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Abstract

Questa tesi tratta I'analisi di un sottoinsieme della rete di canali del
Cavallino, situata lungo la costa Veneziana che si estende da Punta
Sabbioni al porto di Piave Vecchia. In particolare, questo lavoro si fo-
calizza su modellizzazione, stima e controllo di una sequenza di canali,
assumendo che le misure relative al livello della superficie dell’acqua
e la posizione delle strutture di controllo siano disponibili. Una pro-
cedura basata su identificazione dei sistemi consente di analizzare e
selezionare il modello grey box migliore tra quelli proposti tra ARX
e OE, con l'obiettivo di stimare 'andamento del livello dell’acqua.
L’obiettivo del controllo é regolare il livello dell’acqua della rete agendo
sulle strutture idriche di controllo. Di conseguenza, viene proposto un
tipo di controllo decentralizzato. In particolare, viene sfruttato il con-
trollo multivariabile del livello dell’acqua a monte della struttura di
controllo, tenendo in considerazione sia chiuse in superficie che sotto il
livello dell’acqua. La soluzione proposta € implementata nell’ambiente
MATLAB e Simulink e si basa su controllori PI aumentati con un fil-
tro passabasso, al fine di controllare il livello dell’acqua in caso di

perturbazione di una sequenza di canali consecutivi.
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Abstract

This project deals with the analysis of a subset of the water channel
network of Cavallino, that is the section of the Venetian coast that ex-
tends from Punta Sabbioni to Piave Vecchia harbor. In particular, this
work focuses on modeling, estimation and control design of a multiple
channel pools system, assuming that water level measurements and
control structure position are available. A system-identification-based
procedure is considered for the analysis and selection of an ARX and
an OE grey box model, to estimate and control purposes. The control
aim is to regulate the water level of the channel network by acting
on the hydraulic structure position. Then, a decentralized control
is implemented. In particular, a multivariable local upstream con-
trol strategy is exploited, involving a model that takes into account
both weirs and gates hydraulic control structures. Lastly, a solution
is implemented in MATLAB and Simulink, based on PI controllers
augmented with lowpass filters, in order to control the water level of

multiple pools connected in series.
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Introduction

The goal of this work is to develop and implement modeling, estimation and
control design for open-channel systems. In the last years, storms, downpours
and floods have become increasingly frequent and devastating occurrences. These
events are a clear consequence of climate change; indeed extraordinary weather
conditions will become more and more frequent, compromising the agricultural
sector and even infrastructures. Moreover, sudden and violent downpours may
represent a huge inconvenience for the population and may cause devastating
damages to cities. Water distribution networks are complicated systems that
present nonlinear dynamics; therefore they need suitable modeling and control
strategies to obtain a wise management of water resources. The main issue is
that the dynamics of water channels is modeled by complex nonlinear partial
differential equations. Moreover, there are multiple inputs and outputs systems
that may be controlled and these systems are subjected to disturbances, due to
water withdrawals or weather perturbations. In addition, the dynamics of the
water flow deals with delays between a control action and its effect. Progress in
systems theory yields tools to cope with the study and design of complex hydraulic
system. The automatization of open-channel systems represents a solution to
smart water delivery. To this purpose, this thesis is developed starting from
irrigation open-channel systems analysis, aiming at the improvement of water
delivery systems. In particular, the Cavallino water channel network (see Figure

1.1) is analyzed.



CHAPTER 1. INTRODUCTION

1.1 State of the art

In this section, it is introduced the state of the art pertaining to the topics related
to modeling and control of multiple channel pools. A brief introduction and the
knowledge of literature about the open-channel irrigation systems is fundamental
to delineate and tackle the water delivery problem that affects the Cavallino water

channel network, shown in Figure 1.1.

Figure 1.1: Cavallino water channel network

1.1.1 Open-channel irrigation systems modeling

The physical model of a water channel based on the laws of conservation of mo-
mentum and mass of fluid can be accurately described by the Saint Venant equa-
tions (SVEs) that well characterize the unsteady water motion in free channels,
under suitable assumptions as reported in Chapter 2. Open-channel irrigation
models can be distinguished as model that are derived by means of analytical

simplification and models that result from the dynamics approximation.

Models obtained from simplifications of the SVEs

Open-channel irrigation systems are developed to supply a suitable amount of
water request without wastage. Authors in [1] introduce an explicit spatial dis-
cretization of the SVEs. Every channel can be split into sections and it is possible
to define one differential equation for the water level and another one for the wa-
ter low. On the other hand, stability relies on the discretization step size choice.
In [2] an implicit Preissman finite-difference scheme is exploited, such that the

stability of the model does not depend on the step size. The approach proposed
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1.1 State of the art

in [3| uses Preissmann finite-difference scheme to implement a control algorithm
based on inverse solution of the nonlinear SVEs. In [4] the proposed model comes
from the linearization of the SVEs. Moreover, approximating the frequency re-
sponse, it can be determined a transfer function between the flow rate variations
at the upper end and the flow rate variations at the lower end of a channel. Fi-
nally, an analytical solution for the water level and the flow is obtained. The
approach in [5] takes into account an approximated model called integrator delay
zero model that is a simple and common technique to model a canal for control
purposes. It consists of an integrator and a delay in low frequencies, and it models
the high frequencies by a constant gain and a delay. Most of the approximated
modeling schemes require operational information of the system. Moreover, in
case of finite-difference strategies, it is worth noting that complex models with
high order are achieved. These aspects may represent inconveniences in control

system design.

Approximated models

Approximated models like integrator delay model (ID), grey-box models and
black-box models have been elaborated from feasible assumptions, by means of
physical laws and empirical information. Approximated models represent an im-
portant alternative to SVEs with the purpose of design control-oriented models for
open-channel systems. In [6] it is presented the integrator delay model, influenced
by [4] and it is proposed backwater profile, that is a phenomenon representing the
downstream accumulation of water. Thus, the channel can be split into two sec-
tions that correspond to a uniform flow and to a reservoir respectively. It can be
assumed that the water depth in correspondence of the uniform section depends
on the flow while the backwater section can be modeled as a mass balance with an
inflow delay. Such model is observed in many studies with control purpose such
as [7], [8], [9]. Available measured data represent an important source in order to
design control-oriented models for open-channel systems. System identification is
a procedure to model the dynamic behavior of a system or a system component
based on measured data. Then, system identification can be employed to design
models without physical information of the system (black-box models), or models
that require physical information of the system (grey-box models) [8]. The black
box method explains the relationship between measured inputs and measured
outputs when parameters are changed. The grey box method is a configuration

of the model where the parameters are determined by means of exact physical
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CHAPTER 1. INTRODUCTION

principles. There exists many parametric model structures to assist in model-
ing an unknown system. The most common parametric model structures are a
subset of general linear models, such as output-error (OE), autoregressive exoge-
nous (ARX), autoregressive moving average with exogenous inputs (ARMAX),
Box—Jenkins (BJ) structures. Differently from ARX model, the ARMAX model
structure includes disturb dynamics. In addiction, ARMAX models are useful if
you have to control a disturb that enters early in the process, such as at the input.
According to results of experiments showed in [10], the model structure that best
represents a channel dynamics is the ARMAX structure. In [11] it is introduced
a simplified model to control open water channels that are short, flat and deep,
which are supposed to be dominated by resonance behavior. The integrator res-
onance model (IR model) describes resonance-sensitive channels; it includes an
integrator and the first resonance mode of a long reflecting wave. Then, the con-
troller avoids triggering the resonance mode as much as possible. In particular,
in such article it is also proved that neglecting the resonance behavior in the
controller design can cause poor performance of the closed loop behavior. The
method proposed in [12] introduces three data-driven modeling tools to represent
channel dynamics, which are artificial neural networks (NARX models), local lin-
ear models and fuzzy systems. As an experimental result, all models manage to
capture the significant dynamics but the neural networks perform slightly better
than the other two strategies. For what concerns grey-box models, [13] introduces
a control-oriented model based on a simplified mass balance, assuming that the
water volume in the channel is proportional to the water level and assuming a
time delay in the channel inflow. Such model consists of a differential equation
that explains the water mass balance, in which the nonlinear flow relation of the
control structures is included. Grey-box models have been employed for control
purposes in [14], [15], [16] and leak detection in [17]. Moreover, in [13] it is shown
that nonlinear models are more precise than linear models. In particular, third
order nonlinear models are able to exhibit wave dynamics, while first order non-
linear models are simpler and more suitable for control purpose. These grey-box
models have been restricted to systems with weirs structure in free-flow, where
the flow depends on the control structure upstream depth. In conclusion, in [18]
it is proposed a grey-box model in a system that takes into account weirs and

gates structures but this analysis is restricted to a single channel.



1.1 State of the art

1.1.2 Control of Open-channel irrigation systems

The main control target in open-channel irrigation systems is to discharge a suit-
able amount of water in order to satisfy the demand. Then, in a well-operated
system, the outer water needs to be almost equal to the water disturbance. Open-
channel systems are complex systems characterized by long delays, high channel
interactions and perturbations. There exist multiple control methods that are
characterized by different configurations, strategies, architectures, cost functions,
control variables that can be mentioned [19]. Figure 1.2 shows a brief description
of the main control architectures, strategies, configuration, control variable and
objectives, related to open-channel irrigation systems that have been considered

in the next sections.

Control
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Figure 1.2: Proposed classification of control approaches for open-channel
irrigation systems

Control architectures

In general, there exist three main different control architectures that character-
ize open-channel irrigation systems that are centralized, decentralized and dis-

tributed, as shown in figure 1.2. Centralized architectures allow for a central
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CHAPTER 1. INTRODUCTION

controller to generate a control input, exploiting the measurements, collected by
the system as proposed in [20], [21], [22]. These systems permit supervision and
remote control of the whole system. On the other hand, they are complicated
and more sensitive to a possible hardware crash than localized configurations
as reported in [19]. Decentralized architectures [23], [24], show that only local
upstream or downstream data of a channel is employed to elaborate the control
strategy. Distributed architectures reported in [25], show that the control system
exploits both local and adjacent information determining cooperation among local
controllers. In general, centralized architectures achieve better results than de-
centralized and distributed architectures in open-channel irrigation systems. The
main advantage of a decentralized or distributed control system is that control is

guaranteed even if a piece of information is lost.

Control objectives

The main control target in open-channel irrigation system is to deliver water to
the farmers minimizing the wastage. According to the fact that the offtakes are
gravity fed, the requirement of being able to deliver water can be translated into
a reference regulation of the water levels. Then, the discharges are regulated
to each user as reported in [14]. Moreover, water is usually wasted when it
crosses the last weir of the channel because it is not possible to recover unused
water. Thus, the flow over the last weir should be almost null. It is worth
noting that the water level reference changes with operational conditions, but
these changes are not frequent. As a result, the perturbation rejection can be
considered more relevant than tracking reference changes. It is also fundamental
to observe that large weir or gates motions can cause large oscillations, hence
gate movements performed in the frequency of the dominant waves need to be
avoided. Upstream and downstream controls are frequent when dealing with
decentralized and distributed control architectures. Upstream controls consist
on keeping a setpoint water level upstream with respect to the regulator, as
shown 26|, [27], [19], while downstream controls consist on maintaining a setpoint
water level downstream with respect to the regulator as shown in [19]. Upstream
and downstream controls can be distinguished as close or distant with respect
to the regulator. On the contrary, distant upstream control is not common. In
particular, in [28] it is estabilished that the water setpoint along the channel is not
satisfied. In [29] it is reported a comparison between close upstream and distant

upstream control strategies with an adaptive controller. In the first configuration,
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1.1 State of the art

the experimental results show a good behavior while, the second one exhibit
oscillations and poor performances. The adjustment of the upstream level close to
the regulator is the most frequent control configuration in open-channel irrigation
systems, as shown in [26]. Flow control is required at the inflow of the system,
where the inflow is determined according to the user request. Controllers may be
multivariable and the controlled variables could be different, such as the upstream
water depth denoted with y,, [30] , [27], the downstream depth h v, [31], [22]
and the channel inflow Q;, or outflow Q. [32] as reported in figure 1.2.

Feedback and feedforward control configurations

In open-channel irrigation systems control, it is possible to select feedback (FB)
configuration, feedforward (FF) configuration or a combination of them(FB +
FF), as shown in figure 1.2. In the FB configurations, the channel inflow or
outflow is modified to reduce the error between the controlled variable and a set-
point water level or flow. In the FF configurations, the channel inflow or outflow
is modified taking into account previous information about water request. The
FB configurations suggested in [30], [27], [24] show that the rejection of distur-
bances and uncertainties such as leaks, an unexpected water request, weather
perturbations, can be achieved. On the other hand, controller design need to be
accurate , avoiding oscillations or instability. The FF configurations allows the
presence of less oscillations and a faster response but perturbation rejection is
not possible as reported in [33|. The best control performance can be reached by
the combination of these configurations (F' B + F'I'), resulting in faster responses
and disturbances rejection as shown in [24]. Multiple control strategies have been

analyzed and reported in the sequel.

PID control strategy

Proportional — Integral — Derivative controllers (PID) are widely employed in
control systems industry . There exist multiple studies in literature that exploit
PID regulators to keep a fixed reference in open-channel irrigation systems. In [34]
it is proposed a routine for tuning upstream PI controllers. In [35] it is analyzed
the advantage between design a Proportional-Integral (PI) controller to keep a
desired upstream setpoint or a desired downstream setpoint. Moreover, in [36]
it is introduced a PI controller with a first order filter in order to filter resonant
oscillations produced by neighbor channels. In [37] there is a comparison between

the results obtained by a downstream PI controller and by a distant downstream
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CHAPTER 1. INTRODUCTION

PI controller. In [38] and [38] PI tuning routines designed exploiting the integrator

delay model are suggested.

LQR control strategy

One alternative control strategy for open-channel irrigation systems is focused on
optimal control. This approach requires the minimization of a quadratic objec-
tive function formulated from the state space system. Given a linear system, a
LQR is a vectorial control law obtained by the minimization of a quadratic cost
index. The latter quantity is formalized as a trade-off-based penalization between
weighted state and weighted control input of the underlying system. The numer-
ical expression of such a controller is computed by solving the Riccati equation
associated to the cost index and the system under analysis. Moreover, this ap-
proach is useful for controlling systems characterized by a multiple number of
states [1], [6] . On the other hand, LQRs satisfy a required behavior in an area

close to an operation point.

Model predictive control strategy

The advantage that model predictive control (MPC) presents is relevant for what
concern optimality and prediction. There exist multiple studies in literature that
focus on MPCs strategies, such as [31], [36], [30], [25], [22], [21]. MPC strategies
take into account a prediction model, some constraints, an objective function and
an optimization algorithm. The MPC controller has to be computed by solving an
optimization problem over the time horizon. It is required a discrete-time model
in state space configuration or transfer function. Boundary conditions of the
controlled system are included into the constraints for inputs and state variables
while the objective function corresponds to the performance index combination of
the prediction model and constraints. In conclusion, the optimization procedure
finds the optimal solution over a prediction time horizon that minimizes a given

objective function.

1.2 Thesis statement, contributions and

structures

In this section, the problem formulation is introduced and a solution approach

is proposed. Then, the main contribution is compared with the current open-
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1.2 Thesis statement, contributions and structures

channel irrigation systems and the outline of the thesis is presented.

1.2.1 Problem formulation

The Cavallino peninsula separates the north Venetian lagoon from the Adriatic
sea and it is characterized by a complex channel network. In high tide phase, sea
water tends to retreat towards rivers along a section. For this reason, there exist
water regulators along the main channels which are controlled manually, in order
to avoid possible floods. However, in case of downpours or strong perturbations
the risk of floods is high. It is thus fundamental to design an automatic control
system in order to regulate the water level of the string of pools and to avoid
floods. An accurate model for the behavior of the main Cavallino channels need
to be designed and an efficient automatic control system is required to adjust and

correct the errors without external effort.

1.2.2 Solution approach

The SVEs are complex to handle for modeling, estimate and control purposes.
Moreover, geometrical parameters related to the channels are fundamental and
sometimes these are missing or not accurate. Then, starting from the water
volume mass balance equation, a simpler model is proposed. In particular, a
system-identification-based procedure is exploited for estimating the parameters
for two grey-box models. In particular, the ARX and the OE model are taken
into account. According to the results, the best model among them is the OE
model and then a one-step-ahead predictor is validated. In such a case, due to
the lack of measurements, a second order model is implemented to generate the
input-output data. For what concerns the control design, local upstream control
is suggested, with the aim to discharge water avoiding floods. A decentralized ap-
proach is preferred because of its main advantages, such as scalability, versatility
and robustness to local failures. A simulation can be implemented in MATLAB,

focusing on a subset of the Cavallino water network, as shown in Figure 1.3.

1.2.3 Contribution

There exists a large literature about the open-channel irrigation network, as re-
ported in Section 1.1.2. Then, to delineate and tackle the water delivery problem

that affects the Cavallino water channel network, we draw inspiration from this
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CHAPTER 1. INTRODUCTION

Figure 1.3: Subset of the Cavallino water network

field. Our approach is similar to [13] for what concerns the procedure to iden-
tify discrete time model parameters. In addition, we analyze and compare the
performances of an ARX model and an OE model for estimation purpose. In
particular, we simulate some measurements by means of a discrete time second
order model to proceed with the system identification approach. The parametric
model estimation involves linear regression in one case and it requires optimiza-
tion tools in the another one. In particular, the Levenberg-Marquardt algorithm
is preferred and then implemented. For what concerns control of the water level,
the decentralized control design draws inspiration from [39]. The main contribu-
tion provided in this thesis is represented by the development of a local upstream
control strategy for a model, that takes into account both weirs and gates hy-
draulic control structures. A solution based on PI controllers is implemented in
MATLAB and Simulink, in order to control the water depth of multiple pools

connected in series.

1.2.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces the

theoretical hydraulics fundamental in order to enhance the basic concept on open
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1.2 Thesis statement, contributions and structures

channels. Moreover, SVEs are analyzed and their complexity is highlighted. Their
implementation is explained in details in the Appendix 6.2. Chapter 3 consid-
ers two grey-box models in discrete time, that take into account both weirs and
gates hydraulic control structures and a system identification procedure to esti-
mate their parameters is presented. Then, a one-step ahead predictor is proposed.
Chapter 4 deals with the main contribution of this thesis, focusing on the devel-
opment of a decentralized control. Local upstream control is introduced and both
feedback and feedforward configurations are analyzed. In conclusion, Chapter 5
shows the numerical simulation implemented in MATLAB and Simulink. A Sec-
ond order system is implemented in order to simulate the required measurements.
Then, system identification procedure developed in Chapter 3 allows to select a
suitable model for an estimation purpose, considering the trade-off between com-
plexity and adherence of data. Finally, a procedure for tuning the employed PIL
is proposed and a decentralized control is implemented. The results are hence
discussed, so that the control performances with and without feedforward are

compared and conclusions are reported in Chapter 6.
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CHAPTER 1.

INTRODUCTION



Basic concepts in hydrosystems

In this chapter, basic concepts in hydrosystems are explained and some funda-
mental definitions are enunciated. The physical model for the water channel is
introduced. Unidirectional open channel flow is usually modeled by two hyper-
bolic equations expressing the conservation of mass and momentum, that are
known as the Saint Venant Equations (SVEs).

2.1 Open channel flow classification

Open channel systems are structures characterized by a open top that allow
fluids transport from a location to another. An open channel flow presents a
free surface, which is subject to atmospheric pressure. Flows can be classified
into steady and unsteady. We refer to a steady flow if the flow velocity at a
given location does not vary with respect to time. On the contrary, if the local
acceleration is different from zero we refer to an unsteady flow. Moreover, flows
can be distinguished as uniform or varied. They are referred as uniform if the
flow velocity at a given time does not change with respect to a given distance
otherwise they are called varied or nonuniform. On the other hand, it is possible
to relax this condition, considering a flow uniform as long as the velocity in the
direction of the flow is constant along the channel. The rate of variation with
respect to distance allows to classify nonuniform flows into gradually varied and

rapidly varied flows. As shown in Figure 2.1, a flow is considered critical if the

13



CHAPTER 2. BASIC CONCEPTS IN HYDROSYSTEMS

flow velocity is equal to the velocity of a wave characterized by a small amplitude.
A gravity wave can be generated by a variation in the flow depth. Then, a flow is
defined as subcritical if the flow velocity is lower than the critical velocity while

can be defined supercritical if the flow velocity is greater than such value.

UF: uniform flow
GVF: gradually varying flow
RFV: rapidly varying flow

T~

RVF UF RVF UF RVF GVF RVF UF

Figure 2.1: Open channel system characterized by subcritical, supercrit-
ical and uniform flow

2.2 Open channel terminology

Channels can be distinguished as natural or artificial. A long channel charac-
terized by a minimal slope excavated in the ground is defined with canal. A
prismatic channel exhibits a constant cross section and bottom slope. A cross
section that is normal to the direction of the water flow is defined as channel
section. The flow area A is the cross sectional area of the flow taken normal with
respect to the direction of the flow. The depth of the water y is the distance
between the water surface and the bottom of the channel in a section. The top
width B is the width of channel section at the surface while the bottom width
b is the width of the channel section at the lowest point of the channel section.
The depth of flow section d can be defined as the depth of flow normal to the
direction of flow. The hydraulic radius is defined as R;, = %, where the wetted
perimeter P is defined as the length of intersection line of channel wetted surface
with a cross sectional plane normal to the flow [40]. Figure 2.2 reports all the

main geometric parameters of an open-channel.

The open-channel flow presents velocity components in the three directions.

14



2.3 The Saint Venant Equations

Channg bottom

Figure 2.2: Open-channel section

On the other hand, for the most part, open-channel can be considered to be one-
dimensional. Also, velocity component direction is the same of the flow. The
velocity at different points in a channel section is denoted with v. So, the volume
of water that is transferred through a channel section per unit time is denoted
with discharge or flow rate [41]. Accordingly, the incremental fluid discharge d@

through an incremental area dA is
dQ = vdA (2.1)

Then, the discharge can be defined as

Q:KFQ:AMM (2.2)

as it can be observed in Figure 2.3. Moreover, the cross-sectional average velocity
V can be defined as .
V:Q:—/MA (2.3)
A

2.3 The Saint Venant Equations

Different kind of open channels such as prismatic canals or natural streams usu-
ally work under unsteady flow conditions. The unsteady open channel SVEs of
motion are known as the continuity equation and the momentum equation that

are respectively

0A  0Q
ot T Y
15
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Figure 2.3: Open-channel section

0Q 0 (@ dy 5 B
E + & (7) + QA% + gA(S — So) =0 (2.5)

where A is the cross sectional area of the channel, y is the flow depth, ¢ is
the gravitational acceleration, @) is the discharge, V is the average velocity, S is
the bottom slope and S is the friction slope, z is the displacement in the main
flow direction and ¢ is the time. Unsteady-flow equations are complicated and do
not yield closed-form analytical solutions. These two equations are determined
from mass conservation and momentum conservation if and only if the following

assumptions are satisfied.

e No later inflow is considered.

e The flow is incompressible, that is the density of the fluid is constant.
e The flow is one-dimensional.

e Hydrostatic pressure prevails and vertical accelerations are negligible.
e The velocity is uniform over a channel.

e The flow velocity is only in the direction of flow and the components of flow

velocity in the transverse and vertical directions are zero.

e The average channel bottom slope is small, that is the measured flow depth
y is almost equal to the measured flow depth d perpendicular to the channel

bottom.

16



2.3 The Saint Venant Equations

2.3.1 Continuity equation derivation

Let us consider a volume element where p denotes the mass density of the fluid,
A is the wetted cross sectional area of the channel, @ is the discharge, Ax is the
distance between the upstream and downstream end along the flow direction. Let
us denote with the subscript U the upstream section and with D the downstream
section. The mass contained in a deformable volume that changes with the sys-
tem, remains unchanged in time. The mass transfer rate in open-channel flow is
the rate with which the mass is moved along a channel section and it is defined

as
Rate of mass transfer= pQ.

The mass conservation law states that the mass of a closed system remains con-

stant over time, meaning that

Net rate of mass entering/leaving the volume =Rate of change of mass in the

volume.

If the volume of a section is given by AAx then the mass of the volume can
be expressed as pAAx. Let us assume that the water inflow in the volume has
a rate pQy and water outflow has a rate pQp over a finite interval of time At.

Therefore, the law of conservation of mass can be written as

A(pAAx)

pQu — pQp = A7

(2.6)

Moreover, the conservation of water mass becomes the conservation of water
volume if the density is constant, that is the fluid is incompressible. Then it
holds

A(AAD)
Qu —Qp = —Ar
Qu—Qp AA (2.7)
Az At
AQ A4
Ar At

where AQ = Qp — Qu. According to the fact that Ax and At approach zero,

then equation (2.7) yields
00 04 _

8x+§_

where ¢ and z represent the time and space displacement in the flow direction.

0 (2.8)

A sketch for the mass conservation principle is reported in Figure 2.4.
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PQu /

X

Figure 2.4: Definition sketch for mass conservation principle

2.3.2 Momentum equation derivation

Let consider a volume where p denotes the mass density of the fluid, A is the
wetted cross sectional area of the channel, () is the discharge, dx is the distance
between the upstream and downstream end and the flow direction follows the x—
axis. Let us consider the water level of the centroid ¢, the mean velocity V, the
force due to atmospheric pressure F}, the friction force F; and the force generated
by the weight of the water F,,. Therefore, according to the conservation of the

momentum it holds

Rate of change of momentum within a volume

Net rate of momentum transfer into the volume

+

Sum of all forces that act on the volume.

Then the rate of change of momentum can be expressed as

A(pAzAV)
sty 2.9
At (2:9)
The time rate of increase of momentum is given by
PQuVy — pQpVp. (2.10)

The force components are pressure force, friction force and force due to the

18



2.3 The Saint Venant Equations

water weight. The pressure force is given by
Fyov = Fop = pgAjy — pgAyp (2.11)

where 3 denotes the centroid water depth. The force produced by the weight of
the water is given by
F, = pgAAxS, (2.12)

where Sy = sin6. Finally, the friction force F is opposite with respect to the

flow direction and is given by
Fy = —pgAAzxS (2.13)

where S is the friction slope. According to Manning friction coefficient n [40], it
holds S = A2R4/3
Az leads to

Finally, putting all these components together and dividing by

AUV) | AQY) | al)

where A(QV') and A(Ay) = Agyq — Auyu Hence, according to the assumption

that Az and At approach zero, the momentum equation becomes

0Q 0 Q*

— 4+ —(— A— AS — gAS, =0 2.15

ot T ae ) T9AG, ToAS —9AS (2.15)
where, as reported in [41], it is used the approximation % ~ A%. In Figure

2.5 a sketch of the derivation of the conservation of the momentum is shown.

Figure 2.5: Sketch of derivation of the conservation of momentum equa-
tion
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Modeling and estimation

In Chapter 2, we have analyzed the SVEs and we have explained that being
partial differential equations, they are not simple to employ for estimation and
control purpose. Then, we look for a simpler and straightforward alternative
model. In this chapter, the main target is to figure out a model of a string of
pools for estimation intention, using the system identification procedure and to
examine the accuracy of the candidate models. Due to the lack of necessary
measurements, the accuracy of the system identification models is evaluated by
comparing the models with data generated from a discrete second order model.

System identification is the science of design mathematical models of dynamic
systems from observed input-output data, using statistical methods. It can be
interpreted as the interface between the real world and the mathematical world

of control theory. The main procedure is examined in the following.

3.1 System identification procedure

The system identification procedure is the list of steps from which we design a
mathematical model, starting from data generated by a certain system, to serve
certain purposes. Such a procedure (see Figure 3.1) consists of the following main

steps:

e Experiment design: Experiment design is fundamental for efficiently gen-

erating informative data to fit models and investigate the main dynamics
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CHAPTER 3. MODELING AND ESTIMATION

of the system. Moreover, preliminary experiments allow to examine the
linearity of the system under analysis, to obtain an estimate of the transfer
function of the system and to retrieve information about dominating time

constants, time delays, stationary gains.

Data preprocessing: The collection of the data needs to be preprocessed
by means of detrending process, decimation and filtering process due to

possible numerical problems.

Model structure design: Exploiting some a priori knowledge, we guess m
model structures M;...M,,, parametric or nonparametric, in order to find
which one better describe the system. We are interested in two model classes
for linear time-invariant systems, in particular, those that are transfer-

function models and state-space models.

Training: Parametric models require the computation of the estimate of
parameters 0,..0,, using M;...M,, respectively, and the data. In such a
way, candidate models My (6;)...M,,(0,,) are found. There exist several
approaches to estimate model parameters, such as the prediction error ap-

proach or the maximum likelihood approach.

Validation: A good model choice well fits data and is characterized by
a good prediction performance. Several validation criteria, like residual
analysis or cross-correlation test, allow to select the best model structure
MopT(éopT) among several candidates /\/ll(él)./\/lm(ém), which better
describes the system and is able to reproduce its behavior considering a

new data collection.
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3.2 Experiment design

EXPERIMENT
DESIGN

A 4

{ EXPERIMENT w
' DATA
PREPROCESSING

r

MODEL
STRUCTURE

DESIGN
M, M.,
1 TRAINING STEP )‘*
Mo M8
¥ v

1 VALIDATION STEPR

l Mopr(fopr)

Figure 3.1: System identification procedure

.

3.2 Experiment design

Let us assume than the channel is automated with hydraulic control structures.
It can be assumed that electric power is supplied by solar panels and data com-
munications are carry out via a radio network. The stretch of the channel that
extends between two hydraulic structure is defined as a pool. The measured vari-
ables are the upstream water level with respect to the hydraulic structure in m
and the hydraulic structure position in m. Indeed, water level of each pool can be
measured by means of submersible level pressure sensors while hydraulic struc-
tures position are measured based on the length of the steel cable between the
hydraulic structure and the motor that moves it. Moreover, according to open-
channel irrigation system literature [5], [13], the pool systems can be modeled by
first order systems, then we can assume that the transfer function between the
input and output variables is characterized by one pole. In addition, it is worth

noting that there exist a time delay before the water flowing over an hydraulic
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structure reaches the point where the water level is measured. In order to collect
experimental data, it is necessary to define a sampling time T, the duration of
the experiment 7" and a reference signal. These variables can be chosen by means
of a preliminary test on the open-loop system to gain some knowledge about the
system dynamics. One of the most common used nonparametric system iden-
tification method is the step response test. The step response test consists on
feeding the first order system with a unit step and measuring the step response,
as shown in Figure 3.2, in order to obtain some information about the system
behavior. In particular, we are interested about a suitable value for the experi-
ment duration and for the period of the hydraulic structure position. Moreover,

an experimental value for the discharge delay can be recovered.

Amplitude

Figure 3.2: Unit step response

Thus, a step input flow should be applied to the second order model to obtain
the corresponding step response of a pool system. Then, from the step response
the rise time ¢tz can be computed and a rough estimate of the bandwidth fz can

be obtained as reported in [42] as follows

fpa——. (3.1)

A rule of thumbs is to choose the sampling time 7 as

1 tr
T, < ~—. 3.2
— 10fg 40 (32)
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3.2 Experiment design

From the step response, the steady state time tg can be computed. Then, in order
to capture all the dominant modes of the system, the duration of the experiment
should be greater than tg. Then, as reported in [42], the minimum length of the
data should be .
s

N =~ T (3.3)
The time constant T, for a first order system is the time it takes for the output
response to reach 63% of its final value. The period of upstream control structure
position T}, is usually approximated by T, i.e. T, =~ T, meaning that the control
structure should stay in a fixed position for a multiple of T,.. We also assume that
there are several overshoot and undershoot hydraulic structures, called weirs and
gates respectively. These can be located along the channel as sketched in Figures

3.3,3.4,3.5.

poal i

Figure 3.4: Model with weirs structures

The height of water above the weir is refer as h and is called head over the

weir, and it can be determined from the current upstream water level measure
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pool i
ldi pool i+1
_VT ] ld"“ pool i+2

- l di+2

Figure 3.5: Model with gates and weirs structures

and the current weir position, refer as p, that is
h(t) = yu(t) — p(t). (3.4)

As a starting point for deriving a system identification model structure that
takes into account both weirs and gates (see Figure 3.5), we can focus on the

mass balance equation

Qu(t) = a(Qum(t) — Qou(t)) (3.5)

where (), refers to the volume of water in the pool, );,, Qou: denote the inflow and
outflow of each pool in st and a > 0. In the literature [43], [44], there exist several
relations describing the water discharge according to the flow conditions and
shape of the chosen control structure. The considered relations for rectangular
crested weirs and rectangular gates are reported in Table 3.1, where ¢4, ~ 0.6 is
a discharge coefficient of pool textiti, p; is the hydraulic structure position, yy, is
the upstream water level and yp, is the downstream water level with respect to

the hydraulic structure.

Let us assume to consider only submerged undershoot rectangular gates and
free flow rectangular crested weirs. In our case measurements are not available,
then it is possible to generate input and output data by means of the second

order model. Moreover, making the further assumption that the volume of the
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3.2 Experiment design

Table 3.1: Flow relation for rectangular crested weirs and rectangular
gates.

Free flow Submerged flow

Rectangular gate Qi = cq,pin/yu, — 0.5p; Qi = c4,piN/YU, — Yp;

Rectangular crested weir Qz = (4, (yUl - pi>3/2 Qz = Cq, (yUz - yDi)g/Q

pool is proportional to the water level with respect to the hydraulic structure, we

can formulate the following first order model for a pool

Y (t) = 61Qinu(t — 7) + 02Q0u,u (1)

. (3.6)
Yp(t) = 03Qin,p(t) + 04Qout,p(t —7)
where inflow and outflow are described by
ot) = Cweir - h%(t), if rectangular crested weir;  (3.7)
Cgate - P() -V yu(t) —yp(t), if rectangular gate. (3.8)

where cyeir = cabwy/29 and cgare = caAgv/2g, by is the length of the aperture,
cq ~ 0.6 and A, is the section of the aperture as reported in Appendix 6.2.
Therefore, considering the time delay 7 and introducing Euler approximation for

the derivative, we obtain a first order model in discrete time

yU((k + 1>Ts) = yU(kTs) + TselQin,U«k - T>Ts) + TSQQQout,U(kTs)

3.9
yD((k + 1)T8) = yD<kTs) + Tse?)Qin,D(kTs) + T394Qout,D((k - T)Ts)- ( )

where T} is the sampling interval. Then, the parameters to be estimated by means
of system identification are
0
0
g=1"2 (3.10)
03

04

However, such model is not able to describe waves, then more complex models

could be required for estimating purpose.
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3.3 Model structure selection

As the first step in the system identification procedure suggests, it is fundamental
to understand the purpose of the model under investigation. There exist several
model applications. For example, the model could be used for control, predic-
tion, error detection or simulation. The purpose of the model affects the choice
of identification methods, that justify the number of estimated parameter and
the complexity of the model itself. For prediction purpose, it is important that
the model catch all the dynamics while for control design it is required an ac-
curate model around the desired crossover frequency. Indeed, the best suitable
model structure should be selected considering a trade-off between complexity
and performance. Let us assume to collect input u(t) € R’ and output y(¢t) € R
measures for ¢ = 1,--- | N during the experiment, that is we are dealing with a

multi-input single-output system

uV = | o, N = (3.11)

Different structures of transfer-function models, or polynomials models are avail-
able:

e Equation error or Auto-Regressive model structure (ARX);

e Output-Error model structure (OE);

e Moving-Average-Auto-Regressive model structure (ARMAX);
e Box Jenkins model structure (BJ);

In the following, two parametric model structures will be introduced.

3.3.1 ARX Models

The input-output relationship is a linear difference equation

y(t) +ary(t —1) + - 4 an,y(t —na) = +bour(t =1 —7) + -+ bou;(t =1 —7)+
+bnpu(t—np+1—7)4 - +by, uj(t —np+1—-7)+

+ e(t)
(3.12)
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where y(t) € R, u(t) € RY, ng # 0, ny # 0, 7 > 0 is the input delay and e(t)
is white noise with variance o2 that enters the system as a direct error. Then,

equation (3.12) can be rewritten in a more compact way

ng—1

y(t) = — ZAaky(t —k)+ Z beu(t —k —7) + e(t). (3.13)

Let us define the polynomials in z=! variable A € R and B € R7*7,

By 0 0 0 O
0 0 0
B(z)=|0 0 B 0 (3.14)
0O 0 0 0
0 0 0 0 B
na
A(z) =1+ Z arz " = deg(A(2)) = na
k=1
. (3.15)

Bi(z) = Y bpz ¥ = deg(By(2)) = np — 1

Then, the above input-output relationship of an ARX model structure be-

A(2)y(t) =B(z)u(t — 7) +e(t) = (3.16)
y(t) = Egzu(t —7)+ A(lz)e(t) =F(z)u(t — 1)+ G(2)e(t) (3.17)

where B() .
F(z) = ——= (3.18)

A sketch of the ARX structure is shown in Figure 3.16. It can be observed that

we can collect all the parameters into a vector
0= [Cll gy, b01 e b(nB—l)N bo]. cee b(nB—l)j]T (319)
where number of parameters p in 6 of the MISO system is

p=natngxj (3.20)

29



CHAPTER 3. MODELING AND ESTIMATION

l el
.f\
“ Aiz) |
w(t) T Bz ) N ylt)
——r[ — }—»{ +
A \__/

Figure 3.6: ARX model

Let us define the regressor vector ¢(t) € RP

p(t) = [—y(t=1) - -—y(t=—na),ur(t=7) - - -ws (t=np+1=7),u;(t=7) - - - u;(t=np+1-7)]"
(3.21)

then equation (3.13) can be rewritten as a linear regression model

y(t) = ()"0 + e(t) (3.22)

3.3.2 OE Models

The input-output relationship is a linear difference equation

y(t) +ay(t —1) + -+ an,y(t —na) =+ bo,us(t =1 —7) + -+ bouj(t —1—7)+
+bppui(t—mp+1—7)+---+
+bng ui(t —np+1—7)+
+e(t) +are(t—1)+ -+ ap,e(t —na)
(3.23)

where y(t) € R, u(t) € R7, 7 > 0 is the input delay and e(t) is white noise
with variance o2, ng # 0, na # 0. According to equation (3.15), the above

input-output relationship of an OE model structure becomes

A(2)y(t) = B(z)u(t — 7) + A(2)e(t) = (3.24)
y(t) = igiu(t —7)+e(t)=F(z)u(t —7) +e(t) (3.25)
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where

B(z)
A(z)
A sketch of the OE structure is shown in Figure 3.24.

F(z) =

(3.26)

()

) ? /- RN it
Alz | '\_i_ /

Figure 3.7: OE model

Let us define the regressor vector ¢(t) € R?

o(t) = [—y(t—1) - -—y(t—na), us (t—7) - - - us (t—np+1—7), u;(t—7) - - - u;(t—np+1-7)]"
(3.27)

then equation (3.25) can be rewritten as a regression model

y(t) = o(t)70 + e(t) + Z are(t — (3.28)

3.4 Delay estimation

From the step test, it is clear that the mass balance system can be modeled
as a time delay system. We can estimate approximate time lags for each of
the inflows/outflows computed shifting each input data set by 7 minutes, where
TeTl, T= {3, 5,6, 7,8} and evaluating a statistical correlation test on the
shifted data versus the downstream flow, as suggested in [23]. The amount 7
of the shifted data which shows the highest correlation is then taken to be as
the suitable time lag of that input. The range of 7 is defined for each pool of
the river because it is known approximately from the step test. Then, the time
delays can be computed from the cross-correlation between the measurements at

the upstream and the downstream end of each pool. The cross-correlation can
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be computed as reported in [42]

1 N
= Z (1) Qout (i — 7) (3.29)

where .
(i) = ——— Q) — LY QG 3.30
Q(Z) O'(Q(Z)) [Q(Z) N Z]:l Q(])] ( )
and o is the standard deviation of the flow. Then, an estimate of 7 can be
computed by means of optimization procedure. It is worth noting that such a
solution is only locally optimal, because we cannot guarantee the convexity of the

cross-correlation function. Then, it holds

7 = argmax R.(T) (3.31)

TGT

3.5 PEM method

For the estimation of time-varying parameters, the prediction error minimization
(PEM) method is a criterion that is the analogue of the least-square principle in
the static case. In particular, past values of the input and the output are required
to perform a one-step ahead prediction through optimal prediction theory and
to obtain the error with respect to the measured output. The usual performance
metric of the fitting is the least squares and parameters result from the opti-
mization procedure. Given a model M(#) the prediction error at time t is given
by

S() = y(t) — it — 1) (3.32)

and the overall mean-square error (MSE) is defined as

6) = %250‘)2 (3.33)

where V : RP — R : § — V(0) € R. In the predictive approach to system
identification, the parameters of M(f) are tuned minimizing the cost V() over
all 6 € ©, that is

Opn(y™,uY) = ar@grgin V() (3.34)
€
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If the model quality is accurate, the prediction error has to be white. Let us

consider the general model structure M
M) y(t)=F(2)u(t) +G(2)e(t) (3.35)

where e is white noise with variance o0 and zero mean and F(oo) = 0. At time

t we have past data, then the optimal prediction of y(t) under model M(6) is
gltlt —1) = G(2)'Gi(2)y(t) + G(2) T F(2)ult) (3.36)

where G;(z) = G(2) — 1, as reported in [42].

3.5.1 PEM with ARX model structure

The one-step ahead predictor of a MISO system can be determined by means of

the general formula (3.36), where we assign

1 B(») 1 1— A(2)
Flo) =30 96 = 0 90)= 40 (3.37)
Then, the one-step ahead predictor M(f) becomes
gltft = 1) = [1 - A(2)| y(®) + B(2)u(t = 7)
- _ )= = _
ary(t —1) A, Y(t —na)+ (3.38)
+b01u1(t—1—7')+"'+b0juj‘(t—1—7')+

+b7zBlu1(t_nB+1_T)+"'+anjUj(t—nB+l—T)

and equation (3.38) can be rewritten exploiting the regressor vector as
it —1)) = () Opear (3.39)

It can be observed that ¢(¢|t — 1) is a linear combination of past values of the

input and output and that is linear in the unknown 6. Let us define

P = : Ep = : (3.40)
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Therefore, we obtain &5 = y» — ®0 and so

Val0) = || == [l 2 3.41
SRS N YR o
and so the estimated parameters are given by
. 2
Oppa(y™,u’) = argmin Viy(#) = argmin ”yN — cIDHH (3.42)

0cO 0cO

whose corresponding unique solution is given by the least-squares estimate
Open(y", u) = (@7®) " oTy" (3.43)

provided that ® has full column rank.

3.5.2 PEM with OE model structure

The one-step ahead predictor M(é) is

B(z)
A(z)

y(tlt—1) = u(t —7) (3.44)

and it can be observed that is a linear combination of past values of the input

but it depends also on past predictions, since:
A2)y(tlt — 1)) =B(z)u(t —7) = 0= —A(2)y(t|t — 1) + B(z)u(t — 7) (3.45)
Then, it holds

(et = 1) = g(t[t — 1) — A(2)g(t]t — 1) + B(z)u(t — 7)
= —a(t— 1t —2) — - —an, Gt — 1 —nalt — 2 —na)+
19( | ) 200 Al A) (3.46)
+b01ul(t—1—T)+"'+b0ju]'(t—1—7')+

+bugui(t =np+1—7)+ - +bnp ui(t —np+1-7)

Then, using the simulated output from the model, the relationship is effectively
no longer linear. The main difference with least square regression is that the pre-
dictor depends on past predicted values and that the vector of parameters Opry
is obtained minimizing a quadratic criterion by means of nonlinear programming

algorithm. Indeed, the model is not linear in # so there exist no analytic solution
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3.5 PEM method

for éPE]\/]. Given a general deterministic objective function
fRP—R:0— f(0) eR (3.47)

the aim is to find 0pgp; € RP such that

Opgy = argmin f(6) (3.48)
0cO
o={serr}. (3.49)

In the following we drop the subscript PEM for readability and we denote

the gradient of f the p-dimensional vector

of
961
Vfif=1|:]|eRr (3.50)
of
96,
and the Hessian of f is the matrix
o . _9f
001 86,1 001 06,
Vif=1| + . i | eRrP (3.51)
0 A <
96, 00 90, 00,

In the following, three off-line optimization algorithm are introduced in order to
find @ for the OE model.

3.5.3 Gradient descent method

In a non-linear optimization problem it is not always easy to find the optimum

solution #* in closed form, where

0" = argmin V' (0) (3.52)

feRP
and V : RP — R : 0 — V(f) € R. As reported in [45], we need to search for a
minimization sequence represented by the update rule and the descent condition

respectively

(3.53)

P+ — (i) _ o) AQW)
V(0U+D) <V (69)

35



CHAPTER 3. MODELING AND ESTIMATION

where
e ¢ is the current iteration
e o is the current positive step size

e NG 1ig the current descent direction

3.5.4 Steepest-descent method

One of the simplest method based on gradient descent is Steepest-descent. The

update rule is
9+ = i) — oYY (90 (3.54)

where the descent direction is chosen opposite to the gradient and
AGD = V(D). (3.55)

Since the step size is not always suitable, a weighting matrix D € R™ ™ can be

introduced as follows
09Ut = 90 — o DAY (9)) (3.56)

Let us compute the Jacobian of the objective function V()

V() 1 o= 0eg(t)? 1 = Dep(t)? Dzy(t)
00 N 00 N; deg(t) 00
_ %Zgg(t)agge(t) = %Zeg(t)ay(t) _ge(t“ — 1 (3.57)
=2y e 2 e
where .
To(t) == ay(t{';@_ D e pr (3.58)
J@(l) 89(1)
J=1| : €= (3.59)
Jo(N) eo(V)

ITo be precise, —AO) is the descent direction
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3.5 PEM method

The Steepest-descent algorithm is generally stable, but it is very slow at the
neighborhood of the optimum. There exist several methods that are derived from
Steepest-descent according to the choice of the weighting matrix, such as Newton

method, Gauss-Newton method, Levenberg-Marquardt method.

3.5.5 Gauss-Newton method

The Gauss-Newton method is a modification of the Newton method to solve
nonlinear regression problems for sum-of-squares objective functions. In such a
case we are dealing with

2

V) = o]

The Newton method requires the computation of the Hessian V2V, providing

(3.60)

that it is invertible. The Gauss-Newton method introduces an approximation of
its in order to avoid Hessian computation and, in particular, it can be expressed
in term of J. Moreover, this method requires that the objective function is
approximately quadratic in the parameters near the optimal solution. The Gauss-
Newton algorithm is characterized by its fast convergence, but it is often unstable.
The function evaluated at the perturbed parameters can be locally approximated

by means of a first-order Taylor series expansion as follows
7(0 + Af) ~ g(0) + JAH (3.61)
Then, the objective function is

V(0 + Af) ~(€ — JAO)T(E — JAH)

T T1T T1T (3'62)
~EE—-20A0"J E+ AT TAG

Then, the Jacobian of the objective function becomes

V(0 +A0) (€~ TAOT(E — TAY)
oNg I (3.63)

~2(JTI) A0 — 237€

Therefore, A = (J7J)~'J”€ and the weighting matrix for the update rule of
Gauss-Newton method is D = (J7J)~! = (2V§ V)", where it can be observed
that the Hessian of the function V' (#) has been approximated as V2V ~ 2V V7.
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CHAPTER 3. MODELING AND ESTIMATION

3.5.6 Levenberg-Marquardt method

The Levenberg-Marquardt method is an iterative algorithm that adaptively com-
putes the parameter switching between Gauss-Newton and Steepest descent meth-
ods. The main idea is to introduce a parameter A > 0 in the weighting matrix,
such that it holds

A = (J'T + X diag (J7T))"1J7¢€ (3.64)

and the parameter update rule becomes
01 = 90D — (37T + X diag (JTI))"1J7€. (3.65)

The choice of A determines the behavior of the algorithm. In particular, small
values of the damping parameter A\ corresponds to a Gauss-Newton update while
large values corresponds to a Steepest descent update. The damping parameter A
is initialized to be large in order to reach small steps in the first iterations in the
Steepest-descent direction. Such a parameter is increased if the previous iteration
produces a small reduction of the objective, that is the parameter vector 6 is far

from their optimal value, either as the solution improves, it is decreased.

3.5.7 Numerical implementation

At iteration i, step A6 is computed by comparing V' (0) and V(6 + Af). The step
is accepted if a metric is greater than a threshold w > 0. Such a metric represents
a measure of the actual improvement in V' when compared to the improvement

of a Levenberg-Marquardt update and it is defined as follows

V(0) — V(0 + Ab)
€76 — (€= JAO)T — (€ — JAH)
B V() — V(0 + Ab)
~AOT(N; diag (JTI)AG + IT€)

Xi(AQ) =

(3.66)

Then, if the step is accepted, namely there is an improvement because V(6 +
Af) > V(0), the Jacobian J € RP*! can be numerically approximated by means

of forward differences or central differences respectively

A if 00; < 0 3.67
00 66,1 J o
L7090 Y 0 )=y — 9%
00, g(t, 0+ 66;) —g(¢,0 — 6;) otherwise (3.68)
2166;]]
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3.5 PEM method

where the j — th element of 06; = ((1 + |#,|) and ¢ is a small perturbation.
On the other hand, if there are several parameters, a finite differences Jacobian
is computationally expensive. If the Jacobian is re-computed exploiting finite
differences only occasionally, convergence can be reached with fewer function
evaluations. Then, this approximation is exploited if there is an improvement or
for iterations that are even multiple of # dimension. Thus, in all other iterations,

the Jacobian can be updated by means of Broyden formula [46]

(90 + Af) — (0) — JAG)AGT

J=J+ AOTAG

(3.69)

Then, the choice of the adaptive parameter\ determines the behavior of the
Levenberg-Marquardt algorithm. Such parameter is updated according to the
metric value, that is if x;(A#) then the parameter will be reduced, otherwise it
will be increased and the algorithm proceeds to the next iteration. In particular,

such parameter updates as follows

max [2:,1077]  if y;(Af) > 75 (3.70)
)\i ==
! min [%, 107} otherwise (3.71)

where a > 0, § > 0, gammas.

3.5.8 Stop criteria

Convergence can be reached when one of the following criteria is satisfied,

e Convergence in the gradient: maX)JTS‘ <715

e Convergence in parameters: max‘%‘ < 9

assuming that 73 > 0 and ~» > 0. In addition, the algorithm should stop once a
maximum number of iteration i,,,, is reached although the convergence criteria
are not satisfied. These three conditions are associated to a flag fsrop in the

pseudocode 1.

3.5.9 Pseudocode

The pseudocode of the Levenberg-Marquardt optimization procedure for the OE

model is proposed in Pseudocode 1.
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CHAPTER 3. MODELING AND ESTIMATION

Algorithm 1 Levenberg-Marquardt

Input: u,, U2, Ymeas, ZQOz éOa flaga Y3, Wi, Ao

Output: 3,0
1: 10
2: Vo < wy
3 A< Ao
4: 9 < compute iteratively as Eq. (3.16).
5: J < compute as Eq. (3.67), (3.68) or (3.69)
6: €« Ymeas — Z)
7. V<« ¢ele
& VgV
9: while (N fSTOP) do
10: 1+—1+1
11: Af < compute as Eq. (3.64)
12: Onew < 0+ AO
13: y < compute iteratively as Eq. (3.46)
14: € < Ymeas — U
15: Vew — E1€
16: X < compute as Eq. (3.66)
17: if x >3 then
18: Voag <V
19: Op1q <+ 0
20: Yotd < U
21: 0 < Opew
22: § < compute iteratively as Eq. (3.46)
23: J < compute as Eq. (3.67), (3.68) or (3.69)
24: € < Ymeas — U
25: Vv« &l
26: A+ compute as Eq. (3.70),(3.71)
27: else
28: V Vo
29: Yold < Y
30: § < compute iteratively as Eq. (3.46)
31: J < compute as Eq. (3.67), (3.68) or (3.69)
32: € < Ymeas — U
33: Vv« e
34: A < compute as Eq. (3.70),(3.71)
35: end if

36: end while

3.6 Model validation

Validation is a procedure that provides a criterion to select a model structure M

among a set of candidate model structures S.
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3.6 Model validation

3.6.1 Hold-out cross validation

The main idea is to split the data in two data sets, one for the training step and
one for the validation step, if the overall data is sufficiently large. The goal is
to test the model’s capability to predict new data that is not used in estimating
it, in order to avoid overfitting and to understand how the model will generalize
a new data set. For any model class S, the model ./\/l(é) that better reproduces
the training data is selected, and then its performance is evaluated by means of
validation criteria such as mean square error. The model that minimizes such
criterion among different candidates is selected as the most suitable one. Then,

given data

uV = | o, YN =| (3.72)

where u(t) € R/ and y(t) € R, we can partition them into two subsets:

e Training data set
w() (1) y(1)
wN =k o wy(N—k) y(N — k)

e Validation data set

w(N—k+1) -+ u;(N—-Fk+1) y(N —k+1)

up (N) u;(N) y(N)
(3.74)

where the typical choice is k = % Then, for the two candidate models ARX
and OE M € S:

1. we compute the PEM estimate using training data set; in this way we obtain
Open(yr " up )

N—-k , N—k

2. we test the prediction capability of M(8pgy (yN %, u¥ ")), computing the

prediction error

Eoppny ) =y(t) = Gg,.. @tt—1), t=N-—-k+1,--- N (3.75)
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CHAPTER 3. MODELING AND ESTIMATION

or equivalently

&, =y — v (3.76)
where
g (N—k+1) ey (N —k+ 1[N — k)
k _ . N .
SéPEA{ 7 : yV - N (377)
6ngA4(N> Jpem(NIN —1)

3. we compute the fit percent term as

Je
OpEM

Jrir(M) = (1 - ) -100 (3.78)

Q\k/ —Yv

where
v =1 1}T (L5 u(®). (3.79)

In conclusion, we choose the model structure in § that maximizes the fit

term.

In fact, there exist several indices of performance that can be considered. In
particular, the root mean square error RMSE and correlation coefficient R,. are

used to this aim and are defined respectively as

RMSE — % (e7¢) (3.80)

Ree = ¥ (y _g> (y _g) (3.81)
Vi r-0) x4 (-0)°

where y = (1/N) SNy is the mean value of y.

3.6.2 Model structure selection

Akaike information criterion (AIC) is model structure criterion, useful to select

as best model structure M the one which minimizes the cost :

~

JA[O(M) = 2p—|—1n J(@) (382)

where
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3.6 Model validation

e p is the number of parameters in 6
1 N 2
o J(0) = £ ()
It is worth noting that AIC criterion consists in the sum of two terms:
e the complexity term 2p, that favors simple models;
e the fit-term, that favors models well explaining the data;

Therefore, this criterion selects a model within the presence of a trade-off between

the adherence of data and complexity of the system.
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Decentralized control design

In Chapter 3, we have proposed two grey-box models for multiple pool channel for
estimation purpose. In this chapter, a simpler model is chosen for control design.
In particular, a decentralized control solution is proposed in order to regulate the
water level of the string of pools, acting on the hydraulic structure position. Both
rectangular crested weirs and rectangular gates are considered. We take inspira-
tion by some literature about open-channel irrigation system [15], [35], [47], [39].
The complexity of the model proposed is chosen taking into account the context
of control design for set-point regulation and perturbation rejection. It is worth
noting that, since the free space upon the set point of a pool is not supposed to
cope with waves, an additional constraint is to guarantee that the wave dynamics
are not excited. Waves are undesirable, then it is necessary to guarantee that
each local control-loop bandwidth lies at a frequency lower than the correspond-
ing dominant wave phenomenon. Since these considerations are satisfied during
the design of feedback controllers, a first-order model is sufficient for control
purpose. It is fundamental to implement a dynamic feedback control in order to
efficiently discharge water and reject the perturbations. It can be introduced local
upstream control, that is one control policy classically implemented in irrigation
system field, capable of capturing the first mode of wave phenomena. Conven-
tional controllers such as Pl-regulators are relatively easy to tune and they often
reach good performance. Then, a simple feedback configuration is proposed for

local upstream water control. Moreover, the addition of feedforward allows to
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CHAPTER 4. DECENTRALIZED CONTROL DESIGN

attenuate the water level error propagation and amplification.

4.1 Control model design

Let us denote by y; the upstream water level of pool i, i = 1,..., N, u; the up-
stream control, u;,1 is the downstream control, d; the rain perturbation. In the
following, G;(s) and G(s), respectively represent the transfer functions from u;
to y; and from wu;,; to y;, while s denotes the Laplace domain. Moreover, the
transfer function from the perturbation d; to y; is also represented by G;, since
we are dealing with an additive disturb on the downstream discharge of the pool.

Therefore, the pool model in frequency domain is

Pit o yi(s) = Gi(s)ui(s) + Gi(s)(wira1(s) + di(s)) (4.1)

with the boundary condition u; = 0. Thus, the channel model can be thought of

as a string of pool models, as shown in Figure 4.1.

1| Y | Uy . U

Figure 4.1: Channel modeled as a string of N pools

This analytical model presents a very good frequency domain approximation
of the Saint-Venant transfer matrix for a pool. For low frequencies, it can be
observed that the behavior of the transfer matrix is dominated by the integrator
and the delays, while for high frequencies, the delay and the gravity waves are
dominant in the transfer matrix. For simplicity, the gravity waves are approxi-
mated by a constant gain in high frequencies, that is the oscillating modes are
not modeled as such. Then, these modes are controlled by the control structure
and, only the low frequency component of a pool has to be taken into account.
We need to analyze and design a controller that acts on low frequencies and that
is consistent with the actuator bandwidth. The idea is that the controllers on the
hydraulic structures along the channel eliminate the effect produced by structures

in low frequency. Such a regulation leads to recovering the model related to each
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4.2 Local upstream control

pool, controlled by the discharge at each control structure. This is the reason for
which we can assume that G;(s) and G;(s) can be derived from the integrator

delay zero model:

Gil9) = (1.2)
Gils) =4 (4.3)

where 7; is the propagation delay of pool and A, is the backpropagation area.
Such a simple model is suitable for control purpose because it capture the main

dynamics of a pool in low frequency.

4.2 Local upstream control

There exist two main decentralized control policies for a canal pool, that are dis-
tant downstream control and local upstream control (see Figure 4.2).

Distant downstream control is one of the most common used control approach

pool i
distant C i
downstream
control
d;
Vier ¥
local
upstream
y i control
I - '1__________
= w I
e
—  Uj#:
—_—

Figure 4.2: Distant downstream and local upstream control

for open-channel irrigation system, because it shows a parsimonious water man-
agement. It consists in controlling the downstream water level using the upstream
control variable. Local upstream control shows a high performance with respect
to unpredicted disturbances but it shows a worst water efficiency with respect to
distant downstream approach. We are interested in local upstream control of a

pool, that deals with the regulation of the upstream water level y; with respect to
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CHAPTER 4. DECENTRALIZED CONTROL DESIGN

the hydraulic structure, by means of the control variable u;, 1, that is the output
discharge of the pool. Let us denote by r; the reference for the water level of
pool 7 and by e; the corresponding tracking error. A sketch of the system is then

represented in Figure 4.3.

.
L
[
o
™
1
s
Y

Figure 4.3: Sketch of a generic local upstream control system

Let us define the open-loop transfer function
H(s) == C(s)G(s) (4.4)

where C(s) is a linear controller, and assume that the closed-loop is BIBO stable.
Thus, for the frequency response theorem we obtain the expression for component

of steady state tracking error eg

es(s) = (%) d(s). (4.5)

Thus, in order to have perfect asymptotic rejection to d(s) we should impose

es(s) = 0. Therefore, the control aim is to determine a linear controller such that
es(s) =0 & |(1+G(5)0(s)G(s)| =0 (4.6)

over the largest frequency bandwidth. The achievable bandwidth is limited by
the actuators limitations because there are no time delay in G(s). Thus, local
upstream control allows a high performance with respect to unpredicted pertur-
bation but shows a low water efficiency because all the disturbs are propagated

downstream without modifying the upstream discharge.
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4.2 Local upstream control

4.2.1 Decentralized Feedback without Feedforward

The decentralized feedback control scheme is proposed in Figure 4.4.
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Figure 4.4: Feedback control scheme
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We want to show how a control system which is decomposed into subcon-
trollers can be exploited to solve multivariable control problems. For sake of

simplicity, we adopt here single-input single-output (SISO) controllers of the form

uiy1(s) = Ci(s)ei(s) = Ci(s)(ri(s) — yi(s)) (4.7)

and they are designed according to the local water depth reference r; and the
measured water depth y;. The design of each regulator C; is performed considering
both a good perturbation rejection and a good local upstream water depth control.
It is worth noting that u; should be considered as a component of the disturb.

Let us observe that the local closed-loop transfer functions are yielded by

1

WTiﬁei(S) = 1t Cl(s)éz(s)’ (48)
,_ Gi(S)
Wdiﬁei(s) T 14+ Ci(s)éi(s)’ (4'9)
_ Gi(s)Gi(s)
Wdi—miﬂ( ) 1 —i—OZ'(S)éz(S) (4'10)

According to the final value theorem, C; should have at least one pole in zero
to attain a zero steady state error in case of a step perturbations d;. Moreover,

it is important to guarantee that the local loop-gain ‘C’i(jw)Gi(jw) is large in
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CHAPTER 4. DECENTRALIZED CONTROL DESIGN

correspondence of low frequencies, where the reference and the perturbation are
relevant. The bandwidth of the loop gain C’i(jw)éi(jw)‘ need to lie under the
frequency of the local wave dynamics, that are not captured by the model. Then,
a PID regulator can satisfy these requirements. Moreover, it presents phase lead
at the desired loop gain bandwidth for stability, robustness and additional roll-off
to that guarantee a low gain in correspondence of the dominant wave frequency.
In order to figure out the downstream error propagation we can consider a string
of identical pool, with the same time delay 7 and identical decentralized feedback
regulators C'(s). Since these assumptions hold, the transfer function from the

reference to the water level error is given by the closed loop transfer functions

1
Wi e (s) = ————— 4.11
i) 1+ C(s)G(s) (41D
while the error propagates according to the transfer function
G(s C(s
Wieuns (5) 1= 22 C) (112)

G(s) 1+ C(s)G(s)

It is worth noting that in such a case there can be coupling of control action into

downstream pools.

4.2.2 Decentralized Feedback with Feedforward

The propagation and amplification of water level errors can lead to actuator
saturation and such a problem can be interpreted as a further disturbance to the
flows out of each pool. This means that the control action applied to hydraulic
structure ¢ to balance the perturbation in pool ¢ affects the flow w;,; out of pool
i and so water level error in pool ¢ + 1 increases. According to the fact that
a measure of control input u;,; can be achieved at hydraulic structure i, these
disturbances can be considered known. Decentralized feedback control scheme
with additional feedfoward is thus proposed in Figure 4.5.
In particular, it holds that

wir1(s) = Ci(s)ei(s) + Fi(s)u;(s), (4.13)

where the feedforward compensator F;(s) is a stable transfer function. Let us
consider a string of identical pool, with the same time delay 7 and identical de-

centralized feedback regulators C;(s) and feedforward compensators Fj(s). Since
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Figure 4.5: Feedback Feedforward control scheme

these assumptions hold, water level error propagation is characterized by

(4.14)

and the relationship
ui+1(s) = C(s)ei(s) + F(s)ui(s). (4.15)

Thus, the relationship between water level error of neighboring pools can be

stated as
€i+1(8) = We,e,p, (8)ei(s) (4.16)

where
Wi (5) = 22 o) = F(5). (4.17)
G(s) 1+ C(s)G(s)

In general, decomposed control approach can easily turn into a complex sys-

tem, complicated to maintain and to manage. For what concern the control
performance, it could be simpler to arrange the controller design problem as an
optimization problem. As a consequence, it could be translated into a centralized
multivariable controller design problem. On the other hand, there exist several
reasons to choose cascaded and decentralized control. One of the most relevant
reason is the cost associated with finding good plant models, which is funda-
mental for employing multivariable control. Moreover, with this approach, each
controller is commonly tuned one at a time, with a minimum of modeling effort.
Another advantage is that these systems are easy to understand by operators and

tuning parameters of the controller have a local effect. Then, the main task is
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CHAPTER 4. DECENTRALIZED CONTROL DESIGN

to retrieve a control configuration which permits the (sub)controllers to be tuned

independently based on a minimum of model information.

4.3 Multi-variable Decentralized control

Local upstream control policy can be extended to multiple pool channel control
by means of decentralized control structures. This approach is advantageous
because controllers are easy to be implemented and tuned and they require an
easy maintenance. According to equation (4.1), a multiple-pool channel can be

represented by the model

y(s) = G(s)u(s) + G(s)d(s) (4.18)

Gi(s) Gi(s) 0 0 0 0
0 g : 0 0
Gis)=1| o0 0 Gyi(s) Gi(s) 0 (4.19)
0 . 0
0 0 Gu(s) Gn(s)
and 3
Gi(s) 0 0 0 0
0 .0 0 0
Gis)=| 0 0 Gi(s) 0 0 (4.20)
0 0 0 .0
0 0 0 0 0 Gus)

Without loss of generality, we can focus on a four-pools channel system, where
y(t) € RY, u(t) € R5 and d(t) € R*. Then, the controlled variables vector, the

control input vector and the disturbance vector are respectively

() ZEE; 0\ (1)
() . ()

y(t) = ol u(t) == Zzg; d(t) := 400 (4.21)
ya(t) i), da (1)
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4.3 Multi-variable Decentralized control

Therefore, the string of pools is described by the following system

n GG, 0 0 0
Y21 |0 G Gy 0 0
Y3 o0 0 Gy Gy 0
m 0 0 0 Gy Gy

Uy
Uz
Uus

Uy

| Us |

G, 0 0 0] |d
0 G, 0 0] |d

+ 2 | (4.22)
0 0 Gs; 0] |ds
0 0 Gul |dy

where we drop the time domain for readability.

4.3.1 Stability and performance

Let us evaluate the stability of the multivariable system (4.22) with decentralized

upstream control. In such a case, the regulator matrix is chosen to be constant

and is given by

0
Ky
K31
Ky
K5

0
0
K
Ky
Ko

0

0

0 (4.23)
K 0
K53 K54

where Ko, K39, K43, K54 are the monovariable local upstream controllers for each

pool, while all the other entries are additional decoupling terms, that express the

interaction between pools. Then, the open-loop of the system (4.22) becomes

élKQI

Go Ko + G2K31

H =GK =

G K3
G3K31 + GsKy1 G3Kso + G yo

0 0
0 0
égK43 0

GaKy + G4K51 GaKyo + G4K52 GaKy3 + G4K53 é4K54

and the control input vector for the multivariable model (4.22) becomes

Uy
Uz
us
Uy

Us

23

(4.24)
0
Kaie
K3e9 (4.25)
Kyses
Ksqey
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According to the transfer function computed in equations (4.9) and (4.12), we can
define the relationship N between the tracking error vector and the disturbance

vector as follows

€1 Nll 0 0 O dl
€9 _ Ngl NQQ 0 0 d2 (4 26)
€3 Nzt Nz N3z 0 ds
€4 N N Niz Ny dy
where if ¢ = 7, the entries along the diagonal are
Nij = —Gi(1+GiKiy1 ;)" (4.27)
while if ¢ # j the entries off-diagonal are
Gi
Nji= M,iKi+1,i~—H/\/},i+1 (4.28)
Giv
Then, in our particular case the entries of matrix N are
Nt = Wi e, () = =G1(1 + G1Kx) ™
Nop := Wy ey seq(8) = N1 Koy (%) Noag;
Nog := Wiy sey () = —Go(1 + G2K32) Y
-/\/31 = Wd1—>61—>62—>63(8) - N11K21 (%) NSQ;
Ny := Wiy serses () = Nao K <g—z> Nis;
(4.29)

Nig 1= Wiy osesseqseq(s) = —Ga(1 + G3Kys) ™
Nt = Wi ey sesses—ses (8) = N1 Kag (g-j) Nao;
Nig = Wity serses—ses(8) = Nop K3 (g-i) Nas;
Niz 1= Wiy ey sea(8) = Naz K3 (%) N

Nia = Wi, e, (s) = =Ga(1+ GaKs) ™"

We should focus on the performance of such a decentralized controller, by
examining the gain of N'(jw). In the multivariable case, the module of a trans-
fer function is extended by means of the use of a matrix norm, for example the
largest singular value. As reported in [48], the maximum singular value of a

transfer function is very useful in terms of frequency-domain performance and
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4.3 Multi-variable Decentralized control

robustness. Thus, the performance of the closed-loop system (4.26) can be inves-
tigated evaluating the singular values of matrix A (jw). The singular values of a

matrix N can be written as

AN = Vai(N*N) = \/oi(N) (4.30)

where we have defined

N = NN, (4.31)

where N* is the complex conjugate transpose of A" and o and ) refer to the
eigenvalues of 4 (jw) and N (jw) respectively. The largest singular value \ is a

matrix norm, then it can be shown that
eGiw)]| = [WGwiaGw) | < AnGw) ||agw)| (4:32)

Hence, for definition of the largest singular value, there is a couple of distur-
bances (dy, ds) such that the tracking error norm achieves the upper bound of the
inequality. Accordingly, the largest singular value represents an estimate of the
performance of the system. It can be highlighted that the closed loop transfer

function NV is a lower triangular matrix, then it holds

k k k )
[Toi=T12=1] ’/\/ (4.33)
i=1 i=1 i=1
and
k k ok 2 2 2 2 2 2
tT(JV) = Zai == ZZ ‘./V;,J(j'w) == ‘Nn + ’NQl + ‘NQQ + ‘Ngl + -+ ‘./\/’44
i=1 i=1 j=
k 32 2 2 2 2
> Z ’Mz(]w) = ‘Nn + ’NQQ + ‘/\/’33 + ‘N44
. (4.34)

where tr denotes the trace of the matrix. It can be observed that the trace of
A (jw) depends on the coupling terms Ks;, K41, K42, K51, K59, K53 and in par-
ticular it holds

AN (w)) > ma$(‘/\/11(jw)

y U,

Na(jw)) (4.35)

where X is the maximum eigenvalue of A”. This confirms that the coupling tends

to degenerate the whole performance in terms of perturbation rejection. In order
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CHAPTER 4. DECENTRALIZED CONTROL DESIGN

to solve such an issue, the off-diagonal entries of N should be zero.

4.3.2 Feedforward decoupler

The disturbance that is propagated by the first pool in the forward direction
is perfectly known, because it coincides with the control input. Then, such an
issue can be solved by means of an additional feedforward term in the regulator,
without degenerating stability and robustness of the closed loop 4.26. Hence, the

control input vector for the multivariable model (4.22) becomes

Uy 0
U2 Kaeq
u=|uz | =] Kses+ KF(s)uy | . (4.36)
Uy Kyzes + K¥(s)us
us Ksseq + K¥(s)uy

Then, the relationship N between the tracking error and the perturbation 4.26

introduces the feedforward term, then if ¢ = j, the entries along the diagonal are
Nij = =Gi(14+ GiKip1 )™ (4.37)

while if i # j the entries off-diagonal are

Nii = NiaKir (g:i + Kj,i) Nitrit (4.38)
where
KJFl - Kj+1,z‘Kz:L11,z‘~ (4.39)

If we set the feedforward terms to

Ky = Ky Kyl
Ky = KKyl
Kl = Kpp K3
K = K5 Ky
Kfy = K5 Kyy';
Ky = K53 K3

(4.40)
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4.4 Tuning of local upstream PI controllers

then, the entries of N' become

Nt =Wy e, () = =G1(1 + G1Kx) ™Y

Notp i= Wy ey e, (8) = N1 Koy <g—§ + K31K2_11> Nag;
Nag i= Wi,y (8) = —Ga(1 + GoK3o) ™

N1 := Wi, ey sepses (8) = N1 Koy (g—z + K41K§11) Nio;
N3o = Wiy ey es(8) = Noa Ko (g—z + K42K3_21> Nis; (4.41)
Nig 1= Wiayoseysesses(8) = —Ga(1 + G3Ky3) ™ '
Nit := Wy ey sep—ses—ea(s) = Ni1Kos <g—z + K51K2_11> Niz;

Niz = Wiy epses—es (8) = Nog Ko <%3 + K52K;;21> Nis;

Niz := Wiy eyes (5) = NazKyg (g—i + K53K4_31> N

Nia = Waye,(8) = —Ga(l + GaKsy)

The interaction between pools effect can be reduced with a suitable choice for the

decoupling terms of the controller, that is

K3 = K§1K21§
Ky = KyﬂKzl;
Kys = K§5Ks;
Ks1 = Kjy Ko
Ksy = KZEK:Q;
Ks3 = KQ,KMS

(4.42)

Then, in order to obtain exact decoupling, the off-diagonal elements of N
should be zero, that is
G, ,
K = —ﬁ—l(s) = ¢ T+l (4.43)
Gita(s)

that is a causal transfer function, then also the decoupling terms are causal.

4.4 Tuning of local upstream PI controllers

The controller that we take into account is a PI augmented with a low pass
filter (PIL). Indeed, the inflow of water from the rain to the pools is equivalent

to a load disturbance and then the controller needs to be able to reject load
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CHAPTER 4. DECENTRALIZED CONTROL DESIGN

disturbances. Moreover, it is important to track water level reference changes.

The dimensionless PI controller is denoted with
O(s) = Kp (1 + %) (4.44)

where Kp is the proportional gain and 77} the integral time. This corresponds to

a continuous controller such that the control u can be computed as

] Kp ['

ut) = Ke(wipr® ~ y(0) + 72 [ Whor@) vy (149
0

where y}, ;5 is the water level reference for the upstream water elevation. A PI is

chosen for our scenario because the integral action is fundamental to reject step

disturbances, while the low pass filter is fundamental to attenuate the waves high

frequencies. Let us denote by C; the local upstream controller for water level of

pool 7 in continuous time. The transfer function of the controller becomes

Cils) K. (1+T.s) 1
i\S) = :

— [ K. 1+T.s
Tes 1+Tf$ :

It can be noticed that integrators are present in both in the controller and the

plant transfer function
G, = St (4.47)

S

where c,,; < 0 is the output discharge coefficient found by means of system
identification procedure. Then, the phase is —180° initially and so it is required a
phase lead. Given the desired phase margin ¢,,, the necessary phase lead depends

on the ratio

Ty 11— Sin(om + Adp,)
bm = T. 1+ sin(om + Apm) (4.48)

where an additional phase lead A¢,, is taken into account because it is necessary
to compensate the phase drop due to the gain amplification effect. As explained
in details in [15], the maximum phase lead correspond to the geometric mean
frequency w,, = #ﬁ and there is a gain amplification of A,, = \/#? at this
frequency. Accordingly, we want to obtain the maximum phase lead at the new

crossover frequency, then we choose w,, to be the frequency where

= . Couth 1
‘Gi(Jw)‘ (%))w:wm Wil An (4.49)
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4.4 Tuning of local upstream PI controllers

Let us substitute w,, = #ﬂf, then it holds

1
CoutTc V 5771 .

Moreover, it is possible to require a specific value M, 4, of the gain of the con-

K, = (4.50)

troller at the frequency wyqpe,i.€.

1+ Tgw?u(we
- Mwave- (45]‘)
W=Wwave Tcwwave \/1 + B%Tnguave

‘Ci(jw)‘

This procedure is recommended to avoid wave amplification. Then, if we substi-
tute Eq. (4.50) in Eq. (4.51) we get a sixth order polynomial in 7T,
amﬁfnwlzuaveTcﬁ + OémTf - wfuaveTcz —1=0 (452)
where i, = (MuyaveCout vV BmWwave)?- Once the phase margin and the controller
gain at the wave frequency are given, we can solve Eq. (4.48) and (4.52). Then,
we can set Ty = 3,,T, and finally we can solve Eq. (4.50), checking that T, > — -

Cou

Then, the asymptotic Bode diagram of Cy(s)G1(s) is reported in Figure 4.6. For

Bode Diagram
150 T T T T T
E:\ 100
= -
-
o  50F
=]
j=}
5
g of
0]
<
= ot
-100
90 T
— PIL
&0
g or Plant 1
)
3
= -90r bl
P A
-180 L L L L
107 10 10° 104 10% 102 107

Frequency (rad/s)

Figure 4.6: Bode plot of the open loop system and of the PIL

what concerns the feedforward transfer function, a first order Butterworth filter

can be selected. .

2
BEION
wo wo

29

F(s) = Kg (4.53)
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where Kp > 0, 5 = 0.707, wy is the cutoff frequency and is chosen half the wave
frequency. This filter provides a maximal flatness gain at low frequencies and so
it does not dramatically change the frequency response of the system in the low

frequencies.
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Numerical results

In this chapter, we try to apply the system identification theory presented in
Chapter 3 and control theory proposed in Chapter 4. Indeed, a MATLAB and
Simulink simulation is proposed with the attempt to find a suitable model and
control design for our case study, shown in details in Figures 5.1, 5.2. In the
last years, storms, downpours and floods have become increasingly frequent and
devastating occurrences, then a violent disturbance will affect the system in order

to observe its effect.

JChiavica' Zambon

Figure 5.1: Cavallino water channel network

In our analysis, Chiavica Zambon is assumed to be closed, in order to avoid
any inflow from the sea. Thus, we restrict our discussion to the pool string from
G1-G22, as shown in Figure 5.2.
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CHAPTER 5. NUMERICAL RESULTS

Figure 5.2: Details of a subsection of Cavallino water channel network

5.1 Data generation

The SVEs are widely used for modeling hydraulic systems but for sake of sim-
plicity a second order model [13] is exploited for generating surface water level
data. For our analysis, we use the approximated pools parameters summarized
in Table 5.1, where [ is the length of Cavallino pools, hq is the steady state water
level, hyrax is the maximum water level that can be reached without overflow, b
and B are respectively the smaller and the bigger base of the trapezoidal section

of the pools.

Usually, channels should be segmented in order to analyze separately single
stretches, due to the possible geometrical variations along the channel. On the
other hand, we are dealing with short and not very deep pools, then the trape-
zoidal section of each pool and the friction can be assumed constant and we can
treat the whole pool as a single segment, without losing much accuracy. All the
pools are characterized by an undershoot gate and one last weir at the down-
stream end, where the flow can be approximated as reported in Chapter 6.2. The
width and the high of each gate are approximated to wy, = 0.5m and h, = 0.4m.
In the attempt to obtain a close approximation of the upstream and downstream
surface water level, we can compute a rough estimate of the parameters of the

first order model. In particular, the side slope of each pool is assumed constant.
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5.1 Data generation

Pool llm| hg [m| hyax [m] blm|] Blm]

1 40.50  1.46 1.66 2.50 6.08
2 20.00  0.86 1.06 250 594
3 126.5 1.54 1.74 250 7.28
4 164.5 1.66 1.86 2.50 8.01
5 78.50  1.42 1.62 250 6.73
6 1175  1.63 1.83 250 7.96
7 73.00 1.50 1.70 2.50 7.08
8 55.00  1.67 1.87 250 8.54
9 1175 1.79 1.99 2.50 8.61
10 169.5 1.55 1.75 250 8.84
11 1850 1.54 1.74 250 741
12 262.0 1.59 1.79 2.50 7.66
13 200.0 1.19 1.39 2,76 4.78
14 197.0 0.92 1.12 2,99 4.37
15 1270 1.05 1.25 255 4.65
16 253.0 1.51 1.71 2.00 5.13
17 240.0 1.70 1.90 2.00 6.14
18 1100 1.73 1.93 2.00 5.75
19  70.00 1.44 1.64 2.00 4.78
20 200.0 1.56 1.76 2.00 8.55
21 105.0 1.56 1.76 2.00 8.89
22 170.0 1.38 1.58 276 7.57

Table 5.1: Dataset of geometrical parameters of pools 1-22

Therefore, one has
B—b
= —. 5.1
s=—57 (5.1)
and then the greatest base B of the trapezoidal section can be expressed in
function of the slope as

B = 2sh +b. (5.2)
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Accordingly, the inflow of an additional water volume V affects the additional

high of each pool in the following way

2B + 2sh
V= hz% (5.3)

Then, the incremental high A can be expressed as a function of the incremental

volume V as

h=0(V)V. (5.4)

The simulation duration is 7' = 500 min, the sampling time is reasonable

T, = 1 min and the number of samples is TZ Thus, the discrete time model

for the data generation of the upstream and downstream surface water level is a

second order system

(k4 D) =y (KT + Tbin@unor(k = 7)T) ~ .22 Qo (k7 — DT

eou
+ Tseothout,U(kTs) - Ts 1075 Qout,U((k - 1)TS)
ein
yD((k + 1)Ts) :yD(kTs) + TseinQin,D(kTs - Tsl_Oan,D((k - 1)Ts>+
eou
+ ngothout,D((k - T)TS - Ts 1Ot Qout,D((k - T — 1)Ts))

(5.5)
where 7 is a reasonable delay time reported in Table 5.2. Tt is assumed that all the
gates are closed and there exists a difference of water level between consecutive

pools, as reported from the initial conditions in Table 5.2.

From the data in Table 5.1 it can be observed that a disturbance could be
more dangerous for a few pools than others, because some coefficients differs of
almost one order. This means that the effects on the pools are different, because
the smaller is the coefficient 6, the smaller effect on the water level increment there
will be. In this simulation, all the gates are closed and the surface water level
of the pools are sequentially decreasing. Thus, for Bernoulli law, as soon as the
gates are opened, the water flows along the pools reach a steady state scenario,
where all the pools show the same surface water level. For what concerns the
boundary flow condition at the upstream and downstream, we choose a binary
signal, reported in Figure 5.3. The only exception is given by the first pool that
shows only outflow and no inflow. The simulation results are reported in Figures
5.4, 5.5, 5.6.

In general, it can be observed that the water level is constant initially but as
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5.1 Data generation

Binary signal p(t)
0.25 \ :

0.2r

Binary signal p(t) [m]

0 100 200 300 400 500
Time[min]

Figure 5.3: Binary signal to control the aperture of all the gates

soon as the gates are opened, the upstream water level tends to decrease while
the downstream water level of a pool decreases only if the following pool has a
smaller water volume. In general, the last pools show large variation of the water
level due to the large coefficient 6 of the outflow of the last pool. Large variations
can be observed also in the first pools, due to the fact that the first pool do not
have any inflow. The scenario is different if we notice the pools in the middle of
the string, due to the fact that the difference between the water levels is really
small. Indeed, the flow amplitude is strictly dependent to the difference between

water levels of consecutive pools and to the dimension of the gates aperture.

65



CHAPTER 5. NUMERICAL RESULTS

Pool y = [yp, yu|[m] 0 = [Oin, Ooud] | 7|min|
1 042.041]  [407-103, —407-10-3] 2
2 041.040]  [851-103,—851-10-3] 2
3 :0.40, 0.39: :1.09 .1073,-1.09 - 10—3: 3
4 :0.39, 0.38: :7.60 1074, -7.60 - 10—4: 2
5 :0.38, 0.37: :1.89 1073, -1.89 - 10—3: 3
6 :0.37, 0.36: :1.07 .1073,-1.07 - 10*3: 2
7 :0.36, 0.35: :1.94 1073, -1.94 - 10*3: 2
8 035.034]  [213-10°%,—2.13-103] 3
9 :0.33, 0.32: :9.89 1074, -9.89 - 10—4: 3
10 :0.32, 0.31: :6.67 1074, —6.67 - 10—4: 3
11 :0.31, 0.30: :7.30 1074, -7.30 - 10—4: 4
12 :0.30, 0.29: :4.99 1074, —4.99 - 10—4: 3
13 :0.29, 0.28: :1.05 1073, -1.05 - 10—3: 3
14 :0.28, 0.27: :1.16 1073, -1.16 - 10—3: 3
15 :0.27, 0.26: :1.70 .1073,-1.70 - 10*3: 3
16 :0.26, 0.25: :7.70 1074, =7.70 - 10*4: 3
17 :0.25, 0.24: :6.79 1074, -6.79 - 10*4: 3
18 024023 |158-10%,—158-10-3] 4
19 :0.23, 0.22: :3.00 .1073,-3.00 - 10—3: 3
20 022,021]  [5.85-1071, —5.85.10-1| 4
21 021,020 [107-10°%,—107-103] 3
22 :0.20, 0.19: :7.77 1074, —7.77 - 10-4: 3

Table 5.2: Parameters of the data generation model
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to 8)
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5.2 Identification

Discrete time models are preferred for system identification purpose, because data
samples are collected in discrete time. There exist several linear model structures
as reported in Chapter 3 and in particular we refer to ARX (Auto Regression with
External Input) and OE (Output Error) models, where the transfer functions are
rational functions of polynomials.In general, OE models show a good representa-
tion of low frequencies properties, while ARX is more sensitive to high frequencies
properties. It is worth noting that waves shows higher frequencies with respect
to the other pool dynamics. Moreover, accurate models in low frequencies should
be enhanced with the attempt of modeling and control pools, that have the main
interesting dynamics in the low frequencies because changes are slow. The order
of the model is fundamental to describe the whole system dynamics. In such a
case, a first order model and a second order model are proposed. The parame-
ters are estimated using the prediction error method with a quadratic criterion,
that consists on the minimization of a cost function. As reported in Chapter

3, this function is the mean squared error and vector # contains the estimated

parameters
1 20
5 _ e )
0 = argmin 5 ;(y’(t) j(t,0,7))%. (5.6)

One model is obtained for every value of the time delay and the one that show

the smaller error on the validation set is selected

500
7= argmin —— (y:(t) — 92, 0,7))" T
7—6{112737475} 249 t;l )) ( )

With this approach, all the inflow time delays have been estimated correctly. The
ARX model structure allows to find the solution of the optimization problem
analytically while the OE structure required an iterative searching method. In
this case, parameter estimation is performed for the ARX and the OE models
with 3 and with 5 parameters and it is performed by means of MATLAB System
Identification toolbox. In order to improve the performance of the OE model,
Levenberg-Marquardt algorithm has been employed for the cost minimization
problem. The parameters for such algorithm implementation are reported in
Table 5.3. Validation mean square error (MSE) and parameters estimation are
reported in Tables 5.4, 5.5 and 5.6.

It can be observed that the parameters relative to the inflow are almost the
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Table 5.3: Levenberg-Marquardt algorithm parameters

MSEy, Oarx MSEy,, %5 Jarx  Jor
2.59-1077 [1,0.000,—0.213] 7.78- 1077 [1,0.000, —0.217] 96.7  96.6
2.47-1077 [1,0.496, —0.481] 9.66 - 1076 [1,-0.205,—0.141] 96.4 77.6
1.72-10° [1,0.016,—0.045] 1.12-10~° [1,—0.14,-0.04]  88.3 70.1
451-107 [1,0.044,-0.042] 7.66-10~7 [1,0.019,-0.016] 939 92.0
6.96-107 [1,0.111,-0.109] 1.41-107 [1,0.004,—0.018] 913  96.0
1.13-107% [1,0.065, —0.064] 1.48 - 1077 [1,0.0039,—0.013] 87.8 95.6
1.61-1076 [1,0.122,—0.122] 1.88- 1077 [1,0.021, —0.026] 82.3 93.9
2.90-1076 [1,0.150, —0.149] 3.31- 106 [1,0.354, —0.353] 66.2 63.9
6.00- 105 [1,0.085,—0.084] 9.19-10~° [1,0.323,—0.320] 315  15.9
1.39-107° [1,0.081,—0.080] 1.46-10"° [1,0.331,—0.329] -53.0 -56.0
3.78-107° [1,0.152, —0.161] 9.42- 106 [1,0.222, —0.229] -326 -112
1.06-104 [1,0.226,—0.226] 2.27-10 [1,0.363,—0.368] -1061 -437
2.1-107° [1,0.546, —0.546] 7.30 - 107° [1,2.12, —2.12] -1369 -1183
9.58-107° [1,0.412,—0.412] 1.47- 107 [1,1.090, —1.09] -854  -510
3.60-107° [1,0.350, —0.349] 1.59- 107 [1,1.950, —1.95] -355  -437
1.14-1075 [1,0.118,—0.117] 2.63-10° [1,0.022,-0.029] -168 -78.8
5.94-107% [1,0.077,—0.076] 1.24- 1077 [1,0.0006, —0.0006] -38.2 70.9
2.80-1076 [1,0.115,—0.114] 4.51- 106 [1,-0.053,—0.053] 52.5 -13.3
7.96-10~7 [1,0.160,—0.160] 6.19-10~7 [1,0.002,—0.002] 73.8 710
5.08 - 1077 [1,0.028, —0.029] 1.25-10"%  [1,0.003, —0.003] 75.3  63.8
5.82-1077 [1,0.052, —0.053] 5.86 - 106 [1,0.0008,—0.011] 64.4 17.1
2.45-1076 [1,0.036, —0.037] 9.68 - 106 [1,0.023, —0.033] 25.0 -49.0

Table 5.4: Validation results for ARX, OE models with 3 parameters for
upstream water level models

71



CHAPTER 5. NUMERICAL RESULTS

MSPEy,, Oarx MSEy,, Yok Jarx  Jork
9.68 - 1076 [1, —0.195, —0.006] 6.01-1077 [1, —0.202, —0.139] 94.6 79.5
1.02-107° [1, —0.078, —0.023] 1.35-107° [1, —0.157, —0.045] 71.9 67.9
4.82-1077 [1, —0.019, —0.006] 1.75-1076 [1, —0.026, —0.017] 93.76 &88.11
430-10°% [1,-0.012,-0.0005] 5.63-107 [1,-0.007,—0.015]  80.4 92.9
1.42-107° [1, —0.006, —0.0004] 1.29-1077 [1, 0.007, —0.016] 5H8.4 96.0
1.51-107° [1, —0.005, 0.0004] 3.31-10°6 [1, 0.179, —0.271] 51.0 77.1
132107 [1,-0.003,—0.0006] 2.49-10-6  [1,0.272,—0.271] 423 750
8.57-1076 [1, —0.002, —0.0003] 4.54-107° [1, 0.226, —0.224] 29.2 48 .8
474-107%  [1,-0.0009,0.0003] 1.03-107°  [1,0.234,-0.232] 204 -16.7
2.12-10°6 [1, —0.0006, 0.0003] 2.46-107° [1, 0.552, —0.5503] 16.7 -182
6.93-1077 [1,-0.0007,0.0006] 6.92 - 1073 [1,0.789, —0.788] 13.5 -761
3.45-1077 [1, —0.0005, 0.0003] 8.66 - 10~° [1, 2.20, —2.20] 18.2 -1195
2.35-1077 [1, —0.0005, 0.0003] 6.93-10°6 [1, 0.253, —0.262] 22 -320
219-10-7 [1,-0.0006,0.0003] 5.15-10°  [1,0.097,—-0.107] 30  -234
1.23-1077 [1, —0.0007, 0.0003] 7.17-1076 [1, 0.609, —0.607] 42 =215
2.16-1077 [1, —0.0009, 0.0003] 1.23-107 [1, —0.0004, —0.0005] 58.6 68.7
142107 [1,-0.002,—0.0004] 5.19-1076 [1,-0.005,—0.005]  75.6 -47.7
2.88-107" [1,-0.003,0.0009] 3.07 - 1077 [1,-0.002, —0.002] 76.0 75.2
1.53-1076 [1, —0.004, 0.0006] 1.01-10°% [1, —0.003, —0.003] 59.6 67.1
7.35-1076 [1, 0.0005, —0.004] 8.79-1077 [1, 0.091, —0.092] 10.7 69.1
879-10°  [1,0.008,—0.014] 251-10°  [1,0.035,—0.041]  -142  33.5

Table 5.5: Validation results for ARX, OE models with 3 parameters for

downstream water level models

opposite of those related to the outflow, that makes sense from a physical point

of view. Moreover, MSE values on the training set are almost the same order of

magnitude. On the other hand, there is an improvement of the MSE computed

in the validation set. As expected, the performance of the second order model

is more accurate than the one obtained from a first order model. In particular,

it can be enhance that for large variation in water level, second order model
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MSEy,.. MSEy,, O MSEy,,, Jou
2.59 x 1077 2.77 x 1077 [0, —0.220] 4.46 x 1077 95.7
2.49 x 1077 9.66 x 1077 [0.419,-0.432] 6.22x 1077 94.3
1.71 x 1078 1.12x 10 [0.070, —0.0617] 3.32 x 107 94.8
451 x 1077 7.66 x 1077 [0.034,—0.037] 2.91 x 10~7  95.0
6.95x 1077 1.41 x 1077 [0.094, —0.095] 3.52 x 10~7 93.8
131 x 1075 148 x 1077 [0.054,—0.054] 3.78 x 1077 92.9
1.61 x 1079 1.88 x 1077 [0.0958, —0.096] 4.71 x 10~7 90.4
2.90 x 107 3.31 x 107 [0.099, —0.099] 8.44 x 10~7 81.7
6.08x 107¢ 9.19 x 1075  [0.050, —0.050] 2.70 x 10~7 85.5
1.40 x 107> 1.45x 10~ [0.016,—0.016] 5.80 x 1075 0.83
3.78 x 107 9.42x 1075 [0.050,—0.050] 1.83x 1076 5.4
1.05 x 107*  2.27 x 107> [0.050, —0.050] 5.58 x 107¢ -168
9.58 x 107 7.30 x 107>  [0.050, —0.050] 2.79 x 10~7 20.2
3.60 x 107° 1.47 x 10™°  [0.050,—0.050] 2.47 x 1077 20.4
1.14 x 107> 1.59 x 107> [0.050, —0.050] 4.68 x 1077 7.21
5.94 x 107 2.63 x 107  [0.050,—0.050] 8.80 x 1077 -3.87
2.80 x 1076 1.23 x 1077  [0.019,-0.02] 552 x 1077 38.3
7.96 x 1077 4.51 x 107 [0.049,—0.050] 2.73 x 107 71.9
507 x 1077 6.19 x 1077 [0.049,—0.051] 1.02x 1077 62.8
581 x 1077 1.25 x 1076 [0.021,-0.022] 1.39 x 1077 61.7
1.08 x 1075 5.86 x 1075  [0.061,—0.060] 2.39 x 10-" 83.1
2.45 x 107 9.68 x 107  [0.043,—0.043] 3.19x 1077 72.8

Table 5.6: Validation results for ARX, OE with 5 parameters and LM
with 2 parameters for upstream water level

perform better than first order ones. Thus, for estimate purpose, OE second
order model could represent the best solution. On the other hand, the difference
in performance is minimal. Moreover, it can be highlighted the performance

of the OE model with Levenberg-Marquardt approach. Indeed, starting from
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MSEy,.. MSEy,, O MSEy,,, Jou
6.00 x 1077 8.69 x 1076 [0, —0.220] 1.55 x 1075 91.3
1.03x 107 1.35x 107 [0.419,-0.432] 3.26 x 1077 94.9
4.82 x 1077 1.75 x 1075 [0.070, —0.0617] 8.87 x 1077 91.5
429 x 1075 5.63 x 1077 [0.034,—-0.037] 3.19 x 1077 94.7
1.42 x 107> 1.30 x 1077 [0.094, —0.095]  3.74 x 1077 93.2
1.51 x 107 3.31x 1075  [0.054,—-0.054] 4.31 x 1077 91.7
1.32 x 107°  2.49 x 107%  [0.0958, —0.096] 5.94 x 1077 87.7
8.57x 107 4.54 x 1075 [0.099, —0.099] 2.78 x 10~7 87.2
4.74x 1075 1.03 x 107> [0.050, —0.050] 4.44 x 1076 22.7
2.12 x 1076 246 x 107> [0.016, —0.016] 2.25 x 107¢ 13.9
6.93 x 1077 6.92 x 107>  [0.050, —0.050]  6.08 x 1076 -157
3.45x 1077 8.66 x 107>  [0.050,—0.050] 2.74 x 10~7  26.7
2.35x 1077 6.93 x 1075 [0.050, —0.050] 2.45 x 10~7  20.4
219 x 1077 515 % 107% [0.050,—0.050] 4.25 x 1077  3.26
2.37x 1077 7.17x 107%  [0.050,—0.050] 8.69 x 10~7 -10.5
1.42 x 1077 518 x 107%  [0.050, —0.050]  6.80 x 1077  26.2
2.88 x 1077 3.07 x 1077 [0.019,-0.02] 3.56 x 1077 61.1
1.53 x 1076 1.01 x 107%  [0.049, —0.050] 2.86 x 10~7  75.9
7.35 x 107 8.80 x 1077 [0.049,—0.051] 1.51 x 10 59.6
7.36 x 1076 8.79 x 1077 [0.021,-0.022] 2.36 x 1077  84.0
8.80 x 1077 3.33 x 107°  [0.061,—0.060] 2.93 x 1077 77.1

Table 5.7: Validation results for ARX, OE with 5 parameters and LM
with 2 parameters for downstream water level

suitable initial condition, the estimation is much more accurate than the simple
OE performance. For this reason, the estimated parameters are also employed for
the continuous time model in the control scheme implementation. In particular,

the convergence of the parameters is reported in Figure 5.7.

It can be observed that some iteration search procedure required the maxi-

mum number of iterations to converge while other reach the optimal solution in
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Figure 5.7: Convergence of parameter estimation with Levenberg-
Marquardt algorithm for some relevant results.

a few iterations. Instead, for control purpose, these first order system estimated
parameters are sufficient to have a good approximation of the string of pools con-

trol. In conclusion, validation results can be observed in Figures 5.8, 5.9, 5.10,
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5.11, 5.12, 5.13.
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Figure 5.8: Upstream and downstream estimate surface water level (Pools
from 1 to 3)
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from 4 to 7)

77



CHAPTER 5. NUMERICAL RESULTS

Estimate of upstream water level of pool 8 Estimate of downstream water level of pool 8
an [---3(t) —OE 0.345¢ [---v(t) —OE
- | LM Gate Opening © gasl LM Gate Opening
3 a5 | ARX | g = ARX
2 [ 2 k.
e i A, i 0,335 S
B D3 ST I 8 b
) o
— 0.335 i — =y i
g e g
= 033 i % 5 0325 W f
§ \‘;‘7'_:.-.- § e
é" 0.325 ; 0.32
0.32 0.315
0 50 100 150 200 0 50 100 150 200
Timemin| Timemin|
(a) Upstream Estimate - Pool 8 (b) Dowstream Estimate - Pool 8
Estimate of upstream water level of pool 9 Estimate of downstream water level of pool 9
0.345 [===3(t) ~OE [~=-¥(1) ~OE
= LM Gate Opening o 0335 |—1M Gate Opening
3 034 A |- ARX | 3 ARX
2, e 2, 033
T 0335 s @ S
' AR _ o325 SaN
033 NS T T e
e = i
4 : N o L 2 032 S
0325} X ; / 3
s o
= 0.315
0321 =
L 031t
0 50 100 150 200 0 50 100 150 200
Timelmin| Timelmin|
(¢) Upstream Estimate - Pool 9 (d) Dowstream Estimate - Pool 9
Estimate of upstream water level of pool 10 Estimate of downstream water level of pool 10
[===%(8) “OE [===%(8) “OE
= 0335 | LM Gate Opening S 0.325 = LM Gate Opening
- ARX | - ARX
2 2
a 033f a
o [ ) : = 032 R .
Hoa25~ e L — E e e
e f ‘_.‘\ T 0.315 / A
< 032} Sy =
g g 031
ol ol
= 0315 =
0.305 -
0 50 100 150 200 0 50 100 150 200
Timelmin| Timelmin|
(e) Upstream Estimate - Pool 10 (f) Dowstream Estimate - Pool 10
Estimate of upstream water level of pool 11 Estimate of downstream water level of pool 11
[==-%(®) _QE / [~ ==%(t) — OE
i) LM Gate Opening o f LM Gate Opening
3 0.325 ARY = 03157 | ARX
=} =} =i ]
& &
et et
& NREES L \ 5 osthee , |
E, 4 "\.’A:"\'_f\l‘h -k / E, .\\‘.".‘5';-_-.-_\-'--._;"‘"'—;- |
T 03151 ey e N 2 s T
g o o & 0.305 f ~J
g g
8 0317 B
= = 03
0.305k I f i
0 50 100 150 200 1] 50 100 150 200
Timelmin| Timelmin|
(g) Upstream Estimate - Pool 11 (h) Dowstream Estimate - Pool 11

Figure 5.10: Upstream and downstream estimate surface water level

(Pools from 8 to 11)
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Estimate of downstream water level of pool 16
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Figure 5.12: Upstream and downstream estimate surface water level

(Pools from 16 to 19)
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Figure 5.13: Upstream and downstream estimate surface water level
(Pools from 20 to 22)
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5.3 Control scheme implementation

The knowledge of literature about the open-channel irrigation systems is funda-
mental to delineate and tackle the water delivery problem that affects the Cav-
allino water channel network. In general, our scenario presents some differences
with respect to the irrigation system. When we deal with an irrigation systems
we assume that there exists a string of pools that extend on different high levels
and are filled by means of an upstream tank. In this case the main target is to
satisfy the water request that comes from the downstream pool acting on the
system as negative disturbances on the last pool. In our scenario, we assume a
steady state initial condition where all the gates are opened with the exception
of the ones upstream and downstream of the string of pools. Then, we assume
to start with the same initial conditions for all the pools. Another difference
with irrigation systems is that positive perturbations act on all the pools at the
same time, filling the pools with different volume of water. It is worth noting
that, for the Bernoulli law, the flow strictly depends on the water level difference
between two consecutive pools when we deal with undershoot gates. Moreover,
distant downstream control is widely used in irrigation systems; whereas, we pre-
fer to use local upstream control configuration. Indeed, this approach allows to
control the output gates of each pool in order to reach the desired pool water
level. The automatic controller tuning routine implemented in Chapter 4 allows
to find suitable PIL parameters, that are reported in Table 5.8, once we choose
the phase margin ¢,, = 80° and the gain of the controller M,, = —10db at the

rad
s

wave frequency wyge = 0.015™%, while the cutoff frequency of the butterworth

filter for the feedforward action is set equal to “4»< and its gain K = 0.75

According to the Bernoulli law, the flow control input depends on the water
level difference of two consecutive pools. This can be translated into an additional
saturation of the control output. Moreover, as soon as the water level of pool i
is lower than the water level of pool i+1, the control input vanishes, that is the
output gate of pool ¢ is closed. Due to these specifics, the control becomes much
more slower than what is expected to be. Feedforward is fundamental to avoid
the error propagation along the string of pools and to have a better performance
in terms of settling time. Then, in order to avoid floods it is fundamental a change
of reference with respect to the steady state reference. According to the database
in Table 5.1, the maximum water level for each pool is 0.2 m higher than the

steady state condition. In our scenario, the steady state condition corresponds
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Pool K. T. T
1 -0.222 2.53-10* 48.3
2 -0.206 1.31-10* 24.9
3 -0.320 6.57-10* 125
4 -0.370 8.16-10* 155
5 -0.265 4.56-10* 86.9
6
7
8
9

-0.323 6.64-10* 126

-0.263 4.49-10* 85.6

-0.256  4.19-10* 79.9

-0.333 6.97-10* 133
10 -0.390 8.79-10* 168
11 -0.380 835-10* 159
12 -0.443 1.04-10° 198
13 -0.325 6.73-10* 128
14  -0.313 6.30-10* 120
15 -0.274 4.92-10* 93.9
16 -0.368 8.09-10* 154
17 -0.387 8.70-10* 165
18 -0.281 5.16-10* 984
19  -0.235 3.25-10* 61.9
20 -0.413 9.48-10* 180
21  -0.322 6.63-10* 126
22 -0.366 8.05-10* 153

Table 5.8: PIL parameters

to the water level 0 m, while the chosen disturbance amplitude is
3

d;(t) = Bil; - 5 x 10-4’% (5.8)

where B; is the greatest base of the trapezoidal pool section and [; is the length

of the pool. The control scheme has been implemented in Simulink as shown in
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Figure 5.14: Zoom on a single pool model

Figures 5.14, 5.15, 5.16.

The time simulation is T=108000 s~ 30 hr, while the disturbance act on the
system from % to % + 360s , that is a reasonable choice for a violent rain per-
turbation that lasts one hour. The change of reference is chosen with different
amplitude for the pools in series. The reference of the upstream pools are chosen
smaller in module with respect to the downstream ones. In particular, the refer-
ences occur 10 hours before the rain starts, if the forecast is known with a high

probability, otherwise the references amplitudes should be reduced.
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A comparison between the water level with and without feedforward action

can be observed in Figure 5.17.

Feedforward action Feedforward action
015 — ) ]| 01 o, () — Y ()
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(a) Pool 1 (b) Pool 22

Figure 5.17: Water level simulation with and without feedforward control
action

The simulation results with feedforward action are reported in Figures 5.18
and 5.19. It can be observed that the disturbance rejection is slow but with
a smart change of reference the maximum water level is not reached, avoiding
floods. Moreover, the control input response shows an undershoot of 2 cm, that
can be reduced trying to reduce the integral action, i.e. T, = T, - 1.5 for a 50%

reduction of the integral action.
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Figure 5.18: Control of a string of Cavallino pools with disturbance.
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Figure 5.19: Control of a string of Cavallino pools with disturbance.



Conclusions and future work

6.1 Conclusions

In order to deal with this work, we draw inspiration from the open-channel irriga-
tion field, highlighting the main differences with our water discharge scenario. We
have presented a system-identification-based procedure to estimate parameters of
a discrete time first order model and a control strategy to regulate upstream water
level in order to avoid floods in case of strong perturbation of the system. Indeed,
as soon as we collect some measurements of the water level and of the gates posi-
tion, an OE structure model can be tested as candidate model. The Levemberg-
Marquardt algorithm allows to solve the minimization of the cost given by the
predicted error, showing better results with respect to the ARX model, in terms
of mean square error and best fit. Once the parameters are estimated, a one-step-
ahead predictor can be easily implemented. The main contribution on this thesis
is the upstream control of the string of pools. Feedforward implementation allows
to reduce the error amplification and propagation between pools and to attain a
better performance in terms of rise time a disturbance rejection. In general, the
PIL tuning automatic routine proposed allows to reach the desired phase margin
and gain at the waves frequencies. The resulting control performance is slow but
the disturbance rejection is satisfied and the lowpass filter cut the waves frequen-
cies. Then, the resulting control input is feasible but there is some undershoot

that can be reduced trying to limit the integral action. Moreover, it is required a
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change of the set point in order to discharge in advance the pool with respect to a
violent perturbation, that is a probabilistic event. For this reason, the amplitude
of the reference needs to be chosen in the most suitable way, according to the

probability of the event, given by the forecast.

6.2 Future works

Some of the possible improvements that we can make are listed in the following

lines.

e We could consider a LQR centralize control, in order to reach a better
control performance by means of a controller that requires less maintenance
with respect to a PIL (4.46);

e We could extend our work to the whole networked, taking into account

junctions and the network flow systems;

e We could obtain real measurements by means of sensors, analyzing the

minimum number required to get better results;

e We could extend the model considering pipelines.
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Appendix

A SVEs implementation

A finite difference approach is analyzed and exploited to evaluate SVEs solution

for one-dimensional flow of open channel systems.

A.1 Numerical solution methods

SVEs are nonlinear partial differential equations (PDE) of the hyperbolic type, for
which a closed form solution is not possible. Hence, there exist multiple methods
that can be used for their integration. Considering a channel of known parameters
and measures such as cross-sectional geometry, roughness factor and longitudinal
slope, the unknowns in equations (2.4) and (2.5) are the discharge, Q, and the
flow depth, y, while the independent variables are time, t, and distance along
the channel, x. The channel dynamic is discretized in order to apply numerical
solution methods. In particular, a computation grid of uniform size is exploited
to define finite difference equations. Vertical lines depict different sections along
the channel, while horizontal lines depict the discrete time at which a solution
is computed. The space increment is denoted by Az while the time increments
are denoted by At and they are assumed to be constant. All the nodes on the
first horizontal line satisty the initial condition of the flow. The nodes on the first
vertical line describe the upstream end of the channel while the M-th vertical line
describes the downstream end of the channel. In correspondence of these vertical
lines there are two boundary conditions to satisfy. Once the initial conditions are
known, flow conditions at all the nodes on the horizontal line can be computed
for the next time step. The finite difference equations can be determined by
means of Taylor series approximations to the partial differential terms of the
SVEs. On the other hand, this approach is affected by truncation errors, that

may be lead to a wrong solution. Then, it is fundamental to ensure stability
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of the numerical method. The finite difference approach can be distinguished as
explicit and implicit. Explicit methods exhibit spatial partial derivatives replaced
in terms of the variables at the known time level, while those in terms of variables

at future time level are referred to implicit methods.

A.2 Preissmann scheme

In the implicit finite-difference schemes, the spatial partial derivatives and/or the
coefficients are replaced in terms of the values at the unknown time level. Preiss-
mann scheme has the advantages that a variable spatial grid can be exploited

(see Figure 6.1). Moreover, such scheme proposes an accurate solution of the lin-

~

f

Az

At

0
1 9 3 i1 i i+ 1 M-2 M-1 M %

Figure 6.1: Computation grid for numerical solution methods

earized form of the main equations for a specific value of Ax and At. The partial

derivatives for a channel section between nodes ¢ and 7 + 1 are approximated as

f = a(f5 4 ) b 21— a)(f + 1)

2 2
a_f _ ( i]i:ll + fz’k+1> - ( i]j-l + fzk) (61)
ot 2At
ﬁ B Oé(fi]il - fikH) I (1 —a)( z‘liﬂ - fzk)
or Az Az

where f refers to the unknown quantities Q and y, while a is a weighting
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coefficient. This four point implicit approach is stable if t 0.5 < o < 1. It
is worth noting that the cross sectional area Af“ and the friction slope Sf“
can be expressed as a function of the unknowns y*™ and Q™. Therefore, the

)

components of the SVEs can be rewritten as the so called four point implicit

scheme
2Q in T O — (QF. + Q)
ot 2At
oQ ~ a fj—rll - Qi . (1 - o) (@ — QF) (6.2)
ox Ax Ax
0A (AF + A — (AR, + A
ot 2At

0(Q*/4) _© (@A) - (@A |

+

oz Az (6.3)
(- { @iy /ati] - @A}
+ Az
Ady O‘<A?i11 + A?“)(?ijll -y X (1 —a)(Afy + AN (ha — ) (6.4)
or 2Ax 2Ax
A~ O‘(Aﬁrll +AT) + (1 - a) (Af, + AF) (6.5)
- 2
g o, LA + AP (51 1 5
et (5 s g (66)
(1 — o) (A7, + A7) (5P + 57)
2 2

Thus, exploiting these results, the continuity equation in finite difference form

becomes

k+1 k+1
C(Q;H—lv Q?illa yzl'ﬁ_la yfjll) = (AHJ_FI * AiJr ) - (A;:_l i Af) ‘I’

L alQ - Q) £ (1- )@, — Q)
2Ax N
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while the momentum equation in finite difference form, can be written as follows

M(QM, Qf:ll, il yf_:-ll) _ (Qﬁ_ll + Qf+;)A_t (QF ., + Qf)+
N a((QEH)2/AFH — (QFF)?2/AT)
Ax
N (1= )(QF1)? /AT — (QF)*/AF))
Ax
ga (AF + AT (i — ™) (6.8)
2 Ax
(A§+1 + Af) (yfﬂ - ?Jzk)
9(1 - a) 2 Azx
(AR + AP (SEL + 58
2 2
Ak AF) (SF Sk
g(l . Oé>( z+12+ 1) ( z+12+ 7,) — O

qgo

Moreover, SVEs can be rearranged into compact matrix form that is

ou OF
E + % +S=0 (6.9)
where
A
U . |0 (6.10)
= +gAy gA(S — Sp)

Then, equation (A.2) can be rewritten as follows

At
(Uit + Ufill) — (Ul + U§+1> + QE [Q(Fﬁf —Fi)+(1- O‘)(F?—H - Ff)]
Ata(StH — 85 + (1 - a)(8t, 85| =0

(6.11)

The scheme is unconditionally stable if and only if it is satisfied % <a<l
An unconditional stability indicates that there are not boundaries on the size of
Ax and At to reach stability.

A.3 Trapezoidal cross-sectional area

Let us assume that the wetted cross sectional area can be approximated by a
trapezoid. Let b, B, P, s denote the bottom width of the channel, the top width,
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the wetted perimeter and the side slope respectively, where s = Cai)y Thus, it

holds ;
_E — Z 192
5 sy + 5 (6 )

Therefore, the wetted cross-sectional area can be rewritten as

(b+ B)y

A:
2

= (b+sy)y (6.13)

In Figure 6.2 are reported the main geometric parameters according to the

shape of the channel.
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Figure 6.2: Geometric parameters with different cross sectional area
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A.4 Boundary conditions

Let us assume that index ¢, 2 = 1, ..., N, denotes the channel spatial section and
index k, k = 1, ..., T denotes the time in the computation grid scheme. Boundary
conditions for each j = 1, ..., N,, pool regarding the upstream and downstream end
can be stated as follows and can be different according to the control structure
chosen for each pool. In the following, boundary conditions for pools with weirs

and gates are considered.
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A.4.1 Rectangular crested weir structure

Multiple boundary conditions can be stated according to the flow classification.
If the system provides a weir at the upstream and downstream, then boundary

conditions for an unsteady flow can be stated as

Qk+1 o ](€J+1 — (614)

ji=1

where Q]f]“ is the given upstream inflow rate at time stage k + 1. For what con-
cerns the downstream end of the channel regulated by weirs, the main constraint

is

o _ {0, if K <0 (6.15)

N = s .
o Cweir(B5T1)2, otherwise (6.16)
where hﬁ“\,ﬂ is the downstream height of the water over the weir, defined as

Wit =yttt = it (6.17)

— Pueir

, where p is the weir opening, Cyeir = cgbwy/2g where b, is the length of the

aperture, ¢y ~ 0.6. The weir control structures is reported in Figure 6.3.

(a) Real weir structure (b) Sketch of a weir structure

Figure 6.3: Weir control structure
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A.4.2 Rectangular gate structure

In case of undershot gates, the boundary conditions for an unsteady flow at the

upstream can be expressed as

L - =0 (6.18)

ji=1

where QFt1 is the given upstream inflow rate at time stage k + 1, while for the

downstream end it holds

k+1 k+1 k+1
Qj,i:N - Cgatepgate\/yin:N - yD,i:N (619)

where pgq. is the gate opening, yy and yp are the water depth upstream and
downstream of the gate , cyore = caAyv/2g, cqa = 0.6 [44] and A, is the section of

the aperture. The gate control structures is reported in Figure 6.4.

(a) Real gate structure (b) Sketch of a gate structure

Figure 6.4: Gate control structure

A.5 Initial conditions

In order to solve SVEs with finite difference approach, initial condition of the
water level and initial flow need to be chosen. For sake of simplicity, it can be
assumed a steady state initial condition, which imply that all the time derivatives

are set to zero. Therefore, continuity equation (2.4) yields
0Q

or
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that means assuming a water flow constant along the spatial grid. In addition,

the initial water flow is constant for all the spatial increment Az then it holds
Qj: = Qu (6.21)

Moreover, it is worth noting that the bottom width b and the side slope s
change along the spatial sections, then it holds

0A Jy ob 5 0s

B = (b+ 23y)8— + Yo, +y° E (6.22)

For sake of simplicity, the bottom width and the side slope are considered

constant, then SVEs become

gA(So — ) = %%2 * A%

gA(Sy — §) = %%‘f - i—zg—f + 9‘4% (6.23)
gA(So — 5) = _3_2(2_/1 " gAg_i

gA(So - 8) = iﬁ (b+ Mg— + gAgayc

Finally, the differential form of equation (6.23) is the ordinary differential equation

dy _ gA(Sy—5)

dx gA — Q%( lj4+28y)

(6.24)

whose solution can be exploited as initial condition of the finite difference ap-

proach.

A.6 Solution procedure

Implicit finite difference equations are expressed in function of y™ and Q¥
while the area and the friction slope can be easily formulated in function of
the water level and flow, once the geometrical parameters of the channel are
determined. Let us refer By and By to the boundary condition equations and let
us denote by C; and M; the finite difference continuity and momentum equations

for the section between nodes i and ¢+1. Thus, we need to solve 2N non-linear
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equations in 2N unknows,

k‘+1 k+1 _
B1 » Y1 =0

01 LRt k+1’yl2c+1_:0
My @t @5k =0
C'z k+1’yl2c+1 k+17y§+1-20
Mo (@5 gt Q5| = 0

k41 k+1 k41 k1]
CNfl[ NoLUNC L QN YN | =0

k+1 . k41 k41 k+1]
MN_l[ N— 17yN 19N >yN _O

BN |: §V+1’y§<:v+1_ =0

One solution approach could be Newton iterative method.

we specify a set of guess values for the unknowns y*™ Q! for i = 1,...

(6.25)

In particular,

N.

Y

Then, these values are replaced in the left side of the system of equations (6.25)

and residuals different from zero are generated if the proposed solution does

not correspond to the optimal solution. Therefore, in the next iteration, new

estimated guess values are proposed in order to improve the performance. In

particular, some correction terms AQ);, Ay; for the unknowns are evaluated for

it =1,...,N, in order to reduce the residuals rBy,rBy,rC;, v M;,i =

Then it holds

aZfilAQl + %Ayl -
%AQ %Ayl + a%f11AQ2 + %Ayg =
aaé\,ﬁlAQl + ;j,\fjl Ay, + a‘zgj\fleQQ %Aw
ai;i:ilAQQ + aa(lfilA + af;ilAQ3 + aa(;ilAy?,
My 0, + Pt aM2 oMy - OMy M, M,

—T’Bl

—T’Cl

= —TMl

= —TCQ

= —TMQ

LN -1

(6.26)
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0CN_4 8C’N 1 0CN_4 0CN_4
8ka+1 At A@N-1+ a?/;ﬂvﬂl AyN 1+ anH — T AQN + 8yk+1 AyN —rCn-1
OMy_1 OMpy_y OMp_4 OMpy_4
8Qk+1 ——AQN_1 + 8y§[+11 —Ayn_1 + an-H ———AQN + WA:UN = —rMy_;
0By 0By
anHAQN + WA?JN = —rBy

(6.27)
System of linear equations (6.27) can be rewritten in a more compact form,
that is

Jr=f (6.28)
where
[ OB 0B 7]
TQi Wf 0 0 0 0o - 0 0 0 0
oC oC aocC oC
ngi g—yll 372 g—y; 0 0 0 0 0 0
My My M M
23 1 DU
0 0 372 38722 gﬁ 6(97; 0 0 0 0
Mo Mo Mo Mo
J = 0 0 0Q2 Oy2 9Qs  Oys 0 0 0 0
Cn_1 OCn_1 OCn_1 OCn_3
0 0 0 0 T 9QN—1  Oyn—1 QN Oyn
OMy_1 OMn_1 OMy_1 OMy_1
0QN_1 Oyn_1 QN YN
0 0 9Bn 9Bn
L QN QN
(6.29)
_ _rB, _
AQI —7’01
Ay, —rM,
AQQ —TCQ
AQnN —rCn_1
_AyN_ —rMpy_4
—TBN

Once the matrix form is computed, the corrections term can be determined
by matrix inversion, taking into account that we are dealing with a sparse matrix

to improve time complexity. Then, the solution for the water level and water flow

100



A SVEs implementation

of each section can be computed iteratively

(QF s = (QF )0 + (AQi)n

(yf+1)n+1 = (ygﬁ_l)n + (A¥i)n

where n denotes the iterations until convergence.

101
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