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Making a computer able to see exactly as a human being does was for

many years one of the most interesting and challenging tasks involving lots

of experts and pioneers in fields such as Computer Science and Artificial In-

telligence. As a result, a whole field called Computer Vision has emerged

becoming very soon a part of our daily life. The successful methodologies

of this discipline have been applied in countless areas of application and

their use is still in continuous expansion. On the other hand, in an increas-

ing number of applications extracting information from simple 2D images is

not enough and what is more requested instead is to use three-dimensional

imaging techniques in order to reconstruct the 3D shape of the imaged ob-

jects and scene. The techniques developed in this context include both active

systems, where some form of illumination is projected onto the scene, and

passive systems, where the natural illumination of the scene is used.

Among the active systems, one of the most reliable approaches for re-

covering the surface of objects is the use of structured light. This technique is

based on projecting a light pattern and viewing the illuminated scene from

one or more points of view. Since the pattern is coded, correspondences be-

tween image points and points of the projected pattern can be easily found.

In particular, the performances of this kind of 3D scanner are determined by

two key aspects, the accuracy and the acquisition time.



This thesis aims to design and experiment some rectification strategies

for a prototype of binary coded structured light 3D scanner. The rectifica-

tion is a commonly used technique for stereo vision systems which, in case

of structured light, facilitates the establishment of correspondences across a

projected pattern and an acquired image and reduces the number of pattern

images to be projected, resulting finally in a speeding-up of the acquisition

times.
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Chapter 1

Introduction

The physical world around us is a three-dimensional world. Despite this

fact, commonly used technologies such as traditional cameras and imaging

sensors are able to acquire only two-dimensional images losing the depth

information. This fundamental restriction greatly limits the perception of

real-world environment.

Figure 1.1: Depth perception in real-world environment

The past several decades have marked tremendous advances in research,

development, and commercialization of 3D surface imaging technologies,

stimulated by application demands in a variety of market segments, ad-

vances in high-resolution and high-speed electronic imaging sensors, and
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ever-increasing computational power. Nowadays different 3D surface imag-

ing techniques are available in order to measure the (x, y, z) coordinates of

points on the surface of an object, returning as output a point cloud where

each surface point is associated with some kind of scalar value. Likewise, a

colored point cloud is represented by {Pi = (xi, yi, zi, ri, gi, bi), i = 1, 2, ..., N},

where the vector (ri, gi, bi) represents the red, green, and blue color compo-

nents associated with the i-th surface point.

Figure 1.2: Example of point cloud returned by a 3D reconstruction

One principal method of 3D surface imaging is based on the use of struc-

tured light. A structured light scanning system projects different light pat-

terns, or structures, and captures the light as it falls onto the scene. It then

uses the information about how the patterns appear after being distorted by

the scene to eventually recover the 3D geometry. The potential speed of data

acquisition, non-contact nature, the availability of necessary hardware, and

the high precision of measurement offered by modern 3D structured light

scanning technologies are what make them highly adoptable in industries

such as medicine, biology, manufacturing, security, communications, remote

environment reconstruction, and consumer electronics.

As the number of applications in which structured light techniques are

employed increases, more interesting and challenging problems arise. It

should be noted that there is not one 3D sensing technology that solves each

issue and works as a general solution. Structured light in particular is still
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Figure 1.3: Use of structured light for 3D surface imaging

nowadays one of the most reliable approaches, able to provide good perfor-

mances both from the accuracy and acquisition time point of view.

1.1 Goal of the thesis

This master thesis aims to improve the performances presented by a pro-

totype of structured light 3D scanner, realized with low-cost hardware, by

experimenting some rectification strategies.

As known from basic computer vision, rectification is the process of

transforming a pair of camera frames as they have been acquired by two

perfectly aligned cameras with the same focal length. The two rectifying

transformations are homographies and are calculated from a combination

of the intrinsic parameters of each optical device, and the extrinsic param-

eters linking each device’s frame. By using epipolar geometry terminology,

one can equivalently say that, by rectification, corresponding epipolar lines

between the two camera frames will align, by rows or by columns accord-

ing to the cameras’ configuration. It is easy to deduce that rectification is

a commonly used approach for stereo vision systems. This kind of device

usually employs two cameras in order to see the same object from two dif-

ferent points of view and produces as output a 3D point cloud simply by

analyzing the differences between the two images captured simultaneously

by the cameras. Essentially, one needs to accurately identify the pixels that



4 Chapter 1. Introduction

represent the projection of the same 3D point in both images, known as the

problem of correspondence between the two cameras, and once a so called

correspondence is found the associated 3D point comes from a triangulation

process. If the two cameras are placed parallel one to the other, given a point

in one image, its correspondence in the other image is on the same epipolar

line. As result, rectification can transform the correspondence problem from

2D to 1D search resulting in a speeding up of the entire 3D stereo vision

system.

What about a structured light system? Being the principle of work of

this kind of sensor very similar to stereo vision, rectification could be applied

also in this slightly different scenario by keeping in mind that one camera is

substituted with a projector. In particular in this master thesis two different

approaches are proposed for rectifying a structured light 3D scanner: one

acting only on the camera and the other involving both camera and projector.

Differently from the first approach, that has been formulated only from the

theoretical point of view, the second one has been effectively implemented

on the available prototype of 3D scanner. This prototype consists basically in

a binary coded structured light sensor which works by projecting a sequence

of patterns composed by vertical and horizontal binary stripes. In particular,

binary coded technology offers very robust results given the simple patterns

to be projected but at the same time presents quite long acquisition times

since for each acquisition multiple patterns are required.

In particular, the practical part of this thesis project can be summarized

in three steps:

1. Mounting the sensor in a new support. This implies that the projector-

camera system must be accurately re-calibrated.

2. Implementing the second rectification strategy which aims to horizon-

tally align camera and projector. As result, only vertical patterns need

to be projected in order to find horizontal correspondences, since ver-

tical correspondences come from the alignment.

3. Compare the performances obtained by the sensor before and after the

rectification in order to see if the rectification could be effectively con-

sidered as an improvement for the structured light sensor.
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It is worth mentioning that the rectification of a projector-camera system is

not a simple task if compared with a common stereo system. Many issues

come from the presence of the projector in place of a camera. In addition, the

eventually different resolution between the camera and projector may com-

plicate the alignment between these two devices. Moreover, the rectification

of the camera image implies a pixel interpolation and, as consequence, a loss

of information. As result, it is expected as final solution a speeding-up of the

acquisition time but also a slightly less accurate 3D reconstruction.

1.2 Related works

The already mentioned prototype used for this thesis project has been re-

alized from scratch by student Mattia Piccoli in his master thesis [21]. In

particular, Fig. 1.4 shows how the sensor appears in his original support.

In a nutshell, besides the calibration of the device, this thesis presents also

Figure 1.4: Mattia Piccoli master thesis project

the comparison between different coding and decoding strategies applied

directly on the sensor. More in detail, it has been tested the binary and

Gray code as coding strategies, while for the binarization of the acquired

camera images under patterns illumination, it has been experimented the

comparison of the camera image with a uniform image and with a camera

image taken under complementary pattern illumination. This last binariza-

tion strategy together with the Gray code, are the choice that leads to the
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best performances. More information about the working principle of this

binary coded structured light sensor will be provided later on. As well as

Mattia Piccoli’s thesis, there exists many other projects dealing with the real-

ization of structured light sensors. One example is SLStudio [32], see Fig. 1.5,

a modular open-source software that allows everyone to develop a custom

structured light 3D scanner controlled by a dedicated GUI.

Figure 1.5: SLStudio framework

Even if structured light systems are used in 3D reconstruction for many

years now, many researchers are still involved in this field trying to further

improve the performances of these kinds of sensors. This is mainly due to

the fact that realizing a 3D scanner based on this technology is relatively

simple and cheap and at the same time provides interesting performances.

In particular, in the rectification context, one of the most recent results comes

from [22]. A method, called inverse rectification, is proposed, which facilitates

the establishment of correspondences across a projected pattern and an ac-

quired image. In this case a pattern of features comprising vertical dashes is

warped by the inverse of the rectifying homography of the projector-camera

pair, prior to projection. This warping imparts upon the system the property

that projected features will fall on distinct conjugate epipolar lines of the

rectified projector and acquired camera images. This reduces the correspon-

dence search to a trivial constant-time table lookup once a feature is found in

the camera image, and leads to robust, accurate, and extremely efficient dis-

parity calculations. A projector-camera range sensor is developed based on

this method, and is shown experimentally to be effective, with bandwidth

exceeding some existing consumer-level range sensors. Another paper deal-

ing with rectification of structured light systems is [24]. In this case, rectifica-

tion is only a small part of the entire proposed work, but it can be deduced
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that the solution adopted consists in rectifying both camera and projector,

exactly as a stereo pair. This means that common rectification approaches

for stereo systems can be used, as the one proposed in [15].

1.3 About IT+Robotics

This master thesis project has been developed thanks to an internship at

IT+Robotics srl, a well-known industry leader in advanced 3D vision for

robotics and automation.

Figure 1.6: EyeT+ Pick, one of the standard products at IT+Robotics

The company has been founded in 2005 by the collaboration of profes-

sors at the University of Padua and a group of researchers in the field of

Robotics and nowadays it has a deep understanding and expertise in arti-

ficial vision systems, visual inspection and vision-guided robotic systems.

In Fig. 1.6 is depicted one of the most successful standard products for the

company, the EyeT+ Pick. This is basically a vision system developed specif-

ically for random bin-picking, so it allows to recognize, precisely locate and

grasp objects randomly placed inside a bin. What makes this product so in-

teresting, is its flexibility: it can be easily integrated in existing working pro-

cesses and it presents a very compact structure with respect to other devices.

Among the other standard products of the company, it is worth mentioning

also the EyeT+ Inspect, that is instead a visual system for quality inspection.
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From these examples it is easy to understand how the field of 3D vision,

of which also this thesis is part, is fundamental in an Industry 4.0 scenario.

1.4 Thesis organization

The following chapters of this thesis are structured so that the reader is pro-

gressively driven to the core of the project. The next chapter presents basic

notions of camera and multi-camera geometry, while the third chapter starts

with an overview of structured light sensors for moving then to a description

of the particular prototype used for this project. These two chapters are im-

portant in order to motivate all the choices taken on the experimental part of

the thesis. Chapter 4 illustrates the two proposed rectification strategies and

how the second one can be applied to the specific prototype of a structured

light 3D scanner, while Chapter 5 shows the experimental results comparing

them with ones obtained by the non-rectified 3D scanner. Finally, Chapter 6

provides final considerations about the strategies implemented in this thesis

evaluating also the possibility to further improve the performances of the

scanner.
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Chapter 2

Basis of camera and multi-camera

geometry

This chapter aims to provide an overview of camera and multi-camera ge-

ometry. The mathematical notions presented in this chapter allow to deeply

understand the main strategies that will be adopted in this thesis in order to

improve the performance of the sensor.

2.1 Single-view geometry

This section describes the frontal pinhole camera model depicted in Fig. 2.1,

and how a point Q in the 3D space is mapped through this model into a

point q on the image plane.

Figure 2.1: Framework for the single camera view problem

Given the world reference frame, consider the camera frame (X, Y, Z)

attached to the camera, whose Z-axis, known as optical axis, is directed to-

wards the scene. The relation in the space between these two frames is given
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by a rototranslation transformation defined by the matrices (R, T) ∈ SE(3).

The distance between the optical center C and the image plane is the focal

length f . The point Q can be rewritten in terms of world reference frame

coordinates as QO and in terms of camera frame coordinates as QC

Q −→ QO = (XO, YO, ZO), QC = (X, Y, Z) (2.1)

while the point q in the image plane can be represented as:

q −→

[

x

y

]

(2.2)

2.1.1 Derivation of the camera matrix

After having introduced the setup for the single camera view problem, the

aim now is to derive how the parameters of the pinhole camera model can

be summarized into one matrix P, called camera matrix. This matrix can be

obtained by considering the following composition of geometric transforma-

tions:

1. World 3D coordinates → Camera 3D coordinates






X

Y

Z




 = R






XO

YO

ZO




 + T =⇒ QC = RQO + T (2.3)

2. Camera 3D coordinates → Image plane 2D coordinates Consider

to project the point Q into the image plane as illustrated in Fig. 2.2. This

geometric operation results in two triangles along the yz and xz directions

and, from similar triangles principle, the transformation from a 3D point in

the camera frame to the corresponding 2D point in the image plane can be

written as follows: 





x = f X
Z

y = f Y
Z

(2.4)

meaning that to every point q are associated two equations called perspective

geometry equations.
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Figure 2.2: yz and xz directions view of the Q point projection q on the image
plane

3. Image plane 2D coordinates → 2D homogeneous coordinates The

transformation from canonical coordinates to homogeneous coordinates and

its inverse relation is defined as follows:

[

x

y

]

−→ λ






x

y

1











α

β

γ




 −→ λ

[
α
γ
β
γ

]

, λ 6= 0 (2.5)

Notice that homogeneous coordinates are defined up to a scaling factor λ

that is not known in general, and this implies that in homogeneous notation

the two following forms represent the same point:






x

y

1




 ∼






λx

λy

λ




 (2.6)

4. Applying homogeneous coordinates to perspective geometry equations






x

y

1




 =






f X
Z

f Y
Z

1




 ∼






f X

f Y

Z




 =






f 0 0

0 f 0

0 0 1











X

Y

Z




 =






f 0 0

0 f 0

0 0 1

0

0

0














X

Y

Z

1














x

y

1




 =






f 0 0

0 f 0

0 0 1






[

I3x3 0
]
[

R T

0 1

]









XO

YO

ZO

1









= K f · Π0 · g ·









XO

YO

ZO

1









(2.7)
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where K f is called intrinsic parameters matrix and Π0 is called standard projec-

tion matrix.

5. Millimeters to pixels transformation In the real case of digital cameras,

the image plane is discretized in a finite number of pixels, therefore on the

image plane two reference frames must be considered, one in pixels and the

other in millimeters. In the following, [x̃ ỹ]T represents the coordinates in

pixels, while [x y]T is the respective representation in millimeters and, using

this notation, the relation between the two can be described as follows:

[

x̃

ỹ

]

= f

[

Sx Sθ

0 Sy

] [

x

y

]

+

[

Ox

Oy

]

(2.8)

where f is the focal length that plays the role of a scaling factor, Sx and Sy

are the pixel/mm transformation coefficients and [Ox Oy]T is an offset vec-

tor that keep into account the fact that usually the pixel coordinate frame

is centered in the top left corner of the image plane. The skew component

Sθ instead is related to the fact that the pixels may not be rectangular, as il-

lustrated in Fig. 2.3. Real cameras are also affected by radial and tangential

Figure 2.3: Difference between a regular pixel and an irregular one

distortion. For simplicity, these effects are not included in this camera model

but in practical applications they must be considered and removed, by cali-

brating the camera for instance. More details about the modelling of camera

distortion can be found in [9].

6. Putting it all together The complete model for the intrinsic parameters

takes into account the fact that pixels may not be rectangular through the

skew component Sθ, related to the angle θ that affects the x coordinate. Usu-

ally it is assumed θ ≃ π/2 so that Sθ = 0, but in a more accurate model the
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final equation 2.7 must be rewritten as:






x̃

ỹ

1




 =






Sx Sθ Ox

0 Sy Oy

0 0 1











f 0 0

0 f 0

0 0 1




 Π0 g









XO

YO

ZO

1









= Ks ·K f ·Π0 · g ·









XO

YO

ZO

1









(2.9)

Therefore the camera matrix is defined as P = K · Π0 · g in which the camera

parameters are divided in extrinsic parameters contained in g and intrin-

sic parameters contained in K = Ks · K f ; in particular matrix Ks takes into

account the pixel/mm mapping.

2.2 Two-view geometry

This section covers the geometry of two perspective views, as illustrated in

Fig. 2.4. Even if the focus of this thesis is more oriented to the case of two

views acquired simultaneously by a stereo rig, it is worth mentioning that

the reasoning is the same for a camera moving relative to the scene.

Figure 2.4: Two-view geometry

Given a point Q in the world reference frame system (x, y, z), let q1 and

q2 be the projections of this point onto two different image planes, one with

reference to the first camera system C1 and the other to the second camera
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system C2. The goal of the study performed in the following sections is to

find a relation between Q, q1 and q2.

2.2.1 Essential Matrix

The importance of the essential matrix is linked to the fact that it encodes the

relative pose between the two cameras C1 and C2 with (R, T) ∈ SE(3). The

derivation of this matrix comes from the following steps:

1. Camera correspondences Let Qi be the point Q seen from frame i =

0, 1, 2. Then







Q1 = R1Q0 + T1

Q2 = R2Q0 + T2

−→







Q0 = RT
1 Q1 − RT

1 T1

Q2 = R2(RT
1 Q1 − RT

1 T1) + T2

= R2RT
1 Q1 − R2RT

1 T1 + T2

(2.10)

and by defining R̂ = R2RT
1 , T̂ = −R2RT

1 T1 + T2, the relation between Q1

and Q2 can be rewritten as

Q2 = R̂Q1 + T̂ (2.11)

2. Camera relations For each camera i, the camera relation is λiqi =

KiΠ0Qi with i = 1, 2 where qi and Qi are expressed in homogeneous co-

ordinates and the camera matrix is Pi = KiΠ0.

3. Putting it all together Under the assumption that Ki = K f ,i = I3x3,

consider 





λ1q1 = Q1

λ2q2 = Q2

Q2 = R̂Q1 + T̂

=⇒ λ2q2 = R̂λ1q1 + T̂ (2.12)

4. Algebraic manipulation of the above equation Consider the skew-

symmetric operator [T̂]× related to T̂ and multiply both members by such

quantity, this operation is equivalent to an outer product:

T̂ × (λ2q2) = T̂ × (R̂λ1q1 + T̂) =⇒ λ2[T̂]×q2 = λ1[T̂]×R̂q1 (2.13)
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Then consider the inner scalar product of the equation by q2:

qT
2 [T̂]×R̂q1 = 0 (2.14)

This result is the formulation of the Longuet-Higgins Equation and represents

the relation satisfied by two images q1, q2 of the same point Q. This relation

is also known as epipolar constraint and the matrix E
.
= [T̂]×R̂ is the essential

matrix.

What is the geometric interpretation? From the geometric point of view

the epipolar constraint is equivalent to saying that the vectors C1Q, C2Q,

C1C2 are coplanar. A way to show this is by recalling that the triple product

a · (b × c) represents the volume of the solid with sides a, b, c, as depicted

in Fig. 2.5. Specifically, the cross-product between b and c stands for the

area of the base, while the projection of a on the vector orthogonal to the

plane generated by b and c is the height. Then a · (b × c) = 0 means the

volume is zero so the three vectors are coplanar. Taking inspiration from

Figure 2.5: Example of the volume of a solid as a · (b × c)

this observation, it is possible to rewrite the Longuet-Higgins equation as a

triple product

qT
2 [T̂]×R̂q1 = qT

2 (T̂ × R̂q1) = 0 (2.15)

and so it follows the coplanarity of the vectors C1Q, C2Q, C1C2.

Characterization of Essential matrix Is E any R3x3 matrix? The answer

is no: from its definition, it is worth noting that this matrix is given by the

product of a skew-symmetric matrix and a rotation matrix. More into detail,

it can be proved that a general matrix E ∈ R3x3 is an essential matrix if and



16 Chapter 2. Basis of camera and multi-camera geometry

only if it admits a SVD decomposition of this kind:

E = UΣV, U, V ∈ SE(3) Σ =






σ 0 0

0 σ 0

0 0 0




 , σ ∈ R+ (2.16)

a complete proof of this fact can be found in [3].

2.2.2 Fundamental matrix and epipolar constraint

The essential matrix described before has been computed assuming a camera

with no intrinsic parameters, hence λiq1 = Π0Qi with Ki = I. In the general

case of non normalized coordinates the relation becomes λiq̂i = KiΠ0Qi,

where Ki is the matrix of intrinsic parameters. By comparing these relations

it results q̂i = Kiqi, and hence qi = K−1
i q̂i.

By keeping in mind this fact, the epipolar constraint can be rewritten in

this more general form:

qT
2 Eq1 = q̂2

TK−T
2 EK−1

1 q̂1 = 0 ⇔ q̂2
T (K−T

2 EK−1
1 )

︸ ︷︷ ︸

F

q̂1 = 0 (2.17)

where F is known as fundamental matrix, and through this matrix it is possible

to express the epipolar constraint for non-normalized coordinates.

2.2.3 Epipolar geometry

Indicating with the term baseline the line joining the two camera centers C1

and C2, the epipolar geometry could be define as the geometry of the inter-

section of the image planes with the pencil of planes having the baseline as

axis. It is independent of scene structure, and only depends on the cameras’

internal parameters and relative pose. This geometry is usually motivated

by considering the search for corresponding points in stereo matching.

Considering again the projection of a 3D point Q in the two views, at

q1 in the first, and q2 in the second. As previously proved the image points

q1 and q2, space point Q and camera centres are coplanar, and, denoting
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this plane as π, it is possible to deduce from Fig.2.6(a) that the rays back-

projected from q1 and q2 intersect Q and the rays are coplanar, lying in π.

This latter property is of most significance in searching for a correspondence.

(a) Coplanarity of the image points q1

and q2, space point Q
(b) The corresponding point q2, given the
point q1, lies on line l2

Figure 2.6: Epipolar geometry basic results

Supposing now that only the point q1 is known, how the corresponding

point q2 is constrained? The plane π is determined by the baseline and the

ray is defined by q1. From above, the ray corresponding to the unknown

point q2 lies in π, hence the point q2 lies on the line of intersection l2 of π

with the second image plane. This reasoning is graphically depicted in Fig.

2.6(b). In terms of a stereo correspondence algorithm the benefit is that the

search for the point corresponding to q1 need not to cover the entire image

plane but can be restricted to the line l2.

The geometric entities involved in epipolar geometry are illustrated in

Fig. 2.7. The terminology is:

• The epipole is the point of intersection of the baseline with the image

plane, or equivalently it is the image in one view of the camera centre of

the other view. It is also the vanishing point of the baseline (translation)

direction.

• An epipolar plane is a plane containing the baseline. There is a one-

parameter family (a pencil) of epipolar planes.

• An epipolar line is the intersection of a epipolar plane with the image

plane. All epipolar lines intersect at the epipole. An epipolar plane
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intersects the left and right image planes in epipolar lines, and defines

the correspondence between the lines.

(a) Definition of epipoles e1 e2 and the
epipolar lines l1 l2

(b) As the position of the 3D point Q
varies, the epipolar planes rotate about
the baseline

Figure 2.7: Epipolar geometry entities

While considering the epipolar geometry, the most emblematic exam-

ples are the case of converging cameras, Fig. 2.8, and the case of motion

parallel with image planes, Fig. 2.9.

Figure 2.8: Epipolar geometry for converging cameras

From Fig. 2.8 a pair of images with superimposed corresponding points

and their epipolar lines are depicted: the motion between the views is a

translation and rotation. In each image, the direction of the other camera

may be inferred from the intersection of the pencil of epipolar lines. In this

case, both epipoles lie outside of the visible image.
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Figure 2.9: Epipolar geometry for motion parallel to the image plane

In the case of parallel cameras instead the intersection of the baseline

with the image plane is at infinity. Consequently, the epipoles are at infinity

and epipolar lines are parallel. In particular, what is depicted in Fig. 2.9 is

a pair of images for which the motion between the views is approximately

a translation parallel to the x-axis, with no rotation. Note that correspond-

ing points lie on corresponding epipolar lines. This last example will be of

fundamental importance in the next sections in order to deeply understand

how rectification could improve the performance of a stereo rig, and then of

a structure light 3D scanner.

2.3 Rectification

Typically in a stereo rig the cameras are horizontally displaced and rotated

towards each other by an equal amount (verged) in order to overlap their

fields of view. This is the camera configuration of Fig. 2.8: as already noted,

epipolar lines in this case lie at a variety of angles across the two images,

complicating the search for correspondences. In contrast, if these cameras

had their principal axes parallel to each other (no vergence) and the two cam-

eras had identical intrinsic parameters, corresponding epipolar lines would

lie along the same horizontal scanline in each image, as observed in Fig. 2.9.

This configuration is known as a standard rectilinear stereo rig. Clearly it

is desirable to retain the improved stereo viewing volume associated with
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verged cameras and yet have the simplicity of correspondence search asso-

ciated with a rectilinear rig.

To achieve this a solution could be to warp or rectify the raw images

associated with the verged system such that corresponding epipolar lines

become collinear and lie on the same scanline. A second advantage is that

the equations for 3D reconstruction become very simply related to image

disparity after image rectification, since they correspond to those of a simple

rectilinear stereo rig, this fact will be clear later.

Rectification can be achieved either with camera calibration informa-

tion, for example in a typical stereo application, or without calibration infor-

mation, for example in a typical structure from motion application. In the

next subsections both the two cases will be discussed, with more focus on

the calibrated case.

2.3.1 Rectification with calibration information

Given a calibrated stereo rig where both the intrinsic and the extrinsic pa-

rameters are known, the idea is to identify a common viewing direction for

cameras 1 and 2. There exist many ways to achieve this goal. Here just a sim-

ple example is illustrated. In order to simplify the reasoning, it is assumed

that the lens distortion has been calibrated before and hence does not need

to be included anymore in the set of intrinsic parameters.

Common viewing direction for rectifying cameras 1 and 2 Let Π be a

plane perpendicular to the baseline vector b12 from the projection center of

camera 1 to the projection center of camera 2, as illustrated in Fig. 2.10(a).

First of all project the unit vectors z1 and z2 of both optical axes into Π, which

results in vectors n1 and nj, respectively. The algebraic relations are as fol-

lows:

n1 = (b12 × z1)× b12, n2 = (b12 × z2)× b12 (2.18)

Aiming at a "balanced treatment" of both cameras, in order to find the unit

vector of the common direction the bisector of n1 and n2 is considered:

z12 =
n1 + n2

‖n1 + n2‖2
(2.19)
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(a) Plane Π perpendicular to the baseline (b) Vectors n1 and n2 as result of projec-
tion of vectors z1 and z2

Figure 2.10: An illustration for calculating the common viewing direction
for cameras 1 and 2

Consider the unit vector x12 in the same direction as b12, and the unit vector

y12 is finally defined by the constraint of ensuring a right-hand 3D Cartesian

coordinate system. Formally, the result is the following:

x12 =
b12

‖b12‖2
y12 = x12 × z12 (2.20)

The two images of camera 1 and Camera 2 need to be modified as though

both would have been taken in the direction R12 = [x12 y12 z12]
T, instead of

the actually used directions R1 and R2.

Getting rectification homographies The rotation matrices that rotate both

cameras into their new virtual viewing direction are as follows:

R∗
i = R12RT

i R∗
j = R12RT

j (2.21)

In general, when rotating any camera around its projection center about the

matrix R, the image is transformed by a rotation homography:

H = K · R · K−1 (2.22)

where K is the 3x3 matrix of intrinsic parameters of this camera. The matrix

K−1 transfers pixel coordinates into camera coordinates in world units, the
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matrix R rotates them into the common plane, and the matrix K transfers

them back into pixel coordinates.

Producing the rectified image pair A rectified image is calculated pixel by

pixel using:

p = H−1 p̂ (2.23)

such that the new value at pixel location p̂ is calculated based on the origi-

nal image values in a neighborhood of a point p, using for instance bilinear

interpolation. This is an essential step since the rectified coordinates are in

general not integers, so it is required to resample using some form of inter-

polation.

Note that, even with the same make and model of the camera, the focal

length of the two cameras may be slightly different: if this happens it is

necessary to scale one rectified image by the ratio of focal lengths in order to

place them on the same focal plane.

2.3.2 Rectification without calibration information

When calibration information is not available, rectification can be achieved

using an estimate of the fundamental matrix, which is computed from cor-

respondences within the raw image data. To this aim, several methods can

be found in the literature; an example is a method proposed by Hartley [10].

This method is implemented by the cv::stereoRectifyUncalibrated() func-

tion, that is the function that OpenCV uses to perform rectification without

calibration data.

In addition, rectification can be performed also without relying on epipo-

lar geometry. In this context, a prominent example is given by Nozick [19]

that in his paper presents a strategy for multiple view image rectification:

given some point correspondences between each view, the goal of this method

is to find an homography matrix Hi for each camera such that the trans-

formed point correspondences are horizontally aligned. Each homography

is defined as Hi = K′
i RiK

−1
i , where it is easy to deduce that Ki is the camera

matrix for camera i, Ri is the rotation matrix imposing the desired orien-

tation for the alignment, and K′
i is the new camera matrix for the rectified

camera i. Given this setup, the idea is to perform a bundle adjustment on
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K′
i and Ri from each view using Levenberg-Marquartd method. This means

that these two matrices must be estimated trying to minimize as more as

possible a sort of alignment error between rectified point correspondences,

given some initial conditions on their values. From what it can be seen, this

method is not related to epipolar geometry and hence can be extended for

an arbitrary number of views. Of course, it is also very well suited for a two

image rectification. Not only, it can also be extended in order to deal with

different resolutions.

2.4 Finding correspondences in a stereo pair

Finding correspondences is an essential step for 3D reconstruction from mul-

tiple views. The correspondence problem can be viewed as a search prob-

lem, which asks, given a pixel in the left image, which is the corresponding

pixel in the right image? As previously stated, the epipolar geometry con-

straint strongly simplify this problem by reducing the search space from a

2D search to the epipolar line only.

This fact leads to most of the methods for finding correspondences in

image pairs. These assumptions hold when the distance of the world point

from the cameras is much larger than the baseline: in this way most scene

points are visible from both viewpoints and corresponding image regions

are similar.

Two questions are involved: what is a suitable image element to match

and what is a good similarity measure to adopt? There are two main classes

of correspondence algorithms: correlation-based and feature-based meth-

ods, that will be briefly described in the following sections.

2.4.1 Correlation-Based methods

If the element to match is only a single image pixel, ambiguous matches ex-

ist. Therefore, windows are used for matching in correlation-based methods

and the similarity criterion is a measure of the correlation between the two

windows. The selected correspondence is given by the window that max-

imizes a similarity criterion or minimizes a dissimilarity criterion within a

search range. Once a match is found, the offset between the two windows
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can be computed, which is called the disparity from which the depth can be

recovered. Some commonly used criteria for correlation-based methods are

described next.

Based on the rectified images in Fig. 2.11, we define the window func-

tion where m, an odd integer, is the image window size so that:

Wm(x, y) = {(u, v) | x −
(m − 1)

2
≤ u ≤ x +

(m − 1)

2
,

y −
(m − 1)

2
≤ v ≤ y +

(m − 1)

2
}

(2.24)

Figure 2.11: Correlation-based methods look for the matching image win-
dow between the left and right rectified images

The dissimilarity can be measured by the Sum of Squared Differences

(SSD) cost for instance, which is the intensity difference as a function of dis-

parity d:

SSD(x, y, d) = ∑
(u,v)∈Wm(x,y)

[
Il(u, v)− Ir(u − d, v)

]2
(2.25)

where Il and Ir refer to the intensities of the left and right images respec-

tively. If two image windows correspond to the same world object, the pixel

values of the windows should be similar and hence the SSD value would

be relatively small. As shown in Fig. 2.11, for each pixel in the left im-

age, correlation-based methods would compare the SSD measure for pixels

within a search range along the corresponding epipolar line in the right im-

age. The disparity value that gives the lowest SSD value indicates the best

match.
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A slight variation of SSD is the Sum of Absolute Differences (SAD)

where the absolute values of the differences are added instead of the squared

values:

SAD(x, y, d) = ∑
(u,v)∈Wm(x,y)

|Il(u, v)− Ir(u − d, v)| (2.26)

This cost measure is less computationally expensive as it avoids the multipli-

cation operation required for SSD. On the other hand, the SSD cost function

penalizes the large intensity difference more due to the squaring operation.

The intensities between the two image windows may vary due to illu-

mination changes and non-Lambertian reflection. Even if the two images

are captured at the same time by two cameras with identical models, non-

Lambertian reflection and differences in the gain and sensitivity can cause

variations in the intensity. In these cases, SSD or SAD may not give a low

value even for the correct matches. For these reasons, it is a good idea to nor-

malize the pixels in each window. A first level of normalization would be to

ensure that the intensities in each window are zero-mean. A second level of

normalization would be to scale the zero-mean intensities so that they either

have the same range or, preferably, unit variance. This can be achieved by

dividing each pixel intensity by the standard deviation of window pixel in-

tensities, after the zero mean operation, i.e. normalized pixel intensities are

given as:

In =
I − Ī

σI
(2.27)

where Ī is the mean intensity and σI is the standard deviation of window

intensities.

While SSD measures the dissimilarity, Normalized Cross-Correlation

(NCC) measures the similarity. Again, the pixel values in the image win-

dow are normalized first by subtracting the average intensity of the window

so that only the relative variation would be correlated. The NCC measure is

computed as follows:

NCC(x, y, d) =
∑(u,v)∈Wm(x,y)(Il(u, v)− Īl)(Ir(u − d, v)− Īr)

√

∑(u,v)∈Wm(x,y)(Il(u, v)− Īl)2(Ir(u − d, v)− Īr)2
(2.28)
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where

Īl =
1

m2 ∑
(u,v)∈Wm(x,y)

Il(u, v), Īr =
1

m2 ∑
(u,v)∈Wm(x,y)

Ir(u, v) (2.29)

2.4.2 Feature-Based methods

Rather than matching each pixel, feature-based methods only search for cor-

respondences to a sparse set of features, such as those located by a repeat-

able, well-localized interest point detector (e.g. a corner detector). Apart

from locating the features, feature extraction algorithms also compute some

sort of feature descriptors for their representation, which can be used for the

similarity criterion. The correct correspondence is given by the most sim-

ilar feature pair, the one with the minimum distance between the feature

descriptors.

Stable features are preferred in feature-based methods to facilitate match-

ing between images. Typical examples of image features are edge points,

lines and corners. In particular, what is preferred in this kind of application

are point-based features. Some examples of point-based features detectors

developed in recent years are the Scale Invariant Feature Transform (SIFT)

and the Speeded-Up Robust Feature (SURF). The SIFT feature is described

by a local image vector with 128 elements, which is invariant to image trans-

lation, scaling, rotation and partially invariant to illumination changes and

affine or 3D projections. Fig. 2.12 shows an example of matching SIFT fea-

Figure 2.12: Wide baseline matching between two images with SIFT

tures across large baseline and viewpoint variation. It can be seen that most
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matches are correct, thanks to the invariance and discriminative nature of

SIFT features.

2.5 3D reconstruction

Stereo vision refers to the ability to infer information on the 3D structure

and distance of a scene from two or more images taken from different view-

points. The disparities of all the image points form the disparity map, which

can be displayed as an image. If the stereo system is calibrated, the disparity

map can be converted to a 3D point cloud representing the scene.

2.5.1 Triangulation

When the corresponding left and right image points are known, two rays

from the camera center through the left and right image points can be back-

projected. The two rays and the stereo baseline lie on a plane (the epipolar

plane) and form a triangle, hence the reconstruction is termed triangulation.

Here triangulation for two rectified views is described.

Figure 2.13: Stereo geometry after rectification

After image rectification, the stereo geometry becomes quite simple as

shown in Fig. 2.13, which shows the top-down view of a stereo system com-

posed of two pinhole cameras. The necessary parameters, such as baseline
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and focal length, are obtained from the original stereo calibration. The fol-

lowing two equations can be obtained based on the geometry:

x′c = f
X

Z
, xc = f

X + B

Z
(2.30)

where x′c and xc are the corresponding horizontal image coordinates in met-

ric units in the right and left images respectively, f is the focal length and B

is the baseline distance.

Disparity d is defined as the difference in horizontal image coordinates

between the corresponding left and right image points, given by:

d = xc − x′c =
f B

Z
(2.31)

Therefore,

Z =
f B

d
, X =

Zx′c
f

, Y =
Zy′c

f
(2.32)

where y′c is the vertical image coordinates in the right image.

This shows that the 3D world point can be computed once the disparity

is available: (x′c, y′c, d) 7→ (X, Y, Z). Disparity maps can be converted into

depth maps using these equations to generate a 3D point cloud.

2.5.2 Uncertainty in 3D reconstruction

Stereo matches are found by seeking the minimum of some cost functions

across the disparity search range. This computes a set of disparity estimates

in some discretized space, typically integer disparities, which may not be

accurate enough for 3D recovery. 3D reconstruction using such quantized

disparity maps leads to many thin layers of the scene. Interpolation can be

applied to obtain sub-pixel disparity accuracy, such as fitting a curve to the

SSD values for the neighboring pixels to find the peak of the curve, which

provides more accurate 3D world coordinates.

By taking the derivatives of Eq. 2.33, the standard deviation of depth is

given by:

∆Z =
Z2

B f
∆d (2.33)
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where ∆d is the standard deviation of the disparity. This equation shows

that the depth uncertainty increases quadratically with depth. Therefore,

stereo systems typically are operated within a limited range. If the object

is far away, the depth estimation becomes more uncertain. The depth error

can be reduced by increasing the baseline, focal length or image resolution.

However, each of these has detrimental effects. For example, increasing the

baseline makes matching harder and causes viewed objects to self-occlude,

increasing the focal length reduces the depth of field, and increasing im-

age resolution increases processing time and data bandwidth requirements.

Thus, we can see that the design of stereo cameras typically involves a range

of performance trade-offs, where trade-offs are selected according to the ap-

plication requirements.
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Chapter 3

Structured light sensors: principles

and calibration

This chapter introduces the operating principles of several structured light

sensors and how they are classified according to different coding strate-

gies. Calibration strategies are also discussed since they play critical roles

in achieving the required accuracy. Part of the chapter is also dedicated to

describing the particular prototype used in this project both from the hard-

ware and the software point of view.

3.1 Structured light sensors: an overview

The concept of structured light imaging is quite simple: a known pattern is

projected onto a surface. When the camera views the pattern from one (or

more) different points of view, the surface shape of the target distorts the

pattern, as shown in Fig. 3.1. The direction and size of the pattern distortions

are used to reconstruct the surface topography of the target object.

From this preliminary information, it can be deduced that structured

light cameras employ the same operating principle as stereo cameras with

a clear difference: one of the two cameras is replaced with a light projector

that illuminates the scene with a textured visual pattern. The light projector

can be seen as a virtual camera that always "sees" the same, fixed image: its

projected pattern. The pattern is seen also by the camera but in this case, due

to the baseline between the projector and the camera, it is projected in dif-

ferent 2D points of the imaging sensor, depending on the 3D structure of the
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Figure 3.1: Example of structured light imaging: a regular striped pattern is
projected onto the ball

framed scene. It is obvious that many principles of stereo vision, introduced

in Chapter 2, can be directly applied also in this slightly different scenario.

In general, it is possible to distinguish two different projection methods:

• projection of 2D images by using video-projectors. These devices project

a light pattern on the measuring scene and since the pattern is coded,

correspondences between image points and points of the projected pat-

tern can be easily found.

• projection of narrow lines using laser technology. The main advantage

of laser light is its limitless depth of field that allows to project a very

narrow line on a certain surface at every distance. On the other hand,

illuminating only a single stripe, it is necessary to mechanically move

the laser beam along the entire surface to be reconstructed. This im-

plies long acquisition times and also the reconstructing object to be

stable during the operation.

Structured light sensors based on the projections of 2D images could be

implemented using numerous techniques. In the general case, the idea is

to project onto the measuring scene a pattern or a set of patterns designed

in such a way that unique identifiers (or codes) can be assigned to a set of

pixels. Every coded pixel has its own identifier, so there is a direct mapping
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from the identifiers to the corresponding coordinates of the pixel in the pat-

tern. The identifiers are simply numbers, which are mapped in the pattern

by using grey levels, color or geometrical representations. The greater the

number of points that need to be coded, the greater the number of codes

and, therefore, the mapping of those codes to a pattern is more difficult.

The available strategies used to represent such codes could be firstly

classified into sequential (multiple-shot) or single-shot categories. In the fol-

lowing sections, an overview of both these categories is provided focusing

more on the sequential coding, being the strategy that has been adopted for

the project. A more detailed description of these coding methods can be

found in [8].

3.1.1 Sequential projection techniques

These techniques consist in projecting a set of patterns over time on the mea-

suring surface and, by sequentially capturing them, it is possible to compute

the code for each pixel. The coding strategies that are described below al-

lows to encode only one axis, and so it is not possible to identify a unique

pixel coordinate, but only group of pixels belonging to the same row or col-

umn. In order to identify single pixels it would be necessary to consider two

sequence of patterns: one for the vertical code, one for the horizontal code.

Actually, it will be clear in Chapter 4 how, given for instance the vertical

code, it is possible with rectification to retrieve the horizontal one without

projecting another sequence of patterns but simply by using epipolar geom-

etry. Therefore, the following paragraphs will refer only to vertical codes for

simplicity, an analog reason could be done for horizontal ones.

Binary patterns The binary coding technique exploits black and white stripes

to form a sequence of projection patterns, such that each point on the surface

of the object possesses a unique binary code that differs from any other codes

of different points. In general, N patterns can code 2N stripes. A simplified

example for N = 5 is depicted in Fig. 3.2(a). This technique is very reliable

and less sensitive to surface characteristics since only binary values exist in

all pixels. However, to achieve high spatial resolution, a large number of
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sequential patterns need to be projected. All objects in the scene have to re-

main static. The entire duration of 3D image acquisition may be longer than

a practical 3D application allows for.

Gray-level patterns To effectively reduce the number of patterns needed

to obtain a high-resolution 3D image, gray-level patterns are developed. For

example, one can use M distinct levels of intensity (instead of only two in

the binary code) to produce unique coding of the projection patterns. In this

case, N patterns can code MN stripes. Each stripe code can be visualized as

a point in an N-based space, and each dimension has M distinct values. In

Fig. 3.2(b) an example is shown for N = M = 3.

Phase shift Phase shift is a well-known fringe projection method for 3D

surface imaging. A set of sinusoidal patterns is projected onto the object

surface, where each sinusoidal pattern is shifted in phase with respect to

the preceding one by a constant value which depends on the number of se-

quential patterns, see Fig. 3.2(c) for a simple example with three projection

patterns. Phase unwrapping is the name of the decoding process: for each

pixel coordinate one can extract the intensity values from all the acquired

images, and from these data, it is possible to retrieve the absolute phase of

that pixel coordinate and then also its own column.

The coding strategies based on binary and gray level patterns are also

known as time-multiplexing strategies because the bits of codes are multi-

plexed in time. As already seen, these strategies allow to identify the columns

of pixels, but if more than two color intensities are available, fractal struc-

tures can be used, as the one in Fig. 3.2(d).

If the target 3D object is static and the application does not impose

strong constraints on the acquisition time, sequential projection techniques

can be used and may often result in more reliable and accurate results. How-

ever, if the target is moving, single-shot techniques have to be used to acquire

a snapshot 3D surface image of the 3D object at a particular time instant.
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(a) Binary-coded pattern (b) Gray-level coding

(c) Phase shift (d) Bidirectional code

Figure 3.2: Examples of different sequential techniques

3.1.2 Stripe indexing (single shot)

Stripe indexing is necessary to achieve robust 3D surface reconstruction be-

cause the order in which the stripes are observed is not necessarily the same

as the order in which the stripes are projected. This is due to the inherent

parallax existing in triangulation-based 3D surface imaging systems and the

possibility of stripes missing from the acquired image because of occlusion

of the object’s 3D surface features. A few representative stripe indexing tech-

niques are presented here.

Stripe indexing using colors Color image sensors usually have three inde-

pendent acquisition channels, each corresponding to a spectrum band. The

linear combination of the values of these color components can produce an

infinite number of colors. Three 8-bit channels can represent 224 different

colors. Such rich color information can be used to enhance 3D imaging ac-

curacy and to reduce acquisition time. This type of color-coded system can

achieve real-time 3D surface imaging capability. It is also possible to encode

multiple patterns into a single color projection image, each pattern possess-

ing a unique color value in the color space. To reduce the decoding error
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rate, one can select a color set in which each color has a maximum distance

from any other color in the set. The maximal number of colors in the set is

limited to the distance between colors that generate minimal cross talk in the

acquired images.

Stripe indexing using segment pattern To distinguish one stripe from oth-

ers, one can add some unique segment patterns to each stripe, as in Fig.

3.3(a), such that, when performing 3D reconstruction, the algorithm can use

the unique segment pattern of each stripe to distinguish them. This index-

ing method is intriguing and clever, but it only applies to a 3D object with

a smooth and continuous surface when the pattern distortion due to surface

shape is not severe. Otherwise, it may be very difficult to recover the unique

segment pattern, owing to deformation of the pattern and/or discontinuity

of the object surface.

Stripe indexing using repeated gray-scale pattern If more than two inten-

sity levels are used, it is possible to arrange the intensity levels of stripes

such that any group of stripes (a sliding window of N stripes) has unique

intensity pattern within a period of length. For example, if three gray lev-

els are used (black B, gray G and white W), a pattern can be designed as

BWGWBGWGBGWBGBWBGW which is depicted in Fig. 3.3(b). The pat-

tern matching process starts with a correlation of acquired image intensity

with projected intensity pattern. Once a match is located, a further search is

perform on a sub-gray-level-sequence match, such as three-letter sequences

WGB, GWB, etc.

Stripe indexing based on De Bruijn sequence A De Bruijn sequence of

rank n on an alphabet of size k is a cyclic word in which each of the kn

words of length n appears exactly once as we travel around the cycle. A

simple example of a De Bruijn circle with n = 3 and k = 2 (the alphabet

is {0, 1}) is shown in Fig. 3.4(a). Travelling around the cycle (either clock-

wise or counterclockwise), each of the 23 = 8 three-digit patterns 000, 001,

010, 011,100, 101, 110, 111 is encountered exactly once. There is no repeated

three-digit pattern in the sequence. In other word, no subsequence is cor-

related to any other in the De Bruijn sequence. This unique feature of the

De Bruijn sequence can be used in constructing a stripe pattern sequence
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(a) Stripe indexing using segment pattern (b) Stripe indexing using repeated gray-
scale pattern

Figure 3.3: Examples of different stripe indexing techniques

that has unique local variation patterns that do not repeat themselves. Such

uniqueness makes the pattern decoding an easier task. In Fig. 3.4(b) it is

possible to see an example of using binary combinations of (R, G, B) colors

to produce a color-indexed stripe based on De Bruijn sequence. The maxi-

mum number of combinations of three colors is 23 = 8. In this example some

constraints are taken into account:

• the combination (0,0,0) is avoided and the total number of stripes is

reduced, in particular k = 5 and n = 3.

• all neighboring stripes must have different colors. Otherwise, some

stripes with double or triple width would occur, confusing the 3D re-

construction algorithms.

(a) Simple example of De Bruijn
sequence

(b) Example of color stripe indexing based on De
Bruijn sequence (k = 5, n = 3)

Figure 3.4: De Bruijn sequences
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3.1.3 Grid indexing: 2D spatial grid patterns (single shot)

The basic concept of 2D grid pattern techniques is to uniquely label every

subwindow in the projected 2D pattern, such that the pattern in any sub-

window is unique and fully identifiable with respect to its 2D position in the

pattern. Here some of the most popular patterns belonging to this category.

Pseudo-random binary array (PRBA) One grid indexing strategy is to use

a pseudo-random binary array (PRBA) to produce grid locations that can

be marked by dots or other patterns, such that the coded pattern of any

subwindow is unique.

2D array of color-coded dots This approach extends the previous binary

case allowing to use lower dimension subwindows for identifying a point

position. Generating a matrix that preserves the uniqueness of subwin-

dows could be done by brute force algorithms or dynamic programming

approaches.

Other methods Such as matrices composed by geometrical sub-patterns

used as key words, patterns composed by vertical and horizontal lines of

different colors or matrices of periodic color dots as proposed in [25].

(a) Pseudo-random color dots coding (b) Pattern composed by vertical and
horizontal lines of different colors

Figure 3.5: Different coding techniques based on matrices
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3.1.4 Performance evaluation

Aiming to accurately analyze the experimental results that has been ob-

tained in this thesis it is essential having some background knowledge on

the performance evaluation for a general 3D vision system. There are many

factors that characterize technical performance of a 3D surface imaging sys-

tem. From application point of view, the following three aspects are often

used as the primary performance indexes to be used to evaluate 3D imaging

systems:

Accuracy Measurement accuracy denotes the maximum deviation of the

measurement value obtained by a 3D surface imaging system from the ground

truth of the actual dimension of the 3D object. Quite often, different man-

ufacturers may use different ways to characterize accuracy such as average

(mean) error, uncertainty, ±error, RMS, or other statistical values.

Resolution In the literature, 3D image resolution denotes the smallest por-

tion of the object surface that a 3D imaging system can resolve. However,

in the 3D imaging community, the term “image resolution” sometimes also

denotes the maximum number of measurement points a system is able to

obtain in single frame.

Speed Acquisition speed is important for imaging moving objects (such as

the human body). For single-shot 3D imaging systems, the frame rate repre-

sents their ability to repeat the full-frame acquisition in a short time interval.

For sequential 3D imaging systems (e.g., laser scanning systems), in addition

to the frame rate, there is another issue that needs to be considered: the object

is moving while sequential acquisition is performed; therefore, the obtained

full-frame 3D image may not represent a snapshot of the 3D object at a single

location. Instead, it becomes an integration of measurement points acquired

in different time instances; therefore the 3D shape may be distorted from the

original shape of the 3D object. There is another distinction, between ac-

quisition speed and the computation speed. For example, some systems are

able to acquire 3D images at 30 frames/s, but these acquired images need to

be postprocessed at a much slower frame rate to generate 3D data.
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The above-mentioned three key performance indexes can be used to

compare 3D imaging systems. As already say in the introductory part, it will

be shown in this master thesis project how both the acquisition and compu-

tation times can be reduced thanks to an accurate rectification process. Of

course, this will result in a less accurate 3D reconstruction.

3.2 The structured light sensor used for this thesis

This section aims to describe the specific prototype of structured light 3D

scanner that has been used during this master thesis project. Knowing the

hardware components characteristics of this prototype is of fundamental im-

portance in order to understand and analyze the final results that has been

obtained from a critical point of view.

3.2.1 Hardware components

The functionalities of this prototype are based on an industrial camera for

acquiring images, a DLP display module for projecting light patterns on the

scene and an open-source development platform based on ARM processor,

used in order to communicate with the projector. Here a more detailed de-

scription of these components is provided.

Basler acA1600-20gc camera The acA1600-20gc is built on a Sony progres-

sive scan color CCD having 1628 x 1236 pixel resolution. It delivers up to 20

frames per second at full resolution. Pixel data can be output in 8 or 12 bit

depth. Because this camera uses the same 29x29 mm footprint that has been

standard on analog cameras for many years, replacement of analog cameras

is easy. Moreover, by using a Power over Ethernet (“PoE”) configuration,

a single cable may be used to apply camera power and to transfer data be-

tween this camera and a PC, keeping cable runs to a minimum. This kind of

camera provides a full set of features to address a wide range of applications

such as the possibility to adjust the camera’s black level, gain, area of inter-

est, input debounce, and trigger delay. It features automatic exposure con-

trol, pixel binning, horizontal image mirroring, event reporting, sending of
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test images, and a programmable lookup table. Regarding the optics, Com-

putar lens M1614-MP2 C-mount has been used, with a fixed focal length of

16 mm, an aperture range from F1.4 - F16 and a manual aperture.

DLP LightCrafter Display 2000 EVM The e DLP LightCrafter Display 2000

EVM is a compact, plug-and-play, low cost platform enabling the use of

DLP technology with embedded host processors, such as Raspberry Pi and

BeagleBone Black. This evaluation module has a production-ready opti-

cal engine and processor interface supporting an 8/16/24-bit RGB parallel

video interface in a small form factor. The evaluation module features the

DLP2000 chipset produced by Texas Instruments, comprised of the DLP2000

(0.2 nHD) digital micromirror device (DMD), the DLPC2607 display con-

troller, and the DLPA1000 PMIC/LED driver. This EVM comes equipped

with a production-ready optical engine and processor interface supporting

8/16/24-bit RGB parallel video interface in a small form-factor. Despite the

reduced cost, performances offered by this device are really good: 640x360

pixel resolution (nHD), high-contrast images and an optical engine that sup-

ports up to 30 lumen. This evaluation module covers a wide array of ultra-

mobile and ultra-portable display applications in consumer, wearables, in-

dustrial, medical, and Internet of Things (IoT) markets.

BeagleBone Black BeagleBone Black is a low-cost, community-supported

development platform for developers and hobbyists. This board is based on

an economic processor such as the Sitara AM335x Cortex-A8 from by Texas

Instruments, and is equipped with a 512MB DDR3L RAM memory and a

4GB eMMC flash memory. The BeagleBone Black is also populated with a

single microSD connector to act as a secondary boot source for the board and,

if selected as such, can be the primary boot source. Regarding the connec-

tivity, one can find an ethernet and USB interfaces, the last one can be used

both to provide power supply and to communicate with an external PC. The

BeagleBone offers also the possibility to add cape plug-in boards in order

to extend the functionalities; an example the DLP2000 projector described

above, that can be connected on the board in a very easy way. From what

it can be seen, the BeagleBone black is indeed a good solution for simple

embedded applications: it offers a simple interface to lots of robotic motors,
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sensors and both 2D and 3D cameras, providing also the possibility to exe-

cute PCL, OpenCV, OpenNI and many other software for image processing.

Regarding in particular this prototype of 3D scanner, this board represents a

convenient solution for its rendering 3D data processing capabilities.

(a) Basler acA1600-20gc camera (b) DLP LightCrafter Display 2000 Evalu-
ation Module

(c) BeagleBone Black

Figure 3.6: Hardware components

3.2.2 Building the prototype

The prototype of structured light 3D scanner, built starting from the hard-

ware components previously described, is depicted in Fig. 3.7 from different

point of views. The camera and the projector have been rigidly fixed in a

3D printed support and oriented in such a way that the area illuminated

by the projector can be completely framed by the camera. By using the

same terminology seen in Chapter 2 for stereo vision, this could be define
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Figure 3.7: Prototype of structured light 3D scanner

as a slightly verged configuration. In particular, the vergence between cam-

era and projector can be effectively appreciated by the bottom-right image,

framing the prototype from top-view. The overall structure presents a foot-

print of roughly 105x105 mm, with the projector-camera system placed at a

height of approximately 120 mm from the base. A more detailed description

about how the camera is placed with respect to the projector can be obtained

only after having calibrate the system.

Regarding the performances, this prototype is able to produce as output

an accurate 3D reconstruction of objects placed at a distance from 200 mm

to 800 mm from the sensor. The lower bound comes from different reasons:
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this camera is not able to focus too short distances; the chosen orientation

between camera and projector does not allow to the camera to completely

frame the projector image; the pattern projected on these too close surfaces

appears very small leading as consequence to loose many details in the re-

construction. The upper bound instead comes from the fact that placing the

sensor too far from the acquired object makes the accuracy of the reconstruc-

tion really small, and this is due to the low resolution of the projector. The

focus distance of the scanner can be manually adjusted acting on the lens

system of the camera and the projector, however it must be kept in mind

that, after any adjustment, it is necessary to re-calibrate the overall system.

At this point, it is worth spending some words discussing how the hard-

ware components are interconnected and communicates among them. Basi-

cally, the functionalities of the scanner are the result of two processes run-

ning in parallel: one on the beaglebone, managing all the tasks related to the

patterns generation and their projection; and the other on an external com-

puter, by which it is possible to communicate with the camera, calibrate the

projector-camera system, reconstruct and visualize the target objects on the

scene. It is obvious that in order to make this solution correctly works it is

essential the communication and synchronization between beaglebone and

computer. The board is connected to the computer by USB interface, creating

a virtual LAN network, and the two processes running in parallel interacts

thanks to a socket-based communication, according to a client-server infras-

tructure:

• the server, running on the beaglebone, starts automatically once the

device is turned on, listening for possible requests from the client

• the client, running on the computer, sends a requests to the server each

time the projector is needed

The two processes communicates by exchanging some default commands as

strings of bytes. The synchronization between computer and beaglebone is

achieved by using blocking requests, meaning that the client, once sending

the request, wait for a response from the server and in the meantime it does

not perform any operation. The server, after having received and analyze

the string of bytes from the client, performs the required task and then, if the

operation succeed, the server communicates this fact to the client, otherwise
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it still sends a response to the client, in particular a sort of error message.

Only after receiving a response from the server, the client can come back to

its execution.

A note about hardware interconnection Reconsidering again the three hard-

ware components of the scanner, and in particular their connectivity, one

may wonder why not implementing an on-board solution in which all the

processes are executed by the beaglebone. This might be possible since both

camera and beaglebone presents an ethernet interface, and surely this would

be a simpler solution. However, the problem arises from a bug in the ether-

net interface of the beaglebone that, many times, is not able to recognize the

camera, making not possible a communication with that device. Nonethe-

less, the socket-based solution still presents some advantages with respect to

this simpler solution, first of all the fact that all the algorithms related to cal-

ibration and triangulation are executed by the computer and this makes the

elaboration part faster given the higher computational power. Otherwise,

in the beaglebone such kind of operations would have required some opti-

mization strategies in the memory access, due to the quite limited memory

of the board.

3.3 Calibration of a projector-camera system

As introduced in Chapter 2, knowing the geometric characteristics of the

cameras and the transformation that relates them is an essential requirement

for a stereovision system in order to correctly perform the triangulation and

hence the 3D reconstruction. Intrinsic and stereo calibration are the two pro-

cesses that allow to find out all these geometric parameters. These calibra-

tions are essential also for projector-camera pairs, being their principle of

work very similar to stereo systems, with the advantage that a properly cho-

sen projected pattern simplifies the task of finding point correspondences.

In such systems, projectors are modeled as inverse cameras and all consid-

erations known for passive stereo systems may be applied with almost no

change. However, the calibration procedure must be adapted to the fact

that projectors cannot directly measure the pixel coordinates of 3D points

projected onto the projector image plane as cameras do. This means that

in general, the projector calibration requires the use of an external camera
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for acquiring the illuminated scene, an information that the projector is not

able to perceive. Then, once the correspondences between 3D points in the

world frame and 2D points in the projector plane are known, the intrinsic

parameters of the projectors can be easily found as cameras.

This section assumes that the reader is familiar with the basic calibra-

tion procedure for cameras, such as the one presented by Zhang in [35], and

the basic calibration procedure for stereo pairs. Moreover, a pair of novel

methods for the calibration of projector-camera systems will be presented

together with the particular calibration procedure adopted with the proto-

type.

3.3.1 Calibration by patterns projection

The calibration method proposed by Daniel Moreno and Gabriel Taubin [18]

simply tries to estimate the coordinates of the calibration points in the pro-

jector image plane using local homographies. First, a dense set of correspon-

dences between the projector and camera pixels is found by projecting onto

the calibration object a pattern sequence identical to the one used to perform

3D reconstructions. This allows for reusing most of the software components

written for the scanning application. Second, the set of correspondences is

used to compute a group of local homographies that allow to find the pro-

jection of any of the points in the calibration object onto the projector image

plane with sub-pixel precision. In the end, the data projector is calibrated

as a normal camera. As a result, any camera model can be used to describe

the projector, including the extended pinhole model with radial and tangen-

tial distortion coefficients, or even those with more complex lens distortion

models.

The first step in this calibration procedure involves collecting images

of a planar checkerboard: for each plane orientation, instead of capturing

only one image, the user must project and capture a complete structured-

light pattern sequence, theoretically by using any preferable coding strate-

gies. After this operation, the intrinsic camera parameters can be obtained by

using any camera calibration method. The procedure to compute checker-

board corner coordinates in the projector coordinate system can be decom-

posed into three steps: first, the structured-light sequence is decoded and
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every camera pixel is associated with a projector row and column; second, a

local homography is estimated for each checkerboard corner in the camera

image; third and final, each of the corners is converted, as illustrated in Fig.

3.8 from camera coordinates to projector coordinates applying the local ho-

mography just found. Once camera-projector correspondences are known

Figure 3.8: Projector corner locations are estimated with sub-pixel precision
using local homographies to each corner in the camera image

any calibration technique available for passive stereo can be applied directly

to the structured-light system. This method does not rely on the camera

calibration parameters to find the set of correspondences. As a result, the

projector calibration is not affected in any way by the accuracy of the camera

calibration. Another advantage of this proposed method is the fact that it

can be implemented in such a way that no user intervention is necessary af-

ter data acquisition, making the procedure effective even for unexperienced

users.

3.3.2 Calibration by checkerboard projection

Tuotuo Li and Hongyan Zhang [14] proposed a calibration method based

on the idea of acquiring images of the chessboard with its pattern originally

printed on the board and then under projector illumination, in particular,

what is projected is another chessboard in different colors. Based on those

acquired images, geometric calibrations for both the camera and the projec-

tor can be performed.

In this type of approach, the choice of color is of fundamental impor-

tance to make the two different checkerboard structures distinguishable from
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each other. In particular, three color schemes must be defined: a printed

chessboard, a uniform pattern and a chessboard to be projected onto the first

one. These color schemes must be defined in such a way that the printed

chessboard is very clear under uniform pattern illumination and at the same

time "invisible" under chessboard pattern illumination. The choice of colors

is not unique and may depend on the kind of printer and projector used. Li

and Zhang presented also an optimization in selecting the three colors for

the best performance calibration. One example of colors selection is the one

depicted in Fig. 3.9: the printed chessboard is composed of yellow and white

cells; for making this pattern clear a blue uniform pattern is projected; the

printed chessboard instead is composed by red and black cells, colors that

allow to completely mask the printed pattern.

Figure 3.9: Acquired images of the chessboard under different illuminations:
white uniform pattern; blue uniform pattern; black-red chessboard pattern

The calibration procedure requires capturing the printed chessboard

placed in different positions, under a uniform pattern and then under the

projected chessboard pattern. The set of acquired images under a uniform

pattern is used for camera calibration, while the other images allow to find

out the intrinsic parameters of the projector. As previously seen, in the cali-

bration context the projector can be considered as an inverse camera mean-

ing that it can be calibrated by Zhang method, once known how 3D points

in the scene are related to their corresponding 2D points in the projector

plane. In this particular case, the pixel coordinates of chessboard corners are

known, being known the chessboard pattern to be projected. What must be

found are the 3D corners of the projected chessboard. These quantities can

be computed by using the calibrated camera: from the acquired images is

it easy to extract the 2D corners of the projected chessboard, then, by con-

sidering the lines passing through these points and the center of projection,

the corresponding 3D coordinates are found by imposing zero Z coordinate,
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being the printed chessboard on the XY plane of the world reference frame.

Once 2D-3D couples are found, the intrinsic projector parameters can be de-

termined and the projector-camera system can be calibrated using standard

methods for stereo systems.

3.3.3 Prototype calibration

In general structured-light systems represents a really simple and effective

way to acquire 3D models, but such high precision is only possible if the

camera and projector are both accurately calibrated. As result, calibration

is an essential step for this project. The prototype used in this master thesis

has been calibrated following the approach proposed by Daniel Moreno and

Gabriel Taubin, presented in Sec. 3.3.1. As already said, the main advan-

tage of this method is the fact that the camera and projector are calibrated

independently, meaning that the projector calibration is not affected in any

way by the accuracy of the camera calibration. Furthermore, since this pro-

cedure is implemented by using the same software components dedicated to

the scanning application, describing how this prototype is calibrated allows

also highlighting some fundamental aspects related to the 3D reconstruction

procedure. The complete calibration procedure can be summarized in these

steps:

1. for each checkerboard orientation, find out corners coordinates from

the image acquired with uniform pattern, use structured light projec-

tions for decoding each pixel of the checkerboard image.

2. for each corner consider a square window centered in the pixel coordi-

nate of the corner itself and use the decoded pixels inside that window

in order to compute a local homography.

3. find the corresponding corners coordinates in the projector plane by

using the homographies computed in the previous step.

4. once a 3D world reference frame, fixed with the checkerboard plane,

has been defined, use the Zhang method for determining the intrinsic

parameters of the camera and projector, using as 2D points the pixel

coordinates computed in step 1 for camera and in step 3 with local

homographies for the projector.
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5. Once the geometrical characteristics of the two devices have been found,

use 3D points and corresponding 2D points in the camera and projector

plane in order to estimate extrinsic parameters (i.e., the stereo parame-

ters).

The images depicted in Fig. 3.10 give an idea of the experimental setup

built for the calibration of the prototype, that has been performed in the labo-

ratories of IT+Robotics. The checkerboard is placed at different orientations

(a) Acquiring the chessboard images (b) Checking the acquired images

Figure 3.10: Experimental setup for the prototype calibration at IT+Robotics

with respect to the sensor by using a specific mechanical support, see Fig.

3.10(a). In doing that it is important that the inner corners of the checker-

board, at any orientation, are inside the projected pattern of the projector

and at the same time inside the field of view of the camera. While the first

requirement is relatively easy to fulfill (just check if the corners are within

the illuminated area), the second might be a little more difficult to manage.

This is the reason why the calibration procedure has been monitored through

the camera viewer software, to check what the camera is actually seeing, as

shown in Fig. 3.10(b).
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This calibration method requires the acquisition of structured light pat-

terns that are able to encode each pixel of the projector: in this way each pixel

of the camera can be related to its corresponding pixel in the projector. As

already seen in Sec. 3.1, there are many coding strategies in order to do that.

In this particular case, a binary code is adopted, by projecting both vertical

and horizontal patterns. This choice is justified by mainly two reasons:

• it is very simple to generate and then decode this kind of patterns

• being part of the sequential projection techniques, this kind of coding

strategy is able to guarantee a good accuracy

On the other hand, projecting for each checkerboard orientation a sequence

of patterns means that acquisition times are very long but this is not a prob-

lem since the calibration is an offline operation that has to be executed once.

As result, accurate calibration methods are preferable, neglecting timing as-

pects.

Instead of the classical binary code, the reflected binary code has been

used, also known as Gray code, which is an ordering of the binary numerical

system such that two successive values differ in only one bit. From Fig.

(a) Binary code (b) Gray code

Figure 3.11: Acquisition of the least significant bit for the horizontal pattern

3.11 it is relative simple to deduce what are the advantages related to this

choice. First of all, it can be seen that the transitions from black to white

and vice versa are reduced by half. Furthermore, comparing bits at the same
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position, the striped projected in the Gray code are thicker than the ones

projected in the binary code: this fact helps in reducing the effects due to

the light diffusion and hence in reinforcing the contrast between black and

white stripes.

Once acquired, the entire sequence of patterns must be decoded in order

to obtain a map associating each pixel of the camera to the corresponding

pixel of the projector. In order to achieve this, the first step is the binarization

of all the acquired images related to a sequence, meaning that to each pixel of

the camera image is associated to a binary value 0 or 1 according to the fact

it is illuminated or not. After having repeat this operation for all the pattern

images, to each pixel of the camera image is associated a binary string that, if

decoded, indicates the horizontal or vertical coordinate inside the projector

image.

In the decoding part, the binarization of an acquired image represents

the most challenging task since the light diffusion tends to make less clear

the boundary between black and white stripes making the second ones thicker

than the first ones. The proposed solution for this prototype consists project-

ing not only the original patterns but also the complementary patterns and

then making a comparison: to each pixel is associated the 1 value if and only

if its intensity in the image to be decoded is bigger than the intensity of the

reference image, the one with the complementary pattern. The advantage

of this approach with respect to others is that both original and complemen-

tary patterns are affected in the same way by the light diffusion phenomena

making the binarization process more robust. In this context, an additional

advantage of using Gray code is related to where a transition occurs. For

(a) Binary code (b) Gray code

Figure 3.12: Consequence of binarization error in the two coding strategies

the classical binary code, each transition between two colors occurs in cor-

respondence with a transition of the least significant bit and this means that
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in a single pixel there could be an error of more than one bit; not only, even

a one-bit error could bring to a wrong code very far from the correct one. In

the Gray code instead, the transition from one color to another in a pattern

image occurs always in uniform areas of the other pattern images of the se-

quence. Assuming that only in color transitions there could be a decoding

error, this last observation ensures that in one pixel there could be at most a

one-bit error and, if this happens, the resulting stripe assigned to the pixel

is in any case adjacent to the correct one. To make things more clear, Fig.

3.12 shows the consequence of a binarization error for the most significant

bit in the black-to-white transition. From what can be seen, detecting zero

in place of one, generate the highlighted stripe as result: a very far stripe for

the binary code or an adjacent stripe for the Gray code.

To sum up, all these considerations allow explaining not only how the

prototype has been calibrated but also how it basically works from the soft-

ware point of view in order to perform a 3D acquisition.
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Chapter 4

Rectification pipeline for

structured light sensors

Up to now rectification has been presented as a prominent approach in stereo

vision systems, but what about structured light sensors? This chapter will

present two possible approaches for rectifying a projector-camera system,

one involving only the camera and the other both the camera and projector.

In particular, the second approach will be also tested in the available proto-

type of 3D scanner. Before going into detail, we present the starting point

for rectifying a structured lighting system.

4.1 Sensors setup analysis

First of all, in order to understand rectification also from the geometrical

point of view, it could be interesting to analyze the calibration results ob-

tained for the available prototype.

Camera calibration The calibration results for the camera can be summa-

rized by estimated camera matrix Kcam and distortion parameters Dcam:

Kcam =






fx 0 cx

0 fy cy

0 0 1




 =






3673.59 0 799.50

0 3673.02 599.50

0 0 1




 (4.1)

Dcam =
[

k1 k2 p1 p2 k3

]

=
[

−0.12 0.68 0 0 −2.47
]

(4.2)
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where, for the camera matrix, fx, fy represents the camera focal length in

pixels along x and y direction respectively, and cx, cy are the coordinates of

the principal point in pixels; while in the distortion parameters, k1, k2, k3

describe the radial distortion and p1, p2 the tangential distortion.

Projector calibration In a similar way, since the projector is seen mathe-

matically as an inverse camera, the calibration results are represented by

Kprj and Dprj:

Kprj =






fx 0 cx

0 fy cy

0 0 1




 =






1417.98 0 319.50

0 1417.20 179.50

0 0 1




 (4.3)

Dprj =
[

k1 k2 p1 p2 k3

]

=
[

0.04 −5.73 −0.03 0 83.71
]

(4.4)

Stereo calibration The calibration results are basically the translation vec-

tor T and the rotation matrix R describing the mutual position and orienta-

tion of camera and projector frames:

T =






−46.13

−2.47

10.91




 [mm] R =






1.00 0.01 0.06

−0.01 1.00 0.01

−0.06 −0.01 1.00




 (4.5)

How to interpret these results?

4.1.1 Analysis of stereo parameters

In Fig. 4.1 is depicted how camera and projector are placed in space relative

to each other, based on the results reported in (4.5). The matrix R describes

how the camera frame is rotated with respect to the projector frame; more

in detail, its columns represent the x, y, z coordinates of the camera frame

axis expressed in the projector frame, imaging that the two reference frames

have hypothetically the same origin. The vector T instead describes in mil-

limeters how the origin of the camera frame is translated with respect to the

origin of the projector frame. Therefore, the couple (R, T) defines a so called

rototranslation that combines translation and rotation in order to describe

the pose of the camera in space, once the pose of the projector is known.
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Figure 4.1: Mutual position between camera and projector

From what can be seen, the camera frame seems to be almost aligned

with the projector frame; this is an expected result since matrix R is very

close to an identity matrix. Of course, this is not a perfect alignment, as it

can be better appreciated in Fig. 4.2, presenting the camera-projector couple

from a different point of view. In particular, Fig. 4.2(a) confirms what has

(a) Top view

(b) Front view

Figure 4.2: Camera and projector pose from a different points of view
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been already said about the projector and camera configuration, namely the

little vergence existing between these two devices.

Starting from the knowledge of stereo parameters it is possible to com-

pute the essential matrix E and the fundamental matrix F for the prototype

of 3D scanner:

E = [T]×R ≃






0.2573 −10.8853 −2.5791

8.1422 −0.3522 46.7846

2.9313 −46.1053 −0.3131






F = K−T
camEK−1

prj ≃






0 0 −0.0006

0 0 0.0318

0.0005 −0.0119 1.0591






(4.6)

These two matrices are the main entities describing the epipolar geometry

and will be useful later in describing both the two rectification strategies.

As one can imagine stereo parameters are important not only because they

describe the mutual position between camera and projector, but also because

they give an intuition about how rectification rotates, and hence modifies,

camera and projector reference frames. In addition, they are also essential

information when applying rectification strategies based on calibration data,

as already seen in Sec. 2.3.1.

How do stereo parameters change after rectification? From the stereo pa-

rameters point of view, the action performed by rectification can be equiva-

lently formulated in imposing that the couple (R, T) related to the projector-

camera pair assumes the following form:

T̄ =






t̄x

0

0




 R̄ =






1 0 0

0 1 0

0 0 1




 (4.7)

meaning that the two frames must be perfectly aligned one respect to the

other and translated only along x axis, as depicted in Fig. 4.3 where, in most

of the cases, the translation along x axis is exactly as the norm of vector T,

namely t̄x = ‖T‖.
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Figure 4.3: Camera and projector pose after rectification

4.2 Only camera rectification

A first rectification strategy that could be applied for the available prototype

of structured light 3D scanner consists in trying to act only on the camera in

order to align it with the projector, that on the contrary must remain fixed.

This section illustrates what are the main issues that must be considered in

order to apply this strategy and the related advantages and drawbacks.

4.2.1 Preliminary observations

As already seen, stereo rectification is in general applied by two homogra-

phy matrices, and the effect of an homography transformation is to move

from an image to the same image as it would be taken by the camera in the

desired orientation different from the original one. In other words, the result

after rectification for a camera is an image containing what the camera itself

should see in this new orientation. In the particular case of the available

prototype, the first two steps are the following:

• Remove distortion from both camera and projector in order to improve

the quality of 3D reconstruction

• Virtually rotate the camera by applying the homography H = K−1
camRKcam,

with R defined as in (4.5) so that it has the same orientation of the pro-

jector

Since the camera in its original orientation was almost aligned with the pro-

jector, it is expected that this pure rotation does not produce a strong distor-

tion in the camera image, as it can be visualized in Fig. 4.4.
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Figure 4.4: Pure rotation of camera frame

By considering again the camera and projector setup in Fig. 4.1 it should

be clear that only a pure rotation is not enough in order to align the camera

with the projector; also by observing that the y and z components of the T

vector are different from zero. This section provides a proof of this fact both

from an algebraic and a geometric point of view and then indicates some

ideas in order to overcome this problem.

4.2.2 A single rotation is not enough

Consider a rectilinear stereo rig, namely with stereo parameters as in (4.7).

It could be proved that in this case, the essential matrix Ē relating the two

cameras has the following form:

Ē = [T̄]×R̄ =






0 0 0

0 0 −t̄x

0 t̄x 0




 (4.8)
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This fact also holds for a structured light 3D scanner, where the projector

is seen as an inverse camera. The fundamental matrix F̄ instead has a more

complicated form, depending also on the intrinsic parameters of the optical

devices. In particular, imagining to have rectified the available prototype,

numerically it results:

F̄ = K−T
camĒK−1

prj ≃






0 0 0

0 0 f̄23

0 f̄32 f̄33




 =






0 0 0

0 0 −0.0335

0 0.0129 −1.7353




 (4.9)

Given a generic pixel in camera plane pc and in projector plane pp, the

goal is to find a unique homography matrix H mapping pc in the new virtual

image p′c = Hpc such that this new system behaves as a rectilinear stereo

rig: if this H matrix exists the rectification problem is solved. The epipolar

constraint becomes p′c F̄pp = 0 and this implies:

pT
c HT F̄pp = pT

c Fpp = 0 =⇒ HT F̄ = F (4.10)

F = K−T
c EK−1

p = K−T
c [T]×RK−1

p = HT F̄ (4.11)

The unknown homography matrix is a 3x3 matrix meaning that 9 pa-

rameters need to be estimated. However, it is known that the homography

is in general defined up to a scaling factor so nothing forbids setting h33 = 1,

reducing to 8 the number of parameters to be estimated:

H =






h11 h12 h21

h21 h22 h23

h31 h32 1




 (4.12)

In addition, matrix H is defined from a rotation matrix R∗ according to

H = sKcR∗K−1
c , s ∈ R, R∗ ∈ SE(3) (4.13)

where s is the scaling factor. This last consideration should further reduce

the degrees of freedom of matrix H to 4, hence simplifying the problem.

From now on the matrix system HT F̄ = F to be solved could lead to different

situations in the general case:
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• the system admits only one solution H

• the system admits more than one solution or an infinite number of so-

lutions

• there are no matrices H able to satisfy that condition

In addition, if there exists a solution, it is not guaranteed the possibility to

get it in close form.

By considering again the results obtained from stereo calibration it is

immediate to see that for the available prototype the system admits no solu-

tion, indeed:

HT F̄ =






h11 h12 h21

h21 h22 h23

h31 h32 1











0 0 0

0 0 f̄23

0 f̄32 f̄33




 =






0 ∗ ∗

0 ∗ ∗

0 ∗ ∗




 (4.14)

which cannot be equal to the actual fundamental matrix previously reported.

This is not a surprising result; it is simply the proof of what already antici-

pated: it is not possible to align the camera and projector simply by applying

a pure rotation on the camera.

In the same way it is possible to end up at the same result also by rea-

soning from a geometric point of view.

Figure 4.5: Epipolar geometry for rotated camera frame
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In Fig. 4.5 is visualized the projection of two 3D points A, B in the cam-

era and projector planes and two epipolar planes formed from these projec-

tions. In this case it is assumed that camera and projector has the same focal

length just for simplicity, but the reasoning is the same even in the more gen-

eral case in which the two focal lengths differs. Points A, B have coordinates

[−40,−20, 100]T and [−40,−10, 100]T [mm] respectively, so they differs only

on a displacement of 10 [mm] along y axis, and the two epipolar lines in the

camera plane are defined exactly by moving these two points along the pro-

jection line passing through the center of projector frame and seeing where

they are projected in the camera plane. It is immediate to see these epipo-

lar lines are neither parallel among them nor parallel respect to the x axis of

the camera, concluding as before that having camera and projector with the

same orientation is a necessary but not sufficient condition for rectification.

4.2.3 Virtual translation of the camera

Up to now what is missing in order to achieve the goal of rectification is a

virtual translation of the camera in order to make the camera plane exactly

parallel to the projector one.

In other words, the aim is to change the actual translation vector T into

its desired form T̄ by zeroing the y and z components. The virtual camera

translation in order to do that can be decompose into a sequence of more

consecutive sub-translations:

• a first translation along z axis in order to set to zero the third compo-

nent of T vector

• a second translation along y axis in order to set to zero the second com-

ponent of T vector

• optionally, a translation along x axis making the baseline length exactly

equals to the norm of T vector

of course the rectification works in principle also for different lengths of the

baseline. At the end, the result should be equal with the one previously

depicted in Fig. 4.3.

The main advantage of this first rectification strategy is its simple appli-

cation. The projector frame remains fixed in this procedure, meaning that,
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after having obtained the new virtual camera image, the search of corre-

spondences is pretty straightforward: for each pixel of the camera the cor-

responding pixel of the projector is on the same horizontal epipolar line,

and in particular its column coincide with the vertical decoded value at the

camera pixel location, exactly as in the 3D scanner before doing rectifica-

tion. Therefore, this strategy does not require strong changes in the overall

scanner pipeline.

On the other hand, acting only on the camera may produce a consis-

tent loss of information in the new transformed image, especially when the

required virtual translations are quite large with respect to the image size

of the camera. This is exactly the case of the prototype: the overall virtual

translation causes all valid pixels of the image exit the image size and the re-

sult is a black image. In other to overcome this problem a possible solution is

to change the focal length in order to capture the valid image and eventually

change manually the coordinates of the principal point in order to properly

center the valid image itself inside the image size. Of course, this implies

changing principal point coordinates and focal length also for the projector

as consequence. In general, all these changes causes a significant perspective

distortion in the camera image and hence a worst accuracy of the resulting

point cloud. On the contrary, by properly rectifying both camera and projec-

tor it is possible to minimize this distortion on the camera image.

4.3 Projector-camera rectification

As already anticipated, this second strategy involves also the projector and

this means that all the procedure related to the search of correspondences

must be accurately adapted. This section describes in detail the entire pipeline,

that has been also implemented on the prototype of 3D scanner.

4.3.1 Getting rectification homographies

The basic idea for this second rectification strategy is to consider the projector-

camera system as a common stereo rig. As result, any pair of rectification

homographies suitable for a stereo pair can be used in principle also for the
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prototype of 3D scanner. In this case, being the intrinsic and stereo param-

eters available after calibration, a possible choice consists in relying on the

OpenCV function cv::stereoRectify().

As stated in the documentation, this function computes the rectification

transforms for each head of a calibrated stereo camera. From Fig. 4.6 it is

possible to appreciate a graphical overview of the involved parameters.

Figure 4.6: The OpenCV function cv::stereoRectify()

This function takes as input intrinsic matrices and distortion parameters

for both cameras and the related stereo parameters, and returns as output:

• R1, R2 These are the two rotation matrices respectively for the first and

second camera that virtually make both camera image planes the same

plane. In particular, each of these matrices brings points given in the

unrectified camera’s coordinate system to points in the rectified cam-

era’s coordinate system, or equivalently, performs a change of basis

from the unrectified camera’s coordinate system to the rectified cam-

era’s coordinate system.

• P1, P2 These are the 3x4 projection matrices in the new rectified co-

ordinate system respectively for first and second camera, so each of

these matrices projects points given in the rectified camera coordinate

system into the rectified camera’s image.

• Q This is 4x4 disparity-to-depth mapping matrix. It will be clear later

the role of this matrix.
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The alpha parameter is a free scaling parameter ranging from 0 to 1. Setting

alpha to 0 means that the rectified images are zoomed and shifted so that

only valid pixels are visible; otherwise if alpha is set to 1 the rectified image

is decimated and shifted so that all the pixels from the original images from

the cameras are retained in the rectified images, and hence some black areas

could appear after rectification. Any intermediate value yields an interme-

diate result between the two extreme cases, while if alpha is -1 or absent, the

function performs the default scaling.

More details about these and other parameters related to this OpenCV

function can be found in the documentation [6].

In the particular case of the 3D scanner, this rectification function has

been applied by choosing the camera as camera 1 and the projector as cam-

era 2, in order to be consistent with the function cv::stereoCalibrate().

Notice from Fig. 4.7 how camera and projector reference frames are now

shifted relative to each other along the x axis as result of the returned R1, R2

rotation matrices.

Figure 4.7: Projector-camera alignment using cv::stereoRectify()

Being this an horizontal stereo configuration, in the camera and pro-

jector images the corresponding epipolar lines must be horizontal with the

same y coordinate. On the other hand, this prototype of 3D scanner is char-

acterized by a huge difference in resolution between camera and projector:

in particular, the size of the camera image is quite bigger respect to the one

of the projector. In order to deal with this issue, it has been chosen to scale

up the the projector image imposing that the two rectified images has the
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same size of the camera. This solution in principle should avoid a reduction

in the resolution of the rectified camera image. In this context referring to

a "projector image" could seem unusual, but it will be clear later the exact

meaning of this term, for now just see the projector as another camera.

A key fact influencing the aspect of the final 3D reconstruction is the

scaling of the rectified camera image. As already seen, this image shows

what the camera should see in this new orientation, but while rotating the

camera, some valid pixels could exit the image size and at the same time

some new pixels could enter, that are unknown since this is only a virtual

and not real camera rotation. This fact justifies the common presence of black

areas after any rectification process. However, trying to reduce as much as

possible these black areas implies losing lots of valid pixels and vice-versa,

trying to keep all valid pixels inside the image increases black areas. As con-

sequence, a trade off between these two actions is needed. For the prototype

of 3D scanner, this issue is managed both automatically, by setting the alpha

parameter, and manually, by specifically acting on the new projection ma-

trices P1, P2. In particular, this is the general form of the new projection

matrices returned by the rectification function:

P1 =






f 0 cx1 0

0 f cy 0

0 0 1 0




 , P2 =






f 0 cx2 ‖T‖ · f

0 f cy 0

0 0 1 0




 (4.15)

It has been proved empirically that the alpha parameter only acts in the focal

length of these matrices producing a zoomed-in or zoomed-out version of

the rectified camera image. However, if the rectified image is not properly

centered inside the image size, as this is the case for the prototype, a possi-

ble zoom-in in order to reduce black areas implies a consistent lost of valid

pixels, so that only a small part of the original image is still visible and could

be reconstructed. This is the reason why the two projection matrices has

been also manually modified by acting on the coordinates of the principal

points: the idea is to center the interested image by slightly modifying cx1

and cy and then choose a proper value for alpha so that the rectified image

has approximately the same dimension of the original one. Of course, the

same changes in cx1, cy of P1 must also be applied in cx2, cy of P2 in order

to preserve the alignment and the disparities between the two views.
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As result, the final rectification homographies for the 3D scanner can be

computed as:

Hcam = P1[ : , 1 : 3] · R1 · K−1
cam, Hprj = P2[ : , 1 : 3] · R2 · K−1

prj (4.16)

where P1[ : , 1 : 3] and P2[ : , 1 : 3] are the 3x3 projection matrices extracted

from P1 and P2 respectively by selecting only the first three columns. Just

to give an idea in Fig. 4.8 is reported an example of camera image rectified

according to Hcam.

Figure 4.8: Example of camera image rectification

A note about the centering operation The area of the image illuminated

by the projector coincides with the portion of the image that will be effec-

tively reconstructed. Therefore the centering operation previously described

mainly focus in center and zoom as much as possible this illuminated area

without losing too much valid pixels. In this centering operation only the

camera image matters: given a point in the camera image, if the correspond-

ing point in the "projector image" has negative coordinates no problem arises

from the triangulation process, indeed the projector does not contain an im-

age to be visualized.
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4.3.2 Test the rectification quality

Before proceeding with the description of the pipeline, it could be interesting

to evaluate the accuracy of the rectification homographies previously com-

puted in order to see if camera and projector images are effectively aligned.

As already said, if rectification is performed in a proper way, a cou-

ple of correspondent points should share the same y coordinate. However

this property holds only in the ideal case, while in real applications a small

vertical shift is always present due to the non perfect homographies or the

presence of distortion in the camera and/or projector. Aiming to quantify

this shift error, a possible method consists in take some already known cor-

responding points between camera and projector and check how big is the

error in the alignment. This method is quite simple to be applied for the

available prototype, indeed a possible way to find correspondences between

camera and projector is to take inspiration from the calibration procedure.

Basically, the idea is to consider among the calibration dataset an image in

which the checkerboard takes most of the image area, detect the inner cor-

ners and then find the correspondences corners in the projector plane. These

corners can be computed simply by using the same procedure adopted for

the calibration, namely by decoding all the camera points thanks to the pat-

tern images and then by the use of local homographies in order to get a more

accurate results. As it can be seen, this method is pretty simple and do not

require in this case the implementation of new code.

In Fig. 4.10 is reported a comparison between a checkerboard image

used for calibration and an image containing only the inner corners of the

same checkerboard seen from the projector point of view. Consider that both

Figure 4.9: Rectification quality for undistorted images
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in camera and projector distortion has been removed. For the i-th corner the

shift error erri has been computed as:

erri = yi − ŷi (4.17)

where yi is the y coordinate of the i-th camera corner and ŷi is the corre-

sponding corner seen by the projector. From this image it is difficult to ap-

preciate how big is this error and this is the reason why the projector corners

has been circled of different colors just to give an idea of the measured shift

error:

• cyan circles shift error less than 1 pixel

• yellow circles shift error greater than 1 pixel and less than 1.5 pixel

• red circles shift error grater than 1.5 pixels

Moreover, to provide a final value it has been computed the mean of shift

errors for all the corners resulting in:

emean =
1

N

N

∑
i=1

erri = 1.24 (4.18)

where N is the total number of inner corners. This results indicates that in

the mean case there is always an error of roughly one pixel between two

correspondence points. This is due to many reasons, principally the non

perfect calibration results that influence the rectification, which in turn from

the OpenCV documentation is not guaranteed to be perfect.

Just for completeness, is reported in Fig. 4.10 the same results obtained

without removing the camera and projector distortion. In this case the mea-

sured mean error is about 1.78 confirming how the distortion influences the

quality of rectification: this can be also noted from the greater number of red

circles in the image.

Another possible method that can be used for evaluating the quality

of rectification consists in estimating from camera and projector correspon-

dences the fundamental matrix, for instance by using RANSAC algorithm,

and then visualizing the epipolar lines to see if they are parallel or not.
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Figure 4.10: Rectification quality for original images

From what it can be seen, given the immediateness in obtaining corre-

spondence points between camera and projector, another rectification strat-

egy that could be use is the OpenCV function cv::stereoRectifyUncalibrated()

that, as the name suggests, tries to compute the rectification homographies

without using calibration results. In particular this function implements the

algorithm [10]. On the other hand, this function has been tested on the same

correspondence points used for the evaluation above but the obtained re-

sults seemed to be worst respect to the cv::stereoRectify() function. In-

deed, this is a general fact: if good calibration data are available it is better

to rely on them in order to perform rectification.

4.3.3 Rectification in coding and decoding

Up to now a detailed description about the chosen rectification homogra-

phies has been provided, but how is it possible to take into account rectifica-

tion in the classical pipeline of a structured light 3D scanner?

The most convenient solution for the available prototype can be sum-

marized in the following steps:

• project the original sequence of patterns related to the coding of the

columns according to Gray code

• for each projected pattern acquire the corresponding camera image and

then consider its rectified version according to Hcam

• based on the sequence of rectified camera images, perform the decod-

ing using the strategy with complementary patterns
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• for the search of correspondences between camera and projector con-

sider the rectified camera image and the rectified projector image

As it can be seen, the proposed solution tries to replicate the same steps fol-

lowed for a common stereo rig and it basically works for a general structured

light 3D scanner composed by a camera and projector pair. In a nutshell, af-

ter having acquired the sequence of camera images, consider the projector

image as the image seen from the projector point of view, as it would be a

second camera. Of course this image is not directly accessible since the pro-

jector is not a camera but it can be retrieved by considering for each camera

point the corresponding projector point, that can be obtained after the rows

and columns decoding process. This reasoning should clarify the meaning

of the term "projector image". Therefore, imagine to get a camera image and

a projector image, then the matching is performed between the rectified ver-

sions of these two images, exactly as a stereo rig does.

The main advantage of this solution is the possibility to project the orig-

inal vertical pattern, the same used for the structured light 3D scanner with-

out rectification. Because of the very low resolution of the projector, consid-

ering to hypothetically project a rectified pattern would be a serious problem

for the accuracy of the 3D reconstruction; in fact, especially for the pattern

related to the least significant bit, the pixel discretization would distort a lot

the ideal form of the pattern. Just to give an idea, Fig. 4.11 shows a com-

parison between the original pattern and its rectified version according to

Hprj. As consequence, any solution involving pattern rectification should be

avoided for this prototype of 3D scanner.

Figure 4.11: Avoid to project the rectified pattern

Nothing new regarding the decoding part, except for the fact that the

decoding strategy must be applied not in the original sequence of acquired

camera images but in its rectified version. Of course, being the projector-

camera system in an horizontal configuration, only the vertical code is needed.
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In Fig. 4.12 is reported as example the decoding result related to the image

of Fig. 4.8.

Figure 4.12: Vertical code

4.3.4 Correspondences problem

In general, for a structured light system the presence of a projector in place

of a camera makes the correspondences problem quite different respect to

a stereo rig. As one can imagine, strategies as the ones described in Sec.

2.4 cannot be applied in this context. In particular, in this subsection it is

described in detail what solution has been developed in order to solve the

correspondences problem for the rectified prototype of 3D scanner.

Given a pair of rectified camera and projector images, the goal is to find

for each pixel in the camera image the corresponding one, in terms of rows

and columns, in the projector image. To better visualize this fact, consider

Fig. 4.13 which presents an example of camera and projector rectified im-

ages; in particular the camera image is represented as its decoded version,

meaning that for each pixel the corresponding vertical code is available,

while the projector image contains only the rectified vertical code relative
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to a certain camera pixel. This gives an idea about how the corresponding

projector pixel can be retrieve and more in general, how the projector image

can be constructed.

Figure 4.13: Finding correspondences

By keeping in mind Fig. 4.13, consider the following procedure de-

scribed step by step for solving the correspondences problem:

1. For each camera pixel pc = (uc, vc) consider the related scanline, namely

the horizontal line passing through it.

2. The corresponding projector pixel pp = (up, vp) lies in the same scan-

line, meaning that vc = vp, notice that in this way the y coordinate of

the projector pixel is easily retrievable, at this point the only unknown

is the x coordinate up.

3. Read the binary code vertical_code related to pc.

4. Consider in the projector image the two points A = (vertical_code, 0)

and B = (vertical_code, height), where height is the height of the pro-

jector image.

5. Compute from A and B the points A′ = Hprj A, B′ = HprjB, these are

the two yellow points in the projector image of Fig. 4.13.

6. In order to get the coordinate up, consider the line passing through

A′ and B′: this line corresponds to the rectified version of the original

vertical line indexed by vertical_code. Then compute the intersection
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between this line and the scanline previously defined, and this is the

target projector point pp.

Notice that from the mathematical point of view this procedure can be sum-

marized by simply considering the following relation that is consequence of

basic geometric observations:







vp = vc

up = A′.x + uc−A′.y
B′.y−A′.y · (B′.x − A′.x)

(4.19)

where A′.x, A′.y and B′.x, B′.y are respectively the x and y coordinate of

points A′ and B′, rectified according to Hprj. Once the projector point is

known, the disparity d related to the couple pc, pp can be easily computed

as d = uc − up.

A note about the rectified projector Consider the 3D scanner without rec-

tification, in the projector image the vertical pattern should be intended as

a composition of vertical stripes infinitely extended along the vertical direc-

tion, while in the horizontal direction the pattern is limited by the width of

the projector image. The opposite reasoning holds for the horizontal pat-

tern, in this case the stripes are infinitely extended in the horizontal direc-

tion, while limited by the height of the projector image along the vertical

direction. This reasoning still holds with some adaptations for the rectified

version of the 3D scanner: in this case the lines described in the procedure

above which represent the rectified vertical pattern are infinitely extended

along their directions and this means that in this kind of application it is very

common to find a projector point that has a negative x coordinate, namely

the intersection between the rectified vertical pattern and the scanline is out-

side the rectified projector image.

4.3.5 Look-up table

Consider to iterate the procedure described in the previous subsection for

all the pixels of the camera image, it is easy to realized that the formula

described in (4.19) many times is computed with the same vertical code as

input value and hence with the same A′.x, A′.y and B′.x, B′.y quantities.

Moreover, also in the same scanline it could happen that more camera points
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share the same vertical code and in this case the corresponding upvalue will

be the same. This is not an unusual event but it is something that happens

very often due to the difference in resolution between camera and projector.

As result, in order to avoid to recompute always the same quantities, a

look-up table has been created. The main idea is to have a sort of structure

from that the algorithm can access during the online execution to directly

read the corresponding up value once the vertical code and the uc coordinate

are known. This results in a speeding-up of the 3D reconstruction process.

More in detail, Fig. 4.14 explains how this look-up table has been de-

signed. Basically, it contains as many rows as the number of scanline, which

coincides with the number of rows of the rectified camera and projector im-

ages. While the number of columns coincides with the number of indexable

vertical coordinates: for the prototype of 3D scanner, a sequence of 10 verti-

cal patterns are projected so 1024 are the columns of the look-up table. The

element (i, j) of the look-up table contains the vertical coordinate up asso-

ciated with the camera point (j, i). In other words given the camera point

(j, i) and the look-up table tab, the corresponding projector point is given

by (tab[i, j], i). All the entries of this look-up table are filled only once by

using formulas (4.19) and this should be intended as an offline process, like

calibration. Then during the online process the search for correspondences

becomes a simple look-up table access.

Figure 4.14: Structure of the look-up table
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4.3.6 From disparities to depth

Once disparities for all camera pixels has been computed, the next steps in

order to retrieve the 3D points of the scene are the same illustrated for a

rectilinear stereo rig in Chapter 2.

What is new in this case is the possibility to rely on the disparity-to-

depth mapping matrix Q returned by the cv::stereoRectify() function.

As the name suggests, for each camera pixel (x, y) and the corresponding

disparity d = disparity(x, y), this 4x4 matrix allows to directly compute the

corresponding 3D point:
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(4.20)

Notice that in this case homogeneous coordinates are considered. As result

matrix Q encapsulates the triangulation formulas seen for a rectilinear stereo

rig.

4.3.7 Final considerations

The implementation of this second rectification strategy on the prototype of

3D scanner shows how it is possible to use a pair of rectification homogra-

phies, suitable to rectify a stereo rig, also in this slightly different scenario.

In this case the homography transformations have been computed through

the cv::stereoRectify() function, but there is also the possibility to get the

homographies by other approaches and to apply them in this rectification

strategy without no changes in the pipeline. This last observation makes

this rectification strategy easily adaptable to further improvements. In ad-

dition this chapter has strongly highlighted the effective similarity between

stereo systems and structured light systems.
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Chapter 5

Experimental results

Implementing the rectification on the prototype of 3D scanner for sure im-

plies a speeding up in the acquisition times, but up to now, nothing has

been said about how the accuracy changes. For this reason, this chapter will

present a qualitative and quantitative comparison between some 3D recon-

structions taken with and without rectification. Moreover, this comparison

will be also enriched by some interesting observations related to the point

clouds obtained by the rectified 3D scanner, and by some improvements

which derive from these observations.

5.1 Experimental setup

Before presenting the experiments it is worth spending some words explain-

ing how the projector-camera system has been configured in order to per-

form the experimental acquisitions. First of all, the focus distance has been

fixed to roughly 450 mm. Then the overall system has been calibrated ac-

quiring 32 different checkerboard orientations. The calibration data have

been already illustrated in the previous chapter, while the obtained reprojec-

tion errors are reported here: 0.21 pixels for the camera, 0.47 pixels for the

projector, and 0.67 pixels for the stereo pair. Once the calibration has been

completed, the prototype has been tested by acquiring first of all two mod-

els of geometric solids, and then some Lego bricks. The main advantage of

Lego bricks is the availability of very accurate CAD models that can be used

as reference when analyzing the point clouds returned by the prototype. In

order to get the best results all the acquisitions have been performed using

Gray code and the decoding method with complementary patterns.
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5.2 Qualitative evaluation

5.2.1 Rectified 3D scanner

Fig. 5.1 presents the main results obtained from the prototype after having

implemented the second rectification strategy, that can be summarized in:

• disparity map This map visualizes for each camera pixel the disparity

value as a gray scale intensity. As known form the theory, disparity is

inversely proportional to the distance, meaning that a point with large

disparity is a very close point, while a small disparity indicates a far

point. In this case, large disparity are visualized by a high intensity

value of the pixel while small disparities by a lower intensity value.

Therefore, higher intensity points are the closer ones.

• depth map This map visualizes for each camera pixel the associated

depth, namely the Z coordinate of the 3D point. Even in this case,

as in the disparity map, the depth information is associated to a gray

scale intensity: higher intensity points are the closer ones. In this case,

the range of depths to be visualized has been manually chosen so that

only the reconstructed object appears in the depth map, without the

background.

• point cloud By putting together the information coming from disparity

and depth maps, namely the 3D points coordinates, and information

coming from the camera image, namely the RGB components for each

pixel, it is possible to obtain a point cloud which represents the 3D

reconstruction of the object. In the image it is possible to appreciate

the 3D reconstruction from two different point of views.

The map visualizing the vertical code associated with each camera pixel, ob-

tained after the binarization process has been already reported in Fig. 4.12 so

for this reason, it is not reported here. An important observation about the

obtained results is related to the fact that, during the triangulation process,

it is considered as the world reference frame not the original camera frame

but the rectified one. Therefore, all the 3D points coordinates are measured

with respect to the rectified camera frame and, as consequence, the 3D re-

constructions appear a little bit rotated with respect to the original images

acquired from the camera.
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Figure 5.1: Rectified structured light 3D scanner results
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From what can be seen, the results obtained from this acquisition are

quite accurate from a qualitative point of view. What could seem a little bit

unusual is the presence of a sort of quantization in the point cloud. In other

words, the points composing the point cloud seem to be distributed accord-

ing to quantized levels and not in a continuous way along the surface of the

object. This fact is more evident when seeing the point cloud sideways. A

useful tool in other to better investigate this artifact is the use of the Cloud-

Compare software. This open source software provides a set of basic tools

for manually editing and rendering 3D point clouds and triangular meshes.

It also offers various advanced processing algorithms among which meth-

ods for performing projections, registration, distance computation, statistics

computation, segmentation, geometric features estimation, ecc. More details

about these and other functionalities offered by this software can be found

in the tutorials provided by the official website [4]. In this case, Fig. 5.2

shows how the point cloud returned by the 3D scanner appears in Cloud-

Compare. By zooming into the point cloud, as shown in Fig. 5.3, it is possible

Figure 5.2: Returned point cloud view form CloudCompare

to perceive better this discretization effect. We have observed that this effect

is mainly due to the low resolution of the projector; actually in this second
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rectification strategy horizontal correspondences are identified by projecting

vertical stripes while vertical correspondences are identified by rectification

and so by using only calibration data. This explains why there is a different

resolution between the green and yellow lines. These lines of course coincide

with the x and y axis of the rectified projector frame.

Figure 5.3: Discretization effect in the point clouds

Another effect that comes out from the analysis of the point cloud is the

fact that the point cloud in turn is composed by roughly three surfaces one

close to the other, when in the ideal case there should be only one surface,

and this can be appreciated by Fig. 5.4. This effect can be motivated by ba-

sic principles of epipolar geometry: since the projector size is smaller than

the camera size, it is expected that one projector point is associated to more

camera points, and in particular these points lies on the same projection line

passing through the centre of the projector, as illustrated in Fig. 5.5 where

camera and projector are seen as a common stereo pair. These points, lying

on the same projection line, creates these multiple surfaces. In order to un-

derstand how many camera points are associated to one projector point it is

sufficient to check the number of points on the same scanline that have been

decoded with the same value: it results that one projector point is associated

to 3 camera points on average, and this is consistent with Fig. 5.4 where

3D points are grouped as clusters of 2-3 elements. By analyzing the camera
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Figure 5.4: More camera points associated to the same projector point

image related to the projection of the pattern associated with the least sig-

nificant bit it is possible to end up to the same result: each vertical stripe in

the camera image has a width of about 5-6 pixels, but since this is a Gray

code, this width has to be divided by two. As consequence, each code value

is associated to roughly 2-3 pixels.

A possible solution in order to overcome this problem consists in com-

puting the centroid for each group of camera pixels that are associate to the

same projector pixel and then compute the point cloud considering only the

centroids. In Fig. 5.6 are depicted the obtained results after having applied

this solution. What can be immediately observed from these results is a

strong reduction in the number of 3D points of the point cloud, in fact in

this case the triangulation process involves a number of camera points that

coincides with the number of projector points. As result the obtained point

cloud contains about one third of the points present in the original result.

This effect can be seen also from the disparity and depth maps where the tri-

angulated camera points are spread in all the full resolution camera image

creating a sort of salt and pepper effect. An alternative method that could be

applied for solving the problem of different resolution between camera and

projector is to initially apply a linear transformation in the camera image in
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Figure 5.5: Epipolar geometry: more camera points associated to the same
projector point

order to make it of the same size of the projector image and then implement

the second rectification strategy: in this way there will be a point-to-point

correspondence between camera and projector and in particular there will

be no salt and pepper effect, being the camera image of smaller resolution.

Of course the results in term of point cloud will be the same.

5.2.2 A comparison with non-rectified 3D scanner

For completeness in Fig. 5.7 are reported the same results obtained for the

non-rectified 3D scanner. In this case, being the camera and projector im-

age not aligned it is impossible to get a disparity map and this is the reason

why the provided results contains the camera image with the decoded ver-

tical codes in place of the disparity map. Obviously, for the non-rectified 3D

scanner, also the horizontal code is necessary. Note that the triangulation

in this case has been performed by considering as world frame the origi-

nal camera frame meaning that all the 3D points coordinates are measured

respect to the camera frame.
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Figure 5.6: Results with the rectified structured light 3D scanner after clus-
tering



5.3. Quantitative evaluation 87

Differently from the rectified 3D scanner, in this case horizontal corre-

spondences are identified by projecting vertical stripes and vertical corre-

spondences are identified by projecting horizontal stripes. This means that

the returned point cloud in this case has no discretization effect as the there

is no different resolution between vertical and horizontal coordinates. On

the other end, also the non-rectified 3D scanner suffers of the same problem

previously described about the different resolution between the camera and

projector: even in this case more camera pixels are associated with the same

projector pixel, and so even in this case the 3D points are grouped in clusters.

Of course, the presence of the discretization effect makes this artifact more

evident in the rectified case with respect to the non-rectified one.

Leaving out all these observations, there is not a strong difference in ac-

curacy between the point clouds obtained with and without rectification. Of

course, in the original 3D scanner without rectification the returned point

clouds are slightly more accurate. However, the acquisition times are almost

duplicated for the necessity of projecting another sequence of patterns com-

posed by horizontal binary stripes.

5.3 Quantitative evaluation

In the previous section, a qualitative comparison has been presented be-

tween the rectified and non-rectified 3D scanner. From the analysis, it re-

sults that, even if the non-rectified 3D scanner provides the best results, also

in the rectified case the results are convincing. In addition, some methods

in order to improve the correctness of the point clouds returned by the rec-

tified 3D scanner have been proposed. Aiming to a quantitative evaluation

of the experimental results, it is necessary to keep into account the repeata-

bility and accuracy of the 3D reconstructions. Checking the repeatability is

quite simple, it requires only acquiring more times the same scene and to

compare the returned point clouds: the less the distance among the results,

the bigger the repeatability of the system. Regarding the accuracy, it is nec-

essary to acquire objects with known 3D shapes and check how close is the

returned point cloud to the real object. This section in particular describes

the accuracy evaluation of the 3D reconstructions and the improvement in

the acquisition times as a consequence of the rectification.
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Figure 5.7: Non-rectified structured light 3D scanner results
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5.3.1 Accuracy

There are many ways in order to evaluate the accuracy of the available pro-

totype. A possible approach consists in acquiring some three-dimensional

objects and comparing their CAD model with the returned point cloud. To

this aim, some Lego bricks have been acquired for this evaluation. In gen-

eral, Lego bricks are realized with very high precision and so they are a good

candidate for this kind of approach.

In particular, the idea is to acquire four different Lego bricks of different

colors, each one from three different orientations. Once they have been re-

constructed, the related point clouds have been modified in order to remove

the support of the Lego bricks and other spurious elements of the scene. By

using again CloudCompare each point cloud has been aligned in an almost au-

tomatic way to the related CAD model and then distances between points of

the two three-dimensional structures have been computed. The main evalu-

ation index, in this case, is the Root Mean Square Error (RMSE), given by the

square root of the arithmetic mean of the square of the distances. In this case,

the distances play the role of an error between the obtained point cloud and

the CAD model. It is worth mentioning that having cut each point cloud in

order to select only the Lego brick, some imperfections may have been elimi-

nated; especially when in the 3D reconstruction some points are projected at

very large distances from the surface of the object. This means that the RMSE

measured for each acquisition must be intended as an underestimate of the

real error. The tables 5.1 and 5.2 show respectively the measured RMSE val-

ues and the dimensions for the point clouds for the acquired Lego bricks

both for the rectified and non-rectified 3D scanner. The obtained results are

consistent with the qualitative analysis discussed in the previous section.

The use of rectification simplifies the correspondences problem from a 2D to

a 1D search but at the same time introduces additional error sources: first of

all the error in the alignment between camera and projector images, which is

small in general but not negligible; but also the homography transformation

for the camera image that is applied by mean of interpolation methods, and

this results in a distortion of the original camera image. The non-rectified

3D scanner instead relies only on the vertical and horizontal patterns for

solving the correspondence problem and as consequence, the point clouds



90 Chapter 5. Experimental results

will have higher accuracy. What is interesting to observe from the two ta-

bles is the fact that the actual difference between rectified and non-rectified

3D scanners is rather small, especially from the accuracy point of view. No-

tice that the difference in the mean RMSE is only about 0.04 mm. Therefore,

this loss in accuracy for the rectified prototype is acceptable, considering the

remarkable improvement in the acquisition times.

3D scanner Object
RMSE

1st view 2nd view 3rd view

Rectified

lego 2x3 white 0.34 mm 0.49 mm 0.41 mm

lego 2x4 blue 0.46 mm 0.53 mm 0.49 mm

lego 2x4 red 0.47 mm 0.57 mm 0.47 mm

lego 2x4 yellow 0.46 mm 0.55 mm 0.39 mm

mean: 0.47 mm

Non-rectified

lego 2x3 white 0.32 mm 0.47 mm 0.39 mm

lego 2x4 blue 0.38 mm 0.51 mm 0.33 mm

lego 2x4 red 0.44 mm 0.54 mm 0.44 mm

lego 2x4 yellow 0.43 mm 0.53 mm 0.37 mm

mean: 0.43 mm

Removing multiple surfaces

Rectified

lego 2x3 white 0.18 mm 0.26 mm 0.20 mm

lego 2x4 blue 0.24 mm 0.25 mm 0.19 mm

lego 2x4 red 0.30 mm 0.28 mm 0.29 mm

lego 2x4 yellow 0.27 mm 0.27 mm 0.21 mm

mean: 0.25 mm

Table 5.1: Quantitative evaluation of the reconstructed Lego bricks

The two tables present also a third section dedicated to the rectified 3D

scanner in which has been experimented the solution previously described

for removing the multiple surfaces effect. As expected, the obtained point
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3D scanner Object
Number of points

1st view 2nd view 3rd view

Rectified

lego 2x3 white 28327 24316 21921

lego 2x4 blue 32671 29470 31806

lego 2x4 red 30412 26116 22822

lego 2x4 yellow 28367 25584 28617

mean: 27535

Non-rectified

lego 2x3 white 27690 25278 22112

lego 2x4 blue 26983 29888 31049

lego 2x4 red 22620 26998 18627

lego 2x4 yellow 27564 27880 33064

mean: 26646

Removing multiple surfaces

Rectified

lego 2x3 white 10111 8592 7577

lego 2x4 blue 11317 10760 12105

lego 2x4 red 11107 9763 9354

lego 2x4 yellow 10363 9789 12101

mean: 10245

Table 5.2: Point clouds dimension for the reconstructed Lego bricks

clouds, in this case, contain a lower number of points with respect to the

other two cases, but the results from the accuracy point of view are quite

interesting: in this case, the average RMSE is smaller not only respect to

the original rectified scanner but also respect to the non-rectified one. This

is not a surprising fact since also the non-rectified scanner suffers from the

multiple surfaces effect, and this is something that in some way tends to

deteriorate the accuracy of 3D reconstructions. In addition, it is important

to clarify that the RMSE values obtained for this third case are a very large

underestimate of the real error: from the qualitative analysis it is possible
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to observe how this third solution tends to produce lots of outliers in the

final 3D reconstructions and all these points during this quantitative analysis

have been removed together with the support of Lego bricks.

Aiming to provide a more intuitive idea of what all the numbers re-

ported in these tables means, consider Fig. 5.8 in which are reported the

point clouds associated to the first view of the white Lego brick. The color

map in this case visualizes the distance from the real CAD model: the color

scale starts from blue, which corresponds to points with a lower distance

from the reference, moving gradually to green, yellow, and finally red, in-

dicating points with greater error. Even from this figure, it is possible to

observe how moving from the rectified to the non-rectified scanner, the ac-

curacy tends to improve. In particular, in the rectified case there are not so

many yellow and red points with respect to the non-rectified case, meaning

that the accuracy between the two is not so different. The third row in this

figure is related to the rectified 3D scanner after having removed the multi-

ple surfaces effect. From what it can be seen, the point cloud is very poor

in terms of the number of points but at the same time more accurate with

respect to the other two cases, confirming what was already observed from

the numerical results.

5.3.2 Acquisition times

Many times in describing this master thesis project it has been mentioned

the speeding-up of the acquisition times as a consequence of rectification.

This subsection presents a comparison between non-rectified and rectified

3D scanner in order to approximately quantify this improvement for the

available prototype.

The DLP2000 module mounted in the prototype takes about 250 ms for

projecting a full-resolution image. Given the resolution of 640x360 pixels of

the projector, for a pattern sequence able to encode every single row/column,

it is necessary to consider 9/10 bit and so as many images. For the non-

rectified 3D scanner using the complementary pattern approach for decod-

ing, it is necessary to project 38 images for decoding both rows and columns

and this leads to an acquisition time of roughly 10 seconds, considering also

the processing after the projection of the pattern. In the rectified 3D scanner
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Figure 5.8: 3D reconstruction of a Lego brick: in the first raw by the rectified
3D scanner, in the second raw by the non-rectified 3D scanner, in the third
row by the rectified 3D scanner after removing the multiple surfaces effect

instead, it is sufficient to project only half of the patterns for encoding only

the columns. Theoretically, this should divide by two the acquisition time; in

practice, by taking into account also the processing part, the acquisition time

is about 6 seconds. In any case, this represents a remarkable improvement,

considering also that the accuracy obtained in both cases is very similar.
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Chapter 6

Conclusion

The core of this master thesis is the rectification of a structured light sensor,

in order to improve its performance in the same way as a typical stereo vi-

sion system. Related to this topic two strategies have been proposed: the

first one tries to achieve the desired horizontal alignment between camera

and projector planes just by acting on the camera, while the second one in-

volves also the projector considering it, for some aspects, as another camera.

The first approach is not so difficult to be implemented since it does not

require a strong re-adaptation of the already implemented pipeline of the

structured light sensor. On the other hand, in several cases the alignment be-

tween the camera and the projector could imply a strong distortion of cam-

era images resulting finally in a very poor accuracy. The second approach

instead by acting also on the projector gives the opportunity to highlight an

interesting fact: the possibility to apply a rectification technique typical of

a stereo vision system also to a structured light scanner. In other words, a

pair of homographies suitable to rectify two stereo cameras could be used

also for a projector-camera pair, seeing the projector as a camera. Of course,

the projector actually is not a camera and this must be taken into account in

the pipeline of 3D reconstruction. To make things more concrete, this sec-

ond rectification strategy has been implemented on a prototype of binary

coded structured light 3D scanner. This allows showing how the rectifica-

tion pipeline must be adapted in order to cope with practical problems re-

lated to the particular hardware components mounted on the scanner. For

instance, the main problem related to the prototype is the great difference

in resolution between the camera and the projector which affects not only

the rectification pipeline but also the accuracy of the final 3D reconstruction.

The obtained results after having rectified the prototype of the structured
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light 3D scanner have been compared with the results obtained by the same

prototype without rectification. Since the beginning, it has been expected

that the rectification reduces the accuracy of the obtained point clouds. But

the interesting fact is that, from an analysis of the obtained results, there are

no big differences between the rectified and the unrectified prototype, even

if the second one remains the most accurate sensor between the two. Besides

this fact, the rectification leads to a remarkable speeding-up of the acquisi-

tion times, not only in the patterns projection but also in the processing. In

summary, the obtained results show the great improvements given by the

rectification of a structured light sensor.

6.1 Future developments

The performances obtained for the rectified prototype are still far from the

state of art. Just to make a quick comparison, the 3D industrial camera Zivid

2 [36] is able to produce very accurate 3D reconstructions with an acquisition

time from 100 ms to almost 1 s. More details about this kind of sensor can

be found in the manufacturer’s official website. However, there are many

additional improvements that can be achieved on this prototype.

From the rectification point of view, a possible improvement could be

the use of new pairs of rectification homographies: in this thesis the rectifi-

cation homographies used for the prototype comes from the OpenCV func-

tion cv::stereoRectify(), but there exists many other approaches for ob-

taining them. In this context, a prominent example is the method proposed

in [13] which takes into account also the perspective distortion. Rectifying

transformations, in general, introduce perspective distortion on the obtained

images, which shall be minimised to improve the accuracy of the following

algorithm dealing with the correspondence problem. The search for the op-

timal transformations is usually carried out relying on numerical optimisa-

tion. This work proposes instead a closed-form solution for the rectifying

homographies that minimise perspective distortion.

The accuracy of the rectification for the prototype depends also on the

calibration process. This motivates the implementation of new calibration

methods that hopefully are able to provide more precise results. For the

available prototype, it could be an interesting tentative implementing the
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calibration method proposed in the SLStudio project [33] that is as valid as

the one adopted in this thesis.

Even if this thesis deals principally with rectification, the performance

of the prototype of 3D scanner can be further improved in many other ways.

First of all, a significant improvement both from the accuracy and speed

point of view could be obtained by changing the hardware components: as

seen many times in this thesis the light projector is the weaker element in

the device; as consequence, having a quicker projector with a resolution as

close as possible to the one of the camera would have the double effect of

drastically reduce the acquisition times and increase the quality of the 3D

reconstruction, avoiding the multiple surfaces effect.

From the software point of view, it could be interesting to experiment

with other coding strategies and to study eventually new binarization tech-

niques that do not require the projection of additional images. Focusing only

on the accuracy, a considerable improvement can be obtained by performing

some filtering actions on the returned point cloud. Regarding this topic, a

first example could be to implement a noise filter that keeps only the points

with a sufficiently high SNR value, where the SNR is computed considering

as signal the light emitted by the projector and as noise, all the light sources

coming from the surrounding environment. A second example could be an

outlier filter that considers for each 3D point a spherical neighborhood cen-

tered on it and if in this region there are at least N points, with N parameter

of the filter that must be set, the point is kept otherwise it is removed mean-

ing that it is probably an outlier. Besides these two examples, there are many

other filters that could be applied in order to enhance the quality of a 3D re-

construction.
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