r 0.853 0.997
Ar(4s)m 0.854 0.997
Ar(4p) 0.913 0.993
Ar+ 0.971 0.998
Ar2 - 0.995
e− 0.964 0.995

◦ The MARS representation gives more accurate results using a lower number of PCs
than the direct PCA reconstruction (that leads sometimes to statistically incompatible
results between the reconstructed model and the original one3).

◦ However, these results are obtained using high number of basis functions that is a
drawback for the higher computational time required compared with Standard PCA.

◦ A non-constant electron temperature leads to high nonlinear dependencies in the reac-
tion rate coefficients that influence the performance of the PCA method.

In order to study the implications of the last point, other calculations were performed adding
the electron temperature as an input parameter in the original dataset. Results of these
calculations are shown in Fig.(6.4a) and Fig.(6.4b) for range and pareto scaling respectively.
As it can be seen from these figures, with the addition of Te, pareto scaling performs better
densities reconstruction than the range one. This is due to the fact that in this method the
square root of the standard deviation is used to scale the variables so the relevance of the

3Reconstruction of Ar and Ar2 using Standard PCA gives negative values of R2 that means the model used
to describe those species is incompatible with the original dataset.
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6. Nonlinear Principal Component Analysis

temperature is enhanced with respect to the other variables of the state-space. This scaling
procedure is equivalent to forcing the first PCs to align with the temperature.
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(a) PCA+MARS: range scaling.
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(b) PCA+MARS: pareto scaling.

Figure 6.4: Comparison between reconstruction of species densities and electron temper-
ature (for Simulation 3) using 2 PCs with PCA+MARS method applying range scaling
(left) and pareto scaling (right). Log-transformation was applied in both cases.

In addition, another advantage of this scaling method can be seen in Fig.(6.5) where the
eigenvalue magnitude for each PCs is plotted. Since high eigenvalues are measure of larger
variance of the system, the first 2 PCs describe the majority of information of the dataset.
This can be seen in Fig.(6.5b) for pareto scaling where more than 95% of the total variance
is taken into account considering the firsts 2 PCs. On the contrary, ”only” 90% of that is
captured if range scaling is applied (i.e. Fig.(6.5a)). This reflects the fact that larger weights
are associated with the first PCs if pareto scaling is applied.
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(a) PCA+MARS: range scaling.
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(b) PCA+MARS: pareto scaling.

Figure 6.5: Eigenvalue magnitude and correspondent variance for 8 different PCs.
Range scaling (left) and pareto scaling (right) were applied in combination with log-
transformation.

Reconstruction of source terms PCs are not conserved variables4, thus their source
terms must be calculated to solve the continuity equation for the PCs scores. However, it has

4This is a statement that is generally valid if PC scores are deduced from the species densities that are
deduced by solving a continuity equation
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6.2 Kernel Principal Component Analysis

Table 6.2: Comparison of R2 values for the reconstruction of 2 PC source terms using
PCA+MARS regression for different scaling methods. Log-transformation was applied
in every cases.

PC source term Range Auto Pareto Level Vast

SZ1 0.971 0.995 0.994 0.997 0.994
SZ2 0.993 0.989 0.996 0.996 0.997

been shown [75] that introduction of a small error in the reconstruction of the state-space
variables can dramatically influence the calculations of the source terms. The error in many
cases propagates exponentially due to the characteristic expression of the rate coefficients.
The reason is that PCA transformation is applied on the state variables (i.e. densities,
electron temperature, etc.) and it aims to find correlations between them, but it is not
optimized for finding a basis function for the source terms. In addition, PC source terms
SZi

present highly nonlinear dependence on the PC scores. For these reasons a nonlinear
regression technique was used to create a model for SZi

as a function of Zi, where the
training values for SZi

are calculated from the original dataset of species Xi. The advantage
of using this method is that approximation errors due to PCA is not propagated into the
model for SZi

. Tab.(6.2) shows the R2 values for the regression of source terms for various
scaling approaches, using 2 PCs. As the scaling greatly affects the manifold shape, it is
interesting to see how it affects the ability to parametrize the source terms.

Results from Tab.(6.2) can lead to the following considerations:

◦ Looking at the range scaling method, PC source terms are parametrized with less
accuracy than the state-space variables. This is obvious since the PCA technique is
designed to find the optimal representation of these variables and this basis may not
be optimal for describing the source terms.

◦ There is an influence of the choice of scaling on the accuracy of PC source terms.
In particular, Pareto scaling gives more accurate results for reconstruction of species
densities and source terms. On the contrary, Range scaling does not perform accurate
results mostly due to non-linearities present in the system (e.g. variation of electron
temperature).

6.2 Kernel Principal Component Analysis

Classical PCA investigates mainly the potential co-linearity between the variables. Thus it
may not be completely adequate for complex data where the dependencies are nonlinear.
For this reason, within the context of combustion [76] [77], recent investigations on the role
of Kernel Principal Component Analysis (KPCA) as a nonlinear extension of PCA were
performed. In this part of the work a version of KPCA was implemented on MATLAB R⃝ and
tested on the reduced argon model aforementioned. Coupling with MARS regression was
used to reconstruct the original variables, according to the scheme in Fig.(6.6).
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6. Nonlinear Principal Component Analysis

Figure 6.6: Schematic representation of KPCA + nonlinear regression procedure: original
state-space variables are used as input to perform KPCA and to extract PCs scores in
the feature space. Nonlinear regression is applied to reconstruct the original variables
from a reduced dataset of PCs.

6.2.1 Aim and assumptions

The goal of this work is to investigate whether KPCA can result in a more effective reduction
of the original data while detecting non-linearity with respect to the standard linear PCA
approach. The method is intuitively described here following the code implementation, while
more accurate mathematical derivation can be found in [78].

Step 1: mapping in the feature space The main idea of the method is the same as
PCA: it seeks to project the data onto a lower dimensional space that captures the highest
possible amount of variance in the data. However, while PCA performs a linear separation,
KPCA embeds the data in a higher dimensional space (i.e. called feature space) by a mapping
function ψ and performs linear separation in that space [78]. In order to take an example,
let’s consider a three class problem with data xi i = 1, 2 in R2 plotted in Fig.(6.7a). These
three class are represented by three concentric circles with different radii (i.e. r1 = 0, r2 = 2
and r3 = 5 respectively), each composed by 50 points and generated from a normal random
distribution (with polar angle θ uniformly distributed in [0, π] and standard deviation equal
to 0.1). Those data are clearly linearly inseparable in the input space, however they would
have to be separated via a mapping from R2 to R3 (i.e. to the feature space), defined as
(6.4):

ψ : X = R2 −→ H = R3

(x1, x2) 7 → (x1, x2, x
2
1 + x22)

(6.4)

In Fig.(6.7b) it is visible that a projection to an higher dimensional quadratic surface makes
the problem linearly separable such that the centre can be separated with a plane. Standard
PCA is now performed in the feature space in order to identify the sub-dimensional space
in which the rings can be linearly separated. Final result of KPCA5 applied in this 3-D
space is shown in Fig.(6.7c) where the two datasets are completely distinguishable in the new
projected space (Z1, Z2) and can be separated using only one component.

5Here Gaussian Kernel (with σ = 0.99) is applied for KPCA
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6.2 Kernel Principal Component Analysis

(a) Original training dataset.

(b) Projection in 3-D feature space. (c) Application of KPCA.

Figure 6.7: Original datasets (top) are mapped in an higher dimensional space (bottom
left), then KPCA is applied in this 3-D space to make the problem linearly separable
(bottom right).

Step 2: choose a kernel function It has been shown that KPCA looks at linear de-
pendencies in feature space that correspond to non-linear dependencies in the original space.
However, due to high dimensionality, performing standard PCA in the new feature space can
be extremely costly and inefficient. In addition, the best mapping ψ is not always known
since variables can present some hidden (or non obvious) dependences between each other.
Fortunately it is possible to use kernel methods to work in the high dimensional space without
explicitly mapping into the space. This procedure is commonly known in literature as kernel
trick and it is mathematically described in [79]. The main idea is that sometimes it is possible
to compute dot-products without explicitly mapping in higher dimensional space. According
to Mercer’s theorem, this is done by defining the so called kernel function k that is calculated
from the training dataset xi. The main freedom of this procedure lies in choosing the kernel
function. Some widely used kernels are the linear, polynomial and Gaussian kernels, given
by:

◦ Linear kernel:

k(xi, xj) = xi · xj (6.5)
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◦ Polynomial kernel:
k(xi, xj) = (xi · xj + c)d (6.6)

where c is a constant and d is the degree of the polynomial

◦ Gaussian kernel:
k(xi, xj) = exp(− ∥ xi − xj ∥2 /(2σ2)) (6.7)

where σ is the typical gaussian parameter

The linear kernel (6.5) simply identifies the feature space with the input space. Implicitly,
the polynomial kernel (6.6) maps the inputs into a feature space of dimensionality O(Dd),
while the Gaussian kernel (6.7) maps the inputs onto the surface of an infinite-dimensional
sphere. It is worth noticing here that if the original input dataset X consists, for example,
of different variables each of 100 observations, then the kernel function is indeed a matrix K
of dimension 100 × 100. Thus the computational load cannot be negligible if large datasets
are taken into account6. Three constrained criteria has to be mentioned for the definition of
the kernel matrix:

◦ Semipositive definiteness: thus the matrix is symmetric with non-negative eigenvalues.
This is necessary in order to define dot-products in the feature space.

◦ Centering: kernel matrix has to be centered in the feature space. This is important in
order to interpret the eigenvalues of the kernel matrix as measures of variance along
principal components in feature space. The numerical trick to implement this property
is described in Step 3

◦ Isometry: this constraint restrict all the possible mapping by considering only trans-
formations that preserves angles and distances in feature space

From these considerations it is immediately evident one important difference with respect
standard PCA:

While PCA is a technique that is not based on user experience, KPCA is a parametric
analysis. It means that an a-priori knowledge on the dynamics of the system must be
incorporated by the user. This is a difficulty since an optimal method to find the most
appropriate kernel and parameters has to be determined, but it is also an advantage
since the dynamics can be described more accurately.

An example of application of KPCA using different kernels is shown in Fig.(6.8) on a train-
ing set consisting on two concentric spheres (i.e. two classes are here considered). The
total number of points considered for the entire input dataset is N = 1000, thus each class
contains N/2 points distributed on a sphere of radius r1 = 40 (in blue) and r2 = 100 (in
red). All three coordinates are perturbed by Gaussian noise of standard deviation 1. As
expected, Fig.(6.8b) shows that application of standard PCA on this dataset does not reveal
the nonlinear dependence between variables that is present in the original space. On the con-
trary, Fig.(6.8c) shows that applying KPCA with polynomial kernel (with d = 5 and c = 1)
dataset 1 results clustered, while dataset 2 is scattered. The optimal results are obtained in
Fig.(6.8d) with Gaussian kernel, whose datasets, after KPCA, becomes linearly separable in
a 2-D space. The optimal choice of the σ parameter is discussed in [80] (and more generally
in [81]) and computed automatically by the code such that σ is set to an optimal value large
enough to capture only the neighbourhood information of each data point and smaller than
the inter-class distance between the spheres.

6This aspect will be described better later in Sec.(6.3)
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(a) Original training dataset.
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(c) KPCA: polynomial kernel (d = 5, c = 1).
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(d) KPCA: Gaussian kernel (σ = 24.57).

Figure 6.8: Application of standard PCA, KPCA with polynomial kernel (d = 5) and
KPCA with Gaussian kernel (σ = 24.57).

Step 3: centering: One of the assumptions of the method is that projected data in feature
space must be centered (i.e. have zero mean). Anyway it is not generally possible to center
the data without knowing a-priori the mapping form. In this case, again linear algebra comes
to help since it is sufficient to substitute the N ×N kernel matrix K with the so called Gram
matrix K̃ defined as (6.8):

K̃ = K− 1NK−K1N + 1NK1N (6.8)

where 1N is the N × N identity matrix where all elements are equal to 1/N . The Gram
matrix is generally the diagonalized form of the kernel matrix K.

Step 4: solve the eigenvalue problem: Once the Gram matrix (of the correspondent
kernel matrix) is calculated, the normal PCA procedure can be applied by computing the
eigenvalues and eigenvectors of K̃. As described in [79], this procedure is mathematically
equivalent of solving the eigenvalue problem for the covariance matrix in the feature space.
Eigenvectors are then normalized by the square root of the eigenvalues. In the same way
as standard PCA, only eigenvectors corresponding to larger eigenvalues are retained since
the dominant eigenvalues of the kernel matrix are a measure of variance along the principal
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6. Nonlinear Principal Component Analysis

components in feature space. Even if KPCA is just an extension of standard PCA based on
linear algebra, two main differences have to be pointed out:

◦ KPCA is based on mapping the original manifold in higher dimensional space where
PCA is performed. Thus, unlike the standard PCA procedure, this method allows the
extraction of a number of PCs that can exceed the input dimension

◦ Being just a basis transformation, standard PCA allows to reconstruct the original
dataset from a set of PCs using a backward transformation. On the contrary, in KPCA
is more difficult and it is not always guaranteed that it is possible to find an exact
reconstruction of the input space. This is referred in literature as the problem of pre-
image and an analytical approximation for Gaussian kernel can be found in [80] [82].

6.2.2 Application of the method

In this section, validation of KPCA method is done by applying it to a plasma chemistry
dataset in order to reconstruct species densities. In particular, the focus of this work is to
determine a mapping that ”unfolds” the manifold in feature space and to point out if a correct
reconstruction of original state-space variables is indeed possible. In order to tabulate and
reconstruct the original variables, MARS regression was coupled to the KPCA code. The
input model is the reduced kinetic 0-D argon model aforementioned which considers 7 species
and 3 different simulations. Since the choice of the kernel plays an important role in KPCA,
two different kernels were used to reveal different types of low dimensional structure. Gaussian
(σ = 0.34) and polynomial kernel (d = 3) were used to sample a low dimensional manifold.
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(a) Gaussian kernel (σ = 0.34).
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(b) Polynomial kernel (d = 3, c = 1).

Figure 6.9: Reconstruction of species densities of Simulation 3 using KPCA+MARS with
Gaussian kernel (left) and polynomial kernel (right). Log transformation was applied in
both cases.

Fig.(6.9) shows the results of reconstruction of species densities of Simulation 3 using KPCA+MARS
taking into account 2 PCs and log-transformation. As a difference with respect the case be-
fore, Gaussian kernel (i.e. Fig.(6.9a)) performs badly in finding the optimal manifold in
feature space. This is explained by the fact that this kernel is not suitable when steep gra-
dients are present in the datasets. In fact, Gaussian kernel computes a nearly zero inner
product (i.e. Ki,j ∼ 0) in feature space for inputs xi and xj that do not belong to the same
closely overlapping neighbourhoods. Thus, it follows that the feature vectors ψ(xi) and ψ(xj)
must be nearly orthogonal. This fact is immediately visible in manifold shape of Fig.(6.10)
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where the first 2 PCs are shown. As a result, the different simulations are mapped into
orthogonal regions of the feature space such that, in this case, rather than unfolding the
manifolds, Gaussian kernel leads to an embedding of it. For this reason, polynomial kernel
clearly outperform the species densities reconstruction with respect to the Gaussian case. In
fact, polynomial kernels have a very clear interpretation in terms of higher order features and
are thus more suitable to take into account the dynamics of the system.
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Figure 6.10: Manifold shape in feature space obtained from KPCA applied on the ar-
gon model. Gaussian kernel was used (with σ = 0.34). Three orthogonal directions are
obtained in the manifold shape corresponding to the three different simulations included.

6.3 Discussion and Next Steps

Nonlinear regression MARS nonlinear regression is a straightforward application to ex-
tract the state-space variables. This method is simpler as compared to other models like
neural networks since it is an extension of linear methods that can model non-linearities.
However, it is worth noticing here that log-transformation was always applied before us-
ing the PCA or KPCA procedure. This trick allows to a better tabulation of datasets for
MARS regression that can lead even to negative densities if steep gradients are present in
the data. Thus, it is important to investigate some other regression method that may lead
to more accurate results without the necessity of implementing log-transformation. For this
purpose, some recent works in combustion communities [76] [77] investigated the application
of KPCA in combination of Associative Neural Networks (ANN) to tabulate and reconstruct
the state-space variables. Moreover, some other different nonlinear regression techniques, like
Support Vector Regression and Gaussian Process Regression, were suggested in [75]. Com-
parison between different linear and nonlinear techniques may also be useful to improve the
performance of the methods in term of reconstruction and computational time. Another
straightforward idea is to divide the PC state-space into clusters and to perform regression
separately in each of these clusters. As a consequence a better regression will be obtained
and the computational time will also be reduced.

Kernel Principal Component Analysis The choice of an optimal kernel function is
crucial for a correct implementation of KPCA methods. In particular, in this Chapter it
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6. Nonlinear Principal Component Analysis

was shown that Gaussian kernel performs better with synthetic random data by projecting
it on a hypersphere, while polynomial kernel can handle high nonlinearities even in more
complex datasets (e.g. in plasma chemistry datasets). Moreover, experience on KPCA showed
that increasing the degree of the polynomial above three may lead to some problems in
reconstruction of species densities accompanied by exponential increase of the computational
time. For this reason, further refinements are needed in the code for an optimal a-priori
kernel selections that can be based on learning techniques. Moreover, a fine tuning of the
parameters choice can be implemented, following the work of [81]. Another technique to
choose the proper parameters may be to test the performance of many different values on a
randomly chosen subset, then using the values that perform best. This approach is known as
K-Fold Cross Validation [78] [83]. Up to now, only the optimal choice of the σ for Gaussian
kernel is implemented in the code used in this study. For conclusion, implementation of
scaling in feature space may help to improve the manifold reconstruction (i.e. concerning
smoothness and uniqueness) and to handle different state-space variables that presents larger
variations in time.

Computational load Invariably, coupling of PCA (or KPCA) with MARS regression is
more expensive than using linear regression from lookup tables to extract species densities
and source terms, but the cost of both procedure can be completed within a maximum of half
an hour per simulation using MATLAB R⃝ software and a stand-alone workstation. The main
disadvantage of this method is that MARS regression needs a large amount of basis function
to perform accurate results. Further studies may consider different methods aforementioned
to decrease the computational time and improve reconstruction at the same time.

Future developments In this Chapter, a first application of non-linear PCA is presented
and applied on a reduced argon model. The choice of this model is particularly adapted due
to different non-linearities that are present in the three simulations included. However, even
an extension of these methods is possible and it was tested on the larger CO2 MW model
exposed in Chapter 3 and 4. In this context, is it shown that MARS regression is a powerful
technique to reconstruct species densities and source terms. This method, in combination
with KPCA, may be an alternative to perform reduced simulations by solving the continuity
equations only for the PCs, as suggested in [77].

92



CHAPTER 7

Conclusions

In recent years, studies about CO2 conversion into chemicals and fuels are ongoing since such
process can help in reducing the greenhouse gases emission while keeping a carbon-based
economy. Developments of means to store solar energy in chemical bonds is the main objective
of these studies. In this framework, non-equilibrium plasmas are optimal candidates as they
can form chemically active species and enhance the overall CO2 conversion. A roadmap
to achieve optimal CO2 conversion will benefit from the combined support of experimental
work and modelling, which has to deal with different time and spatial scales ranging from the
fast electronic excitation to the slow neutral gas dynamics. Moreover, complexity of plasma
chemistry systems leads to difficulties on the interpretation of data and high computational
load. Hence, in this thesis two Parts are developed in order to study a complex plasma
chemistry system:

1. Analysis of CO2 global model by simplification of the chemistry in order to find principal
pathways in a CO2 discharge.

2. Implementation of numerical reduction techniques in order to reduce the species and
reactions considered, thus decreasing the computational time.

Part 1 focuses on a state-of-the-art CO2 global model that is used to study the plasma dy-
namics. The model includes rate coefficients for each processes as input and allow deducing
the time evolution of discharge species densities. Moreover, the time evolution of the electron
temperature is calculated from the energy balance equation while assuming a Maxwellian
energy distribution function for the electrons. One other main assumption is that the model
densities and temperatures are spatially averaged, thus only their time dependence is con-
sidered. In this framework, a stepwise approach is considered that aims to study different
subsystems present in the CO2 chemistry. Within this part, Chapter 3 presents a study on
neutral interactions happening in a CO2 plasma in Local Thermodynamic Equilibrium. A
comparison between a kinetic model implemented on plasimo and a thermodynamic model
suggests that production of C-atoms is enhanced at temperatures higher than 5000 K due
to thermal CO dissociation. Future implementations of the CO2 model have to take into ac-
count this process. Moreover, balancing between forward and backward reactions lead to long
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equilibration times (i.e. in the order of tenths of seconds) between neutral species suggesting
that electron dynamics and excited states has to be taken into account for an appropriate de-
scription of discharge and post-discharge kinetics. In order to maximize the CO2 conversion
into CO, the backward inverse recombinations has to be minimized. Hence, in this thesis,
two methods are numerically investigated to mitigate the effect of recombination and can be
tested experimentally. The first idea is to reduce the rate of the recombination reactions by
cooling down the plasma quickly (i.e. with a cooling rate higher than 106 K/s). This process
lowers the recombination contribution by effect of thermal quenching. In addition, another
idea is to remove some oxygen species from the plasma before cooling it down. The advan-
tage of this technique is that higher conversion efficiencies are predicted even at lower cooling
rates. Principal pathways in oxygen discharges were studied by comparing results from oxy-
gen chemistry implemented in the CO2 model of Koelman [21] and the Kemaneci model [43]
developed to describe a microwave discharge that was already experimentally benchmarked.
Comparison between those two models showed that O(1D) species have a relevant dynamics
on oxygen discharge since it is mainly produced by electron impact splitting of O2 during the
pulse-phase. Since it is a metastable oxygen state, it influences the O2 production even at
longer times in the afterglow. In addition, production of ozone in the afterglow seems to be
underestimated in the CO2 model due to missing oxygen recombination reactions. Studying
experimentally the equilibrium composition of O3 and O2 in the afterglow may help to vali-
date the model and to highlight principal processes. Hints of carbon chemistry are presented
in Chapter 3, where emission from C2 species is suggested to be due to production of C2O
molecules. By studying the pathways involving this molecule, it is possible to deduce that
its production is related with the presence of oxygen.

Chapter 4 presents a systematic study on a state-of-the art CO2 global model, starting from
a simplified chemistry, through the complete CO2 model. Steady-state calculations are ini-
tially presented on a reduced CO2 model in which excited states are neglected. In those
calculations fixed electron density and temperature are assumed and results shows that both
O and C-atoms are strongly influenced by the increase of electron temperature and density.
Moreover, direct electron impact dissociation of CO2 is found to be the dominant channel
with respect ionization and dissociative ionization. Results of steady state calculations shows
that the equilibration time is strongly influenced by the presence of excited states. In partic-
ular, this relaxation time is shown to decrease of one order of magnitude if electron impact
excitation is considered. However, since electronic de-excitation mechanisms like spontaneous
emission are not taken into account in the model, a population inversion between ground state
species and electronically excited species is observed. Pulsed calculations using the reduced
CO2 model aforementioned were presented first by fixing externally the electron tempera-
ture, then by calculating it self-consistently with the electron energy balance equation (2.6).
Results of pulsed calculations at high and low power density shows dominant neutral and
charged species that can be checked experimentally by means, for example of mass spectrom-
etry and laser induced fluorescence. Moreover, in all those calculations the role of oxygen
dynamics is shown to be relevant. This suggest that a correct implementation of oxygen mod-
els is one key for improving the accuracy of CO2 global models. At the end of the Chapter,
results of pulsed calculations with the complete CO2 model are shown. Comparing results of
those calculations with the ones of Capitelli obtained in similar conditions, confirms that self
consistent EEDF calculations are important for an accurate description of CO2 vibrational
distribution function. The CO2 model used in this thesis seems more appropriate for describ-
ing CO2 conversion processes happening in DBD conditions where micro-discharges of some
nanoseconds are considered. Further extension of this model for describing longer pulses in
the case of MW discharges has to be investigated in the future.
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It is evident that current chemical CO2 global models include complex chemical kinetics
with numerous species and coupled networks of reactions. This induces challenges in the
numerical implementations mostly due to the implied computational load. For this reason,
Part 2 of the thesis deals with implementing numerical reduction methods to lower the
number of species. This method is called Principal Component Analysis (PCA), whose linear
version is applied in Chapter 5 on a current CO2 chemistry model, following the work of
Peeremboom et al. [65]. The basic idea of this method is that the chemical state space
(i.e. describing all the species and reaction rates) can be reduced to a lower dimensional
manifold. The goal of PCA is thus to find an optimal parametrization of this subspace by
looking into correlations in the chemistry. The intrinsic non-linear nature of the system,
however, poses a serious challenge for obtaining an accurate reduction. For this reason, a
nonlinear version of PCA was developed and applied to a simplified argon model that presents
different nonlinearities intrinsically in the input chemistry. The choice of this reduced argon
model was seen to be a good combination between a manageable model with challenging
nonlinearities in the chemistry, but extension of this method to larger chemistries (i.e. like
CO2) showed promising results. Recommendations are highlighted to improve robustness
and efficiency of the methods. The simulations in this thesis have all been limited to a
zero dimension (i.e. no spatial components and transport are included). The nonlinear
PCA method implemented, called Kernel PCA, was shown to provide good reconstruction
by projecting the original dataset in higher dimensional space. Good accuracy is however
accompanied by higher computational load with respect of PCA due to the higher dimension
of the generated datasets. This fact has to be taken into account for future implementation
of the method on larger models. In conclusion, all those numerical methods aim to be
applied in higher dimensional 2D or 3D model in order to obtain a significant reduction of
the computational time required for solving the continuity equation only for few principal
components.
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Appendix A

The tables presented in this Appendix A are taken from [21] and are kindly shared by Peter
Koelman, PhD student in TU Eindhoven.

Table 1: The electron impact ionization and excitation reactions in this model, with the
corresponding ID and reference from which the data originates. For the reaction ID is
unchanged with respect to [8]. For an added reaction the ID ends with an additional a.
Most, but not all, of the reactions are described by a cross section.

No. Reaction Ref.
X1 e− + CO2 → e− + CO2 [25] a

X2 e− + CO2 → e− + e− + CO+
2 [25] a

X3 e− + CO2 → e− + e− + CO+ + O [46] b

X4 e− + CO2 → e− + e− + C+ + O2 [46] b

X5 e− + CO2 → e− + e− + O+ + CO [46] b

X6 * e− + CO2 → e− + e− + O+
2 + C [49] d

X7 e− + CO2 → O− + CO [25] b

X8 e− + CO2 → e− + CO + O [46] b

X9 e− + CO2 → e− + CO2[e1] [25] a

X10 e− + CO2 → e− + CO2[e2] [25] a

X11 e− + CO2 → e− + CO2[va] [25]
X12 e− + CO2 → e− + CO2[vb] [25]
X13 e− + CO2 → e− + CO2[vc] [25]
X14 e− + CO2 → e− + CO2[vd] [25]
X15 e− + CO2 → e− + CO2[v1] [25] c

X16 e− + CO → e− + CO [84] a

X17 e− + CO → e− + e− + CO+ [85] a

X18 e− + CO → e− + e− + C+ + O [85] b

X19 e− + CO → e− + e− + O+ + C [85] b

X20 e− + CO → O− + C [84] b

X20a * e− + CO → e− + C + O [57] b

X21 e− + CO → e− + CO[e1] [84] a

X22 e− + CO → e− + CO[e2] [84] a

X23 e− + CO → e− + CO[e3] [84] a
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a The same cross section is used for the excited species.
b For vibrationally excited species the cross section of the ground state species is used. For electronically
excited species scaling is used, which is shifting of the energy with the change of energy between the two
species.

c The cross section is modified according to equation (4) of [8].

Table 2: Continue.

No. Reaction Ref.

X24 e− + CO → e− + CO[e4] [84] a

X25 * e− + CO → e− + CO[v1] [84] c

X26 e− + C → e− + C [25]
X27 e− + C → e− + e− + C+ [25]
X29 e− + C2 → e− + e− + C + C [86]
X30 e− + C2 → e− + e− + C+

2 [86]
X31 e− + O2 → e− + O2 [24] a

X32 e− + O2 → e− + O + O [46] b

X33 e− + O2 → e− + e− + O+
2 [24] a

X34 e− + O2 → e− + e− + O + O+ [87] b

X35 e− + O2 → O− + O [24] b

X36 e− + O2 → e− + O2[v1] [24]
X37 e− + O2 → e− + O2[v2] [24]
X38 e− + O2 → e− + O2[v3] [24]

X39 * e− + O2 → e− + O2[e1] [24] a

X40 * e− + O2 → e− + O2[e2] [24] a

X41 e− + O3 → e− + O3 [25]
X42 e− + O3 → e− + O2 + O [8]
X43 e− + O3 → e− + e− + O+

2 + O [8]
X44 e− + O3 → e− + O+ + O− + O [8]
X45 e− + O3 → O− + O2 [25]
X46 e− + O3 → O−

2 + O [25]
X47 e− + O → e− + O [25]
X48 e− + O → e− + e− + O+ [25]

a The same cross section is used for the vibrationally excited species.
b The cross section is modified according to equation (4) of [8] for vibrationally excited species. For elec-
tronically excited species the energy data from the LUT is shifted with the difference in energy between
the species in the ground state and the electronically excited state. Consequently the threshold energy of
the process equals the threshold energy in the (modified) LUT.

c The cross section is modified according to equation (4) of [8] for vibrationally excited species.
d For this reaction a rate coefficient is used, which reads:
7.0× 10−19Te(1 + 1.3× 10−5Te) exp(−1.5× 105/Te).
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Table 3: Electron attachment and electron-ion recombination reactions. The reported
rate coefficients have the units m3/s or m6/s, with the gas temperature Tg in K and the
electron temperature Te in eV .

No. Reaction Rate coefficient Ref

E1 * e− + CO+
2 → CO[v1] + O 2.00 · 10−11 T−0.5

e T−1
g [88, 89]

E2 e− + CO+
2 → C + O2 3.94 · 10−13 T−0.4

e [49]
E3 e− + CO+

4 → CO2 + O2 1.61 · 10−13 T−0.5
e [49]

E4 * e− + CO+ → C + O 3.68 · 10−14 T−0.55
e [8]

E5 e− + C2O
+
2 → CO + CO 4.0 · 10−13 T−0.34

e [38]
E6 e− + C2O

+
3 → CO2 + CO 5.4 · 10−14 T−0.7

e [38]
E7 e− + C2O

+
4 → CO2 + CO2 2.0 · 10−11 T−0.5

e T−1
g [38]

E8 * e− + C2+ → C + C 1.79 · 10−14 T−0.5
e [8]

E9 * e− + O2 + M → O−
2 + M 3.0 · 10−42 ·A a [38, 89]

E10 * e− + O3 + M → O−
3 + M 5.0 · 10−43 [90]

E11 e− + O + M → O− + M 1.0 · 10−43 [38]
E12 e− + O+

2 + M → O2 + M 1.0 · 10−38 [88]
E13 e− + O+

2 → O + O 6.0 · 10−13 T−0.5
e T−0.5

g [88, 89]

E14 * e− + O+ + M → O + M 2.49 · 10−41 T−1.5
e [38]

E15 e− + O+
4 → O2 + O2 2.25 · 10−13 T−0.5

e [91]

a A = 1, 2/3 and 2/3 for M = CO2, CO and O2 respectively.

Table 4: The neutral-neutral interactions with the rate coefficients as they are included
in the model, in units of m3/s and m6/s. The coefficient α originates from [8], where the
values are presented as estimates.

No. Reaction rate α Ref

N1 * CO2 + M → CO + O + M 1.81 · 10−16 exp(−49000/Tg) 0.8 [92,93]
N2 CO2 + O → CO + O2 2.8 · 10−17 exp(−26500/Tg) 0.5 [49,93,94]

N3 * CO2 + C → CO + CO ≤ 1.0 · 10−21 [38]

N4 * O + CO + M → CO2 + M 8.2 · 10−46 exp(−1510/Tg) ·A a 0.0 [38,93]
N5 O2 + CO → CO2 + O 4.2 · 10−18 exp(−24000/Tg) 0.5 [49,93]

N6 * O3 + CO → CO2 + O2 ≤ 4.0 · 10−31 [49, 93]

N7 * C + CO + M → C2O + M 6.31 · 10−44 [93, 95]
N8 O2 + C → CO + O 3.0 · 10−17 [38, 93]

N9 * O + C + M → CO + M 2.14 · 10−41(Tg/300)
−3.08 exp(−2114/Tg) [49]

N10 * O + C2O → CO + CO 9.51 · 10−17 [96]
N11 O2 + C2O → CO2 + CO 3.3 · 10−19 [38]

N12 * O + O3 → O2 + O2 8.0 · 10−18 exp(−2056/Tg) [93,96]
N13 O3 + M → O2 + O + M 4.12 · 10−16 exp(−11430/Tg) [49]

N14 * O + O2 + M → O3 + M 5.51 · 10−46(Tg/298)
−2.6 [97]

N15 * O + O + M → O2 + M 5.2 · 10−47 exp(900/Tg) [94]

a A = 2, 1, 1 for M = CO2, O2 and CO, respectively.
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Table 5: The list of ion-neutral and ion-ion reactions and rate coefficients, with Tg the
gas temperature in K and Te the electron temperature in eV. The rate coefficients are
in units of m3/s and m6/s. The ID corresponding to the reactions is kept the same as
in [8].

No. Reaction Rate coefficient Ref

I1 O+
2 + CO2 + M → CO+

4 + M 2.3 · 10−41 [49]
I2 * O+ + CO2 → O+

2 + CO 8.1 · 10−16 [49, 98]
I3 * O+ + CO2 → CO+

2 + O 9.0 · 10−17 [49, 98]
I4 * C+ + CO2 → CO+ + CO 1.1 · 10−15 [49, 98]
I5 CO+ + CO2 → CO+

2 + CO 1.0 · 10−15 [38, 49,88,98]
I6 * O− + CO2 + M → CO−

3 + M a 9.0 · 10−41 [38]
I7 * O−

2 + CO2 + M → CO−
4 + M 1.0 · 10−41 [38]

I8 O−
3 + CO2 → CO−

3 + O2 5.5 · 10−16 [38, 88]
I9 O−

4 + CO2 → CO−
4 + O2 4.8 · 10−16 [38]

I10 * CO+
2 + CO2 + M → C2O

+
4 + M 3.0 · 10−40 [38]

I11 O+ + CO → CO+ + O 4.9 · 10−18(Tg/300)
0.5 exp(−4580/Tg) [98]

I12 O− + CO → CO2 + e− 5.5 · 10−16 [49, 98]
I13 CO−

3 + CO → CO2 +CO2 + e− 5.0 · 10−19 [88]
I14 C2O

+
3 + CO → CO2 +C2O

+
2 1.1 · 10−15 [38]

I15 C2O
+
4 + CO → CO2 +C2O

+
3 9.0 · 10−16 [38]

I16 * C2O
+
3 + CO + M → CO2 +C2O

+
2 + M 2.6 · 10−38 [38]

I17 * C2O
+
4 + CO + M → CO2 +C2O

+
3 + M 4.2 · 10−38 [38]

I18 C+ + CO → C +CO+ 5.0 · 10−19 [49]
I19 CO+ + C → CO +C+ 1.1 · 10−16 [99]
I20 O+

2 + C → CO+ +O 5.2 · 10−17 [99]
I21 O+

2 + C → C+ + O2 5.2 · 10−17 [99]
I22 C+

2 + C → C2 + C+ 1.1 · 10−16 [99]
I23 CO+

2 + O → O+
2 +CO 1.64 · 10−16 [99]

I24 CO+
2 + O → O+ +CO2 9.62 · 10−17 [99]

I25 CO+
2 + O2 → O+

2 + CO2 5.3 · 10−17 [99]
I26 * CO−

3 + CO+
2 → CO2[vb] + CO2[vb] + O 5.0 · 10−13 [89]

I27 * CO−
4 + CO+

2 → CO2[vb] + CO2[vb] + O2 5.0 · 10−13 [89]
I28 * CO+

2 + O−
2 → CO[v1] +O2 + O 6.0 · 10−13 [89]

I29 CO+ + O → CO +O+ 1.4 · 10−16 [99]
I30 CO+ + O2 → CO +O+

2 1.2 · 10−16 [99]
I31 C2O

+
2 + O2 → CO + CO + O+

2 5.0 · 10−18 [38]
I32 C2O

+
2 + M → CO+ + CO + M 1.0 · 10−18 [38]

I33 C2O
+
2 + CO−

3 → CO2 +CO +CO + O 5.0 · 10−13 [38]
a Multiplied by 1, 3.3, 3.3 for M = CO2, CO, O2 respectively.
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Table 5: Continued.

No. Reaction Rate coefficient Ref

I34 C2O
+
2 + CO−

4 → CO2 +CO +CO + O2 5.0 · 10−13 [38]
I35 C2O

+
2 + O−

2 → CO +CO + O2 6.0 · 10−13 [38]
I36 C2O

+
3 + CO+

3 → CO2 + CO2 + CO + O 5.0 · 10−13 [38]
I37 C2O

+
3 + CO−

4 → CO2 + CO2 + CO + O2 5.0 · 10−13 [38]
I38 C2O

+
3 + O−

2 → CO2 +CO + O2 6.0 · 10−13 [38]
I39 * C2O

+
4 + M → CO+

2 +CO2 + M 1.0 · 10−20 [38]
I40 C2O

+
4 + CO−

3 → CO2 +CO2 +CO2 +O 5.0 · 10−13 [38]
I41 C2O

+
4 + CO−

4 → CO2 + CO2 + CO2 + O2 5.0 · 10−13 [38]
I42 C2O

+
4 + O−

2 → CO2 + CO2 + O2 6.0 · 10−13 [38]
I43 * O+

2 + CO−
3 → CO2[vb] +O2 +O 3.0 · 10−13 [88]

I44 * O+
2 + CO−

4 → CO2[vb] + O2 + O2 3.0 · 10−13 [88]
I45 CO−

3 + O → CO2 + O−
2 8.0 · 10−17 [88]

I46 CO−
4 + O → CO−

3 + O2 1.1 · 10−16 [49]
I47 CO−

4 + O → CO2 + O2 + O− 1.4 · 10−17 [49]
I48 CO−

4 + O → CO2 +O−
3 1.4 · 10−17 [49]

I49 CO−
4 + O3 → CO2 + O−

3 + O2 1.3 · 10−16 [38]
I50 C+ + O2 → CO + O+ 4.54 · 10−16 [99]
I51 C+ + O2 → CO+ + O 3.8 · 10−16 [49]
I52 O+ + O2 → O+

2 + O 1.9 · 10−17(300/Tg)
0.5 [49]

I53 * O+
2 + O2 + M → O+

4 +M 2.4 · 10−42(300/Tg)
3.2 [91]

I54 * O−
2 + O2 + M → O−

4 + M 3.5 · 10−43(300/Tg) [91]
I55 O− + O2 → O3 + e− 1.0 · 10−18 [38]
I56 * O− + O2 + M → O−

3 + M 1.1 · 10−42(300/Tg) [38,48,91]
I57 * O− + O3 → O + O−

3 5.3 · 10−16 [38]
I58 O− + O3 → O2 + O2 + e− 3.0 · 10−16 [100]
I59 * O−

2 + O3 → O2 + O−
3 4.0 · 10−16 [100]

I60 O−
3 + O3 → O2 + O2 + O2 + e− 3.0 · 10−16 [38]

I61 O+ + O3 → O+
2 + O2 1.0 · 10−16 [91]

I62 * O+ + O + M → O+
2 + M 1.0 · 10−41 [101]

I63 * O− + O → O2 +e− 2.3 · 10−16 [48]
I64 O−

2 + O → O2 + O− 3.31 · 10−16 [48, 91]
I65 O−

2 + O → O3 + e− 1.5 · 10−16 [48]
I66 O−

3 + O → O3 + O− 1.0 · 10−19 [100]
I67 O−

3 + O → O2 + O2 + e− 1.0 · 10−19 [38]
I68 O−

3 + O → O−
2 + O2 2.5 · 10−16 [38, 90]

I69 O−
4 + O → O−

3 + O2 4.0 · 10−16 [91]
I70 O−

4 + O → O− + O2 + O2 3.0 · 10−16 [91]
I71 O+

4 + O → O+
2 + O3 3.0 · 10−16 [91]

I72 * O−
2 + O+ + M → O3 + M 1.0 · 10−37(300/Tg)

2.5 [49]
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Table 5: Continued.

No. Reaction Rate coefficient Ref

I73 * O−
2 + O+ → O2 +O 2.7 · 10−13(300/Tg)

0.5 [48]
I74 * O−

2 + O+
2 → O2 + O2 2.01 · 10−13(300/Tg)

0.5 [48]
I75 O−

2 + O+
2 → O2 + O + O 4.2 · 10−13 [88]

I76 * O−
2 + O+

2 + M → O2 + O2 + M 1.0 · 10−37(300/Tg)
2.5 [49]

I77 * O−
2 + M → O2 + M + e− 2.7 · 10−16(300/Tg)

−0.5 exp(−5590/Tg) [49]
I79 * O−

3 + O+
2 → O3 + O2 2.0 · 10−13(300/Tg)

0.5 [48]
I80 * O−

3 + O+
2 → O3 + O + O 1.0 · 10−13(300/Tg)

0.5 [48]
I81 * O−

3 + O+ → O3 + O 1.0 · 10−13(300/Tg)
0.5 [49]

I82 * O−
3 + M → O3 + M + e− 2.3 · 10−17 [49]

I84 * O− + O+ → O + O 4.0 · 10−14(300/Tg)
0.43 [48]

I85 * O− + O+ + M → O2 +M 1.0 · 10−37(300/Tg)
2.5 [48]

I86 * O− + O+
2 → O2 + O 2.6 · 10−14(300/Tg)

0.44 [48]
I87 * O− + O+

2 → O + O + O 4.2 · 10−13(300/Tg)
0.44 [48]

I88 * O− + O+
2 + M → O3 + M 1.0 · 10−37(300/Tg)

2.5 [49]
I89 * O− + M → O + M + e− 4.0 · 10−18 [38]
I90 * O−

4 + M → O−
2 + O2 + M 1.0 · 10−16 exp(−1044/Tg) [91]

I91 * O+
4 + M → O+

2 + O2 + M 3.3 · 10−12(300/Tg)
4 exp(−5030/Tg) [91]
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Table 6: The VV and VT reactions of CO2, CO and O2, with the corresponding rate
coefficient, obtained from [8]. The anharmonicity parameter xe is required when applying
the VV and VT rate coefficient scaling laws.

No. Rate coefficient (m3/s) xe(·10−3) Ref Note
V1 CO2va + M → CO2 + M 0.0 [102] a

7.14× 10−14 exp(−177T
−1/3
g + 451T

−2/3
g )

V2a CO2v1 + M → CO2va + M 3.7 [102] b

4.25× 10−7 exp(−407T
−1/3
g + 824T

−2/3
g )

V2b CO2v1 + M → CO2vb + M 1.0 [102] b

8.57× 10−7 exp(−404T
−1/3
g + 1096T

−2/3
g )

V2c CO2v1 + M → CO2vc + M −15.6 [102] b

1.43× 10−11 exp(−252T
−1/3
g + 685T

−2/3
g )

V3 COv1 + M → CO + M 6.13 [103] c

1.0× 10−18 Tg exp(−150.7T
−1/3
g )

V4 COv1 + O2 → CO + O2 6.13 [102]

3.19× 10−12 exp(−289T
−1/3
g )

V5 O2v1 + M → O2 + M 0.0 [102] d

1.30× 10−14 exp(−158T
−1/3
g )

V6 O2v1 + O2 → O2 + O2 0.0 [103]

1.35× 10−18 Tg exp(−137.9T
−1/3
g )[1− exp(−2273/Tg)]

−1

V7a CO2v1 + CO2 → CO2vb + CO2va 2.8 [102]

1.06× 10−11 exp(−242T
−1/3
g + 633T

−2/3
g )

V7b CO2v1 + CO2 → CO2va + CO2vb 17.6 [102]

1.06× 10−11 exp(−242T
−1/3
g + 633T

−2/3
g )

V8 CO2v1 + CO2 → CO2 + CO2v1 5.25 [104]
1.32× 10−16(Tg/300)

0.5 250/Tg
V9 COv1 + CO → CO + COv1 6.13 [103]

3.4× 10−16(Tg/300)
0.5 (1.64× 10−6 Tg + 1.61/Tg)

V10 CO2v1 + CO → CO2 + CO2v1 5.25; 6.13 [102]

4.8× 10−18 exp(−153T
−2/3
g )

a The rate coefficient is multiplied with 1.0, 0.7 and 0.7 for CO2, CO and O2, respectively.
b The rate coefficient is multiplied with 1.0, 0.3 and 0.4 for CO2, CO and O2, respectively.
c The same rate coefficient for M = CO2 and CO.
d The rate coefficient is multiplied with 0.3 and 1.0 for M = CO2 and CO, respectively.
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Appendix B

This section contains the reaction set that is included in the argon model, taken from [105].

Table 7: Reaction set included in argon model for application of non-linear PCA.

No. Reaction Rate coefficient

(X1) Ar + e → Ar(4s)r + e 2.50 · 10−15T 0.74
e exp (−11.56/Te)

(X2) Ar + e → Ar(4s)m + e 2.50 · 10−15T 0.74
e exp (−11.56/Te)

(X3) Ar(4s)r + e → Ar + e 4.30 · 10−16T 0.74
e

(X4) Ar(4s)m + e → Ar + e 4.30 · 10−16T 0.74
e

(X5) Ar + e → Ar(4p) + e 1.40 · 10−14T 0.71
e exp (−13.20/Te)

(X6) Ar(4p) + e → Ar + e 3.90 · 10−16T 0.71
e

(X7) Ar(4s)r + e → Ar(4p) + e 8.90 · 10−13T 0.51
e exp (−1.59/Te)

(X8) Ar(4s)m + e → Ar(4p) + e 8.90 · 10−13T 0.51
e exp (−1.59/Te)

(X9) Ar(4p) + e → Ar(4s)r + e 1.50 · 10−13T 0.51
e

(X10) Ar(4p) + e → Ar(4s)m + e 1.50 · 10−13T 0.51
e

(X11) Ar(4s)r + e → Ar(4s)m + e 3 · 10−13

(X12) Ar(4s)m + e → Ar(4s)r + e 2 · 10−13

(X13) Ar + e → Ar+ + e + e 2.30 · 10−14T 0.68
e exp (−15.76/Te)

(X14) Ar(4s)r + e → Ar+ + e + e 6.80 · 10−15T 0.67
e exp (−4.20/Te)

(X15) Ar(4s)m + e → Ar+ + e + e 6.8 · 10−15T 0.67
e exp (−4.20/Te)

(X16) Ar(4p) + e → Ar+ + e + e 1.8 · 10−13T 0.61
e exp (−2.61/Te)

(X17) Ar+2 + e → Ar(4s)r + Ar 0.6 · 10−12(Te/300)
0.66

(X18) Ar+2 + e → Ar(4s)m + Ar 0.6 · 10−12(Te/300)
0.66

(X19) Ar+ + e + e → Ar + e 8.75 · 10−39T−4.5
e

(X20) Ar+ + Ar + Ar → Ar+2 + Ar 2.25 · 10−43(Th/300)
−0.40

(X21) Ar+2 + e → Ar+ + Ar + e 1.11 · 10−12 exp
(
−2.94−3(Th−0.026)

Te

)
(X22) Ar+2 + Ar → Ar+ + Ar + Ar 5.22 · 10−16T−1.00

h exp (−1.304/Th)
(X23) Ar(4s)r → Ar 1 · 105
(X24) Ar(4p) → Ar(4s)r 3.2 · 107
(X25) Ar(4p) → Ar(4s)m 3 · 107
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Degrez. Dimension reduction of non-equilibrium plasma kinetic models using principal
component analysis. Plasma Sources Science and Technology, 24(2):025004, 2015.

[66] Christopher M Bishop. Neural networks for pattern recognition. Oxford university
press, 1995.

[67] Jon Shlens. A tutorial on principal component analysis derivation. Discussion and
Singular Value Decomposition, 25, 2003.

[68] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11):559–572, 1901.

[69] S Pancheshnyi, B Eismann, GJM Hagelaar, and LC Pitchford. Computer code zd-
plaskin, university of toulouse, laplace. Technical report, CNRS-UPS-INP, Toulouse,
France, 2008, http://www.zdplaskin.laplace.univ-tlse.fr, 2008.

[70] Tiago Silva, Nikolay Britun, Thomas Godfroid, and Rony Snyders. Study of CO2 de-
composition in microwave discharges by optical diagnostic methods. In Plasma Science
and Technology-Progress in Physical States and Chemical Reactions. InTech, 2016.

[71] Alessandro Parente and James C Sutherland. Principal component analysis of turbulent
combustion data: Data pre-processing and manifold sensitivity. Combustion and flame,
160(2):340–350, 2013.

[72] Amir Biglari and James C Sutherland. A filter-independent model identification tech-
nique for turbulent combustion modeling. Combustion and Flame, 159(5):1960–1970,
2012.

[73] Gints Jekabsons. ARESLab: Adaptive regression splines toolbox for Matlab/Octave.
http://www.cs.rtu.lv/ jekabsons/ regression.html , Version 1.13.0, May 15, 2016.

[74] Jerome H Friedman. Multivariate adaptive regression splines. The annals of statistics,
pages 1–67, 1991.

111

http://www.zdplaskin.laplace.univ-tlse.fr
http://www.cs.rtu.lv/jekabsons/regression.html


BIBLIOGRAPHY

[75] Benjamin J Isaac, Jeremy N Thornock, James Sutherland, Philip J Smith, and Alessan-
dro Parente. Advanced regression methods for combustion modelling using principal
components. Combustion and flame, 162(6):2592–2601, 2015.

[76] Hessam Mirgolbabaei, Tarek Echekki, and Nejib Smaoui. A nonlinear principal com-
ponent analysis approach for turbulent combustion composition space. international
journal of hydrogen energy, 39(9):4622–4633, 2014.

[77] Hessam Mirgolbabaei and Tarek Echekki. Nonlinear reduction of combustion com-
position space with kernel principal component analysis. Combustion and Flame,
161(1):118–126, 2014.

[78] Daniel Olsson. Applications and Implementation of Kernel Principal Component Anal-
ysis to Special Data Sets. 2011.

[79] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component
analysis as a kernel eigenvalue problem. Neural computation, 10(5):1299–1319, 1998.

[80] Quan Wang. Kernel principal component analysis and its applications in face recogni-
tion and active shape models. arXiv preprint arXiv:1207.3538, 2012.

[81] Md Ashad Alam and Kenji Fukumizu. Hyperparameter selection in kernel principal
component analysis. 2014.

[82] Xiang Ma and Nicholas Zabaras. Kernel principal component analysis for stochastic
input model generation. Journal of Computational Physics, 230(19):7311–7331, 2011.

[83] Jong-Min Lee, ChangKyoo Yoo, Sang Wook Choi, Peter A Vanrolleghem, and In-Beum
Lee. Nonlinear process monitoring using kernel principal component analysis. Chemical
engineering science, 59(1):223–234, 2004.

[84] James E Land. Electron scattering cross sections for momentum transfer and inelastic
excitation in carbon monoxide. Journal of Applied Physics, 49(12):5716–5721, 1978.

[85] OJ Orient and SK Strivastava. Electron impact ionisation of H2O, CO, CO2 and CH4.
Journal of Physics B: Atomic and Molecular Physics, 20(15):3923, 1987.

[86] RK Janev, I Murakami, T Kato, and JG Wang. Cross sections and rate coefficients for
electron-impact ionization of hydrocarbon molecules. Technical report, National Inst.
for Fusion Science, 2001.

[87] E Krishnakumar and SK Srivastava. Cross-sections for electron impact ionization of
O2. International journal of mass spectrometry and ion processes, 113(1):1–12, 1992.

[88] Hirokazu Hokazono and Haruo Fujimoto. Theoretical analysis of the CO2 molecule
decomposition and contaminants yield in transversely excited atmospheric CO2 laser
discharge. Journal of applied physics, 62(5):1585–1594, 1987.

[89] RE Beverly. Kinetic modelling of a fast-axial-flow CO2 laser. Optical and Quantum
Electronics, 14(1):25–40, 1982.

[90] LE Khvorostovskaya and VA Yankovsky. Negative ions, ozone, and metastable com-
ponents in dc oxygen glow discharge. Contributions to Plasma Physics, 31(1):71–88,
1991.

[91] IA Kossyi, A Yu Kostinsky, AA Matveyev, and VP Silakov. Kinetic scheme of the
non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Science and
Technology, 1(3):207, 1992.

112



BIBLIOGRAPHY

[92] AV Eremin, VS Ziborov, VV Shumova, D Voiki, and P Roth. Formation of O(1D)
atoms in thermal decomposition of CO2. Kinetics and catalysis, 38(1):1–7, 1997.

[93] JA Manion, RE Huie, RD Levin, DR Burgess Jr, VL Orkin, W Tsang, WS McGivern,
JW Hudgens, VD Knyazev, DB Atkinson, et al. NIST chemical kinetics database, NIST
standard reference database 17, version 7.0 (web version), release 1.4. 3, data version
2008.12, national institute of standards and technology, gaithersburg, maryland, 20899-
8320. Web address: http:// kinetics.nist.gov , 2008.

[94] W Tsang and RF Hampson. Chemical kinetic data base for combustion chemistry. part
i. methane and related compounds. Journal of Physical and Chemical Reference Data,
15(3):1087–1279, 1986.

[95] D Husain and RJ Donovan. Electronically excited halogen atoms. Advances in Photo-
chemistry, Volume 8, pages 1–75, 1971.

[96] R Atkinson, DL Baulch, RA Cox, RF Hampson Jr, JA Kerr, MJ Rossi, and J Troe.
Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry:
Supplement v. IUPAC subcommittee on gas kinetic data evaluation for atmospheric
chemistry. Journal of Physical and Chemical Reference Data, 26(3):521–1011, 1997.

[97] H Hippler, R Rahn, and J Troe. Temperature and pressure dependence of ozone for-
mation rates in the range 1–1000 bar and 90–370 k. The Journal of chemical physics,
93(9):6560–6569, 1990.

[98] DoL Albritton. Ion-neutral reaction-rate constants measured in flow reactors through
1977. Atomic data and nuclear data tables, 22(1):1–89, 1978.

[99] J Woodall, M Agúndez, AJ Markwick-Kemper, and TJ Millar. The UMIST database
for astrochemistry 2006. Astronomy & Astrophysics, 466(3):1197–1204, 2007.

[100] AA Ionin, IV Kochetov, AP Napartovich, and NN Yuryshev. Physics and engineering
of singlet delta oxygen production in low-temperature plasma. Journal of Physics D:
Applied Physics, 40(2):R25, 2007.

[101] Baldur Eliasson. Basic data for modelling of electrical discharges in gases: oxygen.
Asea Brown Boveri Corporate Research Report, pages KLR–86, 1986.

[102] Jay A Blauer and Gary R Nickerson. A survey of vibrational relaxation rate data
for processes important to CO2-N2-H2O infrared plume radiation. Technical report,
ULTRASYSTEMS INC IRVINE CA, 1973.

[103] M Capitelli, C Gorse, S Longo, and D Giordano. Collision integrals of high-temperature
air species. Journal of thermophysics and heat transfer, 14(2):259–268, 2000.

[104] Thomas G Kreutz, James A O’Neill, and George W Flynn. Diode laser absorption
probe of vibration-vibration energy transfer in carbon dioxide. Journal of Physical
Chemistry, 91(22):5540–5543, 1987.
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