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Introduction

Consider a drop of a conductive liquid in the three dimensional space endowed with a positive charge
Q > 0, in absence of gravity and at rest. Under such conditions, only two kinds of forces affect the
configurations of the system by competing one against another. Surface tension is determined by intrinsic
physical properties of the fluid: it acts locally on the drop’s surface and it induces cohesive effects.
Specifically, it prevents the drop from crumbling and it is manifested by the tendency of the liquid to
shrink into the minimum surface area possible. Conversely, the positive electric charge provokes repulsive
forces of Coulombic type between the particles composing the droplet. Its action is strongly nonlocal
and it often dominates surface tension, deforming and breaking the shape of the liquid. Both in their
stable and unstable regimes, such charged droplets significantly contribute to many applications in the
experimental field, ranging from electrowetting in digital micro-fluids to optics and electronic displays.

A question which naturally arises is whether there exists or not any stable configuration (in a sense to be
specified) of the system under the influence of these two forces and, in the event, how such structure may
be characterized. In particular, from a mathematical standpoint, we are interested in building a model
to analyse with the tools of Calculus of Variations the scenario we described above. We provide first a
heuristic construction conveying the basic ideas (pioneered by Lord Rayleigh in [24]): to do so we keep
sticking to the physically relevant three dimensional case just for the the time being. Calling E ⊂ R3 the
set corresponding to our drop, De Giorgi’s perimeter P (E) is the optimal notion employable with the
purpose of minimizing the surface area, as it often happens in many variational problems. In addition,
the fact that it is defined locally on the drop suits perfectly the features of surface tension. On the other
hand, we represent the configuration assumed by the charge with a probability measure µ supported on
the set E. Its Coulombic interaction takes into account of all the possible couples of units of charge (hence
it is nonlocal) and it writes as:

Q2

ˆ
RN×RN

dµ(x)dµ(y)

|x− y|
.

Since the charge is free to position itself within the drop according to its repulsive nature, it is reasonable
to assume that the optimal configuration it reaches minimizes its Coulombic energy. We do not know yet
whether there can be proved existence of a minimum or not, hence we just pass the previous expression
to the infimum and find the Riesz interaction energy of the set E :

Q2I2(E) := Q2 inf
µ(E)=1

ˆ
RN×RN

dµ(x)dµ(y)

|x− y|
.

The general energy of the whole system is easily defined by considering both the surface tension and the
repulsive interaction together:

F2,Q(E) := P (E) +Q2I2(E).

As the liquid drop is free to move in R3 simultaneously maintaining its volume m > 0, it is natural to
optimize in the shape of the drop E, in an attempt to find configurations of minimal energy. Thus, the
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following problem is determined:
min

|E|=m
F2,Q(E).

After presenting the model for charged drops in R3, we are ready to examine a more general version
of the problem, with dimension not necessarily N = 3 and whose nonlocal interaction comprehends the
Coulombic one just as a particular case. For N ≥ 2 and α ∈ (0, N), we define consequently:

Iα(E) := inf
µ(E)=1

ˆ
RN×RN

dµ(x)dµ(y)

|x− y|N−α
and Fα,Q(E) := P (E) +Q2Iα(E).

Therefore, as the title states, the aim of the dissertation is to study the variational problem:

min
|E|=m

Fα,Q(E).

The constant m > 0 denotes a fixed volume for the set E, and we always assume without loss of generality
m = ωN . Our exposition deals with multiple classical topics of Calculus of Variations: definition and
well-posedness of the problem, existence and regularity of minimizers, their stability under a specific class
of perturbations. More precisely, the thesis is organized as follows.

In the first chapter the variational problem is introduced in a rigorous way, outlining all the notions
we need to carry out our analysis in the next ones. We begin by covering some basic concepts from
potential theory, among which the two most important are the definitions of Riesz energy of a set and of
potential function of a measure, presented together with their essential properties. Next, a few remarks
on fractional Laplacians and Sobolev spaces are provided as well. Later on, we resume the definition of
the variational problem we just sketched above, immediately stating the only significant construction of
the chapter, which leads us to infer ill-posedness of the minimum problem when α > 1. Such outcome
forces us to make some delicate considerations about the class of sets which we are allowed to work over
and where the functional Fα,Q is well-defined, that eventually result in properly formulating the problem
we want to study. Then, we conclude by defining generalized sets and measures, thanks to which we can
give another different formulation of the variational problem by broadening the domain of the energy
functional.

As it turns out, generalized sets play a key role when trying to prove existence of minimizers for Fα,Q

and the first half of the second chapter is devoted to tackling this issue. We kickoff by modifying
once again the functional, initially adding a Λ-relaxation to get rid of the volume constraint and then
introducing an ε-regularization for the Riesz energy Iα. These adjustments make the problem definitely
less tough to handle and, as a consequence, they let us prove existence of generalized minimizers for
the new functional Fα,Q,Λ,ε, by applying a relatively standard concentration-compactness argument to a
minimizing sequence. At this point, the idea is to derive some properties of such generalized minimizers,
with the purpose of recovering solutions to the variational problem for Fα,Q we started with. Thus,
we show a first minimality property enjoyed by generalized minimizers, thanks to which we are able to
deduce a few of their first good features and then existence of solutions to the problem:

min
|Ẽ|=ωN

Fα,Q(Ẽ).

Next, we are ready to focus on regularity of minimizers: our aim consists in proving C1,β regularity
of their boundaries for some β ∈ (0, 12 ) and to do so we are obliged to separately consider the cases
α < 1 and α = 1. When α ∈ (0, 1) the conclusion is straightforward, as we exploit once more the first
almost minimality property we found before in order to appeal to classical regularity theory for almost
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minimizers of the perimeter. Moreover, with the help of the Quantitative Isoperimetric Inequality, we
understand that for Q small enough not only any generalized minimizer is actually a classical one, but
also it converges in C1,γ with γ < β to the unit ball B1 as Q → 0. Obtaining the same conclusions
for α = 1 is a bit more tricky, as, unfortunately, we are not able to argue with the same strategy.
Nevertheless, with the help of a somehow similar procedure, we still manage to show that generalized
minimizers of F1,Q enjoy Reifenberg flatness, a weaker yet extremely helpful for our goals notion of
regularity. Later on, a second almost minimality property for minimizers of F1,Q is derived: very similar

to the first one, their only structural difference is the presence of an L
2N

N+1 norm, which needs to be
estimated in order to draw the same outcomes of the case α < 1. This is probably the most convoluted
result of the dissertation and it requires many tools from elliptic PDE theory. The main ingredient is
Alt-Caffarelli-Friedman monotonicity formula indeed, but we stress anyway the necessity of employing
Reifenberg flatness. Finally, we conclude the chapter presenting an additional non-existence result in
dimension N = 2 and for large enough charges Q.

The third and last chapter of the exposition begins by giving the definition of nearly spherical sets, namely
all the sets E with |E| = ωN and simultaneously close to the unit ball B1 in the C1,γ topology. Then, we
prove minimality of the ball for the functional Fα,Q among nearly spherical sets sufficiently close to the
ball, in the slightly more general case α ∈ (0, 2). Coming back to the situation we studied before with
α ∈ (0, 1], we highlight that classical minimizers of Fα,Q are nearly spherical if the charge Q is small
enough. Thus, the last result allows us to infer both stability of the ball under small C1,γ perturbations
and its minimality for the functional Fα,Q. In particular, the goals of proving existence, regularity and
to characterize minimizers of Fα,Q are all achieved and we can wrap up the dissertation.

The main references we relied upon are the two articles [12] and [15] by Michael Goldman, Matteo Novaga
and Berardo Ruffini, where the variational problem was introduced and studied first. We highlight as
well the importance of Landkov’s book [16], source of almost all the useful results on potential theory.
Of course, many other references are employed and quoted throughout the thesis and their exhaustive
list can be found in the corresponding final section of the dissertation.
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Chapter 1

The variational problem

The purpose of the first chapter is to set the stage for what will follow later on in the dissertation. The
variational problem we want to study is introduced, as well as some helpful tools we will employ to tackle
it. In the first section we present all the basic preliminary results which allow us to handle the matter.
In the second one instead the problem is defined and we provide an ill-posedness result in the case α > 1.
Finally, in the last section we discuss the right class of sets where the functional is well defined and we
introduce the notions of generalized sets and measures.

1.1 Notation and preliminary results

The first section is entirely devoted to collecting all of the helpful definitions and results which we are going
to apply throughout the thesis. We deal mostly with basic topics from potential theory and functional
analysis, especially focusing on Riesz energy and potentials. Before beginning, please notice that the
current section is far from giving an exhaustive insight into these subjects: we decided only to report
what will be strictly necessary later, avoiding the majority of the proofs. For a complete account on these
topics, we suggest to consult either Landkov’s monograph on potential theory [16] or the book [17] by
Lieb and Loss.

First of all, we set some notation. In the followings, we work in the space RN with N ≥ 2. For any
measurable set E ⊂ RN and open set Ω ⊂ RN , we write |E| and P (E,Ω) to denote respectively the
Lebesgue measure of E and its relative perimeter in Ω. When Ω = RN , we just write P (E). For x ∈ RN

and r > 0, we denote by Br(x) the open ball of radius r centered in x. We drop the dependence on x
when the center is x = 0. In particular, B1 denotes the unit ball and we set its Lebesgue measure to be
|B1| = ωN . For k ∈ [0, N ], we denote by Hk the k -dimensional Hausdorff measure. Concerning measures,
we write M(Ω) and M+(Ω) to denote respectively the spaces of Radon measures and positive Radon
measures supported on Ω, dropping the dependence on Ω in the case Ω = RN . Given any set A ⊂ RN ,
the expression χA indicates its characteristic function. Finally, for any function f , we denote by f∗ its
symmetric decreasing rearrangement according to [17, Section 3.3].

In addition, we adopt the following notation to compare quantities: we write A ≲ B to indicate that
there exists a constant C > 0 (typically depending on the dimension N and a parameter α) such that
A ≤ CB. In case, we will specify when C depends on other quantities and we write A ≈ B when
A ≲ B ≲ A. Conversely, we use the notation A≪ B, when there exists a small universal constant ε > 0
(again, usually depending on N and α or possibly other quantities) such that A ≤ εB.
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A little disclaimer before beginning: the majority of definitions and results reported here are valid more
in general for signed Radon measures. Anyway, we will just need positive measures for the purposes of
the dissertation, therefore we present the theory restricting ourselves to them.

Definition 1.1 (Interaction energy). Let N ≥ 2 and α ∈ (0, N). Given µ and ν positive Radon measures,
we define the interaction energy between µ and ν as:

Iα(µ, ν) =

ˆ
RN×RN

dµ(x)dν(y)

|x− y|N−α
∈ [0,+∞].

When µ = ν, we simply write Iα(µ) := Iα(µ, µ). In case the measures are absolutely continuous with
respect to the Lebesgue measure, so that µ = fHN and ν = gHN for some functions f and g, we denote
Iα(f, g) := Iα(µ, ν).

An immediate consequence of the definition is that the functional Iα(·, ·) is a positive, bilinear operator
on the product space M+ × M+ and that Iα(·) is a quadratic form. In particular, Cauchy-Schwarz
inequality is satisfied:

Iα(µ, ν) ≤ Iα(µ)
1
2 Iα(ν)

1
2 .

Even though we do not need it, it can be shown that Iα(·, ·) is a positive, bilinear operator also on the
product space M × M. Hence, in particular, Iα(µ) ≥ 0 regardless of the sign of the measure µ and
Iα(µ) = 0 if and only if µ = 0. On the other hand, the next result [16, Formula 1.4.4] is true only for
positive measures: we endow the space M+ with the weak topology given by duality with the space of
continuous functions with compact support Cc(RN ).

Proposition 1.2. The functional Iα is lower semicontinuous with respect to weak convergence of mea-
sures, namely if µn ⇀ µ and νn ⇀ ν, we have that:

Iα(µ, ν) ≤ lim inf
n→+∞

Iα(µn, νn).

Then, it is rather natural to define the Riesz potential energy of a Borel set.

Definition 1.3 (Riesz energy). Let N ≥ 2 and α ∈ (0, N), for every Borel set A we define the Riesz
potential energy of A as:

Iα(A) := inf
{︁
Iα(µ) : µ ∈ M+(A), µ(A) = 1

}︁
. (1.1)

From the definition, we immediately infer monotonicity of Iα, namely A ⊂ B implies Iα(A) ≥ Iα(B).
In addition, since Iα is a quadratic form over M, we have in particular that Q2Iα(µ) = Iα(Qµ) for any
measure µ. Passing the expression to the infimum over all measures µ ∈ M+(A) such that µ(A) = 1
yields immediately:

Q2Iα(A) = inf
{︁
Iα(µ) : µ ∈ M+, µ(A) = Q

}︁
. (1.2)

In particular, this is true because there is a one-to-one correspondence between finite measures supported
on A with total mass 1 and those with total mass Q. The next fact in slightly trickier to prove instead.

Proposition 1.4. Let N ≥ 2 and α ∈ (0, N), for every λ > 0 there holds:

Iα(λA) = λ−(N−α)Iα(A). (1.3)

Proof. We define the map T : RN −→ RN such that T (x) = λx, so in this way T (A) = λA. T is clearly
a diffeomorphism, so there exists a one-to-one correspondence between probability measures supported
on A and those supported on λA given by the pushforward of measures T#. In particular, for every µ
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competitor for Iα(A), the measure ν = T#µ is a competitor for Iα(λA). Therefore, by simple properties
of pushforward:

Iα(λA) = inf
ν(λA)=1

ˆ
RN×RN

dν(x) dν(y)

|x− y|N−α
= inf

T#µ(λA)=1

ˆ
RN×RN

dT#µ(x) dT#µ(y)

|x− y|N−α

= inf
µ(A)=1

ˆ
RN×RN

dµ(x) dµ(y)

|T (x)− T (y)|N−α
=

1

λN−α
inf

µ(A)=1

ˆ
RN×RN

dµ(x) dµ(y)

|x− y|N−α

= λ−(N−α)Iα(A).

From [16, p.131] we get the following important result.

Proposition 1.5. If A is a compact set, the infimum in 1.1 is achieved, namely there exists a probability
measure µ ∈ M+(A) such that Iα(A) = Iα(µ). Moreover, the minimizing measure µ is unique.

Before going on exploring other properties of Riesz energy, we need to make a small drift in the world
of fractional Laplacians and of fractional Sobolev spaces. Again, we refrain from being precise and we
restrict ourselves only to the essential for the purposes of the dissertation. The main sources we used are
the guide [5] by Di Nezza, Palatucci and Valdinoci, and Lieb and Loss’ book [17].

For the Fourier transform, we use the convention:

uˆ︁(ξ) = ˆ
RN

e−2iπξ·xu(x) dx.

In this way, exploiting [5, Proposition 3.4], we can define the homogeneous Hs semi-norm for s ∈ RN as:

[u]2Hs(RN ) =

ˆ
RN

|ξ|2s|uˆ︁|2dξ,
writing [u]Hs instead of [u]Hs(RN ) when there is no risk of confusion. For s ∈ RN , we define the s-fractional
Laplacian by its Fourier transform:

(−∆)su◊�= |ξ|2suˆ︁,
so that, by Parseval identity, it immediately follows:

[u]2Hs(RN ) =

ˆ
RN
u(−∆)su. (1.4)

For s ∈ (0, 1), by [5, Proposition 3.3] there exists a constant C(N, s) > 0 such that we can give the
explicit expression for the s-fractional Laplacian:

(−∆)su = C(N, s)

ˆ
RN

u(x)− u(y)

|x− y|N+2s
dy,

where the integral is intended in the principal value sense. Applying it to 1.4, we have the alternative
formula:

[u]2Hs(RN ) =

ˆ
RN×RN

(u(x)− u(y))2

|x− y|N+2s
dxdy. (1.5)

In Chapter 3 we will also use fractional Sobolev spaces defined on the unit sphere ∂B1. For these, we
take 1.5 as a starting point and we define for φ : ∂B1 −→ R and s ∈ (0, 1):

[φ]2Hs(∂B1)
=

ˆ
∂B1×∂B1

(φ(σ)− φ(v))2

|σ − v|N−1+2s
dσdv. (1.6)

Moreover, the following result holds.
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Proposition 1.6. Denoting φ̄ = 1
P (B1)

´
∂B1

φ, we have for 0 < s < s′ < 1:

ˆ
∂B1

(φ− φ̄)2 ≲ [φ]2Hs(∂B1)
≤ 22(s

′−s)[φ]2
Hs′ (∂B1)

≲
ˆ
∂B1

|∇φ|2, (1.7)

where we denote by ∇φ the tangential gradient when there is no risk of confusion and where the implicit
constants depend on N, s and s’.

Proof. Since s′ > s, the second inequality is easy once realized that for σ, v ∈ ∂B1 we have:

1

|σ − v|N−1+2s
=

|σ − v|2(s′−s)

|σ − v|N−1+2s′
≤ 22(s

′−s) 1

|σ − v|N−1+2s′

and we can conclude by 1.6. The first inequality is provided by Cauchy-Schwarz and a computation:

ˆ
∂B1

(φ− φ̄)2 =
1

P 2(B1)

ˆ
∂B1

Åˆ
∂B1

φ(σ)− φ(v) dv

ã2

dσ

≤ 1

P 2(B1)

ˆ
∂B1

Åˆ
∂B1

(φ(σ)− φ(v))2

|σ − v|N−1+2s
dv

ãÅˆ
∂B1

|σ − v|N−1+2s

ã
dσ

≲
ˆ
∂B1×∂B1

(φ(σ)− φ(v))2

|σ − v|N−1+2s
dσdv.

Finally, the third inequality follows from [4, Proposition 2.7 and Remark 2.8].

Now, we come back to Riesz energies and we start with the useful definition of α-capacity.

Definition 1.7 (α-Capacity). Let N ≥ 2 and α ∈ (0, N). Let A ⊂ RN be a Borel set, its α-capacity is
defined to be:

Cα(A) :=
1

Iα(A)

From monotonicity of the Riesz energy Iα we get monotonicity of the α-capacity Cα, specifically A ⊂ B
implies Cα(A) ≤ Cα(B). Moreover, it can be shown [16, p. 141] that the α-capacity is subadditive over
compact sets.

For N ≥ 3, α = 2 and K ⊂ RN we have the following representation of the 2-capacity from [17]:

C2(K) = inf

ßˆ
RN

|∇f |2 : f ∈ C∞
c (RN ), f ≥ χK

™
.

More in general, this is true for any α ∈ (0, N) as well:

Cα(K) = inf
{︂
[f ]2

H
α
2 (RN )

: f ∈ C∞
c (RN ), f ≥ χK

}︂
.

Finally, considering 1.5, we get for α ∈ (0, 2):

Cα(K) = inf

ßˆ
RN×RN

(u(x)− u(y))2

|x− y|N+α
dxdy : u ∈ C∞

c (RN ), u ≥ χK

™
. (1.8)

For any particular property, we say that it holds α-quasi everywhere if it is true up to sets of zero α-
capacity. The next proposition corresponds to [19, Theorem 8.9] and it clarifies the relation between the
notions of capacity and Hausdorff measure.
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Proposition 1.8. Let A ⊂ RN be a Borel set. Then:

1. if α > 0 and Hα(A) < +∞, then Cα(A) = 0;

2. if α > 0 and Cα(A) = 0, then Ht(A) = 0 for every t > α.

In particular, Cα(A) = 0 for any α > 0 implies immediately |A| = 0. Exploiting characterization 1.8 of
the α-capacity, we get the following nice result.

Proposition 1.9. Let N ≥ 2 and α ∈ (0, 2), for all compact sets K ⊂ RN with |K| > 0 we have that
Iα(BK) ≥ Iα(K), where BK denotes the ball such that |BK | = |K|.

Proof. By definition of α-capacity, it is enough to prove that Cα(BK) ≤ Cα(K) for any compact set K
with strictly positive volume. Since α ∈ (0, 2), we can use the characterization given by formula 1.8.
Then, by [8, Theorem A.1] we have:

Cα(K) = inf
u∈C∞

c (RN ), u≥χK

ˆ
RN×RN

(u(x)− u(y))2

|x− y|N+α
dxdy

≥ inf
u∈C∞

c (RN ), u≥χK

ˆ
RN×RN

(u∗(x)− u∗(y))2

|x− y|N+α
dxdy.

Since the symmetric decreasing rearrangements of positive functions is order preserving [17, p. 81], we
have that u ≥ χK implies u∗ ≥ χ∗

K = χBK
. Thus:

Cα(K) ≥ inf
u∗∈C∞

c (RN ), u∗≥χBK

ßˆ
RN×RN

(u∗(x)− u∗(y))2

|x− y|N+α
dxdy : u∗ radially symmetric, decreasing

™
≥ inf

u∗∈C∞
c (RN ), u∗≥χBK

ˆ
RN×RN

(u∗(x)− u∗(y))2

|x− y|N+α
dxdy. = Cα(BK).

Another useful property of symmetric decreasing rearrangements is given by next inequality.

Theorem 1.10 (Riesz rearrangement inequality). Let f, g, h : RN −→ R+. Then:

ˆ
RN×RN

f(x)g(x− y)h(y) dxdy ≤
ˆ
RN×RN

f∗(x)g∗(x− y)h∗(y) dxdy.

For any set A we denote by BA the ball centered in the origin such that |A| = |BA|. Observing that
χ∗
A = χBA

, an easy application of Riesz rearrangement inequality is given by:

ˆ
A×A

dx dy

|x− y|N−α
≤
ˆ
BA×BA

dx dy

|x− y|N−α
. (1.9)

Indeed: ˆ
A×A

dx dy

|x− y|N−α
=

ˆ
RN×RN

χA(x)
1

|x− y|N−α
χA(y) dx dy

≤
ˆ
RN×RN

χ∗
A(x)

1

|x− y|N−α
χ∗
A(y) dx dy =

ˆ
BA×BA

dx dy

|x− y|N−α
.

At this point, it just remains to spend a few words on the potential of a measure.
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Definition 1.11 (Potential function). Let N ≥ 2 and α ∈ (0, N), given µ ∈ M+ we define its potential
function as:

uµα(x) =

ˆ
RN

dµ(y)

|x− y|N−α
= µ ∗ |x|−(N−α).

From now on we always drop the dependence on µ and α and we refer to the function u as the potential.
Here we present its main properties, taken from [16, p. 137].

Proposition 1.12. Let K ⊂ RN be compact, µ be the minimizer for Iα(K) and u its corresponding
potential. Then, the following equation holds in distributional sense:

(−∆)
α
2 u = C(N,α)µ,

where C(N,α) > 0. In addition, we have:

1. u = Iα(K) α-q.e. on spt(µ) and u ≥ Iα(K) α-q.e. on K ;

2. if α ∈ (0, 2], then u = Iα(K) α-q.e. on K and u ≤ Iα(K) everywhere on RN .

Through the thesis we will focus more on the case α ∈ (0, 1], so we will often use point (2) from the
previous result. In addition, we infer:

Iα(µ) =

ˆ
RN

u dµ =

ˆ
RN

(−∆)
α
2 u(−∆)−

α
2 µ = C(N,α)

ˆ
RN

µ(−∆)−
α
2 µ =

1

C(N,α)

ˆ
RN

u(−∆)
α
2 u.

From 1.4, we deduce immediately:

Iα(µ) = C(N,α)[µ]2
H−α

2 (RN )
=

1

C(N,α)
[u]2

H
α
2 (RN )

. (1.10)

Finally, we provide the explicit expression for the optimal measure of the ball B1 in the case α ∈]0, 2[.

Proposition 1.13. When α ∈ (0, 2), the optimal measure µB1 for the variational problem Iα(B1) is
absolutely continuous with respect to Lebesgue measure and it is represented by the function:

µB1
(x) =

Cα

(1− |x|2)α
2
χB1

(x),

where Cα indicates the suitable renormalization constant to make it a probability measure.

1.2 Introduction of the problem and ill-posedness when α > 1

After defining all the basic tools we will employ, we are ready to present the variational problem we would
like to study in our dissertation. Be careful that the first formulation we give is exclusively heuristic and
far from being precise, similarly to what we did in the introduction. Actually, problem 1.13 is not even
well-posed yet, as we still need to specify for which kind of sets the functional Fα,Q is well-defined and,
consequently, the right class where to minimize. Before dwelling on such issues, we present right away
an ill-posedness result when α > 1, which derives from some useful considerations about the α-capacity
that we will investigate further in the next section.

Let N ≥ 2, α ∈ (0, N) and a measurable set E ⊂ RN . We consider the Riesz interaction energy Iα(E)
for the set E and from now on we use the compact notation:

Iα(E) = inf
µ(E)=1

ˆ
RN×RN

dµ(x) dµ(y)

|x− y|N−α
, (1.11)
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where the infimum is implicitly taken over all probability measures supported in E. For every charge
Q > 0, we define the functional:

Fα,Q(E) = P (E) +Q2Iα(E) . (1.12)

Fixed any mass m > 0, the aim of the thesis is to carry out an analysis of the variational problem:

min
|E|=m

Fα,Q(E), (1.13)

where the precise class which we are minimizing over is yet to be specified. The following scaling argument
allows us to assume m = ωN without loss of generality. Indeed, if |E| = m, thanks to 1.3 we find:

λN−αQ2Iα(λE) = Q2Iα(E)

for any scaling factor λ > 0. Hence:

P (E) +Q2Iα(E) =
1

λN−1
P (λE) + λN−αQ2Iα(λE)

=
1

λN−1

Ä
P (λE) + λ(N−α)(N−1)Q2Iα(λE)

ä
.

By requiring |λE| = ωN , we obtain λ = (ωN

m )
1
N and therefore it is enough to set:

Q̃
2
=
(︂ωN

m

)︂ (N−α)(N−1)
N

Q2 and Ẽ = λE.

In this way, we are able to study the equivalent problem with desired mass ωN , up to a scaling factor of
(ωN

m )N−1.

The first significant statement we prove about problem 1.13 is that in the case α ∈ (1, N), the functional
Fα,Q admits no minimizer among sets of given volume ωN . The procedure we use in the proof consists
in a geometric construction exploiting the relation between the notions of α-capacity and Hausdorff
measure. The key observations are the following: first, as we will prove later on in the compact case,
the Riesz energy Iα is defined α-quasi everywhere [16, Chapter 2]. In addition, from what discussed at
the beginning of [19, Chapter 8], α-capacity has a very similar behaviour to HN−α. Specifically, when
α > 1, sets of positive α-capacity are not seen by the perimeter, which on the other hand operates like
HN−1. Therefore, exploiting some properties of Riesz energy, we build a sequence of sets with uniformly
bounded perimeter (actually converging to P (B1)) and α-capacity diverging at +∞. By what we just
highlighted, the variation of the α-capacity is not seen by the perimeter and, by definition, the Riesz
energy of our sequence of sets tends to 0. Since every compact set has positive α-capacity, we finally infer
ill-posedness of problem 1.13 when α > 1.

Theorem 1.14. For every α ∈ (1, N), there holds:

inf
|E|=ωN

Fα,Q(E) = P (B1).

in particular, the problem does not admit minimizers.

Proof. The first inequality is straight-forward. For each Borel set E ⊂ RN of given volume ωN , we have
that Iα(E) ≥ 0; therefore, by Euclidean isoperimetric inequality [18, Theorem 14.1]:

P (E) +Q2Iα(E) ≥ P (E) ≥ P (B1),

We conclude by passing to the infimum over all sets E as above.
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Concerning the second inequality, let K ∈ N and a number β ≥ 0 to be chosen precisely later on.
Consider K balls {Bi}Ki=1 of radius rK = K−β and centers {xi}Ki=1, such that |xi| ≫ R for each i ≤ K
and |xi − xj | ≫ R for each i ̸= j, for some R ≥ rK . On each ball Bi, we put on an uniform charge νi

such that νi(Bi) = 1
K and we set:

ν :=

K∑︂
i=1

νi.

Let VK = K(rK)NωN be their total volume: we build a set EK by taking the union of all these charged
balls with a non-charged ball B0 centered at the origin x = 0 of volume ωN − VK . By our choice of α,

we have that N − α < N − 1, so we are able to choose any β ∈
Ä

1
N−1 ,

1
N−α

ä
. In this way:

• β > 1
N−1 implies β(N − 1) > 1, so that:

lim
K→∞

K(rK)N−1 = lim
K→∞

K

Kβ(N−1)
= 0;

• β < 1
N−α implies β(N − α) < 1, so that:

lim
K→∞

1

K

1

(rK)N−α
= lim

K→∞

Kβ(N−α)

K
= 0;

• βN > β(N − 1), so that:

lim
K→∞

VK = lim
K→∞

KωN

KβN
< lim

K→∞

KωN

Kβ(N−1)
= 0.

We are now ready to estimate Fα,Q(EK) = P (EK) + Q2Iα(EK). Concerning the perimeter, by scaling
P (B0) = (rB0)N−1P (B1) and a simple computation shows that:

rB0 =

Å
ωN − VK
ωN

ãN−1
N

.

Moreover:

P (

K⋃︂
i=1

Bi) =

K∑︂
i=1

P (Bi) = C(N)K(rK)N−1.

On the other hand, providing an estimate for the Riesz interaction energy is more interesting. Noticing
that the measure ν is a competitor for Iα(EK), we compute:

Iα(EK) = inf
µ(EK)=1

ˆ
RN×RN

dµ(x) dµ(y)

|x− y|N−α

≤
ˆ
EK×EK

dν(x) dν(y)

|x− y|N−α

=

ˆ
⋃︁K

i=1 Bi×
⋃︁K

j=1 Bj

d(
∑︁K

i=1 ν
i)(x) d(

∑︁K
j=1 ν

j)(y)

|x− y|N−α

=

K∑︂
i=1

ˆ
Bi×Bi

dνi(x) dνi(y)

|x− y|N−α
+
∑︂
i ̸=j

ˆ
Bi×Bj

dνi(x) dνj(y)

|x− y|N−α

=
1

K2

K∑︂
i=1

ˆ
Bi×Bi

dx dy

|x− y|N−α
+

1

K2

∑︂
i ̸=j

ˆ
Bi×Bj

dx dy

|x− y|N−α

.
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Regarding the first term, since Bi = xi + rKB1 for all i, we find by changing coordinates:
ˆ
Bi×Bi

dx dy

|x− y|N−α
=

1

(rK)N−α

ˆ
B1×B1

dx dy

|x− y|N−α
= C(N,α)

1

(rK)N−α
.

The trick of changing coordinates does not work for the second term, due to the presence of two different
indexes. Nevertheless, we can perform the following estimate by exploiting the geometry of the set EK .
For all i, j ∈ {1, ... ,K} with i ̸= j, for all x ∈ Bi and y ∈ Bj , by triangle inequality we have that:

|xi − xj | ≤ |x− xi|+ |x− y|+ |y − xj | =⇒ |x− y| ≥ |xi − yj | − |x− xi| − |y − xj |.

Now we use the fact that |xi − xj | ≫ R for each i ̸= j and that |x− xi| < R, |y − xj | < R, so:

|x− y| > |xi − xj | − 2R >
1

2
|xi − xj | =⇒ |x− y|−(N−α) < |xi − xj |−(N−α)

Therefore, for all i ̸= j:

1

K2

ˆ
Bi×Bj

dx dy

|x− y|N−α
<

1

K2

C

|xi − xj |N−α

ˆ
Bi×Bj

dx dy =
C

|xi − xj |N−α

C(N)(rK)2N

K2

≪ C(N)

RN−αK2+2βN
.

Thus, putting the two estimates together we find:

Iα(EK) ≪ 1

K2

K∑︂
i=1

C(N,α)
1

(rK)N−α
+
∑︂
i ̸=j

C(N)

RN−αK2+2βN

≤ C(N,α)

Å
K

K2

1

(rK)N−α
+

1

RN−α

K2 −K

K2+2βN

ã
≤ C(N,α)

Å
1

K

1

(rK)N−α
+

1

K2βN

1

RN−α
.

ã
Finally, we come back to the estimate of Fα,Q(EK):

inf
|E|=ωN

Fα,Q(E) ≤ Fα,Q(EK) = P (EK) +Q2Iα(EK)

≤
Å
ωN − VK
ωN

ãN−1
N

P (B1) + C

Å
K(rK)N−1 +

Q2

K

1

(rK)N−α
+

1

K2βN

Q2

RN−α

ã
.

Since the right-hand side converges to P (B11) as K → +∞, we recover the required inequality.

The ill-posedness of the problem is straightforward once noticing that Iα(B1) > 0 and thus the infimum
cannot be achieved by any set.

1.3 Restriction to the interesting case α ∈ (0, 1]

Once excluded the cases for which the problem is ill-posed, in this section we are ready to properly choose
the class of competitors for 1.13. Afterwards, we define generalized sets and measures, consequently
extending the notion of Riesz energy to them. Finally, we conclude the first chapter by stating the
corresponding formulation of 1.14 for generalized sets, the starting point of our analysis in the next
chapter.
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At first glance, working with the class of smooth compact sets seems rather appropriate in order to
minimize our functional, as both the perimeter and the Riesz interaction energy are well defined over it,
as we discussed in the previous section. Awfully, we are forced to rule it out, due to its bad compactness
property under many types of convergence, such as L1

loc or Hausdorff convergence. On the other hand,
since we are dealing with a minimum problem involving the perimeter, one could be tempted to employ
sets of finite perimeter, by identifying two sets E and F agreeing up to a Lebesgue-negligible set. Un-
fortunately, it can be shown that the Riesz energy Iα is well defined up to sets of 0 α-capacity, namely
if E = F α-quasi everywhere then Iα(E) = Iα(F ). We prove this fact when E and F are compact sets
(up to a choice of the right representative) with positive measure. If Cα(E∆F ) = 0, by monotonicity of
α-capacity we have:

Cα(E \ F ) = Cα(F \ E) = 0.

Recalling that F = (F ∩ E) ∪ (F \ E), by subadditivity of Cα over compact sets and by monotonicity
again we deduce:

Cα(F ) ≤ Cα(F ∩ E) + Cα(F \ E) ≤ Cα(E).

In a similar way, we have Cα(E) ≤ Cα(F ) as well. Since E and F are compact sets with positive measure,
Iα(E), Iα(F ) < +∞ by Proposition 1.9. In particular, Cα(E), Cα(F ) ̸= 0 and:

Iα(E) =
1

Cα(E)
=

1

Cα(F )
= Iα(F ).

We saw that Cα(K) = 0 implies |K| = 0, but the converse is not true in general. Specifically, there exist
sets agreeing Lebesgue almost everywhere but with different α-capacity, so we conclude that the class of
sets of finite perimeter is not a feasible choice for trying to minimize our functional.

As advocated in [21], [22] for the particular case N = 2 and α = 1, in our dissertation we consider the
class:

S =
{︁
E ⊂ RN : E is compact and P (E) = HN−1(∂E) < +∞

}︁
.

Identifying sets differing only a set of zero Lebesgue measure works perfectly in class S, because in
this case the Riesz interaction energy is well behaved. First of all, if E,F ∈ S with |E∆F | = 0 then
P (E) = P (F ) by definition of perimeter. In addition, we claim that HN−1(E∆F ) = 0 as well. Indeed,
since |E∆F | = 0, we necessarily have E(t) = F (t) for all t ∈ [0, 1], where E(t) denotes the set of points of
density t :

E(t) =

ß
x ∈ RN : lim

r→0+

|E ∩Br(x)|
|Br(x)|

= t

™
.

By Federer’s Theorem [18, Theorem 16.2], we have that:

E = E(1) ∪ E(1/2) HN−1-a.e. and F = F (1) ∪ F (1/2) HN−1-a.e..

Since E(1) = F (1) and E(1/2) = F (1/2), we deduce E = F HN−1-almost everywhere. In particular,
basic properties of Hausdorff measure imply HN−α(E∆F ) = 0 for all α ∈ (0, 1], so Cα(E∆F ) = 0 by
Proposition 1.8. Thus, we can prove that Iα(E) = Iα(F ) arguing as we did in the previous paragraph.

In conclusion, the variational problem we study is:

min
|E|=ωN ,E∈S

Fα,Q(E) (1.14)

Finally, we introduce the notion of generalized sets and minimizers, which will be essential in order to
prove the existence of classical minimizer for problem 1.14.
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Definition 1.15 (Generalized sets, measures and energies).

• A (possibly finite) collection of sets Ẽ = {Ei}i≥1 with Ei ⊂ RN for all i ≥ 1 is said to be a
generalized set. We set the volume and the perimeter of a generalized set to be, respectively:

|Ẽ| =
∑︂
i≥1

|Ei| P (Ẽ) =
∑︂
i≥1

P (Ei).

• A (possibly finite) collection of measures µ̃ = {µi}i≥1 with µi ∈ M+ for all i ≥ 1 is said to be a
generalized measure. The Riesz interaction energy of a generalized measure is set to be:

Iα(µ̃) =
∑︂
i

Iα(µi)

• The Riesz energy of a generalized set Ẽ = {Ei}i≥1 is defined to be:

Iα(Ẽ) = inf
µ̃

ß
Iα(µ̃) :

∑︂
i

µi(Ei) = 1

™
.

Regarding the last definition, when minimizing over µ̃, we may assume without loss of generality that
µj is concentrated on its corresponding set Ej for all j ≥ 1, namely µj is supported on Ej . Indeed, if
otherwise µj = µj

1 + µj
2 with µj

1, µ
j
2 ̸= 0 positive measures supported respectively on Ej and on (Ej)c,

by the fact that:

Iα(µj
1 + µj

2) ≥ Iα(µj
1) and µj

1(E
j) +

∑︂
i ̸=j

µi(Ei) = 1

(the energy does not increase and the condition on the weights is not affected), we can set µj = µj
1.

After introducing the last ideas, we are able to define the energy of a generalized set Ẽ = {Ei}i≥1 given
a charge Q > 0:

Fα,Q(Ẽ) = P (Ẽ) +Q2Iα(Ẽ). (1.15)

Moreover, we say that Ẽ ∈ SN is a (volume-constrained) generalized minimizer for the functional Fα,Q

if, for any collection F̃ ∈ SN with |Ẽ| = |F̃ |, we have:

Fα,Q(Ẽ) ≤ Fα,Q(F̃ )

Hence, it is rather natural to introduce as well the variational problem:

min
|Ẽ|=ωN ,Ẽ∈SN

Fα,Q(Ẽ). (1.16)

The study of this formulation will be an intermediate step in order to prove existence of minimizers for
the original one 1.14 and it will constitute the starting point of our analysis in Chapter 2.
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Chapter 2

Existence and regularity of
minimizers

The second chapter of the exposition is devoted to proving existence and C1,β regularity of minimizers
of Fα,Q with volume ωN and belonging to the class S, in the case α ∈ (0, 1]. Initially, we modify the
functional with a relaxation of the volume constraint and a regularization of the Riesz energy Iα, to
put ourselves in a situation where is more convenient to work applying standard Calculus of Variations’
techniques. In this way, we manage to get existence of generalized minimizers for the modified version of
the functional Fα,Q,Λ,ε. The continuation consists in showing regularity properties of such minimizers,
with the aim of finding solutions to the initial problem as well. To do so, we separately consider the
cases α ∈ (0, 1) and α = 1: the former is easier to be dealt with as we are able to rely on standard
regularity theory for almost minimizers of the perimeter. Instead, when α = 1 the situation is much
more complicated and it requires the aid of tools from elliptic PDE theory. Anyhow, we finally succeed
in reaching the same results valid for the case α ∈ (0, 1).

Before starting our analysis, we anticipate that the second chapter is quite convoluted and it is definitely
the most voluminous of the exposition. A possible strategy to lighten it could have been splitting existence
and regularity of minimizers into separate parts of the dissertation. However, as we will see below, the
procedures to derive them happen to be rather entangled with each other: for this reason, we decided
to privilege fluidity of the general reasoning, presenting existence and regularity altogether in the same
chapter.

2.1 Relaxation of the volume constraint

Since the volume constraint |Ẽ| = ωn of the variational problem 1.16 results rather cumbersome to deal
with, the first step of our analysis consists in getting rid of it. To do so, we consider the following
relaxation of the energy functional:

Fα,Q,Λ(Ẽ) = P (Ẽ) +Q2Iα(Ẽ) + Λ
⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
,

for some Λ > 0 to be determined, together with its associated minimum problem. The next lemma is
the only result presented in the section and it shows that, for some Λ > 0 large enough, the variational
problem associated to the relaxed energy functional coincides with the constrained one 1.16. We do
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not know whether the two problems we are examining attain minimum yet, so for the moment we just
consider their infima, which are always well defined.

Lemma 2.1. For every α ∈ (0, N), Q > 0 and every Λ ≫ 1 +Q2, we have:

inf
Ẽ∈SN

¶
Fα,Q(Ẽ) : |Ẽ| = ωN

©
= inf

Ẽ∈SN
Fα,Q,Λ(Ẽ). (2.1)

Moreover, for such Λ, if Ẽ is a minimizer of the right-hand side of 2.1, then |Ẽ| = ωN .

Proof. The ≥ inequality is clear and holds true for all Λ > 0. Indeed, by taking as a competitor any
F̃ ∈ SN with volume ωN :

inf
Ẽ∈SN

P (Ẽ) +Q2Iα(Ẽ) + Λ
⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
≤ P (F̃ ) +Q2Iα(F̃ ) = Fα,Q,Λ(F̃ )

and we conclude by passing to the infimum over all F̃ as above.

It remains to prove ≤: let Λ ≫ 1 + Q2 and assume by contradiction that there exist Ẽ with |Ẽ| ̸= ωN

such that:
Fα,Q,Λ(Ẽ) ≤ inf

Ẽ∈SN

¶
Fα,Q(Ẽ) : |Ẽ| = ωN

©
.

Notice that in our hypothesis we must have |Ẽ| ̸= ωN , otherwise Fα,Q,Λ(Ẽ) = Fα,Q(Ẽ) which is not
possible. Using B1 as a competitor, we get:

P (Ẽ) +Q2Iα(Ẽ) + Λ
⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
≤ P (B1) +Q2Iα(B1) ≲ 1 +Q2.

In particular, we have Λ
⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
≲ 1 +Q2, so

⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
≪ 1 +Q2 as we assumed Λ ≫ 1 +Q2; thus,

it means that there exists t = 1 + δ with |δ| ≪ 1 such that:

|tẼ| = ωN =⇒ tN |Ẽ| = ωN =⇒ t =

Ç
ωN

|Ẽ|

å 1
N

.

Using the well-known Taylor expansion (1− x)−β = 1 + βx+ o(x) for |x| ≪ 1 and for all β ∈ C, we get:

t =

Ç
1−

Ç
1− |Ẽ|

ωN

åå− 1
N

= 1 +
1

N

Ç
1− Ẽ

ωN

å
+ o

ÇÇ
1− Ẽ

ωN

åå
= 1 + δ,

with:
|δ| ≲

⃓⃓⃓
|Ẽ| − ωN |

⃓⃓⃓
.

Now, we use the set tẼ = {tEi˜ }i≥1 (which satisfies |tẼ| = ωN ) as a competitor for the constrained energy

and get Fα,Q,Λ(Ẽ) ≤ Fα,Q(tẼ), namely:

P (Ẽ) +Q2Iα(Ẽ) + Λ
⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
≤ P (tẼ) +Q2Iα(tẼ) = tN−1P (Ẽ) + t−(N−α)Q2Iα(Ẽ)

by standard properties of perimeter and Riesz energy. This time, we use the different Taylor expansion
xβ = (1 + x− 1)β = 1 + β(x− 1) + o((x− 1)) for x ≃ 1 and for all β ∈ C to get

Λ
⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
≤ (t− 1)

Ä
(N − 1)P (Ẽ)− (N − α)Q2Iα(Ẽ)

ä
+ o((t− 1)),
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which yield, using that t− 1 = δ and majorizing the term o((t− 1)):

Λ|δ| ≲ Λ
⃓⃓⃓
|Ẽ| − ωN |

⃓⃓⃓
≤ δ

Ä
(N − 1)P (Ẽ)− (N − α)Q2Iα(Ẽ)

ä
. (2.2)

If δ ≥ 0:
Λδ ≲ δP (Ẽ) ≤ δFα,Q,Λ(Ẽ) ≲ δ(1 +Q2)

and thus Λ ≲ 1 + Q2, which is a contradiction with the hypothesis Λ ≫ 1 + Q2. In the opposite case
δ ≤ 0 we reach the same contradiction, since 2.2 implies this time:

Λδ ≲ |δ|
Ä
(N − α)Q2Iα(Ẽ)− (N − 1)P (Ẽ)

ä
≤ |δ|Q2Iα(Ẽ) ≤ |δ|Fα,Q,Λ(Ẽ) ≲ |δ|(1 +Q2).

Therefore, we conclude that for all Ẽ ∈ SN such that |Ẽ| ≠ ωN we must necessarily have:

inf
Ẽ∈SN

¶
Fα,Q(Ẽ) : |Ẽ| = ωN

©
< Fα,Q,Λ(Ẽ).

Passing to the infimum over all Ẽ ∈ SN yields the remaining inequality in 2.1. Instead, the second part
of the statement is reached once noticed that trivially there holds Fα,Q,Λ(Ẽ) = Fα,Q(Ẽ) when |Ẽ| = ωN

instead.

2.2 The regularized functional

As we highlighted in the first chapter, the capacitary term Iα and hence the functional Fα,Q,Λ are not
well defined in L1, the natural setting where to study variational problems involving the perimeter. In
addition, the class S itself in which we are minimizing is not closed under L1 convergence, so it is not
clear how to argue directly to minimize Fα,Q,Λ. The purpose of this section is to overcome this difficulty,
by introducing a regularization Iα,ε of the Riesz energy Iα together with some of its properties for both
classical and generalized sets: in particular Iα,ε will be well defined in L1. In Lemma 2.4 we prove some
estimates for the regularized Riesz energy, which will allow us to show existence and uniqueness of an
optimal generalized measure minimizing Iα,ε(Ẽ) in Lemma 2.5, similarly to what happen for Iα.

Let ε > 0 and µ be a positive measure, we define the regularized interaction energy of µ:

Iα,ε(µ) = Iα(µ) + ε

ˆ
RN

µ2 =

ˆ
RN×RN

dµ(x) dµ(y)

|x− y|N−α
+ ε

ˆ
RN

µ2,

setting Iα,ε(µ) = +∞ if µ /∈ L2(RN ). Consequently, for a measurable set E ∈ S, we define its regularized
Riesz interaction energy as:

Iα,ε(E) = inf
µ(E)=1

ßˆ
RN×RN

dµ(x) dµ(y)

|x− y|N−α
+ ε

ˆ
RN

µ2

™
, (2.3)

where the infimum is taken over the class of probability measures belonging to L2 and supported in E.
The fact that Iα,ε(E) is well defined Lebesgue almost everywhere follows directly from its definition.
Indeed, let E and F be measurable sets such that |E∆F | = 0: every measure µ such that Iα,ε(µ) < +∞
is a positive function in L2(RN ) and therefore, since the Lebesgue integral is defined up to Lebesgue
negligible sets, satisfies: ˆ

E

µ(x) dx =

ˆ
F

µ(x) dx, =⇒ µ(E) = µ(F ).

Thus, in the infimum problems Iα,ε(E) and Iα,ε(F ), both the sets of competitors and the values of the
functionals coincide, hence the desired equality Iα,ε(E) = Iα,ε(F ).

In analogy with 1.15, it is natural to state the following definition.
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Definition 2.2 (Regularized Riesz energy for generalized sets).

• The regularized energy of a generalized measure µ̃ = {µi}i≥1 is set to be:

Iα,ε(µ̃) =
∑︂
i

Iα,ε(µi).

• The regularized Riesz interaction energy of a generalized set Ẽ = {Ei}i≥1 is defined to be:

Iα,ε(Ẽ) = inf
µ̃

ß
Iα,ε(µ̃) :

∑︂
i

µi(Ei) = 1

™
.

An almost immediate consequence of the definition is the following characterization.

Lemma 2.3. Given a generalized set Ẽ = {Ei}i≥1, we have the equivalence:

Iα,ε(Ẽ) = inf
{qi}i≥1⊂[0,1]

{︄∑︂
i

q2i Iα,ε(Ei) :
∑︂
i

qi = 1

}︄
.

Proof. The idea is to exploit the 2-homogeneity of Iα,ε, which is clear from its definition. In this way,
arguing like in 1.2, we recover the relation:

Q2Iα,ε(A) = inf {Iα,ε(µ) : µ(A) = Q} ∀A ⊂ RN Borel set.

Thus, given any generalized measure µ̃, we let qi = µi(Ei). Using Iα,ε(µ
i) ≥ q2i Iα,ε(Ei), we have

immediately:

Iα,ε(Ẽ) = inf
µ̃

ß∑︂
Iα,ε(µ

i) :
∑︂
i

µi(Ei) = 1

™
≥ inf

µ̃

ß∑︂
q2i Iα,ε(Ei) :

∑︂
i

qi = 1

™
.

Concerning the second inequality, we fix δ > 0 and a sequence {qi}i≥1 ⊂ [0, 1] such that
∑︁

i qi = 1. Then,
for all i ≥ 1, we choose µi such that µi(Ei) = qi and

Iα,ε(µ
i) ≤ inf{Iα,ε(µi) : µi(Ei) = qi}+

δ

2i
= q2i Iα,ε(Ei) +

δ

2i
.

Hence, by definition:

Iα,ε(Ẽ) ≤
∑︂
i

Iα,ε(µ
i) ≤

∑︂
i

q2i Iα,ε(Ei) +
δ

2i
=

(︄∑︂
i

q2i Iα,ε(Ei)

)︄
+ δ

Passing to the infimum over all {qi}i≥1 as above, we find:

Iα,ε(Ẽ) ≤ inf
µ̃

ß∑︂
q2i Iα,ε(Ei) :

∑︂
i

qi = 1

™
+ δ,

and the thesis follows by taking the limit as δ → 0.

Similarly to what happens for classical sets, Iα,ε is well defined in L1 over generalized sets. In other

words, we can identify generalized sets agreeing up to another generalized set of measure 0, namely Ẽ
and F̃ such that |Ei∆F i| = 0 for all i ≥ 1. The next lemma provides upper and lower bounds for Iα,ε(Ẽ).
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Lemma 2.4. Let Ẽ = {Ei}i≥1 be a generalized set with |Ẽ| ∈ (0,+∞), then:

ε

|Ẽ|
≤ Iα,ε(Ẽ) ≤ c(N,α)

|Ẽ|N−α
N

+
ε

|Ẽ|
,

where

c(N,α) =
1

ω
1+ α

N

N

ˆ
B1×B1

1

|x− y|N−α
dx dy.

Proof. We start with the upper bound: let m = |Ẽ| and, for all i ≥ 1, let Bi be a ball such that
|Bi| = |Ei|. Choosing µi = χi

E/m as a competitor in the definition of Iα,ε(Ẽ) we find:

Iα,ε(Ẽ) ≤
∑︂
i

1

m2

ˆ
Ei×Ei

dx dy

|x− y|N−α
+

ε

m2

∑︂
i

|Ei|

=
1

m2

∑︂
i

ˆ
Ei×Ei

dx dy

|x− y|N−α
+

ε

m
.

By Riesz rearrangement inequality and its consequence 1.9, we get:

Iα,ε(Ẽ) ≤ 1

m2

∑︂
i

ˆ
Bi×Bi

dx dy

|x− y|N−α
+

ϵ

m
.

Performing the changes of variable Φi : RN × RN −→ RN × RN such that Φi(B1) = Bi

Φi(x, y) =

(︄Å |Ei|
ωN

ã 1
N

x,

Å |Ei|
ωN

ã 1
N

y

)︄
, so |det(JΦi)(x, y)| =

(︄Å |Ei|
ωN

ã 1
N

)︄2N

=
|Ei|2

(ωN )2
,

we get for all i ≥ 1:

ˆ
Bi×Bi

dx dy

|x− y|N−α
=

ˆ
B1×B1

|Ei|2

(ωN )2
dx dy

|(|Ei|/ωN )
1
N (x− y)|N−α

=
|Ei|2

(ωN )2
(ωN )1−

α
N

|Ei|1− α
N

ˆ
B1×B1

dx dy

|x− y|N−α

= c(N,α) |Ei|1+ α
N .

Thus:

Iα,ε(Ẽ) ≤ c(N,α)

m2

∑︂
i

|Ei|1+ α
N +

ε

m
≤ c(N,α)

m2

(︄∑︂
i

|Ei|

)︄1+ α
N

+
ε

m
=
c(N,α)

m
N−α
N

+
ε

m
.

The lower bound is much shorter to obtain: for all µ̃ = {µi}i≥1 such that
∑︁

i µ
i(Ei) = 1, we have by

Cauchy-Schwarz inequality:

ε
1
2 = ε

1
2

(︄∑︂
i

µi(Ei)

)︄
=
∑︂
i

ˆ
Ei

ε
1
2 dµi ≤

(︄∑︂
i

|Ei|

)︄ 1
2
(︄
ε
∑︂
i

ˆ
Ei

(µi)2

)︄ 1
2

≤ m
1
2 Iα,ε(µ̃).

Passing to the infimum over all µ̃ as above, we get the conclusion:

ε

|Ẽ|
≤ Iα,ε(Ẽ).
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As a consequence of the previous Lemma, we can prove existence uniqueness of an optimal measure for
Iα,ε(Ẽ).

Lemma 2.5. For every ε > 0 and every generalized set Ẽ = {Ei}i≥1 with |Ẽ| ∈ (0,+∞) and Iα,ε(Ẽ) <

+∞, there exists a unique optimal measure µ̃ = {µi}i≥1 for Iα,ε(Ẽ).

Proof. By Lemma 2.3, we have:

Iα,ε(Ẽ) = inf

{︄∑︂
i

q2i Iα,ε(Ei) :
∑︂
i

qi = 1

}︄
. (2.4)

Hence, the existence of an optimal µ̃ follows from the facts:

• (a) For every fixed set E such that |E|+ Iα,ε(E) < +∞, there exists a unique optimal measure for
Iα,ε(E);

• (b) There exists a unique optimal distribution of charges {qi}i≥1 ⊂ [0, 1] for the problem 2.4.

(a) Let E ⊂ RN be measurable and such that |E| + Iα,ε(E) < +∞. Noticing that obviously we have
Iα,ε(E) > −∞, we select a minimizing sequence {µn}n∈N ⊂ L2(RN ), such that µn ≥ 0 a.e.,

´
RN µn = 1,

spt(µn) ⊂ E for all n ∈ N and:

lim
n→+∞

Iα,ε(µn) = inf
µ(E)=1

Iα,ε(µ) = Iα,ε(E) < +∞,

which implies, by convergence, supn∈N Iα,ε(µn) < C. Thus:

ˆ
RN

µ2
n =

ˆ
E

µ2
n ≤ ε−1 sup

n∈N
Iα,ε(µn) < Cε−1.

By Banach-Alaoglu Theorem, there exist µ ∈ L2(RN ) and a subsequence {µnk
}k≥1 such that µnk

⇀ µ
as k → +∞. By weak lower semicontinuity of L2 norm and of the functional Iα, we immediately deduce:

Iα,ε(µ) ≤ lim inf
k→+∞

Iα,ε(µnk
) = Iα,ε(E).

Therefore, we conclude that µ is the minimizer we are looking for by showing that it is an admissible
competitor for the minimum problem Iα,ε(E). First of all, {µn}n∈N ⊂ {u ∈ L2(RN ) : u ≥ 0 a.e.} which
is closed and convex, hence weakly closed: µnk

⇀ µ implies µ ≥ 0 Lebesgue almost everywhere. Now,
we prove that µ is a probability measure on E: again, it easily follows by definition of weak convergence.
Indeed, since |E| < +∞, χE ∈ L2(RN ), so:

1 = lim
k→+∞

ˆ
E

µnk
= lim

k→+∞

ˆ
RN

χE µnk
=

ˆ
RN

χE µ =

ˆ
E

µ.

We find our minimizer by setting µ = 0 on Ec without loss of generality. Uniqueness of the measure µ
is easy to prove, because it suffices to show that the regularized energy functional Iα,ε is strictly convex
over its domain M+. Since the term ε

´
RN µ

2 is strictly convex, we just need to prove that Iα is convex.
Let ρ1, ρ2 be positive measures and t ∈ [0, 1], by bilinearity and Cauchy-Schwarz inequality we have:

Iα(tρ1 + (1− t)ρ2) = t2Iα(ρ1) + 2t(1− t)Iα(ρ1, ρ2) + (1− t)2Iα(ρ2)

≤ t2Iα(ρ1) + 2t(1− t)

ï
1

2
Iα(ρ1) +

1

2
Iα(ρ2)

ò
+ (1− t)2Iα(ρ2)

≤ tIα(ρ1) + (1− t)Iα(ρ2).
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(b) Let Ẽ = {Ei}i≥1 be a generalized set with |Ẽ| < +∞, by the lower bound in the previous Lemma
we get: ∑︂

i

I−1
α,ε(E

i) ≤ 1

ε

∑︂
i

|Ei| < +∞ =⇒ lim
I→+∞

∑︂
i≥I

I−1
α,ε(E

i) = 0.

Hence, we consider a minimizing sequence for the minimum problem 2.4: {{qni }i≥1}n∈N such that
{qni }i≥1 ⊂ [0, 1] and

∑︁
i q

n
i = 1 for all n ∈ N and see:

∑︂
i≥I

qni ≤

Ñ∑︂
i≥I

(qni )
2Iα,ε(Ei)

é 1
2
Ñ∑︂

i≥I

I−1
α,ε(E

i)

é 1
2

−→ 0 as I → +∞.

The minimizing sequence is tight and therefore, by Prohorov Theorem, there exist {qi}i≥1 ⊂ [0, 1] such
that

∑︁
i qi = 1 and {qni }i≥1 ⇀ {qi}i≥1 in ℓ1 as n→ +∞, which turns out to be the optimal distribution

of charge we are looking for by weak lower semicontinuity of the ℓ2 norm. Uniqueness is yielded again by
strict convexity of the functional, which is quadratic over ℓ1.

2.3 Existence of generalized minimizers for the regularized en-
ergy

After the preparation we developed in the last two sections, we can finally introduce the regularized
relaxed energy functional:

Fα,Q,Λ,ε(Ẽ) = P (Ẽ) +Q2Iα,ε(Ẽ) + Λ
⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
.

The current section is devoted to proving existence of generalized minimizers for the variational problem:

min
0<|Ẽ|<+∞

Fα,Q,Λ,ε(Ẽ), (2.5)

thanks to a concentration-compactness technique performed in Theorem 2.7. Notice that we are not
allowed to minimize over the class of sets SN with the mathematical tools we plan to work with, due to
the issue with the functional Iα we previously raised. Therefore, we minimize over the more general class
of sets with finite measure which is way easier to handle for our purposes. In addition, we highlight that
the kind of argument we employ in Theorem 2.7 constitutes another good motivation for introducing the
regularized Riesz energy Iα,ε.

Anyway, before studying the problem 2.5, we need one last preparatory Lemma, stating that minimizing
among classical or generalized sets gives us the same infimum energy.

Lemma 2.6. For every α ∈ (0, N), Q > 0, λ > 0 and ε > 0 we have:

inf
0<|E|<+∞

Fα,Q,Λ,ε(E) = inf
0<|Ẽ|<+∞

Fα,Q,Λ,ε(Ẽ).

Proof. The ≥ inequality is trivial once noticing that every classical set is a generalized set. Therefore,
it is enough to prove that for every δ > 0 and for every generalized set Ẽ = {Ei}i≥1 there exists a set

E ⊂ RN with Fα,Q,Λ,ε(E) ≤ Fα,Q,Λ,ε(Ẽ)+ δ. We fix I ∈ N and R > 0, then we let F i = Ei ∩BR if i ≤ I

and F i = ∅ otherwise, and we set F̃ = {F i}i≥1. First, we remark that, by monotone convergence, we
have limR→+∞ |Ei ∩BR| = |Ei| for all i ≤ 1. Therefore, since

∑︁
i |Ei| ≤ +∞, we get:

lim
I,R→+∞

|F̃ | = lim
I,R→+∞

∑︂
i≤I

|F i| = lim
I→+∞

∑︂
i≤I

lim
R→+∞

|F i| = lim
I→+∞

∑︂
i≤I

|Ei| = |Ẽ|,
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again by monotone convergence. So, by continuity of the function Λ| · −ωN |, we can choose I and R
large enough such that:

Λ

⃓⃓⃓⃓
⃓

I∑︂
i=1

|F i| − ωN

⃓⃓⃓⃓
⃓ ≤ Λ

⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
+ δ. (2.6)

Moreover, by [18, Lemma 15.12], for all i ≥ 1 for almost every R > 0 we have:

P (Ei ∩BR) = P (Ei, BR) +HN−1(Ei ∩ ∂BR).

Also, Coarea Formula implies:

ˆ +∞

0

HN−1(Ei ∩ ∂BR) dR = |Ei| =⇒
ˆ 2R

R

HN−1(Ei ∩ ∂BR) dR ≤ |Ei|.

In particular, for all i ≥ 1 there exists Ri ∈ (R, 2R) such that HN−1(Ei ∩ ∂BRi) ≤ |Ei|
R . Combining the

two properties, we get for all I :

P (F̃ ) =

I∑︂
i=1

P (F i) ≤
I∑︂

i=1

P (Ei ∩BRi) ≤
I∑︂

i=1

P (Ei, BRi) +HN−1(Ei ∩ ∂BRi)

≤
I∑︂

i=1

P (Ei) +
Imaxi |Ei|

R
≤ P (Ẽ) + δ

(2.7)

again for R large enough. We only need to treat the energy term: let µ̃ = {µi}i≥1 be the optimal measure

for Iα,ε(Ẽ) given by Lemma 2.5. Then, we set νi =
µi|Fi∑︁I

i=1 µi(F i)
for i ≤ I and νi = 0 otherwise, so that

ν̃ = {νi}i≥1 is a competitor for Iα,ε(F̃ ). By construction of F̃ , we have that
∑︁I

i=1 µ(F
i) converges to 1

as both I and R goes to +∞, so we can also assume as well that I and R are chosen large enough in
order to have, apart from 2.6 and 2.7:

Q2Iα,ε(ν̃) =
Q2

(
∑︁I

i=1 µ(F
i))2

Åˆ
F i×F i

dµ(x) dµ(y)

|x− y|N−α
+ ε

ˆ
RN

(µi)2
ã
≤ Q2Iα,ε(Ẽ) + δ. (2.8)

Now We are finally ready to build the required set E by rearranging the sets F i together with their
associated measures νi for all i ≤ I in RN . First of all, we choose some points {xi}Ii=1 ⊂ RN such that
mini̸=j |xi − xj | ≫ R and we define:

E =

I⋃︂
i=1

(F i + xi) and ν(x) =

I∑︂
i=1

νi(x− xi).

Since F i ⊂ BR by construction for all i ≤ I, the sets F i + xi are pairwise disjoint, so the perimeter and
the volume of their union decouple. In particular, from 2.6 and 2.7 we have:

P (E) + Λ ||E| − ωN | =
I∑︂

i=1

P (F i) + Λ

⃓⃓⃓⃓
⃓

I∑︂
i=1

|F i| − ωN

⃓⃓⃓⃓
⃓ ≤ P (Ẽ) + Λ

⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
+ 2δ.

Again, by construction, ν is admissible for Iα,ε(E). Reasoning in the same exact way as we did in 1.14,
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we are able to estimate the remaining term:

Q2Iα,ε(ν) = Q2

ˆ
(
⋃︁I

i=1 F i)×(
⋃︁I

j=1 F j)

d(
∑︁K

i=1 ν
i)(x) d(

∑︁K
j=1 ν

j)(y)

|x− y|N−α

= Q2Iα,ε(ν̃) +Q2
∑︂
i ̸=j

ˆ
F i×F j

dνi(x) dνj(y)

|x− y|N−α

≤ Q2Iα,ε(Ẽ) + δ +
Q2

mini ̸=j |xi − xj |
≤ Q2Iα,ε(Ẽ) + δ + δ.

In the last inequality we used 2.8 and we assumed again R large enough. Eventually, we find as anticipated:

Fα,Q,Λ,ε(E) ≤ P (E) +Q2Iα,ε(ν) + Λ ||E| − ωN |

≤ P (Ẽ) +Q2Iα,ε(Ẽ) + Λ
⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
+ 4δ

= Fα,Q,Λ,ε(Ẽ) + 4δ.

We are now ready to prove existence of generalized minimizers for the functional Fα,Q,Λ,ε. The proof is
one of the most significative of the dissertation and, as already anticipated, it relies on a concentration-
compactness argument, aimed at preventing the loss of both mass and charge at +∞. Starting from a
minimizing sequence for Fα,Q,Λ,ε made of classical sets, the idea is to split RN into a partition of cubes,
each one carrying its own mass and charge. After proving convergence of the values of such quantities,
we build a generalized set which encompassing all the information obtained, together with its associated
measure. Finally, we show that the set we constructed is actually a minimizer, thanks to the lower
semicontinuity under L1

loc convergence of all the terms composing the functional Fα,Q,Λ,ε.

Theorem 2.7. For every α ∈ (0, 1], Q > 0, ε > 0 and Λ ≫ 1+Q2, there exist generalized minimizers of
the functional Fα,Q,Λ,ε.

Proof. Let {En}n∈N be a classical minimizing sequence for Fα,Q,Λ,ε, namely En is measurable for all
n ∈ N and

lim
n→+∞

Fα,Q,Λ,ε(En) = inf
0<|E|<+∞

Fα,Q,Λ,ε(E).

By Lemma 2.6, it is a minimizing sequence for generalized sets as well. Using the unit ball B1 as a
competitor we have:

inf
|E|<+∞

Fα,Q,Λ,ε(E) ≤ Fα,Q,Λ,ε(B1) ≲ 1 +Q2 =⇒ sup
n∈N

Fα,Q,Λ,ε(En) ≲ 1 +Q2. (2.9)

In particular, we infer that Λ ||En| − ωN | ≲ 1 +Q2 for all n ∈ N, so there exists a constant C(N,Λ) > 0
such that mn := |En| < C(N,Λ) for all n ∈ N. Therefore, there exists m ∈]0,+∞[ such that, up to
extraction of a subsequence, mn −→ m as n→ +∞.

Now we proceed with the concentration-compactness argument. We fix a positive number L≫ m
1
N . For

all n ∈ N, we consider the lattice (LZ)N = {zi,n}i≥1, thanks to which we construct a partition of RN

into cubes {Qi,n}i≥1, where Qi,n = [0, L]N +zi,n. We let mi,n := |En∩Qi,n| (so that
∑︁

imi,n = mn) and
we assume without loss of generality that {mi,n}i≥1 is decreasing in i for all n ∈ N, namely mi,n ≥ mj,n

for all i ≤ j. The procedure we are about to carry out is aimed at preventing the loss of mass when
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passing the limit as n → +∞, hence we can seamlessly consider from now on only the indexes i with
measure mi,n > 0. Finally, letting µn be the optimal measure for Iα,ε(En), we set qi,n := µn(Qi,n), so
that

∑︁
i qi,n = µn(En) = 1.

Now, we want to prove that there exist two sequences {mi}i≥1 and {qi}i≥1 such that, up to subsequences:

{mi,n}i≥1 ⇀ {mi}i≥1 and {qi,n}i≥1 ⇀ {qi}i≥1 in ℓ1 as n→ +∞,

which is:

lim
n→+∞

+∞∑︂
i=1

mi,nfi =

+∞∑︂
i=1

mifi for all f = {fi}i≥1 ∈ ℓ∞

and similarly for {qi}i≥1. In this way, applying the definition of weak convergence with the sequence
g = {1}i≥1, we get automatically:

m = lim
n→+∞

mn = lim
n→+∞

+∞∑︂
i=1

mi,n =

+∞∑︂
i=1

mi, 1 = lim
n→+∞

µn(En) = lim
n→+∞

+∞∑︂
i=1

qi,n =

+∞∑︂
i=1

qi.

In order to prove the desired weak convergence, we prove tightness of the two sequences of sequences
{{mi,n}i≥1}n∈N and {{qi,n}i≥1}n∈N. For the first one, we use the relative isoperimetric Inequality [18,
Proposition 12.37] (more precisely its version employing cubes instead of balls), exploiting the fact that

with our choice of L ≫ m
1
N we have mi,n = |Qi,n ∩ En| ≤ |Qi,n|/2, so min{|Qi,n ∩ En|, |Qi,n \ En|} =

|Qi,n ∩ En|. We compute: ∑︂
i

m
N−1
N

i,n ≲
∑︂
i

P (En, Qi,n) = P (En) ≲ 1 +Q2.

where the last inequality derive from 2.9. Using the assumptions that {mi,n}i≥1 is decreasing in i, for all
I ∈ N we have mi,n ≤ mI,n ≤ mn

I for i ≥ I, thus:∑︂
i≥I

mi,n =
∑︂
i≥I

(mi,n)
1
N (mi,n)

N−1
N ≤

(︂mn

I

)︂ 1
N
∑︂
i≥I

(mi,n)
N−1
N ≲ (1 +Q2)

(︂mn

I

)︂ 1
N

,

which tends to 0 as I → +∞. Concerning {{qi,n}i≥1}n∈N, on the other hand, we apply twice Cauchy-
Schwarz and we find:

∑︂
i≥I

qi,n =
∑︂
i≥I

ˆ
En∩Qi,n

µn ≤
∑︂
i≥I

m
1
2
i,n

Çˆ
En∩Qi,n

µ2
n

å 1
2

≤

Ñ∑︂
i≥I

mi,n

é 1
2
Ñ∑︂

i≥I

ˆ
En∩Qi,n

µ2
n

é 1
2

≤

Ñ∑︂
i≥I

mi,n

é 1
2 Åˆ

RN

µ2
n

ã 1
2

≲ ε−
1
2 I

1
2
α,ε(En)(1 +Q2)

1
2

(︂mn

I

)︂ 1
2N

.

Being I
1
2
α,ε(En) uniformly bounded in n by 2.9, the right-hand side of the last computation tends to 0 as

I → +∞. Therefore, we proved tightness for both of the sequences {{mi,n}i≥1}n∈N and {{qi,n}i≥1}n∈N:
by applying Prohorov Theorem, we finally deduce the required weak convergence, up to extraction of
subsequences.

The next step of the proof is to construct the generalized set Ẽ = {Ei}i≥1, which will turn out to be our
generalized minimizer. First of all, for all i ≥ 1 we have, by 2.9:

P (En − zi,n) = P (En) ≲ 1 +Q2 =⇒ sup
n∈N

P (En − zi,n) < +∞.
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Therefore, by [18, Corollary 12.27], there exist a measurable set Ei of locally finite perimeter such that,
up to extraction of a subsequence, En − zi,n −→ Ei in L1

loc(RN ). Moreover, setting µi
n := µn(· + zi,n),

by Banach-Alaoglu Theorem (∥µi
n∥L2(RN ) = 1 for all n ∈ N) there exists µi ∈ L2(RN ) such that, up to

another extraction, we have µi
n ⇀ µi in L2(RN ) as n→ +∞. Thanks to a diagonal argument, up to the

extraction of an ulterior subsequence, this occurs simultaneously for all i ≥ 1.

Now, noticing that for every i and j there holds lim supn→+∞ |zi,n − zj,n| = aij ∈ [0,+∞], we define the
equivalence relation i ∼ j if aij < +∞ and we denote [i] the equivalence class of i. In particular, if i ∼ j
then Ei and Ej are translated of each other by construction. For each equivalence class we denote:

m[i] =
∑︂
j∼i

mj and q[i] =
∑︂
j∼i

qj =⇒
∑︂

[i]∈N/∼

m[i] = m and
∑︂

[i]∈N/∼

q[i] = 1.

Next, we show the key point of the proof, which consists in linking the L1
loc convergence of sets we just

established with the weak convergence of the sequences {{mi,n}i≥1}n∈N and {{qi,n}i≥1}n∈N, namely:

|Ei| = m[i] and µi(Ei) = q[i] for all i ≥ 1.

In non-mathematical words, the measure of the limit sets Ei is given by the sum of the limits of the
measures mj,n = |En ∩Qj,n| for all j ∼ i. In particular, each set Ei is defined by the union of the L1

loc

limits of the sets Qj,n for all j ∼ i. We start with the first equality and we fix a class [i] and M ∈ N.
Recalling that the cardinality of [i] may be infinite (and thus the set Ei unbounded), we consider the
finite family {i1, ... , iM}. By construction of [i], there exists a compact set KM such that we have:

M⋃︂
k=1

Qik,n ⊂ KM + zi,n for all n ∈ N, (2.10)

whence:

M∑︂
k=1

mik,n =

M∑︂
k=1

|En ∩Qik,n| = |En ∩
M⋃︂
k=1

Qik,n| ≤ |En ∩ (KM + zi,n)| = |(En − zi,n) ∩KM |.

We send n→ +∞: using the L1
loc convergence En−zi,n −→ Ei and the weak convergence of the sequence

{{mi,n}i≥1}n∈N, we find
M∑︂
k=1

mik ≤ |Ei ∩KM | ≤ |Ei| for all n ∈ N.

Passing to the limit as M → +∞, we get m[i] ≤ |Ei|. Conversely, if we show that
∑︁

[i]∈N/∼ |Ei| ≤ m, we
are able to conclude:

m =
∑︂

[i]∈N/∼

m[i] ≤
∑︂

[i]∈N/∼

|Ei| ≤ m =⇒ |Ei| = m[i] for all i ≥ 1.

Hence, we choose M integers {i1, ... , iM} belonging to different equivalence classes: given R > 0, again
by construction of the equivalence relation, we have that BR(zik,n) ∩ BR(zil,n) = ∅ for all k ̸= l for n
large enough. Therefore:

mn = |En| ≥
⃓⃓⃓⃓
⃓En ∩

M⋃︂
k=1

BR(zik,n)

⃓⃓⃓⃓
⃓ =

M∑︂
k=1

|En ∩BR(zik,n)| ≥
M∑︂
k=1

|(En − zik,n) ∩BR|.
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Passing to the limit as n→ +∞, again L1
loc convergence yields:

m ≥
M∑︂
k=1

|(Eik) ∩BR|,

hence we conclude our thesis by letting first R→ +∞ and finally M → +∞.

The proof of µi(Ei) = q[i] exploits the exact same ideas but is a bit more convoluted. We begin by
noticing that, for each K ⊂ RN compact, obviously µi

n ⇀ µi in L2(RN ) implies µi
n ⇀ µi in L2(K) as

n → +∞ as well. Moreover, En − zi,n −→ Ei in L1
loc(RN ) implies En − zi,n −→ Ei in L2

loc(RN ), since
|χEn−zi,n −χEi | ∈ {0, 1} so |χK(χEn−zi,n −χEi)|2 = |χK(χEn−zi,n −χEi)| −→ 0 as n→ +∞. Therefore,
using the same notation as before and recalling 2.10 we deduce:

M∑︂
k=1

qik,n =

M∑︂
k=1

µn(En ∩Qik,n) = µn(En ∩
M⋃︂
k=1

Qik,n) ≤ µn(En ∩ (KM + zi,n))

=

ˆ
En∩KM+zi,n

µn(x) =

ˆ
En−zi,n∩KM

µn(x+ zi,n) =

ˆ
KM

χEn−zi,n(x)µn(x+ zi,n).

Notice that in the second variable we changed variable with the translation x ↦−→ x + zi,n. Passing the
right-hand side to the limit as n→ +∞, we obtain by weak-strong convergence in duality in L2(KM )×
L2(KM ):

M∑︂
k=1

qik ≤
ˆ
KM

χEiµi =

ˆ
Ei∩KM

µi = µi(Ei ∩KM ) ≤ µi(Ei) for all n ∈ N.

Passing to the limit as M → +∞, we get q[i] ≤ µi(Ei). Conversely, showing that
∑︁

[i]∈N/∼ µ
i(Ei) ≤ 1,

allows us to conclude:

1 =
∑︂

[i]∈N/∼

q[i] ≤
∑︂

[i]∈N/∼

µi(Ei) ≤ 1 =⇒ µi(Ei) = q[i] for all i ≥ 1.

Given the proof of previous inequality, the computations for the last one follow from a simple readaptation
of what we did before.

Up to relabelling the indexes, we may now assume that each equivalence class [i] is made of a single
element. If we set Ẽ = {Ei}i≥1 and µ̃ = {µi}i≥1, thanks to the previous section of the proof we have

just shown that µ̃ is admissible for Iα,ε(Ẽ). Hence, it remains to prove:

P (Ẽ) + Iα,ε(µ̃) + Λ
⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
≤ lim inf

n→+∞
P (En) + Iα,ε(µn) + Λ ||En| − ωN | .

We consider separately each term of the energy. Since |Ẽ| = m = limn→+∞mn = limn→+∞ |En|,
continuity of the function Λ| · −ωN | yields immediately:

Λ
⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
≤ lim inf

n→+∞
Λ ||En| − ωN | .

On the other hand, regarding the perimeter term, fix I ∈ N and R > 0. For n large enough, we can
assume that |zi,n − zj,n| ≫ R for i, j ≤ I with i ̸= j (this is possible because we are dealing with a finite
number number of equivalence classes and thus a finite number of ”reference” points zi,n). By the Coarea
Formula we have, for every such n:

ˆ 2R

R

∑︂
i≤I

HN−1(En ∩ ∂BR(zi,n)) dR ≤ |En|
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Arguing in the same way as Lemma 2.6, we find that for every n large enough there exists a radius
Rn ∈ (R, 2R) such that: ∑︂

i≤I

HN−1(En ∩ ∂BRn
(zi,n)) ≲

1

R
.

We set Ei,Rn = (En − zi,n) ∩BRn and, recalling again [18, Lemma 15.12], we have:∑︂
i≤I

P (Ei,Rn) =
∑︂
i≤I

P (En − zi,n, BRn
) +

∑︂
i≤I

HN−1((En − zi,n) ∩ ∂BRn
)

=
∑︂
i≤I

P (En, BRn(zi,n)) +
∑︂
i≤I

HN−1(En ∩ ∂BRn(zi,n))

≤ P (En) +
C

R
.

The first inequality is a consequence of translation invariance of the perimeter and ofHN−1 ( indeed Ei,Rn

is a translation of En ∩ BRn
(zi,n)), whereas the last one is given by the assumption |zi,n − zj,n| ≫ R

and the fact that BRn(zi,n) ⊂ B2R(zi,n). In this way, since B2R(zi,n) ∩ B2R(zj,n) = ∅ for i ̸= j and
i, j ≤ I, the sum of the perimeters decouples and it can be majorized with P (En). Now, considering
the sequence {Ei,Rn}n∈N, we have that Ei,Rn ⊂ B2R for all n ∈ N and supn∈N P (E

i,Rn) < +∞, by the
last computation and exploiting again 2.9. Therefore, by [18, Theorem 12.26], there exists a set of finite
perimeter Ei,R ⊂ B2R such that, up to extraction, Ei,Rn −→ Ei,R in L1(RN ) as n → +∞. Anyway, as
we have En − zi,n −→ Ei in L1

loc(RN ) too, there holds (En − zi,n) ∩ B2R −→ Ei ∩ B2R in L1(RN ) as
well. Being the first a subsequence of the latter, we must necessarily have Ei,R ⊂ Ei ∩ B2R. Moreover,
we had Rn ∈ (R, 2R) so in particular (En − zi,n) ∩BR ⊂ Ei,Rn for all n ∈ N: hence, by L1 convergence,
we deduce Ei ∩BR ⊂ Ei,R. Putting everything together, we get:

Ei ∩BR ⊂ Ei,R ⊂ Ei ∩B2R,

letting R→ +∞ we infer Ei,R −→ Ei in L1
loc(RN ). Thus, by lower semicontinuity of the perimeter under

L1
loc convergence and by superadditivity of the inferior limit, we can conclude:∑︂

i≤I

P (Ei) ≤
∑︂
i≤I

lim inf
R→+∞

P (Ei,R) ≤
∑︂
i≤I

lim inf
R→+∞

lim inf
n→+∞

P (Ei,Rn)

≤ lim inf
R→+∞

lim inf
n→+∞

∑︂
i≤I

P (Ei,Rn) ≤ lim inf
R→+∞

lim inf
n→+∞

P (En) +
C

R

= lim inf
n→+∞

P (En)

This is true for all I ∈ N, so passing to the limit as I → +∞ we get:

P (Ẽ) =

+∞∑︂
i=1

P (Ei) = lim
I→+∞

∑︂
i≤I

≤ lim inf
n→+∞

P (En).

It remains to estimate the regularized Riesz energy term. Similarly, we fix I ∈ N and R > 0: for n large
enough, we can assume that |zi,n − zj,n| ≫ R for i, j ≤ I with i ̸= j. Exploiting the weak convergence
µi
n ⇀ µi in L2(RN ) as n→ +∞ and the lower semicontinuity of Iα,ε under weak convergence we get:∑︂

i≤I

Iα,ε(µ
i|BR

) ≤
∑︂
i≤I

lim inf
n→+∞

Iα,ε(µ
i
n|BR

) ≤ lim inf
n→+∞

∑︂
i≤I

Iα,ε(µ
i
n|BR

)

≤ lim inf
n→+∞

Iα,ε

Ñ∑︂
i≤I

µi
n|BR(zi,n)

é
≤ lim inf

n→+∞
Iα,ε(µn).
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Since µi|BR
⇀ µi in L2(RN ) as R→ +∞, we have:∑︂
i≤I

Iα,ε(µ
i) ≤

∑︂
i≤I

lim inf
R→+∞

Iα,ε(µ
i|BR

) ≤ lim inf
R→+∞

∑︂
i≤I

Iα,ε(µ
i|BR

) ≤ lim inf
n→+∞

Iα,ε(µn)

and we can find the estimate we need by letting I → +∞ like before. Finally, putting everything together
we have:

P (Ẽ) + Iα,ε(µ̃) + Λ
⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
≤ lim inf

n→+∞
P (En) + lim inf

n→+∞
Iα,ε(µn) + lim

n→+∞
Λ ||En| − ωN |

≤ lim inf
n→+∞

P (En) + Iα,ε(µn) + Λ ||En| − ωN |

= inf
|E|<+∞

Fα,Q,Λ,ε(E),

concluding the proof.

2.4 First almost minimality property and density estimates

After proving existence of minimizers for the problem 2.5, our ultimate goal is to show that they actually
enjoy many regularity properties (which will finally lead us to solve problem 1.16) and the current section
is devoted to doing it. However, the path is quite long and it requires some preparatory arguments: we
begin by defining (Λ, r0)-perimeter minimality and by proving density estimates for finite perimeter sets
enjoying such property in Lemma 2.9. Then, after another preliminary result explained in Lemma 2.10,
we present the first almost minimality property characterizing minimizers of Fα,Q,Λ,ε, which is nothing
but a way to say that they are (Λ, r0)-minimizer for some parameter Λ. At that point, proving density
estimates for our minimizers is just a formality and we will finally infer their regularity properties in
Proposition 2.13.

First thing first, the very general notion of (Λ, r0)-perimeter minimality. Be careful not to confuse the
parameter Λ employed here (notation we decided to adopt in adherence with the reference) with its use
when relaxing the volume constraint in Lemma 2.1.

Definition 2.8 ((Λ, r0)-minimality). Given two parameters Λ, r0 > 0, a set of locally finite perimeter E
is a (Λ, r0)-minimizer of the perimeter if, for every x ∈ RN and for all r ≤ r0, we have:

P (E) ≤ P (F ) + ΛrN−1 for all E∆F ⊂ Br(x).

As highlighted in [14], such sets enjoy many interesting properties, but we are especially interested in
their density estimates, which uniformly compare at small scales the size of the perimeter and of the
volume of a (Λ, r0)-minimizer with those of a ball.

Lemma 2.9 (Density estimates). There exists a universal and small enough constant Λ > 0 such that,
if Λ ≤ Λ and E is a (Λ, r0)-minimizer, then for every x ∈ ∂E and every 0 < r ≤ r0 we have:

min{|E ∩Br(x)|, |Br(x) \ E|} ≳ rN (2.11)

and
rN−1 ≲ P (E,Br(x)) ≲ rN−1. (2.12)

Proof. By translation and density, we may assume without loss of generality that x = 0 and 0 ∈ ∂∗E.
We begin by proving the upper bound in 2.12. Noticing that P (E \Br) = P (E,Bc

r) +HN−1(∂Br ∩ E),
we use the (Λ, r0)-minimality property with the set E \Br:

P (E,Br) + P (E,Bc
r) = P (E) ≤ P (E,Bc

r) +HN−1(∂Br ∩ E) + ΛrN−1.
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Therefore:
P (E,Br) ≤ HN−1(∂Br ∩ E) + ΛrN−1 ≲ rN−1,

and the upper bound is proved.

Concerning the lower bound, we assume by contradiction that there exists some r ≤ r0 such that, for all
θ ∈

(︁
0, 12

)︁
there exists η = η(θ) small to be chosen precisely below). We claim that if there holds:

1

rN−1
P (E,Br) ≤ η, (2.13)

then there exists C > 0 such that:

1

(θr)N−1
P (E,Bθr) ≤ θ

1

rN−1
P (E,Br) + CΛ. (2.14)

Indeed, if 2.13 holds, then by relative Isoperimetric Inequality we find:

min

ß |E ∩Br|
rN

,
|Br \ E|
rN

™
≲
Å

1

rN−1
P (E,Br)

ã N
N−1

≲ η
1

N−1
1

rN−1
P (E,Br).

Hence, we assume first that |E ∩ Br| ≤ |Br \ E|. Now, we can choose t ∈ (θr, 2θr) such that, applying
Coarea Formula we find:

HN−1(∂Bt ∩ E) ≤ 1

θr

ˆ 2θr

θr

HN−1(∂Bs ∩ E) ds ≲
|E ∩B2θr|

θr
− |E ∩Bθr|

θr

≤ |E ∩B2θr|
θr

≤ |E ∩Br|
θr

≲ θ−1η
1

N−1P (E,Br).

We test the (Λ, r0)-minimality property with E \Bt to deduce (recalling t ≲ θr):

P (E,Bt) ≤ HN−1(∂Bt ∩ E) + ΛtN−1 ≲ θ−1η
1

N−1P (E,Br) + Λ(θr)N−1.

Now, we have that P (E,Bθr) ≤ P (E,Bt) and dividing the last expression by (θr)N−1 we have:

1

(θr)N−1
P (E,Bθr) ≤ C

Å
θ−Nη

1
N−1

1

rN−1
P (E,Br) + Λ

ã
.

On the other hand, if |E∩Br| ≥ |Br \E|, we argue exactly in the same way noticing that, by the equality
between the measures P (E, ·) and P (Ec, ·), the (Λ, r0)-minimality property holds true for Ec as well.
Then, we choose:

η = min

®
ωN−1

2
,

Å
1

C
θN+1

ãN−1
´

so Cθ−Nη
1

N−1 ≤ θ

and 2.14 follows. In particular, notice that η → 0 as θ → 0. Now, we assume that:

Λ ≤ η(1− θ)

C

(namely we are sufficiently decreasing Λ as reported in the statement), where C is the constant appearing
in 2.14. Thus, if 2.13 holds, by 2.14 and our assumption on Λ we find:

1

(θr)N−1
P (E,Bθr) ≤ θη + CΛ ≤ η.
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Iterating the previous argument we obtain:

lim sup
k→+∞

1

(θkr)N−1
P (E,Bθkr) ≤ η.

Since η ≤ ωN−1 by our previous choice, this contradicts:

lim
r→0

1

rN−1
P (E,Br) = ωN−1,

which follows from the hypothesis 0 ∈ ∂∗E from [18, Corollary 15.8]. Hence, for all r ≤ r0, there exists
some θ ∈

(︁
0, 12

)︁
such that:

lim sup
r→0

1

rN−1
P (E,Br) ≥ η(θ),

which yields the lower bound in 2.12. In other words, there exists C1 > 0 such that for all r ≤ r0 we
have P (E,Br) ≥ C1r

N−1.

Regarding 2.11, we reason in a similar way, namely we assume by contradiction that there exists some
r ≤ r0 such that, for all θ ∈

(︁
0, 12

)︁
there exists η′ = η′(θ) small (to be chosen precisely below) such that:

min{|E ∩Br|, |Br \ E|} ≤ η′rN , (2.15)

If 2.15 holds, then there exists t ∈ (θr, 2θr) such that:

HN−1(∂Bt ∩ E) ≤ |E ∩Br|
θr

≤ η′

θ
rN−1,

so, testing again the (Λ, r0)-minimality property with E \Bt we infer

P (E,Bt) ≤
η′

θ
rN−1 + Λ(2θ)N−1rN−1.

We call C1 the constant appearing in the upper bound of 2.12 and we make the choice:

η′ < C1
θN

2
and Λ ≤ η′

θ(2θ)N−1
.

Again, we are sufficiently decreasing Λ as reported in the statement. In his way, we get:

P (E,Bt) ≤ HN−1(∂Bt ∩ E) + ΛtN−1 ≤ η′

θ
rN−1 + Λ(2θ)N−1rN−1 ≤ 2η′

θ
rN−1.

In particular:

P (E,Bt) ≤
2η′

θN
(θr)N−1 ≤ C1t

N−1,

which is a contradiction with 2.12, thus, in conclusion, 2.11 follows.

As we will see later on, finite perimeter sets with density estimates enjoy some good regularity properties.
Therefore, it is rather natural to ask ourselves whether minimizers of problem 2.5 enjoy such kind of
estimates or not. Of course, we need to prove that they are (Λ, r0)-minimizer for some couple (Λ, r0)
and the tool to make such conclusion, the first almost minimality property for minimizers of Fα,Q,Λ,ε, is
presented in the next proposition. Anyway, we must prove first another preliminary lemma.
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Lemma 2.10. For every generalized set Ẽ = (E∪F )×{Ei}i≥2 with E and F sets with positive measure

such that |E ∩ F | = 0, if we define F̃ = F × {Ei}i≥2 we have:

Iα,ε(Ẽ) ≥ Iα,ε(F̃ )−
Iα,ε(F̃ )2

Iα,ε(E)
.

Proof. Let µ̃ = {µi}i≥1 be optimal for Iα,ε(Ẽ). We may assume without loss of generality that both

µ1(E) ̸= 0 and µ1(F ) +
∑︁

i≥2 µ
i(Ei) ̸= 0. Indeed, in the first case we would have Iα,ε(Ẽ) = Iα,ε(F̃ ) so

trivially:

Iα,ε(Ẽ) = Iα,ε(F̃ ) ≥ Iα,ε(F̃ )−
Iα,ε(F̃ )2

Iα,ε(E)
.

Whereas, in the second one we would have Iα,ε(Ẽ) = Iα,ε(E), from which we find the implication:

Iα,ε(E)2 + Iα,ε(F̃ )2 ≥ Iα,ε(E)Iα,ε(F̃ ) =⇒ Iα,ε(E) ≥ Iα,ε(F̃ )−
Iα,ε(F̃ )2

Iα,ε(E)
.

Hence, we define:

µ =
µ1|E
µ1(E)

, ν1 =
µ1|F

1− µ1(E)
and νi =

µi

1− µ1(E)
for all i ≥ 2.

In this way, µ is admissible for Iα,ε(E) and ν̃ = {νi}i≥1 is admissible for Iα,ε(F̃ ) and we have:

Iα,ε(µ
1) = Iα,ε(µ

1|E + µ1|F ) = Iα,ε(µ
1|E) + Iα,ε(µ

1|F ) + Iα,ε(µ
1|E , µ1|F )

≥ Iα,ε(µ
1|E) + Iα,ε(µ

1|F ) = (µ1(E))2Iα,ε(µ) + (1− µ1(E))2Iα,ε(ν
1),

by 2-homogeneity of the regularized interaction energy Iα,ε. Therefore, by definition of Iα,ε(Ẽ):

Iα,ε(Ẽ) = Iα,ε(µ
1) +

+∞∑︂
i=2

Iα,ε(µ
i)

≥ (µ1(E))2Iα,ε(µ) + (1− µ1(E))2Iα,ε(ν
1) + (1− µ1(E))2

+∞∑︂
i=2

Iα,ε(ν
i)

= (µ1(E))2Iα,ε(µ) + (1− µ1(E))2Iα,ε(ν̃)

≥ (µ1(E))2Iα,ε(E) + (1− µ1(E))2Iα,ε(F̃ ).

Since θ := µi(E) ∈ [0, 1] (here we include again the trivial cases), we have as well:

Iα,ε(Ẽ) ≥ min
θ∈[0,1]

θ2Iα,ε(E) + (1− θ)2Iα,ε(F̃ ).

Optimizing in θ, we find θ =
Iα,ε(F̃ )

Iα,ε(E)+Iα,ε(F̃ )
, which in turn yields:

Iα,ε(Ẽ) ≥ Iα,ε(E)Iα,ε(F̃ )
Iα,ε(E) + Iα,ε(F̃ )

= Iα,ε(F̃ )
Ç
1 +

Iα,ε(F̃ )
Iα,ε(E)

å−1

.

We conclude thanks to the inequality (1 + x)−1 ≥ 1− x for x ≥ 0.
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We are now ready to prove the first almost minimality property for generalized minimizers of the functional
Fα,Q,Λ,ε.

Proposition 2.11. For all α ∈ (0, 1], Q > 0 and Λ ≫ 1 +Q2 such that Lemma 2.1 applies, there exist
C = C(N,α,Λ) > 0 and 0 < r0 ≪ 1 such that for all ε > 0 every generalized minimizer Ẽ = {Ei}i≥1 of
Fα,Q,Λ,ε is an almost minimizer of the perimeter, in the sense that for every i ≥ 1, x ∈ RN and r ≤ r0:

P (Ei) ≤ P (F ) + C
(︁
Q2 + rα

)︁
rN−α for all Ei∆F ⊂ Br(x). (2.16)

Proof. Without loss of generality, we assume i = 1 and x = 0, denoting E = E1. Using F̃ = F ×{Ei}i≥2

as a competitor, Fα,Q,Λ,ε(Ẽ) ≤ Fα,Q,Λ,ε(F̃ ) yields:

P (E) ≤ P (F ) +Q2
Ä
Iα,ε(F̃ )− Iα,ε(Ẽ)

ä
+ Λ

⃓⃓⃓
|F̃ | − ωN

⃓⃓⃓
− Λ

⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
.

The function x ↦−→ Λ|x− ωN | is Λ-Lipschitz, therefore:

Λ
⃓⃓⃓
|F̃ | − ωN

⃓⃓⃓
− Λ

⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
≤ Λ

⃓⃓⃓
|Ẽ| − |F̃ |

⃓⃓⃓
= Λ ||F | − |E| | ,

moreover, for all E,F ⊂ RN we have:

|E| − |F | = |E \ F |+ |E ∩ F | − |F \ E| − |F ∩ E|
≤ |E \ F |+ |F \ E| = |E∆F |,

so we deduce:
P (E) ≤ P (F ) +Q2

Ä
Iα,ε(F̃ )− Iα,ε(Ẽ)

ä
+ Λ|E∆F |.

By the property P (E ∩ F ) + P (E ∪ F ) ≤ P (E) + P (F ) ([18, Lemma 12.22]), it is enough to prove the
thesis under the additional condition E ⊂ F or F ⊂ E. Indeed, if it is not the case, then we still have
E ∩ F ⊂ E and E ⊂ E ∪ F , so:

P (E) ≤ P (E ∩ F ) + C
(︁
Q2 + rα

)︁
rN−α

P (E) ≤ P (E ∪ F ) + C
(︁
Q2 + rα

)︁
rN−α.

Summing up:

2P (E) ≤ P (E ∩ F ) + P (E ∪ F ) + C
(︁
Q2 + rα

)︁
rN−α

≤ P (E) + P (F ) + C
(︁
Q2 + rα

)︁
rN−α,

So the thesis follows by subtracting P (E) from both sides.

The case E ⊂ F is easy: if µ is a probability measure supported in E, then µ(E) = 1 implies µ(F ) = 1,
so by definition Iα,ε(F̃ ) ≤ Iα,ε(Ẽ). As we have E∆F ⊂ Br, then |E∆F | ≲ rN , hence:

P (E) ≤ P (F ) +Q2
Ä
Iα,ε(F̃ )− Iα,ε(Ẽ)

ä
+ Λ|E∆F |

≤ P (F ) + CrN ≤ P (F ) + C
(︁
Q2 + rα

)︁
rN−α.

We are left with the case F ⊂ E: writing E = F ∪ (E \ F ) and applying 2.10 with E \ F instead of F,
we get:

Iα,ε(Ẽ) ≥ Iα,ε(F̃ )−
Iα,ε(F̃ )2

Iα,ε(E \ F )
=⇒ Iα,ε(F̃ )− Iα,ε(Ẽ) ≤ Iα,ε(F̃ )2

Iα,ε(E \ F )
.
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By Lemma 2.1 (precisely its readaptation with the regularized Riesz energy Iα,ε), since Ẽ is a minimizer

then |Ẽ| = |E|+
∑︁

i≥2 |Ei| = ωN . The right choice of r0 ≪ 1 implies that for all r ≤ r0:

|F̃ | = |F |+
∑︂
i≥2

|Ei| = ωN − |E \ F | ≳ 1,

so we infer Iα,ε(F̃ ) ≲ 1, by the upper bound of Lemma 2.4. On the other hand, since E \ F ⊂ Br we
have:

Iα,ε(E \ F ) ≥ Iα,ε(Br) ≥ Iα(Br) + ε inf
µ(Br)=1

ˆ
Br

µ2.

Now, by Cauchy-Schwarz we get:

1 =

Åˆ
Br

µ

ã2

≤ |Br|
ˆ
Br

µ2 ≲ rN
ˆ
Br

µ2 =⇒ ε inf
µ(Br)=1

ˆ
Br

µ2 ≳ εr−n.

In addition, Iα(Br) = c(N,α)r−(N−α), thus we can say:

Iα,ε(E \ F ) ≳ r−(N−α) + εr−n ≥ r−(N−α).

Hence, we get Iα,ε(F̃ )−Iα,ε(Ẽ) ≲ rN−α, which allows us to conclude (recalling |E∆F | ≲ rN = rαrN−α):

P (E) ≤ P (F ) + C
(︁
Q2 + rα

)︁
rN−α.

Apart from proving regularity of minimizers of 2.5, we must not forget that our first intent was to show
existence of minimizers for the original problem with Riesz energy Iα. A first step towards this direction
is the fact that the first minimality property is uniform in ε. Subsequently, every conclusion we will
infer from it holds true regardless of the parameter ε chosen, so we restrict ourselves to ε ∈ (0, 1] for
convenience. We will eventually be able to pass to the limit as ε→ 0 in order to recover solutions of 1.16.
However, before doing that, the first direct consequence of estimate 2.16 is the following corollary, where
we also start noticing the difference between the cases α > 1 and α ≤ 1.

Corollary 2.12. For every α ∈ (0, 1] and Q > 0 let Λ ≫ 1 +Q2 be such that Proposition 2.11 applies.
Then, for every ε ∈ (0, 1] and every generalized minimizer Ẽ = {Ei}i≥1 of Fα,Q,Λ,ε there exists r0 ≪ 1
such that, if max{Q2r1−α, r} ≤ r0 and x ∈ ∂Ei, then:

min{|Ei ∩Br(x)|, |Br(x) \ Ei|} ≳ rN (2.17)

and

P (Ei, Br(x)) ∼ rN−1. (2.18)

Proof. Rearranging 2.16, we get that for every r ≤ r0, for some r0 ≪ 1:

P (Ei) ≤ P (F ) + C
(︁
Q2r1−α + r

)︁
rN−1 for all Ei∆F ⊂ Br(x).

In particular, we see that Ei is a (Λ, r0)-minimizer for all i ≥ 1, with Λ = Λ(r) = C
(︁
Q2r1−α + r

)︁
.

Applying Lemma 2.9, we reach the conclusion by imposing max{Q2r1−α, r} to be small enough. Hence,
changing in turn the value of r0 in case it is necessary, for all r ≤ r0 estimates 2.17 and 2.18 hold.
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As anticipated, thanks to density estimates we are able to infer many good properties of our generalized
minimizers, furthermore distinguishing between the cases α ∈ (0, 1) and α = 1. From now on, we denote
∂ME the measure theoretical boundary (otherwise called essential boundary) of a set of locally finite
perimeter, according to the definition given in [18, Chapter 16].

Proposition 2.13. Consider α ∈ (0, 1], Q > 0, Λ ≫ 1+Q2 such that Proposition 2.11 applies, ε ∈ (0, 1]
and a generalized minimizer Ẽ = {Ei}i≥1 of Fα,Q,Λ,ε. Then:

• if α ∈ (0, 1), for every Q ≤ Q for any Q > 0;

• if α = 1 and Q is not too large, there exists Q∗ ≥ Q such that for all Q ≤ Q ≤ Q∗;

up to the choice of a representative, Ẽ is made of finitely many Ei, each of which is connected with
Ei ∈ S and for which ∂Ei = ∂MEi. Moreover, the number of such components as well as their diameter
depends only on Q.

Proof. The difference between the cases α ∈ (0, 1) and α = 1 is given by condition max{Q2r1−α, r} ≤ r0
for some r0 ≪ 1 from the last Corollary. Indeed, when α ∈ (0, 1) then r = o(Q2r1−α) as r → 0. Thus,
we need not impose any condition of Q, as it suffices to choose only some r small enough to make
max{Q2r1−α, r} ≤ r0 true, regardless of the value of Q. On the other hand, if α = 1, we must impose the
condition max{Q2, r} ≤ r0. Hence, there exists Q∗ > 0 small enough not to be exceeded in order to have
proper density estimates. Therefore, we fix Q for the rest of the proof, according to the just motivated
conditions from the statement of the Proposition.

Before starting the actual proof, we notice that there is an uniform bound in i and ε for the masses
and the perimeters of the sets composing generalized minimizers. Indeed, using the unit ball B1 as a
competitor for Fα,Q,Λ,ε as we already did before, we get P (Ei

ε) ≲ 1 + Q2 for all i ≥ 1 and ε ∈ (0, 1].

Moreover, as we highlighted in the proof of 2.16, |Eε̃| = ωN for all ε ∈ (0, 1]. Therefore there exists some
C > 0 such that P (Ei

ε) < C and |Ei
ε| < C for all i ≥ 1 and ε ∈ (0, 1].

We fix i ≥ 1, ε > 0 and we set Ei
ε = E. First of all, we show that E is open up to the choice of a

representative. By Lebesgue points Theorem [18, Theorem 5.16] E = E(1) almost everywhere, where:

E(1) =

ß
x ∈ RN : lim

r→0

|E ∩B(x, r)|
|B(x, r)|

= 1

™
.

For all x ∈ E(1), we show that there exists rx > 0 such that Brx(x) ⊂ E(1); up to translations it is enough
to do it for 0 ∈ E(1). By contradiction, we assume the converse, namely that there exists {rn}n∈N such
that rn → 0 as n→ +∞ and Brn \ E(1) ̸= ∅ for all n ∈ N.

Thus, we claim |Brn \E(1)| > 0 for all n ∈ N. We assume, again by contradiction that there exists n ∈ N
such that |Brn \ E(1)| = 0. Since Brn \ E(1) ̸= ∅, there exists x ∈ Brn \ E(1). As x ∈ Brn , there exists
r̄ > 0 such that Br̄(x) ⊂ Brn . Hence:

Br̄(x) \ E(1) ⊂ Brn \ E(1) =⇒ |Br̄(x) \ E(1)| = 0.

Since Br̄(x) = (Br̄(x) ∩ E(1)) ∪ (Br̄(x) \ E(1)), we must have for all r ≤ r̄:

|Br(x)| = |Br(x) ∩ E(1)| =⇒ lim
r→0

|Br(x) ∩ E(1)|
|Br(x)|

= 1,

so x ∈ E(1) which is absurd.

Hence, we have |Brn∩E(1)| > 0 and |Brn \E(1)| > 0 for all n ∈ N and, by relative Isoperimetric Inequality,
we get P (E(1), Brn) = HN−1(∂∗E(1) ∩ Brn) > 0. Therefore, there exists yn ∈ ∂∗E(1) ∩ Brn for which
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we have density estimates, so, in particular, |Brn(yn) \ E(1)| ≳ rNn for all rn ≤ r0. Namely, as rn → 0,
there exists some n̄ ∈ N such that this is true for n ≥ n̄. Now, since yn ∈ Brn , by triangle inequality
Brn(yn) ⊂ B2rn(0), hence n ≥ n̄:

|B2rn(0) \ E(1)| ≥ |Brn(yn) \ E(1)| ≳ rNn =⇒ lim
r→0+

|E ∩B(x, r)|
|B(x, r)|

> 0

so 0 /∈ E(1), which is a contradiction. Thus, E is open up to a representative and we fix E to be equal to
this representative from now on.

Next, we prove that E is bounded and connected by following [20]. If E is not bounded, then, fixing
r ≤ r0 (with r0 appearing in the density estimates) there exists {xn}n∈N ⊂ E such that xn → +∞ as
n→ +∞ and |xn − xn′ | > 2r for all n and n’. Clearly, as Br(xn) ∩Br(x

′
n) = ∅ for n ̸= n′:

ωN = |Eε̃| ≥ |E| ≥
∑︂
k∈N

|E ∩Br(xn)| ≳
∑︂
k∈N

rN = +∞,

which is impossible, so E is bounded. On the other hand, if E is not connected, then E = E1 ∪ E2

with E1 ̸= ∅, E2 ̸= ∅ and E1 ∩ E2 = ∅. We define ER = E1 ∪ (E2 + e1R), noticing that |ER| = ωN

and P (ER) = P (E) = P (E1) + P (E2) for some R > 0 sufficiently large. At the same time, the Riesz
interaction energy decreases, since the interaction term between E1 and E2 + e1R becomes negligible as
R increases. Specifically:

lim inf
R→+∞

Fα,Q,ε(ER) = P (ER) +Q2Iα,ε(E1) +Q2Iα,ε(E2)

< P (E) +Q2Iα,ε(E1) +Q2Iα,ε(E2) + 2Q2

ˆ
E1×E2

dµ(x) dµ(y)

|x− y|N−α
= Fα,Q,ε(E)

where µ denotes the optimal measure for Iα,ε(E). Thus, choosing R sufficiently large, and calling

Fε̃ = {Ej
ε}j ̸=i ×ER, we obtain Fα,Q,ε(Fε̃) < Fα,Q,ε(Eε̃), a contradiction with the minimality property of

Eε̃. Thus, E is connected as well.

It is time to show that ∂E = ∂ME. Trivially ∂ME ⊂ ∂E, so we choose 0 ∈ ∂E (without loss of generality
by translation like before) and exploit the fact that E is open, so for all r > 0, there exist y ∈ Br ∩ E
and z ∈ Br \ E. By an easy consequence of density estimates, we have:

• for all y ∈ E and for all r ≤ r0: |E ∩Br(y)| ≳ rN ;

• for all z ∈ Ec and for all r ≤ r0: |Br(z) \ E| ≳ rN .

Indeed, we proved the previous properties for all x ∈ ∂E, but if we move the point x outside or inside E
density estimates keep holding true, because the measure of the set E ∩ Br(x) and Br(x) \ E can only
increase. In particular, they hold for all x ∈ RN . Therefore, since Br(y) ⊂ B2r and Br(z) ⊂ B2r, we
have |B2r ∩ E| ≥ |E ∩Br(y)| ≳ rN and |B2r \ E| ≥ |E \Br(z)| ≳ rN for all r ≤ r0, so:

lim inf
r→0+

|B2r ∩ E|
|B2r|

> 0 and lim inf
r→0+

|B2r \ E|
|B2r|

> 0

hence 0 ∈ ∂ME and ∂E = ∂ME.

Now, we show that P (E) = HN−1(∂E) < +∞ and |∂E| = 0. The proof of these two facts is easy: by De
Giorgi’s structure theorem for sets of finite perimeter [18, Theorem 15.9] we have P (E, ·) = HN−1|∂∗E ,
so, by minimality of Eε̃, we have that HN−1(∂∗E) = P (E) < +∞. Whereas, by Federer’s theorem
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[18, Theorem 16.2] we have HN−1(∂ME \ ∂∗E) = 0 as well, so putting everything together we infer
P (E, ·) = HN−1|∂ME and

HN−1(∂E) = HN−1(∂ME) = P (E) < +∞.

HN−1(∂E) < +∞ implies immediately |∂E| = HN (∂E) = 0, by properties of Hausdorff measure. In
particular, being ∂E Lebesgue negligible, E is a closed and bounded representative of E, thus we are
allowed to consider E to be compact and from now on we will do it. In this way, combining compactness
with the fact that P (E) = HN−1(∂E) < +∞, we finally get E ∈ S.

It remains to prove that Eε̃ = {Ei
ε} is composed by finitely many components, each of which has bounded

diameter uniformly in ε. We fix ε ∈ (0, 1] and write Ẽ = Eε̃: first of all, we can trivially get rid of all
the components Ei such that |Ei| = 0. Indeed, Ei = ∅ for all such indexes: if otherwise |Ei| = 0 and
Ei ̸= ∅ then there exists x ∈ Ei for which we have density estimates, so |Ei| ≥ |Ei ∩ Br(x)| ≳ rN > 0,
impossible. Since the empty set is not seen by Fα,Q,Λ,ε, we can avoid considering all indexes i such that
Ei = ∅. We assume by contradiction there are infinitely many indexes with |Ei| > 0. If this is the case,
then there exists xi ∈ Ei for which we have density estimates, so:

ωN = |Ẽ| =
∑︂
i≥1

|Ei| ≥
∑︂
i≥1

|Ei ∩Br(xi)| ≳
∑︂
i≥1

rN = +∞

which is impossible. Hence, there exists I ∈ N such that Ẽ = {Ei}Ii=1. The uniform bound on diameters
follows easily. We fix r ≤ r0: by compactness, there exist M ∈ N and {xj}j≤M such that there holds
Ei ⊂ ∪j≤MBr(xj). By density estimates, |Ei ∩ Br(xj)| ≳ rN , thus the number of balls M must be
limited uniformly in I. Therefore, for all i ≤ I

diam(Ei) ≤ diam(∪j≤MBr(xj)) ≤
∑︂
j≤M

diam(Br(xj)) = C < +∞.

We conclude the proof highlighting the fact that I (and so the bound C on the diameters) is uniform in ε
and depends only on Q. Indeed, I can be derived from the coefficient appearing in density estimate 2.17,
which in turns comes from condition max{Q2r1−α, r} ≤ r0. Hence, fixing Q as we did at the beginning
of the proof makes everything uniform for each Q ≤ Q.

2.5 Existence and regularity of minimizers in the case α < 1

While the previous sections were devoted to accurately setting the stage, in this one, thanks to Theorem
2.14, we are finally ready to prove existence of solutions to the problem 1.16

min
|Ẽ|=ωN ,Ẽ∈S

Fα,Q(Ẽ).

Afterwards, we restrict ourselves to the case α < 1 and we focus on regularity: in Theorem 2.15 we infer
first the usual conclusions from classical regularity theory of perimeter almost minimizers and then we
see that, for Q small enough, generalized minimizers are actually classical minimizers, whose boundary
is C1,γ regular for some γ ∈

(︁
0, 12

)︁
.

Theorem 2.14. Depending on the value of α, let Q∗ given by Proposition 2.13 and set Q∗ = +∞ if
α ∈ (0, 1). Then, for every 0 < Q ≤ Q ≤ Q∗ there exist generalized minimizers Ẽ = {Ei}Ii=1 ∈ SN of

min
Ẽ∈SN

¶
Fα,Q(Ẽ) : |Ẽ| = ωN

©
.

Moreover, for each i ≤ I, Ei is a perimeter almost minimizer in the sense of 2.16 and both I and diam(Ei)
are bounded by a constant depending only on Q.
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Proof. Let Λ such that both 2.1 and 2.7 apply. By the latter, for every ε ∈ (0, 1] and Q ≤ Q, there
exists a generalized minimizer Eε̃ of Fα,Q,Λ,ε. Moreover, by 2.13, Eε̃ = {Ei

ε}Ii=1 for some connected sets
Ei

ε ∈ S, with both I and their diameters depending only on Q. In particular, there exists R > 0 such
that Ei is strictly contained in BR for all i ≤ I. Moreover, from what we highlighted at the beginning
of the proof of 2.13, there exists C > 0 such that P (Ei

ε) < C for all ε ∈ (0, 1]. Therefore, for all i ≤ I,
by [18, Theorem 12.26], there exists a set of finite perimeter Ei ⊂ BR such that, along some sequence
{εn}n∈N with εn → 0 as n → +∞, Ei

εn −→ Ei in L1 and almost everywhere as n → +∞. Without
loss of generality, up to other I − 1 extractions, we can assume that the sequence {εn}n∈N does the job
simultaneously for all i ≤ I. We call Ẽ = {Ei}Ii=1.

First of all we show that also Ei enjoys the minimality property 2.16. To simplify notation, we set
En = Ei

εn and E = Ei. Then, we select a decreasing sequence {σn}n∈N with σn → 0 and σn < r for
all n ∈ N such that, considering the quantities {|(E∆En) ∩ (Br \ Br−σn

)|}n∈N, we impose the fact that
|(E∆En) ∩ (Br \Br−σn

)| = oσ=0(σn). For all n ∈ N we have, by Coarea Formula:

ˆ r

r−σn

HN−1((E∆En) ∩ ∂Bs) ds = |(E∆En) ∩ (Br \Br−σn)|.

In particular, there exists some sn ∈ (r − σn, r) (so clearly sn → r) such that:

HN−1((E∆En) ∩ ∂Bsn) ≤
|(E∆En) ∩ (Br \Br−σn)|

σn
−→ 0 as n→ +∞

Now, we fix some finite perimeter set F such that E∆F ⊂ Br−σ1
. With our choice of sn, we define:

Fn = (F ∩Bsn) ∪ (En \Bsn),

noticing that P (Fn) = P (F,Bs) + P (En, B
c
sn) + HN−1((E ∩ ∂Bsn)∆(En ∩ ∂Bsn)). Moreover, by con-

struction Fn∆En ⊂ Br because sn < r, so 2.16 yields:

P (En) ≤ P (Fn) + C(Q2 + rα)rN−α

which in turn gives:

P (En, Bsn) ≤ P (F,Bsn) +HN−1((E∆En) ∩ ∂Bsn) + C(Q2 + rα)rN−α.

Sending n→ +∞, the second term in the right-hand side tends to 0 by our previous argument. Moreover,
since Br = ∪n∈NBsn :

P (F,Bsn) = HN−1(∂∗F ∩Bsn)
n→+∞−−−−−→ HN−1(∂∗F ∩Br) = P (F,Br),

by continuity of the measure HN−1 over Borel sets. Regarding the left-hand side, for all δ > 0 we have
definitely P (En, Br−δ) ≤ P (En, Bsn) and, by lower semicontinuity of the perimeter under L1 convergence:

P (E,Br−δ) ≤ lim inf
n→+∞

P (En, Br−δ) ≤ lim inf
n→+∞

P (En, Bsn) ≤ lim
n→+∞

P (En, Bsn).

In conclusion, letting δ → 0 we obtain:

P (E,Br) ≤ P (F,Br) + C(Q2 + rα)rN−α

and adding P (E,Bc
r) = P (F,Bc

r) to both sides we find:

P (E) ≤ P (F ) + C(Q2 + rα)rN−α for all E∆F ⊂ Br−σ1
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Sending σ1 → 0, we get the desired inequality for all E∆F ⊂ Br for all r ≤ r0.

Arguing like we did in Proposition 2.13, density estimates imply nice properties for Ẽ = {Ei}Ii=1 as well.
In particular, for all i ≤ I, Ei ∈ S and ∂Ei = ∂MEi. Moreover, we underline that the convergence
obviously maintains both the number I and the uniform bound R on the diameters diam(Ei) and these
constants keep depending only on Q. Notice that we are not able to prove connectedness yet, but it will
be clear at the end of the proof, by minimality of the set Ẽ for the functional Fα,Q. Indeed, it suffices to
argue in the same way as we did when proving minimality in Proposition 2.13.

Now, we prove that Ei
n

H−−→ Ei as n → +∞ too, namely the convergence happens in the Hausdorff

sense as well. We show first ∂En
H−−→ ∂E and we start by noticing that, reasoning like we did in

Corollary 2.12, Ei enjoys density estimates too, as a consequence of the previous argument. We fix
x ∈ Ei ∩ {y : d(y, ∂E) > r} and we assume by contradiction x /∈ En for all n ∈ N. By density estimates
we have:

|En∆E| ≥ |Br(x) \ En| ≥ CrN .

Indeed, since x ∈ Ei ∩ {y : d(y, ∂E) > r}, then Br(x) ⊂ E, so Br(x) \ En ⊂ E \ En ⊂ E∆En. We reach
a contradiction letting n → +∞, because |En∆E| −→ 0. Therefore, for n big enough, all the points of
E ∩ {y : d(y, ∂E) > r} are inside En. Similarly, we can show that for n big enough all the points of
Ec ∩ {y : d(y, ∂E) > r} are outside En. As a consequence, for all r ≤ r0, for n big enough we have
that ∂En ⊂ {y : d(y, ∂E) ≤ r}. Inverting the roles of E and En (here we need density estimates for E),
the same argument shows that for all r ≤ r0, for n big enough we have that ∂E ⊂ {y : d(y, ∂En) ≤ r}.
Putting everything together, we conclude ∂En

H−−→ ∂E as n → +∞. Therefore, it remains to show
Hausdorff convergence for points in the interior of E. Since we are dealing with closed sets and the space
we are working in can be chosen compact (BR for example), it is enough to show Kuratowski convergence,
as stated in [1, Proposition 4.4.14]. In particular, we have to check the following two conditions:

• for every sequence xn → x such that xn ∈ En for all n ∈ N, we have x ∈ E;

• if x ∈ E then there exists {xn}n∈N with xn ∈ En for all n ∈ N such that xn → x.

The second one is an easy consequence of the L1 convergence. Instead, to prove the first one, we appeal
again to density estimates. In particular for all r ≤ r0, for each converging sequence xn → x there holds
the condition |B(xn, r) ∩ En| ≥ CrN . It implies, together with the L1 convergence, that the limit point
x must be in E. As we have already proven Hausdorff convergence for the boundaries, in this way we

showed that Ei
n

H−−→ Ei as n→ +∞ for all i ≤ I.

Now, for all i ≤ I, we focus our attention on the convergence of the family of measures {µi
n}n∈N, associated

to the sets {Ei
n}n∈N. In particular, the aim of the theorem is to come back from the regularized Riesz

energy Iα,ε to classical Riesz energy Iα. Both of the variational problems have a measure as minimizer,
nevertheless we are sure it is an L2 function only in the first case. As a consequence, when passing to the
limit as ε → 0, we cannot apply Banach-Alaoglu theorem as we did before and we are obliged to treat
the L2(BR) functions {µi

n}n∈N as measures. Being minimizing measures for the functionals Fα,Q,Λ,εn ,
we have for all n ∈ N:

I∑︂
i=1

µi
n(E

i
n) = 1,

therefore µi
n(E

n
i ) ≤ 1 for all i ≤ I; moreover spt(µi

n) ⊂ Ei
n ⊂ BR. By compactness of the set BR, the set

of measures supported in BR with mass less or equal to 1 is compact with respect to the weak convergence
of measures. Therefore, for all i ≤ I there exists a measure µi supported on BR such that µi

n ⇀ µi in the
space of finite measures up to extraction. Again, we can assume without loss of generality by performing
other N − 1 extractions that the sequence we chose does the job simultaneously for all i ≤ I. At this
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point, we need to prove that µ̃ := {µi}Ii=1 is a competitor for Iα(Ẽ), namely that spt(µi) ⊂ Ei for all
i ≤ I and that:

I∑︂
i=1

µi(Ei) = 1. (2.19)

Fixed i ≤ I and calling µ = µi, µn = µi
n, E = Ei and En = Ei

n, the first condition is a consequence

of the convergence En
H−−→ E as n → +∞. Indeed, by [16, Lemma 0.1, Corollary 1] we have that

µ(A) ≤ lim infn→+∞ µn(A) for all open sets A ⊂ RN . Hence, being E closed and considering the
measures µ, µn to be defined on the whole of RN , we infer by Fatou’s Lemma:

µ(Ec) =

ˆ
RN

χEc dµ ≤ lim inf
k→+∞

ˆ
RN

χ(E1/k)
c dµ = lim inf

k→+∞
µ
Ä
(E1/k)

cä
≤ lim inf

k→+∞
lim inf
n→+∞

µn

Ä
(E1/k)

cä
= 0.

In the last computations, we denoted by E1/k the open 1/k-neighbourhood of E. By Hausdorff conver-

gence, for all k ∈ N there exists n̄ ∈ N such that for all n ≥ n̄ we have En ⊂ E1/k. Since spt(µn) ⊂ En,

for all n ≥ n̄ we have µn

Ä
(E1/k)

cä
= 0. Therefore, passing everything to the inferior limit, we ob-

tain µ(Ec) = 0, namely spt(µ) ⊂ E. To prove 2.19, this time we use [16, Lemma 0.1, Corollary 3]:
µ(A) = limn→+∞ µn(A) for all A Borel such that µ(∂A) = 0. We just showed that for all i ≤ I
spt(µi) ⊂ Ei, so in particular µi(B2R) = 0, hence:

1 = lim
n→+∞

I∑︂
i=1

µi
n(B2R) =

I∑︂
i=1

lim
n→+∞

µi
n(B2R) =

I∑︂
i=1

µi(B2R).

Using again the condition spt(µi) ⊂ Ei, we are able to infer 2.19.

It is time to show that:
Fα,Q,Λ(Ẽ) ≤ lim inf

ε→0
Fα,Q,Λ,ε(Eε̃). (2.20)

To make the notation coherent with the final part of the proof, we restarted using ε → 0 to index the
convergence we established instead of n → +∞. For all i ≤ I, by L1 convergence of the components we
have automatically :

|Ei| = lim
ε→0

|Ei
ε| =⇒ Λ

⃓⃓⃓
|Ẽ| − ωN

⃓⃓⃓
= lim

ε→0
Λ
⃓⃓⃓
|Eε̃| − ωN

⃓⃓⃓
,

by continuity of the function Λ |· − ωN |. On the other hand, by lower semicontinuity of the perimeter it
is easy to notice:

P (Ei) ≤ lim inf
ε→0

P (Ei
ε) =⇒ P (Ẽ) ≤ lim inf

ε→0
P (Eε̃).

Therefore, if we show:
Q2Iα(Ẽ) ≤ lim inf

ε→0
Q2Iα,ε(Eε̃) (2.21)

we can deduce 2.20 putting everything together and using the superlinearity of the inferior limit. To
show 2.21, we begin by noticing that Iα(µ

i
ε) ≤ Iα(µ

i
ε) + ε

´
RN (µi

ε)
2 = Iα,ε(Eε̃). For all i ≤ I we have

µi
ε ⇀ µi as ε→ 0, by weak lower semicontinuity of the functional Iα we get:

Iα(µ̃) =

I∑︂
i=1

Iα(µ
i) ≤

I∑︂
i=1

lim inf
ε→0

Iα(µ
i
ε) ≤ lim inf

ε→0

I∑︂
i=1

Iα(µ
i
ε) = lim inf

ε→0

I∑︂
i=1

Iα,ε(µ
i
ε)

= lim inf
ε→0

Iα,ε(Eε̃).
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Now, by 2.19 the measure µ̃ is a competitor for Iα. Passing the left-hand side to the minimum over the
class measures of this kind, we finally infer 2.21.

Next, we prove that for every F ∈ S, there exists a sequence {Fε}ε∈(0,1] such that:

Fα,Q,Λ(F ) ≥ lim sup
ε→0

Fα,Q,Λ,ε(Fε). (2.22)

By [26, Theorem 1.1] applied to F c, for all δ > 0 we can find smooth compact sets Fδ such that F ⊂ Fδ,
P (Fδ) ≤ P (F ) + δ and ||F | − |Fδ|| ≤ δ. The first condition implies Iα(F ) ≥ Iα(Fδ). Considering also
the effects of the second and the third condition on the two remaining terms of Fα,Q,Λ, we find, passing
to the superior limit as δ → 0:

Fα,Q,Λ(F ) ≥ lim sup
δ→0

Fα,Q,Λ(Fδ).

Thus, we can further assume that F is smooth in the proof of 2.22. For smooth sets, by [12, Proposition
2.16], we can find for every δ > 0 a function fδ ∈ L∞(F ) with

´
F
fδ = 1 and such that:

Iα(fδ) ≤ Iα(F ) + δ.

Precisely, the statement holds only for connected sets, but it can be easily readapted for disconnected
sets too. At this point, for every δ > 0, we clearly have limε→0 Iα,ε(fδ) = Iα(fδ). Hence, a diagonal
argument shows that Iα(F ) = limε→0 Iα,ε(F ). The proof of 2.22 is concluded once setting Fε = F for
all ε ∈ (0, 1], considering the superior limit as ε→ 0 instead of the limit and finally adding the other two
terms of the functional Fα,Q,Λ (which are not perturbed by ε) to the inequality.

Now, by lemma 2.6, passing the right-hand side of 2.22 to the infimum over F ∈ S yields the same value
as passing the same functional but defined on generalized sets to the infimum over F̃ ∈ SN. Therefore:

inf
F̃∈SN

¶
Fα,Q,Λ(F̃ )

©
≥ lim sup

ε→0
Fα,Q,Λ,ε(Fε) ≥ lim sup

ε→0
inf

F̃∈SN

¶
Fα,Q,Λ,ε(F̃ )

©
.

This last relation, combined with 2.20 allows us to finish: indeed, in this way we have

Fα,Q,Λ(Ẽ) ≥ inf
F̃∈SN

¶
Fα,Q,Λ(F̃ )

©
≥ lim sup

ε→0
inf

F̃∈SN

¶
Fα,Q,Λ,ε(F̃ )

©
= lim sup

ε→0
Fα,Q,Λ,ε(Eε̃)

≥ lim inf
ε→0

Fα,Q,Λ,ε(Eε̃) ≥ Fα,Q,Λ,ε(Ẽ).

Since Ẽ is a generalized minimizer of Fα,Q,Λ, Lemma 2.1 implies that |Ẽ| = ωN and thus Ẽ is also a
volume-constrained generalized minimizer of Fα,Q.

After showing existence of minimizers, we are now ready to deal with their regularity. We begin by
focusing on the case α ∈ (0, 1) and we appeal to classical regularity theory for almost minimizers of the
perimeter first pioneered by De Giorgi. The topic is too broad to be treated with the worthy precision
in this dissertation, so we decided to outline just the basic ideas needed in the proof of the following
theorem, avoiding some technicalities. Instead, the case α = 1 will be analyzed in the next section.

Theorem 2.15. For α ∈ (0, 1) and Q > 0, let Ẽ = {Ei}Ii=1 be a volume-constrained generalized

minimizer of Fα,Q. Then, for all i ≤ I, ∂∗Ei are C1,
(1−α)

2 regular. Denoting by Σi = ∂Ei \∂∗Ei, we have
that:

• Σi = ∅ if N ≤ 7;

• Σi is at most finite if N = 8;

• Σi satisfies Hs(Σi) = 0 if s > N − 8 and N ≥ 9.
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In addition, for Q ≪ 1, Ẽ = EQ is a classical volume-constrained minimizer of Fα,Q with uniformly

bounded C1,
(1−α)

2 norm, with no singularities (namely Σ(EQ) = ∅) and, for every β < (1−α)
2 , EQ converges

to B1 in C1,β as Q→ 0.

Idea of the proof. For all i ≤ I, the set Ei satisfies 2.16. Therefore, the first part of the statement is a
direct consequence of [27, Theorem 1], which itself given by a readaptation of the classical De Giorgi’s
regularity theory for almost minimizers of the perimeter.

The second part is more interesting. First of all we summon the Sharp Quantitative Isoperimetric
Inequality from [10, Theorem 1.1]. However, we are not able to apply it straightaway, since it involves
the perimeter and the volume of only classical sets. Thus, starting from the components Ei of our
generalized set, recalling they are all uniformly bounded by some R > 0, we build a classical set E made
up by such components positioned far enough from each other. In this way P (E) = P (Ẽ) and |E| = |Ẽ|.
Hence, up to translation and relabelling, the Sharp Quantitative Isoperimetric Inequality yields:(︄

|E1∆B1|+
I∑︂

i=2

|Ei|

)︄2

≲ P (Ẽ)− P (B1) ≤ Q2Iα(B1)−Q2Iα(Ẽ) ≲ Q2,

where in the second inequality we used minimality of Ẽ for Fα,Q, namely Fα,Q(Ẽ) ≤ Fα,Q(B1). By
translation we can assume without loss of generality E1∩B1 ̸= ∅. Thus, density estimates from Corollary
2.12 imply that, for Q small enough, Ei = ∅ for i ≥ 2, so that Ẽ = E1 is a classical minimizer. Moreover,
it is clear that |E1∆B1| −→ 0 as Q→ 0, namely E1 −→ B1 in L1.

Now, we exploit again regularity theory for almost minimizers of the perimeter (this is the portion of the
proof where we give just the idea). First of all, given a set of finite perimeter E, we define its spherical
excess at x ∈ ∂E at scale r as:

e(E, x, r) = min
ν∈SN−1

ˆ
∂∗E∩B(x,r)

|νE(y)− ν|
2

dHN−1(y),

where SN−1 is the surface of B1 ⊂ RN and νE the measure theoretic normal of the set E appearing in
its definition of reduced boundary. Now, we consider a set of finite perimeter E satisfying an estimate of
the kind:

P (E) ≤ P (F ) + ΛrN−α for all E∆F ⊂ Br(x)

for all x ∈ RN for some r0 > 0 for all r ≤ r0. From a readaptation of [18, Theorem 26.3], there exists
ε > 0 such that, if for all x ∈ ∂E we have

e(E, x, r) + Λr1−α ≤ ε, (2.23)

(for some r smaller that a certain constant), then ∂E ∩Br/2 is the graph of a C1,
(1−α)

2 function f , with:

[f ]
C1,

(1−α)
2

≲ e(E, x, r) + Λr1−α.

Choosing the right coordinate system for f (for example a system such that f(0) = 0 and ∇f(0) = 0),
we have also [f ]

C1,
(1−α)

2
= ∥f∥

C1,
(1−α)

2
, the bound is uniform in x ∈ ∂E and depends only on Λ.

We would like to apply this regularity result to our situation: we have a sequence {EQ}Q>0 of almost
minimizers in the sense of 2.16, namely there exists r0 > 0 such that for all x ∈ ∂E and r ≤ r0 we have:

P (EQ) ≤ P (F ) + C
(︁
Q2 + rα

)︁
rN−α for all EQ∆F ⊂ Br(x).
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In addition, EQ −→ B1 in L1 as Q → 0 and obviously B1 has C1 boundary. For every ε > 0, it can be
shown that the estimate on the excess 2.23 holds for the right r (which we did not specify). Moreover,
for almost minimizers of the perimeter in our sense 2.16, from the density estimates and the convergence
P (EQ) −→ P (B1), the excess is continuous with respect to L1 convergence. In particular, choosing again
the right scale, for Q small enough we have for all x ∈ ∂EQ:

e(EQ, x, r) + Λr1−α ≤ ε

2
.

Therefore, for Q small enough, ∂EQ is of class C1,
(1−α)

2 and in particular it has no singularities. Moreover,
calling {fx}x∈∂E the corresponding functions defined on ∂E ∩ Br/2(x) for x ∈ ∂E, their seminorms are
uniformly bounded by:

[fx]
C1,

(1−α)
2

≲ e(E, x, r) + Λr1−α

Hence, by compactness of the Hölder embedding over the right compact set K :

C1,
(1−α)

2 (K) −→ C1,β(K) for all 0 < β <
(1− α)

2
,

we can conclude EQ −→ B1 in C1,β as Q→ 0 for all 0 < β < (1−α)
2 .

2.6 Second almost minimality property and regularity of mini-
mizers in the case α = 1

Proving a counterpart of Theorem 2.15 in the case α = 1 is much more difficult: indeed, it is known that
when α = 1 the first minimality condition 2.16 does not even imply C1 regularity. Therefore, we are not
in the position to apply the same ideas employed before and the aim of this section is to develop a way
to reach the same regularity conclusions of the case α < 1. Clearly, from now on we assume that α = 1.

The first step consists in introducing the notion of Reifenberg flat set.

Definition 2.16 (Reifenberg Flatness). Let E ⊂ RN , δ, r0 > 0 and x ∈ RN . We say that E is (δ, r0)-
Reifenberg flat in Br0(x) if for every Br(y) ⊂ Br0(x) there exists a hyperplane Hy,r containing y and
such that:

• we have (denoting dH the Hausdorff distance):

dH(∂E ∩Br(y), Hy,r ∩Br(y)) ≤ δr;

• one of the connected components of the set {d(·, Hy,r ≥ 2δr)} ∩ Br(y) is included in E and the
other in Ec.

We say that E is uniformly (δ, r0)-Reifenberg flat if the above condition hold for every x ∈ ∂E.

It is immediate to see that C1 regular sets are trivially Reifenberg flat at each point of their boundary,
just by considering their tangent hyperplane as Hr. Using the same technique of Theorem2.15, in the
next result we prove first L1 convergence of a minimizer to the unit ball B1 as Q→ 0 and then we exploit
it to show that, for Q small enough, our minimizer is actually uniformly Reifenberg flat.

Theorem 2.17. Let α = 1. There exists Q∗ such that for every Q ≤ Q∗, every volume-constrained
generalized minimizer of Fα,Q is a classical minimizer. Moreover, for every δ > 0, there exist Qδ > 0
and rδ > 0 such that for every Q ≤ Qδ, every volume-constrained minimizer EQ of Fα,Q is uniformly
(δ, rδ)-Reifenberg flat and, up to translation, |EQ∆B1| ≲ Q2.
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Proof. The first part of the statement can be recovered as we did in Theorem 2.15 employing the Sharp
Quantitative Isoperimetric Inequality. In particular, we highlight that EQ −→ B1 in L1 as Q → 0 and
that EQ is a (Λ, r0)-minimizer in the sense that there exist r0 such that for all x ∈ RN and r ≤ r0, there
holds:

P (EQ) ≤ P (F ) + C(Q2 + r)rN−1 for all EQ∆F ⊂ Br(x),

where ΛQ = C(Q2 + r). Moreover, max{Q2, r} ≪ 1, in accordance to Corollary 2.12.

Since B1 is a C1 regular and compact set, after fixing δ > 0 we can apply [14, Corollary 1.5]: there exists
Λ̄ = Λ̄(δ) such that, if lim supQ→0 ΛQ ≤ Λ̄, then there exists rδ > 0 such that, if Q is small enough, EQ

is uniformly (δ, rδ)-Reifenberg flat. In our case we have:

lim sup
Q→0

ΛQ = lim sup
Q→0

C(Q2 + r) = Cr.

So, choosing r small enough, the quantity lim supQ→0 ΛQ can be made arbitrarily small and the thesis of
[14, Corollary 1.5] follows.

At this point, we would like to pass from Reifenberg flatness of volume-constrained minimizers of F1,Q

to their C1,γ regularity, for some γ to be determined. As one might expect from what we did before, we
rely on a second almost minimality property for minimizers E of F1,Q (depending on its optimal measure
µE), thanks to which we will be able to draw the required regularity result. We highlight that in the
next proposition Reifenberg flatness of E is not used.

Proposition 2.18. There exists a number C = C(N) > 0 such that if Q ≤ 1 and E is a volume-
constrained minimizer of F1,Q, whose corresponding 1/2-harmonic measure (namely the measure such
that I1(E) = I1(µE)) is µE , then for every x ∈ RN and r ≪ 1 there holds:

P (E) ≤ P (F ) + C

Ñ
Q2

Çˆ
Br(x)

µ
2N

N+1

E

åN+1
N

+ rN

é
for all E∆F ⊂ Br(x). (2.24)

Proof. Without loss of generality we may assume that x = 0 and µE ∈ L
2N

N+1 (Br), since otherwise there
is nothing to prove. In particular, we require this hypothesis for all x ∈ RN , according to the statement

we want to prove, therefore we are asking µE ∈ L
2N

N+1

loc (RN ). By Lemma 2.1, there exists an universal
constant Λ > 0 (recall that we assumed Q ≤ 1) such that E is a minimizer of

F1,Q(E) + Λ ||E| − ωN | .

We choose F such that E∆F ⊂ Br(0) and we argue as in the proof of Proposition 2.16 to get:

P (E) ≤ P (F ) +Q2 (I1(F )− I1(E)) + Λ|E∆F |.

Again, using P (E ∩F )+P (E ∪F ) ≤ P (E)+P (F ), we can assume without loss of generality that either
E ⊂ F or F ⊂ E: in the first case I1(F ) − I1(E) ≤ 0, so we conclude immediately. Therefore, it is
enough to prove that for every F ⊂ E such that E \ F ⊂ Br we have:

I1(F ) ≤ I1(E) + C

Çˆ
E\F

µ
2N

N+1

E

åN+1
N

.

Noticing that F ⊂ E implies F ∩ E = F and F ∪ E = E, we use the measure:

µ =

Å
µE +

µE(E \ F )
|F |

ã
χF
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as a competitor for I1(F ), indeed:

µ(F ) =

ˆ
RN

χF

Å
µE +

µE(E \ F )
|F |

ã
=

ˆ
F

µE +

ˆ
F

µE(E \ F )
|F |

= µE(E ∩ F ) + µE(E \ F ) = 1.

Now, we consider the respective potentials:

uE(x) =

ˆ
E

dµE(y)

|x− y|N−1
and u(x) =

ˆ
F

dµ(y)

|x− y|N−1
,

which, by Proposition 1.12, solve respectively the non-local elliptic equations:

(−∆)
1
2uE = C ′(N, 1)µE and (−∆)

1
2u = C ′(N, 1)µ.

Moreover, 1.10 yields:

1

C ′(N, 1)
[uE ]

2

H
1
2
=

ˆ
E

uE dµE = I1(µE) and
1

C ′(N, 1)
[u]2

H
1
2
=

ˆ
E

u dµ = I1(µ)

Since I1(F ) ≤ I1(µ) and I1(E) = I1(µE), we have:

I1(F )− I1(E) ≤
ˆ
E

u dµ−
ˆ
E

uE dµE =

ˆ
E

(u− uE)d(µ− µE) +

ˆ
E

uE dµ

+

ˆ
E

u dµE −
ˆ
E

uE dµE −
ˆ
E

uE dµE .

It is useful to notice that µ(E) = 1 as well, since µ(F ) = 1 and spt(µ) ⊂ F . Recalling that uE(x) = I1(E)
for every x ∈ E by Proposition 1.12, this implies:

ˆ
E

uE d(µ− µE) = 0.

In addition, by Fubini: ˆ
E

u dµE =

ˆ
E

uE dµ =

ˆ
E

uE dµE ,

so the last four terms in the right-hand side of the previous computation erase and we get:

I1(F )− I1(E) ≤
ˆ
E

(u− uE)d(µ− µE) ≈ [u− uE ]
2

H
1
2 (E)

.

Being both uE and u functions by assumptions and construction respectively, we estimate the H
1
2 semi-

norm using Hölder inequality and the classical Sobolev embedding ∥f∥Lq(Ω) ≲ [f ]Hs(Ω) with
N
q = N

2 − s

(highlighting that here Ω = Br is a bounded C1 domain). In particular, if q = 2N
N−1 and s = 1

2 we apply
the inequality to a finite collection of balls covering E and we get:

[u− uE ]
2

H
1
2 (E)

≈
ˆ
E

(u− uE)d(µ− µE) ≤ ∥u− uE∥
L

2N
N−1 (E)

∥µ− µE∥
L

2N
N+1 (E)

≤ [u− uE ]
H

1
2 (E)

∥µ− µE∥
L

2N
N+1 (E)

Using Young’s Inequality generalization ab ≤ a2

2θ + θ b2

2 with the right value of θ, we find:

I1(F )− I1(E) ≲ [u− uE ]
2

H
1
2 (E)

≲ ∥µ− µE∥2
L

2N
N+1 (E)

,
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so we are left with estimating ∥µ− µE∥
L

2N
N+1 (E)

. By definition of µ, we have

µ− µE =
µE(E \ F )

|F |
χF − µEχE\F ,

and thus, using that F ∩ E \ F = ∅ and (a+ b)
N+1
N ≲ a

N+1
N + b

N+1
N for a, b ≥ 0 we find:

∥µ− µE∥2
L

2N
N+1 (E)

=

(︄ˆ
E

⃓⃓⃓⃓
µE(E \ F )

|F |
χF − µEχE\F

⃓⃓⃓⃓ 2N
N+1

)︄N+1
N

=

(︄ˆ
F

Å
µE(E \ F )

|F |

ã 2N
N+1

+

ˆ
E\F

µ
2N

N+1

E

)︄N+1
N

=

Ç
|F |µE(E \ F )

2N
N+1

|F |
2N

N+1

+

ˆ
E\F

µ
2N

N+1

E

åN+1
N

≲
µE(E \ F )2

|F |N−1
N

+

Çˆ
E\F

µ
2N

N+1

E

åN+1
N

.

Moreover, |F | ≳ 1 implies:

∥µ− µE∥2
L

2N
N+1 (E)

≲ µE(E \ F )2 +
Çˆ

E\F
µ

2N
N+1

E

åN+1
N

.

Finally, again by Hölder inequality:

µE(E \ F )2 ≤
Çˆ

E\F
µ

2N
N+1

E

åN+1
N

|E \ F |
N+1
N ≲

Çˆ
E\F

µ
2N

N+1

E

åN+1
N

,

which concludes the proof.

Notice that we do not know whether the measure µE actually belongs to the space L
2N

N+1

loc (RN ) or not.
The remainder of the chapter is devoted to showing that not only this integrability property is true, but
also that we can find a good decay estimate for ∥µE∥L2N/(N+1)(Br(x)) as r → 0 for all x ∈ ∂E, which will
finally yields us an expression similar to the first minimality property 2.16.

Awfully, the procedure is rather involved and it takes quite a long time to be presented in detail. Essen-
tially, in Lemma 2.21 we show a Hölder estimate on the potential uE which will be crucial to prove the
required decay bound for ∥µE∥L2N/(N+1)(Br(x)). In particular, thanks to some tools from elliptic PDEs
theory and to Alt-Caffarelli-Friedman monotonicity formula, the proof of the next lemma may be seen
as an extension to Reifenberg flat domains of the boundary regularity theory for the half Laplacian.

Before diving into the lemma, let E be a minimizer of the functional F1,Q for some Q small enough.
Given its optimal measure µE and its associated potential uE , we define the function u : RN ↦−→ R as

u(x) = 1− I−1
1 (E)uE(x) = 1− I−1

1 (E)

ˆ
E

dµE(y)

|x− y|N−1

and we take some time studying its properties. First of all, by Proposition 1.12, we know that uE ≥ 0,
uE = I1(E) Lebesgue almost everywhere on E and uE ≤ I1(E) everywhere in RN . Hence, u ∈ [0, 1]
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almost everywhere and u(x) = 0 for all x ∈ E. Now, we consider its harmonic extension v on RN+1
+ =

{(x, y) ∈ RN ×R : y > 0}, namely the function v : RN ↦−→ RN+1
+ solving the elliptic PDE with Dirichlet

boundary condition: ®
−∆v = 0 on RN+1

+

v = u on ∂ RN+1
+ = RN × {0}.

Normally, we would need to prove existence of a solution of such problem, however in this case the
construction of v yields immediately the solution:

v(z) = 1− I−1
1 (E)

ˆ
E

dµE(y)

|z − y|N−1
z ∈ RN+1

+ .

Indeed, clearly v = u on RN × {0}. To prove −∆v = 0 on RN+1
+ , it is enough to show −∆v = −µE in

D′(RN+1) (thus considering v ’s natural extension to RN+1). Indeed, in this way, being µE supported in
RN × {0}, we have that ∆v = 0 on the open set RN+1

+ . This is easy once noticed that Γ(x) = |x|1−N is
the Green function for the Laplacian on RN+1, so in particular −∆Γ = δ0, where δ0 denotes the Dirac’s
delta measure centered in x = 0. Therefore:

−∆(uẼ(x))− ∆(Γ(x) ∗ µE) = (−∆Γ(x)) ∗ µE = δ0(x) ∗ µE = µE(x)

and so −∆v = −µE in D′(RN+1). By classical properties of harmonic functions, we immediately infer
v ∈ C∞(RN+1

+ ) as well. In addition, we can easily prove some decay estimates on both uẼ and ∇uẼ
(calling uẼ the harmonic extension of uE to RN+1):

uẼ(z) ≈+∞
1

|z|N−1
and |∇uẼ(z)| ≈+∞

1

|z|N
.

First of all, we find the right expression for ∇uẼ . We begin by noticing that uẼ ∈ C∞(RN+1 \ (E×{0}))
for the same reasons as it is v : for our purposes we would like to compute its gradient where it is well
defined. First of all uẼ ∈ L1

loc(RN+1). Indeed, for all R > 0 we have by Fubini:
ˆ
|z|≤R

ˆ
RN+1

µE(y)|z − y|−(N−1) dz =

ˆ
RN+1

µE(y)

ˆ
|z|≤R

|z − y|−(N−1) dz < +∞.

In a similar way, since ∇z|z−y|−(N−1) ≈ |z−y|−(N+1)(z−y) belongs to L1
loc(RN+1), ∇uẼ ∈ L1

loc(RN+1)
by the same proof as above, so we can derive under the integral sign and get:

∇uẼ(z) ≈
ˆ
E

z − y

|z − y|N+1
dµE(y) z ∈ RN+1.

Now, E is compact so for every ε > 0 there exists |z| ≫ diam(E) = R big enough such that, for y ∈ E:

• |z| ≤ |z − y|+ |y| so |z − y| ≥ |z| − |y| ≥ |z| −R ≥ (1− ε)|z| ;

• |z − y| ≤ |z|+ |y| ≤ (1 + ε)|z|.

Hence, for all such z ∈ RN+1, |z − y| ≈ |z| and we get the desired estimates, among which:

|∇v(z)| ≤ I−1
1 (E)

ˆ
E

dµE(y)

|z − y|N
≈+∞

I−1
1 (E)

|z|N
. (2.25)

By the expression we derived for ∇v, we immediately deduce as well:

(∂N+1v)(z) = −I−1
1 (E)

ˆ
E

(zN+1 − yN+1)

|z − y|N+1
dµE(y) = −I−1

1 (E)

ˆ
E

(zN+1)

|z − y|N
dµE(y),
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since y ∈ E ⊂ RN ×{0}. In particular, we have ∂N+1(z) = 0 for all z ∈ Ec×{0}. If instead z ∈ E×{0},
we do not know whether v is differentiable in RN+1 or not, but, since v = 0 on E × {0}, we can at least
conclude:

v(z)(∂N+1v)(z) = 0 for all z ∈ RN × {0}. (2.26)

Moreover, as it happens for u, we have that v ∈ [0, 1]. To understand it, it is enough to prove that
uE : RN+1 ↦−→ R satisfies uẼ ∈ [0, I1(E)]. By the variational formulation of the Dirichlet problem:®

−∆uẼ = 0 on RN+1
+

uẼ = uE on ∂ RN+1
+ = RN × {0},

uẼ satisfies it if and only if , for all K ⊂ RN+1
+ compact, it attains the minimum in the variational

problem:

min

ßˆ
K

|∇w|2 : w ∈ H1
loc(R

N+1
+ ), w = uE on RN × {0}, w(z) → 0 as |z| → +∞

™
.

Since uE ∈ [0, I1(E)] almost everywhere, if uẼ > I1(E) over some set A, we would be able to decrease
the Dirichlet energy by just setting uẼ = I1(E) over such set. Therefore, since uẼ , v ∈ C∞(RN+1

+ ), then

uẼ ∈ [0, I1(E)] everywhere on RN+1
+ , so by construction v ∈ [0, 1] everywhere on RN+1

+ .

Now, before introducing one last preliminary result concerning the function v, we set some useful notation.
For every x ∈ RN+1

+ and every r > 0, we let B+
r (x) = Br(x) ∩ RN+1

+ and ∂+Br(x) = ∂Br(x) ∩ RN+1
+ , so

∂Br(x)
+ = ∂+Br(x) ∪ (Br(x) ∩ (RN × {0})). Finally, we will use also the set ∂Br(x) ∩ (RN × {0}). If x

is omitted, all the sets just defined are centered in 0 ∈ RN+1. Finally, we define a regularization of the
Green function Γ.

Definition 2.19. We define Γ1 ∈ C1(RN+1
+ ,R+) by:

Γ1 =

®
1

|z|N−1 |z| ≥ 1
N+1
2 − N−1

2 |z|2 |z| < 1.

We also let Γε(z) = Γ1(z/ε)ε
1−N , so that Γε ↗ Γ = |z|1−N as ε→ 0.

We highlight that Γε is radial, and, since for Γ we have:

∂N+1 |z|−(N−1) = (1−N)zN+1|z|−(N+1) =⇒ ∂N+1Γ(z) = 0 on RN × {0},

we get as well ∂N+1Γε = 0 on RN ×{0}. Moreover, another computation shows that Γε is superharmonic
in RN+1, namely −∆Γε ≥ 0. Now, we closely follow [28].

Lemma 2.20. Given the function v defined above, for all γ ∈]0, 1[ the function Φ : (0, 1) ↦−→ (0,+∞)
given by

Φ(r) =

ˆ
∂+Br

|∇v|2

|z|N−1

is well defined and bounded in (0, 1).

Proof. We denote z = (x, y) ∈ RN ×R. Given any non negative φ ∈ C∞
c (RN+1) we have, integrating by

parts on the domain RN+1
+ :

ˆ
RN+1

+

(−∆v) vφ dz +

ˆ
RN

(∂N+1v)vφ dx =

ˆ
RN+1

+

∇v · ∇(vφ) dz. (2.27)
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By harmonicity of v and 2.26, every term of the above expression is equal to 0. We notice that, developing
the gradient, we have:

ˆ
RN+1

+

∇v · ∇(vφ) dz =

ˆ
RN+1

+

|∇v|2φdz +
ˆ
RN+1

+

1

2
∇(v)2 · ∇φdz = 0 (2.28)

as well. Now, we let ε, δ > 0 and ηδ ∈ C∞
c (Br+δ) be a smooth, radial cut-off function such that 0 ≤ ηδ ≤ 1

and ηδ = 1 on Br. Choosing φ = ηδΓε in 2.28 we get:

ˆ
RN+1

+

|∇v|2ηδΓε dz +

ˆ
RN+1

+

1

2
∇(v)2 · ∇(ηδΓε) dz = 0.

If we denote by ν the outward unit normal vector to the half sphere ∂+Bρ, we find by developing,
rearranging and passing to polar coordinates:

ˆ
RN+1

+

ï
|∇v|2Γε +

1

2
∇(v)2 · ∇Γε

ò
ηδ dz = −

ˆ
RN+1

+

1

2
Γε∇(v)2 · ∇ηδ dz

= −
ˆ r−δ

r

ñ
−η′δ(ρ)

ˆ
∂+Bρ

Γε v∂νv dσ

ô
dρ.

Sending the limit as δ → 0 we get, for almost every r ∈]0, 1[:
ˆ
B+

r

|∇v|2Γε +
1

2
∇(v)2 · ∇Γε dz =

ˆ
∂+Br

Γε v∂νv dσ.

Integrating by parts over B+
r we get:

ˆ
B+

r

|∇v|2Γε + (−∆Γε)
v2

2
dz +

ˆ
∂+Br

v2

2
∂νΓε dσ =

ˆ
∂+Br

Γε v∂νv dσ,

recalling that ∂N+1Γε(x, 0) = 0, so it is enough to integrate the third term of the left-hand side over
∂+Br instead of the whole ∂B+

r . Now, we use the fact that −∆Γε ≥ 0 to get:

ˆ
B+

r

|∇v|2Γε dz ≤
ˆ
∂+Br

Γε v∂νv −
v2

2
∂νΓε dσ.

Noticing that Γ(z) = r−(N−1) over ∂+Br, we let ε→ 0 and infer, by monotone convergence:

Φ(r) =

ˆ
∂+Br

|∇v|2

|z|N−1
≤ 1

rN−1

ˆ
∂+Br

v ∂νv dσ +
N − 1

2rN

ˆ
∂+Br

v2 dσ. (2.29)

Since v2 ≤ 1 and 2.25 hold, the previous expression concludes the Lemma.

We are finally ready to prove the Hölder estimate we are interested in. The motivation behind the
statement is to find a growth estimate for the function u locally near the Reifenberg flat (so in particular
not smooth domain) set E, which later on will allow us to majorize the integral term in 2.24. The idea of
the proof is to add a dimension to the problem and, exploiting the fact that the function u is given by a
convolution between the measure µE and the Green kernel Γ in RN+1, use some tools from elliptic PDE
theory (culminating with an Alt-Caffarelli-Friedman type formula) in order to prove the desired estimate
over RN+1. At that point, the conclusion follows straightforwardly by restricting ourselves back to RN .
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Lemma 2.21. For every small enough δ > 0 there exists γ ∈ (0, 1) with γ → 1
2 as δ → 0 such that, if E

is a bounded (δ, r0)-Reifenberg flat domain, then:

|1− I−1
1 (E)uE(x)| ≤

dγ(x, ∂E)

rγ0
for all x ∈ RN , (2.30)

where uE(x) =
´
E

dµE(y)
|x−y|N−1 and µE is such that I1(E) = I1(µE).

Proof. By scaling we may assume r0 = 1. Let u = 1 − I−1
1 (E)uE(x) and v its harmonic extension to

RN+1 the functions we defined above: we keep in mind all of their property we listed. In particular, since
u ≤ 1, it is enough to prove 2.30 when d(·, ∂E) ≪ 1. The proof consists in three claims, from which we
can draw the conclusion:

• (1) For every z ∈ RN+1
+ , have:

1

rN−1

ˆ
B+

r (z)

|∇v|2 ≲ r2γ sup
z∈RN+1

+

ˆ
B+

1 (z)

|∇v|2

|z − y|N−1
for all 0 < r ≪ 1 (2.31)

for some exponent 0 ≤ γ ≤ 1.

• (2) We have:

sup
z∈RN+1

+

ˆ
B+

1 (z)

|∇v|2

|z − y|N−1
≲ 1. (2.32)

• (3) γ ∈ (0, 1) and γ → 1
2 as δ → 0.

We start by the conclusion of the proof once assumed the three claims. First of all, by a step in the proof

of Poincaré Inequality [6, Theorem 2, Section 4.5], for all z ∈ RN+1
+ we have:

ˆ
B+

r (z)

⃓⃓
v −

 
B+

r (z)

v
⃓⃓2

≲ r2
ˆ
B+

r (z)

|∇v|2.

Thus, if 2.31 and 2.32 hold, we deduce for r small:

1

rN+1

ˆ
B+

r (z)

⃓⃓
v −

 
B+

r (z)

v
⃓⃓2

≲
1

rN−1

ˆ
B+

r (z)

|∇v|2 ≲ r2γ sup
z∈RN+1

+

ˆ
B+

1 (z)

|∇v|2

|z − y|N−1
≲ r2γ ,

for a number γ close to 1/2. In particular:Ç
1

rN+1

ˆ
B+

r (z)

⃓⃓
v −

 
B+

r (z)

v
⃓⃓2å 1

2

≲ rγ .

Hence, by Campanato’s criterion [18, Theorem 6.1], v ∈ C0,γ(RN+1
+ ), namely there exists C > 0 such

that for all z, z′ ∈ RN+1
+ there holds:

|v(z)− v(z′)| ≤ C|z − z′|γ .

In particular, if z′ = (x′, 0) ∈ E × {0} and z = (x, 0) ∈ Ec × {0}, then v(z′) = u(z′) = 0, so:

|u(x)| ≲ |x− x′|γ for all x′ ∈ E ⇐⇒ |1− I−1
1 (E)uE(x)| ≤ dγ(x, ∂E).
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Since this is true for all x ∈ Ec, the thesis of the Lemma follows and it remains to prove the there claims.

(1) To show 2.31, we assume first z ∈ ∂E × {0}. Without loss of generality we may assume that z = 0
and from now we denote by ∇τ the tangential gradient on the sphere, by ∇ν the normal derivative and
by ∆S the restriction of the Laplacian over the surface of the sphere. For every 0 < r ≤ 1, we consider
the variational problem:

λ(r) = min

{︄´
∂+Br

|∇τv|2´
∂+Br

v2
: v ∈ H1(∂+Br), v = 0 on (E × {0}) ∩ ∂B+

r

}︄
. (2.33)

First of all, we notice that the function v we are working with is a competitor for the problem. By direct
method of Calculus of Variations, we can easily prove that there exist a minimizer v with ∥v∥L2(∂+Br) = 1.
Moreover, λ(r) > 0, because if λ(r) = 0 then the minimizer would be constant on ∂+Br, hence equal
to 0 by continuity of the trace operator, contradicting the condition ∥v∥L2(∂+Br) = 1. In a similar

way, choosing the function w(x, y) = y with (x, y) ∈ RN × R, after a computation we can observe that
λ(r) ≤ N . In addition, thanks to a change of variable, by considering r2λ(r) instead of λ(r), we can
assume the problem to be set on ∂+B1, with the condition v = 0 on (E1/r × {0}) ∩ ∂B+

1 . Finally,
from basic facts of Spectral Theory, we can equivalently characterize minimizers v ∈ H1(∂+Br) as weak
solutions of the PDE problem with Robin boundary condition:⎧⎪⎨⎪⎩

−∆S v = λ(r)v on ∂+Br

v = 0 on E × {0}
∂νv = 0 on Ec × {0}.

(2.34)

Now, we can define the function γ : [0,+∞) ↦−→ [0,+∞) as

γ(λ) =

 Å
N − 1

2

ã2

+ λ− N − 1

2

and then the number γ̄ = γ̄E as:
γ̄ = inf

0<r≤1
γ(r2λ(r)).

We will prove later this is the number γ which appears in the statement of the Lemma. We preliminary
observe that obviously γ̄ ≥ 0 and, by monotonicity of the function γ:

γ̄ ≤ γ(r2λ(r)) ≤ γ(λ(1)) ≤ γ(N) = 1.

Now, for r ∈ (0, 1], using the function v we started the proof with, we define the function:

Ψ(r) =
1

r2γ̄

ˆ
B+

r

|∇v|2

|z|N−1
.

By Lemma 2.20, Ψ is well defined: we want to prove that it is increasing. To do so, we compute it
logarithmic derivative, with the help of Coarea Formula:

Ψ′

Ψ
= −2

γ̄

r
+

Åˆ
∂+Br

|∇v|2

|z|N−1

ãÅˆ
B+

r

|∇v|2

|z|N−1

ã−1

.

Since Ψ ≥ 0, if we show that Ψ′/Ψ ≥ 0 then Ψ′ ≥ 0, so Ψ is increasing and we are done; therefore it is
enough to prove that: Åˆ

∂+Br

|∇v|2

|z|N−1

ãÅˆ
B+

r

|∇v|2

|z|N−1

ã−1

≥ 2
γ̄

r
. (2.35)
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We have:

f(r) :=

Åˆ
∂+Br

|∇v|2

|z|N−1

ãÅˆ
B+

r

|∇v|2

|z|N−1

ã−1

=

Å
r1−N

ˆ
∂+Br

|∇v|2
ãÅˆ

B+
r

|∇v|2Γ(z)
ã−1

,

and, by formula 2.29:

f(r) ≥
Å
r1−N

ˆ
∂+Br

|∇v|2
ãÅ

r1−N

Åˆ
∂+Br

v∂νv +
N − 1

2r

ˆ
∂+Br

v2
ãã−1

≥
Åˆ

∂+Br

|∇τv|2 +
ˆ
∂+Br

|∂νv|2
ãÇÅˆ

∂+Br

v2
ã 1

2
Åˆ

∂+Br

(∂νv)
2
ã 1

2

+
N − 1

2r

ˆ
∂+Br

v2
å−1

=

(︄´
∂+Br

|∇τv|2´
∂+Br

v2
+

´
∂+Br

|∂νv|2´
∂+Br

v2

)︄Ñ(︄´
∂+Br

|∂νv|2´
∂+Br

v2

)︄ 1
2

+
N − 1

2r

é−1

≥ min
t>0

λ(r) + t2

t+ N−1
2r

.

Another direct computation shows that the above minimum is attained for tmin = 1
rγ(r

2λ(r)) and that

mint>0
λ(r)+t2

t+N−1
2r

= 2tmin = 2
rγ(r

2λ(r)), so that eventually:Åˆ
∂+Br

|∇v|2

|z|N−1

ãÅˆ
B+

r

|∇v|2

|z|N−1

ã−1

≥ 2

r
γ(r2λ(r)) ≥ 2

γ̄

r
,

concluding the proof of 2.35. By monotonicity of Ψ and recalling that z ∈ B+
r implies |z| ≤ r, we deduce:

1

r2γ̄+N−1

ˆ
B+

r

|∇v|2 ≤ 1

r2γ̄

ˆ
B+

r

|∇v|2

|z|N−1
= Ψ(r) ≤ Ψ(1) =

ˆ
B+

1

|∇v|2

|z|N−1
(2.36)

and the proof of (1) with the exponent γ̄ in the case z ∈ ∂E×{0} is concluded. From now on, we denote
γ = γ̄: we will able to distinguish the use of γ to denote either the parameter or the function defined
before from the context.

On the other hand, if z /∈ ∂E×{0}, using either an odd or even reflection with respect to the hyperplane
zN+1 = 0, we may assume that v is harmonic in Bz(r) for every r ≤ r̄ = min{1, d(z, ∂E ×{0})}. Indeed,
depending on the position of z with respect E × {0}, it is possible to perform both: if d(z, E × {0}) <
d(z, Ec × {0}) then we can use an odd reflection exploiting the fact that v = 0 on E, whereas, in the
opposite case, we can use an odd one as ∂N+1v = 0 on Ec. Moreover, being |∇v|2 subharmonic, the
function:

r ↦−→ 1

rN+1

ˆ
Br(z)

|∇v|2

is increasing by mean value formula. Therefore, since the parameter γ we selected before satisfies γ ≤ 1,
we have:

1

rN+1

ˆ
B+

r (z)

|∇v|2 ≤
(︂r
r̄

)︂ 1

r̄N−1

ˆ
B+

r̄ (z)

|∇v|2 ≤
(︂r
r̄

)︂2γ 1

r̄N−1

ˆ
B+

r̄ (z)

|∇v|2. (2.37)

If r̄ ≳ 1, then the conclusion is easy, since first of all (1/r̄)2γ ≲ 1 and then, for all y ∈ B+
r̄ (z) we have

|z − y| ≤ r̄, so 1/r̄ ≤ |x− y|−1. In this way:(︂r
r̄

)︂2γ 1

r̄N−1

ˆ
B+

r̄ (z)

|∇v|2 ≲ r2γ
ˆ
B+

r̄ (z)

|∇v|2

|z − y|N−1
≤ r2γ

ˆ
B+

1 (z)

|∇v|2

|z − y|N−1
,
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where after the last inequality we used B+
r̄ (z) ⊂ B+

1 (z), as r̄ ≤ 1 by definition. Instead, if r̄ ≪ 1 we
argue as follows: we select z̄ ∈ ∂E × {0} of minimal distance, namely the point such that |z − z̄| =
d(z, ∂E × {0}) = r̄ ≪ 1. By 2.36, we have for z̄ ∈ ∂E × {0} and for all r ∈ (0, 1/2):

1

r2γ+N−1

ˆ
B+

r (z̄)

|∇v|2 ≤ Ψ(r) ≤ Ψ(1/2) ≲
ˆ
B+

1/2
(z̄)

|∇v|2

|z̄ − y|N−1
. (2.38)

In particular, choosing r∗ = 3r̄ ≪ 1/2, we have that B+
(̄r)

(z) ⊂⊂ B+
r∗(z̄), so coming back to our compu-

tations 2.37, we have, z̄ ∈ ∂E × {0}:(︂r
r̄

)︂2γ 1

r̄N−1

ˆ
B+

r̄ (z)

|∇v|2 ≤
(︂r
r̄

)︂2γ 1

r̄N−1

ˆ
B+

r∗ (z̄)

|∇v|2 ≈ r2γ
1

r∗ 2γ+N−1

ˆ
B+

r∗ (z̄)

|∇v|2.

Applying 2.38 with r∗ ≪ 1/2 and majorizing the integration area with B+
1/2(z̄) ⊂ B+

1 (z) (since we have

that |z − z̄| ≪ 1), we finally get:

r2γ
1

r∗ 2γ+N−1

ˆ
B+

r∗ (z̄)

|∇v|2 ≲ r2γ
ˆ
B+

1/2
(z̄)

|∇v|2

|z̄ − y|N−1
≤ r2γ

ˆ
B+

1 (z)

|∇v|2

|z̄ − y|N−1
.

So recalling where we started in 2.37 and passing the last result to the supremum over z ∈ RN+1
+ we get:

1

rN+1

ˆ
B+

r (z)

|∇v|2 ≲ r2γ sup
z∈RN+1

+

ˆ
B+

1 (z)

|∇v|2

|z̄ − y|N−1
.

(2) We fix z ∈ RN+1
+ . By 2.29, for R≫ 1 we have:

ˆ
B+

1 (z)

|∇v|2

|z − y|N−1
≤
ˆ
B+

R(z)

|∇v|2

|z − y|N−1
≲

1

RN−1

ˆ
∂+BR(z)

v ∂νv +
1

RN

ˆ
∂+BR(z)

v2.

Using Cauchy-Schwarz and that |v| ≤ 1 we find:

ˆ
B+

1 (z)

|∇v|2

|z − y|N−1
≲

1

RN−1

ˆ
∂+BR(z)

|∂νv|+
1

RN

ˆ
∂+BR(z)

dσ ≲
1

RN−1

ˆ
∂+BR(z)

|∂νv|+ 1.

For the second inequality, we used the fact that HN (∂+BR(z)) ≈ RN . We need to estimate the first
term, if R is large enough we can apply 2.25 and get:

1

RN−1

ˆ
∂+BR(z)

|∂νv| ≲
1

RN−1

ˆ
∂+BR(z)

I−1
1 (E)

|z|N
≲

I−1
1 (E)

RN−1
,

again because HN (∂+BR(z)) ≈ RN . Sending R→ +∞ the proof of (2) is concluded, once observing that

the computations hold true for every z ∈ RN+1
+ .

(3) To prove this point, we finally use the fact that E is an uniformly (δ, r0)-Reifenberg flat set, recalling
that we assumed δ0 = 1 by scaling at the beginning of the proof. In particular, for all x ∈ ∂E and for all
0 < r ≤ 1 there exist two hyperplanes H+

r and H−
r such that H−

r ∩ Br(x) ⊂ E ∩ Br(x) ⊂ H+
r ∩ Br(x).

The idea to prove the claim is to exploit this property to infer the desired asymptotic estimate on the
parameter γ, specifically working on the variational problem 2.33. Since the condition given by Reifenberg
flatness is uniform in x ∈ ∂E, we can assume without loss of generality that x = 0.
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Given a generic function v ∈ H1(∂+Br) we have that, if F ⊂ E, v = 0 on (E ×{0})∩ ∂B+
r implies v = 0

on (F × {0}) ∩ ∂B+
r , so in particular λF (r) ≤ λE(r) for every r ≤ 1, namely λ(r) is monotone under

inclusion. Thus, we define H+
δr = {x ∈ RN : x1 ≤ δr} and H−

δr = {x ∈ RN : x1 ≤ −δr}; combining
monotonicity of λ with the hyperplane condition (in the right coordinate system according to the choice
of H+

δr and H−
δr) yielded by (δ, 1)-Reifenberg flatness, we get λH−

δr
(r) ≤ λE(r) ≤ λH+

δr
(r). Since the

function γ(λ) is increasing monotone:

γ(r2λH−
δr
(r)) ≤ γ(r2λE(r)) ≤ γ(r2λH+

δr
(r)),

so passing to the infimum over 0 < r ≤ 1 we infer γH−
δr

≤ γE ≤ γH+
δr
. Therefore, if we show that γH−

δr
→ 1

2

as δ → 0, we can immediately deduce that γE → 1
2 as δ → 0 too, γE ∈

(︁
1
4 ,

3
4

)︁
for δ small enough. Before

going on, we notice that both γH−
δr

and γH+
δr

actually do not depend on r : indeed, by changing variables

in 2.33:

r2λH±
δr
(r) = min

{︄´
∂+B1

|∇τv|2´
∂+B1

v2
: v ∈ H1(∂+B1), v = 0 on (H±

δr/r × {0}) ∩ ∂B+
r

}︄
.

Since H±
δr/r = H±

δ , the quantities r2λH±
δr
(r) do not depend on r, so from now on we just write γH±

δ
and

γH±
δ

instead.

We begin by showing that, if δ = 0, then γH0
= 1

2 . Since γH0
does not depend on r we can consider

λ = λH0
(1) and work on ∂+B1. The trick is to use another characterization of the solution of 2.33 given

by [28, Remark 2.3]: a function v competitor for 2.33 (namely such that v ∈ H1(∂+B1) and v = 0 on
H0) achieves the minimum λ if and only if it is of one sign and its γ(λ)-homogeneous extension to RN+1

+

is harmonic. We give an almost complete proof of this statement: the key is to consider the Laplacian in
RN+1 in polar coordinates

∆u =
∂2u

∂r2
+
N

r

∂u

∂r
+

1

r2
∆Su.

If v is a solution of 2.33 then it solves the elliptic problem 2.34 as well. Its γ(λ)-homogeneous extension
to RN+1

+ is given in polar coordinates by w(r, σ) = rγ(λ)v(σ) and computing its Laplacian yields

∆u = rγ(λ)−2
[︁
(γ(λ)2 + (N − 1)γ(λ))v +∆Sv

]︁
.

Therefore, ∆u = 0 if and only if:

−∆Sv =
[︁
γ(λ)2 + (N − 1)γ(λ)

]︁
v = λ v,

because λ(γ) = γ2 + (N − 1)γ happens to be the inverse function of γ(λ) defined above. Since we had
−∆Sv = λ v by hypothesis, we conclude the first implication. Conversely, if a competitor for 2.33 has its
γ(λ)-homogeneous extension to RN+1

+ harmonic, then it is actually its minimizer if it is a solution of the
elliptic problem 2.34. The computations we just did allow us to conclude almost everything: indeed it
just remains to show that ∂νv = 0 on Hc

0 × {0}, but we omit it.

Therefore, if we can find a positive function v with v = 0 on H0 and such that its 1/2-homogeneous
extension to RN+1

+ is harmonic, we immediately deduce γ(λ) = γH0
= 1

2 . We consider the function

v(x, 0) =
»
x+1 defined on RN (notice that v = 0 on H0) and we take its 1/2-homogeneous harmonic

extension to RN+1
+ :

v(x, xN+1) =

√︄»
x21 + x2N+1 + x1

2
.
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Another computation allows us to check that ∂νv = 0 on Hc
0 × {0}. Since v > 0 on RN+1

+ , the previous
argument implies that γ(λ) = 1

2 .

The proof of (3) is concluded once proved that the function δ −→ λH−
δ

is continuous as δ → 0. Thus, by

continuity of the function γ, we have that γH−
δ
= γ(λH−

δ
) −→ γ(λH0

) = γH0
= 1

2 . We consider {uδ}δ>0 a

sequence such that uδ is a minimizer for λH−
δ

with ∥uδ∥L2(∂+B1) = 1. In (1) we highlighted the fact that

λ ≤ N : more in general this is true for all set E, since the function w(x, y) = y is a valid competitor for
λE for all E. In other words:ˆ

∂+B1

|∇τuδ|2 ≤
ˆ
∂+B1

|∇τw|2 ≤ N for all δ > 0.

In particular, we deduced that uδ is bounded in H1(∂+B1) uniformly in δ. By compactness of the trace
operator

tr : H1(∂+B1) −→ H
1
2 (∂B1 ∩ {xN+1 = 0})

and of the embedding

i : H
1
2 (∂B1 ∩ {xN+1 = 0}) −→ L2(∂B1 ∩ {xN+1 = 0}),

we have that {truδ}δ>0 is bounded in L2(∂B1 ∩ {xN+1 = 0}) uniformly in δ as well. Therefore, by
Banach-Alaoglu, up to extraction, there exist a function u0 ∈ H1(∂+B1) and a subsequence {uδk}k≥1

with δk → 0 as k → +∞ such that:

• uδk ⇀ u0 in H1(∂+B1) as k → +∞;

• truδk −→ tru0 in L2(∂B1 ∩ {xN+1 = 0}) and HN−1-a.e. as k → +∞.

By convergence almost everywhere of the trace, we infer that tru0 = 0 on ∂B1 ∩ (H0 × {0}) so u0 is a
competitor for λH0 . Therefore, by weak lower semicontinuity of the norm and since λH0 ≥ λH−

δ
, we have

that:

λH0 ≥ lim inf
δk→0

λH−
δ
= lim inf

δk→0

ˆ
∂+B1

|∇τuδ|2 ≥
ˆ
∂+B1

|∇τu0|2 ≥ λH0 ,

so u0 is a minimizer for λH0
, and we have that λH−

δ
−→ λH0

as well.

Now, we are ready to turn the Hölder property 2.30 on the potential into the desired decay estimate for
the function µE . Notice that the assumption |γ − 1

2 | ≪ 1 comes directly from the statement of 2.21.

Lemma 2.22. For every |γ − 1
2 | ≪ 1, there exists δ0 > 0 such that for every r0 > 0 and every (δ, r0)-

Reifenberg flat domain E with δ ≤ δ0, µE ∈ L
2N

N+1

loc (RN ) and for every x ∈ RN and r < r0/2 there
holds: Çˆ

Br(x)

µ
2N

N+1

E

åN+1
N

≲ rN−1+2γ , (2.39)

where the implicit constant depends on N , γ, r0 and |E|.

Proof. Let γ = γ(δ) be given by Lemma 2.21. First, we derive from 2.30 the following estimate on µE :

µE ≲ d−(1−γ)(·, ∂E). (2.40)

Denoting uE the associated potential, by Proposition 1.12 we get for x ∈ E:

C ′(N, 1)µE(x) = (−∆)
1
2uE(x) = C(N, 1/2)

ˆ
RN

uE(x)− uE(y)

|x− y|N+1
dy
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By Proposition 1.12, we have uE(x) = I1(E) and I1(E) − uE(y) = 0 for y ∈ E, so the right-hand side
reduces to:

C ′(N, 1)µE(x) = C(N, 1/2)

ˆ
Ec

I1(E)− uE(y)

|x− y|N+1
dy ≤ I1(E)

rγ0

ˆ
Ec

dγ(y, ∂E)

|x− y|N+1
dy,

where we used 2.30 in the last inequality. At this point, recalling d(y,A) = d(Y, ∂A) for every A ⊂ RN

closed, since our minimizer E is closed we have d(y, ∂E) = minx∗∈E |y − x∗| ≤ |x− y|. Thus:ˆ
Ec

dγ(y, ∂E)

|x− y|N+1
dy ≤

ˆ
Ec

|x− y|γ

|x− y|N+1
dy ≤

ˆ
Bc

d(x,∂E)
(x)

1

|x− y|N+1−γ
dy =

ˆ
Bc

d(x,∂E)
(0)

1

|z|N+1−γ
dz

and solving the integral we get C(γ)d(x, ∂E)−(1−γ). Hence:

µE(x) ≲
I1(E)

rγ0
d(x, ∂E)−(1−γ) ≲ d(x, ∂E)−(1−γ),

where in the last line we used that if B is a ball of measure |E| then I1(E) ≤ I1(B), as stated in
Proposition 1.9. Notice that the constant appearing in the estimate depends on N , γ, r0 and |E|, as all
of them appear in the computations now or later.

After the preliminary argument, we now prove 2.39. For P > 0, we set µP = min{µE , P}. Clearly µP

is an integrable function (being bounded and supported in E ) and µP → µE a.e. in E. Moreover, since
0 ≤ µP ≤ µE , it satisfies 2.40 as well. We claim that there exist C0, C1 > 0 such that for every x ∈ ∂E
and every r ≤ r0/2, there exists a set A(x) ⊂ ∂E such that, denoting by # the cardinality of a set:

#A(x) ≤ C1δ
1−N (2.41)

and ˆ
Br(x)

µ
2N

N+1

P ≤ C0r
N− 2N

N+1 (1−γ) +
∑︂

y∈A(x)

ˆ
B6δr(y)

µ
2N

N+1

P . (2.42)

Again, up to translations, we may assume without loss of generality x = 0. By definition, since E is (δ, r0)-
Reifenberg flat, for every r ≤ r0/2, there exists a hyperplane Hr such that dH(∂E∩Br, Hr∩Br) ≤ δr. We
set Nr = {y ∈ Br : d(y,Hr) > 2δr}: then, for y ∈ Nr, we have d(y, ∂E) ∼ d(y,Hr). Indeed, as y ∈ Nr,
we have δr ≤ 1

2d(y,Hr), and moreover, by construction, we infer d(y, ∂E) ∈ d(y,Hr)+(−δr,+δr). Thus:

• d(y, ∂E) ≤ d(y,Hr) + δr ≤ 3
2d(y,Hr);

• d(y, ∂E) ≥ d(y,Hr)− δr ≥ 1
2d(y,Hr).

Therefore, we can compute by 2.40:ˆ
Nr

µ
2N

N+1

P ≲
ˆ
Nr

d(x, ∂E)−
2N

N+1 (1−γ)dx ≃
ˆ
Nr

d(x,Hr)
− 2N

N+1 (1−γ)dx.

Now, we majorize the last integral by integrating over the set C(r)\C(2δr), where both C(r) and C(2δr)
are cylinders whose axes pass through 0 (center of the ball) and are orthogonal to Hr, both with base
radius r and heights 2r and 2δr respectively. Notice that C(r) \C(2δr) clearly contains Nr. Highlighting
that the quantity d(x,Hr) is constant along hyperplanes parallel to Hr, we can compute the integral by
performing the change of variable d(x,Hr) = t. Hence, recalling that ωN−1r

N−1 is the volume of the
N − 1 ball of radius r:ˆ

Nr

µ
2N

N+1

P ≤ C

ˆ
C(r)\C(2δr)

d(x,Hr)
− 2N

N+1 (1−γ)dx = CωN−1r
N−1

ˆ r

2δr

dt

t
2N

N+1 (1−γ)

≤ C0r
N−1

Ä
r−

2N
N+1 (1−γ)+1 − (2δr)−

2N
N+1 (1−γ)+1

ä
= C0r

N− 2N
N+1 (1−γ).
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In particular, it is important to highlight that we need the quantity − 2N
N+1 (1 − γ) + 1 to be positive in

order to make true the previous computations. This is possible by the assumption |γ − 1
2 | ≪ 1, choosing

γ such that 1− γ < N+1
2N . Once established the constant C0, we infer:

ˆ
Br

µ
2N

N+1

P =

ˆ
Nr

µ
2N

N+1

P +

ˆ
Br∩Nr

µ
2N

N+1

P ≤ C0r
N− 2N

N+1 (1−γ) +

ˆ
Br∩Nr

µ
2N

N+1

P

and we need to estimate the second term. For all x ∈ N c
r ∩Br we have d(x,Hr) ≤ 2δr: therefore condition

dH(∂E ∩ Br, Hr ∩ Br) ≤ δr implies d(x, ∂E ∩ Br) ≤ 3δr. Now, clearly {Bδr(y)}y∈∂E∩Br is a covering
of ∂E ∩ Br. By the compact version of Vitali covering Lemma [6, Section 1.5.1], we can extract a finite
subset of points A ⊂ ∂E ∩Br such that:

• {Bδr(y)}y∈A is made up of pairwise disjoint balls;

• {B3δr(y)}y∈A is still a covering of ∂E ∩Br.

Thanks to these information, we claim that {B6δr(y)}y∈A is a covering of N c
r ∩ Br. To prove it we fix

y ∈ N c
r ∩ Br: since d(y, ∂E ∩ Br) ≤ 3δr there exists x∗ ∈ ∂E ∩ Br such that |y − x∗| ≤ 3δr. For

such x∗ ∈ ∂E ∩ Br, by the second property implied by Vitali Lemma, there exists xi ∈ A such that
|x∗ − xi| ≤ 3δr. Thus, for all y ∈ N c

r ∩ Br there exists xi ∈ A such that |y − xi| ≤ 6δr by triangle
inequality, so the claim follows.

Now, we estimate the cardinality of A in order to obtain 2.41. Fixing y ∈ A, by geometry of the problem
we have:

2δr = d(Hr ∩Br, Nr) ≤ d(Hr ∩Br, ∂E ∩Br) + d(∂E ∩Br, Nr)

≤ d(Hr ∩Br, y) + d(y,Nr) < δr + d(y,Nr),

so d(y,Nr) > δr and in particular Bδr(y) ⊂ N c
r . Moreover, as y ∈ Br, it is clear that Bδr(y) ⊂ B(1+δ)r ⊂

B2r thus {Bδr(y)}y∈A ⊂ N c
r ∩B2r. Majorizing again, our collection of disjoint balls is strictly contained

in a closed cylinder C(2δr, 2r), whose axes passes through 0 and is orthogonal to Hr, with base radius 2r
and height 2δr. Since the volume of one of the balls is ωN (δr)N , we deduce:

ωN (δr)N#A ≤ |C(2δr, 2r)| = ωN−1(2r)
N−1(2δr) ≃ δrN .

Simplifying, we get #A ≤ C1δ
1−N , which is 2.41. On the other hand, the fact that {B6δr(y)}y∈A is a

covering of N c
r ∩Br implies: ˆ

Br∩Nr

µ
2N

N+1

P =
∑︂
y∈A

ˆ
B6δr(y))

µ
2N

N+1

P ,

which in turn yields ˆ
Br

µ
2N

N+1

P =≤ C0r
N− 2N

N+1 (1−γ)
∑︂
y∈A

ˆ
B6δr(y))

µ
2N

N+1

P ,

concluding the proof of 2.42.

For k ≥ 0, we set rk = (6δ)kr and define recursively A0 = {0} and Ak = ∪x∈Ak−1
A(x). From 2.41, we

have
#Ak ≤ (C1δ

1−N )k (2.43)

and thus applying recursively 2.42 we find for K > 0:

ˆ
Br

µ
2N

N+1

P ≤ C0

K∑︂
k=0

(#Ak)r
N− 2N

N+1 (1−γ)

k

∑︂
y∈AK+1

ˆ
BrK+1

(y)

µ
2N

N+1

P .

62



By definition of µP , we have:∑︂
y∈AK+1

ˆ
BrK+1

(y)

µ
2N

N+1

P ≤ (#AK+1)|BrK+1
|P

2N
N+1 ≲ (C1δ

1−N )K+1(6δ)N(K+1)rN+1P
2N

N+1

= (6NC1δ)
K+1rN+1P

2N
N+1 .

Therefore, choosing δ small enough such that 6NC1δ < 1, we can send K → +∞ to make the second
term in the right-hand side of 2.43 vanish and to obtain:

ˆ
Br

µ
2N

N+1

P ≤ C0

+∞∑︂
k=0

(C1δ
1−N )k((6δ)kr)N− 2N

N+1 (1−γ)

= C0

+∞∑︂
k=0

(C16
N− 2N

N+1 (1−γ))kδk(1−N)δkNδ−k 2N
N+1 (1−γ)rN− 2N

N+1 (1−γ)

= C0

+∞∑︂
k=0

(C16
N− 2N

N+1 (1−γ)δ1−
2N

N+1 (1−γ))krN− 2N
N+1 (1−γ)

= C0

(︄
+∞∑︂
k=0

(C2δ
1− 2N

N+1 (1−γ))k

)︄
rN− 2N

N+1 (1−γ),

where we set C2 = C16
N− 2N

N+1 (1−γ). By our previous choice of γ, we highlight again that 2N
N+1 (1− γ) < 1

so 1− 2N
N+1 (1− γ) > 0 and hence, provided δ is small enough , the sum converges and we have (noticing

that all the constants are independent of P):
ˆ
Br

µ
2N

N+1

P ≲ rN− 2N
N+1 (1−γ) ≤ rN−1+2γ .

The second in quality is true if and only if − 2N
N+1 (1 − γ) ≤ −1 + 2γ. After some rearrangements, we

see that it is equivalent to the condition 1 − 2γ < N , which clearly holds. Finally, sending P → +∞
concludes the proof of 2.39.

Combining all the results we gathered in this section, in the last theorem of the chapter we deduce that,
for small charges Q, every volume-constrained minimizer of F1,Q is also a perimeter almost minimizer
for which the classical theory applies, finally obtaining the desired counterpart of Theorem 2.15. Before
going on, we can assume without loss of generality that r0/2 < 1 in the statement of Lemma 2.22.

Theorem 2.23. Let α = 1. For every γ ∈ (0, 12 ) there exists Q(γ,N) > 0 such that for every Q ≤
Q(γ,N), every volume-constrained minimizer EQ of F1,Q is C1,γ with uniformly bounded C1,γ norm. As
a consequence, for every β < γ, up to translation, EQ converges in C1,β to B1 as Q→ 0.

Proof. For every δ > 0, for Q small enough and some r0 = r0(δ), the set E is a (δ, r0)-Reifenberg flat
domain. Let γ = γ(δ) be given by 2.21: since γ → 1

2 as δ → 0 we can get to any γ close to 1
2 just by

diminishing enough the value of δ. Combining the second almost minimality property 2.24 with estimate
2.39 from Lemma 2.22, there exists r0 > 0 such that for all r ≤ r0/2 and for all x ∈ ∂E we have:

P (EQ) ≤ P (F ) + C(Q2rN−1+2γ + rN ) for all EQ∆F ⊂ Br(x). (2.44)

Now, if γ < 1
2 , we have:

P (EQ) ≤ P (F ) + C(Q2 + r1−2γ)rN−1+2γ for all EQ∆F ⊂ Br(x).
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Hence, we can reason exactly as we did in 2.15 to obtain both C1,γ regularity with uniformly bounded
C1,γ norm and C1,β convergence of EQ to B1 as Q → 0. Conversely. if γ ≥ 1

2 we exploit the fact that
2.44 holds for r < 1, so for any γ∗ ∈

(︁
0, 12

)︁
we have:

rN−1+2γ < rN−1+2γ∗
.

In particular, we can reduce to the previous case choosing any γ ∈
(︁
0, 12

)︁
by majorizing 2.44.

In conclusion, C1,γ regularity can be achieved by EQ for all γ ∈
(︁
0, 12

)︁
, either by diminishing enough Q

or by choosing directly the desired 0 < γ < 1
2 .

2.7 A non-existence result in dimension 2

We conclude the chapter by presenting a non-existence result for our problem 1.14, valid in dimension
N = 2 when the charge Q is large enough.

Theorem 2.24. Let N = 2 and α ∈ (0, 1]. Then, for Q≫ 1 the minimum problem:

min {Fα,Q(E) : |E| = ωN , E ∈ S} (2.45)

admits no minimizers.

Proof. First of all, we set some notation. For ν ∈ ∂B1 and t ∈ R, we let:

H+
ν,t = {x · ν ≥ t}, H−

ν,t = {x · ν < t} and Hν,t = {x · ν = t}.

Then, we define for any measure µ and set E:

µ±
ν,t = µ|H±

ν,t
and E±

ν,t = E ∩H±
ν,t.

We assume by contradiction that E is a minimizer of 2.45 and we compare its energy with the one of a
competitor made by two infinitely far apart copies of E+

ν,t and E
−
ν,t, with associated measure the suitable

translations of µ+
ν,t and µ

−
ν,t respectively. Notice that both the perimeter and the Riesz energy decouple

by construction of our competitor:

P (E) +Q2Iα,Q(E) ≤ P (E+
ν,t) + P (E−

ν,t) +Q2Iα(µ
+
ν,t) +Q2Iα(µ

−
ν,t). (2.46)

Now we need to estimate the left-hand side, taking into account the geometry of the construction. First,
we claim that:

P (E+
ν,t) + P (E−

ν,t) = P (E) + 2H1(E ∩Hν,t). (2.47)

To prove it, we follow the argument from [7, Lemma p. 1034]. For any set E of finite perimeter we denote
by µE = −∇χE its distributional outer unit normal, so that its associated perimeter measure is given by
|µE | = P (E, ·). By [18, Ex. 15.13], we have that for almost every t ∈ R:

µE−
ν,t

= µE |H−
ν,t

+ νH1|E∩Hν,t
.

As it happens in the proof of [18, Lemma 15.12], the measures on the right-hand side are mutually
singular, so |µE−

ν,t
| = |µE | |H−

ν,t
+H1|E∩Hν,t

and in particular:

P (E−
ν,t) = P (E,H−

ν,t) +H1(E ∩Hν,t)
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Adding the corresponding equality for −ν and −t, since P (E) = P (E,H+
ν,t)+P (E,H

−
ν,t), we obtain 2.47.

In addition, for the Riesz energy term of Fα,Q(E), we have:

Iα(E) = Iα(µ
+
ν,t) + Iα(µ

−
ν,t) + 2Iα(µ

+
ν,t, µ

−
ν,t) (2.48)

Therefore, after some rearrangements, we find Q2Iα(µ
+
ν,t, µ

−
ν,t) ≤ H1(E∩Hν,t) by replacing 2.47 and 2.48

in 2.46. Now, by Coarea Formula applied to the function f(x) = x · ν − t, we get:

|E| =
ˆ
R
H1(E ∩Hν,t) dt.

Therefore:

|E| ≳
ˆ
∂B1

ˆ
R
H1(E ∩Hν,t) dt dν ≥ Q2

ˆ
∂B1

ˆ
R
Iα(µ+

ν,t, µ
−
ν,t) dt dν

= Q2

ˆ
∂B1

ˆ
R

ˆ
H+

ν,t×H−
ν,t

dµ(x)dµ(y)

|x− y|2−α
dt dν

= Q2

ˆ
R2×R2

Åˆ
∂B1

ˆ
R
χH+

ν,t×H−
ν,t
(x, y) dt dν

ã
dµ(x)dµ(y)

|x− y|2−α
,

by Fubini. Now, exploiting the definition of characteristic function and of H+
ν,t and H

−
ν,t, we have that:

χH+
ν,t×H−

ν,t
(x, y) = χν·x≥t>ν·y(t) and

ˆ
R
χν·x≥t>ν·y(t) dt = [ν · (x− y)]+

Moreover, we can show that: ˆ
∂B1

[ν · (x− y)]+ dν ≈ |x− y|. (2.49)

The upper bound is easy, by Cauchy-Schwarz
´
∂B1

[ν · (x− y)]+ dν ≤
´
∂B1

|x− y| dν = 2π|x− y|. On the
other hand:

ˆ
∂B1

[ν · (x− y)]+ dν ≥
ˆ
∂B1

χ
ν·(x−y)≥ |x−y|

2
[ν · (x− y)]+ dν ≥

ˆ
ν·(x−y)≥ |x−y|

2

|x− y|
2

dν

=

ˆ
ν∈[ x−y

|x−y|−
π
6 , x−y

|x−y|+
π
6 ]

|x− y|
2

dν =

ˆ π
6

−π
6

|x− y|
2

dν =
|x− y|

6
,

yields the lower bound. Now, for all x, y ∈ E we have |x − y| ≤ diam(E) =: d so it holds the relation
|x− y|−(1−α) ≥ d−(1−α). Therefore:

|E| ≳ Q2

ˆ
R2×R2

dµ(x)dµ(y)

|x− y|1−α
≥ Q2

d1−α
=⇒ Q2 ≲ d1−α.

If α = 1 we find immediately the contradiction Q ≲ 1, so we are left with the case α < 1.

Since P (E) ≳ d for N = 2, we infer: Q
2

1−α ≲ d ≲ P (E) ≤ Fα,Q(E). Now, we build a generalized

set Er̃ = {Ei
r}ni=1 made of n copies of the ball Br with radius r = n−1/2. In this way, we estimate its

perimeter:

P (Er̃) =

n∑︂
i=1

P (Br) = 2πnr ≲ nr = r−1
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Concerning the Riesz energy, we notice first that Iα(Br) = r−(2−α)Iα(B1) by 1.3. In addition, by a
readaptation of Lemma 2.3 for Riesz interaction energy Iα, we have:

Iα(Er̃) = inf

{︄∑︂
i

q2i Iα(Br) :
∑︂
i

qi = 1

}︄
≤

n∑︂
i=1

1

n2
Iα(Br) ≲

r−(2−α)

n
= rα.

Putting the two estimates together, we find Fα,Q(Er̃) ≲ r−1 + Q2rα. Choosing r = Q− 2
1+α , we get by

minimality of E :

Q
2

1−α ≲ Fα,Q(E) ≤ Fα,Q(Er̃) ≲ Q
2

1+α +Q(1−α) 2
1+α ≲ Q

2
1+α

which is a contradiction when Q ≫ 1. Thus, we conclude that the variational problem 2.45 has no
minimizers for very large charge Q.
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Chapter 3

Minimality of the ball for small
charges

The purpose of the third chapter is to prove that, for every α ∈ (0, 2) and small enough charge Q, the
ball B1 is the unique minimizer of the functional Fα,Q under volume constraints in the class of nearly
spherical sets. In this way, after what we showed in the previous chapter, we are able to conclude that
in the case α ∈ (0, 1], when the charge Q is small enough, the ball B1 is the unique minimizer for the
variational problem 1.14:

min
|E|=ωN ,E∈S

Fα,Q(E).

The result we are interested in is stated and proved in Theorem 3.7, at the end of the chapter and the
rest is organized as follows. We define first the notion of nearly spherical sets, highlighting its relation
with Riesz interaction energy and drawing some preliminary conclusions useful for what follows. Then,
as usual, we pave the way for Theorem 3.7 by stating and proving some technical lemmas. The first three
of them are more general, whereas from the last two we begin to glimpse our final goal.

Hence, we start by fixing some notation about nearly spherical sets.

Definition 3.1 (Nearly spherical sets). A set E ⊂ RN is said to be nearly spherical if |E| = |B1|, E has
barycenter in x = 0 and there exists γ ∈ (0, 1) and φ : ∂B1 −→ R with ∥φ∥C1,γ(∂B1) ≤ 1 such that

∂E = {(1 + φ(x))x : x ∈ ∂B1}.

We fix a compact nearly spherical set E and we will work with it for the rest of the chapter. As usual,
let µ = µE be its optimal measure for Iα(E) and uE =

´
E

dνE

|x−y|N−α its potential: we write just µ

and u respectively when there is no risk of confusion. Let φ be its associated function: we assume
∥φ∥W 1,∞(∂B1) ≪ 1 and we directly write φx = φ(x) in order to simplify. With an abuse of notation, we
keep denoting by φ its 0-homogeneous extension outside ∂B1, namely the function®

φ( x
|x| ) if x ∈ RN \ {0}

0 if x = 0

which is 0-homogeneous by definition. In this way, the parametrization of ∂E through φ naturally
extends to the whole of RN as the function T : RN −→ RN with T (x) = (1 + φx)x. Since we have
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that T (∂B1) = ∂E, we immediately see that T (B1) = E from the construction of T. In addition, φ

is a C1,γ function, ∥φ∥W 1,∞(∂B1) ≪ 1 and x
|x| = T (x)

|T (x)| , so the function T is a C1 diffeomorphism. Its

inverse is T−1 : RN −→ RN writes T (y) = (1 + φy)
−1y. Clearly T−1(E) = B1, so we are able both to

pushforward measures defined on E to measures defined on B1 using the function T−1 and to do the
converse with T. Moreover, being T a diffeomorphism, there holds T−1

# T#ν = ν for every ν ∈ M+(B1)

and T# T
−1
# λ = λ for any λ ∈ M+(E). Therefore, starting from the probability measure µE , we define

the measure g = T−1
# µE on B1. By basic properties of pushforward, g is still a probability measure and,

since µE is absolutely continuous and T−1 is a C1 diffeomorphism, g is a absolutely continuous too and,
after some computations, writes as:

g(x) = µ((T−1)−1(x))|det(J(T−1)−1(x))| = µ(T (x))|det(JT (x))|
= (1 + φx)

Nµ((1 + φx)x).

In addition, exploiting the fact that µE = T# T
−1
# µE = T# g, we can find an alternative expression for

Iα(E):

Iα(E) =

ˆ
E×E

dµE(x)dµE(y)

|x− y|N−α
=

ˆ
T (B1)×T (B1)

d(T# g)(x)d(T# g)(y)

|x− y|N−α

=

ˆ
B1×B1

dg(x)dg(y)

|T (x)− T (y)|N−α
.

(3.1)

Finally, we recall the explicit expression of the optimal measure µB1 for Iα(B1), given by Proposition
1.13:

µB1
(x) =

Cα

(1− |x|2)α
2
≈ 1

d(x, ∂B1)
α
2
.

Before going on, we need two more preliminary results regarding nearly spherical sets. First of all, we
have that: ⃓⃓⃓⃓ˆ

∂B1

φ

⃓⃓⃓⃓
≲
ˆ
∂B1

φ2. (3.2)

Indeed, since E = {(1 + φx)x : x ∈ B1}, we pass to polar coordinate to find:

1

N

ˆ
∂B1

dσ =

ˆ
∂B1

ˆ 1

0

rN−1 dr dσ = |B1| = |E| =
ˆ
∂B1

ˆ 1+φx

0

rN−1 dr dσ =
1

N

ˆ
∂B1

(1 + φx) dσ.

Hence: ˆ
∂B1

(1 + φx)
N − 1 = 0 =⇒ N

ˆ
∂B1

φ =

N∑︂
k=2

Ç
N

k

åˆ
∂B1

φk.

In particular, passing to the modulus and recalling that ∥φ∥W 1,∞(∂B1) ≪ 1, we conclude:

⃓⃓⃓⃓ˆ
∂B1

φ

⃓⃓⃓⃓
≲

N∑︂
k=2

ˆ
∂B1

|φ|k ≲
ˆ
∂B1

φ2.

From 3.2 we can infer another useful property for what will follow. If we set φ̄ = 1
P (B1)

´
∂B1

φ, we have

for s ∈ (0, 1): ˆ
∂B1

φ2 ≲
ˆ
∂B1

(φ− φ̄2) ≲ [φ]2Hs(∂B1)
. (3.3)
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The second inequality is given by Proposition 1.6, so we need to show just the first one:

ˆ
∂B1

(φ− φ̄2) =

ˆ
∂B1

φ2 − 2φ̄

ˆ
∂B1

φ+

ˆ
∂B1

φ̄2 =

ˆ
∂B1

φ2 − 2P (B)φ̄2 + P (B)φ̄2

=

ˆ
∂B1

φ2 − P (B)φ̄2.

Now, we appeal to 3.2 to get:

φ̄2 ≈
Åˆ

∂B1

φ

ã2

≲
Åˆ

∂B1

φ2

ã2

≪
ˆ
∂B1

φ2

where the last inequality is given by ∥φ∥W 1,∞(∂B1) ≪ 1. Therefore:

1

2

ˆ
∂B1

φ2 ≤
ˆ
∂B1

φ2 − P (B)φ̄2 =

ˆ
∂B1

(φ− φ̄2)

yields 3.3.

After setting the stage, we begin proving all the technical results we need to demonstrate what we want.
From the previous discussion, we remark that for every nearly spherical set E with ∥φ∥W 1,∞(∂B1) ≪ 1
there exist two probability measures naturally defined on B1, that are µB1

and g. First of all, we prove
that g has the same behaviour as µB1

close to ∂B1.

Lemma 3.2. Let α ∈ (0, 2) and E be a nearly spherical set with ∥φ∥W 1,∞(∂B1) ≪ 1. Then, its associated
probability measure g defined on B1 satisfies, for x ∈ B1:

g(x) ≲
1

d(x, ∂B)
a
2
∼ µB1

(x) (3.4)

Proof. The first part of the proof is similar to Lemma 2.22, as we need to show an estimate for µ = µE :

µ(x) ≲
1

d(x, ∂E)
a
2

for all x ∈ E.

From the statement of Proposition 1.12, since µ is supported in E we have that:®
(−∆)

α
2 u(x) = 0 x ∈ Ec

u(x)− Iα(E) = 0 x ∈ E.

Thus, we can appeal to the boundary regularity theory for the fractional Laplacian developed by Ros-Oton
and Serra. In particular, we are in the position to apply [25, Theorem 1.2] in order to get:

u(x)− Iα(E) ≲ d
α
2 (x, ∂E).

Now, we can repeat the steps of the proof of 2.40 from Lemma 2.22, applying the estimate we just got
instead of 2.30. Given x ∈ E:

C ′(N,α)µ(x) = (−∆)
α
2 u(x) = C(N,

α

2
)

ˆ
Ec

Iα(E)− u(y)

|x− y|N+α
dy ≲

ˆ
Ec

d
α
2 (y, ∂E)

|x− y|N+α
dy

≲
ˆ
Bc

d(x,∂E)
(x)

dz

|z|N+α− a
2
≲ d(x, ∂E)−

α
2 .
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The function g writes as g(x) = (1 + φx)
N
µ ((1 + φx)x). Since we have that∥φ∥W 1,∞(∂B1) ≪ 1, we can

bound the term (1 + φx)
N

and, for x ∈ B1, we obtain the estimate:

g(x) ≲ µ((1 + φx)x) ≲
1

d
a
2 ((1 + φx)x, ∂E)

.

Therefore, we only need to show d((1 + φx)x, ∂E) ≈ |1− |x|| to conclude 3.4. The upper bound is easy,
by definition we have that:

d((1 + φx)x, ∂E) = min
y∈∂B1

|(1 + φx)x− (1 + φy)y| ;

choosing y = x
|x| , we find (recall 0-homogeneity of φ):

d((1 + φx)x, ∂E) ≤
⃓⃓⃓⃓
(1 + φx)x− (1 + φx)

x

|x|

⃓⃓⃓⃓
= (1 + φx) |1− |x|| ≲ |1− |x|| .

Conversely, to get the lower bound we can assume that |1− |x|| ≪ 1. Indeed, if | |1− |x|| ≳ 1 then
both d((1 + φx)x, ∂E) and | |1− |x|| ≳ 1 are uniformly bounded from above and below, so the required
estimate trivially follows. Hence, squaring we get

f(x) = d((1 + φx)x, ∂E)2 = min
y∈∂B1

|(1 + φx)x− (1 + φy)y|2

= min
y∈∂B1

¶
(1 + φx)

2|x|2 − 2(1 + φx)(1 + φy)x · y + |1 + φy|2
©
.

Writing −x · y = −|x|+ x ·
Ä

x
|x| − y

ä
, we find:

f(x) = min
y∈∂B1

ß
(1 + φx)

2|x|2 − 2(1 + φx)(1 + φy)|x|+ |1 + φy|2 + 2(1 + φx)(1 + φy)x ·
Å
x

|x|
− y

ã™
= min

y∈∂B1

®
(1 + φx)

2|
⃓⃓⃓⃓
|x| − 1 + φy

1 + φx

⃓⃓⃓⃓2
+ 2(1 + φx)(1 + φy)x ·

Å
x

|x|
− y

ã
(|x| − y · x)

´
.

Using again the fact that ∥φ∥W 1,∞(∂B1) ≪ 1 we have (1 + φx)
2 ≳ 1 and (1 + φx)(1 + φy) ≳ 1, so:

f(x) ≳ min
y∈∂B1

®⃓⃓⃓⃓
|x| − 1 +

φx − φy

1 + φx

⃓⃓⃓⃓2
+ (|x| − y · x)

´
.

For every y ∈ ∂B1 either (|x| − y · x) ≳ ||x| − 1|2 or (|x| − y · x) ≪ ||x| − 1|2. The first case directly
leads to the conclusion d((1 + φx)x, ∂E)2 ≳ ||x| − 1|2. In the second case instead, we write x = rσ with
σ ∈ ∂B1 and we compute:

|σ − y| = |σ|2 + |y|2 − 2σ · y = 2− 2σ · y =
2

r
(r − rσ · y) = 2

r
(|x| − x · y) ≪ ||x| − 1|2.

Therefore, since φ is Lipschitz over ∂B1 we have:

|φx − φy| ≲ |σ − y| ≪ ||x| − 1|2

Therefore, exploiting the last two relations we get:⃓⃓⃓⃓
|x| − 1 +

φx − φy

1 + φx

⃓⃓⃓⃓2
+ (|x| − y · x) ≳ ||x| − 1|2

which yields d((1 + φx)x, ∂E)2 ≳ ||x| − 1|2.
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Now, we prove other two preparatory lemmas which basically serve to carry out the Taylor expansion of
|T (x)− T (y)|−(N−α) appearing in 3.1.

Lemma 3.3. For x, y ∈ B, we have:

|T (x)− T (y)|2 = |x− y|2(1 + φx + φy + φxφy + ψ(x, y)) (3.5)

where

ψ(x, y) ≤ 1

2
(|x|2 + |y|2)

Å
φx − φy

|x− y|

ã2

+ (|x|+ |y|)
Å
1 +

1

2
(φx + φy)

ã
φx − φy

|x− y|
. (3.6)

Proof. First we notice that:

|T (x)− T (y)|2 = |x+ φxx− y − φyy|2 = |(x− y) + (φxx− φyy)|2

=

⃓⃓⃓⃓
(x− y) +

1

2
((x+ y)(φx − φy) + (x− y)(φx + φy))

⃓⃓⃓⃓2
.

Expanding the last term we get:

|x− y|2 + (|x|2 − |y|2)(φx − φy) + |x− y|2(φx + φy) +
1

4
|x+ y|2 |φx − φy|2 +

1

4
|x− y|2 |φx + φy|2 +

1

2
(|x|2 − |y|2)(φ2

x − φ2
y)

Factoring out |x − y|2 and comparing with 3.5, we see that the first and the third addend matches
the first three terms in 3.5. On the other hand, to handle the fourth and the fifth together we use
(φx + φy)

2
= (φx − φy)

2
+ 4φxφy and we get:

1

4
|x+ y|2 |φx − φy|2 +

1

4
|x− y|2 |φx + φy|2 =

1

4
|φx − φy|2

(︁
|x+ y|2 + |x− y|2

)︁
+ |x− y|2φxφy

=
1

2
(φx − φy)

2 (︁|x|2 + |y|2
)︁
+ |x− y|2φxφy.

The last term matches the fourth addend in 3.5, so we are left to estimate:

ψ(x, y) := (|x|2 − |y|2)(φx − φy) +
1

2
(|x|2 − |y|2)(φ2

x − φ2
y) +

1

2
(φx − φy)

2 (︁|x|2 + |y|2
)︁
.

The last term corresponds with 3.6, therefore we only have to deal with the first two. We factor out the
common terms and divide by |x− y|2:

(|x|+ |y|) |x| − |y|
|x− y|

φx − φy

|x− y|

Å
1 +

1

2
(φx + φy)

ã
≤ (|x|+ |y|)φx − φy

|x− y|

Å
1 +

1

2
(φx + φy)

ã
and we are done.

As a consequence we get the following Taylor expansion for |T (x) − T (y)|−(N−α). From now on, we set
αˆ︁ = N − α for briefness’ sake.

Lemma 3.4. If ∥φ∥W 1,∞(∂B1) ≪ 1 then for x, y ∈ B1 we have:

|T (x)− T (y)|−(N−α) = |x− y|−(N−α)

ÅÅ
1− αˆ︁

2
φx

ãÅ
1− αˆ︁

2
φy

ã
− αˆ︁

2
ψ(x, y) + ζ(x, y)

ã
, (3.7)

where
|ζ(x, y)| ≲ φ2

x + φ2
y + ψ2(x, y) (3.8)

and where ψ is the function defined above.
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Proof. We begin by showing that ∥φ∥W 1,∞(∂B1) ≪ 1 implies ∥ψ∥L∞(B1) ≪ 1. To do so, we need
to estimate the two terms at the right-hand side of 3.6, using later that both ∥φ∥L∞(∂B1) ≪ 1 and
∥φ′∥L∞(∂B1) ≪ 1. One could be tempted to use straightaway the Lipschitz property of φ to estimate
φx−φy

|x−y| , but we must remember that φ is Lipschitz only over ∂B1 and not over the whole of B1. Thus,

we need to make preliminary computations, for which we write x = rσ and y = sv, with r, s ∈ [0, 1] and
σ, v ∈ ∂B1. In particular:

|x− y|2 = |rσ − sv|2 = r2 + s2 − 2rsσ · v − 2rs+ 2rs = |r − s|2 + rs(2− 2σ · v)
= |r − s|2 + rs|σ − v|2

Hence, we start with the first term of 3.6:

|x|2 + |y|2

|x− y|2
=

r2 + s2

|r − s|2 + rs|σ − v|2
=

|r − s|2

|r − s|2 + rs|σ − v|2
+

2rs

|r − s|2 + rs|σ − v|2

≤ 1 +
2

|σ − v|2
.

In this way, since σ = x
|x| and v = y

|y| we find:

1

2
(|x|2 + |y|2)

Å
φx − φy

|x− y|

ã2

≤ 1

2
(φx − φy)

2
+

Ç
φx − φy

| x
|x| −

y
|y| |

å2

, (3.9)

which we can easily estimate using the Lipschitz property of φ and ∥φ∥W 1,∞(∂B1) ≪ 1. The procedure
to estimate the second term of 3.6 is similar:Å |x|+ |y|

|x− y|

ã2

=
r2 + s2 + 2rs

|r − s|2 + rs|σ − v|2
=

|r − s|2

|r − s|2 + rs|σ − v|2
+

4rs

|r − s|2 + rs|σ − v|2

≤ 1 +
4

|σ − v|2
,

so
|x|+ |y|
|x− y|

≤
Å
1 +

4

|σ − v|2

ã 1
2

≤ 1 +
2

|σ − v|
.

Again, we find:

(|x|+ |y|)
Å
1 +

1

2
(φx + φy)

ã
φx − φy

|x− y|
≤
Å
1 +

1

2
(φx + φy)

ã
(φx − φy)

+ 2

Å
1 +

1

2
(φx + φy)

ã
φx − φy

| x
|x| −

y
|y| |

and we conclude like before. Thus, we proved ∥ψ∥L∞(B1) ≪ 1.

Now, since ∥φx + φy + φxφy + ψ(x, y)∥L∞ ≪ 1, we can perform the Taylor expansion:

(1 + t)−
α“
2 = 1− αˆ︁

2
t+ o(t) = 1− αˆ︁

2
t+O(t2)

to get:

(1 + φx + φy + φxφy + ψ(x, y))−
α“
2 = 1− αˆ︁

2
φx − αˆ︁

2
φy −

αˆ︁
2
φxφy −

αˆ︁
2
ψ(x, y) +O(φ2

x + φ2
y + ψ(x, y)2).
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Adding and subtracting α2”
4 φxφy first and estimating φxφy ≲ φ2

x + φ2
y, we finally get:

(1 + φx + φy + φxφy + ψ(x, y))−
α“
2 =

Å
1− αˆ︁

2
φx

ãÅ
1− αˆ︁

2
φy

ã
− αˆ︁

2
ψ(x, y) + ζ(x, y)

with |ζ(x, y)| ≲ φ2
x + φ2

y + ψ2(x, y).

After gathering some useful preliminaries in the previous lemmas, we can focus on the key linearization
estimates which will lead us to prove the rigidity result we are interested in. There a lot of computations
in the proofs of the following two lemmas and we make heavy use of majorization techniques to derive
the estimates we need. When we write ≲ε we stress the fact that the implicit constant C = C(ε).

Lemma 3.5. Let E be a nearly spherical set with ∥φ∥W 1,∞(∂B1) ≪ 1. Then, for every α ∈ (0, 2) and
ε > 0 there holds: ⃓⃓⃓⃓

Iα(E)− Iα

Å
(1− αˆ︁

2
φ)g

ã⃓⃓⃓⃓
≲ε [φ]

2

H
2−α
2 (∂B1)

+ [φ]2
H

1
2
+ε(∂B1)

(3.10)

where
(︁
1− αˆ︁

2φ
)︁
g is intended as a measure on B1 and αˆ︁ = N − α.

Proof. We write the alternative expression for Iα(E) we deduced in 3.1 and then we use Taylor expansion
3.7. The first of the three resulting terms at the numerator and −Iα

(︁
(1− αˆ︁

2φ)g
)︁
erase each other, so to

finish the proof it is enough showing that:⃓⃓⃓⃓ˆ
B1×B1

ψ(x, y)

|x− y|N−α
dgxdgy

⃓⃓⃓⃓
+

⃓⃓⃓⃓ˆ
B1×B1

ζ(x, y)

|x− y|N−α
dgxdgy

⃓⃓⃓⃓
≲ε [φ]

2

H
2−α
2 (∂B1)

+ [φ]2
H

1
2
+ε(∂B1)

(3.11)

The second term is easier to handle: applying 3.8 it is enough to provide an estimate for φ2
x and ψ2(x, y).

By 3.4 we have g(x) ≤ µB1(x), so we get:

ˆ
B1×B1

φ2
x

|x− y|N−α
dgxdgy ≲

ˆ
B1×B1

φ2
x

dµB1(x)dµB1(y)

|x− y|N−α

To evaluate the last integral, we use Fubini Theorem, we recall that uB1
(x) = Iα(B1) for all x ∈ B1 and

we pass to polar coordinates exploiting that µB1
is radial and φ is 0- homogeneous:

ˆ
B1×B1

φ2

Å
x

|x|

ã
dµB1(x)dµB1(y)

|x− y|N−α
=

ˆ
B1

φ2

Å
x

|x|

ãˆ
B1

dµB1(y)

|x− y|N−α
dµB1

(x)

=
Iα(B1)

HN−1(∂B1)

ˆ
∂B1

dτ

ˆ
∂B1

φ2(σ)

ˆ 1

0

rN−1µB1(r) dr dσ

=
Iα(B1)

HN−1(∂B1)

ˆ
∂B1

φ2(σ) dσ

ˆ
∂B1

ˆ 1

0

rN−1µB1(r) dr dτ

=
Iα(B1)

HN−1(∂B1)

ˆ
B1

dµ(x)

ˆ
∂B1

φ2

=
Iα(B1)

HN−1(∂B1)

ˆ
∂B1

φ2.

(3.12)

Thus, by 3.3 we deduce:

ˆ
B1×B1

φ2
x

dµB1
(x)dµB1

(y)

|x− y|N−α
≤ Iα(B1)

HN−1(∂B1)

ˆ
∂B1

φ2 ≲ [φ]2
H

2−α
2 (∂B1)

. (3.13)
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Now we need to estimate the third term from 3.8: by the proof of Lemma 3.4, ∥φ∥W 1,∞(∂B1) ≪ 1 implies
∥ψ∥L∞(B1) ≪ 1. Therefore, ψ2(x, y) ≪ ψ(x, y) and we can majorize the corresponding term with the
first member at the left-hand side of 3.11. In particular, as we have not estimated it yet, we are left with
the proof of: ⃓⃓⃓⃓ˆ

B1×B1

ψ(x, y)

|x− y|N−α
dgxdgy

⃓⃓⃓⃓
≲ε [φ]

2

H
2−α
2 (∂B1)

+ [φ]2
H

1
2
+ε(∂B1)

.

We appeal to 3.6 and we treat separately the two terms. We start by the second, which in turn counts
two cases since there is a sum 1 + 1

2 (φx + φy). The first one is harmless, as by symmetry in x and y we
get: ˆ

B1×B1

(φx − φy)
|x|+ |y|

|x− y|N−α+1
dgxdgy = 0,

so it does not contribute. About the second case of the second term, Young inequality reiterated many
times yields:

(|x|+ |y|)|φx + φy|
φx − φy

|x− y|
≲
(︁
|x|2 + |y|2

)︁Åφx − φy

|x− y|

ã2

+ φ2
x + φ2

y.

We get rid of φ2
x + φ2

y repeating the same computations of 3.13. Instead, what remains is incorporated
in the estimate of the first term of 3.6 we are about to figure out, namely:

A :=

ˆ
B1×B1

(︁
|x|2 + |y|2

)︁Åφx − φy

|x− y|

ã2 dgxdgy
|x− y|N−α

≲ε [φ]
2

H
2−α
2 (∂B1)

+ [φ]2
H

1
2
+ε(∂B1)

.

By 3.9 and 3.4 we get:

A ≲
ˆ
B1×B1

[︄
(φx − φy)

2
+

Ç
φx − φy

| x
|x| −

y
|y| |

å2
]︄
dµB1

(x)dµB1
(y)

|x− y|N−α
.

The term (φx − φy)
2 is estimated by Young Inequality and then we argue again like 3.13.

Thus, we further reduced the proof of 3.10 to the trickiest part:

B :=

ˆ
B1×B1

Ç
φx − φy

| x
|x| −

y
|y| |

å2
dµB1(x)dµB1(y)

|x− y|N−α
≲ε [φ]

2

H
2−α
2 (∂B1)

+ [φ]2
H

1
2
+ε(∂B1)

(3.14)

To estimate it, we recall that µB1
(x) ≲ (1−|x|)α

2 and we switch to polar coordinates setting again x = rσ
and y = sv, with r, s ∈ R and σ, v ∈ ∂B1. In this way we get:

B ≲
ˆ
∂B1×∂B1

Å
ϕ(σ)− ϕ(v)

|σ − v|

ã2
[︄ˆ 1

0

ˆ 1

0

rN−1sN−1

|1− r|α2 |1− s|α2
drds

(|r − s|2 + rs|σ − v|2)
N−α

2

]︄
dσdv

=

ˆ
∂B1×∂B1

Å
ϕ(σ)− ϕ(v)

|σ − v|

ã2

F (|σ − v|)dσdv,

where

F (θ) =

ˆ 1

0

ˆ 1

0

rN−1sN−1

|1− r|α2 |1− s|α2
drds

(|r − s|2 + rsθ2)
N−α

2

.

Now, we fix ε > 0 and we claim that for θ ∈ (0, 2):

F (θ) ≲ε
1

θN−α−1
+

1

θN−2+2ε
. (3.15)
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As the function F is decreasing in θ, it is enough to prove the claim for θ ≪ 1. We split the integral in
two and we separately estimate each term, starting with:

C :=

ˆ 1
2

0

ˆ 1

0

rN−1sN−1

|1− r|α2 |1− s|α2
drds

(|r − s|2 + rsθ2)
N−α

2

.

Since r ∈ [0, 1/2], we have that |1− r|−α
2 is uniformly bounded. The, we use the facts that if s ∈ [0, 3/4]

then |1 − s|−α
2 is uniformly bounded too and, if r ∈ [0, 1/2] and s ∈ [3/4, 1] then |r − s| ∈ [1/4, 1], so

(|r − s|2 + rsθ2)−
N−α

2 is uniformly bounded too. Putting everything together we find:

C ≲
ˆ 1

2

0

rN−1

[︄ˆ 1

0

1

|1− s|α2
ds

(|r − s|2 + rsθ2)
N−α

2

]︄
dr

≲
ˆ 1

2

0

rN−1

[︄ˆ 3
4

0

ds

(|r − s|2 + rsθ2)
N−α

2

]︄
dr +

ˆ 1
2

0

ñˆ 1

3
4

ds

|1− s|α2

ô
dr

≲
ˆ 1

2

0

rN−1

[︄ˆ 3
4

0

ds

(|r − s|2 + rsθ2)
N−α

2

]︄
dr + 1,

as the second term before the last inequality is integrable. Now, we first change variables s = rt and the
we split again the integral:

ˆ 3
4

0

ds

(|r − s|2 + rsθ2)
N−α

2

= r1−N+α

ˆ 3
4r

0

dt

(|1− t|2 + tθ2)
N−α

2

≲ r1−N+α

ñˆ 1
2

0

dt

t
N−α

2

+

ˆ 2

1
2

dt

(|1− t|+ θ)N−α
+

ˆ 3
4r

2

dt

tN−α

ô
≲ r1−N+α

ï
1 +

1

θN−α−1
+ rN−α−1

ò
,

where we majorized each of the three terms in different ways. Therefore, we conclude that:

≲ 1 +

ˆ 1
2

0

rα
ï
1 +

1

θN−α−1
+ rN−α−1

ò
dr ≲ 1 +

1

θN−α−1
. (3.16)

It remains to majorize the integral between 1/2 and 1:

D :=

ˆ 1

1
2

ˆ 1

0

rN−1sN−1

|1− r|α2 |1− s|α2
drds

(|r − s|2 + rsθ2)
N−α

2

.

Again, we split once more: if r ∈ [1/2, 1] and s ∈ [0, 1/4] the both (|r − s|2 + rsθ)−
N−α

2 and |1 − s|−α
2

are uniformly bounded. In addition, if r ≥ 1/2 and s ≥ 1/4 then θ2rs ≳ θ2, so we get:

D ≲
ˆ 1

1
2

ˆ 1
4

0

1

|1− r|α2
drds+

ˆ 1

1
2

ˆ 1

1
4

1

|1− r|α2 |1− s|α2
drds

(|r − s|2 + θ2)
N−α

2

≲ 1 +

ˆ 1
2

0

ˆ 1

−1

1

t
α
2 |t− w|α2

dtdw

(w2 + θ2)
N−α

2

.
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where in the last line we performed the change of variables r = 1 − t and s = 1 − t+ w. We now prove
that for every w ∈ (−1, 1),

ˆ 1
2

0

dt

t
α
2 |t− w|α2

≲ |w|1−α + 1 + χα=1| log |w||. (3.17)

The left-hand side of 3.17 increases when we replace w by |w|, so it is enough to prove it for w > 0. We
split once again and we find:

ˆ 1
2

0

dt

t
α
2 |t− w|α2

≤
ˆ w

2

0

dt

t
α
2 w

α
2
+

ˆ 2w

w
2

dt

w
α
2 |t− w|α2

+

ˆ 2

2w

dt

tα
≲ w1−α + 1 + χα=1| logw|,

where each time we majorized in the right way exploiting the choice of the integration intervals. Thus,
plugging 3.17 into the last expression we obtained, we find:

ˆ 1
2

0

ˆ 1

−1

1

t
α
2 |t− w|α2

dtdw

(w2 + θ2)
N−α

2

≲
ˆ 1

−1

w1−α

(w2 + θ2)
N−α

2

+
1

(w2 + θ2)
N−α

2

+
| logw|

(w2 + θ2)
N−α

2

dw

≲ε
1

θN−α−1
+

1

θN−2+2ε
.

We used ε for the first time here to determine an uniform majorization for the integral with the logarithmic
term. The choice of the exponent N − 2 + 2ε will be clear in the conclusion of the proof. Hence, we
finally showed:

D ≲ε
1

θN−α−1
+

1

θN−2+2ε
,

which, together with 3.16, concludes the proof of 3.15. At this point, we are finally ready to conclude
the estimate of B together with the proof of the Lemma. By applying 3.15 we find:

B ≲ε

ˆ
∂B1×∂B1

(ϕ(σ)− ϕ(v))
2

|σ − v|N−1+(2−α)
dσ dv +

ˆ
∂B1×∂B1

(ϕ(σ)− ϕ(v))
2

|σ − v|N−1+(1+2ε)
dσ dv

= [φ]2
H

2−α
2 (∂B1)

+ [φ]2
H

1
2
+ε(∂B1)

,

which is 3.14.

We may now conclude the proof of the stability inequality for nearly spherical set. In the next lemma,
we exploit many times the fact that Iα is a positive bilinear operator over the space of measures.

Lemma 3.6. Let E be a nearly spherical set with ∥φ∥W 1,∞(∂B1) ≪ 1. Then, for every α ∈ (0, 2) and
ε > 0 there holds:

Iα(B1)− Iα(E) ≲ε [φ]
2

H
α
2 (∂B1)

+ [φ]2
H

2−α
2 (∂B1)

+ [φ]2
H

1
2
+ε(∂B1)

. (3.18)

As a consequence we have:
Iα(B1)− Iα(E) ≲ P (E)− P (B1) (3.19)

Proof. We denote uB1 the potential associated to µB1 . Since Iα is a bilinear operator over the space of
measures, we can write Iα(g) = Iα(g − µB1

) + 2Iα(g − µB1
, µB1

) + Iα(µB1
). Therefore:

Iα(B1)− Iα(E) = Iα(µB1
)− Iα(E) = Iα(µB1

)− Iα(g)− Iα(g)− Iα(E)

= −Iα(g − µB1
)− 2Iα(g − µB1

, µB1
) + Iα(g)− Iα(E)
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Since µB1 is optimal for Iα(B1), by Proposition 1.12 its potential uB1 is constant over B1. Thus, using
the fact that

´
B1
µB1 =

´
B1
g = 1, we get:

Iα(g − µB1 , µB1) =

ˆ
B1

uB1(g − µB1) = uB1(0)

ˆ
B1

(g − µB) = 0,

hence:

Iα(B)− Iα(E) + Iα(g − µB1
) = Iα(g)− Iα(E)

= Iα(g)− Iα

Å
(1− αˆ︁

2
φ)g

ã
+ Iα

Å
(1− αˆ︁

2
φ)g

ã
− Iα(E).

By bilinearity, the first two terms write as −αˆ︁2

2 Iα(φg) + αˆ︁Iα(g, φg) ≤ αˆ︁Iα(g, φg), whereas the other two
can be estimated by 3.10. Putting everything together we find:

Iα(B1)− Iα(E) + Iα(g − µB1) ≲ε Iα(g, φg) + [φ]2
H

2−α
2 (∂B1)

+ [φ]2
H

1
2
+ε(∂B1)

.

We further decompose the term Iα(g, φg) as follows:

Iα(g, φg) = Iα(µB1 , φg) + Iα(g − µB1 , φg)

= Iα(µB1 , φµB1) + Iα(µB1 , φ(g − µB1)) + Iα(g − µB1 , φg)
.

Since µB1 and φ is 0-homogeneous, we can argue as in 3.12 and in 3.13 (with φx instead of φ2
x) and we

infer:

Iα(µB1
, φµB1

) = C

ˆ
∂B1

φ ≲
ˆ
∂B1

φ2 ≲ [φ]2
H

2−α
2 (∂B1)

.

In the first inequality we used 3.2 and in the second one estimate 3.3 as usual. Therefore, we currently
have:

Iα(B1)−Iα(E)+Iα(g−µB1) ≲ Iα(µB1 , φ(g−µB1))+Iα(g−µB1 , φg)+[φ]2
H

2−α
2 (∂B1)

+[φ]2
H

1
2
+ε(∂B1)

(3.20)

We start by estimating Iα (g − µB1 , φg). By Cauchy-Schwarz Inequality in L2 first and then again by
3.12 and 3.13, we get:

Iα(φg) ≤
Åˆ

B1×B1

φ2
xgxgy

|x− y|N−α

ã 1
2
Çˆ

B1×B1

φ2
ygxgy

|x− y|N−α

å 1
2

≲
ˆ
∂B1

φ2 ≲ [φ]2
H

α
2 (∂B1)

.

Notice that this time we used [φ]2
H

α
2 (∂B1)

instead of [φ]2
H

2−α
2 (∂B1)

. Thus, by Cauchy-Schwarz inequality

for Iα we find:

Iα (g − µB1
, φg) ≤ I

1
2
α (g − µB1

) I
1
2
α (φg) ≲ I

1
2
α (g − µB1

) [φ]
H

α
2 (∂B1)

. (3.21)

We now turn to Iα (µB1
, φ (g − µB1

)), using that uB1
is constant on B1 to write:

Iα (µB , φ (g − µB)) =

ˆ
B1

ˆ
B1

dµB1(y)

|x− y|N−α
φ (g − µB1

) dx =

ˆ
B1

uB1
(y)φ (g − µB1

) dx

= uB1
(0)

ˆ
B1

φ (g − µB1
) .
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Let ρ be a smooth, positive cut-off function with ρ = 1 on B1 and ρ = 0 on Bc
2. We set Φ = φρ so that,

by Cauchy-Schwarz and relation 1.10 we infer:
ˆ
B1

φ (g − µB1
) =

ˆ
RN

Φ (g − µB1
) ≤ [Φ]

H
α
2 (RN )

[g − µB1
]
H−α

2 (RN )

≲ [Φ]
H

α
2 (RN )

I
1
2
α (g − µB1

) .

Thus, in order to recover an estimate similar to 3.21, we need to show that:

[Φ]2
H

α
2 (RN ) ≲ [φ]2

H
α
2 (∂B1)

+

ˆ
∂B1

φ2 ≲ [φ]2
H

α
2 (∂B1)

(3.22)

The second inequality is trivial by now, so we just have to prove the first one. By Young Inequality and
the facts that ρ is bounded and Lipschitz, for every x, y ∈ RN we have:

(Φx − Φy)
2
= (φxρx − φyρy)

2
= ((φx − φy)ρx − φy(ρx − ρy))

2 ≲ (φx − φy)
2
ρ2x + φ2

y (ρx − ρy)
2

≲ (φx − φy)
2
+ φ2

y(x− y)2.

In this way, we get from 1.5:

[Φ]2
H

α
2 (RN ) =

ˆ
RN×RN

(Φx − Φy)
2

|x− y|N+α
=

ˆ
B3×B3

(Φx − Φy)
2

|x− y|N+α
+ 2

ˆ
B3×Bc

3

Φ2
x

|x− y|N+α

As usual, we deal with the two terms at the right-hand side separately and we start with the second one.
Since Φx = 0 over B3 \B2 and Φ2(σ) = φ2(σ) for all σ ∈ ∂B1, we get by Fubini:

ˆ
B3×Bc

3

Φ2
x

|x− y|N+α
dx dy =

ˆ
B2

Φ2
x

ˆ
Bc

2

1

|x− y|N+α
dy dx ≤

ˆ
B2

Φ2
x

ˆ
Bc

1

1

|z|N+α
dz dx ≲

ˆ
B2

Φ2
x

=

ˆ
∂B1

Φ2(σ)

ˆ 2

0

rN−1dr dσ ≲
ˆ
∂B1

φ2,

so we are done. Instead, for the first term we apply the estimate on (Φx − Φy)
2 and we find:

ˆ
B2×B2

(Φx − Φy)
2

|x− y|N+α
≲
ˆ
B2×B2

(φx − φy)
2

|x− y|N+α
+

ˆ
B2×B2

φ2
y

|x− y|N+α−2
.

Once again, we consider separately the two terms. Concerning the second one:
ˆ
B2×B2

φ2
y

dx dy

|x− y|N+α−2
=

ˆ
B2

φ2
y

ˆ
B2

dx

|x− y|N+α−2
dy ≤

ˆ
B2

φ2
y

ˆ
B4

1

|z|N+α−2
dz dy

≲
ˆ
B2

φ2
y ≲

ˆ
∂B1

φ2

It remains to estimate the first term. First, we switch to polar coordinates:

ˆ
B2×B2

(φx − φy)
2

|x− y|N+α
=

ˆ
∂B1×∂B1

(φ(σ)− φ(v))
2

[︄ˆ 2

0

ˆ 2

0

rN−1sN−1 dr ds

(|r − s|2 + rs|σ − v|2)
N+α

2

]︄
dσdv.

Arguing in a similar way as we did for 3.15 in Lemma 3.5, we get:

ˆ 2

0

ˆ 2

0

rN−1sN−1 dr ds

(|r − s|2 + rs|σ − v|2)
N+α

2

≤ 1

|σ − v|N−1+α
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so we can recover the H
α
2 (∂B1) norm of φ concluding the proof of 3.22.

Therefore, coming back to what we were doing, we find:

Iα (µB1
, φ (g − µB1

)) ≲ I
1
2
α (g − µB1

) [φ]
H

α
2 (∂B1)

. (3.23)

Plugging 3.21 and 3.23 in 3.20, we deduce:

Iα(B1)− Iα(E) + Iα(g − µB1
) ≲ I

1
2
α (g − µB1

) [φ]
H

α
2 (∂B1)

+ [φ]2
H

2−α
2 (∂B1)

+ [φ]2
H

1
2
+ε(∂B1)

Applying the general version of Young Inequality ab ≤ a2

2δ + δb2

2 with the correct δ, the third addend of
the left-hand side is erased and we conclude the proof of formula 3.18.

It remains to show 3.19. Since α ∈ (0, 2) and ε is small, we have that α
2 ,

2−α
α and 1

2 + ε are all strictly
less than 1. Therefore, by Proposition 1.6 we can estimate:

Iα(B1)− Iα(E) ≲
ˆ
∂B1

|∇φ|2.

Hence, as ∥φ∥W 1,∞(∂B1) ≪ 1, we appeal to the theory developed by Fuglede in [9] and we get:

ˆ
∂B1

|∇φ|2 ≲ P (E)− P (B1),

finishing the proof of 3.19. Notice that this is the only place where we use that the barycenter of E is in
x = 0.

Now, we have at our disposal all the necessary tools to state and prove minimality of the ball B1 among
the class of nearly spherical sets.

Theorem 3.7. Let N ≥ 2 and α ∈ (0, 2). There exists a charge Q = Q(N,α, γ) > 0 and a parameter
ε = ε(N,α, γ) > 0 such that, for every nearly spherical set E with ∥φ∥W 1,∞(∂B1) ≤ ε and every Q ≤ Q,
we have:

Fα,Q(B1) ≤ Fα,Q(E).

Moreover, equality is attained only if E = B1.

Proof. Let E be a nearly spherical set with ∥φ∥W 1,∞(∂B1) ≪ 1. Assuming that Fα,Q(E) ≤ Fα,Q(B1),
rearranging the terms of the functional and applying 3.19 we find:

P (E)− P (B1) ≤ Q2(Iα(B1)− Iα(E)) ≲ Q2(P (E)− P (B1))

This implies that either Q2 ≳ 1 or P (E)−P (B1) ≤ 0. In the first case we reach a contradiction with the
fact that Q2 ≪ 1. Thus, since P (E)− P (B1) ≥ 0 for every E nearly spherical, we must necessarily have
P (E) = P (B1). Thanks to Isoperimetric Inequality, we finally conclude E = B1, proving minimality of
the ball for the functional Fα,Q in the class of nearly spherical sets sufficiently close to the ball itself in
the C1,γ topology.
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