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Abstract

Questa tesi tratta l'analisi di un sottoinsieme della rete di canali del

Cavallino, situata lungo la costa Veneziana che si estende da Punta

Sabbioni al porto di Piave Vecchia. In particolare, questo lavoro si fo-

calizza su modellizzazione, stima e controllo di una sequenza di canali,

assumendo che le misure relative al livello della super�cie dell'acqua

e la posizione delle strutture di controllo siano disponibili. Una pro-

cedura basata su identi�cazione dei sistemi consente di analizzare e

selezionare il modello grey box migliore tra quelli proposti tra ARX

e OE, con l'obiettivo di stimare l'andamento del livello dell'acqua.

L'obiettivo del controllo è regolare il livello dell'acqua della rete agendo

sulle strutture idriche di controllo. Di conseguenza, viene proposto un

tipo di controllo decentralizzato. In particolare, viene sfruttato il con-

trollo multivariabile del livello dell'acqua a monte della struttura di

controllo, tenendo in considerazione sia chiuse in super�cie che sotto il

livello dell'acqua. La soluzione proposta è implementata nell'ambiente

Matlab e Simulink e si basa su controllori PI aumentati con un �l-

tro passabasso, al �ne di controllare il livello dell'acqua in caso di

perturbazione di una sequenza di canali consecutivi.
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Abstract

This project deals with the analysis of a subset of the water channel

network of Cavallino, that is the section of the Venetian coast that ex-

tends from Punta Sabbioni to Piave Vecchia harbor. In particular, this

work focuses on modeling, estimation and control design of a multiple

channel pools system, assuming that water level measurements and

control structure position are available. A system-identi�cation-based

procedure is considered for the analysis and selection of an ARX and

an OE grey box model, to estimate and control purposes. The control

aim is to regulate the water level of the channel network by acting

on the hydraulic structure position. Then, a decentralized control

is implemented. In particular, a multivariable local upstream con-

trol strategy is exploited, involving a model that takes into account

both weirs and gates hydraulic control structures. Lastly, a solution

is implemented in Matlab and Simulink, based on PI controllers

augmented with lowpass �lters, in order to control the water level of

multiple pools connected in series.
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1
Introduction

The goal of this work is to develop and implement modeling, estimation and

control design for open-channel systems. In the last years, storms, downpours

and �oods have become increasingly frequent and devastating occurrences. These

events are a clear consequence of climate change; indeed extraordinary weather

conditions will become more and more frequent, compromising the agricultural

sector and even infrastructures. Moreover, sudden and violent downpours may

represent a huge inconvenience for the population and may cause devastating

damages to cities. Water distribution networks are complicated systems that

present nonlinear dynamics; therefore they need suitable modeling and control

strategies to obtain a wise management of water resources. The main issue is

that the dynamics of water channels is modeled by complex nonlinear partial

di�erential equations. Moreover, there are multiple inputs and outputs systems

that may be controlled and these systems are subjected to disturbances, due to

water withdrawals or weather perturbations. In addition, the dynamics of the

water �ow deals with delays between a control action and its e�ect. Progress in

systems theory yields tools to cope with the study and design of complex hydraulic

system. The automatization of open-channel systems represents a solution to

smart water delivery. To this purpose, this thesis is developed starting from

irrigation open-channel systems analysis, aiming at the improvement of water

delivery systems. In particular, the Cavallino water channel network (see Figure

1.1) is analyzed.
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CHAPTER 1. INTRODUCTION

1.1 State of the art

In this section, it is introduced the state of the art pertaining to the topics related

to modeling and control of multiple channel pools. A brief introduction and the

knowledge of literature about the open-channel irrigation systems is fundamental

to delineate and tackle the water delivery problem that a�ects the Cavallino water

channel network, shown in Figure 1.1.

Figure 1.1: Cavallino water channel network

1.1.1 Open-channel irrigation systems modeling

The physical model of a water channel based on the laws of conservation of mo-

mentum and mass of �uid can be accurately described by the Saint Venant equa-

tions (SVEs) that well characterize the unsteady water motion in free channels,

under suitable assumptions as reported in Chapter 2. Open-channel irrigation

models can be distinguished as model that are derived by means of analytical

simpli�cation and models that result from the dynamics approximation.

Models obtained from simpli�cations of the SVEs

Open-channel irrigation systems are developed to supply a suitable amount of

water request without wastage. Authors in [1] introduce an explicit spatial dis-

cretization of the SVEs. Every channel can be split into sections and it is possible

to de�ne one di�erential equation for the water level and another one for the wa-

ter �ow. On the other hand, stability relies on the discretization step size choice.

In [2] an implicit Preissman �nite-di�erence scheme is exploited, such that the

stability of the model does not depend on the step size. The approach proposed

2



1.1 State of the art

in [3] uses Preissmann �nite-di�erence scheme to implement a control algorithm

based on inverse solution of the nonlinear SVEs. In [4] the proposed model comes

from the linearization of the SVEs. Moreover, approximating the frequency re-

sponse, it can be determined a transfer function between the �ow rate variations

at the upper end and the �ow rate variations at the lower end of a channel. Fi-

nally, an analytical solution for the water level and the �ow is obtained. The

approach in [5] takes into account an approximated model called integrator delay

zero model that is a simple and common technique to model a canal for control

purposes. It consists of an integrator and a delay in low frequencies, and it models

the high frequencies by a constant gain and a delay. Most of the approximated

modeling schemes require operational information of the system. Moreover, in

case of �nite-di�erence strategies, it is worth noting that complex models with

high order are achieved. These aspects may represent inconveniences in control

system design.

Approximated models

Approximated models like integrator delay model (ID), grey-box models and

black-box models have been elaborated from feasible assumptions, by means of

physical laws and empirical information. Approximated models represent an im-

portant alternative to SVEs with the purpose of design control-oriented models for

open-channel systems. In [6] it is presented the integrator delay model, in�uenced

by [4] and it is proposed backwater pro�le, that is a phenomenon representing the

downstream accumulation of water. Thus, the channel can be split into two sec-

tions that correspond to a uniform �ow and to a reservoir respectively. It can be

assumed that the water depth in correspondence of the uniform section depends

on the �ow while the backwater section can be modeled as a mass balance with an

in�ow delay. Such model is observed in many studies with control purpose such

as [7], [8], [9]. Available measured data represent an important source in order to

design control-oriented models for open-channel systems. System identi�cation is

a procedure to model the dynamic behavior of a system or a system component

based on measured data. Then, system identi�cation can be employed to design

models without physical information of the system (black-box models), or models

that require physical information of the system (grey-box models) [8]. The black

box method explains the relationship between measured inputs and measured

outputs when parameters are changed. The grey box method is a con�guration

of the model where the parameters are determined by means of exact physical

3



CHAPTER 1. INTRODUCTION

principles. There exists many parametric model structures to assist in model-

ing an unknown system. The most common parametric model structures are a

subset of general linear models, such as output-error (OE), autoregressive exoge-

nous (ARX), autoregressive moving average with exogenous inputs (ARMAX),

Box�Jenkins (BJ) structures. Di�erently from ARX model, the ARMAX model

structure includes disturb dynamics. In addiction, ARMAX models are useful if

you have to control a disturb that enters early in the process, such as at the input.

According to results of experiments showed in [10], the model structure that best

represents a channel dynamics is the ARMAX structure. In [11] it is introduced

a simpli�ed model to control open water channels that are short, �at and deep,

which are supposed to be dominated by resonance behavior. The integrator res-

onance model (IR model) describes resonance-sensitive channels; it includes an

integrator and the �rst resonance mode of a long re�ecting wave. Then, the con-

troller avoids triggering the resonance mode as much as possible. In particular,

in such article it is also proved that neglecting the resonance behavior in the

controller design can cause poor performance of the closed loop behavior. The

method proposed in [12] introduces three data-driven modeling tools to represent

channel dynamics, which are arti�cial neural networks (NARX models), local lin-

ear models and fuzzy systems. As an experimental result, all models manage to

capture the signi�cant dynamics but the neural networks perform slightly better

than the other two strategies. For what concerns grey-box models, [13] introduces

a control-oriented model based on a simpli�ed mass balance, assuming that the

water volume in the channel is proportional to the water level and assuming a

time delay in the channel in�ow. Such model consists of a di�erential equation

that explains the water mass balance, in which the nonlinear �ow relation of the

control structures is included. Grey-box models have been employed for control

purposes in [14], [15], [16] and leak detection in [17]. Moreover, in [13] it is shown

that nonlinear models are more precise than linear models. In particular, third

order nonlinear models are able to exhibit wave dynamics, while �rst order non-

linear models are simpler and more suitable for control purpose. These grey-box

models have been restricted to systems with weirs structure in free-�ow, where

the �ow depends on the control structure upstream depth. In conclusion, in [18]

it is proposed a grey-box model in a system that takes into account weirs and

gates structures but this analysis is restricted to a single channel.
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CHAPTER 1. INTRODUCTION

controller to generate a control input, exploiting the measurements, collected by

the system as proposed in [20], [21], [22]. These systems permit supervision and

remote control of the whole system. On the other hand, they are complicated

and more sensitive to a possible hardware crash than localized con�gurations

as reported in [19]. Decentralized architectures [23], [24], show that only local

upstream or downstream data of a channel is employed to elaborate the control

strategy. Distributed architectures reported in [25], show that the control system

exploits both local and adjacent information determining cooperation among local

controllers. In general, centralized architectures achieve better results than de-

centralized and distributed architectures in open-channel irrigation systems. The

main advantage of a decentralized or distributed control system is that control is

guaranteed even if a piece of information is lost.

Control objectives

The main control target in open-channel irrigation system is to deliver water to

the farmers minimizing the wastage. According to the fact that the o�takes are

gravity fed, the requirement of being able to deliver water can be translated into

a reference regulation of the water levels. Then, the discharges are regulated

to each user as reported in [14]. Moreover, water is usually wasted when it

crosses the last weir of the channel because it is not possible to recover unused

water. Thus, the �ow over the last weir should be almost null. It is worth

noting that the water level reference changes with operational conditions, but

these changes are not frequent. As a result, the perturbation rejection can be

considered more relevant than tracking reference changes. It is also fundamental

to observe that large weir or gates motions can cause large oscillations, hence

gate movements performed in the frequency of the dominant waves need to be

avoided. Upstream and downstream controls are frequent when dealing with

decentralized and distributed control architectures. Upstream controls consist

on keeping a setpoint water level upstream with respect to the regulator, as

shown [26], [27], [19], while downstream controls consist on maintaining a setpoint

water level downstream with respect to the regulator as shown in [19]. Upstream

and downstream controls can be distinguished as close or distant with respect

to the regulator. On the contrary, distant upstream control is not common. In

particular, in [28] it is estabilished that the water setpoint along the channel is not

satis�ed. In [29] it is reported a comparison between close upstream and distant

upstream control strategies with an adaptive controller. In the �rst con�guration,

6



1.1 State of the art

the experimental results show a good behavior while, the second one exhibit

oscillations and poor performances. The adjustment of the upstream level close to

the regulator is the most frequent control con�guration in open-channel irrigation

systems, as shown in [26]. Flow control is required at the in�ow of the system,

where the in�ow is determined according to the user request. Controllers may be

multivariable and the controlled variables could be di�erent, such as the upstream

water depth denoted with yup [30] , [27], the downstream depth h ydn [31], [22]

and the channel in�ow Qin or out�ow Qout [32] as reported in �gure 1.2.

Feedback and feedforward control con�gurations

In open-channel irrigation systems control, it is possible to select feedback (FB)

con�guration, feedforward (FF) con�guration or a combination of them(FB +

FF ), as shown in �gure 1.2. In the FB con�gurations, the channel in�ow or

out�ow is modi�ed to reduce the error between the controlled variable and a set-

point water level or �ow. In the FF con�gurations, the channel in�ow or out�ow

is modi�ed taking into account previous information about water request. The

FB con�gurations suggested in [30], [27], [24] show that the rejection of distur-

bances and uncertainties such as leaks, an unexpected water request, weather

perturbations, can be achieved. On the other hand, controller design need to be

accurate , avoiding oscillations or instability. The FF con�gurations allows the

presence of less oscillations and a faster response but perturbation rejection is

not possible as reported in [33]. The best control performance can be reached by

the combination of these con�gurations (FB+FF ), resulting in faster responses

and disturbances rejection as shown in [24]. Multiple control strategies have been

analyzed and reported in the sequel.

PID control strategy

Proportional − Integral −Derivative controllers (PID) are widely employed in

control systems industry . There exist multiple studies in literature that exploit

PID regulators to keep a �xed reference in open-channel irrigation systems. In [34]

it is proposed a routine for tuning upstream PI controllers. In [35] it is analyzed

the advantage between design a Proportional-Integral (PI) controller to keep a

desired upstream setpoint or a desired downstream setpoint. Moreover, in [36]

it is introduced a PI controller with a �rst order �lter in order to �lter resonant

oscillations produced by neighbor channels. In [37] there is a comparison between

the results obtained by a downstream PI controller and by a distant downstream

7



CHAPTER 1. INTRODUCTION

PI controller. In [38] and [38] PI tuning routines designed exploiting the integrator

delay model are suggested.

LQR control strategy

One alternative control strategy for open-channel irrigation systems is focused on

optimal control. This approach requires the minimization of a quadratic objec-

tive function formulated from the state space system. Given a linear system, a

LQR is a vectorial control law obtained by the minimization of a quadratic cost

index. The latter quantity is formalized as a trade-o�-based penalization between

weighted state and weighted control input of the underlying system. The numer-

ical expression of such a controller is computed by solving the Riccati equation

associated to the cost index and the system under analysis. Moreover, this ap-

proach is useful for controlling systems characterized by a multiple number of

states [1], [6] . On the other hand, LQRs satisfy a required behavior in an area

close to an operation point.

Model predictive control strategy

The advantage that model predictive control (MPC) presents is relevant for what

concern optimality and prediction. There exist multiple studies in literature that

focus on MPCs strategies, such as [31], [36], [30], [25], [22], [21]. MPC strategies

take into account a prediction model, some constraints, an objective function and

an optimization algorithm. The MPC controller has to be computed by solving an

optimization problem over the time horizon. It is required a discrete-time model

in state space con�guration or transfer function. Boundary conditions of the

controlled system are included into the constraints for inputs and state variables

while the objective function corresponds to the performance index combination of

the prediction model and constraints. In conclusion, the optimization procedure

�nds the optimal solution over a prediction time horizon that minimizes a given

objective function.

1.2 Thesis statement, contributions and

structures

In this section, the problem formulation is introduced and a solution approach

is proposed. Then, the main contribution is compared with the current open-

8
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channel irrigation systems and the outline of the thesis is presented.

1.2.1 Problem formulation

The Cavallino peninsula separates the north Venetian lagoon from the Adriatic

sea and it is characterized by a complex channel network. In high tide phase, sea

water tends to retreat towards rivers along a section. For this reason, there exist

water regulators along the main channels which are controlled manually, in order

to avoid possible �oods. However, in case of downpours or strong perturbations

the risk of �oods is high. It is thus fundamental to design an automatic control

system in order to regulate the water level of the string of pools and to avoid

�oods. An accurate model for the behavior of the main Cavallino channels need

to be designed and an e�cient automatic control system is required to adjust and

correct the errors without external e�ort.

1.2.2 Solution approach

The SVEs are complex to handle for modeling, estimate and control purposes.

Moreover, geometrical parameters related to the channels are fundamental and

sometimes these are missing or not accurate. Then, starting from the water

volume mass balance equation, a simpler model is proposed. In particular, a

system-identi�cation-based procedure is exploited for estimating the parameters

for two grey-box models. In particular, the ARX and the OE model are taken

into account. According to the results, the best model among them is the OE

model and then a one-step-ahead predictor is validated. In such a case, due to

the lack of measurements, a second order model is implemented to generate the

input-output data. For what concerns the control design, local upstream control

is suggested, with the aim to discharge water avoiding �oods. A decentralized ap-

proach is preferred because of its main advantages, such as scalability, versatility

and robustness to local failures. A simulation can be implemented in Matlab,

focusing on a subset of the Cavallino water network, as shown in Figure 1.3.

1.2.3 Contribution

There exists a large literature about the open-channel irrigation network, as re-

ported in Section 1.1.2. Then, to delineate and tackle the water delivery problem

that a�ects the Cavallino water channel network, we draw inspiration from this

9
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Figure 1.3: Subset of the Cavallino water network

�eld. Our approach is similar to [13] for what concerns the procedure to iden-

tify discrete time model parameters. In addition, we analyze and compare the

performances of an ARX model and an OE model for estimation purpose. In

particular, we simulate some measurements by means of a discrete time second

order model to proceed with the system identi�cation approach. The parametric

model estimation involves linear regression in one case and it requires optimiza-

tion tools in the another one. In particular, the Levenberg-Marquardt algorithm

is preferred and then implemented. For what concerns control of the water level,

the decentralized control design draws inspiration from [39]. The main contribu-

tion provided in this thesis is represented by the development of a local upstream

control strategy for a model, that takes into account both weirs and gates hy-

draulic control structures. A solution based on PI controllers is implemented in

Matlab and Simulink, in order to control the water depth of multiple pools

connected in series.

1.2.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces the

theoretical hydraulics fundamental in order to enhance the basic concept on open

10
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channels. Moreover, SVEs are analyzed and their complexity is highlighted. Their

implementation is explained in details in the Appendix 6.2. Chapter 3 consid-

ers two grey-box models in discrete time, that take into account both weirs and

gates hydraulic control structures and a system identi�cation procedure to esti-

mate their parameters is presented. Then, a one-step ahead predictor is proposed.

Chapter 4 deals with the main contribution of this thesis, focusing on the devel-

opment of a decentralized control. Local upstream control is introduced and both

feedback and feedforward con�gurations are analyzed. In conclusion, Chapter 5

shows the numerical simulation implemented in Matlab and Simulink. A Sec-

ond order system is implemented in order to simulate the required measurements.

Then, system identi�cation procedure developed in Chapter 3 allows to select a

suitable model for an estimation purpose, considering the trade-o� between com-

plexity and adherence of data. Finally, a procedure for tuning the employed PIL

is proposed and a decentralized control is implemented. The results are hence

discussed, so that the control performances with and without feedforward are

compared and conclusions are reported in Chapter 6.
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2
Basic concepts in hydrosystems

In this chapter, basic concepts in hydrosystems are explained and some funda-

mental de�nitions are enunciated. The physical model for the water channel is

introduced. Unidirectional open channel �ow is usually modeled by two hyper-

bolic equations expressing the conservation of mass and momentum, that are

known as the Saint Venant Equations (SVEs).

2.1 Open channel �ow classi�cation

Open channel systems are structures characterized by a open top that allow

�uids transport from a location to another. An open channel �ow presents a

free surface, which is subject to atmospheric pressure. Flows can be classi�ed

into steady and unsteady. We refer to a steady �ow if the �ow velocity at a

given location does not vary with respect to time. On the contrary, if the local

acceleration is di�erent from zero we refer to an unsteady �ow. Moreover, �ows

can be distinguished as uniform or varied. They are referred as uniform if the

�ow velocity at a given time does not change with respect to a given distance

otherwise they are called varied or nonuniform. On the other hand, it is possible

to relax this condition, considering a �ow uniform as long as the velocity in the

direction of the �ow is constant along the channel. The rate of variation with

respect to distance allows to classify nonuniform �ows into gradually varied and

rapidly varied �ows. As shown in Figure 2.1, a �ow is considered critical if the
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�ow velocity is equal to the velocity of a wave characterized by a small amplitude.

A gravity wave can be generated by a variation in the �ow depth. Then, a �ow is

de�ned as subcritical if the �ow velocity is lower than the critical velocity while

can be de�ned supercritical if the �ow velocity is greater than such value.

Figure 2.1: Open channel system characterized by subcritical, supercrit-
ical and uniform �ow

2.2 Open channel terminology

Channels can be distinguished as natural or arti�cial. A long channel charac-

terized by a minimal slope excavated in the ground is de�ned with canal. A

prismatic channel exhibits a constant cross section and bottom slope. A cross

section that is normal to the direction of the water �ow is de�ned as channel

section. The �ow area A is the cross sectional area of the �ow taken normal with

respect to the direction of the �ow. The depth of the water y is the distance

between the water surface and the bottom of the channel in a section. The top

width B is the width of channel section at the surface while the bottom width

b is the width of the channel section at the lowest point of the channel section.

The depth of �ow section d can be de�ned as the depth of �ow normal to the

direction of �ow. The hydraulic radius is de�ned as Rh = A
P
, where the wetted

perimeter P is de�ned as the length of intersection line of channel wetted surface

with a cross sectional plane normal to the �ow [40]. Figure 2.2 reports all the

main geometric parameters of an open-channel.

The open-channel �ow presents velocity components in the three directions.
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Figure 2.2: Open-channel section

On the other hand, for the most part, open-channel can be considered to be one-

dimensional. Also, velocity component direction is the same of the �ow. The

velocity at di�erent points in a channel section is denoted with v. So, the volume

of water that is transferred through a channel section per unit time is denoted

with discharge or �ow rate [41]. Accordingly, the incremental �uid discharge dQ

through an incremental area dA is

dQ = vdA (2.1)

Then, the discharge can be de�ned as

Q =

∫

A

dQ =

∫

A

vdA (2.2)

as it can be observed in Figure 2.3. Moreover, the cross-sectional average velocity

V can be de�ned as

V =
Q

A
=

1

A

∫

A

vdA (2.3)

2.3 The Saint Venant Equations

Di�erent kind of open channels such as prismatic canals or natural streams usu-

ally work under unsteady �ow conditions. The unsteady open channel SVEs of

motion are known as the continuity equation and the momentum equation that

are respectively
∂A

∂t
+

∂Q

∂x
= 0, (2.4)
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Figure 2.3: Open-channel section

∂Q

∂t
+

∂

∂x

(

Q2

A

)

+ gA
∂y

∂x
+ gA(S̄ − S0) = 0 (2.5)

where A is the cross sectional area of the channel, y is the �ow depth, g is

the gravitational acceleration, Q is the discharge, V is the average velocity, S0 is

the bottom slope and S̄ is the friction slope, x is the displacement in the main

�ow direction and t is the time. Unsteady-�ow equations are complicated and do

not yield closed-form analytical solutions. These two equations are determined

from mass conservation and momentum conservation if and only if the following

assumptions are satis�ed.

� No later in�ow is considered.

� The �ow is incompressible, that is the density of the �uid is constant.

� The �ow is one-dimensional.

� Hydrostatic pressure prevails and vertical accelerations are negligible.

� The velocity is uniform over a channel.

� The �ow velocity is only in the direction of �ow and the components of �ow

velocity in the transverse and vertical directions are zero.

� The average channel bottom slope is small, that is the measured �ow depth

y is almost equal to the measured �ow depth d perpendicular to the channel

bottom.
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2.3 The Saint Venant Equations

2.3.1 Continuity equation derivation

Let us consider a volume element where ρ denotes the mass density of the �uid,

A is the wetted cross sectional area of the channel, Q is the discharge, ∆x is the

distance between the upstream and downstream end along the �ow direction. Let

us denote with the subscript U the upstream section and with D the downstream

section. The mass contained in a deformable volume that changes with the sys-

tem, remains unchanged in time. The mass transfer rate in open-channel �ow is

the rate with which the mass is moved along a channel section and it is de�ned

as

Rate of mass transfer= ρQ.

The mass conservation law states that the mass of a closed system remains con-

stant over time, meaning that

Net rate of mass entering/leaving the volume =Rate of change of mass in the

volume.

If the volume of a section is given by A∆x then the mass of the volume can

be expressed as ρA∆x. Let us assume that the water in�ow in the volume has

a rate ρQU and water out�ow has a rate ρQD over a �nite interval of time ∆t.

Therefore, the law of conservation of mass can be written as

ρQU − ρQD =
∆(ρA∆x)

∆t
(2.6)

Moreover, the conservation of water mass becomes the conservation of water

volume if the density is constant, that is the �uid is incompressible. Then it

holds

QU −QD =
∆(A∆x)

∆t
QU −QD

∆x
=

∆A

∆t
∆Q

∆x
+

∆A

∆t
= 0

(2.7)

where ∆Q = QD − QU . According to the fact that ∆x and ∆t approach zero,

then equation (2.7) yields
∂Q

∂x
+

∂A

∂t
= 0 (2.8)

where t and x represent the time and space displacement in the �ow direction.

A sketch for the mass conservation principle is reported in Figure 2.4.
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Figure 2.4: De�nition sketch for mass conservation principle

2.3.2 Momentum equation derivation

Let consider a volume where ρ denotes the mass density of the �uid, A is the

wetted cross sectional area of the channel, Q is the discharge, δx is the distance

between the upstream and downstream end and the �ow direction follows the x−
axis. Let us consider the water level of the centroid ȳ, the mean velocity V, the

force due to atmospheric pressure Fp, the friction force Ff and the force generated

by the weight of the water Fw. Therefore, according to the conservation of the

momentum it holds

Rate of change of momentum within a volume

=

Net rate of momentum transfer into the volume

+

Sum of all forces that act on the volume.

Then the rate of change of momentum can be expressed as

∆(ρ∆xAV )

∆t
(2.9)

The time rate of increase of momentum is given by

ρQUVU − ρQDVD. (2.10)

The force components are pressure force, friction force and force due to the
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water weight. The pressure force is given by

Fp,U − Fp,D = ρgAȳU − ρgAȳD (2.11)

where ȳ denotes the centroid water depth. The force produced by the weight of

the water is given by

Fw = ρgA∆xS0 (2.12)

where S0 = sin θ. Finally, the friction force Ff is opposite with respect to the

�ow direction and is given by

Ff = −ρgA∆xS̄ (2.13)

where S̄ is the friction slope. According to Manning friction coe�cient n [40], it

holds S̄ = n2Q2

A2R4/3 . Finally, putting all these components together and dividing by

∆x leads to

∆(AV )

∆t
+

∆(QV )

∆x
+ g

∆(Aȳ)

∆x
+ gAS̄ − gAS0 = 0 (2.14)

where ∆(QV ) and ∆(Aȳ) = Adȳd − Auȳu Hence, according to the assumption

that ∆x and ∆t approach zero, the momentum equation becomes

∂Q

∂t
+

∂

∂x
(
Q2

A
) + gA

∂y

∂x
+ gAS̄ − gAS0 = 0 (2.15)

where, as reported in [41], it is used the approximation ∆(Aȳ)
∆x
≃ A ∂y

∂x
. In Figure

2.5 a sketch of the derivation of the conservation of the momentum is shown.

Figure 2.5: Sketch of derivation of the conservation of momentum equa-
tion
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3
Modeling and estimation

In Chapter 2, we have analyzed the SVEs and we have explained that being

partial di�erential equations, they are not simple to employ for estimation and

control purpose. Then, we look for a simpler and straightforward alternative

model. In this chapter, the main target is to �gure out a model of a string of

pools for estimation intention, using the system identi�cation procedure and to

examine the accuracy of the candidate models. Due to the lack of necessary

measurements, the accuracy of the system identi�cation models is evaluated by

comparing the models with data generated from a discrete second order model.

System identi�cation is the science of design mathematical models of dynamic

systems from observed input-output data, using statistical methods. It can be

interpreted as the interface between the real world and the mathematical world

of control theory. The main procedure is examined in the following.

3.1 System identi�cation procedure

The system identi�cation procedure is the list of steps from which we design a

mathematical model, starting from data generated by a certain system, to serve

certain purposes. Such a procedure (see Figure 3.1) consists of the following main

steps:

� Experiment design: Experiment design is fundamental for e�ciently gen-

erating informative data to �t models and investigate the main dynamics
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of the system. Moreover, preliminary experiments allow to examine the

linearity of the system under analysis, to obtain an estimate of the transfer

function of the system and to retrieve information about dominating time

constants, time delays, stationary gains.

� Data preprocessing: The collection of the data needs to be preprocessed

by means of detrending process, decimation and �ltering process due to

possible numerical problems.

� Model structure design: Exploiting some a priori knowledge, we guessm

model structuresM1...Mm, parametric or nonparametric, in order to �nd

which one better describe the system. We are interested in two model classes

for linear time-invariant systems, in particular, those that are transfer-

function models and state-space models.

� Training: Parametric models require the computation of the estimate of

parameters θ̂1...θ̂m using M1...Mm respectively, and the data. In such a

way, candidate models M1(θ̂1)...Mm(θ̂m) are found. There exist several

approaches to estimate model parameters, such as the prediction error ap-

proach or the maximum likelihood approach.

� Validation: A good model choice well �ts data and is characterized by

a good prediction performance. Several validation criteria, like residual

analysis or cross-correlation test, allow to select the best model structure

MOPT (θ̂OPT ) among several candidates M1(θ̂1)...Mm(θ̂m), which better

describes the system and is able to reproduce its behavior considering a

new data collection.
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structure reaches the point where the water level is measured. In order to collect

experimental data, it is necessary to de�ne a sampling time Ts, the duration of

the experiment T and a reference signal. These variables can be chosen by means

of a preliminary test on the open-loop system to gain some knowledge about the

system dynamics. One of the most common used nonparametric system iden-

ti�cation method is the step response test. The step response test consists on

feeding the �rst order system with a unit step and measuring the step response,

as shown in Figure 3.2, in order to obtain some information about the system

behavior. In particular, we are interested about a suitable value for the experi-

ment duration and for the period of the hydraulic structure position. Moreover,

an experimental value for the discharge delay can be recovered.

Figure 3.2: Unit step response

Thus, a step input �ow should be applied to the second order model to obtain

the corresponding step response of a pool system. Then, from the step response

the rise time tR can be computed and a rough estimate of the bandwidth fB can

be obtained as reported in [42] as follows

fB ≈
0.4

tR
. (3.1)

A rule of thumbs is to choose the sampling time Ts as

Ts ≤
1

10fB
≈ tR

40
. (3.2)
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From the step response, the steady state time tS can be computed. Then, in order

to capture all the dominant modes of the system, the duration of the experiment

should be greater than tS. Then, as reported in [42], the minimum length of the

data should be

N ≈ tS
Ts

. (3.3)

The time constant Tc for a �rst order system is the time it takes for the output

response to reach 63% of its �nal value. The period of upstream control structure

position Tg is usually approximated by Tc, i.e. Tg ≈ Tc, meaning that the control

structure should stay in a �xed position for a multiple of Tc. We also assume that

there are several overshoot and undershoot hydraulic structures, called weirs and

gates respectively. These can be located along the channel as sketched in Figures

3.3,3.4,3.5.

Figure 3.3: Model with gates structures

Figure 3.4: Model with weirs structures

The height of water above the weir is refer as h and is called head over the

weir, and it can be determined from the current upstream water level measure
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Figure 3.5: Model with gates and weirs structures

and the current weir position, refer as p, that is

h(t) = yU(t)− p(t). (3.4)

As a starting point for deriving a system identi�cation model structure that

takes into account both weirs and gates (see Figure 3.5), we can focus on the

mass balance equation

Q̇v(t) = α(Qin(t)−Qout(t)) (3.5)

whereQv refers to the volume of water in the pool, Qin, Qout denote the in�ow and

out�ow of each pool in m3

s
and α > 0. In the literature [43], [44], there exist several

relations describing the water discharge according to the �ow conditions and

shape of the chosen control structure. The considered relations for rectangular

crested weirs and rectangular gates are reported in Table 3.1, where cdi ≈ 0.6 is

a discharge coe�cient of pool textiti, pi is the hydraulic structure position, yUi
is

the upstream water level and yDi
is the downstream water level with respect to

the hydraulic structure.

Let us assume to consider only submerged undershoot rectangular gates and

free �ow rectangular crested weirs. In our case measurements are not available,

then it is possible to generate input and output data by means of the second

order model. Moreover, making the further assumption that the volume of the
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Table 3.1: Flow relation for rectangular crested weirs and rectangular
gates.

Free �ow Submerged �ow

Rectangular gate Qi = cdipi
√
yUi
− 0.5pi Qi = cdipi

√
yUi
− yDi

Rectangular crested weir Qi = cdi(yUi
− pi)

3/2 Qi = cdi(yUi
− yDi

)3/2

pool is proportional to the water level with respect to the hydraulic structure, we

can formulate the following �rst order model for a pool

ẏU(t) = θ1Qin,U(t− τ) + θ2Qout,U(t)

ẏD(t) = θ3Qin,D(t) + θ4Qout,D(t− τ)
(3.6)

where in�ow and out�ow are described by

Q(t) =

{

cweir · h
3

2 (t), if rectangular crested weir; (3.7)

cgate · p(t) ·
√

yU(t)− yD(t), if rectangular gate. (3.8)

where cweir = cdbw
√
2g and cgate = cdAg

√
2g, bw is the length of the aperture,

cd ≈ 0.6 and Ag is the section of the aperture as reported in Appendix 6.2.

Therefore, considering the time delay τ and introducing Euler approximation for

the derivative, we obtain a �rst order model in discrete time

yU((k + 1)Ts) = yU(kTs) + Tsθ1Qin,U((k − τ)Ts) + Tsθ2Qout,U(kTs)

yD((k + 1)Ts) = yD(kTs) + Tsθ3Qin,D(kTs) + Tsθ4Qout,D((k − τ)Ts).
(3.9)

where Ts is the sampling interval. Then, the parameters to be estimated by means

of system identi�cation are

θ =













θ1

θ2

θ3

θ4













(3.10)

However, such model is not able to describe waves, then more complex models

could be required for estimating purpose.
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3.3 Model structure selection

As the �rst step in the system identi�cation procedure suggests, it is fundamental

to understand the purpose of the model under investigation. There exist several

model applications. For example, the model could be used for control, predic-

tion, error detection or simulation. The purpose of the model a�ects the choice

of identi�cation methods, that justify the number of estimated parameter and

the complexity of the model itself. For prediction purpose, it is important that

the model catch all the dynamics while for control design it is required an ac-

curate model around the desired crossover frequency. Indeed, the best suitable

model structure should be selected considering a trade-o� between complexity

and performance. Let us assume to collect input u(t) ∈ R
j and output y(t) ∈ R

measures for t = 1, · · · , N during the experiment, that is we are dealing with a

multi-input single-output system

uN =









u1(1) · · · uj(1)
...

...

u1(N) · · · uj(N)









, yN =









y(1)
...

y(N)









(3.11)

Di�erent structures of transfer-function models, or polynomials models are avail-

able:

� Equation error or Auto-Regressive model structure (ARX);

� Output-Error model structure (OE);

� Moving-Average-Auto-Regressive model structure (ARMAX);

� Box Jenkins model structure (BJ);

In the following, two parametric model structures will be introduced.

3.3.1 ARX Models

The input-output relationship is a linear di�erence equation

y(t) + a1y(t− 1) + · · ·+ anA
y(t− nA) = + b01u1(t− 1− τ) + · · ·+ b0juj(t− 1− τ)+

+ bnB1
u1(t− nB + 1− τ) + · · ·+ bnBj

uj(t− nB + 1− τ)+

+ e(t)

(3.12)
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where y(t) ∈ R, u(t) ∈ R
j, nB ̸= 0, nA ̸= 0, τ ≥ 0 is the input delay and e(t)

is white noise with variance σ2 that enters the system as a direct error. Then,

equation (3.12) can be rewritten in a more compact way

y(t) = −
nA
∑

k=1

aky(t− k) +

nB−1
∑

k=0

bku(t− k − τ) + e(t). (3.13)

Let us de�ne the polynomials in z−1 variable A ∈ R and B ∈ R
j×j,

B(z) =



















B1 0 0 0 0

0
. . . 0 0 0

0 0 Bi 0 0

0 0 0
. . . 0

0 0 0 0 Bj



















(3.14)

A(z) =1 +

nA
∑

k=1

akz
−k ⇒ deg(A(z)) = nA

Bi(z) =

nB−1
∑

k=0

bkz
−k ⇒ deg(Bi(z)) = nB − 1

(3.15)

Then, the above input-output relationship of an ARX model structure be-

comes

A(z)y(t) = B(z)u(t− τ) + e(t)⇒ (3.16)

y(t) =
B(z)

A(z)
u(t− τ) +

1

A(z)
e(t) = F(z)u(t− τ) + G(z)e(t) (3.17)

where

F(z) = B(z)

A(z)
, G(z) = 1

A(z)
. (3.18)

A sketch of the ARX structure is shown in Figure 3.16. It can be observed that

we can collect all the parameters into a vector

θ = [a1 · · · anA
, b01 · · · b(nB−1)1 , b0j · · · b(nB−1)j ]

T (3.19)

where number of parameters p in θ of the MISO system is

p = nA + nB × j (3.20)
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be computed as reported in [42]

Rcc(τ) =
1

N

N
∑

i=1

Q̃in(i)Q̃out(i− τ) (3.29)

where

Q̃(i) =
1

σ(Q(i))

[

Q(i)− 1
N

∑N
j=1 Q(j)

]

(3.30)

and σ is the standard deviation of the �ow. Then, an estimate of τ can be

computed by means of optimization procedure. It is worth noting that such a

solution is only locally optimal, because we cannot guarantee the convexity of the

cross-correlation function. Then, it holds

τ̂ = argmax
τ∈T

Rcc(τ) (3.31)

3.5 PEM method

For the estimation of time-varying parameters, the prediction error minimization

(PEM) method is a criterion that is the analogue of the least-square principle in

the static case. In particular, past values of the input and the output are required

to perform a one-step ahead prediction through optimal prediction theory and

to obtain the error with respect to the measured output. The usual performance

metric of the �tting is the least squares and parameters result from the opti-

mization procedure. Given a modelM(θ) the prediction error at time t is given

by

ε(t) := y(t)− ŷ(t|t− 1) (3.32)

and the overall mean-square error (MSE) is de�ned as

V (θ) :=
1

N

N
∑

t

ε(t)2 (3.33)

where V : R
p → R : θ 7→ V (θ) ∈ R. In the predictive approach to system

identi�cation, the parameters ofM(θ) are tuned minimizing the cost V (θ) over

all θ ∈ Θ, that is

θ̂PEM(yN , uN) = argmin
θ∈Θ

V (θ) (3.34)
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3.5 PEM method

If the model quality is accurate, the prediction error has to be white. Let us

consider the general model structureM

M(θ) : y(t) = F(z)u(t) + G(z)e(t) (3.35)

where e is white noise with variance σ2 and zero mean and F(∞) = 0. At time

t we have past data, then the optimal prediction of y(t) under modelM(θ) is

ŷ(t|t− 1) = G(z)−1G1(z)y(t) + G(z)−1F(z)u(t) (3.36)

where G1(z) = G(z)− 1, as reported in [42].

3.5.1 PEM with ARX model structure

The one-step ahead predictor of a MISO system can be determined by means of

the general formula (3.36), where we assign

F(z) = z−1B(z)

A(z)
, G(z) = 1

A(z)
, G1(z) =

1− A(z)

A(z)
(3.37)

Then, the one-step ahead predictorM(θ̂) becomes

ŷ(t|t− 1) =
[

1− A(z)
]

y(t) +B(z)u(t− τ)

= −a1y(t− 1)− · · · − anA
y(t− nA)+

+ b01u1(t− 1− τ) + · · ·+ b0juj(t− 1− τ)+

+ bnB1
u1(t− nB + 1− τ) + · · ·+ bnBj

uj(t− nB + 1− τ)

(3.38)

and equation (3.38) can be rewritten exploiting the regressor vector as

ŷ(t|t− 1)) = φ(t)T θ̂PEM . (3.39)

It can be observed that ŷ(t|t − 1) is a linear combination of past values of the

input and output and that is linear in the unknown θ. Let us de�ne

Φ :=









φ(1)T

...

φ(N)T









ε̄θ =









εθ(1)
T

...

εθ(N)T .









(3.40)
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Therefore, we obtain ε̄θ = yN − Φθ and so

VN(θ) =
1

N

∥

∥

∥ε̄θ

∥

∥

∥

2

=
1

N

∥

∥

∥yN − Φθ
∥

∥

∥

2

(3.41)

and so the estimated parameters are given by

θ̂PEM(yN , uN) = argmin
θ∈Θ

VN(θ) = argmin
θ∈Θ

∥

∥

∥yN − Φθ
∥

∥

∥

2

(3.42)

whose corresponding unique solution is given by the least-squares estimate

θ̂PEM(yN , uN) = (ΦTΦ)−1ΦTyN (3.43)

provided that Φ has full column rank.

3.5.2 PEM with OE model structure

The one-step ahead predictorM(θ̂) is

ŷ(t|t− 1) =
B(z)

A(z)
u(t− τ) (3.44)

and it can be observed that is a linear combination of past values of the input

but it depends also on past predictions, since:

A(z)ŷ(t|t− 1)) = B(z)u(t− τ)⇒ 0 = −A(z)ŷ(t|t− 1) +B(z)u(t− τ) (3.45)

Then, it holds

ŷ(t|t− 1) = ŷ(t|t− 1)− A(z)ŷ(t|t− 1) +B(z)u(t− τ)

= −a1ŷ(t− 1|t− 2)− · · · − anA
ŷ(t− 1− nA|t− 2− nA)+

+ b01u1(t− 1− τ) + · · ·+ b0juj(t− 1− τ)+

+ bnB1
u1(t− nB + 1− τ) + · · ·+ bnBj

uj(t− nB + 1− τ)

(3.46)

Then, using the simulated output from the model, the relationship is e�ectively

no longer linear. The main di�erence with least square regression is that the pre-

dictor depends on past predicted values and that the vector of parameters θ̂PEM

is obtained minimizing a quadratic criterion by means of nonlinear programming

algorithm. Indeed, the model is not linear in θ so there exist no analytic solution
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3.5 PEM method

for θ̂PEM . Given a general deterministic objective function

f : Rp 7→ R : θ 7→ f(θ) ∈ R (3.47)

the aim is to �nd θPEM ∈ R
p such that

θ̂PEM = argmin
θ∈Θ

f(θ) (3.48)

Θ =
{

θ ∈ R
p
}

. (3.49)

In the following we drop the subscript PEM for readability and we denote

the gradient of f the p-dimensional vector

∇f =









∂f
∂θ1
...
∂f
∂θp









∈ R
p (3.50)

and the Hessian of f is the matrix

∇2f =









∂2f
∂θ1 ∂θ1

· · · ∂2f
∂θ1 ∂θp

...
. . .

...
∂2f

∂θp ∂θ1
· · · ∂2f

∂θp ∂θp









∈ R
p×p. (3.51)

In the following, three o�-line optimization algorithm are introduced in order to

�nd θ̂ for the OE model.

3.5.3 Gradient descent method

In a non-linear optimization problem it is not always easy to �nd the optimum

solution θ∗ in closed form, where

θ∗ = argmin
θ∈Rp

V (θ) (3.52)

and V : Rp 7→ R : θ 7→ V (θ) ∈ R. As reported in [45], we need to search for a

minimization sequence represented by the update rule and the descent condition

respectively

{

θ(i+1) = θ(i) − α(i)∆θ(i)

V (θ(i+1)) ≤ V (θ(i))
(3.53)
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CHAPTER 3. MODELING AND ESTIMATION

where

� i is the current iteration

� α(i) is the current positive step size

� ∆θ(i) 1 is the current descent direction

3.5.4 Steepest-descent method

One of the simplest method based on gradient descent is Steepest-descent. The

update rule is

θ(i+1) = θ(i) − α(i)∇V (θ(i)) (3.54)

where the descent direction is chosen opposite to the gradient and

∆θ(i) = −∇V (θ(i)). (3.55)

Since the step size is not always suitable, a weighting matrix D(i) ∈ R
n×n can be

introduced as follows

θ(i+1) = θ(i) − α(i)D(i)∇V (θ(i)) (3.56)

Let us compute the Jacobian of the objective function V (θ)

∂V (θ)

∂θ
=

1

N

N
∑

t=1

∂εθ(t)
2

∂θ
=

1

N

N
∑

t=1

∂εθ(t)
2

∂εθ(t)

∂εθ(t)

∂θ

=
2

N

N
∑

t=1

εθ(t)
∂εθ(t)

∂θ
=

2

N

N
∑

t=1

εθ(t)
∂y(t)− ŷ(t|t− 1)

∂θ

= − 2

N

N
∑

t=1

εθ(t)
∂ŷ(t|t− 1)

∂θ
= − 2

N
JT
�

(3.57)

where

Jθ(t) :=
∂ŷ(t|t− 1)

∂θ
∈ R

p (3.58)

J :=









Jθ(1)
...

Jθ(N)









� :=









εθ(1)
...

εθ(N)









(3.59)

1To be precise, −∆θ(i) is the descent direction
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3.5 PEM method

The Steepest-descent algorithm is generally stable, but it is very slow at the

neighborhood of the optimum. There exist several methods that are derived from

Steepest-descent according to the choice of the weighting matrix, such as Newton

method, Gauss-Newton method, Levenberg-Marquardt method.

3.5.5 Gauss-Newton method

The Gauss-Newton method is a modi�cation of the Newton method to solve

nonlinear regression problems for sum-of-squares objective functions. In such a

case we are dealing with

V (θ) =
1

N

∥

∥

∥εθ(t)
∥

∥

∥

2

. (3.60)

The Newton method requires the computation of the Hessian ∇2V , providing

that it is invertible. The Gauss-Newton method introduces an approximation of

its in order to avoid Hessian computation and, in particular, it can be expressed

in term of J . Moreover, this method requires that the objective function is

approximately quadratic in the parameters near the optimal solution. The Gauss-

Newton algorithm is characterized by its fast convergence, but it is often unstable.

The function evaluated at the perturbed parameters can be locally approximated

by means of a �rst-order Taylor series expansion as follows

ŷ(θ +∆θ) ≃ ŷ(θ) + J∆θ (3.61)

Then, the objective function is

V (θ +∆θ) ≃(�− J∆θ)T (�− J∆θ)

≃�T
�− 2∆θTJT�+∆θTJTJ∆θ

(3.62)

Then, the Jacobian of the objective function becomes

∂V (θ +∆θ)

∂∆θ
≃ ∂

(�− J∆θ)T (�− J∆θ)

∂∆θ

≃2(JTJ)∆θ − 2JT�

(3.63)

Therefore, ∆θ = (JTJ)−1JT� and the weighting matrix for the update rule of

Gauss-Newton method isD(i) = (JTJ)−1 = (2∇ŷ∇ŷ)−1, where it can be observed

that the Hessian of the function V (θ) has been approximated as ∇2V ≃ 2∇ŷ∇ŷ.

37



CHAPTER 3. MODELING AND ESTIMATION

3.5.6 Levenberg-Marquardt method

The Levenberg-Marquardt method is an iterative algorithm that adaptively com-

putes the parameter switching between Gauss-Newton and Steepest descent meth-

ods. The main idea is to introduce a parameter λ > 0 in the weighting matrix,

such that it holds

∆θ = (JTJ+ λ diag (JTJ))−1JT
� (3.64)

and the parameter update rule becomes

θ(i) = θ(i−1) − (JTJ+ λ diag (JTJ))−1JT
�. (3.65)

The choice of λ determines the behavior of the algorithm. In particular, small

values of the damping parameter λ corresponds to a Gauss-Newton update while

large values corresponds to a Steepest descent update. The damping parameter λ

is initialized to be large in order to reach small steps in the �rst iterations in the

Steepest-descent direction. Such a parameter is increased if the previous iteration

produces a small reduction of the objective, that is the parameter vector θ is far

from their optimal value, either as the solution improves, it is decreased.

3.5.7 Numerical implementation

At iteration i, step ∆θ is computed by comparing V (θ) and V (θ+∆θ). The step

is accepted if a metric is greater than a threshold ω > 0. Such a metric represents

a measure of the actual improvement in V when compared to the improvement

of a Levenberg-Marquardt update and it is de�ned as follows

χi(∆θ) =
V (θ)− V (θ +∆θ)

�
T
�− (�− J∆θ)T − (�− J∆θ)

=
V (θ)− V (θ +∆θ)

∆θT (λi diag (JTJ)∆θ + JT
�)

(3.66)

Then, if the step is accepted, namely there is an improvement because V (θ+

∆θ) > V (θ), the Jacobian J ∈ R
p×1 can be numerically approximated by means

of forward di�erences or central di�erences respectively

Jj1 =
∂ŷ

∂θj
=















ŷ(t, θ + δθj)− ŷ(t, θ)

∥δθj∥
if δθj < 0 (3.67)

ŷ(t, θ + δθj)− ŷ(t, θ − δθj)

2 ∥δθj∥
otherwise (3.68)
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3.5 PEM method

where the j − th element of δθj = ζ(1 + |θj|) and ζ is a small perturbation.

On the other hand, if there are several parameters, a �nite di�erences Jacobian

is computationally expensive. If the Jacobian is re-computed exploiting �nite

di�erences only occasionally, convergence can be reached with fewer function

evaluations. Then, this approximation is exploited if there is an improvement or

for iterations that are even multiple of θ dimension. Thus, in all other iterations,

the Jacobian can be updated by means of Broyden formula [46]

J = J+
(ŷ(θ +∆θ)− ŷ(θ)− J∆θ)∆θT

∆θT∆θ
. (3.69)

Then, the choice of the adaptive parameterλ determines the behavior of the

Levenberg-Marquardt algorithm. Such parameter is updated according to the

metric value, that is if χi(∆θ) then the parameter will be reduced, otherwise it

will be increased and the algorithm proceeds to the next iteration. In particular,

such parameter updates as follows

λi+1 =







max
[

λi

α
, 10−7

]

if χi(∆θ) > γ3 (3.70)

min
[

λi

β
, 107

]

otherwise (3.71)

where α > 0, β > 0, gamma3.

3.5.8 Stop criteria

Convergence can be reached when one of the following criteria is satis�ed,

� Convergence in the gradient: max
∣

∣

∣JT
�

∣

∣

∣
< γ1;

� Convergence in parameters: max
∣

∣

∣

∆θ
θ

∣

∣

∣ < γ2;

assuming that γ1 > 0 and γ2 > 0. In addition, the algorithm should stop once a

maximum number of iteration imax is reached although the convergence criteria

are not satis�ed. These three conditions are associated to a �ag fSTOP in the

pseudocode 1.

3.5.9 Pseudocode

The pseudocode of the Levenberg-Marquardt optimization procedure for the OE

model is proposed in Pseudocode 1.
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Algorithm 1 Levenberg-Marquardt

Input: u1, u2, ymeas, ŷ0, θ̂0, f lag, γ3, w1, λ0

Output: ŷ, θ̂

1: i← 0
2: Vold ← w1

3: λ← λ0

4: ŷ ← compute iteratively as Eq. (3.16).

5: J← compute as Eq. (3.67), (3.68) or (3.69)

6: �← ymeas − ŷ

7: V← �
T
�

8: Vold ← V

9: while (∼ fSTOP ) do
10: i← i+ 1
11: ∆θ ← compute as Eq. (3.64)

12: θnew ← θ +∆θ

13: ŷ ← compute iteratively as Eq. (3.46)

14: �← ymeas − ŷ

15: Vnew ← �
T
�

16: χ← compute as Eq. (3.66)

17: if χ > γ3 then

18: Vold ← V

19: θold ← θ

20: ŷold ← ŷ

21: θ ← θnew
22: ŷ ← compute iteratively as Eq. (3.46)

23: J← compute as Eq. (3.67), (3.68) or (3.69)

24: �← ymeas − ŷ

25: V← �
T
�

26: λ← compute as Eq. (3.70),(3.71)

27: else

28: V← Vold

29: ŷold ← ŷ

30: ŷ ← compute iteratively as Eq. (3.46)

31: J← compute as Eq. (3.67), (3.68) or (3.69)

32: �← ymeas − ŷ

33: V← �
T
�

34: λ← compute as Eq. (3.70),(3.71)

35: end if

36: end while

3.6 Model validation

Validation is a procedure that provides a criterion to select a model structureM
among a set of candidate model structures S.
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3.6 Model validation

3.6.1 Hold-out cross validation

The main idea is to split the data in two data sets, one for the training step and

one for the validation step, if the overall data is su�ciently large. The goal is

to test the model's capability to predict new data that is not used in estimating

it, in order to avoid over�tting and to understand how the model will generalize

a new data set. For any model class S, the modelM(θ̂) that better reproduces

the training data is selected, and then its performance is evaluated by means of

validation criteria such as mean square error. The model that minimizes such

criterion among di�erent candidates is selected as the most suitable one. Then,

given data

uN =









u1(1) · · · uj(1)
...

...

u1(N) · · · uj(N)









, yN =









y(1)
...

y(N)









(3.72)

where u(t) ∈ R
j and y(t) ∈ R, we can partition them into two subsets:

� Training data set

uN−k
T =









u1(1) · · · uj(1)
...

...

u1(N − k) · · · uj(N − k)









, yN−k
T =









y(1)
...

y(N − k)









(3.73)

� Validation data set

uk
V =









u1(N − k + 1) · · · uj(N − k + 1)
...

...

u1(N) · · · uj(N)









, ykV =









y(N − k + 1)
...

y(N)









(3.74)

where the typical choice is k = N
2
. Then, for the two candidate models ARX

and OEM∈ S:

1. we compute the PEM estimate using training data set; in this way we obtain

θ̂PEM(yN−k
T , uN−k

T )

2. we test the prediction capability ofM(θ̂PEM(yN−k
T , uN−k

T )), computing the

prediction error

εθ̂PEM
(t) = y(t)− ŷθ̂PEM

(t|t− 1), t = N − k + 1, · · · , N (3.75)
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or equivalently

�
k
θ̂PEM

= ykV − ŷkV (3.76)

where

�
k
θ̂PEM

=









εk
θ̂PEM

(N − k + 1)
...

εk
θ̂PEM

(N)









ŷkV =









ŷkPEM(N − k + 1|N − k)
...

ŷkPEM(N |N − 1)









(3.77)

3. we compute the �t percent term as

JFIT (M) =

(

1−
∥

∥

∥

∥

�
k
θ̂PEM

∥

∥

∥

∥

∥

∥

∥

∥

ŷkV − ȳV
∥

∥

∥

∥

)

· 100 (3.78)

where

ȳV =
[

1 · · · 1
]T (

1
k

∑N
t=N−k+1 y(t)

)

. (3.79)

In conclusion, we choose the model structure in S that maximizes the �t

term.

In fact, there exist several indices of performance that can be considered. In

particular, the root mean square error RMSE and correlation coe�cient Rcc are

used to this aim and are de�ned respectively as

RMSE =

√

1

N

(

�
T
�

)

(3.80)

Rcc =

1
N

(

y − y
)(

ŷ − ŷ
)

√

1
N

(

y − y
)2

×
√

1
N

(

ŷ − ŷ
)2

(3.81)

where y = (1/N)
∑N

i=1 yi is the mean value of y.

3.6.2 Model structure selection

Akaike information criterion (AIC) is model structure criterion, useful to select

as best model structureM the one which minimizes the cost :

JAIC(M) = 2p+ ln J(θ̂) (3.82)

where
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� p is the number of parameters in θ

� J(θ) = 1
N

∑N
t=1 ε(t, θ)

2

It is worth noting that AIC criterion consists in the sum of two terms:

� the complexity term 2p, that favors simple models;

� the �t-term, that favors models well explaining the data;

Therefore, this criterion selects a model within the presence of a trade-o� between

the adherence of data and complexity of the system.
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4
Decentralized control design

In Chapter 3, we have proposed two grey-box models for multiple pool channel for

estimation purpose. In this chapter, a simpler model is chosen for control design.

In particular, a decentralized control solution is proposed in order to regulate the

water level of the string of pools, acting on the hydraulic structure position. Both

rectangular crested weirs and rectangular gates are considered. We take inspira-

tion by some literature about open-channel irrigation system [15], [35], [47], [39].

The complexity of the model proposed is chosen taking into account the context

of control design for set-point regulation and perturbation rejection. It is worth

noting that, since the free space upon the set point of a pool is not supposed to

cope with waves, an additional constraint is to guarantee that the wave dynamics

are not excited. Waves are undesirable, then it is necessary to guarantee that

each local control-loop bandwidth lies at a frequency lower than the correspond-

ing dominant wave phenomenon. Since these considerations are satis�ed during

the design of feedback controllers, a �rst-order model is su�cient for control

purpose. It is fundamental to implement a dynamic feedback control in order to

e�ciently discharge water and reject the perturbations. It can be introduced local

upstream control, that is one control policy classically implemented in irrigation

system �eld, capable of capturing the �rst mode of wave phenomena. Conven-

tional controllers such as PI-regulators are relatively easy to tune and they often

reach good performance. Then, a simple feedback con�guration is proposed for

local upstream water control. Moreover, the addition of feedforward allows to
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pool, controlled by the discharge at each control structure. This is the reason for

which we can assume that Gi(s) and G̃i(s) can be derived from the integrator

delay zero model:

Gi(s) =
e−τis

Abs
(4.2)

G̃i(s) = −
1

Abs
(4.3)

where τi is the propagation delay of pool and Ab is the backpropagation area.

Such a simple model is suitable for control purpose because it capture the main

dynamics of a pool in low frequency.

4.2 Local upstream control

There exist two main decentralized control policies for a canal pool, that are dis-

tant downstream control and local upstream control (see Figure 4.2).

Distant downstream control is one of the most common used control approach

Figure 4.2: Distant downstream and local upstream control

for open-channel irrigation system, because it shows a parsimonious water man-

agement. It consists in controlling the downstream water level using the upstream

control variable. Local upstream control shows a high performance with respect

to unpredicted disturbances but it shows a worst water e�ciency with respect to

distant downstream approach. We are interested in local upstream control of a

pool, that deals with the regulation of the upstream water level yi with respect to
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correspondence of low frequencies, where the reference and the perturbation are

relevant. The bandwidth of the loop gain
∣

∣

∣Ci(jw)G̃i(jw)
∣

∣

∣
need to lie under the

frequency of the local wave dynamics, that are not captured by the model. Then,

a PID regulator can satisfy these requirements. Moreover, it presents phase lead

at the desired loop gain bandwidth for stability, robustness and additional roll-o�

to that guarantee a low gain in correspondence of the dominant wave frequency.

In order to �gure out the downstream error propagation we can consider a string

of identical pool, with the same time delay τ and identical decentralized feedback

regulators C(s). Since these assumptions hold, the transfer function from the

reference to the water level error is given by the closed loop transfer functions

Wri→ei(s) :=
1

1 + C(s)G̃(s)
(4.11)

while the error propagates according to the transfer function

Wei→ei+1
(s) :=

G(s)

G̃(s)

C(s)

1 + C(s)G̃(s)
(4.12)

It is worth noting that in such a case there can be coupling of control action into

downstream pools.

4.2.2 Decentralized Feedback with Feedforward

The propagation and ampli�cation of water level errors can lead to actuator

saturation and such a problem can be interpreted as a further disturbance to the

�ows out of each pool. This means that the control action applied to hydraulic

structure i to balance the perturbation in pool i a�ects the �ow ui+1 out of pool

i and so water level error in pool i + 1 increases. According to the fact that

a measure of control input ui+1 can be achieved at hydraulic structure i, these

disturbances can be considered known. Decentralized feedback control scheme

with additional feedfoward is thus proposed in Figure 4.5.

In particular, it holds that

ui+1(s) = Ci(s)ei(s) + Fi(s)ui(s), (4.13)

where the feedforward compensator Fi(s) is a stable transfer function. Let us

consider a string of identical pool, with the same time delay τ and identical de-

centralized feedback regulators Ci(s) and feedforward compensators Fi(s). Since
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to retrieve a control con�guration which permits the (sub)controllers to be tuned

independently based on a minimum of model information.

4.3 Multi-variable Decentralized control

Local upstream control policy can be extended to multiple pool channel control

by means of decentralized control structures. This approach is advantageous

because controllers are easy to be implemented and tuned and they require an

easy maintenance. According to equation (4.1), a multiple-pool channel can be

represented by the model

y(s) = G(s)u(s) + G̃(s)d(s) (4.18)

where G is the bidiagonal matrix

G(s) =



















G1(s) G̃1(s) 0 0 0 0

0
. . . . . . 0 0 0

0 0 Gi(s) G̃i(s) 0 0

0 0 0
. . . . . . 0

0 0 0 0 Gn(s) G̃n(s)



















(4.19)

and

G̃(s) =



















G̃1(s) 0 0 0 0

0
. . . 0 0 0

0 0 G̃i(s) 0 0

0 0 0
. . . 0

0 0 0 0 0 G̃n(s)



















. (4.20)

Without loss of generality, we can focus on a four-pools channel system, where

y(t) ∈ R
4, u(t) ∈ R

5 and d(t) ∈ R
4. Then, the controlled variables vector, the

control input vector and the disturbance vector are respectively

y(t) :=













y1(t)

y2(t)

y3(t)

y4(t)













u(t) :=

















u1(t)

u2(t)

u3(t)

u4(t)

u5(t)

















d(t) :=













d1(t)

d2(t)

d3(t)

d4(t)













. (4.21)
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Therefore, the string of pools is described by the following system













y1

y2

y3

y4













=













G1 G̃1 0 0 0

0 G2 G̃2 0 0

0 0 G3 G̃3 0

0 0 0 G4 G̃4





























u1

u2

u3

u4

u5

















+













G̃1 0 0 0

0 G̃2 0 0

0 0 G̃3 0

0 0 0 G̃4

























d1

d2

d3

d4













(4.22)

where we drop the time domain for readability.

4.3.1 Stability and performance

Let us evaluate the stability of the multivariable system (4.22) with decentralized

upstream control. In such a case, the regulator matrix is chosen to be constant

and is given by

K =

















0 0 0 0

K21 0 0 0

K31 K32 0 0

K41 K42 K43 0

K51 K52 K53 K54

















(4.23)

where K21, K32, K43, K54 are the monovariable local upstream controllers for each

pool, while all the other entries are additional decoupling terms, that express the

interaction between pools. Then, the open-loop of the system (4.22) becomes

H := GK =













G̃1K21 0 0 0

G2K21 + G̃2K31 G̃2K31 0 0

G3K31 + G̃3K41 G3K32 + G̃3K42 G̃3K43 0

G4K41 + G̃4K51 G4K42 + G̃4K52 G4K43 + G̃4K53 G̃4K54













(4.24)

and the control input vector for the multivariable model (4.22) becomes

u :=

















u1

u2

u3

u4

u5

















=

















0

K21e1

K32e2

K43e3

K54e4

















(4.25)
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According to the transfer function computed in equations (4.9) and (4.12), we can

de�ne the relationship N between the tracking error vector and the disturbance

vector as follows













e1

e2

e3

e4













=













N11 0 0 0

N21 N22 0 0

N31 N32 N33 0

N41 N42 N43 N44

























d1

d2

d3

d4













(4.26)

where if i = j, the entries along the diagonal are

Nij = −G̃i(1 + G̃iKi+1,j)
−1 (4.27)

while if i ̸= j the entries o�-diagonal are

Nj,i = Ni,iKi+1,i
Gi+1

G̃i+1

Nj,i+1 (4.28)

Then, in our particular case the entries of matrix N are

N11 := Wd1→e1(s) = −G̃1(1 + G̃1K21)
−1;

N21 := Wd1→e1→e2(s) = N11K21

(

G2

G̃2

)

N22;

N22 := Wd2→e2(s) = −G̃2(1 + G̃2K32)
−1;

N31 := Wd1→e1→e2→e3(s) = N11K21

(

G2

G̃2

)

N32;

N32 := Wd2→e2→e3(s) = N22K32

(

G3

G̃3

)

N33;

N33 := Wd3→e3→e2→e3(s) = −G̃3(1 + G̃3K43)
−1;

N41 := Wd1→e1→e2→e3→e4(s) = N11K23

(

G2

G̃2

)

N42;

N42 := Wd2→e2→e3→e4(s) = N22K32

(

G3

G̃3

)

N43;

N43 := Wd3→e3→e4(s) = N33K43

(

G4

G̃4

)

N44;

N44 := Wd4→e4(s) = −G̃4(1 + G̃4K54)
−1.

(4.29)

We should focus on the performance of such a decentralized controller, by

examining the gain of N (jw). In the multivariable case, the module of a trans-

fer function is extended by means of the use of a matrix norm, for example the

largest singular value. As reported in [48], the maximum singular value of a

transfer function is very useful in terms of frequency-domain performance and
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4.3 Multi-variable Decentralized control

robustness. Thus, the performance of the closed-loop system (4.26) can be inves-

tigated evaluating the singular values of matrix N (jw). The singular values of a

matrix N can be written as

λi(N ) =
√

σi(N ∗N ) =
√

σi(N ) (4.30)

where we have de�ned

N := N ∗N , (4.31)

where N ∗ is the complex conjugate transpose of N and σ and λ refer to the

eigenvalues of N (jw) and N (jw) respectively. The largest singular value λ̄ is a

matrix norm, then it can be shown that

∥

∥

∥e(jw)
∥

∥

∥
=
∥

∥

∥N (jw)d(jw)
∥

∥

∥
≤ λ̄(N (jw))

∥

∥

∥d(jw)
∥

∥

∥
(4.32)

Hence, for de�nition of the largest singular value, there is a couple of distur-

bances (d̄1, d̄2) such that the tracking error norm achieves the upper bound of the

inequality. Accordingly, the largest singular value represents an estimate of the

performance of the system. It can be highlighted that the closed loop transfer

function N is a lower triangular matrix, then it holds

k
∏

i=1

σi =
k
∏

i=1

λ2
i =

k
∏

i=1

∣

∣

∣Ni,i

∣

∣

∣

2

(4.33)

and

tr(N ) =
k
∑

i=1

σi =
k
∑

i=1

k
∑

j=1

∣

∣

∣Ni,j(jw)
∣

∣

∣

2

=
∣

∣

∣N11

∣

∣

∣

2

+
∣

∣

∣N21

∣

∣

∣

2

+
∣

∣

∣N22

∣

∣

∣

2

+
∣

∣

∣N31

∣

∣

∣

2

+ · · ·+
∣

∣

∣N44

∣

∣

∣

2

≥
k
∑

i=1

∣

∣

∣Ni,i(jw)
∣

∣

∣

2

=
∣

∣

∣N11

∣

∣

∣

2

+
∣

∣

∣N22

∣

∣

∣

2

+
∣

∣

∣N33

∣

∣

∣

2

+
∣

∣

∣N44

∣

∣

∣

2

(4.34)

where tr denotes the trace of the matrix. It can be observed that the trace of

N (jw) depends on the coupling terms K31, K41, K42, K51, K52, K53 and in par-

ticular it holds

λ̄(N (jw)) > max(
∣

∣

∣N11(jw)
∣

∣

∣ , · · · ,
∣

∣

∣N44(jw)
∣

∣

∣) (4.35)

where λ̄ is the maximum eigenvalue of N . This con�rms that the coupling tends

to degenerate the whole performance in terms of perturbation rejection. In order
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to solve such an issue, the o�-diagonal entries of N should be zero.

4.3.2 Feedforward decoupler

The disturbance that is propagated by the �rst pool in the forward direction

is perfectly known, because it coincides with the control input. Then, such an

issue can be solved by means of an additional feedforward term in the regulator,

without degenerating stability and robustness of the closed loop 4.26. Hence, the

control input vector for the multivariable model (4.22) becomes

u :=

















u1

u2

u3

u4

u5

















=

















0

K21e1

K32e2 +KF (s)u2

K43e3 +KF (s)u3

K54e4 +KF (s)u4

















. (4.36)

Then, the relationship N between the tracking error and the perturbation 4.26

introduces the feedforward term, then if i = j, the entries along the diagonal are

Nij = −G̃i(1 + G̃iKi+1,j)
−1 (4.37)

while if i ̸= j the entries o�-diagonal are

Nj,i = Ni,iKi+1,i

(

Gi+1

G̃i+1

+Kj,i

)

Ni+1,i+1 (4.38)

where

KF
j,i = Kj+1,iK

−1
i+1,i. (4.39)

If we set the feedforward terms to

KF
21 = K31K

−1
21 ;

KF
31 = K41K

−1
21 ;

KF
32 = K42K

−1
32 ;

KF
41 = K51K

−1
21 ;

KF
42 = K52K

−1
32 ;

KF
43 = K53K

−1
43 ;

(4.40)
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then, the entries of N become

N11 := Wd1→e1(s) = −G̃1(1 + G̃1K21)
−1;

N21 := Wd1→e1→e2(s) = N11K21

(

G2

G̃2

+K31K
−1
21

)

N22;

N22 := Wd2→e2(s) = −G̃2(1 + G̃2K32)
−1;

N31 := Wd1→e1→e2→e3(s) = N11K21

(

G2

G̃2

+K41K
−1
21

)

N32;

N32 := Wd2→e2→e3(s) = N22K32

(

G3

G̃3

+K42K
−1
32

)

N33;

N33 := Wd3→e3→e2→e3(s) = −G̃3(1 + G̃3K43)
−1;

N41 := Wd1→e1→e2→e3→e4(s) = N11K23

(

G2

G̃2

+K51K
−1
21

)

N42;

N42 := Wd2→e2→e3→e4(s) = N22K32

(

G3

G̃3

+K52K
−1
32

)

N43;

N43 := Wd3→e3→e4(s) = N33K43

(

G4

G̃4

+K53K
−1
43

)

N44;

N44 := Wd4→e4(s) = −G̃4(1 + G̃4K54)
−1.

(4.41)

The interaction between pools e�ect can be reduced with a suitable choice for the

decoupling terms of the controller, that is

K31 = KF
21K21;

K41 = KF
31K21;

K42 = KF
32K32;

K51 = KF
41K21;

K52 = KF
42K32;

K53 = KF
43K43;

(4.42)

Then, in order to obtain exact decoupling, the o�-diagonal elements of N
should be zero, that is

KF
ji = −

Gi+1(s)

G̃i+1(s)
= e−τi+1 (4.43)

that is a causal transfer function, then also the decoupling terms are causal.

4.4 Tuning of local upstream PI controllers

The controller that we take into account is a PI augmented with a low pass

�lter (PIL). Indeed, the in�ow of water from the rain to the pools is equivalent

to a load disturbance and then the controller needs to be able to reject load
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CHAPTER 4. DECENTRALIZED CONTROL DESIGN

disturbances. Moreover, it is important to track water level reference changes.

The dimensionless PI controller is denoted with

C(s) = KP

(

1 + 1
TIs

)

(4.44)

where KP is the proportional gain and TI the integral time. This corresponds to

a continuous controller such that the control u can be computed as

u(t) = KP (y
∗
REF (t)− y(t)) +

KP

TI

∫ t

0

(y∗REF (ν)− y(ν))dν (4.45)

where y∗REF is the water level reference for the upstream water elevation. A PI is

chosen for our scenario because the integral action is fundamental to reject step

disturbances, while the low pass �lter is fundamental to attenuate the waves high

frequencies. Let us denote by Ci the local upstream controller for water level of

pool i in continuous time. The transfer function of the controller becomes

Ci(s) =
Kc(1 + Tcs)

Tcs
· 1

1 + Tfs

=
(

Kc

Tcs

)(

1+Tcs
1+Tf s

)

.

(4.46)

It can be noticed that integrators are present in both in the controller and the

plant transfer function

G̃i =
cout
s

, (4.47)

where cout < 0 is the output discharge coe�cient found by means of system

identi�cation procedure. Then, the phase is −180◦ initially and so it is required a

phase lead. Given the desired phase margin ϕm, the necessary phase lead depends

on the ratio

βm =
Tf

Tc

=
1− sin(ϕm +∆ϕm)

1 + sin(ϕm +∆ϕm)
(4.48)

where an additional phase lead ∆ϕm is taken into account because it is necessary

to compensate the phase drop due to the gain ampli�cation e�ect. As explained

in details in [15], the maximum phase lead correspond to the geometric mean

frequency wm = 1
Tc

√
βm

and there is a gain ampli�cation of Am = 1√
βm

at this

frequency. Accordingly, we want to obtain the maximum phase lead at the new

crossover frequency, then we choose wm to be the frequency where

∣

∣

∣
G̃i(jw) ·

(

Kc

Tcjw

)∣

∣

∣

w=wm

=
coutKc

w2
mTc

=
1

Am

. (4.49)
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Let us substitute wm = 1
Tc

√
βm

, then it holds

Kc =
1

coutTc

√
βm

. (4.50)

Moreover, it is possible to require a speci�c value Mwave of the gain of the con-

troller at the frequency wwave,i.e.

∣

∣

∣Ci(jw)
∣

∣

∣

w=wwave

Kc

√

1 + T 2
c w

2
wave

Tcwwave

√

1 + β2
mT

2
c w

2
wave

= Mwave. (4.51)

This procedure is recommended to avoid wave ampli�cation. Then, if we substi-

tute Eq. (4.50) in Eq. (4.51) we get a sixth order polynomial in Tc

αmβ
2
mw

2
waveT

6
c + αmT

4
c − w2

waveT
2
c − 1 = 0 (4.52)

where αm = (Mwavecout
√
βmwwave)

2. Once the phase margin and the controller

gain at the wave frequency are given, we can solve Eq. (4.48) and (4.52). Then,

we can set Tf = βmTc and �nally we can solve Eq. (4.50), checking that Tc >
1

cout
.

Then, the asymptotic Bode diagram of C1(s)G̃1(s) is reported in Figure 4.6. For
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Figure 4.6: Bode plot of the open loop system and of the PIL

what concerns the feedforward transfer function, a �rst order Butterworth �lter

can be selected.

F (s) = KB
1

(

s
w0

)2

+ 2εf

(

s
w0

)

+ 1
(4.53)
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where KB > 0, εf = 0.707, w0 is the cuto� frequency and is chosen half the wave

frequency. This �lter provides a maximal �atness gain at low frequencies and so

it does not dramatically change the frequency response of the system in the low

frequencies.

60



5
Numerical results

In this chapter, we try to apply the system identi�cation theory presented in

Chapter 3 and control theory proposed in Chapter 4. Indeed, a Matlab and

Simulink simulation is proposed with the attempt to �nd a suitable model and

control design for our case study, shown in details in Figures 5.1, 5.2. In the

last years, storms, downpours and �oods have become increasingly frequent and

devastating occurrences, then a violent disturbance will a�ect the system in order

to observe its e�ect.

Figure 5.1: Cavallino water channel network

In our analysis, Chiavica Zambon is assumed to be closed, in order to avoid

any in�ow from the sea. Thus, we restrict our discussion to the pool string from

G1-G22, as shown in Figure 5.2.
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Figure 5.2: Details of a subsection of Cavallino water channel network

5.1 Data generation

The SVEs are widely used for modeling hydraulic systems but for sake of sim-

plicity a second order model [13] is exploited for generating surface water level

data. For our analysis, we use the approximated pools parameters summarized

in Table 5.1, where l is the length of Cavallino pools, h0 is the steady state water

level, hMAX is the maximum water level that can be reached without over�ow, b

and B are respectively the smaller and the bigger base of the trapezoidal section

of the pools.

Usually, channels should be segmented in order to analyze separately single

stretches, due to the possible geometrical variations along the channel. On the

other hand, we are dealing with short and not very deep pools, then the trape-

zoidal section of each pool and the friction can be assumed constant and we can

treat the whole pool as a single segment, without losing much accuracy. All the

pools are characterized by an undershoot gate and one last weir at the down-

stream end, where the �ow can be approximated as reported in Chapter 6.2. The

width and the high of each gate are approximated to wg = 0.5m and hg = 0.4m.

In the attempt to obtain a close approximation of the upstream and downstream

surface water level, we can compute a rough estimate of the parameters of the

�rst order model. In particular, the side slope of each pool is assumed constant.
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Pool l [m] h0 [m] hMAX [m] b[m] B [m]

1 40.50 1.46 1.66 2.50 6.08

2 20.00 0.86 1.06 2.50 5.94

3 126.5 1.54 1.74 2.50 7.28

4 164.5 1.66 1.86 2.50 8.01

5 78.50 1.42 1.62 2.50 6.73

6 117.5 1.63 1.83 2.50 7.96

7 73.00 1.50 1.70 2.50 7.08

8 55.00 1.67 1.87 2.50 8.54

9 117.5 1.79 1.99 2.50 8.61

10 169.5 1.55 1.75 2.50 8.84

11 185.0 1.54 1.74 2.50 7.41

12 262.0 1.59 1.79 2.50 7.66

13 200.0 1.19 1.39 2.76 4.78

14 197.0 0.92 1.12 2.99 4.37

15 127.0 1.05 1.25 2.55 4.65

16 253.0 1.51 1.71 2.00 5.13

17 240.0 1.70 1.90 2.00 6.14

18 110.0 1.73 1.93 2.00 5.75

19 70.00 1.44 1.64 2.00 4.78

20 200.0 1.56 1.76 2.00 8.55

21 105.0 1.56 1.76 2.00 8.89

22 170.0 1.38 1.58 2.76 7.57

Table 5.1: Dataset of geometrical parameters of pools 1-22

Therefore, one has

s =
B − b

2h
. (5.1)

and then the greatest base B of the trapezoidal section can be expressed in

function of the slope as

B = 2sh+ b. (5.2)
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Accordingly, the in�ow of an additional water volume V a�ects the additional

high of each pool in the following way

V = hl
2B + 2sh

2
(5.3)

Then, the incremental high h can be expressed as a function of the incremental

volume V as

h = θ(V )V. (5.4)

The simulation duration is T = 500 min, the sampling time is reasonable

Ts = 1 min and the number of samples is T
Ts
. Thus, the discrete time model

for the data generation of the upstream and downstream surface water level is a

second order system

yU((k + 1)Ts) =yU(kTs) + TsθinQin,U((k − τ)Ts)− Ts
θin
10

Qin,U((k − τ − 1)Ts)+

+ TsθoutQout,U(kTs)− Ts
θout
10

Qout,U((k − 1)Ts)

yD((k + 1)Ts) =yD(kTs) + TsθinQin,D(kTs − Ts
θin
10

Qin,D((k − 1)Ts)+

+ TsθoutQout,D((k − τ)Ts − Ts
θout
10

Qout,D((k − τ − 1)Ts)).

(5.5)

where τ is a reasonable delay time reported in Table 5.2. It is assumed that all the

gates are closed and there exists a di�erence of water level between consecutive

pools, as reported from the initial conditions in Table 5.2.

From the data in Table 5.1 it can be observed that a disturbance could be

more dangerous for a few pools than others, because some coe�cients di�ers of

almost one order. This means that the e�ects on the pools are di�erent, because

the smaller is the coe�cient θ, the smaller e�ect on the water level increment there

will be. In this simulation, all the gates are closed and the surface water level

of the pools are sequentially decreasing. Thus, for Bernoulli law, as soon as the

gates are opened, the water �ows along the pools reach a steady state scenario,

where all the pools show the same surface water level. For what concerns the

boundary �ow condition at the upstream and downstream, we choose a binary

signal, reported in Figure 5.3. The only exception is given by the �rst pool that

shows only out�ow and no in�ow. The simulation results are reported in Figures

5.4, 5.5, 5.6.

In general, it can be observed that the water level is constant initially but as
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0 100 200 300 400 500

0

0.05

0.1

0.15

0.2

0.25

Figure 5.3: Binary signal to control the aperture of all the gates

soon as the gates are opened, the upstream water level tends to decrease while

the downstream water level of a pool decreases only if the following pool has a

smaller water volume. In general, the last pools show large variation of the water

level due to the large coe�cient θ of the out�ow of the last pool. Large variations

can be observed also in the �rst pools, due to the fact that the �rst pool do not

have any in�ow. The scenario is di�erent if we notice the pools in the middle of

the string, due to the fact that the di�erence between the water levels is really

small. Indeed, the �ow amplitude is strictly dependent to the di�erence between

water levels of consecutive pools and to the dimension of the gates aperture.
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Pool y = [yD, yU ][m] θ = [θin, θout] [] τ [min]

1
[

0.42, 0.41
] [

4.07 · 10−3,−4.07 · 10−3

]

2

2
[

0.41, 0.40
] [

8.51 · 10−3,−8.51 · 10−3

]

2

3
[

0.40, 0.39
] [

1.09 · 10−3,−1.09 · 10−3

]

3

4
[

0.39, 0.38
] [

7.60 · 10−4,−7.60 · 10−4

]

2

5
[

0.38, 0.37
] [

1.89 · 10−3,−1.89 · 10−3

]

3

6
[

0.37, 0.36
] [

1.07 · 10−3,−1.07 · 10−3

]

2

7
[

0.36, 0.35
] [

1.94 · 10−3,−1.94 · 10−3

]

2

8
[

0.35, 0.34
] [

2.13 · 10−3,−2.13 · 10−3

]

3

9
[

0.33, 0.32
] [

9.89 · 10−4,−9.89 · 10−4

]

3

10
[

0.32, 0.31
] [

6.67 · 10−4,−6.67 · 10−4

]

3

11
[

0.31, 0.30
] [

7.30 · 10−4,−7.30 · 10−4

]

4

12
[

0.30, 0.29
] [

4.99 · 10−4,−4.99 · 10−4

]

3

13
[

0.29, 0.28
] [

1.05 · 10−3,−1.05 · 10−3

]

3

14
[

0.28, 0.27
] [

1.16 · 10−3,−1.16 · 10−3

]

3

15
[

0.27, 0.26
] [

1.70 · 10−3,−1.70 · 10−3

]

3

16
[

0.26, 0.25
] [

7.70 · 10−4,−7.70 · 10−4

]

3

17
[

0.25, 0.24
] [

6.79 · 10−4,−6.79 · 10−4

]

3

18
[

0.24, 0.23
] [

1.58 · 10−3,−1.58 · 10−3

]

4

19
[

0.23, 0.22
] [

3.00 · 10−3,−3.00 · 10−3

]

3

20
[

0.22, 0.21
] [

5.85 · 10−4,−5.85 · 10−4

]

4

21
[

0.21, 0.20
] [

1.07 · 10−3,−1.07 · 10−3

]

3

22
[

0.20, 0.19
] [

7.77 · 10−4,−7.77 · 10−4

]

3

Table 5.2: Parameters of the data generation model
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(a) POOL 1 (b) POOL 2

(c) POOL 3 (d) POOL 4

(e) POOL 5 (f) POOL 6

(g) POOL 7 (h) POOL 8

Figure 5.4: Upstream and downstream surface water level (pools from 1
to 8)
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(a) POOL 9 (b) POOL 10

(c) POOL 11 (d) POOL 12

(e) POOL 13 (f) POOL 14

(g) POOL 15 (h) POOL 16

Figure 5.5: Upstream and downstream surface water level (pools from 9
to 16)
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(a) POOL 17 (b) POOL 18

(c) POOL 19 (d) POOL 20

(e) POOL 21 (f) POOL 22

Figure 5.6: Upstream and downstream surface water level (pools from 17
to 22)
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5.2 Identi�cation

Discrete time models are preferred for system identi�cation purpose, because data

samples are collected in discrete time. There exist several linear model structures

as reported in Chapter 3 and in particular we refer to ARX (Auto Regression with

External Input) and OE (Output Error) models, where the transfer functions are

rational functions of polynomials.In general, OE models show a good representa-

tion of low frequencies properties, while ARX is more sensitive to high frequencies

properties. It is worth noting that waves shows higher frequencies with respect

to the other pool dynamics. Moreover, accurate models in low frequencies should

be enhanced with the attempt of modeling and control pools, that have the main

interesting dynamics in the low frequencies because changes are slow. The order

of the model is fundamental to describe the whole system dynamics. In such a

case, a �rst order model and a second order model are proposed. The parame-

ters are estimated using the prediction error method with a quadratic criterion,

that consists on the minimization of a cost function. As reported in Chapter

3, this function is the mean squared error and vector θ contains the estimated

parameters

θ̂ = argmin
θ

1

250

250
∑

t=1

(yi(t)− ŷ(t, θ, τ))2. (5.6)

One model is obtained for every value of the time delay and the one that show

the smaller error on the validation set is selected

τ̂ = argmin
τ∈{1,2,3,4,5}

1

249

500
∑

t=251

(yi(t)− ŷ(t, θ̂, τ))2. (5.7)

With this approach, all the in�ow time delays have been estimated correctly. The

ARX model structure allows to �nd the solution of the optimization problem

analytically while the OE structure required an iterative searching method. In

this case, parameter estimation is performed for the ARX and the OE models

with 3 and with 5 parameters and it is performed by means of Matlab System

Identi�cation toolbox. In order to improve the performance of the OE model,

Levenberg-Marquardt algorithm has been employed for the cost minimization

problem. The parameters for such algorithm implementation are reported in

Table 5.3. Validation mean square error (MSE) and parameters estimation are

reported in Tables 5.4, 5.5 and 5.6.

It can be observed that the parameters relative to the in�ow are almost the
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maxiter γ1 λ0 θ0 errmeas ζ

150 10−3 10−2
[

0.05− 0.05
]

10−3 10−3

Table 5.3: Levenberg-Marquardt algorithm parameters

MSEVARX
θARX MSEVOE

θOE JARX JOE

2.59 · 10−7 [1, 0.000,−0.213] 7.78 · 10−7 [1, 0.000,−0.217] 96.7 96.6

2.47 · 10−7 [1, 0.496,−0.481] 9.66 · 10−6 [1,−0.205,−0.141] 96.4 77.6

1.72 · 10−6 [1, 0.016,−0.045] 1.12 · 10−5 [1,−0.14,−0.04] 88.3 70.1

4.51 · 10−7 [1, 0.044,−0.042] 7.66 · 10−7 [1, 0.019,−0.016] 93.9 92.0

6.96 · 10−7 [1, 0.111,−0.109] 1.41 · 10−7 [1, 0.004,−0.018] 91.3 96.0

1.13 · 10−6 [1, 0.065,−0.064] 1.48 · 10−7 [1, 0.0039,−0.013] 87.8 95.6

1.61 · 10−6 [1, 0.122,−0.122] 1.88 · 10−7 [1, 0.021,−0.026] 82.3 93.9

2.90 · 10−6 [1, 0.150,−0.149] 3.31 · 10−6 [1, 0.354,−0.353] 66.2 63.9

6.09 · 10−6 [1, 0.085,−0.084] 9.19 · 10−6 [1, 0.323,−0.320] 31.5 15.9

1.39 · 10−5 [1, 0.081,−0.080] 1.46 · 10−5 [1, 0.331,−0.329] -53.0 -56.0

3.78 · 10−5 [1, 0.152,−0.161] 9.42 · 10−6 [1, 0.222,−0.229] -326 -112

1.06 · 10−4 [1, 0.226,−0.226] 2.27 · 10−5 [1, 0.363,−0.368] -1061 -437

2.1 · 10−5 [1, 0.546,−0.546] 7.30 · 10−5 [1, 2.12,−2.12] -1369 -1183

9.58 · 10−5 [1, 0.412,−0.412] 1.47 · 10−5 [1, 1.090,−1.09] -854 -510

3.60 · 10−5 [1, 0.350,−0.349] 1.59 · 10−5 [1, 1.950,−1.95] -355 -437

1.14 · 10−5 [1, 0.118,−0.117] 2.63 · 10−6 [1, 0.022,−0.029] -168 -78.8

5.94 · 10−6 [1, 0.077,−0.076] 1.24 · 10−7 [1, 0.0006,−0.0006] -38.2 70.9

2.80 · 10−6 [1, 0.115,−0.114] 4.51 · 10−6 [1,−0.053,−0.053] 52.5 -13.3

7.96 · 10−7 [1, 0.160,−0.160] 6.19 · 10−7 [1, 0.002,−0.002] 73.8 71.0

5.08 · 10−7 [1, 0.028,−0.029] 1.25 · 10−6 [1, 0.003,−0.003] 75.3 63.8

5.82 · 10−7 [1, 0.052,−0.053] 5.86 · 10−6 [1, 0.0008,−0.011] 64.4 17.1

2.45 · 10−6 [1, 0.036,−0.037] 9.68 · 10−6 [1, 0.023,−0.033] 25.0 -49.0

Table 5.4: Validation results for ARX, OE models with 3 parameters for
upstream water level models
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MSEVARX
θARX MSEVOE

θOE JARX JOE

9.68 · 10−6 [1,−0.195,−0.006] 6.01 · 10−7 [1,−0.202,−0.139] 94.6 79.5

1.02 · 10−5 [1,−0.078,−0.023] 1.35 · 10−5 [1,−0.157,−0.045] 71.9 67.9

4.82 · 10−7 [1,−0.019,−0.006] 1.75 · 10−6 [1,−0.026,−0.017] 93.76 88.11

4.30 · 10−6 [1,−0.012,−0.0005] 5.63 · 10−7 [1,−0.007,−0.015] 80.4 92.9

1.42 · 10−5 [1,−0.006,−0.0004] 1.29 · 10−7 [1, 0.007,−0.016] 58.4 96.0

1.51 · 10−5 [1,−0.005, 0.0004] 3.31 · 10−6 [1, 0.179,−0.271] 51.0 77.1

1.32 · 10−5 [1,−0.003,−0.0006] 2.49 · 10−6 [1, 0.272,−0.271] 42.3 75.0

8.57 · 10−6 [1,−0.002,−0.0003] 4.54 · 10−6 [1, 0.226,−0.224] 29.2 48.8

4.74 · 10−6 [1,−0.0009, 0.0003] 1.03 · 10−5 [1, 0.234,−0.232] 20.4 -16.7

2.12 · 10−6 [1,−0.0006, 0.0003] 2.46 · 10−5 [1, 0.552,−0.5503] 16.7 -182

6.93 · 10−7 [1,−0.0007, 0.0006] 6.92 · 10−5 [1, 0.789,−0.788] 13.5 -761

3.45 · 10−7 [1,−0.0005, 0.0003] 8.66 · 10−5 [1, 2.20,−2.20] 18.2 -1195

2.35 · 10−7 [1,−0.0005, 0.0003] 6.93 · 10−6 [1, 0.253,−0.262] 22 -320

2.19 · 10−7 [1,−0.0006, 0.0003] 5.15 · 10−6 [1, 0.097,−0.107] 30 -234

1.23 · 10−7 [1,−0.0007, 0.0003] 7.17 · 10−6 [1, 0.609,−0.607] 42 -215

2.16 · 10−7 [1,−0.0009, 0.0003] 1.23 · 10−7 [1,−0.0004,−0.0005] 58.6 68.7

1.42 · 10−7 [1,−0.002,−0.0004] 5.19 · 10−6 [1,−0.005,−0.005] 75.6 -47.7

2.88 · 10−7 [1,−0.003, 0.0009] 3.07 · 10−7 [1,−0.002,−0.002] 76.0 75.2

1.53 · 10−6 [1,−0.004, 0.0006] 1.01 · 10−6 [1,−0.003,−0.003] 59.6 67.1

7.35 · 10−6 [1, 0.0005,−0.004] 8.79 · 10−7 [1, 0.091,−0.092] 10.7 69.1

8.79 · 10−5 [1, 0.008,−0.014] 2.51 · 10−6 [1, 0.035,−0.041] -142 33.5

Table 5.5: Validation results for ARX, OE models with 3 parameters for
downstream water level models

opposite of those related to the out�ow, that makes sense from a physical point

of view. Moreover, MSE values on the training set are almost the same order of

magnitude. On the other hand, there is an improvement of the MSE computed

in the validation set. As expected, the performance of the second order model

is more accurate than the one obtained from a �rst order model. In particular,

it can be enhance that for large variation in water level, second order model
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MSEVARX
MSEVOE

θLM MSEVLM
JLM

2.59× 10−7 2.77× 10−7 [0,−0.220] 4.46× 10−7 95.7

2.49× 10−7 9.66× 10−7 [0.419,−0.432] 6.22× 10−7 94.3

1.71× 10−6 1.12× 10−5 [0.070,−0.0617] 3.32× 10−7 94.8

4.51× 10−7 7.66× 10−7 [0.034,−0.037] 2.91× 10−7 95.0

6.95× 10−7 1.41× 10−7 [0.094,−0.095] 3.52× 10−7 93.8

1.31× 10−6 1.48× 10−7 [0.054,−0.054] 3.78× 10−7 92.9

1.61× 10−6 1.88× 10−7 [0.0958,−0.096] 4.71× 10−7 90.4

2.90× 10−6 3.31× 10−6 [0.099,−0.099] 8.44× 10−7 81.7

6.08× 10−6 9.19× 10−6 [0.050,−0.050] 2.70× 10−7 85.5

1.40× 10−5 1.45× 10−5 [0.016,−0.016] 5.80× 10−6 0.83

3.78× 10−5 9.42× 10−6 [0.050,−0.050] 1.83× 10−6 5.4

1.05× 10−4 2.27× 10−5 [0.050,−0.050] 5.58× 10−6 -168

9.58× 10−5 7.30× 10−5 [0.050,−0.050] 2.79× 10−7 20.2

3.60× 10−5 1.47× 10−5 [0.050,−0.050] 2.47× 10−7 20.4

1.14× 10−5 1.59× 10−5 [0.050,−0.050] 4.68× 10−7 7.21

5.94× 10−6 2.63× 10−6 [0.050,−0.050] 8.80× 10−7 -3.87

2.80× 10−6 1.23× 10−7 [0.019,−0.02] 5.52× 10−7 38.3

7.96× 10−7 4.51× 10−6 [0.049,−0.050] 2.73× 10−7 71.9

5.07× 10−7 6.19× 10−7 [0.049,−0.051] 1.02× 10−7 62.8

5.81× 10−7 1.25× 10−6 [0.021,−0.022] 1.39× 10−7 61.7

1.08× 10−6 5.86× 10−6 [0.061,−0.060] 2.39× 10−7 83.1

2.45× 10−6 9.68× 10−6 [0.043,−0.043] 3.19× 10−7 72.8

Table 5.6: Validation results for ARX, OE with 5 parameters and LM
with 2 parameters for upstream water level

perform better than �rst order ones. Thus, for estimate purpose, OE second

order model could represent the best solution. On the other hand, the di�erence

in performance is minimal. Moreover, it can be highlighted the performance

of the OE model with Levenberg-Marquardt approach. Indeed, starting from
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MSEVARX
MSEVOE

θLM MSEVLM
JLM

6.00× 10−7 8.69× 10−6 [0,−0.220] 1.55× 10−6 91.3

1.03× 10−5 1.35× 10−5 [0.419,−0.432] 3.26× 10−7 94.9

4.82× 10−7 1.75× 10−6 [0.070,−0.0617] 8.87× 10−7 91.5

4.29× 10−6 5.63× 10−7 [0.034,−0.037] 3.19× 10−7 94.7

1.42× 10−5 1.30× 10−7 [0.094,−0.095] 3.74× 10−7 93.2

1.51× 10−5 3.31× 10−6 [0.054,−0.054] 4.31× 10−7 91.7

1.32× 10−5 2.49× 10−6 [0.0958,−0.096] 5.94× 10−7 87.7

8.57× 10−6 4.54× 10−6 [0.099,−0.099] 2.78× 10−7 87.2

4.74× 10−6 1.03× 10−5 [0.050,−0.050] 4.44× 10−6 22.7

2.12× 10−6 2.46× 10−5 [0.016,−0.016] 2.25× 10−6 13.9

6.93× 10−7 6.92× 10−5 [0.050,−0.050] 6.08× 10−6 -157

3.45× 10−7 8.66× 10−5 [0.050,−0.050] 2.74× 10−7 26.7

2.35× 10−7 6.93× 10−6 [0.050,−0.050] 2.45× 10−7 20.4

2.19× 10−7 5.15× 10−6 [0.050,−0.050] 4.25× 10−7 3.26

2.37× 10−7 7.17× 10−6 [0.050,−0.050] 8.69× 10−7 -10.5

1.42× 10−7 5.18× 10−6 [0.050,−0.050] 6.80× 10−7 26.2

2.88× 10−7 3.07× 10−7 [0.019,−0.02] 3.56× 10−7 61.1

1.53× 10−6 1.01× 10−6 [0.049,−0.050] 2.86× 10−7 75.9

7.35× 10−6 8.80× 10−7 [0.049,−0.051] 1.51× 10−6 59.6

7.36× 10−6 8.79× 10−7 [0.021,−0.022] 2.36× 10−7 84.0

8.80× 10−7 3.33× 10−5 [0.061,−0.060] 2.93× 10−7 77.1

Table 5.7: Validation results for ARX, OE with 5 parameters and LM
with 2 parameters for downstream water level

suitable initial condition, the estimation is much more accurate than the simple

OE performance. For this reason, the estimated parameters are also employed for

the continuous time model in the control scheme implementation. In particular,

the convergence of the parameters is reported in Figure 5.7.

It can be observed that some iteration search procedure required the maxi-

mum number of iterations to converge while other reach the optimal solution in
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Figure 5.7: Convergence of parameter estimation with Levenberg-
Marquardt algorithm for some relevant results.

a few iterations. Instead, for control purpose, these �rst order system estimated

parameters are su�cient to have a good approximation of the string of pools con-

trol. In conclusion, validation results can be observed in Figures 5.8, 5.9, 5.10,
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5.11, 5.12, 5.13.

(a) Upstream Estimate - Pool 1 (b) Dowstream Estimate - Pool 1

(c) Upstream Estimate - Pool 2 (d) Dowstream Estimate - Pool 2

(e) Upstream Estimate - Pool 3 (f) Dowstream Estimate - Pool 3

Figure 5.8: Upstream and downstream estimate surface water level (Pools
from 1 to 3)
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(a) Upstream Estimate - Pool 4 (b) Dowstream Estimate - Pool 4

(c) Upstream Estimate - Pool 5 (d) Dowstream Estimate - Pool 5

(e) Upstream Estimate - Pool 6 (f) Dowstream Estimate - Pool 6

(g) Upstream Estimate - Pool 7 (h) Dowstream Estimate - Pool 7

Figure 5.9: Upstream and downstream estimate surface water level (Pools
from 4 to 7)
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(a) Upstream Estimate - Pool 8 (b) Dowstream Estimate - Pool 8

(c) Upstream Estimate - Pool 9 (d) Dowstream Estimate - Pool 9

(e) Upstream Estimate - Pool 10 (f) Dowstream Estimate - Pool 10

(g) Upstream Estimate - Pool 11 (h) Dowstream Estimate - Pool 11

Figure 5.10: Upstream and downstream estimate surface water level
(Pools from 8 to 11)
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(a) Upstream Estimate - Pool 12 (b) Dowstream Estimate - Pool 12

(c) Upstream Estimate - Pool 13 (d) Dowstream Estimate - Pool 13

(e) Upstream Estimate - Pool 14 (f) Dowstream Estimate - Pool 14

(g) Upstream Estimate - Pool 15 (h) Dowstream Estimate - Pool 15

Figure 5.11: Upstream and downstream estimate surface water level
(Pools from 12 to 15)
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(a) Upstream Estimate - Pool 16 (b) Dowstream Estimate - Pool 16

(c) Upstream Estimate - Pool 17 (d) Dowstream Estimate - Pool 17

(e) Upstream Estimate - Pool 18 (f) Dowstream Estimate - Pool 18

(g) Upstream Estimate - Pool 19 (h) Dowstream Estimate - Pool 19

Figure 5.12: Upstream and downstream estimate surface water level
(Pools from 16 to 19)
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(a) Upstream Estimate - Pool 20 (b) Dowstream Estimate - Pool 20

(c) Upstream Estimate - Pool 21 (d) Dowstream Estimate - Pool 21

(e) Upstream Estimate - Pool 22

Figure 5.13: Upstream and downstream estimate surface water level
(Pools from 20 to 22)
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5.3 Control scheme implementation

The knowledge of literature about the open-channel irrigation systems is funda-

mental to delineate and tackle the water delivery problem that a�ects the Cav-

allino water channel network. In general, our scenario presents some di�erences

with respect to the irrigation system. When we deal with an irrigation systems

we assume that there exists a string of pools that extend on di�erent high levels

and are �lled by means of an upstream tank. In this case the main target is to

satisfy the water request that comes from the downstream pool acting on the

system as negative disturbances on the last pool. In our scenario, we assume a

steady state initial condition where all the gates are opened with the exception

of the ones upstream and downstream of the string of pools. Then, we assume

to start with the same initial conditions for all the pools. Another di�erence

with irrigation systems is that positive perturbations act on all the pools at the

same time, �lling the pools with di�erent volume of water. It is worth noting

that, for the Bernoulli law, the �ow strictly depends on the water level di�erence

between two consecutive pools when we deal with undershoot gates. Moreover,

distant downstream control is widely used in irrigation systems; whereas, we pre-

fer to use local upstream control con�guration. Indeed, this approach allows to

control the output gates of each pool in order to reach the desired pool water

level. The automatic controller tuning routine implemented in Chapter 4 allows

to �nd suitable PIL parameters, that are reported in Table 5.8, once we choose

the phase margin ϕm = 80◦ and the gain of the controller Mm = −10db at the
wave frequency wwave = 0.015 rad

s
, while the cuto� frequency of the butterworth

�lter for the feedforward action is set equal to wwave

2
and its gain KB = 0.75

According to the Bernoulli law, the �ow control input depends on the water

level di�erence of two consecutive pools. This can be translated into an additional

saturation of the control output. Moreover, as soon as the water level of pool i

is lower than the water level of pool i+1, the control input vanishes, that is the

output gate of pool i is closed. Due to these speci�cs, the control becomes much

more slower than what is expected to be. Feedforward is fundamental to avoid

the error propagation along the string of pools and to have a better performance

in terms of settling time. Then, in order to avoid �oods it is fundamental a change

of reference with respect to the steady state reference. According to the database

in Table 5.1, the maximum water level for each pool is 0.2 m higher than the

steady state condition. In our scenario, the steady state condition corresponds
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Pool Kc Tc Tf

1 -0.222 2.53 · 104 48.3

2 -0.206 1.31 · 104 24.9

3 -0.320 6.57 · 104 125

4 -0.370 8.16 · 104 155

5 -0.265 4.56 · 104 86.9

6 -0.323 6.64 · 104 126

7 -0.263 4.49 · 104 85.6

8 -0.256 4.19 · 104 79.9

9 -0.333 6.97 · 104 133

10 -0.390 8.79 · 104 168

11 -0.380 8.35 · 104 159

12 -0.443 1.04 · 105 198

13 -0.325 6.73 · 104 128

14 -0.313 6.30 · 104 120

15 -0.274 4.92 · 104 93.9

16 -0.368 8.09 · 104 154

17 -0.387 8.70 · 104 165

18 -0.281 5.16 · 104 98.4

19 -0.235 3.25 · 104 61.9

20 -0.413 9.48 · 104 180

21 -0.322 6.63 · 104 126

22 -0.366 8.05 · 104 153

Table 5.8: PIL parameters

to the water level 0 m, while the chosen disturbance amplitude is

di(t) = Bili · 5× 10−4m
3

s
(5.8)

where Bi is the greatest base of the trapezoidal pool section and li is the length

of the pool. The control scheme has been implemented in Simulink as shown in
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Figure 5.14: Zoom on a single pool model

Figures 5.14, 5.15, 5.16.

The time simulation is T=108000 s≈ 30 hr, while the disturbance act on the

system from T
3
to T

3
+ 360s , that is a reasonable choice for a violent rain per-

turbation that lasts one hour. The change of reference is chosen with di�erent

amplitude for the pools in series. The reference of the upstream pools are chosen

smaller in module with respect to the downstream ones. In particular, the refer-

ences occur 10 hours before the rain starts, if the forecast is known with a high

probability, otherwise the references amplitudes should be reduced.
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Figure 5.15: Simulink control scheme
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Figure 5.16: Simulink control scheme
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5.3 Control scheme implementation

A comparison between the water level with and without feedforward action

can be observed in Figure 5.17.
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(a) Pool 1
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(b) Pool 22

Figure 5.17: Water level simulation with and without feedforward control
action

The simulation results with feedforward action are reported in Figures 5.18

and 5.19. It can be observed that the disturbance rejection is slow but with

a smart change of reference the maximum water level is not reached, avoiding

�oods. Moreover, the control input response shows an undershoot of 2 cm, that

can be reduced trying to reduce the integral action, i.e. Tc = Tc · 1.5 for a 50%

reduction of the integral action.
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(a) Water level Pool 1-5
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(b) Control Input - Pool 1-5

Figure 5.18: Control of a string of Cavallino pools with disturbance.
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(a) Water level Pool 6-10
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(f) Control Input - Pool 16-20
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(h) Control Input - Pool 21-22

Figure 5.19: Control of a string of Cavallino pools with disturbance.
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6
Conclusions and future work

6.1 Conclusions

In order to deal with this work, we draw inspiration from the open-channel irriga-

tion �eld, highlighting the main di�erences with our water discharge scenario. We

have presented a system-identi�cation-based procedure to estimate parameters of

a discrete time �rst order model and a control strategy to regulate upstream water

level in order to avoid �oods in case of strong perturbation of the system. Indeed,

as soon as we collect some measurements of the water level and of the gates posi-

tion, an OE structure model can be tested as candidate model. The Levemberg-

Marquardt algorithm allows to solve the minimization of the cost given by the

predicted error, showing better results with respect to the ARX model, in terms

of mean square error and best �t. Once the parameters are estimated, a one-step-

ahead predictor can be easily implemented. The main contribution on this thesis

is the upstream control of the string of pools. Feedforward implementation allows

to reduce the error ampli�cation and propagation between pools and to attain a

better performance in terms of rise time a disturbance rejection. In general, the

PIL tuning automatic routine proposed allows to reach the desired phase margin

and gain at the waves frequencies. The resulting control performance is slow but

the disturbance rejection is satis�ed and the lowpass �lter cut the waves frequen-

cies. Then, the resulting control input is feasible but there is some undershoot

that can be reduced trying to limit the integral action. Moreover, it is required a
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change of the set point in order to discharge in advance the pool with respect to a

violent perturbation, that is a probabilistic event. For this reason, the amplitude

of the reference needs to be chosen in the most suitable way, according to the

probability of the event, given by the forecast.

6.2 Future works

Some of the possible improvements that we can make are listed in the following

lines.

� We could consider a LQR centralize control, in order to reach a better

control performance by means of a controller that requires less maintenance

with respect to a PIL (4.46);

� We could extend our work to the whole networked, taking into account

junctions and the network �ow systems;

� We could obtain real measurements by means of sensors, analyzing the

minimum number required to get better results;

� We could extend the model considering pipelines.
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Appendix

A SVEs implementation

A �nite di�erence approach is analyzed and exploited to evaluate SVEs solution

for one-dimensional �ow of open channel systems.

A.1 Numerical solution methods

SVEs are nonlinear partial di�erential equations (PDE) of the hyperbolic type, for

which a closed form solution is not possible. Hence, there exist multiple methods

that can be used for their integration. Considering a channel of known parameters

and measures such as cross-sectional geometry, roughness factor and longitudinal

slope, the unknowns in equations (2.4) and (2.5) are the discharge, Q, and the

�ow depth, y, while the independent variables are time, t, and distance along

the channel, x. The channel dynamic is discretized in order to apply numerical

solution methods. In particular, a computation grid of uniform size is exploited

to de�ne �nite di�erence equations. Vertical lines depict di�erent sections along

the channel, while horizontal lines depict the discrete time at which a solution

is computed. The space increment is denoted by ∆x while the time increments

are denoted by ∆t and they are assumed to be constant. All the nodes on the

�rst horizontal line satisfy the initial condition of the �ow. The nodes on the �rst

vertical line describe the upstream end of the channel while the M-th vertical line

describes the downstream end of the channel. In correspondence of these vertical

lines there are two boundary conditions to satisfy. Once the initial conditions are

known, �ow conditions at all the nodes on the horizontal line can be computed

for the next time step. The �nite di�erence equations can be determined by

means of Taylor series approximations to the partial di�erential terms of the

SVEs. On the other hand, this approach is a�ected by truncation errors, that

may be lead to a wrong solution. Then, it is fundamental to ensure stability
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of the numerical method. The �nite di�erence approach can be distinguished as

explicit and implicit. Explicit methods exhibit spatial partial derivatives replaced

in terms of the variables at the known time level, while those in terms of variables

at future time level are referred to implicit methods.

A.2 Preissmann scheme

In the implicit �nite-di�erence schemes, the spatial partial derivatives and/or the

coe�cients are replaced in terms of the values at the unknown time level. Preiss-

mann scheme has the advantages that a variable spatial grid can be exploited

(see Figure 6.1). Moreover, such scheme proposes an accurate solution of the lin-

Figure 6.1: Computation grid for numerical solution methods

earized form of the main equations for a speci�c value of ∆x and ∆t. The partial

derivatives for a channel section between nodes i and i+ 1 are approximated as

f =
1

2
α(fk+1

i+1 + fk+1
i ) +

1

2
(1− α)(fk

i+1 + fk
i )

∂f

∂t
=

(fk+1
i+1 + fk+1

i )− (fk
i+1 + fk

i )

2∆t
∂f

∂x
=

α(fk+1
i+1 − fk+1

i )

∆x
+

(1− α)(fk
i+1 − fk

i )

∆x

(6.1)

where f refers to the unknown quantities Q and y, while α is a weighting
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coe�cient. This four point implicit approach is stable if t 0.5 < α < 1. It

is worth noting that the cross sectional area Ak+1
i and the friction slope S̄k+1

i

can be expressed as a function of the unknowns yk+1
i and Qk+1

i . Therefore, the

components of the SVEs can be rewritten as the so called four point implicit

scheme
∂Q

∂t
≃ (Qk+1

i+1 +Qk+1
i )− (Qk

i+1 +Qk
i )

2∆t
∂Q

∂x
≃ α(Qk+1

i+1 −Qk+1
i )

∆x
+

(1− α)(Qk
i+1 −Qk

i )

∆x
∂A

∂t
≃ (Ak+1

i+1 + Ak+1
i )− (Ak

i+1 + Ak
i )

2∆t

(6.2)

∂(Q2/A)

∂x
≃

α
{[

(Qk+1
i+1 )

2/Ak+1
i+1

]

−
[

(Qk+1
i )2/Ak+1

i

]}

∆x
+

+
(1− α)

{[

(Qk+1
i+1 )

2/Ak+1
i+1

]

−
[

(Qk+1
i )2/Ak+1

i

]}

∆x

(6.3)

A∂y

∂x
≃ α(Ak+1

i+1 + Ak+1
i )(yk+1

i+1 − yk+1
i )

2∆x
+

(1− α)(Ak
i+1 + Ak

i )(y
k
i+1 − yki )

2∆x
(6.4)

A ≃ α(Ak+1
i+1 + Ak+1

i ) + (1− α)(Ak
i+1 + Ak

i )

2
(6.5)

AS̄ ≃ α(Ak+1
i+1 + Ak+1

i )

2

(S̄k+1
i+1 + S̄k+1

i )

2
+

+
(1− α)(Ak

i+1 + Ak
i )

2

(S̄k
i+1 + S̄k

i )

2

(6.6)

Thus, exploiting these results, the continuity equation in �nite di�erence form

becomes

C(Qk+1
i , Qk+1

i+1 , y
k+1
i , yk+1

i+1 ) =
(Ak+1

i+1 + Ak+1
i )− (Ak

i+1 + Ak
i )

2∆t
+

+
α(Qk+1

i+1 −Qk+1
i ) + (1− α)(Qk

i+1 −Qk
i )

2∆x
= 0

(6.7)
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while the momentum equation in �nite di�erence form, can be written as follows

M(Qk+1
i , Qk+1

i+1 , y
k+1
i , yk+1

i+1 ) =
(Qk+1

i+1 +Qk+1
i )− (Qk

i+1 +Qk
i )

2∆t
+

+
α((Qk+1

i+1 )
2/Ak+1

i+1 − (Qk+1
i )2/Ak+1

i ))

∆x

+
(1− α)((Qk

i+1)
2/Ak

i+1 − (Qk
i )

2/Ak
i ))

∆x

+ gα
(Ak+1

i+1 + Ak+1
i )

2

(yk+1
i+1 − yk+1

i )

∆x

g(1− α)
(Ak

i+1 + Ak
i )

2

(yki+1 − yki )

∆x

gα
(Ak+1

i+1 + Ak+1
i )

2

(Sk+1
i+1 + Sk+1

i )

2

g(1− α)
(Ak

i+1 + Ak
i )

2

(Sk
i+1 + Sk

i )

2
= 0

(6.8)

Moreover, SVEs can be rearranged into compact matrix form that is

∂U

∂t
+

∂F

∂x
+ S = 0 (6.9)

where

U =

[

A

Q

]

F =

[

Q
Q2

A
+ gAy

]

S =

[

0

gA(S̄ − S0)

]

(6.10)

Then, equation (A.2) can be rewritten as follows

(Uk+1
i +Uk+1

i+1 )− (Uk
i +U

k
i+1) + 2

∆t

∆x

[

α(Fk+1
i+1 − Fk+1

i ) + (1− α)(Fk
i+1 − Fk

i )
]

∆t
[

α(Sk+1
i+1 − Sk+1

i ) + (1− α)(Sk
i+1 − Sk

i )
]

= 0

(6.11)

The scheme is unconditionally stable if and only if it is satis�ed 1
2
< α < 1.

An unconditional stability indicates that there are not boundaries on the size of

∆x and ∆t to reach stability.

A.3 Trapezoidal cross-sectional area

Let us assume that the wetted cross sectional area can be approximated by a

trapezoid. Let b, B, P, s denote the bottom width of the channel, the top width,
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the wetted perimeter and the side slope respectively, where s = (B−b)
2y

. Thus, it

holds
B

2
= sy +

b

2
(6.12)

Therefore, the wetted cross-sectional area can be rewritten as

A =
(b+B)y

2
= (b+ sy)y (6.13)

In Figure 6.2 are reported the main geometric parameters according to the

shape of the channel.

Figure 6.2: Geometric parameters with di�erent cross sectional area

A.4 Boundary conditions

Let us assume that index i, i = 1, ..., N , denotes the channel spatial section and

index k, k = 1, ..., T denotes the time in the computation grid scheme. Boundary

conditions for each j = 1, ..., Np pool regarding the upstream and downstream end

can be stated as follows and can be di�erent according to the control structure

chosen for each pool. In the following, boundary conditions for pools with weirs

and gates are considered.
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A.4.1 Rectangular crested weir structure

Multiple boundary conditions can be stated according to the �ow classi�cation.

If the system provides a weir at the upstream and downstream, then boundary

conditions for an unsteady �ow can be stated as

Qk+1
j,i=1 −Qk+1

U = 0 (6.14)

where Qk+1
U is the given upstream in�ow rate at time stage k + 1. For what con-

cerns the downstream end of the channel regulated by weirs, the main constraint

is

Qk+1
j,i=N =

{

0, if hk+1
N < 0 (6.15)

cweir(h
k+1
N )

3

2 , otherwise (6.16)

where hk+1
N is the downstream height of the water over the weir, de�ned as

hk+1
i = yk+1

i − pk+1
weir (6.17)

, where p is the weir opening, cweir = cdbw
√
2g where bw is the length of the

aperture, cd ≈ 0.6. The weir control structures is reported in Figure 6.3.

(a) Real weir structure (b) Sketch of a weir structure

Figure 6.3: Weir control structure
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A.4.2 Rectangular gate structure

In case of undershot gates, the boundary conditions for an unsteady �ow at the

upstream can be expressed as

Qk+1
j,i=1 −Qk+1

U = 0 (6.18)

where Qk+1
u is the given upstream in�ow rate at time stage k + 1, while for the

downstream end it holds

Qk+1
j,i=N = cgatepgate

√

yk+1
U,i=N − yk+1

D,i=N (6.19)

where pgate is the gate opening, yU and yD are the water depth upstream and

downstream of the gate , cgate = cdAg

√
2g, cd ≈ 0.6 [44] and Ag is the section of

the aperture. The gate control structures is reported in Figure 6.4.

(a) Real gate structure (b) Sketch of a gate structure

Figure 6.4: Gate control structure

A.5 Initial conditions

In order to solve SVEs with �nite di�erence approach, initial condition of the

water level and initial �ow need to be chosen. For sake of simplicity, it can be

assumed a steady state initial condition, which imply that all the time derivatives

are set to zero. Therefore, continuity equation (2.4) yields

∂Q

∂x
= 0 (6.20)
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that means assuming a water �ow constant along the spatial grid. In addition,

the initial water �ow is constant for all the spatial increment ∆x then it holds

Q1
j,i = Q1

U (6.21)

Moreover, it is worth noting that the bottom width b and the side slope s

change along the spatial sections, then it holds

∂A

∂x
= (b+ 2sy)

∂y

∂x
+ y

∂b

∂x
+ y2

∂s

∂x
(6.22)

For sake of simplicity, the bottom width and the side slope are considered

constant, then SVEs become

gA(S0 − S̄) =
∂

∂x

Q2

A
+ gA

∂y

∂x

gA(S0 − S̄) =
1

A

∂Q2

∂x
− Q2

A2

∂A

∂x
+ gA

∂y

∂x

gA(S0 − S̄) = −Q2

A2

∂A

∂x
+ gA

∂y

∂x

gA(S0 − S̄) = −Q2

A2
(b+ 2sy)

∂y

∂x
+ gA

∂y

∂x

(6.23)

Finally, the di�erential form of equation (6.23) is the ordinary di�erential equation

dy

dx
=

gA(S0 − S̄)

gA− Q2(b+2sy)
A2

(6.24)

whose solution can be exploited as initial condition of the �nite di�erence ap-

proach.

A.6 Solution procedure

Implicit �nite di�erence equations are expressed in function of yk+1
i and Qk+1

i ,

while the area and the friction slope can be easily formulated in function of

the water level and �ow, once the geometrical parameters of the channel are

determined. Let us refer B1 and BN to the boundary condition equations and let

us denote by Ci and Mi the �nite di�erence continuity and momentum equations

for the section between nodes i and i+1. Thus, we need to solve 2N non-linear
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equations in 2N unknows,

B1

[

Qk+1
1 , yk+1

1

]

= 0

C1

[

Qk+1
1 , yk+1

1 , Qk+1
2 , yk+1

2

]

= 0

M1

[

Qk+1
1 , yk+1

1 , Qk+1
2 , yk+1

2

]

= 0

C2

[

Qk+1
2 , yk+1

2 , Qk+1
3 , yk+1

3

]

= 0

M2

[

Qk+1
2 , yk+1

2 , Qk+1
3 , yk+1

3

]

= 0

.......................

.......................

CN−1

[

Qk+1
N−1, y

k+1
N−1, Q

k+1
N , yk+1

N

]

= 0

MN−1

[

Qk+1
N−1, y

k+1
N−1, Q

k+1
N , yk+1

N

]

= 0

BN

[

Qk+1
N , yk+1

N

]

= 0

(6.25)

One solution approach could be Newton iterative method. In particular,

we specify a set of guess values for the unknowns yk+1
i , Qk+1

i for i = 1, ..., N .

Then, these values are replaced in the left side of the system of equations (6.25)

and residuals di�erent from zero are generated if the proposed solution does

not correspond to the optimal solution. Therefore, in the next iteration, new

estimated guess values are proposed in order to improve the performance. In

particular, some correction terms ∆Qi,∆yi for the unknowns are evaluated for

i = 1, ..., N , in order to reduce the residuals rB1, rBN , rCi, rMi, i = 1, ..., N − 1.

Then it holds

∂B1

∂Qk+1
1

∆Q1 +
∂B1

∂yk+1
1

∆y1 = −rB1

∂C1

∂Qk+1
1

∆Q1 +
∂C1

∂yk+1
1

∆y1 +
∂C1

∂Qk+1
2

∆Q2 +
∂C1

∂yk+1
2

∆y2 = −rC1

∂M1

∂Qk+1
1

∆Q1 +
∂M1

∂yk+1
1

∆y1 +
∂M1

∂Qk+1
2

∆Q2 +
∂M1

∂yk+1
2

∆y2 = −rM1

∂C2

∂Qk+1
2

∆Q2 +
∂C2

∂yk+1
1

∆y2 +
∂C2

∂Qk+1
3

∆Q3 +
∂C2

∂yk+1
3

∆y3 = −rC2

∂M2

∂Qk+1
2

∆Q2 +
∂M2

∂yk+1
2

∆y2 +
∂M2

∂Qk+1
3

∆Q3 +
∂M2

∂yk+1
3

∆y3 = −rM2

(6.26)
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.............................
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∂CN−1

∂Qk+1
N−1

∆QN−1 +
∂CN−1

∂yk+1
N−1

∆yN−1 +
∂CN−1

∂Qk+1
N

∆QN +
∂CN−1

∂yk+1
N

∆yN = −rCN−1

∂MN−1

∂Qk+1
N−1

∆QN−1 +
∂MN−1

∂yk+1
N−1

∆yN−1 +
∂MN−1

∂Qk+1
N

∆QN +
∂MN−1

∂yk+1
N

∆yN = −rMN−1

∂BN

∂Qk+1
N

∆QN +
∂BN

∂yk+1
N

∆yN = −rBN

(6.27)

System of linear equations (6.27) can be rewritten in a more compact form,

that is

Jx = f (6.28)

where

J =







































∂B1

∂Q1

∂B1

∂y1
0 0 0 0 · · · 0 0 0 0

∂C1

∂Q1

∂C1

∂y1

∂C1

∂Q2

∂C1

∂y2
0 0 · · · 0 0 0 0

∂M1

∂Q1

∂M1

∂y1

∂M1

∂Q2

∂M1

∂y2
0 0 · · · 0 0 0 0

0 0 ∂C2

∂Q2

∂C2

∂y2

∂C2

∂Q3

∂C2

∂y3
· · · 0 0 0 0

0 0 ∂M2

∂Q2

∂M2

∂y2

∂M2

∂Q3

∂M2

∂y3
· · · 0 0 0 0

...
...

...
...

...
... · · · ...

...
...

...

0 0 0 0 0 0 · · · ∂CN−1

∂QN−1

∂CN−1

∂yN−1

∂CN−1

∂QN

∂CN−1

∂yN

0 0 0 0 0 0 · · · ∂MN−1

∂QN−1

∂MN−1

∂yN−1

∂MN−1

∂QN

∂MN−1

∂yN

0 0 0 0 0 0 · · · 0 0 ∂BN

∂QN

∂BN

∂QN







































(6.29)

x =





























∆Q1

∆y1

∆Q2

∆y2
...

∆QN

∆yN





























f =







































−rB1

−rC1

−rM1

−rC2

−rM2

...

−rCN−1

−rMN−1

−rBN







































(6.30)

Once the matrix form is computed, the corrections term can be determined

by matrix inversion, taking into account that we are dealing with a sparse matrix

to improve time complexity. Then, the solution for the water level and water �ow
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A SVEs implementation

of each section can be computed iteratively

(Qk+1
i )n+1 = (Qk+1

i )n + (∆Qi)n

(yk+1
i )n+1 = (yk+1

i )n + (∆yi)n
(6.31)

where n denotes the iterations until convergence.
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