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Introduction

Consider a drop of a conductive liquid in the three dimensional space endowed with a positive charge
@ > 0, in absence of gravity and at rest. Under such conditions, only two kinds of forces affect the
configurations of the system by competing one against another. Surface tension is determined by intrinsic
physical properties of the fluid: it acts locally on the drop’s surface and it induces cohesive effects.
Specifically, it prevents the drop from crumbling and it is manifested by the tendency of the liquid to
shrink into the minimum surface area possible. Conversely, the positive electric charge provokes repulsive
forces of Coulombic type between the particles composing the droplet. Its action is strongly nonlocal
and it often dominates surface tension, deforming and breaking the shape of the liquid. Both in their
stable and unstable regimes, such charged droplets significantly contribute to many applications in the
experimental field, ranging from electrowetting in digital micro-fluids to optics and electronic displays.

A question which naturally arises is whether there exists or not any stable configuration (in a sense to be
specified) of the system under the influence of these two forces and, in the event, how such structure may
be characterized. In particular, from a mathematical standpoint, we are interested in building a model
to analyse with the tools of Calculus of Variations the scenario we described above. We provide first a
heuristic construction conveying the basic ideas (pioneered by Lord Rayleigh in [24]): to do so we keep
sticking to the physically relevant three dimensional case just for the the time being. Calling E C R3 the
set corresponding to our drop, De Giorgi’s perimeter P(F) is the optimal notion employable with the
purpose of minimizing the surface area, as it often happens in many variational problems. In addition,
the fact that it is defined locally on the drop suits perfectly the features of surface tension. On the other
hand, we represent the configuration assumed by the charge with a probability measure u supported on
the set E. Its Coulombic interaction takes into account of all the possible couples of units of charge (hence

it is nonlocal) and it writes as:
@[, )
RN xRN T — Y|
Since the charge is free to position itself within the drop according to its repulsive nature, it is reasonable
to assume that the optimal configuration it reaches minimizes its Coulombic energy. We do not know yet
whether there can be proved existence of a minimum or not, hence we just pass the previous expression
to the infimum and find the Riesz interaction energy of the set E:

) dp(x)du(y)
2 = Q? f —_
CL(E) =@ / 4]

The general energy of the whole system is easily defined by considering both the surface tension and the
repulsive interaction together:

Fag(E):= P(E)+ Q*L:(E).

As the liquid drop is free to move in R3 simultaneously maintaining its volume m > 0, it is natural to
optimize in the shape of the drop E, in an attempt to find configurations of minimal energy. Thus, the



following problem is determined:

i E).
min F2.q(F)

After presenting the model for charged drops in R3, we are ready to examine a more general version
of the problem, with dimension not necessarily N = 3 and whose nonlocal interaction comprehends the
Coulombic one just as a particular case. For N > 2 and « € (0, N), we define consequently:

, du(z)d
2= ot [ HORW and Foo(B) = P+ QLL(E),

Therefore, as the title states, the aim of the dissertation is to study the variational problem:

hin Fo.Q(E).

The constant m > 0 denotes a fixed volume for the set F, and we always assume without loss of generality
m = wy. Our exposition deals with multiple classical topics of Calculus of Variations: definition and
well-posedness of the problem, existence and regularity of minimizers, their stability under a specific class
of perturbations. More precisely, the thesis is organized as follows.

In the first chapter the variational problem is introduced in a rigorous way, outlining all the notions
we need to carry out our analysis in the next ones. We begin by covering some basic concepts from
potential theory, among which the two most important are the definitions of Riesz energy of a set and of
potential function of a measure, presented together with their essential properties. Next, a few remarks
on fractional Laplacians and Sobolev spaces are provided as well. Later on, we resume the definition of
the variational problem we just sketched above, immediately stating the only significant construction of
the chapter, which leads us to infer ill-posedness of the minimum problem when o > 1. Such outcome
forces us to make some delicate considerations about the class of sets which we are allowed to work over
and where the functional F, ¢ is well-defined, that eventually result in properly formulating the problem
we want to study. Then, we conclude by defining generalized sets and measures, thanks to which we can
give another different formulation of the variational problem by broadening the domain of the energy
functional.

As it turns out, generalized sets play a key role when trying to prove existence of minimizers for 7, g
and the first half of the second chapter is devoted to tackling this issue. We kickoff by modifying
once again the functional, initially adding a A-relaxation to get rid of the volume constraint and then
introducing an e-regularization for the Riesz energy Z,. These adjustments make the problem definitely
less tough to handle and, as a consequence, they let us prove existence of generalized minimizers for
the new functional F, g A, by applying a relatively standard concentration-compactness argument to a
minimizing sequence. At this point, the idea is to derive some properties of such generalized minimizers,
with the purpose of recovering solutions to the variational problem for F, o we started with. Thus,
we show a first minimality property enjoyed by generalized minimizers, thanks to which we are able to
deduce a few of their first good features and then existence of solutions to the problem:

min  F,.q(E).

|Bl=wN

Next, we are ready to focus on regularity of minimizers: our aim consists in proving C%? regularity
of their boundaries for some 8 € (0, %) and to do so we are obliged to separately consider the cases
a < 1and @« =1. When « € (0,1) the conclusion is straightforward, as we exploit once more the first

almost minimality property we found before in order to appeal to classical regularity theory for almost
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minimizers of the perimeter. Moreover, with the help of the Quantitative Isoperimetric Inequality, we
understand that for @ small enough not only any generalized minimizer is actually a classical one, but
also it converges in C' with v < 8 to the unit ball By as Q — 0. Obtaining the same conclusions
for « = 1 is a bit more tricky, as, unfortunately, we are not able to argue with the same strategy.
Nevertheless, with the help of a somehow similar procedure, we still manage to show that generalized
minimizers of Fj g enjoy Reifenberg flatness, a weaker yet extremely helpful for our goals notion of
regularity. Later on, a second almost minimality property for minimizers of F; ¢ is derived: very similar

to the first one, their only structural difference is the presence of an L™+ norm, which needs to be
estimated in order to draw the same outcomes of the case o < 1. This is probably the most convoluted
result of the dissertation and it requires many tools from elliptic PDE theory. The main ingredient is
Alt-Caffarelli-Friedman monotonicity formula indeed, but we stress anyway the necessity of employing
Reifenberg flatness. Finally, we conclude the chapter presenting an additional non-existence result in
dimension N = 2 and for large enough charges Q.

The third and last chapter of the exposition begins by giving the definition of nearly spherical sets, namely
all the sets E with |E| = wy and simultaneously close to the unit ball By in the C17 topology. Then, we
prove minimality of the ball for the functional F, o among nearly spherical sets sufficiently close to the
ball, in the slightly more general case a € (0,2). Coming back to the situation we studied before with
a € (0,1], we highlight that classical minimizers of F, ¢ are nearly spherical if the charge @ is small
enough. Thus, the last result allows us to infer both stability of the ball under small C!»¥ perturbations
and its minimality for the functional F, g. In particular, the goals of proving existence, regularity and
to characterize minimizers of F, ¢ are all achieved and we can wrap up the dissertation.

The main references we relied upon are the two articles [12] and [15] by Michael Goldman, Matteo Novaga
and Berardo Ruffini, where the variational problem was introduced and studied first. We highlight as
well the importance of Landkov’s book [16], source of almost all the useful results on potential theory.
Of course, many other references are employed and quoted throughout the thesis and their exhaustive
list can be found in the corresponding final section of the dissertation.






Chapter 1

The variational problem

The purpose of the first chapter is to set the stage for what will follow later on in the dissertation. The
variational problem we want to study is introduced, as well as some helpful tools we will employ to tackle
it. In the first section we present all the basic preliminary results which allow us to handle the matter.
In the second one instead the problem is defined and we provide an ill-posedness result in the case o > 1.
Finally, in the last section we discuss the right class of sets where the functional is well defined and we
introduce the notions of generalized sets and measures.

1.1 Notation and preliminary results

The first section is entirely devoted to collecting all of the helpful definitions and results which we are going
to apply throughout the thesis. We deal mostly with basic topics from potential theory and functional
analysis, especially focusing on Riesz energy and potentials. Before beginning, please notice that the
current section is far from giving an exhaustive insight into these subjects: we decided only to report
what will be strictly necessary later, avoiding the majority of the proofs. For a complete account on these
topics, we suggest to consult either Landkov’s monograph on potential theory [16] or the book [17] by
Lieb and Loss.

First of all, we set some notation. In the followings, we work in the space RY with N > 2. For any
measurable set £ C RY and open set 2 C RY, we write |E| and P(E,) to denote respectively the
Lebesgue measure of E and its relative perimeter in . When Q = RY we just write P(E). For x € RV
and r > 0, we denote by B,(x) the open ball of radius r centered in z. We drop the dependence on x
when the center is x = 0. In particular, B; denotes the unit ball and we set its Lebesgue measure to be
|B1| = wn. For k € [0, N], we denote by H* the k-dimensional Hausdorff measure. Concerning measures,
we write M(Q) and M1 (Q) to denote respectively the spaces of Radon measures and positive Radon
measures supported on €2, dropping the dependence on € in the case Q = RY. Given any set A C RV,
the expression x4 indicates its characteristic function. Finally, for any function f, we denote by f* its
symmetric decreasing rearrangement according to [17, Section 3.3].

In addition, we adopt the following notation to compare quantities: we write A < B to indicate that
there exists a constant C' > 0 (typically depending on the dimension N and a parameter «) such that
A < CB. In case, we will specify when C depends on other quantities and we write A =~ B when
A < B < A. Conversely, we use the notation A < B, when there exists a small universal constant € > 0
(again, usually depending on N and « or possibly other quantities) such that A < eB.
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A little disclaimer before beginning: the majority of definitions and results reported here are valid more
in general for signed Radon measures. Anyway, we will just need positive measures for the purposes of
the dissertation, therefore we present the theory restricting ourselves to them.

Definition 1.1 (Interaction energy). Let N > 2 and o € (0, N). Given p and v positive Radon measures,
we define the interaction energy between p and v as:

dp(z)dv(y)
Iau,uz/ ——————= € [0, +00].
(k) RN xRN [T —y[N e [ |
When p = v, we simply write Io(p) := Io(it, pt). In case the measures are absolutely continuous with

respect to the Lebesgue measure, so that u = fHY and v = gH" for some functions f and g, we denote
Ia(f7 g) = Ia(ﬂa V)-

An immediate consequence of the definition is that the functional I, (-,-) is a positive, bilinear operator
on the product space MT x M™ and that I,(-) is a quadratic form. In particular, Cauchy-Schwarz
inequality is satisfied:

Lo(i,v) < Ta(p)* La(v).

Even though we do not need it, it can be shown that I,,(-,-) is a positive, bilinear operator also on the
product space M x M. Hence, in particular, I,(u) > 0 regardless of the sign of the measure p and
I,(p) = 0 if and only if g = 0. On the other hand, the next result [16, Formula 1.4.4] is true only for
positive measures: we endow the space M™T with the weak topology given by duality with the space of
continuous functions with compact support C.(RY).

Proposition 1.2. The functional I, is lower semicontinuous with respect to weak convergence of mea-

sures, namely if u, — p and v, — v, we have that:

I (p,v) < liminf I, (g, vy).

n—-+oo
Then, it is rather natural to define the Riesz potential energy of a Borel set.
Definition 1.3 (Riesz energy). Let N > 2 and a € (0, N), for every Borel set A we define the Riesz

potential energy of A as:

To(A) = inf {Io(p) : pp € MT(A), p(A) =1} (1.1)

From the definition, we immediately infer monotonicity of Z,, namely A C B implies Z,(A4) > Z,(B).
In addition, since I,, is a quadratic form over M, we have in particular that Q%I,(u) = I,(Qu) for any
measure y. Passing the expression to the infimum over all measures p € M™T(A) such that pu(A) = 1
yields immediately:

QQI(X(A) = inf {Ia(/l) THE M+7 /’L(A) = Q} : (12)

In particular, this is true because there is a one-to-one correspondence between finite measures supported
on A with total mass 1 and those with total mass @). The next fact in slightly trickier to prove instead.

Proposition 1.4. Let N > 2 and a € (0, N), for every A > 0 there holds:
To(MA) = A~ N=9)T (A). (1.3)

Proof. We define the map 7 : RY — R¥ such that T'(x) = Az, so in this way T'(4) = MA. T is clearly
a diffeomorphism, so there exists a one-to-one correspondence between probability measures supported
on A and those supported on AA given by the pushforward of measures T%. In particular, for every p
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competitor for Z,(A), the measure v = Ty is a competitor for Z, (AA). Therefore, by simple properties
of pushforward:

T.(AA) = inf dv(@)dvly) / AT () dTyp(y)
RN xRN

vAA)=1 Jpn gy [T — YN Tup(rA)=1 |z — y| V-
— g / dp(e)duly) 1 . / dp(z) du(y)
u(A)=1 Jrn ey T(z) =T (YN AN=@ pua)=1 Jpnyrn |z —y[N =
= A\"N=9T (A).

From [16, p.131] we get the following important result.

Proposition 1.5. If A is a compact set, the infimum in is achieved, namely there exists a probability
measure pu € MT(A) such that Z,(A) = I,(u). Moreover, the minimizing measure p is unique.

Before going on exploring other properties of Riesz energy, we need to make a small drift in the world
of fractional Laplacians and of fractional Sobolev spaces. Again, we refrain from being precise and we
restrict ourselves only to the essential for the purposes of the dissertation. The main sources we used are
the guide [5] by Di Nezza, Palatucci and Valdinoci, and Lieb and Loss’ book [17].

For the Fourier transform, we use the convention:
u(€) :/ e 2Ty (1) da.
RN
In this way, exploiting |5, Proposition 3.4], we can define the homogeneous H*® semi-norm for s € RY as:
2 2517~(2
(v, = [ €0,
RN

writing [u] g+ instead of [u] fr: g~y when there is no risk of confusion. For s € R, we define the s-fractional
Laplacian by its Fourier transform:

(—A)u = |¢[*a,
so that, by Parseval identity, it immediately follows:

[u]Fo mvy = /RN u(—A) u. (1.4)

For s € (0,1), by [5, Proposition 3.3] there exists a constant C'(N,s) > 0 such that we can give the
explicit expression for the s-fractional Laplacian:

u(z) — u(y)
—A)’u=C(N,s dy,
( ) ( ? )/]RN |x_y|N+25 y
where the integral is intended in the principal value sense. Applying it to [1.4] we have the alternative

formula: (u(2) ( ))2
Ul =/ ) I dady. 1.5
[ulfy (RN) BNy |7 — y| VT2 Y (1.5)

In Chapter [3] we will also use fractional Sobolev spaces defined on the unit sphere 0B;. For these, we
take [1.5| as a starting point and we define for ¢ : 9B; — R and s € (0, 1):

2 _ (p(0) = p(v))?
[SD]HS(OBI) - /('BB1 X OBq |U - ’U|J\771+25 dodv. (16)

Moreover, the following result holds.

11



Proposition 1.6. Denoting p = % fa& , we have for 0 < s < ¢’ < 1:

| 0= S sy <29 ony S [ V0P, (1.7)
831 aBl

where we denote by V¢ the tangential gradient when there is no risk of confusion and where the implicit
constants depend on N, s and s”.

Proof. Since s’ > s, the second inequality is easy once realized that for o,v € 9B; we have:

1 _ ‘O—_,U|2(S/_S) < 22(3’—5) 1
|0-_,U|N—1+2s - IO-_U|N—1+25/ — |0._,U|N—1+23’

and we can conclude by [I.6] The first inequality is provided by Cauchy-Schwarz and a computation:

[ omtm b [ ([, o1 swya) o
< PQ(lBl)/aBl (/831 Wcﬂv) (/831 |g_U|N—1+23> do

. 2
S sy,
8B1 ><8B1 |0 - Ul s

Finally, the third inequality follows from |4, Proposition 2.7 and Remark 2.8]. O

Now, we come back to Riesz energies and we start with the useful definition of a-capacity.

Definition 1.7 (a-Capacity). Let N > 2 and a € (0, N). Let A C RY be a Borel set, its a-capacity is
defined to be:

From monotonicity of the Riesz energy Z, we get monotonicity of the a-capacity Cl,, specifically A C B
implies Cy,(A4) < C,(B). Moreover, it can be shown [16} p. 141] that the a-capacity is subadditive over
compact sets.

For N >3, a =2 and K C RY we have the following representation of the 2-capacity from [17]:

Car) =int { [ VAP e CE®Y). £ 2 i}
RN
More in general, this is true for any « € (0, N) as well:
Cal(K) = inf {[f2 5 v, : £ € CZ@®Y), £ = xxc -

Finally, considering [1.5] we get for « € (0, 2):

Co(K) = inf {/RNXRNWdxdy:uECff’(RN),uzxK}. (1.8)

For any particular property, we say that it holds a-quasi everywhere if it is true up to sets of zero a-
capacity. The next proposition corresponds to |19, Theorem 8.9] and it clarifies the relation between the
notions of capacity and Hausdorff measure.

12



Proposition 1.8. Let A C RN be a Borel set. Then:
1. if @ > 0 and H*(A) < 400, then C,(A4) = 0;
2. if @ > 0 and C,(A) =0, then H*(A) = 0 for every t > a.

In particular, C,(A) = 0 for any a > 0 implies immediately |A| = 0. Exploiting characterization of
the a-capacity, we get the following nice result.

Proposition 1.9. Let N > 2 and « € (0,2), for all compact sets K C RY with |K| > 0 we have that
To(Bg) > I, (K), where Bg denotes the ball such that |Bg| = |K]|.

Proof. By definition of a-capacity, it is enough to prove that C,(Bg) < C,(K) for any compact set K
with strictly positive volume. Since o € (0,2), we can use the characterization given by formula
Then, by [8l Theorem A.1] we have:

. (u(z) — u(y))?
C,(K) = f ——2"" dxd
a( ) uEC?(DlQ%),UEXK /RNXRN |x - y|N+a o
* % 2
> inf / @) =w W) )0
ueCx(RN), u>xx Jryypy | —y[Vte

Since the symmetric decreasing rearrangements of positive functions is order preserving |17, p. 81], we
have that u > x g implies u* > x% = XB,. Thus:

* % 2
Co(K) > inf { / M dxdy : v* radially symmetric, decreasing}
wreCx(RN), u*>xp, (pvypy |z —y[Nte

* ok 2
> inf / @) = W) gy = 0 (Bre).
ur€CR ®N), ur2xp, Jryxpy [T —y|NTe

Another useful property of symmetric decreasing rearrangements is given by next inequality.

Theorem 1.10 (Riesz rearrangement inequality). Let f,g,h: RY —s R*. Then:

/R - f(@)g(x —y)h(y) devdy < / [ (@)g" (x — y)h*(y) dedy.

RN xRN

For any set A we denote by B4 the ball centered in the origin such that |A| = |B4|. Observing that
X = XB.a, an easy application of Riesz rearrangement inequality is given by:

/ dxd]%_ S/ dxd]%_ . (1.9)
AxA ‘x - y| « BaXxBa ‘x - y| *

Indeed:

dx dy / 1
— N = XA(T) ——x——=xa(y) dz dy
S = fo O
1 dx dy

< Xa(®) ——m——=Xa(y) dz dy =/ - el
/]RNXRN A g — y|N—a A BaxBa [T —ylN 7o

At this point, it just remains to spend a few words on the potential of a measure.
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Definition 1.11 (Potential function). Let N > 2 and « € (0, N), given u € M™ we define its potential

function as:
d,
D e =T ]
RN [T —Y

From now on we always drop the dependence on p and « and we refer to the function u as the potential.
Here we present its main properties, taken from [16, p. 137].

Proposition 1.12. Let K C RY be compact, y be the minimizer for Z,(K) and u its corresponding
potential. Then, the following equation holds in distributional sense:

(A)%u=C(N,a)u,
where C(N,a) > 0. In addition, we have:
1. u=Z4(K) a-q.e. on spt(p) and u > Z,(K) a-q.e. on K;
2. if a € (0,2], then u = Z,(K) a-q.e. on K and u < Z,(K) everywhere on RY.

Through the thesis we will focus more on the case a € (0,1], so we will often use point (2) from the
previous result. In addition, we infer:

1) = [ wdn= [ (AFua)E = 0W0) [ p-8) = g [ u-a)ta

From we deduce immediately:

Io(p) = C(Naa)[#}ir%(w) = m[U]Z%(RN)~ (1.10)

Finally, we provide the explicit expression for the optimal measure of the ball By in the case a €]0,2].

Proposition 1.13. When « € (0,2), the optimal measure up, for the variational problem Z,(B) is
absolutely continuous with respect to Lebesgue measure and it is represented by the function:

Ca
wB, () = WXBI (z),

2

where C,, indicates the suitable renormalization constant to make it a probability measure.

1.2 Introduction of the problem and ill-posedness when a > 1

After defining all the basic tools we will employ, we are ready to present the variational problem we would
like to study in our dissertation. Be careful that the first formulation we give is exclusively heuristic and
far from being precise, similarly to what we did in the introduction. Actually, problem [I.13]is not even
well-posed yet, as we still need to specify for which kind of sets the functional F, g is well-defined and,
consequently, the right class where to minimize. Before dwelling on such issues, we present right away
an ill-posedness result when a > 1, which derives from some useful considerations about the a-capacity
that we will investigate further in the next section.

Let N > 2, a € (0,N) and a measurable set £ C RY. We consider the Riesz interaction energy T, (E)
for the set F and from now on we use the compact notation:

dp(z) d
T.(E) = inf / ) dply) (1.11)
w(E)=1 Jpn yry T — y|N =

14



where the infimum is implicitly taken over all probability measures supported in E. For every charge
Q@ > 0, we define the functional:

Fuo(E) = P(E) + Q*T.(E). (112)
Fixed any mass m > 0, the aim of the thesis is to carry out an analysis of the variational problem:
|JrEr|lin Fa0(E), (1.13)

where the precise class which we are minimizing over is yet to be specified. The following scaling argument
allows us to assume m = wy without loss of generality. Indeed, if |E| = m, thanks to we find:

MW=2Q*T,(A\E) = Q*T,(E)

for any scaling factor A > 0. Hence:

P(E) + QT (E) = %P()\E) + AN Q2T (AE)

1

V=1 (POAE) + XN =) N-DQ2T, (AE)) .

By requiring [AE| = wy, we obtain A = (“’WN)% and therefore it is enough to set:

-9 w (N7a1>\7(N71) B
O = (—N) Q? and E=)\E.

m

In this way, we are able to study the equivalent problem with desired mass wy, up to a scaling factor of
()N,

The first significant statement we prove about problem is that in the case a € (1, N), the functional
Fa,@ admits no minimizer among sets of given volume wy. The procedure we use in the proof consists
in a geometric construction exploiting the relation between the notions of a-capacity and Hausdorff
measure. The key observations are the following: first, as we will prove later on in the compact case,
the Riesz energy Z,, is defined a-quasi everywhere [16, Chapter 2]. In addition, from what discussed at
the beginning of [19, Chapter 8], a-capacity has a very similar behaviour to H¥~%. Specifically, when
a > 1, sets of positive a-capacity are not seen by the perimeter, which on the other hand operates like
HN—1. Therefore, exploiting some properties of Riesz energy, we build a sequence of sets with uniformly
bounded perimeter (actually converging to P(B;)) and a-capacity diverging at +o0c. By what we just
highlighted, the variation of the a-capacity is not seen by the perimeter and, by definition, the Riesz
energy of our sequence of sets tends to 0. Since every compact set has positive a-capacity, we finally infer
ill-posedness of problem when o > 1.

Theorem 1.14. For every « € (1, N), there holds:

inf  Foo(E) = P(By).

|[El=wN

in particular, the problem does not admit minimizers.

Proof. The first inequality is straight-forward. For each Borel set E C RY of given volume wy, we have
that Z, (F) > 0; therefore, by Euclidean isoperimetric inequality [18, Theorem 14.1]:

P(E) + QL. (E) > P(E) > P(By),

We conclude by passing to the infimum over all sets E as above.
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Concerning the second inequality, let K € N and a number B > 0 to be chosen precisely later on.
Consider K balls {B}X | of radius rx = K~” and centers {z;}X,, such that |z;| > R for each i < K
and |z; — x| > R for each i # j, for some R > rg. On each ball BY, we put on an uniform charge v/*
such that v*(B") = % and we set:

K
V= E vt
i=1

Let Vi = K(rx)Nwx be their total volume: we build a set Ex by taking the union of all these charged
balls with a non-charged ball BY centered at the origin 2 = 0 of volume wn — Vi . By our choice of a,
we have that N — a < N — 1, so we are able to choose any § € ( ) In this way:

T Nea
e (> x— implies B(N — 1) > 1, so that:
K

. N—1 _ . _ .

A K r) ™ = i ey = O
e < Nl_a implies S(N — «) < 1, so that:

1 1 KBN—a)
lm ———-—= lim —— =0

K—oo K (TK)Nf‘)‘ K—o0 K ;

e BN > B(N — 1), so that:
KO.JN

i Vie = Jlim T < e — 0

We are now ready to estimate Fo,o(Ex) = P(Ex) + Q*Z,(Ek). Concerning the perimeter, by scaling
P(B®) = (rgo)N~1P(B;) and a simple computation shows that:

N—-1

wn —Vg\ ¥
rpo = _—
WN

Moreover:
K K
P(U BY) = ZP(Bi) = C(N)K (rg)N~1

On the other hand, providing an estimate for the Riesz interaction energy is more interesting. Noticing
that the measure v is a competitor for Z,(Fk), we compute:

du(z)d
T.(Ex) = inf / p(x) let(y)
WE)=1 Jpy gy | —y|N—o

dv(z) dv(y)
<o o

KXEK |$ - le_a

_ / A v (@) A5, V) (y)
Ui BIxUj

|z —y[N -
_i/ dV Z/ dyj( )
— /BixB |$— |N “ 7/ BixB |$— r—yN
- dx dy 1 / dx dy
K2 Z/zw |z —y[N- KQ; ixpi [T —yN
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Regarding the first term, since B? = x; + rx By for all i, we find by changing coordinates:

dx dy 1 / dx dy 1
= ——— =(C(N,0) ———.
/B’ixBi e —yNm (r)N T gk, o — YN (rec )N

The trick of changing coordinates does not work for the second term, due to the presence of two different
indexes. Nevertheless, we can perform the following estimate by exploiting the geometry of the set Ek.
For all 4,j € {1, ..., K} with ¢ # j, for all x € B* and y € B?, by triangle inequality we have that:

lzi —ajl Sz —wil + e —yl+ly -2l = |e—yl=|wi—yl— |z — x| =y — .

Now we use the fact that |z; — x;| > R for each i # j and that |v — z;| < R, |y — ;| < R, so:

1 —(N—«a —(N—«a
| =yl > |ai — 25| = 2R > S|zi — 2] = jz —y|m N <y — |~V
Therefore, for all ¢ # j:
1 dad 1 C C C(N 2N
%2 N < / dody = g 2]
K2 Jpixpi lv—yN= = K? |z — [N~ Jpixpi i — x| N K
C(N)
< RN—aKz-i-QBN'

Thus, putting the two estimates together we find:

C(N)

7]
K 1 1 K?2-K
< C(N,q) <K2 (re)N- a T pN-a K2+2/3N)
1 1 1 1
<C(N,a) (? (rc)N-—o + 28N RN—a')

Finally, we come back to the estimate of F, o(Ek):

A FaolB) < FaolBx) = P(Ex) + Q’Z.(Ex)

Q1 1Q2>

wy — Vi =S N-1
< (7> P(Bl) +C (K(TK) + K (TK)Nfoé + K2BN RN—«a

< o
Since the right-hand side converges to P(B;1) as K — 400, we recover the required inequality.

The ill-posedness of the problem is straightforward once noticing that Z,(B1) > 0 and thus the infimum
cannot be achieved by any set. O

1.3 Restriction to the interesting case a € (0, 1]

Once excluded the cases for which the problem is ill-posed, in this section we are ready to properly choose
the class of competitors for [[.I3] Afterwards, we define generalized sets and measures, consequently
extending the notion of Riesz energy to them. Finally, we conclude the first chapter by stating the
corresponding formulation of for generalized sets, the starting point of our analysis in the next
chapter.
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At first glance, working with the class of smooth compact sets seems rather appropriate in order to
minimize our functional, as both the perimeter and the Riesz interaction energy are well defined over it,
as we discussed in the previous section. Awfully, we are forced to rule it out, due to its bad compactness
property under many types of convergence, such as L}, or Hausdorff convergence. On the other hand,
since we are dealing with a minimum problem involving the perimeter, one could be tempted to employ
sets of finite perimeter, by identifying two sets E and F' agreeing up to a Lebesgue-negligible set. Un-
fortunately, it can be shown that the Riesz energy 7, is well defined up to sets of 0 a-capacity, namely
if E = F a-quasi everywhere then Z,(E) = Z,(F). We prove this fact when E and F are compact sets
(up to a choice of the right representative) with positive measure. If C,,(EFAF) = 0, by monotonicity of
a-capacity we have:
Co(E\F)=CL(F\E)=0.

Recalling that F = (F N E) U (F \ E), by subadditivity of C, over compact sets and by monotonicity
again we deduce:
Co(F) < Co(FNE)+Co(F\E) <Cy(E).

In a similar way, we have C(F) < C4(F) as well. Since E and F are compact sets with positive measure,
Zo(E), Zo(F) < 400 by Proposition In particular, Cy(F), Co(F) # 0 and:

We saw that C,,(K) = 0 implies |K| = 0, but the converse is not true in general. Specifically, there exist
sets agreeing Lebesgue almost everywhere but with different a-capacity, so we conclude that the class of
sets of finite perimeter is not a feasible choice for trying to minimize our functional.

As advocated in [21], [22] for the particular case N = 2 and a = 1, in our dissertation we consider the
class:
S ={E CR" : Eis compact and P(E) = HV ' (0E) < +00} .

Identifying sets differing only a set of zero Lebesgue measure works perfectly in class S, because in
this case the Riesz interaction energy is well behaved. First of all, if E, F € S with |EAF| = 0 then
P(E) = P(F) by definition of perimeter. In addition, we claim that HYN~'(EAF) = 0 as well. Indeed,
since | EAF| = 0, we necessarily have E®) = F® for all ¢ € [0,1], where E® denotes the set of points of

density t:
ENB,
E® = {xERN: lim w:t}.
r—0+ | Bp(2)]
By Federer’s Theorem [18, Theorem 16.2], we have that:

E=EWyEY2 yN-1 ge. and F=rFrOypl/2) yN-1 56

Since EM) = F1) and EV/2 = FO/2) we deduce E = F HN~'-almost everywhere. In particular,
basic properties of Hausdorff measure imply HV~*(EAF) = 0 for all a € (0,1], so Co(EAF) = 0 by
Proposition Thus, we can prove that Z,(E) = Z,(F') arguing as we did in the previous paragraph.

In conclusion, the variational problem we study is:

min FoolE 1.14
\E\:w;;,EES 7Q( ) ( )

Finally, we introduce the notion of generalized sets and minimizers, which will be essential in order to
prove the existence of classical minimizer for problem
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Definition 1.15 (Generalized sets, measures and energies).

e A (possibly finite) collection of sets E = {E'};>; with E? ¢ RN for all 4 > 1 is said to be a
generalized set. We set the volume and the perimeter of a generalized set to be, respectively:

B =Y |E P(B) = Y P(EY).

i>1 i>1

e A (possibly finite) collection of measures i = {u'};>1 with u* € M™T for all 4 > 1 is said to be a
generalized measure. The Riesz interaction energy of a generalized measure is set to be:

Zo(1) = Zza (.UZ)

e The Riesz energy of a generalized set E = {E"};>1 is defined to be:
Ial?jzinf{za~ : 1E1=1}.
(E) = inf | Za(71) zz:u (E)

Regarding the last definition, when minimizing over fi, we may assume without loss of generality that
W is concentrated on its corresponding set EJ for all j > 1, namely p’ is supported on E7. Indeed, if
otherwise p? = pf + pd with pj, uj # 0 positive measures supported respectively on E’ and on (FE7)¢,
by the fact that:
To(p] + 1) > Ta(pl)  and  p](B7)+ ) p'(E') =1
i#]
(the energy does not increase and the condition on the weights is not affected), we can set u’ = ,u{.

After introducing the last ideas, we are able to define the energy of a generalized set E = {E"};>1 given
a charge @ > O: R ~ R
Foo(E) = P(E) + Q*T,(E). (1.15)

Moreover, we say that EecSVisa (volume-constrained) generalized minimizer for the functional F, ¢
if, for any collection F' € S with |E| = |F|, we have:

Fa@(B) < Fao(F)
Hence, it is rather natural to introduce as well the variational problem:

_ min  F,q(E). (1.16)
|E|l=wn,EeSN

The study of this formulation will be an intermediate step in order to prove existence of minimizers for
the original one and it will constitute the starting point of our analysis in Chapter
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Chapter 2

Existence and regularity of
minimizers

The second chapter of the exposition is devoted to proving existence and C% regularity of minimizers
of Fo,o with volume wy and belonging to the class S, in the case o € (0, 1]. Initially, we modify the
functional with a relaxation of the volume constraint and a regularization of the Riesz energy Z,, to
put ourselves in a situation where is more convenient to work applying standard Calculus of Variations’
techniques. In this way, we manage to get existence of generalized minimizers for the modified version of
the functional F, g,a,.. The continuation consists in showing regularity properties of such minimizers,
with the aim of finding solutions to the initial problem as well. To do so, we separately consider the
cases a € (0,1) and o = 1: the former is easier to be dealt with as we are able to rely on standard
regularity theory for almost minimizers of the perimeter. Instead, when o = 1 the situation is much
more complicated and it requires the aid of tools from elliptic PDE theory. Anyhow, we finally succeed
in reaching the same results valid for the case « € (0,1).

Before starting our analysis, we anticipate that the second chapter is quite convoluted and it is definitely
the most voluminous of the exposition. A possible strategy to lighten it could have been splitting existence
and regularity of minimizers into separate parts of the dissertation. However, as we will see below, the
procedures to derive them happen to be rather entangled with each other: for this reason, we decided
to privilege fluidity of the general reasoning, presenting existence and regularity altogether in the same
chapter.

2.1 Relaxation of the volume constraint

Since the volume constraint |F| = w,, of the variational problem results rather cumbersome to deal
with, the first step of our analysis consists in getting rid of it. To do so, we consider the following
relaxation of the energy functional:

Faa(B) = P(B) + Q*Lo(E) + A||E| - wy

)

for some A > 0 to be determined, together with its associated minimum problem. The next lemma is
the only result presented in the section and it shows that, for some A > 0 large enough, the variational
problem associated to the relaxed energy functional coincides with the constrained one We do
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not know whether the two problems we are examining attain minimum yet, so for the moment we just
consider their infima, which are always well defined.

Lemma 2.1. For every a € (0, N), @ > 0 and every A > 1+ Q?, we have:

inf {Faq(B): |El=wy} = inf Fagqa(B). (2.1)
EeSN EeSN

Moreover, for such A, if E is a minimizer of the right-hand side of then |E\ = wn-

Proof. The > inequality is clear and holds true for all A > 0. Indeed, by taking as a competitor any
F € SN with volume wy:

nf P(E)+ Q*Tu(B) + A 1Bl = wx| < P(F) + Q*Ta(F) = Faga(F)
eSN

and we conclude by passing to the infimum over all ' as above.

It remains to prove <: let A > 1 + Q2 and assume by contradiction that there exist F with |E| # wy
such that: ) ~ ~
FaqalB) < inf {Faq(E) : |B|=wy}.
Eest

Notice that in our hypothesis we must have |F| # wy, otherwise Fo ga(E) = Fao(E) which is not
possible. Using B; as a competitor, we get:

P(E) + Q*Lo(E) + A ||B| - wn| < P(B1) + Q*Z(B1) S 1+ Q.

In particular, we have A ‘|E| — wN‘ <14+ Q2 so0 ‘|E\ - wN‘ < 14 Q? as we assumed A > 1+ Q?; thus,
it means that there exists t = 1+ ¢ with |§] < 1 such that:

%
tE|=wy =  tV|El=wuy = @ t= (g) .

Using the well-known Taylor expansion (1 —z)™# = 1 + Bz + o(z) for |z| < 1 and for all 8 € C, we get:

() ) )

01 S (18] = wl| -

2~
—_

with:
Now, we use the set tE = {tE'i}izl (which satisfies |tE| = wy) as a competitor for the constrained energy
and get Fo.ga(E) < Fag(tE), namely:

P(E) + Q*Ta(E) + A ||B — wy| < P(tE) + Q*Ta(tE) = " P(E) + 1~V =) Q*Z, (E)

by standard properties of perimeter and Riesz energy. This time, we use the different Taylor expansion
PP =1+zx-1) =148 —1)+o((x—1)) for z ~ 1 and for all 3 € C to get

AJIB —wn| < (t=1) (N = DP(B) = (N = )QZa(E) ) +ol(t = 1)),
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which yield, using that ¢ — 1 = ¢ and majorizing the term o((¢t — 1)):
AJB| S AIB| = wnl| 8 ((V = DP(E) = (N = )Q*Za(E)) . (2.2)
If § > 0: ) )
AS S 6P(E) < 0Faqa(E) $6(1+ Q%)
and thus A < 14 Q?, which is a contradiction with the hypothesis A > 1 + Q2. In the opposite case
d < 0 we reach the same contradiction, since 2.2) implies this time:
86 < 18] (N = 0)QPTu(B) — (N — 1)P(E)) < 81QPTa(B) < |51Fa0.0(B) < 151(1 + Q2).

Therefore, we conclude that for all E € SN such that |E| # wy we must necessarily have:

inf {Fao(B) i |E|=wn} < Fagqa(B).

EesN

Passing to the infimum over all EesN yields the remaining inequality in Instead, the second part
of the statement is reached once noticed that trivially there holds Fo oA (E) = Fa,o(E) when |E| = wy
instead. O

2.2 The regularized functional

As we highlighted in the first chapter, the capacitary term Z, and hence the functional F, g a are not
well defined in L', the natural setting where to study variational problems involving the perimeter. In
addition, the class S itself in which we are minimizing is not closed under L' convergence, so it is not
clear how to argue directly to minimize F, g a. The purpose of this section is to overcome this difficulty,
by introducing a regularization Z, . of the Riesz energy 7, together with some of its properties for both
classical and generalized sets: in particular Z, . will be well defined in L. In Lemma we prove some
estimates for the regularized Riesz energy, which will allow us to show existence and uniqueness of an
optimal generalized measure minimizing ImE(E) in Lemma similarly to what happen for Z,.

Let € > 0 and p be a positive measure, we define the regularized interaction energy of u:

x)d
Ioze( —I +5/ 1% —/ :U/()_’_&_/ ,UQ,
RN RN xRN |$— y|N-e RN

setting I, (1) = +o0 if u ¢ L2(RY). Consequently, for a measurable set E € S, we define its regularized
Riesz interaction energy as:

. du(z) du(y) / 2}
T (E)= inf { ok Ao o V24 , 2.3
(B u(i‘fn)zl /RNX]RN |z —y| N« e RN” (2:3)

where the infimum is taken over the class of probability measures belonging to L? and supported in E.
The fact that Z, (F) is well defined Lebesgue almost everywhere follows directly from its definition.
Indeed, let E and F' be measurable sets such that |[EAF| = 0: every measure u such that I . (u) < 400
is a positive function in L2(R") and therefore, since the Lebesgue integral is defined up to Lebesgue
negligible sets, satisfies:

/mmmzfmmm, — B = u(F).
E F

Thus, in the infimum problems Z, .(E) and Z, . (F'), both the sets of competitors and the values of the
functionals coincide, hence the desired equality Z,, o(E) = Zo o (F).

In analogy with it is natural to state the following definition.
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Definition 2.2 (Regularized Riesz energy for generalized sets).

e The regularized energy of a generalized measure i = {u'};>1 is set to be:

) = Zza,a(.u )
e The reqularized Riesz interaction energy of a generalized set E = {E"};>1 is defined to be:
T e(B) = inf {Tac(p) - Yo wi(E) =1},

An almost immediate consequence of the definition is the following characterization.

Lemma 2.3. Given a generalized set E = {E'};>1, we have the equivalence:

Too(E) = CO”{qu el i):Zqizl}.

{q1}z>1

Proof. The idea is to exploit the 2-homogeneity of I, ., which is clear from its definition. In this way,
arguing like in[T.2] we recover the relation:

QZIO(,E (A) = inf {]a,e (N’) : M(A)

Thus, given any generalized measure fi, we let ¢; = p'(E'). Using I, .(u!) > ¢?Zo(E?), we have
immediately:

Q} VA c RY Borel set.

E):i%f{ZIa’E Z,u E’ —1}>1nf{2ql asE’ qu—l}

Concerning the second inequality, we fix § > 0 and a sequence {¢;};>1 C [0, 1] such that 3, ¢; = 1. Then,
for all i > 1, we choose i' such that u(E?) = ¢; and

i . i 7 7 5 i 5
Ine(@') <inf{loc(p') @ p'(E") = q¢i} + = QzIa (E") + 9

Hence, by definition:

<Zloza <ZQ; aEEZ +* (ZQ2IQEEZ> +9

Passing to the infimum over all {¢;},>1 as above, we find:

Tacl®) < (S0 TelB) - Sa=1f 4

and the thesis follows by taking the limit as 6 — 0. O
Similarly to what happens for classical sets, Z, . is well defined in L' over generalized sets. In other
words, we can identify generalized sets agreeing up to another generalized set of measure 0, namely_ E

and F' such that |E?AF?| = 0 for all i > 1. The next lemma provides upper and lower bounds for Z, . (E).

24



Lemma 2.4. Let E = {E'};>1 be a generalized set with |E| € (0, 400), then:

S <T..(B)< (Nfi) =
|E| |[E|™~  |E]

/\

where ) .
¢(N,a) = / ———dzdy.
wjl\;rN BixB, |7 —y[N 7

Proof. We start with the upper bound: let m = |E| and, for all i >
|Bi| = |E*|. Choosing u® = x%/m as a competitor in the definition of Z, .

~ 1 dx dy € ;
F) < — _ + — E"
)_ZmQ/Eiin|x— |]\’*C“—’—771221,:| |
dx dy €
7777122/’><E’ |z —y[N= FED RS

By Riesz rearrangement inequality and its consequence we get:

dx dy €
Loe( —mzz/szlx_ ‘NQ+E'

Performing the changes of variable ®; : RN x RY — RN x RY such that ®;(B;) = B*

1, let B’ be a ball such that
(E) we find:

we get for all ¢ > 1:

/ dx dy 7/ | B2 dx dy _|ET? (wN)lf(G/ dx dy
Bixpi [T —y[N Bixi (WN)?|(|E|Jwn) ™ (z — y)|N—  (wN)? |EIF Jpxp, [z —y/N—

=¢(N,a) |EHH.

Thus:

(N, «
<

1+&
~ C(N, Oé) i1+ ) ; € C(Na ) €
IQ,E(E)STZ‘E” N 4 Z'EZ‘ +E: o +E'

3
m m N

The lower bound is much shorter to obtain: for all i = {u’};>1 such that Y, u*(E*) = 1, we have by

Cauchy-Schwarz inequality:
et =ct (Zui(Ei)>=Z/E/65duiS(ZE’W) (Z/ ) <mi ().

Passing to the infimum over all i as above, we get the conclusion:

N|=

IS ~
7 < Zac(E).
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As a consequence of the previous Lemma, we can prove existence uniqueness of an optimal measure for

Toe(E).
Lemma 2.5. For every ¢ > 0 and every generalized set E = {E'};> with |E| € (0, +00) and Z,, . (E) <

+00, there exists a unique optimal measure i = {'};>1 for Z, o (E).

Proof. By Lemma [2.3] we have:

Too(E) = inf {qu To (EY) : Zqi = 1}. (2.4)

Hence, the existence of an optimal ji follows from the facts:

o (a) For every fixed set E such that |E|+Z, (F) < 400, there exists a unique optimal measure for
Za:(E);

e (b) There exists a unique optimal distribution of charges {¢;};>1 C [0, 1] for the problem
(a) Let E C RY be measurable and such that |E| + Z, .(E) < +oc. Noticing that obviously we have

To.c(E) > —00, we select a minimizing sequence {fi, }neny C L2(RY), such that p, > 0 a.e., fRN o =1,
spt(py) C E for all n € N and:

ngr-ir-loo Ioz,a(un) = #(lEn)le Ia,s(,u) = Ia,E(E) < 00,

which implies, by convergence, sup,,cy fa,e(ttrn) < C. Thus:

/ fy = / pp < e tsup Lo e (pn) < O™
RN E neN

By Banach-Alaoglu Theorem, there exist u € L?(RY) and a subsequence {p,, }x>1 such that pu,, — u
as k — 4o00. By weak lower semicontinuity of L? norm and of the functional I, we immediately deduce:

Ine(p) <Uminf I, (pn,) = Za.(E).
k—+o00
Therefore, we conclude that g is the minimizer we are looking for by showing that it is an admissible
competitor for the minimum problem Z,, . (E). First of all, {un }nen C {u € L*(RY) : u >0 a.e.} which
is closed and convex, hence weakly closed: p,, — p implies p > 0 Lebesgue almost everywhere. Now,
we prove that u is a probability measure on E: again, it easily follows by definition of weak convergence.
Indeed, since |E| < +o0, xg € L?(RY), so:

1= 1 = li = = .
k%lrfoo E Hon kﬂlriloo RN XE fhn, /RN XE B /E H

We find our minimizer by setting 4 = 0 on E¢ without loss of generality. Uniqueness of the measure pu
is easy to prove, because it suffices to show that the regularized energy functional I, . is strictly convex
over its domain M. Since the term e fRN p? is strictly convex, we just need to prove that I, is convex.
Let p1, p2 be positive measures and ¢ € [0, 1], by bilinearity and Cauchy-Schwarz inequality we have:

Lo(tpr + (1 = t)pa) = t°In(p1) + 26(1 — 1) Ia(p1, p2) + (1 — 1)* Lo (p2)
<1, (p1) +2t(1 —t) %Ia(pl) + %Ia(pQ) + (1= )*La(p2)
< tIoz(pl) + (1 - t)Ia(pQ)'
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(b) Let E = {E'};>1 be a generalized set with |E| < 400, by the lower bound in the previous Lemma
we get:

I—+o00

. 1 . .
Y T LUE < - Y IE| <400 = lim Y I L(E")=0.
i i i>1

Hence, we consider a minimizing sequence for the minimum problem {{¢}}i>1}nen such that
{g/"}i>1 C[0,1] and ), ¢ =1 for all n € N and see:

2

@< D (@)L (B SIUE) | — 0 asT— toc.

i>1 i>1 i>T

[N

The minimizing sequence is tight and therefore, by Prohorov Theorem, there exist {g;};>1 C [0, 1] such
that >, ¢; = 1 and {g/"}i>1 — {gi}i>1 in ¢! as n — +o0, which turns out to be the optimal distribution
of charge we are looking for by weak lower semicontinuity of the £2 norm. Uniqueness is yielded again by
strict convexity of the functional, which is quadratic over ¢!. O

2.3 Existence of generalized minimizers for the regularized en-
ergy

After the preparation we developed in the last two sections, we can finally introduce the regularized
relaxed energy functional:

Faqure(B) = P(B) + QT o(B) + A ||| - wy|.

The current section is devoted to proving existence of generalized minimizers for the variational problem:

min  Fogne(B). (2.5)
0<|E| <400

thanks to a concentration-compactness technique performed in Theorem Notice that we are not
allowed to minimize over the class of sets SN with the mathematical tools we plan to work with, due to
the issue with the functional Z,, we previously raised. Therefore, we minimize over the more general class
of sets with finite measure which is way easier to handle for our purposes. In addition, we highlight that
the kind of argument we employ in Theorem constitutes another good motivation for introducing the
regularized Riesz energy 7, .

Anyway, before studying the problem we need one last preparatory Lemma, stating that minimizing
among classical or generalized sets gives us the same infimum energy.

Lemma 2.6. For every a € (0, N), Q@ > 0, A > 0 and € > 0 we have:

inf F. FE) = inf F. E).
oyt Q.M (E) o a,Q.Ae(E)

Proof. The > inequality is trivial once noticing that every classical set is a generalized set. Therefore,
it is enough to prove that for every d > 0 and for every generalized set E = {E%},>1 there exists a set
E c RV with Fa,0ne(E) < fanyA?g(E) +0. Wefix I € Nand R > 0, then welet F* = F*NBrifi < I
and F* = () otherwise, and we set F = {F"};>1. First, we remark that, by monotone convergence, we
have limp_, o0 |[E* N Br| = |E?| for all ¢ < 1. Therefore, since ), |E*| < 400, we get:

. . i 1 . T i

lim |F|= lim Z|F|_1hm lim |F|_I£r+noo;|E|_|E|,

I,R— I,R— — R—
oo oot ooy e
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again by monotone convergence. So, by continuity of the function A|- —wy|, we can choose I and R
large enough such that:

I
AD P = wy

i=1

gA‘|E|— wN’+5. (2.6)
Moreover, by [18, Lemma 15.12], for all ¢ > 1 for almost every R > 0 we have:
P(E'N Bg) = P(E*, Bg) + HN "1 (E' N 0Bg).

Also, Coarea Formula implies:

+oo 2R
/ HN"YE'NOBR)dR = |E| = / HN"YE'NOBR)dR < |FY|.
0 R

In particular, for all i > 1 there exists R’ € (R,2R) such that H¥~1(E* N 0Bp:) <

< . Combining the
two properties, we get for all I:

I I I
=> P(F") <) P(E'N Bg) Z (E', Bg:) + HN"Y(E' N dBg:)
3 i=1 i=1
. Imax; |E* .
SZP(E%L% <P(E)+96

again for R large enough. We only need to treat the energy term: let i = {Hi}i21 be the optimal measure

for IQ,E(E) given by Lemma Then, we set v’ = % for i < I and v* = 0 otherwise, so that
=1

7 = {v'};>1 is a competitor for Z, . (F). By construction of F, we have that Zle wu(F?) converges to 1
as both I and R goes to +00, so we can also assume as well that I and R are chosen large enough in
order to have, apart from [2.6] and

2 -\ _ Q2 dp(r) du(y) 2 2 7
QI () = D ) (/F —_— +6/RN(M) ) < QZy(E)+6. (2.8)

> imi 1 i [T —yNTe

Now We are finally ready to build the required set £ by rearranging the sets Fi together with their
associated measures v/ for all i < I in RY. First of all, we choose some points {z‘}/_; C RY such that
min;; [z — 27| > R and we define:

I

I
E:U(Fieri) and Zzﬂ:ﬂf:c
i=1

i=1

Since F' C Bg by construction for all < I, the sets F' + 2° are pairwise disjoint, so the perimeter and
the volume of their union decouple. In particular, from [2.6] and 2.7] we have:

I
DI - wy

i=1

I
P(E)+ A||E| — wy| =Y P(F')+ A

=1

< P(E) + A||B] - wy|+26.

Again, by construction, v is admissible for Z,, .(E). Reasoning in the same exact way as we did in m,
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we are able to estimate the remaining term:

(i, V) (@) A2, V) ()

@Lo.w) =" |

(UL, Fiyx(Ul_, F9) |z —y|N—e
N dvi(z) dvi (y)
= QZIOL, (V) + Q2 / - T ~v—o
: ; Fixpi |7 —yNTe
QZ

min,,; |zt — 27|

< Q%Io(E)+ 0+
In the last inequality we used 2.8 and we assumed again R large enough. Eventually, we find as anticipated:
Fane(E) < P(E) + QLo (v) + A||E — wy|
< P(B) + Qo e(B) + A || E| - wn| + 46
= Foore(E)+40.

O

We are now ready to prove existence of generalized minimizers for the functional F, g a,. The proof is
one of the most significative of the dissertation and, as already anticipated, it relies on a concentration-
compactness argument, aimed at preventing the loss of both mass and charge at +oo. Starting from a
minimizing sequence for F, .4, made of classical sets, the idea is to split RY into a partition of cubes,
each one carrying its own mass and charge. After proving convergence of the values of such quantities,
we build a generalized set which encompassing all the information obtained, together with its associated
measure. Finally, we show that the set we constructed is actually a minimizer, thanks to the lower

semicontinuity under L}, . convergence of all the terms composing the functional Fp g A c-

Theorem 2.7. For every a € (0,1], @ >0, e > 0 and A > 1 + Q?, there exist generalized minimizers of
the functional Fo g A e-

Proof. Let {E,}nen be a classical minimizing sequence for F, g A, namely E, is measurable for all
n € N and
lim F E,)= inf F E).
S Faqae(Bn) = if  Faqae(E)
By Lemma [2.6] it is a minimizing sequence for generalized sets as well. Using the unit ball By as a
competitor we have:

inf ]‘—Q’Q’A’E(E) < fa,Q,A,e(Bl) <1+ Q2 — sup fa,Q,A,s(En) <1+ Q2. (2.9)
|E|<+o00 neN

In particular, we infer that A ||E,| — wy| <1+ Q? for all n € N, so there exists a constant C(N,A) > 0
such that m,, := |E,| < C(N,A) for all n € N. Therefore, there exists m €]0,4o0[ such that, up to
extraction of a subsequence, m,, — m as n — 4o00.

Now we proceed with the concentration-compactness argument. We fix a positive number L >> m~ . For
all n € N, we consider the lattice (LZ)N = {z;,}i>1, thanks to which we construct a partition of RY
into cubes {Q; n}i>1, where Q; , = [0, LIV + 2 . Welet m; ,, == |E, N Qi n| (so that > Min = my) and
we assume without loss of generality that {m; ,};>1 is decreasing in i for all n € N, namely m; ,, > mMjn
for all i+ < j. The procedure we are about to carry out is aimed at preventing the loss of mass when
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passing the limit as n — 400, hence we can seamlessly consider from now on only the indexes ¢ with
measure m; ,, > 0. Finally, letting p,, be the optimal measure for Z, . (E,), we set ¢; n 1= pin(Qin), SO

that Zi Qi;n = ,U'n(En) =1.

Now, we want to prove that there exist two sequences {m;};>1 and {g; };>1 such that, up to subsequences:
{mi,n}izl - {mi}izl and {qz‘,n}izl - {Qi}iZI in ¢' as n — +00,

which is:

n—-+oo

“+o0
lim Zmz nfi =Y mif; for all f = {fi}i>1 € £~
=1

and similarly for {¢;};>1. In this way, applying the definition of weak convergence with the sequence
g = {1};>1, we get automatically:

m= lim m, = lim Zmﬁn*E msg, 1= lim p,(E,) = lim quanql
n—-+oo n—-+o0o n—-+4oo n—-+oo

In order to prove the desired weak convergence, we prove tightness of the two sequences of sequences
{{min}i>1}nen and {{¢in}i>1}nen. For the first one, we use the relative isoperimetric Inequality [18|
Proposition 12.37] (more precisely its version employing cubes instead of balls), exploiting the fact that
with our choice of L > m~ we have Min = |Qin N En| < |Qinl/2, so min{|Q;n NE,|,|Qin \ Enl} =
|Qin N Ey|. We compute:

N—1
Som X < P(Ea,Qin) = P(E,) S1+Q%
% i

where the last inequality derlve from 9] Using the assumptions that {m; , };>1 is decreasing in ¢, for all
I € N we have m; ,, <my, < 1 for ¢ 2 I, thus:
1

5 i = Sl i) T < () ST S 0009 (52)

i>1 i>I i>T

which tends to 0 as I — +oo. Concerning {{¢; »}i>1}nen, on the other hand, we apply twice Cauchy-
Schwarz and we find:

ZQi,n:Z/E un<zmm</Emeui>%§ > Min 1 Z/E

i>1 i>1 NQi,n i>1 i>I i>T NQi,n

=

1
2

Su) () s izhn ot (2"

i>1 RN

IN

Being I(%,E(En) uniformly bounded in n by the right-hand side of the last computation tends to 0 as
I — 4o00. Therefore, we proved tightness for both of the sequences {{m; ,}i>1}nen and {{gin}i>1}nen:
by applying Prohorov Theorem, we finally deduce the required weak convergence, up to extraction of
subsequences.

The next step of the proof is to construct the generalized set E= {E%};>1, which will turn out to be our
generalized minimizer. First of all, for all i > 1 we have, by

P(E, — zin) = P(E,) <1+ Q2 = sup P(E, — zn) < +00.
neN
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Therefore, by [18, Corollary 12.27], there exist a measurable set E* of locally finite perimeter such that,
up to extraction of a subsequence, E, — z; , — E'in L}OC(RN). Moreover, setting ,ufl = Un (- + 2in),
by Banach-Alaoglu Theorem (||| 2rny = 1 for all n € N) there exists p’ € L2(RY) such that, up to
another extraction, we have p! — u in L?(RY) as n — +oo. Thanks to a diagonal argument, up to the

extraction of an ulterior subsequence, this occurs simultaneously for all ¢ > 1.

Now, noticing that for every ¢ and j there holds limsup,, , . |2in — 2j,n| = ai; € [0, +00], we define the
equivalence relation ¢ ~ j if a;; < +o0o0 and we denote [i] the equivalence class of i. In particular, if i ~ j
then E* and E7 are translated of each other by construction. For each equivalence class we denote:

mp = ij and qp = qu — Z mp) = and Z qu = 1.
Jrvi Jrvi []]eN/~ [i]eEN/~

Next, we show the key point of the proof, which consists in linking the Llloc convergence of sets we just
established with the weak convergence of the sequences {{m; n}i>1}nen and {{gin}i>1}nen, namely:

|E| = m and pi(EY) = ) for all i > 1.

In non-mathematical words, the measure of the limit sets E° is given by the sum of the limits of the
measures m;,, = |E, N Q;, ﬁ| for all j ~ 4. In particular, each set E' is defined by the union of the L},
limits of the sets Q; . for all j ~ i. We start with the first equality and we fix a class [i] and M € N.
Recalling that the cardinality of [i] may be infinite (and thus the set E¢ unbounded), we consider the

finite family {i1,...,45}. By construction of [i], there exists a compact set K s such that we have:
M
U Qin CKn+ 2in for all n € N, (2.10)
k=1
whence:
M M M
Zmik,n = Z |En N Qi | = [En N U Qivnl < |En N (K + zin)| = [(En — 2im) 0 K.
k=1 k=1

We send n — +o0: using the Lj, . convergence E,, —z; , — E' and the weak convergence of the sequence
{H{min}i1}nen, we find

Zmik <|E'N Kyl < |EY for all n € N.
k=1

Passing to the limit as M — +o0, we get m[; < |Et|. Conversely, if we show that Z[i]eN/N |EY < m, we
are able to conclude:

= > my< Y |El<m = |E'| = my) for all i > 1.
[{]eN/~ [{]eN/~
Hence, we choose M integers {i1,...,ip} belonging to different equivalence classes: given R > 0, again

by construction of the equivalence relation, we have that Br(zi,.n) N Br(zi,n) = 0 for all k # [ for n
large enough. Therefore:

M
n — |En| Z En N U BR(Zik,n

M
Z |En N BR Ziy, n Z Z sz,rb ﬁ BR|
k=1 k=1

k=1
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Passing to the limit as n — +o0, again Llloc convergence yields:

M

m > |(E™)N Bgl,
k=1

hence we conclude our thesis by letting first R — +o0o and finally M — +o0.

The proof of uf(E?) = qpi) exploits the exact same ideas but is a bit more convoluted. We begin by
noticing that, for each K C R™ compact, obviously uf, — p* in L2(RY) implies pi, — pu® in L?(K) as
n — +oo as well. Moreover, E,, — z;, — E® in L}, (RY) implies E, — 2z;,, — E' in L} (RY), since
IXE, 20 — Xzt € {0,1} 50 [XK (XBn—2:, — XEi)|* = XK (XB, 2, — Xm1)| — 0 as n — +00. Therefore,
using the same notation as before and recalling [2.10] we deduce:

M M M
k=1 k=1 k=1

-/ pol) = [ ol 2 = [ X, e (@ 250,
E,NKn+zin Ep—zi nNKn Ky

Notice that in the second variable we changed variable with the translation © — z + z;,,. Passing the
right-hand side to the limit as n — 400, we obtain by weak-strong convergence in duality in L?(Kjs) x
L2 (KM)

M
> ai, < / Xpip' = / pt=p(B'NKy) < p'(EY)  forallmeN.
k=1 K E‘NKy

Passing to the limit as M — +o0, we get q;) < pi(E?Y). Conversely, showing that Z[i]eN/N pi(EY <1,
allows us to conclude:
1= Z qp) < Z pi(EY) <1 = pi(BY) = qp for all i > 1.
[i{]EN/~ [{]EN/~

Given the proof of previous inequality, the computations for the last one follow from a simple readaptation
of what we did before.

Up to relabelling the indexes, we may now assume that each equivalence class [i] is made of a single

element. If we set E = {E"};>1 and i = {§'};>1, thanks to the previous section of the proof we have
just shown that [ is admissible for Z, . (E). Hence, it remains to prove:

P(E) + Ta,o(7) + A||B] = wn| < liminf P(Ba) + Tae () + A || Bl = wi].

We consider separately each term of the energy. Since \E| =m = limy_10omy = limy 100 |Eyl,
continuity of the function A|- —wy| yields immediately:

A(|E| _wN( < liminf A [|E,| — wy].
n—-4o0o

On the other hand, regarding the perimeter term, fix I € N and R > 0. For n large enough, we can
assume that |z , — zj | > R for ¢,j < I with ¢ # j (this is possible because we are dealing with a finite
number number of equivalence classes and thus a finite number of ”reference” points z; ,,). By the Coarea
Formula we have, for every such n:

2R
/ > HNTYE, N 0Bg(2in)) dR < |Ey|
R

i<I
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Arguing in the same way as Lemma we find that for every n large enough there exists a radius

R, € (R,2R) such that:
1
> HNYE,NOBg, (2in)) S 5

i<I

We set E4fn = (E, — z;,) N Bg, and, recalling again |18, Lemma 15.12], we have:

S P(EY) =" P(En — zim, Br,) + Y HY T (En — 2in) N 0Bg,)

i<I i<I i<I
=> P(E,,Bg,(2in) + Y MY (E,N0Bg,(2in))
i<I i<I
C
< P(E,) + —=.
< P(En) + 3

The first inequality is a consequence of translation invariance of the perimeter and of HV~! (indeed E* %~
is a translation of E™ N Bg, (zi,n)), whereas the last one is given by the assumption |z;, — 2zjn| > R
and the fact that Bg, (zin) C Bar(zin). In this way, since Bag(2in) N Bar(zjn) = 0 for i # j and
1,7 < I, the sum of the perimeters decouples and it can be majorized with P(F,). Now, considering
the sequence {E“®n}, cn, we have that E“fn C Byp for all n € N and sup,,cyy P(Ef") < 400, by the
last computation and exploiting again Therefore, by |18, Theorem 12.26], there exists a set of finite
perimeter E*f C Byp such that, up to extraction, E4f» — E“R in L1(RN) as n — 4o00. Anyway, as
we have E,, — z;, — E®in L}, (RY) too, there holds (E, — 2;,) N Bap — E*N Bag in LY(RY) as
well. Being the first a subsequence of the latter, we must necessarily have E* C E' N Byg. Moreover,
we had R, € (R,2R) so in particular (E,, — 2;,) N Bg C E*% for all n € N: hence, by L! convergence,
we deduce E' N B C E»®. Putting everything together, we get:

E'NBgr C E"® ¢ E'N Bag,

letting R — +oo we infer E4® — E'in L} _(RY). Thus, by lower semicontinuity of the perimeter under

L;,. convergence and by superadditivity of the inferior limit, we can conclude:
i < . i,R < R . i, Ry
Z P(E") < Z %rg}rrg P(E**) <Y liminf liminf P(E*>"")

R—+o00 n—+00
i<I i<I i<I

< liminfliminf Y  P(E“f) < liminf liminf P(E,) + ¢
R—+o00 n—+00 = R—+00 n—+00 R
= liminf P(E,)

n—-+oo

This is true for all I € N, so passing to the limit as I — +oco we get:

—+oo
P(E) = = 1l < limi .
(B) =2 P(E)= lim > <liminfP(B)
i=1 i<I
It remains to estimate the regularized Riesz energy term. Similarly, we fix I € N and R > 0: for n large
enough, we can assume that |2, , — 2| > R for ¢,j < I with i # j. Exploiting the weak convergence

pi, — putin L2(RN) as n — 400 and the lower semicontinuity of I,, . under weak convergence we get:

ZIa,s(Ni|BR) < Zgg}gg Ia,E(NiI,'BR) < lﬁgl}gg I(%E(.umBR)
i<I i<I i<I

<liminf Ioc ( Y phlBacen) < liminf Lo < (jun).

n—-+oo n
i <I
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Since pf|p,, — p* in L2(RY) as R — +o00, we have:

4 < . i < Limi i < lim
D Laeut) < Y tminf Loc (' |pe) < Ymin > Loe('lze) < liminf Lo,e(in)
i<I i<I i<I

and we can find the estimate we need by letting I — 400 like before. Finally, putting everything together
we have:

P(B) + Tae (i) + A || E| = wn| < liminf P(E,) +liminf Zo e () + lim A |Bal = wy|
< hmian(En) +Ia,E(Mn) +A ||En| - WN‘

n——+o0o

— inf F E),
st QA (E)

concluding the proof. O

2.4 First almost minimality property and density estimates

After proving existence of minimizers for the problem [2.5] our ultimate goal is to show that they actually
enjoy many regularity properties (which will finally lead us to solve problem and the current section
is devoted to doing it. However, the path is quite long and it requires some preparatory arguments: we
begin by defining (A, rg)-perimeter minimality and by proving density estimates for finite perimeter sets
enjoying such property in Lemma Then, after another preliminary result explained in Lemma, [2.10)
we present the first almost minimality property characterizing minimizers of F, g a,, which is nothing
but a way to say that they are (A, rg)-minimizer for some parameter A. At that point, proving density
estimates for our minimizers is just a formality and we will finally infer their regularity properties in

Proposition [2.13]

First thing first, the very general notion of (A, rg)-perimeter minimality. Be careful not to confuse the
parameter A employed here (notation we decided to adopt in adherence with the reference) with its use
when relaxing the volume constraint in Lemma [2.T]

Definition 2.8 ((A, rg)-minimality). Given two parameters A, rg > 0, a set of locally finite perimeter F
is a (A, 7g)-minimizer of the perimeter if, for every z € RY and for all r < r(, we have:

P(E) < P(F)+ ArN='  for all EAF C B,(z).

As highlighted in [14], such sets enjoy many interesting properties, but we are especially interested in
their density estimates, which uniformly compare at small scales the size of the perimeter and of the
volume of a (A, ro)-minimizer with those of a ball.

Lemma 2.9 (Density estimates). There exists a universal and small enough constant A > 0 such that,
if A< A and E is a (A, rg)-minimizer, then for every x € 9F and every 0 < r < rg we have:

min{|E N B,.(z)|, |B-(z) \ E|} ZTN (2.11)
and

N1 < P(E, B, (z) <rVL (2.12)

Proof. By translation and density, we may assume without loss of generality that x = 0 and 0 € 9*E.
We begin by proving the upper bound in Noticing that P(E \ B,) = P(E, BS) + HN-Y(0B, N E),
we use the (A, rg)-minimality property with the set E \ B,:

P(E,B,)+ P(E,B%) = P(E) < P(E,BS) + HN"Y(0B, N E) + ArN 1,
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Therefore:
P(E,B,) < HN"Y(0B, N E) + ArN=1 < pN-1)

and the upper bound is proved.

Concerning the lower bound, we assume by contradiction that there exists some r < rg such that, for all
9 € (0,3) there exists n = 7(f) small to be chosen precisely below). We claim that if there holds:

1

N DB, Br) <, (2.13)
then there exists C > 0 such that:
1 1
WP(E, BQT) S 971]\/—1 P(E7 Br) + CA (214)

Indeed, if holds, then by relative Isoperimetric Inequality we find:

N
. [|IENB,| |B.\E| 1 w1 L 1
mm{ N N S TN_IP(E,BT) SWN”TNi_lP(EaBT)

Hence, we assume first that |E N B,| < |B, \ E|. Now, we can choose t € (6r,20r) such that, applying
Coarea Formula we find:

1 207 |E N Bag,| |E N Byr|
. N1 207 or
0B;NE) < — 0B, NE)ds 5 -
2y (9B, ) < o |, H (0B, )ds Or or

< |EmB20r| < |Eﬂ BT‘ 5 9_1nﬁP(E,B,«)-

Or Or
We test the (A, rp)-minimality property with E'\ B; to deduce (recalling ¢t < 6r):
P(E,B) < HN Y 0B, NE) + MN~' <9~ 'y~ P(E,B,) + A(6r)N 1.
Now, we have that P(FE, By,) < P(FE, B;) and dividing the last expression by (6r)V~1 we have:

1 N1

P(E,B,) + A) .

On the other hand, if |[EN B,| > | B, \ E|, we argue exactly in the same way noticing that, by the equality
between the measures P(E,-) and P(E¢,-), the (A, rg)-minimality property holds true for E¢ as well.
Then, we choose:

. WN-1 1 N+1 Nt —N,
1= min g —o—, 59 so CONpv-1 <4

and [2.14] follows. In particular, notice that n — 0 as # — 0. Now, we assume that:
n(1—10)
A< 2
- C
(namely we are sufficiently decreasing A as reported in the statement), where C' is the constant appearing
in Thus, if holds, by 2.14 and our assumption on A we find:

1
WP(E,BGT) <On+CA<n.
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Iterating the previous argument we obtain:

. 1
R gy U Bos) <

Since n < wy_1 by our previous choice, this contradicts:

lim
r—0 ’]"N7 1

P(E,B,) =wn_1,

which follows from the hypothesis 0 € 9*E from [18, Corollary 15.8]. Hence, for all r < 7o, there exists
some 6 € (0, %) such that:

1 —
limsup —— P(E, B;) > n(0),
r—=0 T

which yields the lower bound in In other words, there exists Cy > 0 such that for all r < rg we
have P(E, B,) > C;r¥N 1.

Regarding we reason in a similar way, namely we assume by contradiction that there exists some
r < ro such that, for all § € (0, %) there exists 7' = /(f) small (to be chosen precisely below) such that:

min{|E N B,|,|B, \ E|} <n'r", (2.15)
If holds, then there exists t € (6r,20r) such that:

ENB !
IEN T‘SETN—l

HN"Y OB, NE) < ,
OBNE) < =5 0
so, testing again the (A, rg)-minimality property with E \ B; we infer

/

P(E,B;) <

|3

PNl AN N L

We call C; the constant appearing in the upper bound of and we make the choice:

aN /
77/ < 017 and A<

Again, we are sufficiently decreasing A as reported in the statement. In his way, we get:

/ 2 /
P(E,B,) < HY Y (0B, N E) + AtV ! < %TN—l +AQON LN < T”TN—%

In particular:

2 /
P(E,B) < 2L

< SOVt <o

which is a contradiction with thus, in conclusion, follows. O

As we will see later on, finite perimeter sets with density estimates enjoy some good regularity properties.
Therefore, it is rather natural to ask ourselves whether minimizers of problem [2.5 enjoy such kind of
estimates or not. Of course, we need to prove that they are (A, rp)-minimizer for some couple (A, rp)
and the tool to make such conclusion, the first almost minimality property for minimizers of Fo g ac, is
presented in the next proposition. Anyway, we must prove first another preliminary lemma.
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Lemma 2.10. For every generalized set £ = (FUF) x {E'};>o with E and F sets with positive measure
such that |[E N F| = 0, if we define F = F x {E'};>2 we have:

T ~ 2
Too(E) > To o (F) — %

Proof. Let i = {u'}i>1 be optimal for Z,, . (E). We may assume without loss of generality that both
P (E) # 0 and gl (F) + 30 ' (EY) # 0. Indeed, in the first case we would have Z, . (E) = Z, o (F) so
trivially:

T- T T Ia,ﬁ(p)z

ToolB) =Too(F) > Too(F) — ENR

Whereas, in the second one we would have Z, . (E) = Zy..(F), from which we find the implication:

Toe(B)? + Lae(F)? 2 Loe(B)Iac(F) = Zoe(B) 2 Toc(F) - %1(25
Hence, we define:
1e ! e i w ‘
#:,ul(E)’ v :m and V:m for all ¢« > 2.

In this way, p is admissible for Z,, .(E) and 7 = {v'};>1 is admissible for Ia75(}~7) and we have:

Loc(p! e+ p'F) = Lac(p'|B) + Tac(0'p) + Toc (' 2, 1t | F)
> Ia,a(ﬂ1|E) + Ia,s(lul‘F) = (Nl(E))2Ia,6(/J') + (1 - NI(E))QI%E(VI)7

Ioe (Ul)

by 2-homogeneity of the regularized interaction energy I, .. Therefore, by definition of Z, . (E):

400
Toe(B) = Loc(u') + > Ta (i)
1=2

“+o0
> (1 (B) Lae(p) + (1= p (B)* Lo e (V') + (1 — p' (E))? Zfa,e(vi)
= (1 (B)*Lae(p) + (1 = p! (E))* Lo (7)
> (1(E)*Zae(B) + (1 = p(B))*La o (F).
Since 0 := p*(E) € [0,1] (here we include again the trivial cases), we have as well:

T (E) > min 6°Z, (E) + (1 — 0)*T, . (F).
0€[0,1]

Too(F)

T BT () which in turn yields:

Optimizing in 6, we find § =

= Ia,s(E)Ia,e(F) _ T Ia,E(F) -
O - FEANT O (1 * :ra,g(E)> '

We conclude thanks to the inequality (1 +z)~! > 1 —z for > 0. O
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We are now ready to prove the first almost minimality property for generalized minimizers of the functional
Fa,Q e

Proposition 2.11. For all a € (0,1], @ > 0 and A > 1 + @? such that Lemma applies, there exist
C =C(N,a,A) >0 and 0 < rp < 1 such that for all £ > 0 every generalized minimizer F = {E'};> of
Fa.Q.Ae is an almost minimizer of the perimeter, in the sense that for every i > 1, x € RY and r < rq:

P(E'Y < P(F)+C(Q*+r*)rN~*  for all E'AF C B, (x). (2.16)

Proof. Without loss of generality, we assume i = 1 and x = 0, denoting £ = E'. Using F=Fx {E};>o
as a competitor, Fo.g ac(E) < Fa,0n(F) yields:

P(E) < P(F) + Q* (ZTae(F) = Tae (B)) + A [|F| —wn| = A ||E| - wy|.
The function  — A|z — wy| is A-Lipschitz, therefore:
A[IF| = wn| = A|1BI - wn| < A|1BI - 1FI| = AllFI - |5,
moreover, for all E, F C RY we have:
|E| = |F| = |E\F|+ |[ENF| - [F\ E| - [FNE|
S[ENF|+|F\ E| = |[EAF],

so we deduce: ~ ~
P(E) < P(F) + Q* (Zo:(F) — To o (E)) + A|EAF.

By the property P(EN F)+ P(EUF) < P(E)+ P(F) (|18 Lemma 12.22]), it is enough to prove the
thesis under the additional condition £ C F or F' C E. Indeed, if it is not the case, then we still have
ENFCFEand EC EUF, so:

P(ENF)+C(Q*+r*)rN =

P(EUF)+C(Q*+r*)rN 7.

Summing up:

2P(E) < P(ENF) + P(EUF) 4+ C (Q? +r®) rN=
< P(E)+ P(F)+C (Q* + 1) rN~e,

So the thesis follows by subtracting P(E) from both sides.

The case £ C F is easy: if p is a probability measure supported in FE, then p(E) = 1 implies u(F) = 1,

so by definition Z, o (F) < Z, - (E). As we have EAF C B,, then |[EAF| <V hence:

P(E) < P(F) + Q* (Zo,:(F) = Zo -(E)) + A|EAF)

(F)+ CrN < P(F) +C (Q*+r) rN .
We are left with the case F' C E: writing E = F U (E \ F') and applying with E \ F instead of F|,

we get:

~ - )2 ~ ~ =9
LAB) 2 TocP) - 2250 = TP - TodB) < 2o
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By Lemma (precisely its readaptation with the regularized Riesz energy Z,, ), since F is a minimizer
then |E| = |E| + 3,5, |E!| = wy. The right choice of 7y < 1 implies that for all r < ro:

[Fl=|F|+ ) |E| =wy —|E\F| 2 1,

i>2

so we infer Z,, . (F) < 1, by the upper bound of Lemma On the other hand, since £\ F' C B, we
have:

To-(E\F)>1T,.(B,) >ZIy(B,) +¢ inf / 2.
w(Br)=1Jp,

Now, by Cauchy-Schwarz we get:

2
1= (/ M) < |BT\/ w? < TN/ 02 = e inf / > er ™,
B, B, B, w(Br)=1JpB,

In addition, Z,(B,) = ¢(N,a)r~ V=) thus we can say:
To(E\F)>r W= fgpmn > p=(N=a),
Hence, we get Zo o (F) = Zo - (E) < 7N~ which allows us to conclude (recalling |[EAF| < 7N = ropN—a);
P(E) < P(F) + C (% + %) V.

O

Apart from proving regularity of minimizers of we must not forget that our first intent was to show
existence of minimizers for the original problem with Riesz energy Z,. A first step towards this direction
is the fact that the first minimality property is uniform in . Subsequently, every conclusion we will
infer from it holds true regardless of the parameter £ chosen, so we restrict ourselves to ¢ € (0, 1] for
convenience. We will eventually be able to pass to the limit as € — 0 in order to recover solutions of
However, before doing that, the first direct consequence of estimate [2.16]is the following corollary, where
we also start noticing the difference between the cases a > 1 and o < 1.

Corollary 2.12. For every a € (0,1] and @ > 0 let A > 1+ Q* be such that Proposition applies.
Then, for every ¢ € (0,1] and every generalized minimizer £ = {E"};>1 of Fa A, there exists ry < 1
such that, if max{Q?r'=% r} <7y and x € OE?, then:

min{|E* N B,(z)|,|B-(z) \ E*|} 2V (2.17)

and
P(E!, B,(x)) ~ N 71, (2.18)

Proof. Rearranging we get that for every r < rq, for some rg < 1:

P(EY) < P(F)+C(Q* ' *+7r)rN='  for all E'AF C B, ().
In particular, we see that E® is a (A,rg)-minimizer for all i > 1, with A = A(r) = C (erko‘ +r).
Applying Lemma we reach the conclusion by imposing max{Q?r'~%,r} to be small enough. Hence,

changing in turn the value of ry in case it is necessary, for all r < ry estimates and hold. O]
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As anticipated, thanks to density estimates we are able to infer many good properties of our generalized
minimizers, furthermore distinguishing between the cases o € (0,1) and o = 1. From now on, we denote
OME the measure theoretical boundary (otherwise called essential boundary) of a set of locally finite
perimeter, according to the definition given in |18 Chapter 16].

Proposition 2.13. Consider o € (0,1], @ >0, A > 1 + @2 such that Proposition applies, € € (0,1]
and a generalized minimizer £ = {E'};>; of F, g a.e. Then:

e if o € (0,1), for every Q < Q for any Q > 0;
e if @« =1 and Q is not too large, there exists Q* > Q such that for all Q < Q < Q*;

up to the choice of a representative, E is made of finitely many E?, each of which is connected with
E* € § and for which OE" = OM E*. Moreover, the number of such components as well as their diameter
depends only on Q.

Proof. The difference between the cases o € (0,1) and a = 1 is given by condition max{Q?r'=% r} <
for some ry < 1 from the last Corollary. Indeed, when o € (0,1) then r = o(Q?r'~®) as r — 0. Thus,
we need not impose any condition of @), as it suffices to choose only some r small enough to make
max{Q?r1 = r} < rq true, regardless of the value of Q. On the other hand, if o = 1, we must impose the
condition max{Q@?,r} < rg. Hence, there exists Q* > 0 small enough not to be exceeded in order to have
proper density estimates. Therefore, we fix @) for the rest of the proof, according to the just motivated
conditions from the statement of the Proposition.

Before starting the actual proof, we notice that there is an uniform bound in i and e for the masses
and the perimeters of the sets composing generalized minimizers. Indeed, using the unit ball By as a
competitor for Fn oA as we already did before, we get P(E!) < 1+ Q? for all i > 1 and £ € (0,1].
Moreover, as we highlighted in the proof of |E.| = wy for all € € (0,1]. Therefore there exists some
C > 0 such that P(E!) < C and |E!| < C for all i > 1 and ¢ € (0, 1].

We fix i > 1, ¢ > 0 and we set E. = E. First of all, we show that F is open up to the choice of a
representative. By Lebesgue points Theorem [18, Theorem 5.16] E = EM almost everywhere, where:

D — {xERN:hmwzl}.
r=0  |B(z,r)]

For all z € E() | we show that there exists r, > 0 such that B, (z) C EW; up to translations it is enough
to do it for 0 € E(). By contradiction, we assume the converse, namely that there exists {rn}nen such
that r, — 0 as n — 400 and B,., \ E®) # () for all n € N.

Thus, we claim |B,.,, \ E®| > 0 for all n € N. We assume, again by contradiction that there exists n € N
such that |B,, \ EW| = 0. Since B,, \ E®) # ), there exists x € B,, \ EM). As x € B, , there exists
7 > 0 such that Br(x) C B,.,. Hence:

Bi(z)\EY c B, \EW = |Bi(z)\ EV|=0.
Since Br(x) = (Br(x) N EM) U (Bp(x) \ EM), we must have for all r < 7:

(1)
) o 1B VB _
[Br(@)| =B @) EV| = lm ’

so € EMW which is absurd.

Hence, we have |B, NEM| > 0and |B,, \E®| > 0 for all n € N and, by relative Isoperimetric Inequality,
we get P(EMW, B, ) = HN-1(0*EM) N B,,) > 0. Therefore, there exists y, € 0*EM") N B, for which

n
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we have density estimates, so, in particular, | B, (y,)\ EM| > 7N for all r, < ry. Namely, as r, — 0,
there exists some 7 € N such that this is true for n > n. Now, since y, € B, , by triangle inequality
B, (yn) C Bay, (0), hence n > f:

. |[EnB(z,r)]
|Bar, (0) \ B[ = By, (yn) \ EY| 2 1) 50+ Bz,

>0
so0 ¢ E® | which is a contradiction. Thus, E is open up to a representative and we fix E to be equal to
this representative from now on.

Next, we prove that E is bounded and connected by following [20]. If E is not bounded, then, fixing
r < ro (with 7o appearing in the density estimates) there exists {2, }neny C E such that z,, — 400 as
n — +oo and |z, — Ty/| > 2r for all n and n’. Clearly, as B,.(z,) N B.(z},) =0 for n # n':

wy =B > |E| > Y [ENBi(2,)| 2 YN = +oo,
keN keN

which is impossible, so E is bounded. On the other hand, if F is not connected, then £ = E; U Es
with By # 0, By # 0 and F; N Ey = (). We define Er = FE; U (E3 + e1 R), noticing that |Eg| = wy
and P(Egr) = P(E) = P(E;) + P(FE>) for some R > 0 sufficiently large. At the same time, the Riesz
interaction energy decreases, since the interaction term between E; and Es + e; R becomes negligible as
R increases. Specifically:

lim inf Fog.c(Br) = P(Er) + Q*Tac(B1) + Qoo (E)

< P(E)+ Q*Ta o (By) + Q*To . (Es) + 2Q° / dpl@)dnly) _ 7 (g

Eixp, [T —yN

where p denotes the optimal measure for Z,.(E). Thus, choosing R sufficiently large, and calling
F. = {E?};4; x Eg, we obtain F, g (F.) < Fu,0,(E:), a contradiction with the minimality property of
FE.. Thus, F is connected as well.

It is time to show that OF = 0M E. Trivially 0™ E C OF, so we choose 0 € OF (without loss of generality
by translation like before) and exploit the fact that E is open, so for all » > 0, there exist y € B, N E
and z € B, \ E. By an easy consequence of density estimates, we have:

e for all y € E and for all r < ro: |EN B,(y)| = rY;
e for all z € E¢ and for all » < rg: |B,(2) \ E| 2 r¥V.

Indeed, we proved the previous properties for all x € OF, but if we move the point z outside or inside E
density estimates keep holding true, because the measure of the set £ N B,(z) and B,(x) \ F can only
increase. In particular, they hold for all z € RY. Therefore, since B,(y) C Bs, and B,(z) C Bs,, we
have |Ba, N E| > |EN B, (y)| 2 ¥ and |Ba, \ E| > |E\ B,(2)| 2 v for all r < rg, so:

By, NE By, \ E
fminf P2 OFL 0 and Liming B2 VE

>0
r—0+ |BQT| r—s0+ ‘B2r|

hence 0 € OME and OF = OME.

Now, we show that P(E) = HY"1(OE) < 40 and |0E| = 0. The proof of these two facts is easy: by De
Giorgi’s structure theorem for sets of finite perimeter [18, Theorem 15.9] we have P(E,-) = HN |y,
so, by minimality of E., we have that HN~1(0*E) = P(E) < +o0o. Whereas, by Federer’s theorem
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[18, Theorem 16.2] we have HVN~1(OME \ 9*E) = 0 as well, so putting everything together we infer
P(E,-) = HN Y ymp and
HNLOE) = HN 1 (OME) = P(E) < +oc.

HNH(OE) < +oo implies immediately |0E| = HN(JE) = 0, by properties of Hausdorff measure. In
particular, being OF Lebesgue negligible, F is a closed and bounded representative of F, thus we are

allowed to consider F to be compact and from now on we will do it. In this way, combining compactness
with the fact that P(E) = HN"1(OE) < +o0, we finally get E € S.

It remains to prove that E. = = {E'} is composed by finitely many components, each of which has bounded
diameter uniformly in e. We fix ¢ € (0,1] and write E = E.: first of all, we can trivially get rid of all
the components E’ such that |E?| = 0. Indeed, E* = ) for all such indexes: if otherwise |E*| = 0 and
E* = () then there exists x € E* for which we have density estimates, so |E?| > |E* N B,.(z)| 2 ¥ > 0,
impossible. Since the empty set is not seen by F, g A, we can avoid considering all indexes 7 such that
E* = (). We assume by contradiction there are infinitely many indexes with |E?| > 0. If this is the case,
then there exists z; € E* for which we have density estimates, so:

wy = [E[=) |E|2) |E'NB(2i)| 2 ) 1Y =

i>1 i>1 i>1

which is impossible. Hence, there exists I € N such that E = {E?}/_,. The uniform bound on diameters
follows easily. We fix r < ro: by compactness, there exist M € N and {z;};<a such that there holds
E' C Uj<mB,(z;). By density estimates, |E' N B,(z;)| 2 rV, thus the number of balls M must be
limited uniformly in I. Therefore, for all ¢ < T

diam(E?) < diam(U; < By (z;)) Z diam(B,(z;)) = C < +oc.

I<M

We conclude the proof highlighting the fact that I (and so the bound C' on the diameters) is uniform in &
and depends only on Q. Indeed, I can be derived from the coefficient appearing in density estimate m
which in turns comes from condition max{Q@?r'=% r} < rg. Hence, fixing @ as we did at the beginning
of the proof makes everything uniform for each Q < Q. O

2.5 Existence and regularity of minimizers in the case a < 1

While the previous sections were devoted to accurately setting the stage, in this one, thanks to Theorem
we are finally ready to prove existence of solutions to the problem

~ min_ }"a,Q(E).
|E|=wn,EE€S

Afterwards, we restrict ourselves to the case a < 1 and we focus on regularity: in Theorem [2.15| we infer
first the usual conclusions from classical regularity theory of perimeter almost minimizers and then we
see that, for @ small enough, generalized minimizers are actually classical minimizers, whose boundary
is C7 regular for some v € (0, 3).

Theorem 2.14. Depending on the value of «, let Q* given by Proposition [2.13| and set QF = o0 if
€ (0,1). Then, for every 0 < @ < Q < Q* there exist generalized minimizers F = {E'}!_, € SN of

min {Fag(B): Bl =wy} .

Moreover, for each i < I, E' is a perimeter almost minimizer in the sense of and both I and diam(E?)
are bounded by a constant depending only on Q.
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Proof. Let A such that both and apply. By the latter, for every e € (0,1] and Q < Q, there
exists a generalized minimizer E. of F, g a,.. Moreover, by E. = {E! {:1 for some connected sets
E! € S, with both I and their diameters depending only on Q. In particular, there exists R > 0 such
that E? is strictly contained in Bg for all i < I. Moreover, from what we highlighted at the beginning
of the proof of there exists C' > 0 such that P(E?) < C for all € € (0,1]. Therefore, for all i < I,
by [18, Theorem 12.26], there exists a set of finite perimeter E* C Bpg such that, along some sequence
{en}tnen with &, — 0 as n — o0, E; — E%in L' and almost everywhere as n — 4+o0c. Without
loss of generality, up to other I — 1 extractions, we can assume that the sequence {e, }nen does the job
simultaneously for all i < I. We call E = {E*}L_,.

First of all we show that also E° enjoys the minimality property To simplify notation, we set
E, = Egn and E = E'. Then, we select a decreasing sequence {on}nen with o, — 0 and o, < r for
all n € N such that, considering the quantities {|(FAE,) N (B; \ Br—s, )| }nen, we impose the fact that
[((EAE,) N (B \ Br—s,)| = 05=0(0s). For all n € N we have, by Coarea Formula:

/T ,HN—l((EAEn)ﬁaBS)dS: ‘(EAEn)ﬁ(Br\Br—anﬂ'

In particular, there exists some s, € (r — op,7) (so clearly s, — r) such that:

< [(BAE,) N (Br \ Br—o,)|

HNY(EAE,)NOB,,) < —0 as n — 400

On

Now, we fix some finite perimeter set F' such that EAF C B,_,,. With our choice of s,,, we define:
F, = (Fﬂ Bsn) U (En \ BSn)’

noticing that P(F,) = P(F, B,) + P(E,, B ) + HN "' ((E N 8B, )A(E, N 0Bs,)). Moreover, by con-
struction F,,AE, C B, because s, < 1, SO yields:

P(E,) < P(F,) + C(Q? + r®)rN—«
which in turn gives:
P(E,,B,,) < P(F,Bs,) + HY Y ((EAE,) N dB,,) + C(Q* + r*)rN =,

Sending n — 400, the second term in the right-hand side tends to 0 by our previous argument. Moreover,
since B, = UpenDBs,,:

P(F,B,,) = HYN"Y0*F N B,,) == 4N-1(0*F N B,) = P(F, B,),

by continuity of the measure ¥ ~! over Borel sets. Regarding the left-hand side, for all § > 0 we have
definitely P(E,, B,_s) < P(E,, Bs, ) and, by lower semicontinuity of the perimeter under L' convergence:

P(E, B,_s) < liminf P(E,, B,_s) < liminf P(E,,B,,) < lim P(E,,B).

n——+o0o n—-+o00 n—-+o0o

In conclusion, letting 6 — 0 we obtain:
P(E,B,) < P(F,B,) + C(Q* + r*)rV =2
and adding P(E, BS) = P(F, BS) to both sides we find:

P(E) < P(F)+C(Q*+r*)r™=®  for all EAF C B,_,,
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Sending o1 — 0, we get the desired inequality for all EAF C B, for all r < rg.

Arguing like we did in Proposition density estimates imply nice properties for E = {E*}!_, as well.
In particular, for all i < I, E* € S and 0E* = M E*. Moreover, we underline that the convergence
obviously maintains both the number I and the uniform bound R on the diameters diam(E®) and these
constants keep depending only on Q. Notice that we are not able to prove connectedness yet, but it will
be clear at the end of the proof, by minimality of the set E for the functional Fa,@- Indeed, it suffices to
argue in the same way as we did when proving minimality in Proposition [2.13

Now, we prove that E! Ay Biasn — 4oo too, namely the convergence happens in the Hausdorff

sense as well. We show first 0F, 2, 9E and we start by noticing that, reasoning like we did in
Corollary E* enjoys density estimates too, as a consequence of the previous argument. We fix
xz € E*N{y:d(y,0F) > r} and we assume by contradiction z ¢ E,, for all n € N. By density estimates
we have:

|E,AE| > |B,(2) \ E,| > Cr'Y.

Indeed, since x € E* N {y : d(y,0F) > r}, then B.(z) C E, so B,(z)\ E, C E\ E, C EAE,,. We reach
a contradiction letting n — 400, because |E,AE| — 0. Therefore, for n big enough, all the points of
En{y: d(y,0F) > r} are inside E,. Similarly, we can show that for n big enough all the points of
E°n{y : d(y,0FE) > r} are outside E,. As a consequence, for all r < rq, for n big enough we have
that OF,, C {y: d(y,0F) < r}. Inverting the roles of E and E,, (here we need density estimates for E),
the same argument shows that for all r < rg, for n big enough we have that OF C {y : d(y,0FE,) < r}.

Putting everything together, we conclude 0F, O as n — +oo. Therefore, it remains to show
Hausdorff convergence for points in the interior of F. Since we are dealing with closed sets and the space
we are working in can be chosen compact (Bg for example), it is enough to show Kuratowski convergence,
as stated in 1} Proposition 4.4.14]. In particular, we have to check the following two conditions:

e for every sequence x,, — x such that z,, € E,, for all n € N, we have x € E;
e if z € F then there exists {z,, }nen with z,, € E,, for all n € N such that z,, — .

The second one is an easy consequence of the L' convergence. Instead, to prove the first one, we appeal
again to density estimates. In particular for all r < rg, for each converging sequence x,, — x there holds
the condition |B(z,,7) N E,| > Cr¥. It implies, together with the L! convergence, that the limit point
z must be in E. As we have already proven Hausdorff convergence for the boundaries, in this way we

showed that E¢ 2, Bl asn — +oo for all i < I.

Now, for all i < I, we focus our attention on the convergence of the family of measures {u?, },,en, associated
to the sets {E®},en. In particular, the aim of the theorem is to come back from the regularized Riesz
energy Z, . to classical Riesz energy Z,. Both of the variational problems have a measure as minimizer,
nevertheless we are sure it is an L? function only in the first case. As a consequence, when passing to the
limit as ¢ — 0, we cannot apply Banach-Alaoglu theorem as we did before and we are obliged to treat
the L?(Bpg) functions {u% },en as measures. Being minimizing measures for the functionals Fo g A e,
we have for all n € N:

I
> ui(EL) =1,
=1

therefore pf,(E™) <1 for all i < I; moreover spt(u',) C EY C Br. By compactness of the set B, the set
of measures supported in Br with mass less or equal to 1 is compact with respect to the weak convergence
of measures. Therefore, for all i < I there exists a measure u’ supported on Bp such that uf, — ' in the
space of finite measures up to extraction. Again, we can assume without loss of generality by performing
other V — 1 extractions that the sequence we chose does the job simultaneously for all ¢ < I. At this
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point, we need to prove that ji := {u’}/_, is a competitor for Z,(FE), namely that spt(u?) C E? for all
1 < I and that:

I
Z;ﬁ'(Ei) =1 (2.19)

Fixed i < I and calling u = p, p, = p',, E = E* and E,, = E!, the first condition is a consequence

of the convergence FE, A Basn - +o0o. Indeed, by [16, Lemma 0.1, Corollary 1] we have that
w(A) < liminf, oo pin(A) for all open sets A C RY. Hence, being E closed and considering the
measures /i, i, to be defined on the whole of RY, we infer by Fatou’s Lemma:

((E°) = /RN xEe du < hmf;f/ X (%) dy = hmmf,u ((El/k) )

< lim inf hmmf fin ((El/k) ) =0.

k—4o00 n—+

In the last computations, we denoted by £/, the open 1/k-neighbourhood of E. By Hausdorff conver-
gence, for all k € N there exists n € N such that for all n > n we have E,, C ;. Since spt(u,) C Ey,
for all n > n we have pu, ((mc) = 0. Therefore, passing everything to the inferior limit, we ob-
tain p(E°) = 0, namely spt(n) € E. To prove this time we use [16, Lemma 0.1, Corollary 3]:
p(A) = limy, 400 pin(A) for all A Borel such that pu(0A) = 0. We just showed that for all ¢ < T
spt(u*) C E*, so in particular p*(Bsg) = 0, hence:

I
= ngrfooz:un (B2r) = Z lim fin(Ba2r) = ;Ni(BzR)~

Using again the condition spt(u') C E?, we are able to infer

It is time to show that: } )
]:a,Q,A(E) < lim iélf]:a,Q,A,e(Ee)~ (220)
E—r

To make the notation coherent with the final part of the proof, we restarted using ¢ — 0 to index the
convergence we established instead of n — +oo. For all i < I, by L! convergence of the components we
have automatically :

|E| = lim |E}| = A‘|E| wa‘ - limA‘|E5| wa(,
e—0 e—0

by continuity of the function A |- — wy|. On the other hand, by lower semicontinuity of the perimeter it
is easy to notice:
P(EY) < hmlan(EZ) = P(E) < liminf P(E.).

e—0 e—0

Therefore, if we show: 3 }
Q*7,(E) < lim inf Q*Z,(E.) (2.21)
E—r

we can_deduce [2.20] putting everything together and using the superlinearity of the inferior limit. To
show we begin by noticing that I, (ul) < Io(ul) + € [on (#)? = Lo (E:). For all i < I we have
pl — pas e — 0, by weak lower semicontinuity of the functional I, we get:

I I
:ZIQ( Z 1m1an <hm1anI ph) —hmlanIaE (pt)
7).

=1 =1
= hmlanaE(

e—0
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Now, by the measure [i is a competitor for Z,. Passing the left-hand side to the minimum over the
class measures of this kind, we finally infer

Next, we prove that for every F' € S, there exists a sequence {F. }.¢(o,1) such that:

Fa,a(F) > limsup Fo g.a e (F:). (2.22)
e—0

By [26, Theorem 1.1] applied to F¢, for all 6 > 0 we can find smooth compact sets Fs such that F' C Fy,
P(F5) < P(F)+ ¢ and ||F| — |F5|| < 4. The first condition implies Z,(F) > Z,(F5). Considering also
the effects of the second and the third condition on the two remaining terms of F, g A, we find, passing
to the superior limit as § — 0:
Fa,@alF) = lirgl sup Fo,@,a(F5).
—

Thus, we can further assume that F' is smooth in the proof of For smooth sets, by |12, Proposition
2.16], we can find for every § > 0 a function f5 € L>(F) with [,. fs = 1 and such that:

I,(fs) < I, (F)+ 0.

Precisely, the statement holds only for connected sets, but it can be easily readapted for disconnected
sets too. At this point, for every ¢ > 0, we clearly have lim. o I (f5) = I.(f5). Hence, a diagonal
argument shows that Z,(F) = lim._,0 Zy(F). The proof of is concluded once setting F. = F for
all £ € (0, 1], considering the superior limit as ¢ — 0 instead of the limit and finally adding the other two
terms of the functional F, o ao (which are not perturbed by ¢) to the inequality.

Now, by lemma passing the right-hand side of to the infimum over F' € § yields the same value
as passing the same functional but defined on generalized sets to the infimum over F' € SN. Therefore:

inf {FQ,Q,A(F)} > limsup Fo,0,a,(Fz) > limsup inf {fa,Q,A,a(F)} .
Fest e—=0 e—=0 FeSN

This last relation, combined with allows us to finish: indeed, in this way we have
]:a,Q,A(E> > inf {]:a,Q,A(F)} > limsup inf {me’A,E(F)} = 1imsup]:a,Q)A,€(E~6)
FeSN e—0 FeSN e—0
> lim inf Fo,ne(E) > Fane(E).
e—0

Since F is a generalized minimizer of F, g a, Lemma implies that |E | = wy and thus E is also a
volume-constrained generalized minimizer of 7, q. O

After showing existence of minimizers, we are now ready to deal with their regularity. We begin by
focusing on the case o € (0,1) and we appeal to classical regularity theory for almost minimizers of the
perimeter first pioneered by De Giorgi. The topic is too broad to be treated with the worthy precision
in this dissertation, so we decided to outline just the basic ideas needed in the proof of the following
theorem, avoiding some technicalities. Instead, the case @ = 1 will be analyzed in the next section.
Theorem 2.15. For o € (0,1) and Q > 0, let E = {E’}/_, be a volume-constrained generalized
minimizer of F, q. Then, for all i < I, 9*E" are oLt regular. Denoting by ¥; = 9E*\ 9* E*, we have
that:

e, =0if N<T;
e Y; is at most finite if N = §;
e ¥, satisfies H*(X,;) =0if s > N—8and N > 9.
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In addition, for Q < 1, E = Eg is a classical volume-constrained minimizer of F, o with uniformly

bounded C'1-2* norm, with no singularities (namely ¥(Eq) = @) and, for every § < (1;‘1)

to By in CY% as Q — 0.

, Eg converges

Idea of the proof. For all 4 < I, the set E° satisfies Therefore, the first part of the statement is a
direct consequence of [27, Theorem 1], which itself given by a readaptation of the classical De Giorgi’s
regularity theory for almost minimizers of the perimeter.

The second part is more interesting. First of all we summon the Sharp Quantitative Isoperimetric
Inequality from |10, Theorem 1.1]. However, we are not able to apply it straightaway, since it involves
the perimeter and the volume of only classical sets. Thus, starting from the components E' of our
generalized set, recalling they are all uniformly bounded by some R > 0, we build a classical set £ made
up by such components positioned far enough from each other. In this way P(E) = P(E) and |E| = |E]|.
Hence, up to translation and relabelling, the Sharp Quantitative Isoperimetric Inequality yields:

I 2
<|E1A31| +y° |Ei) S P(E) — P(By) < QT4 (B1) — Q°T4(E) £ @,

=2

where in the second inequality we used minimality of E for Fa,q, namely .7-'(17Q(E) < Fa,o(B1). By
translation we can assume without loss of generality E'NB; # (). Thus, density estimates from Corollary
imply that, for Q small enough, F? = () for i > 2, so that F = E is a classical minimizer. Moreover,
it is clear that |[E'AB;| — 0 as Q — 0, namely E' — By in L!.

Now, we exploit again regularity theory for almost minimizers of the perimeter (this is the portion of the
proof where we give just the idea). First of all, given a set of finite perimeter E, we define its spherical
excess at x € OF at scale r as:
v —v
e(E,z,7) = min / lvely) = vl |al”;’-lN_1(;l/)7
vesN—1 0* ENB(z,r) 2
where SV~ is the surface of B; C RY and vy the measure theoretic normal of the set E appearing in
its definition of reduced boundary. Now, we consider a set of finite perimeter E satisfying an estimate of

the kind:
P(E) < P(F)+ArY¥=™  for all EAF C B,(z)

for all z € RY for some ry > 0 for all » < ry. From a readaptation of |18, Theorem 26.3], there exists
€ > 0 such that, if for all x € OF we have

e(E,x,r)+ Art™® <e, (2.23)

or some 7 smaller that a certain constant), then N B,./5 is the graph of a C* =% function , with:
f ller that a cert t), then OE N B, s is the graph of a C1:*

[f]

ot (o) < e(E,x,r) + Art=e,

Choosing the right coordinate system for f (for example a system such that f(0) = 0 and Vf(0) = 0),
we have also [f]c1 (o) = Hf||Cl (1-a) , the bound is uniform in z € @E and depends only on A.
) )

We would like to apply this regularity result to our situation: we have a sequence {FEqg}g>o of almost
minimizers in the sense of [2.16] namely there exists o > 0 such that for all z € OF and r < ry we have:

P(Eq) < P(F)+C(Q*+r*)rN=*  for all EQAF C B,(x).
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In addition, Fg — By in L' as Q — 0 and obviously B; has C'! boundary. For every ¢ > 0, it can be
shown that the estimate on the excess holds for the right r (which we did not specify). Moreover,
for almost minimizers of the perimeter in our sense [2.16] from the density estimates and the convergence
P(Eg) — P(B1), the excess is continuous with respect to L! convergence. In particular, choosing again
the right scale, for @) small enough we have for all x € 9E:
e(Eg,z,r) + Ar'™® <

N ™

. (a-a) . . . . "
Therefore, for () small enough, OEy, is of class C'': = and in particular it has no singularities. Moreover,

calling {fz}zcor the corresponding functions defined on OE N B, )3(z) for x € OF, their seminorms are
uniformly bounded by:
el oo S (B, 2,7) + At

Hence, by compactness of the Holder embedding over the right compact set K:

(1-a)

1—
Ch T (K) — CYP(K) for all 0 < 3 < . 2a),

we can conclude Eg — By in C1# as Q — 0 for all 0 < 8 < 7(1504). D

2.6 Second almost minimality property and regularity of mini-
mizers in the case a =1

Proving a counterpart of Theorem in the case a = 1 is much more difficult: indeed, it is known that
when a = 1 the first minimality condition does not even imply C! regularity. Therefore, we are not
in the position to apply the same ideas employed before and the aim of this section is to develop a way
to reach the same regularity conclusions of the case a < 1. Clearly, from now on we assume that o = 1.

The first step consists in introducing the notion of Reifenberg flat set.

Definition 2.16 (Reifenberg Flatness). Let £ C RY, §,79 > 0 and € RN. We say that E is (4, 7¢)-
Reifenberg flat in B, (z) if for every B,(y) C By,(x) there exists a hyperplane H, , containing y and
such that:

e we have (denoting dy the Hausdorff distance):

dua(OE N By (y),Hyr N By(y)) < or;

e one of the connected components of the set {d(-, H,, > 26r)} N B,(y) is included in E and the
other in E°.

We say that E is uniformly (0, 7q)-Reifenberg flat if the above condition hold for every z € JF.

It is immediate to see that C' regular sets are trivially Reifenberg flat at each point of their boundary,
just by considering their tangent hyperplane as H,. Using the same technique of Theorem2.15] in the
next result we prove first L' convergence of a minimizer to the unit ball B; as Q — 0 and then we exploit
it to show that, for @) small enough, our minimizer is actually uniformly Reifenberg flat.

Theorem 2.17. Let @ = 1. There exists @* such that for every Q@ < Q*, every volume-constrained
generalized minimizer of F, ¢ is a classical minimizer. Moreover, for every 6 > 0, there exist Q5 > 0
and s > 0 such that for every @ < Qs, every volume-constrained minimizer Eg of F, g is uniformly
(8,75)-Reifenberg flat and, up to translation, |EqAB;| < Q2.
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Proof. The first part of the statement can be recovered as we did in Theorem [2.15| employing the Sharp
Quantitative Isoperimetric Inequality. In particular, we highlight that Eg — B; in L' as Q — 0 and
that Eq is a (A, ro)-minimizer in the sense that there exist ro such that for all x € RY and r < rg, there
holds:

P(Eg) < P(F)+C(Q*+r)rN~!  for all EQAF C B,(z),

where Ag = C(Q? + r). Moreover, max{Q?,r} < 1, in accordance to Corollary

Since By is a C' regular and compact set, after fixing 6 > 0 we can apply |14, Corollary 1.5]: there exists
A = A(0) such that, if limsupg_,q Ag < A, then there exists 75 > 0 such that, if Q is small enough, Eq
is uniformly (4, r5)-Reifenberg flat. In our case we have:

limsup Ag = limsup C(Q* + ) = Cr.
Q—0 Q—0

So, choosing r small enough, the quantity limsupg_,o Ag can be made arbitrarily small and the thesis of

[14, Corollary 1.5] follows. O

At this point, we would like to pass from Reifenberg flatness of volume-constrained minimizers of Fj g
to their C'17 regularity, for some ~y to be determined. As one might expect from what we did before, we
rely on a second almost minimality property for minimizers E of 71 ¢ (depending on its optimal measure
1g), thanks to which we will be able to draw the required regularity result. We highlight that in the
next proposition Reifenberg flatness of F is not used.

Proposition 2.18. There exists a number C' = C(N) > 0 such that if @ < 1 and E is a volume-
constrained minimizer of F; ¢, whose corresponding 1/2-harmonic measure (namely the measure such
that Z,(E) = I (ug)) is pg, then for every x € RY and r < 1 there holds:

N+1

2N N
PE)<PF)+C| Q? ( / MN“) 4N for all EAF C B,(x). (2.24)
B (z)

Proof. Without loss of generality we may assume that © =0 and ug € LFH (B,), since otherwise there
is nothing to prove. In particular, we require this hypothesis for all = € RY according to the statement

2N
we want to prove, therefore we are asking pp € LY. (RY). By Lemma there exists an universal

loc
constant A > 0 (recall that we assumed @ < 1) such that F is a minimizer of

.FLQ(E) + A ||E| - wN| .
We choose F' such that EAF C B,(0) and we argue as in the proof of Proposition to get:
P(E) < P(F) + Q*(Ti(F) — T.(E)) + A|[EAF|.

Again, using P(ENF)+ P(EUF) < P(E)+ P(F), we can assume without loss of generality that either
E C For F C E: in the first case Z;(F) — Z;(E) < 0, so we conclude immediately. Therefore, it is
enough to prove that for every F' C E such that E'\ F' C B, we have:

Gy N]j;l
Il(F)Sz-l(E>+C / /,LNJrl
E\F
Noticing that F' C F implies FNE = F and FFU E = E, we use the measure:
E\F
p= <uE + ME(|F|\ )) XF
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as a competitor for Z; (F), indeed:

u<F>/RNxF(uE+ |’j;|\F — [ e+ [ D) @}F — (BN F) + pg(E\ F) = 1.

Now, we consider the respective potentials:

dpe(y)
g lr—yN-t

du(y)

Flr—yNY

ug(z) = and u(x) =

which, by Proposition solve respectively the non-local elliptic equations:
(=A)sup = C'(N,Dup  and  (—A)du=C'(N, 1)
Moreover, yields:

1 2
o1 "l

ugpdug = I (ug) and

"I
Q
=
=
=,
ml\)
ol
|
"I
<
U
=
[
g
S

Since 71 (F) < I (p) and 7y (F) = I1 (ug), we have:

Il(F)—L(E)S/EUdM—/EUEd,uEZ/E(U—UE)d(M—ME)'i‘/EUEdM

+/uduE—/uEduE—/uEduE.
E E E

It is useful to notice that u(E) = 1 as well, since pu(F) = 1 and spt(u) C F. Recalling that ug(z) = Z; (E)
for every x € FE by Proposition this implies:

/ up d(p — ) = 0.
E

/U'd,uE:/UEdM:/UEdME7
B B B

so the last four terms in the right-hand side of the previous computation erase and we get:

In addition, by Fubini:

(F) ~T(E) < [ (w=up)iln—ps) ~ lu—uslly

Being both ug and w functions by assumptions and construction respectively, we estimate the H 3 semi-

norm using Hélder inequality and the classical Sobolev embedding || f|za(q) S [f]#+ (o) with ﬂ =85
(highlighting that here Q = B,. is a bounded C! domain). In particular, if ¢ = ﬂ and s = 2 we apply

the inequality to a finite collection of balls covering F and we get:

sl )~ [ (e up)d(u—ue) <

< [U—UE]

1(E)
Using Young’s Inequality generalization ab < 55 © 4 9b with the right value of 6, we find:

i(F) - T(E) S [u— UE]Z%(E) S e — “E”iﬁfl (B)
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so we are left with estimating || — uEHL on . By definition of u, we have

N+1(E)
_ HE(E\F)
= T X X\,
and thus, using that FNE\ F =0 and (a + b) N <atN b7V for a,b > 0 we find:
2N N]j;l
” _ ||2 _ ,UE(E \ F) _ A
H— H1E S (B) = . 7‘1?‘ XF — MEXE\F
2N L
([ (mmy
F |F| E\F
(B\ F)# ) T
BE !
(e [ )
|F|~+1 E\F
(B\ F)? ) Y
< UE + (/ N+1>
~ N-—1 HE
|F|™w E\F
Moreover, |F| 2 1 implies:
N;f—l
2N
_ 2 < E\F 2 / NF1
e = 1l ax, ) pe(E\ F)” + ( o' )
Finally, again by Holder inequality:
N;1 N[\%}»l
2N 2N
pp(E\F)? < (/ uE) E\FI'F < (/ uE) :
E\F E\F
which concludes the proof. O

2N
Notice that we do not know whether the measure pp actually belongs to the space L))" (R™) or not.
The remainder of the chapter is devoted to showing that not only this integrability property is true, but
also that we can find a good decay estimate for ||ug|| 2n/(v+1) (B, (z)) s 7 — 0 for all z € OF, which will

finally yields us an expression similar to the first minimality property

Awfully, the procedure is rather involved and it takes quite a long time to be presented in detail. Essen-
tially, in Lemma we show a Holder estimate on the potential up which will be crucial to prove the
required decay bound for [|ug|| 2n/(v+1)(p, (). In particular, thanks to some tools from elliptic PDEs
theory and to Alt-Caffarelli-Friedman monotonicity formula, the proof of the next lemma may be seen
as an extension to Reifenberg flat domains of the boundary regularity theory for the half Laplacian.

Before diving into the lemma, let ¥ be a minimizer of the functional F; g for some @ small enough.
Given its optimal measure pp and its associated potential up, we define the function u : RN —— R as

dpg(y)

u(z) =1-I; (B)up(z) =1 - I; '(E) Bl —yN-T

and we take some time studying its properties. First of all, by Proposition [1.12] we know that ug > 0,
up = Z;(E) Lebesgue almost everywhere on E and ug < Z;(F) everywhere in RY. Hence, u € [0, 1]
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almost everywhere and u(z) = 0 for all € E. Now, we consider its harmonic extension v on Rf =
{(z,y) € RN x R : y > 0}, namely the function v : RY —— RY ™! solving the elliptic PDE with Dirichlet
boundary condition:
{—Av =0 on Rf“
N+1
v=1u on ORI = RN x {0}.

Normally, we would need to prove existence of a solution of such problem, however in this case the
construction of v yields immediately the solution:

. dpp(y SNFT
U(Z):]_—Il I(E)/ % ZGR_I‘\_]+1.

Indeed, clearly v = u on RY x {0}. To prove —Av = 0 on Rf“, it is enough to show —Av = —ug in
D'(RV*1) (thus considering v’s natural extension to RN¥*1). Indeed, in this way, being g supported in
RY x {0}, we have that Av = 0 on the open set RY ', This is easy once noticed that I'(z) = |z['=V is
the Green function for the Laplacian on RV*1, so in particular —AT = 6y, where §y denotes the Dirac’s
delta measure centered in x = 0. Therefore:

~A (up(2) = A(D() * pp) = (~AT(@)) * s = bo(x) * 5 = ()

and so —Av = —pug in D'(RV+1). By classical properties of harmonic functions, we immediately infer
veC™® (Rf +1) as well. In addition, we can easily prove some decay estimates on both ugr and Vug
(calling vz the harmonic extension of up to RV*+1):

- 1 . 1

First of all, we find the right expression for Viiz. We begin by noticing that v € C*° (RN 1\ (E x {0}))
for the same reasons as it is v: for our purposes we would like to compute its gradient where it is well
defined. First of all vy € Li, (RV+1). Indeed, for all R > 0 we have by Fubini:

/ / )|z —y|~ VD dz—/ ,uE(y)/ |z —y|" WY dz < +o0.
I<R ]RN+1 RN+1 |2|<R

In a similar way, since V, |z —y|~V "1 ~ |z — y| ¥+ (2 —y) belongs to L}, (RN, Vug € L} (RNFY)
by the same proof as above, so we can derive under the integral sign and get:

Vug(z / |z—y|N+1d'uE( Y) z € RNTL

Now, E is compact so for every € > 0 there exists |z| > diam(F) = R big enough such that, for y € E:
o [zl <lz—yl+lylsolz—yl=|z] — |yl = || —R= (1 —¢)l2];
o [z—yl <zl + Iyl < (A +e)lz].

Hence, for all such z € RN*1 |2 — y|  |2| and we get the desired estimates, among which:

dup(y) = I;'(E)

Vou(z)| < I7Y(E ST
| ()' 1 ( ) E‘Z_y|N + |Z|N

(2.25)
By the expression we derived for Vv, we immediately deduce as well:

Oxer0)e) = ~27(B) [ ) - —1(E) [ g,
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since y € E C RY x {0}. In particular, we have dx1(z) = 0 for all z € E¢ x {0}. If instead z € F x {0},
we do not know whether v is differentiable in RV *! or not, but, since v = 0 on E x {0}, we can at least

conclude:
v(2)(On11v)(2) =0 for all z € RY x {0}. (2.26)

Moreover, as it happens for u, we have that v € [0,1]. To understand it, it is enough to prove that
up : RV R satisfies wg € [0,Z;(E)]. By the variational formulation of the Dirichlet problem:

—Aug =0 on Rf“
up=up on ORYT =RN x {0},

up satisfies it if and only if | for all K C ]Rf"’l compact, it attains the minimum in the variational
problem:

min {/ |Vw|? : w € Hlloc(RfH), w=ug on RY x {0}, w(z) = 0 as |z| — —|—oo} )
K

Since ug € [0,Z1(F)] almost everywhere, if ug > Z;(FE) over some set A, we would be able to decrease
the Dirichlet energy by just setting «g = Z; (E) over such set. Therefore, since ug,v € C”(Rf 1), then
g € [0,Z1(E)] everywhere on RY*!, so by construction v € [0, 1] everywhere on RY .

Now, before introducing one last preliminary result concerning the function v, we set some useful notation.
For every x € RN and every r > 0, we let B () = B.(z) NRY ™! and 9% B,(z) = 0B, (z) NRY ™, so0
OB, ()t = 0% B,.(z) U (B,(z) N (RN x {0})). Finally, we will use also the set dB,.(z) N (RY x {0}). If z
is omitted, all the sets just defined are centered in 0 € RV*!. Finally, we define a regularization of the
Green function T.

Definition 2.19. We define I'; € C1(RY ™!, RT) by:

1
F] = {lle_l |Z| 2 1

% — %M2 |z < 1.

We also let To(2) = T'q1(2/e)et ™V, so that I'. /T = |2]'"N ase — 0.
We highlight that I'. is radial, and, since for I we have:
Ong1 |2V Y = (1 = N)zyya]z|~NFY = InT(2) =0 on RY x {0},

we get as well Oy 1. = 0 on RY x {0}. Moreover, another computation shows that T is superharmonic
in RV namely —AT'. > 0. Now, we closely follow [28].

Lemma 2.20. Given the function v defined above, for all v €]0,1[ the function ® : (0,1) — (0, +0c0)

given by
2
q)(r):/ Li'l
o+B, 12N

Proof. We denote z = (z,y) € RV x R. Given any non negative ¢ € C>°(RV*1) we have, integrating by
parts on the domain RY ™'

is well defined and bounded in (0, 1).

/ (—Av)vpdz + / (ON+1v)vpdx = / Vo - V(vp)dz. (2.27)
RY+ RN RYT?
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By harmonicity of v and every term of the above expression is equal to 0. We notice that, developing
the gradient, we have:

1
/ Vo - V(vp)dz = / |Vol2p dz +/ ~V(v)? Veodz =0 (2.28)
Rerl Rerl R$+l 2

as well. Now, we let £,d > 0 and ns € C2°(B,4s) be a smooth, radial cut-off function such that 0 < ns <1
and ns = 1 on B,. Choosing ¢ = nsI'c in [2.28| we get:

1
/ |Vo|*nsT. dz + / —V(v)?-V(nsTe)dz = 0.
RY T R

N+1 2
T

If we denote by v the outward unit normal vector to the half sphere 9" B,, we find by developing,
rearranging and passing to polar coordinates:

1 1
/N |:‘VU|2F5 + §V(v)2 . VFE} nsdz = — /N QFEV(U)Q -Vns dz
RYH! RYH!

r—4
= f/ {ng(p)/ . vd,v da} dp.
, o+B,

Sending the limit as § — 0 we get, for almost every r €]0,1[:

1
/ |Vu]°T. + =V(v)? - VI.dz = / . vd,vdo.
B 2 0+ B,

Integrating by parts over B, we get:

2 2
/ |Vo|?T. + (fAFE)U— dz + / v—@,,FE do = / I'cvd,vdo,
B 2 o+ B, 2 o+ B,

recalling that dny+10:(x,0) = 0, so it is enough to integrate the third term of the left-hand side over
0% B, instead of the whole dB;F. Now, we use the fact that —AT'. > 0 to get:

2
Vo[, dz < T. 09,0 — 8,0, do.
B} &+ B, 2

Noticing that I'(z) = r~(N=1) over 91 B,., we let ¢ — 0 and infer, by monotone convergence:

Vo2 1 N -1
@(r):/ | ;"1 < — 1/ vdvdo + / v? do. (2.29)
o+m, 121N 7 Jot B, 2r o+ B,
Since v? < 1 and hold, the previous expression concludes the Lemma. O

We are finally ready to prove the Holder estimate we are interested in. The motivation behind the
statement is to find a growth estimate for the function u locally near the Reifenberg flat (so in particular
not smooth domain) set F, which later on will allow us to majorize the integral term in The idea of
the proof is to add a dimension to the problem and, exploiting the fact that the function u is given by a
convolution between the measure pz and the Green kernel I' in RV*1, use some tools from elliptic PDE
theory (culminating with an Alt-Caffarelli-Friedman type formula) in order to prove the desired estimate
over RV*+1. At that point, the conclusion follows straightforwardly by restricting ourselves back to RY.
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Lemma 2.21. For every small enough ¢ > 0 there exists v € (0,1) with v — % as 0 — 0 such that, if £
is a bounded (4, ro)-Reifenberg flat domain, then:

d¥(z,0F)

1 - I (B)up()] < T
To

for all x € RV, (2.30)

where up(z) = [, ﬂji‘%’ll and pg is such that 71 (E) = I (ug)-
Proof. By scaling we may assume ro = 1. Let u = 1 — Z; ' (E)ug(z) and v its harmonic extension to
RN+ the functions we defined above: we keep in mind all of their property we listed. In particular, since
u < 1, it is enough to prove when d(-,0F) < 1. The proof consists in three claims, from which we
can draw the conclusion:

e (1) For every z € RY*! have:

1 2 2y |VU|2
~ 1 Vo2 <7 sup DR forall 0 <r <1 (2.31)
r B (2) ZGWH B (2) |z — y
for some exponent 0 < v < 1.
e (2) We have:
\V/ 2
sup / ALY (2.32)
O R P
ZeRi’-%—l B (2) |

e (3)y€(0,1)and vy — 1 as 6 — 0.

We start by the conclusion of the proof once assumed the three claims. First of all, by a step in the proof

of Poincaré Inequality |6, Theorem 2, Section 4.5], for all z € Rf *1 we have:

/ v —f v|2 < 7"2/ |Vol2.
B () B () B ()

Thus, if and hold, we deduce for r small:

1 1 Vol?
oy / ’v —][ U\2 S v / Vo2 <r? sup / ‘71)']\[71 <r?,
r B (2) B (=) r B (=) Bf (=) 12 =¥l

N+1
z€R+

for a number v close to 1/2. In particular:

%
1 / ][ 2
— v — v S
(’”N“ Bi(z)’ B (2) | )

Hence, by Campanato’s criterion |18, Theorem 6.1], v € CO’V(RﬁH), namely there exists C' > 0 such
that for all z,2" € Rf“ there holds:

lv(z) —v(Z")] < Clz = 2'|".
In particular, if 2/ = (2/,0) € F x {0} and z = (2,0) € E° x {0}, then v(2’) = u(z’) = 0, so:
lu(x)| < |z —2'|7 foralla’ € B <= [1-I; " (B)ugp(z)| < d'(z,0E).
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Since this is true for all x € E°, the thesis of the Lemma follows and it remains to prove the there claims.

(1) To show we assume first z € OF x {0}. Without loss of generality we may assume that z = 0
and from now we denote by V., the tangential gradient on the sphere, by V, the normal derivative and
by Ag the restriction of the Laplacian over the surface of the sphere. For every 0 < r < 1, we consider
the variational problem:

2
f8+BT Vvl .
2

A(r) = min{ T o V€ H*(0%B,),v=0 on (E x {0}) N aBﬂ'} . (2.33)
ot B,

First of all, we notice that the function v we are working with is a competitor for the problem. By direct
method of Calculus of Variations, we can easily prove that there exist a minimizer v with [|v|| 25+ 5,) = 1.
Moreover, A(r) > 0, because if A(r) = 0 then the minimizer would be constant on & B,., hence equal
to 0 by continuity of the trace operator, contradicting the condition [[v|z2(9+p,) = 1. In a similar
way, choosing the function w(z,y) = y with (x,7) € RY x R, after a computation we can observe that
A(r) < N. In addition, thanks to a change of variable, by considering r2\(r) instead of A(r), we can
assume the problem to be set on 9% Bj, with the condition v = 0 on (E;/, x {0}) N OB;. Finally,
from basic facts of Spectral Theory, we can equivalently characterize minimizers v € H' (9" B,.) as weak
solutions of the PDE problem with Robin boundary condition:

—Agv=Ar)v ond"B,
v=0 on E x {0} (2.34)
Oyv=0 on E° x {0}.

Now, we can define the function « : [0, +00) — [0, 4+00) as
N -1)? N-1
S I
7N 5—) + 5
and then the number ¥ = 7 as:

_ . 2
7= ,mf y(rA(r).

We will prove later this is the number v which appears in the statement of the Lemma. We preliminary
observe that obviously 4 > 0 and, by monotonicity of the function ~y:

7 < (rPA() < 7(AL) < 4(N) = 1.

Now, for r € (0, 1], using the function v we started the proof with, we define the function:

1 |Vo|?
U(r)= M/Bi |2 N-T

By Lemma [2.20f ¥ is well defined: we want to prove that it is increasing. To do so, we compute it
logarithmic derivative, with the help of Coarea Formula:

Vi_ o7 (/ Vol ) (/ Vol )1
v r o+ B, |z|N -1 B |z|V -1 .

Since ¥ > 0, if we show that ¥'/¥ > 0 then ¥’ > 0, so ¥ is increasing and we are done; therefore it is
enough to prove that:

|W|2)(/ W)‘l 5
> 2. 2.
</” )\ ) 2% (2.35)
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We have:

ﬂw:=(ﬂ;&wjxﬁ)([¥ﬂjyi)1=(P‘N[;BJVU§)(Lme2ruﬂi

and, by formula

-1
flr)> (rl_N/ \VU|2> (rl_N (/ v,V + N 1/ 02))
o+B, o+ B, 2r JorB,
([ ot o) (L, ) (L 007) 252 )
o+ B, o+ B, 5+ B, o+ B, 2r Jo+s,

1 —1
_ <IB+BT ‘VT'U|2 . fa+BT |8V’U|2> <f8+BT |8V’U|2> 2 N N —1

fa+B,‘ v? fa+ B, v? fa+ B, v? 2r

A t?
2 mlnL]j_l'
>0 ¢+ N=1

Another direct computation shows that the above minimum is attained for ¢y, = 2v(r?A(r)) and that
A(r)+t2
5

ming~g = 2t min = %7(7‘2)\(7“)), so that eventually:

(/ [Vul? ) (/ [Vo]? )
orp, |2V Ny [N

concluding the proof of By monotonicity of ¥ and recalling that z € B, implies |z| < r, we deduce:

-1

Y

2 9 v
— > 9=
~9(r2A() = 22,

1 1 |Vol|? / |Vol|?
s Vo2 < —= — =U(r) <¥(1) = — 2.36
e [ VS s [ = v = [ 250

and the proof of (1) with the exponent ¥ in the case z € OF x {0} is concluded. From now on, we denote
v = 4: we will able to distinguish the use of v to denote either the parameter or the function defined
before from the context.

On the other hand, if z ¢ OF x {0}, using either an odd or even reflection with respect to the hyperplane
zn+1 = 0, we may assume that v is harmonic in B, (r) for every r <7 = min{1,d(z,0F x {0})}. Indeed,
depending on the position of z with respect E x {0}, it is possible to perform both: if d(z, E x {0}) <
d(z, E¢ x {0}) then we can use an odd reflection exploiting the fact that v = 0 on E, whereas, in the
opposite case, we can use an odd one as Oy 1v = 0 on E°. Moreover, being |Vv|? subharmonic, the

function: )
r— —— |Vol?
PN /BT(z)

is increasing by mean value formula. Therefore, since the parameter v we selected before satisfies v < 1,

we have: 1 1 > 1
L 2<(f)7/ v2<(f) —/ Vol2. 2.37
rNH /Bﬂz) Vel = (7) i Bmz)' =) Bmz)' ! (237

If 7 > 1, then the conclusion is easy, since first of all (1/7)27 < 1 and then, for all y € B () we have
|z —y| <7, s01/F < |z —y|~!. In this way:

() #0 f ToP f e = e
r/ NI gy ~ B lz—ylN 7t~ B |z =yl
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where after the last inequality we used Bi (z) C B (2), as 7 < 1 by definition. Instead, if 7 < 1 we
argue as follows: we select z € OFE x {0} of minimal distance, namely the point such that |z — z| =
d(z,0F x {0}) =7 <« 1. By[2.36] we have for z € 9E x {0} and for all r € (0,1/2):

[Vol?

1 2
- < R St B
v [, RS p) < v/ 5 [ e

= (2.38)
B:r/2(2) |z —

+

(T)(z) CC B (2), so coming back to our compu-

In particular, choosing r* = 37 < 1/2, we have that B
tations we have, z € OF x {0}:

2 1 N2 1 1
- —_ Vol? < (—) —_ C N e —
(7:) N1 /B,j(z)| v|* < 7 N1 B (2) Vvl " N1 Bt

z ok

| Vo2,
(2)

Applying with 7* <« 1/2 and majorizing the integration area with Bf/z (2) € Bf (2) (since we have
that |z — z| < 1), we finally get:

1 Vol? Vol?
7’277*2 ) / V| < 1"27/ _ | U|N_1 < 7’27/ _ | U|N_1.
ey B%L(2) B, (%) 12— Y B (=) 12—Vl

1/2
So recalling where we started in and passing the last result to the supremum over z € Rf 1 we get:
1 / o o [Vo|?
5 [ VP S sup L
rN+1 B (2) B () |z — y|N !

zeRYH
(2) We fix z € RYT'. By for R > 1 we have:

/ |VU|2 </ |VU|2 < 1 / v@ ’U+i/ ,UZ
Bro) 2 =YV T gty 2=y Y RN oy BN Jorpe)

Using Cauchy-Schwarz and that |v| <1 we find:

Wk 1 / 1 / 1 /
< |0,v] + == do < |0, v] + 1.
/Bfr(z) |z —yN=1 ™ RN o g RN J ot Baiz) RN=Y Jos B

For the second inequality, we used the fact that HY (07 Br(z)) ~ RY. We need to estimate the first
term, if R is large enough we can apply and get:

1 / 0,0] < — / I7(B) o I (E)
RN JotBrs) RN Jorpaey |2V RNTUY

again because HY (0T Br(z)) ~ RY. Sending R — +oo the proof of (2) is concluded, once observing that

the computations hold true for every z € Rf 1

(3) To prove this point, we finally use the fact that E is an uniformly (4, ro)-Reifenberg flat set, recalling
that we assumed dy = 1 by scaling at the beginning of the proof. In particular, for all x € OF and for all
0 < r <1 there exist two hyperplanes H," and H,  such that H, N B,(z) C EN B,.(x) C H, N B,(x).
The idea to prove the claim is to exploit this property to infer the desired asymptotic estimate on the
parameter v, specifically working on the variational problem[2.33] Since the condition given by Reifenberg
flatness is uniform in « € JF, we can assume without loss of generality that x = 0.
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Given a generic function v € H'(97 B,.) we have that, if F C E, v =0 on (E x {0}) N 9B, implies v = 0
on (F x {0}) N @B, so in particular Ap(r) < Ag(r) for every r < 1, namely A(r) is monotone under
inclusion. Thus, we define H;rr ={x € RN : 2y < §r} and H; = {z € RY : z; < —dr}; combining
monotonicity of A with the hyperplane condition (in the right coordinate system according to the choice
of Hi and Hj,) yielded by (d,1)-Reifenberg flatness, we get )‘HE,,(T) < Ap(r) < )‘H;. (r). Since the
function () is increasing monotone:

A A= (1) < 9(PAp(r) < 1A (),

so passing to the infimum over 0 < 7 < 1 we infer va <7e < VH - Therefore, if we show that Yy — %

as § — 0, we can immediately deduce that vy — 2 as 0 — 0 too, vg € (47 4) for ¢ small enough. Before
going on, we notice that both V. and Vi actually do not depend on r: indeed, by changing variables
in 233
2 Jor Vol 1 +
Ayt (r) = min § =—=———:v € H' (9" By), v =0 on (Hj, I X {0})NoBS 5.
or Jorp, v

Since H;:T/T = H(;i, the quantities T2AH$ (r) do not depend on 7, so from now on we just write Vui and
VhzE instead.

We begin by showing that, if § = 0, then vy, = % Since v, does not depend on r we can consider
A = A, (1) and work on 9 B;. The trick is to use another characterization of the solution of given
by |28, Remark 2.3]: a function v competitor for (namely such that v € H'(0*B;) and v = 0 on
Hy) achieves the minimum X if and only if it is of one sign and its v())-homogeneous extension to RY !
is harmonic. We give an almost complete proof of this statement: the key is to consider the Laplacian in

RN+ in polar coordinates

%u Nou 1
Au*ﬁJr r 8r+ zAs

If v is a solution of [2.33] then it solves the elliptic problem as well. Its y(A)-homogeneous extension
RN+ is given in polar coordinates by w(r, o) = r"My(o ) and computing its Laplacian yields

Ay = 7N —2 [(7(/\)2 + (N =1)y(N\)v + ASU] )
Therefore, Au = 0 if and only if:
—Agv = [7()\)2 + (N =1)yv(N)] v = Av,

because A(y) = ¥2 + (N — 1)y happens to be the inverse function of v(\) defined above. Since we had
—Agv = Av by hypothesis, we conclude the first implication. Conversely, if a competitor for has its
~(A)-homogeneous extension to Rf 1 harmonic, then it is actually its minimizer if it is a solution of the
elliptic problem The computations we just did allow us to conclude almost everything: indeed it
just remains to show that d,v = 0 on H§ x {0}, but we omit it.

Therefore, if we can find a positive function v with v = 0 on Hp and such that its 1/2-homogeneous

extension to Rf“ is harmonic, we immediately deduce y(\) = vu, = % We consider the function

v(x,0) = y/x] defined on RV (notice that v = 0 on Hy) and we take its 1/2-homogeneous harmonic

\/\/z1+a:N+1+a71
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Another computation allows us to check that d,v = 0 on H§ x {0}. Since v > 0 on Rf“, the previous

argument implies that v()\) = 3.

The proof of (3) is concluded once proved that the function 6 — A Hy is continuous as § — 0. Thus, by
continuity of the function ~y, we have that Ty = W(AH(;) — v(Aro) = YH, = 5. We consider {us}s>0 a
sequence such that us is a minimizer for )\Ha_ with [|us|| p2(a+B,) = 1. In (1) we highlighted the fact that

A < N: more in general this is true for all set E, since the function w(z,y) = y is a valid competitor for
Mg for all E. In other words:

/ |Vrus)? < / V,w> <N forall§ > 0.
8+B1 6+31

In particular, we deduced that us is bounded in H'(9* B;) uniformly in §. By compactness of the trace
operator )
tr: H1(8+Bl) — H2 (831 n {$N+1 = 0})

and of the embedding
i:H2(0By N {xni1 =0}) — L2(0By N {zn4y = 0}),

we have that {trus}sso is bounded in L?(0B; N {wxny1 = 0}) uniformly in § as well. Therefore, by
Banach-Alaoglu, up to extraction, there exist a function ug € H'(07 B;) and a subsequence {us, }x>1
with 6, — 0 as k — +o00 such that:

e us, — ug in HY (0T By) as k — +oc;

e trus, — trug in L?(0B; N {zy4+1 = 0}) and HV"lae. as k — +oo.
By convergence almost everywhere of the trace, we infer that trup = 0 on 9B N (Hy x {0}) so ug is a

competitor for A\p,. Therefore, by weak lower semicontinuity of the norm and since Ag, > A Hy o We have
that:

Am, > liminf A, = hminf/ IV us|” 2/ IVouol” > Amy s
k=0 0 9+By 9+ B,

Jkﬁo

so ug is a minimizer for Ar,, and we have that A, - — A, as well. O
s

Now, we are ready to turn the Holder property on the potential into the desired decay estimate for
the function pg. Notice that the assumption |y — %| < 1 comes directly from the statement of

Lemma 2.22. For every |y — 3| < 1, there exists § > 0 such that for every ro > 0 and every (d,79)-
2N

Reifenberg flat domain E with § < dg, ug € L) (RY) and for every z € RY and r < ry/2 there

holds:

N+1

2N N
(/ ug“) ST, (2.39)
B, (z)

where the implicit constant depends on N, «, ro and |E]|.

Proof. Let v = v(0) be given by Lemma First, we derive from the following estimate on pg:
pe S d"U(,0E). (2.40)

Denoting ug the associated potential, by Proposition we get for x € E:

O () = (-8 hup(e) = (v 1yz) [ D EW,
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By Proposition we have ug(z) = Z;(E) and Z; (E) — ug(y) = 0 for y € E, so the right-hand side
reduces to:

C'(N, Vux(e) = C(N.1/2) [

where we used in the last inequality. At this point, recalling d(y, A) = d(Y,0A) for every A C RY
closed, since our minimizer F is closed we have d(y, 0F) = ming«cg |y — 2*| < | — y|. Thus:

d(y,0F) / |z —y[” 1 1
gy < | Sy < / — dy = / — 2z
/Ec |z —y[N+! e |z —y|NH! B (@) |7 —y[N T B |2 N1

A(x,0E) g(w,BE)(O)

_ Y
T(E) — us(y) , < Il(f)/ d(y,0F) .
o o —yNH ro  Jpe lv—y/NT!

and solving the integral we get C(y)d(z,0E)~1~7). Hence:

pe(T) S Il(’YE) d(m78E)—(1—7) < d(x,aE)_(1—7)7
To

where in the last line we used that if B is a ball of measure |E| then Z;(E) < Z;(B), as stated in
Proposition Notice that the constant appearing in the estimate depends on N, v, rg and |E|, as all
of them appear in the computations now or later.

After the preliminary argument, we now prove For P > 0, we set up = min{ug, P}. Clearly up
is an integrable function (being bounded and supported in E) and pp — pg a.e. in E. Moreover, since
0 < pp < pg, it satisfies as well. We claim that there exist Cy, C; > 0 such that for every = € dF
and every r < r(/2, there exists a set A(z) C JF such that, denoting by # the cardinality of a set:

#A(z) < Co* N (2.41)
and aIN 2N
/ pp T < CormFRAm o §T / pp't (2.42)
B, (z) yEA(z) Besr(y)

Again, up to translations, we may assume without loss of generality x = 0. By definition, since E is (8, rg)-
Reifenberg flat, for every r < 1 /2, there exists a hyperplane H, such that dg(OENB,., H.NB,) < ér. We
set N, = {y € B, : d(y, H,) > 26r}: then, for y € N,, we have d(y,0F) ~ d(y, H). Indeed, as y € N,,
we have 6r < 1d(y, H,), and moreover, by construction, we infer d(y, dE) € d(y, H,) + (—6r, +6r). Thus:

o d(y,0F) < d(y, H,) + 6r < 3d(y, H,);
o d(y,0E) > d(y, H,) — or > 5d(y, H,).
Therefore, we can compute by 240}

2N
/ npt s / d(w,0B) 510 dy / d(a, Hy)~ ¥ 0=y,
N, N, N,

Now, we majorize the last integral by integrating over the set C'(r)\ C(2dr), where both C(r) and C(24r)
are cylinders whose axes pass through 0 (center of the ball) and are orthogonal to H,, both with base
radius  and heights 2r and 207 respectively. Notice that C(r)\ C(2dr) clearly contains NV,. Highlighting
that the quantity d(z, H,) is constant along hyperplanes parallel to H,., we can compute the integral by
performing the change of variable d(x, H,) = t. Hence, recalling that wy_17V~! is the volume of the
N — 1 ball of radius r:

N " dt
[ owtrec| da, H,) 20y = Cuy ¥
N, C(r)\C(26r)

20r 1351 (1=

< CorV 1 (r_ T (l=+1 _ (25r)—13fl(1—W)+1)

= C’OTN_%O_’Y).
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In particular, it is important to highlight that we need the quantity —]\2,—51(1 — ) + 1 to be positive in
order to make true the previous computations. This is possible by the assumption |y — %| < 1, choosing

v such that 1 — v < % Once established the constant Cy, we infer:

2N 2N 2N 2N

/ pi :/ #1@ +/ puNT ScorN—%(l—’v)_F/ phT
B, N, B,NN, B,.NN,.

r

and we need to estimate the second term. For all x € NN B, we have d(z, H,) < 2dr: therefore condition
dy(0E N B,, H, N B,) < ér implies d(z,0E N B,) < 36r. Now, clearly {Bs,(y)}ycornp, is a covering
of OE N B,.. By the compact version of Vitali covering Lemma [6, Section 1.5.1], we can extract a finite
subset of points A C E N B,. such that:

o {Bs,(y)}yca is made up of pairwise disjoint balls;
o {Bss-(y)}yea is still a covering of E N B,.

Thanks to these information, we claim that {Bgs-(y)}yeca is a covering of NS N B,. To prove it we fix
y € NN B,: since d(y,0F N B;) < 30r there exists z* € 0F N B, such that |y — 2*| < 3dr. For
such z* € OF N B,, by the second property implied by Vitali Lemma, there exists z; € A such that
|x* — x;| < 3dr. Thus, for all y € NS N B, there exists z; € A such that |y — x;| < 6dr by triangle
inequality, so the claim follows.

Now, we estimate the cardinality of A in order to obtain Fixing y € A, by geometry of the problem
we have:

26r =d(H, N By, N;) <d(H,.NB,,0EN B;) +d(0E N B;, N,.)
<d(H,N B,,y) +d(y,N,) < ér + d(y, N,.),

so d(y, N) > ér and in particular Bs,(y) C Ny. Moreover, as y € B,., it is clear that Bs,(y) C B(14s)r C
By, thus {Bs(y) }yea C NS N By,. Majorizing again, our collection of disjoint balls is strictly contained
in a closed cylinder C'(2Jr, 2r), whose axes passes through 0 and is orthogonal to H,., with base radius 2r
and height 267. Since the volume of one of the balls is wy (67)Y, we deduce:

W ()N H#A < |C(267,2r)| = wy_1(2r) N 71 (207) ~ 6V,
Simplifying, we get #A < C16'~", which is On the other hand, the fact that {Bgsr(y)}yeca is a

covering of N N B, implies:
/ AT 3 / AT
Hp = Hp s
B,NN,. Basr(y))

yeA

which in turn yields
2N

2N
I e i O T o
B, 2= Bose ()
concluding the proof of

For k > 0, we set 7, = (68)*r and define recursively Ay = {0} and Ay = Uyea,_ , A(z). From we
have

#Ap < (C10" )P (2.43)
and thus applying recursively we find for K > 0:

K

2N N—2N_(1_
[T ey qag TS n
B,

k=0 yEAR s Brcs1(¥)

U 2
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By definition of up, we have:

2N

2 P S (AR )| B [R5 (016N (6) VU L pt
YyEAK 11 BTK+1(y)
_ (6N015)K+17,N+1P]§—ff1.

Therefore, choosing ¢ small enough such that 6VC,6 < 1, we can send K — 400 to make the second
term in the right-hand side of [2.43] vanish and to obtain:

2N +oo
/ PR < Co Y (Cr8 N )E((68) k)N R ()

B k=0
+oo

= () Z(016N7%(1*7))k(Sk(l_N)ékN(S*k%(1*7)TN*%(177)
k=0
+o00

= Cp Y (O 6N~ #T A = )y N = (1)

k=0

+o00
= Co (Z(CQ(Slﬁfl(l’Y))k) PN 1351(17@,

k=0

where we set Cy = 016N7%(177). By our previous choice of v, we highlight again that 1\2,—51(1 —v) <1
2N

so 1 — 577(1 —~) > 0 and hence, provided ¢ is small enough , the sum converges and we have (noticing
that all the constants are independent of P):

J\?fl < N—]\%fl (1—7) < pN-142y
ppt ST <r :
B,

The second in quality is true if and only if —%(1 — ) < —1+ 2v. After some rearrangements, we
see that it is equivalent to the condition 1 — 2y < N, which clearly holds. Finally, sending P — +o0
concludes the proof of O

Combining all the results we gathered in this section, in the last theorem of the chapter we deduce that,
for small charges @, every volume-constrained minimizer of Fi g is also a perimeter almost minimizer
for which the classical theory applies, finally obtaining the desired counterpart of Theorem [2.15] Before
going on, we can assume without loss of generality that 7¢/2 < 1 in the statement of Lemma

Theorem 2.23. Let o = 1. For every v € (0, 3) there exists Q(v,N) > 0 such that for every @ <
Q(v, N), every volume-constrained minimizer Eq of Fj g is C17 with uniformly bounded C'7 norm. As
a consequence, for every 3 < vy, up to translation, Fg converges in C'8 to By as Q — 0.

Proof. For every § > 0, for @ small enough and some o = ro(d), the set F is a (,ro)-Reifenberg flat
domain. Let v = (d) be given by 2.21} since v — % as 0 — 0 we can get to any ~ close to % just by

diminishing enough the value of §. Combining the second almost minimality property with estimate
from Lemma [2.22] there exists rg > 0 such that for all » < r¢/2 and for all z € OE we have:

P(Eqg) < P(F) + C(Q*N=127 1Ny for all EQAF C B, (). (2.44)
Now, if v < %, we have:

P(Eq) < P(F) 4+ C(Q* +r'=21)rN=1427  for all EQAF C B, (x).
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Hence, we can reason exactly as we did in to obtain both C'7 regularity with uniformly bounded
C*7 norm and C# convergence of Eg to By as Q — 0. Conversely. if v > é we exploit the fact that
holds for r < 1, so for any v* € (0, 3) we have:

TN—1+2'y < 7qN—l-i-Q",/ .

In particular, we can reduce to the previous case choosing any v € (O, %) by majorizing [2.44

In conclusion, C*7 regularity can be achieved by Eg for all v € (0, %), either by diminishing enough @
or by choosing directly the desired 0 < v < % O
2.7 A non-existence result in dimension 2

We conclude the chapter by presenting a non-existence result for our problem valid in dimension
N = 2 when the charge @ is large enough.

Theorem 2.24. Let N =2 and « € (0,1]. Then, for @ > 1 the minimum problem:
min {F o(E) : |E|=wn, E €S} (2.45)
admits no minimizers.

Proof. First of all, we set some notation. For v € 9By and t € R, we let:
Hf, ={z-v>t}, H,,={r-v<t} and Hy;={z-v=t}.
Then, we define for any measure u and set E:
uit :u‘Hf,f, and E;—L’t :EﬁHft.

We assume by contradiction that E is a minimizer of [2.45 and we compare its energy with the one of a
competitor made by two infinitely far apart copies of E;r . and E,, with associated measure the suitable

translations of u:t and p,,, respectively. Notice that both the perimeter and the Riesz energy decouple
by construction of our competitor:

P(E) + Q*Tao(E) < P(ES,) + P(E,,) + QL)) + Q*La(p ). (2.46)

Now we need to estimate the left-hand side, taking into account the geometry of the construction. First,
we claim that:
P(E},) + P(E,,) =P(E)+2H (ENH,,). (2.47)

To prove it, we follow the argument from |7, Lemma p. 1034]. For any set E of finite perimeter we denote
by ug = —Vxg its distributional outer unit normal, so that its associated perimeter measure is given by
lug| = P(E,-). By |18, Ex. 15.13], we have that for almost every ¢ € R:

— 1
HE;, = ME|H;t +vH |enm,, -

As it happens in the proof of |18, Lemma 15.12], the measures on the right-hand side are mutually
singular, so [pp— | = sl |- + H'|gnm,, and in particular:

P(E,,)=P(E,H,,)+H'(ENHy,,)
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Adding the corresponding equality for —v and —t, since P(E) = P(E, H,\,)+ P(E, H, ), we obtain
In addition, for the Riesz energy term of F,, o(F), we have:

I.(E) = Ia(ﬂj,t) + Ia(l‘;,t) + 2Ia(MIta M;,t) (2.48)

Therefore, after some rearrangements, we find Q?Io (11, 1, ;) < H'(ENH, ) by replacmg 7|and
in[2:46] Now, by Coarea Formula applied to the function f ( )=x-v—t, we get:

|E| = / HYENH,,)dt
R

Therefore:

|E\3/ /’H (ENHyy)dtdv > Q? /Ia(uityu;t)dtd’/
aBl aBl R

@2/831/ / o, e d(i(a)

by Fubini. Now, exploiting the definition of characteristic function and of H, +t and H_,, we have that:

vt

XHthH,/_t(x’y) = Xu-zzt>1/~y(t) and / Xu-zzt>u-y(t) dt =[v-(z—y)4
? ’ R

Moreover, we can show that:

| b@-pedr oyl (2.49)
0B,

The upper bound is easy, by Cauchy-Schwarz f@B (x—y)]lt+dv < fBBl | — y|dv = 27|z — y|. On the
other hand:

-
/‘wmwwuwz/ nwwﬂﬁwmwmuwz/ sl
0B 9B, - v(a—y)>lzzul 2

:/ Ifffyldyz/g lz—yl . _ |z~
l,e[w—y _m T=y +%} 2 _n 2 6 ’

i
[z—yl 6’ ]z—y] 6

yields the lower bound. Now, for all z,y € E we have |z — y| < diam(E) =: d so it holds the relation
|z — y|~(1=%) > d=(1=2). Therefore:

|E| Z QQ/R d#(ﬂf)dﬂ(y) > Q2 _— Q2 5 dl_a.

expe |2 —yltme T dle

If a = 1 we find immediately the contradiction @ < 1, so we are left with the case o < 1.

Since P(E) 2 d for N = 2, we infer: Qﬁ S d S P(E) < Fog(E). Now, we build a generalized

set B, = {E2}?_, made of n copies of the ball B, with radius r = n~'/2. In this way, we estimate its

perimeter:
n

P(E,) = Z P(B,) =2rnr Snr=r""1

=1
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Concerning the Riesz energy, we notice first that Z,(B,) = r~?~*Z,(B;) by In addition, by a
readaptation of Lemma for Riesz interaction energy Z,, we have:

,',.—(2—(1)

=\ 1 N
Ia(ET):lnf{ZqZ?Ia(BT) : Z(h’:l} SZ ?Ia(Br)f, " =7r.
% i i=1

Putting the two estimates together, we find F, g(E,) < v~ + Q*r®. Choosing r = Q T, we get by
minimality of E:
QT £ Faq(E) < Fao(By) S QT + QU £ Qs

which is a contradiction when @ > 1. Thus, we conclude that the variational problem [2:45] has no
minimizers for very large charge Q.

O
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Chapter 3

Minimality of the ball for small
charges

The purpose of the third chapter is to prove that, for every o € (0,2) and small enough charge @, the
ball B; is the unique minimizer of the functional 7, g under volume constraints in the class of nearly
spherical sets. In this way, after what we showed in the previous chapter, we are able to conclude that
in the case a € (0,1], when the charge @ is small enough, the ball By is the unique minimizer for the

variational problem
min  F,o(E).

i, 2,qQ(E)
The result we are interested in is stated and proved in Theorem (3.7, at the end of the chapter and the
rest is organized as follows. We define first the notion of nearly spherical sets, highlighting its relation
with Riesz interaction energy and drawing some preliminary conclusions useful for what follows. Then,
as usual, we pave the way for Theorem by stating and proving some technical lemmas. The first three
of them are more general, whereas from the last two we begin to glimpse our final goal.

Hence, we start by fixing some notation about nearly spherical sets.
Definition 3.1 (Nearly spherical sets). A set E C RY is said to be nearly spherical if |E| = |By|, E has
barycenter in 2 = 0 and there exists v € (0,1) and ¢ : 9B; — R with [|¢[|c1.4@p,) < 1 such that

OE ={(1+ p(z))z : x € 0B }.

We fix a compact nearly spherical set F and we will work with it for the rest of the chapter. As usual,
let p = pg be its optimal measure for Z,(F) and ug = fE ‘zf;% its potential: we write just u
and u respectively when there is no risk of confusion. Let ¢ be its associated function: we assume
lollwr=(ap,) < 1 and we directly write ¢, = ¢(z) in order to simplify. With an abuse of notation, we
keep denoting by ¢ its 0-homogeneous extension outside dB;, namely the function

{ap(lxxl) if z € RV \ {0}
0 ife=0

which is 0-homogeneous by definition. In this way, the parametrization of OF through ¢ naturally
extends to the whole of R as the function 7' : RY — RY with T'(z) = (1 + ¢,)z. Since we have

67



that T(0By) = OF, we immediately see that T(By) = F from the construction of T. In addition, ¢

is a C17 function, ||¢|wi.~@p,) < 1 and o= égz;l, so the function T is a C' diffeomorphism. Its

inverse is 77! : RN — RY writes T(y) = (1 4+ ¢,)'y. Clearly T~!(E) = By, so we are able both to
pushforward measures defined on E to measures defined on B; using the function 7' and to do the
converse with T. Moreover, being T a diffeomorphism, there holds T;l Tyv = v for every v € M (By)

and Ty T#Zl)\ = X for any A € MT(E). Therefore, starting from the probability measure pug, we define
the measure g = T#;l up on Bi. By basic properties of pushforward, g is still a probability measure and,

since pg is absolutely continuous and 7! is a C! diffeomorphism, ¢ is a absolutely continuous too and,
after some computations, writes as:

g(x) = u((T™) 7 (@))|det(J(T ™)™ (2))| = p(T(x))|det(IT(x))]
= (1+¢2) (1 + 90)2).

In addition, exploiting the fact that ugp = Ty Tq;l e = T4 g, we can find an alternative expression for
Zo(E):

_ dpp(r)dpp(y) d(Ty g)(2)d(Ty 9)(y)
Ta(B) = /ExE |z —y|N o /T(Bl)xT(Bl) lv —y[N-2 (3.1)

_ / dg(x)dg(y)
Bixp |T(x) =T(y)N=—

Finally, we recall the explicit expression of the optimal measure pup, for Z,(B1), given by Proposition

LT3t
Co 1

1—[2[2)% 7 d(z,0B,)%

1B (l‘) = (

Before going on, we need two more preliminary results regarding nearly spherical sets. First of all, we

have that:
/ w‘ < / o, (3.2)
B, 8B,

Indeed, since E = {(1 + @5 )z : € B}, we pass to polar coordinate to find:

1 1 1+¢s 1
— da:/ / rNVdrdo = |By| = |E| =/ / N ldrdo = — [ (14, do.
N 0B1 0B1 JO 0B, J0 N 0By

Hence:
N /N
A+e)N-1=0 = N/ o= < )/ oF.
/831 0B, Z k 0B,

k=2

In particular, passing to the modulus and recalling that |||y 1. 95,) < 1, we conclude:

N
/452/|w5/w.
831 k=2 831 8Bl

From we can infer another useful property for what will follow. If we set @ = #Bl) /. oB, £ We have

0,1):
/ ws/<ww%5m@wﬁ (3.3)
OB, OB,
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The second inequality is given by Proposition [1.6] so we need to show just the first one:

/(w—@Z):/ s02—2¢/ <p+/ @2:/ ©* — 2P(B)¢* 4+ P(B)g?
OB, 0B, 0B, 0B 0B,

- / & — P(B)Z™.
0B,

Now, we appeal to to get:
2 2
@2~(/ 90>5(/ </>2) <</ ¢?
8B1 OBl Cr9B1

where the last inequality is given by [|¢[|yw1.(98,) < 1. Therefore:

1 . .
5/ s02§/ 902—P(B)<p2=/ (p— &%)
OB, OB 0By
yields 3.3}

After setting the stage, we begin proving all the technical results we need to demonstrate what we want.
From the previous discussion, we remark that for every nearly spherical set E with [|o|w1.~@p,) < 1
there exist two probability measures naturally defined on By, that are up, and g¢. First of all, we prove
that ¢ has the same behaviour as pp, close to 0Bj.

Lemma 3.2. Let o € (0,2) and E be a nearly spherical set with |[¢||yy1.00(95,) < 1. Then, its associated
probability measure g defined on Bj satisfies, for z € By:

) 5 g7 ~ @ (3.4

x,0B)%
Proof. The first part of the proof is similar to Lemma [2.22] as we need to show an estimate for yu = pg:

1
,U/(Z‘) 5 m for all x cF.
Z, 2

From the statement of Proposition [1.12] since p is supported in E we have that:
(-A)Su(z) =0 x€E°
u(z) —Zu(E)=0 z€kE.

Thus, we can appeal to the boundary regularity theory for the fractional Laplacian developed by Ros-Oton
and Serra. In particular, we are in the position to apply [25, Theorem 1.2] in order to get:

u(z) — Io(E) < d2 (z,0F).

Now, we can repeat the steps of the proof of from Lemma [2.22] applying the estimate we just got
instead of 2.300 Given z € E:

C'(N, a)u(x) = (~A)Fu(z) = C(N, 5 / LB ) gy < / C |d<y8E> ay

o =y 5 =yl

dz

B, om (@) |z|N o3

< d(z,0E)"%.
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The function g writes as g(z) = (1 + ¢z)" 4 ((1+ @) z). Since we have that||¢[lyw1.(9B,) < 1, we can

bound the term (1 + ¢,)" and, for 2 € By, we obtain the estimate:
1
3 ((1+ ¢z)z,0E)

Therefore, we only need to show d((1 + @)z, 0F) ~ |1 — |z|| to conclude The upper bound is easy,
by definition we have that:

d((l + @m)xv aE) =

g(w) S pu((1+¢z)z) S

i 1 x - 1 ;
yealgll( + @)z — (1 + py)yl

choosing y = I%\’ we find (recall 0-homogeneity of ¢):

x
d((1+ ¢z)z,0F) < |(1+ ¢z)z — (1 + %)m = (14 @a) |1 =[] S 1 = |||
Conversely, to get the lower bound we can assume that |1 — |z|| < 1. Indeed, if ||1 —|z|| 2 1 then
both d((1 4 ¢,)z,0F) and | |1 — |z|| = 1 are uniformly bounded from above and below, so the required
estimate trivially follows. Hence, squaring we get

flz)=d((1+ @z)xvaE)z = min |[(1+ )z — (1+ @y)y‘Q
y€EOB,

= min {(1+¢.)?2* =201+ ¢.) 1 +¢y)r-y+ |1+ (py|2} .
y€O B,

Writing —z -y = —|z| + « - (I%I - y), we find:

F@) = min {0+ polal? =201+ @)1+ p)lel + 1L+l + 20+ ea) (1 + 0 (5 -0)}

|z = 37—

= min {(1+(p$)2| T

yEOB,

1+ ¢,
xT

2
x
#2141+ o (5 -v) (ol - y-x>} .
Using again the fact that ||¢||w1.=@p,) < 1 we have (14 ¢5)? 2 1 and (1+ ¢,)(1+ ¢y) 2 1, so:

o] 14 2Py

™~ yedB, 1+ @y

f(z) Z min {

+(Iw—y-x)}-

For every y € 9By either (|z| —y-z) = ||z| — 112 or (Jz| — v - 2) < ||z| — 1]2. The first case directly
leads to the conclusion d((1 + ¢, )z, 0F)? 2 ||x| — 1]2. In the second case instead, we write x = ro with
o € 0B; and we compute:

2 2
lo—yl=lo* + |y’ —20-y=2-20-y= S(r—ro-y) = (o] —a-y) <|lz] — 12
Therefore, since ¢ is Lipschitz over 0B; we have:
|00 =yl S lo =yl < ||z = 1]?

Therefore, exploiting the last two relations we get:

2
Pz — Py 2
=14+ —— +(Jz|-y-2)2|z]-1
|| T+ o (lz] =y - 2) Z [J=] = 1]
which yields d((1 + pz)z,0E)? 2 ||z| — 1]2. O
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Now, we prove other two preparatory lemmas which basically serve to carry out the Taylor expansion of
|T(z) — T(y)|~ ™V~ appearing in

Lemma 3.3. For z,y € B, we have:
T(z) = T(y)]* = |z =yl (1 + 9u + 0y + paipy + V(2 y)) (3.5)

where

1 Pz — Py 2 1 Pz — Py
vies) < 3l + ) (22 ) ) (14 50000 2220 30)

Proof. First we notice that:

IT(z) = TW)I* = |z + @ox —y — 0yy*> = [(x — y) + (022 — oyy)|?
2

(=) + 5+ 9)e — 20) + (2~ 0)e +2,))

Expanding the last term we get:
1 2
o=yl + (2 = 1) (e = y) + 1o =y (0 + 00) + 712+ 07 [0 — 0y [+
1 , 1
117 = 0 loe + oyl + 5 (1l ~ ) (6 — 92)

Factoring out |z — y|? and comparing with we see that the first and the third addend matches

the first three terms in 3.5] On the other hand, to handle the fourth and the fifth together we use
2 2

(0 +¢y)" = (Po = ¢y)” + dpuipy and we get:

2

1 , 1 1 )
e+l les — ol + Jle =yl les + oul” = S low = @l (le+yl” + |z = 9”) + |2 — v 02y

2
== (0o —y)" (12 + y?) + |z — yl* 0oy

The last term matches the fourth addend in so we are left to estimate:
1 1 )
U(w,y) = (2 = ) (e — o) + 5 (12 = W) (67 = ©)) + 5 (9o — )" (I + [yP?) -

The last term corresponds with therefore we only have to deal with the first two. We factor out the
common terms and divide by |z — y|*:

Pz — Py (1 1 )

lz] — [yl oo —
(|| + [y]) S

1
L4 2 ga+0) < (lal + o)
[z =yl |z —yl

2

and we are done. O

|~(N—a),

As a consequence we get the following Taylor expansion for |T(z) — T(y) From now on, we set

a = N — « for briefness’ sake.

Lemma 3.4. If ||¢|lw1.9p,) < 1 then for z,y € B; we have:

~ ~

(@) 1)) = e =¥ ((1-2.) (1-0¢,)) - Sy +clem)) . @)

where
(2, 9)| S @3+ f + P (x,y) (3.8)

and where 1) is the function defined above.
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Proof. We begin by showing that ||¢||w1.=@p,) < 1 implies [|[¢| 1=,y < 1. To do so, we need
to estimate the two terms at the right-hand side of using later that both |¢[/z~@sp,) < 1 and
€'l aB,) < 1. One could be tempted to use straightaway the Lipschitz property of ¢ to estimate

Pz~ Py
[z—y[ *
we need to make preliminary computations, for which we write z = ro and y = sv, with r, s € [0,1] and

o,v € 0Bp. In particular:

but we must remember that ¢ is Lipschitz only over dB; and not over the whole of By. Thus,

|l —y]? = |ro —sv]* =r* + 5% —2rso v —2rs +2rs = |r — s]* +rs(2 — 20 - v)

=|r —s|* +rslo —v|?

Hence, we start with the first term of

|z|? + |y|? B r2 4+ g2 B |r — s/ n 2rs
lz—yl2  Jr—sP+rslo—v?2  |r—sP+rslo—v2  |r—s2+rslo—vf?
<l4+ ——--.
<1+

In this way, sinceo:ﬁ andv:%we find:
1 pr—oy) _ 1 2, a—vy \
L2 2 il V) < = (p, — z Y 3.9
ol + ) (£222) < %)+<|%ZM>’ (39)

which we can easily estimate using the Lipschitz property of ¢ and |¢|[w1.@p,) < 1. The procedure
to estimate the second term of [3.6] is similar:

(|m| + |y|>2 o +st4 s |r — s|? n drs
|z — y| S r—sPP+rslo—v2 |r—s2+rslo—v]2  |r—s]2+rslo—v]?
<l4+ —-

SO

1
4 2 2
bl (4 Yy 2
=l =] =]

Again, we find:

1 Pao — P 1
(et + 1) (14 2 +00)) E2222 < (14 Lpa ) (02— 00)
2 |z — y| 2
1 P — P
+2(1+§(<px+<py)> [ i|
lz]  lyl

and we conclude like before. Thus, we proved [[1)[|f(p,) < 1.

Now, since ||¢z + @y + @apy + (2, y)|| L~ < 1, we can perform the Taylor expansion:

(1+t)72=1-

| Q)

t+o(t)=1— %HO(R)

to get:

_ a a Qa
(1+ ¢z + oy + vapy + 9¥(z,y)) o = S0y = 5Prpy — 5U(@Y) + 06} + ¢ + U(x,9)%).
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Adding and subtracting %@Icpy first and estimating .0, < 7 + @2, we finally get:

w[R)

(142 + 0y + papy +1p(z,y) "2 = (1 - %%) (1 - %s&y) - %1/1(%, y) + ((z,y)

with [¢(z, )| S 2 + @2 + *(x,y). O

After gathering some useful preliminaries in the previous lemmas, we can focus on the key linearization
estimates which will lead us to prove the rigidity result we are interested in. There a lot of computations
in the proofs of the following two lemmas and we make heavy use of majorization techniques to derive
the estimates we need. When we write <. we stress the fact that the implicit constant C' = C(e).

Lemma 3.5. Let £ be a nearly spherical set with [¢[/w1.9p,) < 1. Then, for every a € (0,2) and
€ > 0 there holds:

a
/ FE) — < 2 2
a( ) IOé ((1 2@)9)’ ~E [SD]HQ—T"(‘?BI) [¢]H%+E(aBl) (310)

where (1 — %go) g is intended as a measure on By and a = N — a.

Proof. We write the alternative expression for Z,(E) we deduced in[3.1]and then we use Taylor expansion
The first of the three resulting terms at the numerator and —1I, ((1 — %(p)g) erase each other, so to
finish the proof it is enough showing that:

Y(z,y) / C(x,y)
7d9wdg ——————dg.dg
/B y|N -« Y Bixp 1T =y Y

1 X B1 |x -
The second term is easier to handle: applyingit is enough to provide an estimate for p2 and ?(z,y).
By [3.4] we have g(z) < g, (2), so we get:

2 dup, (x)dup,
/ Pr dgxdgyg/ o2 1B, (2) 1 (y)
B B1x B,

1XB1 |x_y|N * |x_y|N @

: +1pl? 4 (3.11)

<
~E [SO]H%TOL(BB1) H2+E(BBl)

To evaluate the last integral, we use Fubini Theorem, we recall that up, () = Z,(B1) for all € B; and
we pass to polar coordinates exploiting that pup, is radial and ¢ is 0- homogeneous:

/legl(p2 (Q)WZ/&ﬁ(;)/ |d”BI|§V)ad 5, (@)
B [ o) [ i
= %/@Bl ¢*(0) do/aBl/O rNolup (r)drdr  (3.12)
ZM/&W(%)/B&LPQ

Thus, by [3:3] we deduce:

dpg, (x)dps, (y) Zo(Bx) /
2 1 1 < 2 < 3.13
/B ) < b o, # S e (3.13)
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Now we need to estimate the third term from [3.8; by the proof of Lemman llellwiom,) < 1 implies
9]l o (B,) < 1. Therefore, P2 (z,y) < ¥(z,y) and we can majorize the corresponding term with the
first member at the left-hand side of [3.11} In particular, as we have not estimated it yet, we are left with

the proof of:
¥(z,y)
dgzdg
/leBl ‘x7y|N7a Y

We appeal to [3.6] and we treat separately the two terms. We start by the second, which in turn counts
two cases since there is a sum 1 + %(ng + ¢, ). The first one is harmless, as by symmetry in z and y we
get:

< 2 2

|z| + |y|
(P2 = Py) T N—ar7 992dgy = 0,
/leBl ’ Y |z —y[N o+t o

so it does not contribute. About the second case of the second term, Young inequality reiterated many
times yields:

2
¥ Pr — Pq
(=] + 1yl + 90y|ﬁ < (|2 + [yl?) (|:z:yy> + 5+ 905-

We get rid of 2 + gpy repeating the same computations of - Instead, what remains is incorporated
in the estimate of the first term of [3.6] we are about to figure out, namely:

2
dg.dg

A= 2 ( ‘F’y) 249y - 2 2 .

By x B, (|x| +lyl* ) |z — vy |z — y|N—a ~° [w]HzT(E)Bl) * [w]H%Jrs(aBl)

By and we get:

2
v~ dpp, (x)dps, (y)
A 5/ . — 2 + ( (pm @y ) 1 1 i
i l“” O [z —yN-o

\y\|

The term (¢, — ¢, )? is estimated by Young Inequality and then we argue again like
Thus, we further reduced the proof of to the trickiest part:

2
Yo —py \ dus (@)dps, (y) 2 2
B = <. —a + 3.14
/glx31<|i|_z|) jz —y[Ne MHQ‘T(aBn Pt o, (3.14)

To estimate it, we recall that up, (r) < (1—|z|)% and we switch to polar coordinates setting again 2 = ro

~

and y = sv, with r,s € R and o,v € 0B;. In this way we get:

FN-1gN-1
pg [ (ARt / / s | dodo
9By x0B, a—v\ 1 —7r|2|1—s|2 (Ir — s|2 + rs|lo —v|2) 2

N 1 N 1 drds
/ / 1 1 & N—a
[1—r[F[1— |2 (Ir —s|? +rsf2) =

Now, we fix ¢ > 0 and we claim that for 6 € (0, 2):

where

1 1

+ N2 (3.15)

F(g) SJE 91\/—0&—1
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As the function F' is decreasing in 6, it is enough to prove the claim for § < 1. We split the integral in
two and we separately estimate each term, starting with:

O /é /1 pN—-1gN-1 drds
S Jo o Jo M=rF|l—s|2 (|7’—S|2+7’592)N%

Since r € [0,1/2], we have that |1 — 7|~ % is uniformly bounded. The, we use the facts that if s € [0, 3/4]
then |1 — 5|~ % is uniformly bounded too and, if r € [0,1/2] and s € [3/4,1] then |r — s| € [1/4,1], so
(Ir — s> + 7:992)_# is uniformly bounded too. Putting everything together we find:

[ r1
05/ ’I“N_l/ ! = ds " ]dr
0 o [L=sl> (Ir — g2 4rs02) 77"
i 3 1
Lol o L )
0 0 (|r—s]2+rs2) = 0 3 |1 —s|2

1 3
3 1
5/ rpV1 / ds dr +1,
0 o (I — sf2 + rs62)™ 7

as the second term before the last inequality is integrable. Now, we first change variables s = rt and the
we split again the integral:

ds 1-N+« 437 dt
N-a — I N—
0 (Jr—s2+rsh2) = 0 (1 —t2+t62) =
1 3
< 1-N+a / dt +/2 dt +/ dt
~ 0 t°=" 1 (L=t + )N [, tN-e

1
5 T17N+oz |:1 + 91\1_@_1 +TN70471:|

=

N=

N

N

-

)

where we majorized each of the three terms in different ways. Therefore, we conclude that:

1

1
2 1
§1+/2Ta|:1+7+rNal}dr<l+m. (316)
0

9N—o¢—1

It remains to majorize the integral between 1/2 and 1:

Do /1/1 pN-1gN-1 drds
1 Jo [L=7[Z]1—s]3 (|r—s|2+rst92)NT_

Again, we split once more: if r € [1/2,1] and s € [0,1/4] the both (|r — s[> + rs6)~ "=~ and |1 — s|~%
are uniformly bounded. In addition, if » > 1/2 and s > 1/4 then 02rs 2> 62, so we get:

Lo Lot 1 drd
DS//\ ﬁdeS-i-// a a e N—
1 |1 —7r|2 1)1 |1—r|2|1—s|2(|r_3‘2+g2) 2

<1+/ / dtdw
1t2\t—w| (w2+92)

(0]




where in the last line we performed the change of variables r =1 —t and s =1 —t 4+ w. We now prove
that for every w € (—1,1),

=

dt
/ = S w7 + 1+ Xa=1]log w]]. (3.17)
0

tet—w|z "~

The left-hand side of increases when we replace w by |w|, so it is enough to prove it for w > 0. We
split once again and we find:

dt T dt 2w dt 2 dt
=& < —= t+ ———= + — < w + 14 xaz1|logwl,
/0 t2 |t —wl% _/0 tzw? /g w |t —w|2 /thQN Xa=1|logw|
2

where each time we majorized in the right way exploiting the choice of the integration intervals. Thus,
plugging [3:17] into the last expression we obtained, we find:

[N

3! 1 dtdw ! wl=e 1 | log w|
tﬂ 5 N—_a ~ N—a + N—oa N—a dw
o J_it2|t—wl|2 (w2 + 62) 2 ~1 (w2 +62) 2 (w2 + 62) 2 (w2 + 62) 2
1 1
~E GN—a—1 + OGN —2+2¢ "

We used € for the first time here to determine an uniform majorization for the integral with the logarithmic
term. The choice of the exponent N — 2 + 2¢ will be clear in the conclusion of the proof. Hence, we

finally showed:
1 1

T gN—2t2e>

which, together with concludes the proof of At this point, we are finally ready to conclude
the estimate of B together with the proof of the Lemma. By applying [3.15] we find:

ps | ($(0) = o0)* [ (60) =00
o 0B1x0B;

BixoB, |0 —v|N71H (=) o — o[ N—1+(1+29)
2 2—«
H™ 2 (8B))

which is [3.141 O

D 55 ngafl

= l¢] + ¥l

2
H3+2(0B,)

We may now conclude the proof of the stability inequality for nearly spherical set. In the next lemma,
we exploit many times the fact that I, is a positive bilinear operator over the space of measures.

Lemma 3.6. Let E be a nearly spherical set with |¢|y1,sp,) < 1. Then, for every a € (0,2) and
€ > 0 there holds:

Za(B1) = Za(B) Se [0l5 o, + 1907 250 ) F 0, (3.18)

As a consequence we have:
Zo(B1) = Ia(E) S P(E) — P(B1) (3.19)

Proof. We denote up, the potential associated to pp,. Since I, is a bilinear operator over the space of
measures, we can write I, (g) = In(9 — 1p,) + 21(9 — B, B, ) + Ia(ip, ). Therefore:

Zo(B1) = Zo(E) = Lo(pp,) — Za(E) = Ia(up,) — La(9) — 1a(g) — Za(E)
= —1a(9 = p1B,) = 219 — pBys B,) + 1a(g) — Za(E)
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Since pp, is optimal for Z,(B;), by Proposition its potential up, is constant over B;. Thus, using
the fact that [ up, = [5 g =1, we get:

upy (9 — p,) = up, (0) /B (9= ) = 0,

Io(g — pB,, 1B,) =/

By
hence:

Ia(B) 7Ia(E) + Ia(g - /U’Bl) = Ia(g) *Ia(E)
=Ia(9) — I <(1 - %w)g> + 1o ((1 - %w)g> —T.(E).

By bilinearity, the first two terms write as — I (pg) + aly(g,09) < al,(g,pg), whereas the other two
can be estimated by [3.10] Putting everything together we find:

Zo(B1) = To(E) + Ia(g — 1B,) Se 1alg, 0g) + [Qp]ii%Ta(aBl) + [@}254—5(831)'

We further decompose the term I, (g, ¢g) as follows:

Ia(g9,¢9) = Ia(uB,,¢9) + Ia(g — pB,, v9)
= Io(pBy, o1B,) + La(pB,, 0(9 — pB,)) + Ia(g — 1B, vg)

Since pp, and ¢ is 0-homogeneous, we can argue as in and in (with ¢, instead of p2) and we
infer:

I 7 —C </ 2 <1012, . .
alppy,opn,) I Sl om

In the first inequality we used and in the second one estimate as usual. Therefore, we currently
have:

Zo(B1)=Zo(E)+1a(9—pB,) S Ia(uBu90(9—#31))“&(9—#31,sog)+[s0]i{2;a +[p]? 4 (3.20)

z (0B1) H2%°(0B1)

We start by estimating I, (g — up,,g). By Cauchy-Schwarz Inequality in L? first and then again by

and we get:

1 1
2 bl 2 2
P92y @y 929y ) )
L <(f R N[ AR ) o Ry,
¢ BixB, [T —ylN By xB, |T—y|N 2B, H% (0By)

Notice that this time we used [¢]? o instead of [¢]? 5_. . Thus, by Cauchy-Schwarz inequality
H (0B1) H™Z (0B)
for I, we find:
1 1 1
Io (9= B,y pg) < I1d (9 — pp,) 13 (09) SI1& (9 — 18.) (9] 15 95, (3-21)

We now turn to I, (up,, ¢ (g — up,)), using that up, is constant on B to write:

dps,
Io (1B, (9 — 11B)) / / HBN a@(g—uBl)dr=/ up, (y) ¢ (9 — pup,) dz
Bl Bl ‘x_ | Bl

=uBl<o>/B (g — ).
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Let p be a smooth, positive cut-off function with p =1 on B; and p = 0 on BS. We set ® = pp so that,
by Cauchy-Schwarz and relation we infer:

| oelonm)= [ 0= < 8] g lo— syt )
B RN

< [CI)]HQ(]RN)] (g :uB1)
Thus, in order to recover an estimate similar to3.21} we need to show that:

2 2 2 2
500 S P omy* [ ¢ S Wls m, (3.22)

The second inequality is trivial by now, so we just have to prove the first one. By Young Inequality and
the facts that p is bounded and Lipschitz, for every x,y € RY we have:

2 2 2 2
(Dg = @y)° = (Qups — 0ypy)” = (0 — 0y)Ps — @y(pe — Py))* S (02— 0y)? P2+ 02 (P — py)
2
S (0x — )" + @iz —y).

In this way, we get from [T.5}

o, — D)2 o, —,)2 o2
[@]? 2 (rN) :/ (% Ni)a :/ (2 Ngi)a +2/ xN+a
=2 RN xRN [T — Y] BsxBs 1T — Y| BsxBs 1T — Yl

As usual, we deal with the two terms at the right-hand side separately and we start with the second one.
Since ®, = 0 over Bs \ By and ®?(0) = ¢?(0) for all 0 € 9By, we get by Fubini:

d2 1 1
#da:dy:/ @i/ 7dydx§/ @i/ 7dzda:§/ @i
/B3><B§ |x _y|N+a Bs 5 |x_y|N+a Bs f |Z|N+a B>
2
:/ @2(0)/ rN_ldrdJS/ <p2,
OBy 0 9B

so we are done. Instead, for the first term we apply the estimate on (®, — ®,)? and we find:

2
/ (P, — q)y)Q < / (¢z — ‘:"y)2 +/ Py
BoxBy 1T = YNt ™ Jp wp, v —y|Nte ByxB, [T —y|Nto—2

Once again, we consider separately the two terms. Concerning the second one:

T / / / /

2

@ dy < @ TN e dzdy
/32sz Y]g —y[Nte-2 B, B, |T— y|N+a 2 B B, |Z|N+a 2

2 2
5/ soyS/ @
Bz 8B1

It remains to estimate the first term. First, we switch to polar coordinates:

2 2 2
z drd
/ %=/ (e(0) = p(v))? / / pNolgN =t ras | dodv.
B2 X By |'1:_y| 0B1X0B4 0 0 (|’r—5|2 +7"5|0'*’U|2) 2

Arguing in a similar way as we did for in Lemma we get:

20 v N drds < 1
s Nio =g — y[N-1fa
0 Jo (Ir = s+ rslo —v|?) 2 og—v
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so we can recover the H % (0B;) norm of ¢ concluding the proof of

Therefore, coming back to what we were doing, we find:

Lo (pBys 0 (9= 18,)) S 1 (9= 18.) [Pl s o5,) (3.23)

Plugging [3-21] and [3:23] in [3:20] we deduce:

2

1
Zo(B1) = Za(E) + In(g — ppy) S 13 (9 = 18.) [Pl g (om,) T+ (0] + [¢]H%+6(631)

2—«
H 2 (8B1)

Applying the general version of Young Inequality ab < % + g with the correct §, the third addend of

the left-hand side is erased and we conclude the proof of formula |3.18

It remains to show Since a € (0,2) and ¢ is small, we have that §, 2= and § + ¢ are all strictly
less than 1. Therefore, by Proposition [I.6] we can estimate:

T.(B)) - Ta(E) < / Vl?.
0B,

Hence, as |¢]|w1.@p,) < 1, we appeal to the theory developed by Fuglede in [9] and we get:

/ Vel < P(E) - P(B),
0B,

finishing the proof of Notice that this is the only place where we use that the barycenter of F is in
x=0. O

Now, we have at our disposal all the necessary tools to state and prove minimality of the ball B; among
the class of nearly spherical sets.

Theorem 3.7. Let N > 2 and a € (0,2). There exists a charge Q@ = Q(N,a,7) > 0 and a parameter
e = &(N,a,7) > 0 such that, for every nearly spherical set £ with [|¢|[y1.0@p,) < € and every Q < @,

we have:
Fa,@(B1) < Faq(E).

Moreover, equality is attained only if £ = Bj.

Proof. Let E be a nearly spherical set with |[¢|ly1.«@p,) < 1. Assuming that F, o(E) < Fa,q(B1),
rearranging the terms of the functional and applying [3.19) we find:

P(E) = P(B1) < Q*(Za(B1) — La(E)) S Q*(P(E) — P(B1))

This implies that either Q% > 1 or P(E) — P(Bj) < 0. In the first case we reach a contradiction with the
fact that Q2 < 1. Thus, since P(E) — P(B;) > 0 for every E nearly spherical, we must necessarily have
P(E) = P(B;). Thanks to Isoperimetric Inequality, we finally conclude E = Bj, proving minimality of
the ball for the functional F, ¢ in the class of nearly spherical sets sufficiently close to the ball itself in
the C'*7 topology. O
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