
Università degli Studi di Padova

Tesi di Laurea in

Ingegneria dell'Informazione

Entropic Pro�ler of DNA Sequences

Using Su�x Trees

Relatore Laureando

Matteo Comin Morris Antonello

Anno Accademico 2011/2012

Contents

1 Background 4

2 Findings 8

2.1 Adjusted Ukkonen's Construction 8
2.2 Entropic Pro�ler . 12
2.3 Looking up the maximum EP with �xed L 16

3 Conclusions 23

3

Chapter 1

Background

Although DNA is a �exible three-dimensional molecule interacting in a dy-
namic environment, its digital information can be represented by a one-
dimensional character string of G's, A's, T's and C's. Following this standard
assumption, two of its most striking features are the extent to which repeated
L-tuples occur and the variety of repeated structures it contains. These top-
ics have been discussed extensively and various mechanisms try to explain
the functional and evolutionary role of repeats.

The degree of predictability and randomness of a substring is described by
its entropy [2], here de�ned by a fractal probability density kernel estimated
by Parzen's window method using Chaos Game Representation/Universal
Sequence Maps CGR/USM. Especially, entropic pro�les EP are plots esti-
mated by this local entropy formulation, de�ned for each position/symbol,
from the complete unique sequence of DNA.

The main EP function is:

f̂L,ϕ(xi) =
1 + 1

m

∑L
k=1 4

kϕk · c ([i− k + 1, i])∑L
k=0 ϕ

k
(1.1)

where L is the length resolution chosen, ϕ ∈ R a smoothing parameter, and
c([i − k + 1, i]) the number of times the substring of length k that ends at
position i, (xi−k+1 . . . xi), occurs in the whole sequence x1 . . . xm. f̂L,ϕ(xi) is
a linear combination of su�x counts up to L. ϕ is set arbitrarily, it is an
increasing or decreasing weight.

EP values are normalized by mean mL,ϕ and standard deviation sL,ϕ in
order to compare di�erent parameter combinations:

EPL,ϕ(xi) ≡
f̂L,ϕ(xi)−mL,ϕ

sL,ϕ
(1.2)

4

5

mL,ϕ =
1

m

m∑
i=1

f̂L,ϕ(xi) (1.3)

sL,ϕ =

√√√√ 1

m− 1

m∑
i=1

(
f̂L,ϕ(xi)−mL,ϕ

)2
(1.4)

An entropic pro�ler already exists [3]. Its implementation is based on a
truncated standard trie. A standard trie [4, p. 763-766], storing the collection
of su�xes of the entire DNA sequence, has the following properties:

• the number of nodes is O(m2).

• the height is equal to the length of the longest string, that is the length
of the whole sequence, m.

• word matching for a pattern of length L takes O(4L) time.

• constructing the entire trie takes O(m2) time.

There is a potential space ine�ciency. Namely, there are potentially a
lot of nodes that have only one child, and the existence of such nodes is a
waste. That has prompted the idea to consider the shorten structure, see
Figure 1.1. Its nodes are labelled by a single symbol and stores the counts of
each su�x spelled out by the concatenation of the node-labels on the path
from the root to that node.

Figure 1.1: Truncated su�x tree, L=3, and side links of the word ATTACAC.

The counts allow the main EP function to be worked out by simply word
matching. mL,ϕ, sL,ϕ are mathematically simpli�ed and all nodes at the same
depth are connected by side links in order to speed up normalization that,
otherwise, would involve the repeated calculation of the main EP function

6

for all positions. The Shift-And method allows a fast exact string matching
based on bit operations.

For instance, Figure 1.2 deals with the analysis of the positions where Chi
sites appear in the genome of E. Coli. These sequences are statistically well-
conserved, overrepresented and therefore easily detected. a) and b) show the
in�uence of the parameters at position 35840. c) and d) show the entropic
pro�le whose peaks belong to a Chi sequence motif.

Figure 1.2: Entropic pro�le of Ec.

Nevertheless there is viable alternative to the truncated trie. A com-
pressed trie [4, p. 766-773] ensures that each internal node in the trie has at
least two children. It enforces this rule by compressing chains of single-child
nodes into individual edges. As a consequence, the number of nodes of the

7

compressed trie is proportional to the number of su�xes, m, and not to their
total length, m(m+1)

2
. This solution is discussed next.

Chapter 2

Findings

This chapter deals with an entropic pro�ler based on the compressed su�x
trie. This structure is also known as su�x tree.

2.1 Adjusted Ukkonen's Construction

Ukkonen's linear-time method for constructing su�x trees is presented fol-
lowing Gus�eld's approach [1, p. 89-107]: each algorithm is introduced at
high level, giving simple, ine�cient implementations that are then incremen-
tally improved. The main points are underlined and useful implementation
details are inserted.

De�nition 1. A su�x tree T for an m-character string S has m leaves
numbered 1 to m. Each internal node, other than the root, has at least two
children and each edge is labelled with a nonempty substring of S. The key
feature is that for any leaf i, the concatenation of the edge-labels on the path
from the root to leaf i exactly spells out the su�x of S that starts at position
i, S[i . . .m].

It is not guaranteed that a su�x tree for any string S actually exists.
If one su�x of S matches a pre�x of another su�x of S then no su�x tree
obeying the above de�nition is possible, since the path for the �rst su�x
would not end at a leaf. To avoid this problem the character $, that does
not belong to the alphabet, is added to the end of S so that no su�x of the
resulting string can be a pre�x of any other su�x.

Each interior node is characterized by three instance variables: length,
count, and entropy. They store the length of the su�x spelled out by the
concatenation of the edge-labels on the path from the root to that node, the
number of times it occurs in the entire sequence and its main EP function
respectively.

8

2.1. ADJUSTED UKKONEN'S CONSTRUCTION 9

De�nition 2. An implicit su�x tree for string S is a tree obtained from the
su�x tree for S$ by removing every copy of the terminal symbol $ from the
edge labels of the tree, then removing any edge that has no label, and then
removing any node that does not have at least two children. The implicit
su�x tree of the string S[1 . . . i] is denoted by Ii, for i from 1 to m.

Even if an implicit su�x tree for S encodes all its su�xes, there is no
marker to indicate the path's end if the path does not end at a leaf. In
fact, implicit su�x trees are used just as a tool in Ukkonen's algorithm: it
constructs a sequence of them, the last of which, Im, is converted to a true
su�x tree of the string S. Procedurally, the high-level algorithm is as follows:

High-level Ukkonen's algorithm

Construct tree I1.
for i = 1→ m− 1 do . m phases

begin [phase i+1] . phase i+ 1: Ii+1 is constructed from Ii
for j = 1→ i+ 1 do . i+ 1 extensions

begin [extension j]
Find the end of the path from the root labelled S[j . . . i] in the
current tree. If needed, extend that path by adding character
S(i+ 1), thus assuring that string S[j . . . i+ 1] is in the tree.

end for

end for

Let S[j . . . i] = β be a su�x of S[1 . . . i]. In extension j, when the algorithm
�nds the end of β in the current tree, it extends β, according to three rules,
to be sure the su�x βS[i+ 1] is in the tree.

Rule 1. Path β ends at a leaf. Character S(i+1) is added to the end of the
label on that leaf edge.

Rule 2. No path from the end of β starts with character S(i + 1), but at
least one labelled path continues from the end of β. A new leaf edge starting
from the end of β must be created and labelled with character S(i + 1). A
new node is created there if β ends inside an edge.

Rule 3. Some path from the end of β starts with S(i+1). βS(i+1)is already
in the current tree, nothing is done.

If the end of any su�x β is found in O(|β|) time by naively walking from
the root of the current tree, Im is created in O(m3). Su�x links are the main
heuristic in order to speedup:

10 CHAPTER 2. FINDINGS

De�nition 3. Let xα denote an arbitrary string, where x denotes a single
character and α denotes a (possibly empty) substring. For an internal node
v with path-label xα, if there is another node s(v) with path-label α, then
a pointer from v to s(v) is called a su�x link. If α is empty, then the su�x
link from an internal node with path-label xα goes to the root node.

Each interior node v of a su�x tree has an unique su�x link from it.
Particularly, all internal nodes in the changing tree have su�x links from
them, except for the most recently added internal node, which receives its
su�x link by the end of the next extension.

Figure 2.1: Su�x link. Extension j>1 in phase i+ 1.

Let string S[j . . . i] be xα. The main point is that, in searching for the
end of α in the current tree, the algorithm need not walk down the entire
path from the root, but, thanks to the su�x link, can instead begin the walk
from node s(v), see Figure 2.1. Extension j≥2 of phase i+1 is:

Single extension algorithm SEA

1. Find the �rst node v at or above the end of S[j−1 . . . i] that either has
a su�x link from it or is the root. This requires walking up at most one
edge from the end of S[j − 1 . . . i] in the current tree. Let γ (possibly
empty) denote the string between v and the end of S[j − 1 . . . i].;

2.1. ADJUSTED UKKONEN'S CONSTRUCTION 11

2. If v is not the root, traverse the su�x link from v to node s(v) and
then walk down from s(v) following the path for string γ. If v is the
root, then follow the path for S[j . . . i] from the root.;

3. Using the extension rules, ensure that the string S[j . . . i]S(i + 1) is
in the tree. If rule 2 applies, the variable length of the newly created
interior node is equal to the length of node v, which is 0 if v is the root,
plus the length of γ.

4. If a new internal node w was created in extension j − 1, string γ must
end at node s(w), the end node for the su�x link from w. Create the
su�x link (w, s(w)) from w to s(w).

A pointer to the current full string S[1 . . . i] is kept so that the �rst extension
of phase i+1 need not do any up or down walking and always applies rule 1.

Individually su�x links do not reduce the worst-case time bound. The
skip/count trick allows moving from one node to the next node on the γ path
in constant time so that the total time to traverse the path is proportional to
the number of nodes on it than the number of characters on it. The new time
bound is O(m2).

Nevertheless, the time for the algorithm is at least as large as the size
of its output and the su�x tree may require θ(m2) space since the total

length of the su�xes is m(m−1)
2

. To avoid this problem, only a pair of indices,
specifying beginning and end positions of the substring, is written on any
edge so that the su�x tree uses θ(m) space.

Two more implementation tricks that come from two observations about
the way the extension rules interact in successive extensions and phases allow
some extensions to be done implicitly and lead to the linear time bound.

The �nal implicit su�x tree Im is converted to a true su�x tree in O(m)
by adding $ to the end of S and letting Ukkonen's algorithm continue with
this character. Finally each index e, required by the last trick, must be
replaced on every leaf edge with the number m. This is achieved by an O(m)
traversal of the tree that allows the variable count of each internal node to
be worked out:

Postorder traversal 1

A su�x tree T and a node v are given.
for all child w of v do

begin [recursive traversal]
the variable count is equal to itself plus what the Postorder traversal 1
of the subtree rooted in w returns.

12 CHAPTER 2. FINDINGS

end for

begin [visit]
if v is an internal node then

the algorithm returns the value of the variable count.
end if

if v is a leaf then
index e is replaced with the number m and it returns 1

end if

if v is the root then
it returns 0.

end if

In fact, if C[v] stands for the value of the variable count of an internal
node v:

C[v] =
∑

all childw of v

C[w]

where C[w] = 1 if w is a leaf. That is right only if the character $ in the end
of the string is considered.

2.2 Entropic Pro�ler

The goal is to �nd an e�cient way to compute the main EP function 1.1 for
every possible substring and parameter combination. If the substring taken
into consideration is encoded by the su�x tree, there are two main cases:
it may be spelled out by the concatenation of the edge-labels on the path
from the root to an internal node or not, in the latter case it ends in a leaf
or between two nodes. Trivially the main EP is 0 if the substring is not
encoded.

The main EP function for each sequence belonging to the former case can
be preprocessed and stored in each variable entropy by a postorder traversal
of the tree:

Postorder traversal 2

A su�x tree T and a node v are given.
for all child w of v do

begin [recursive traversal]
Postorder traversal 2 of the subtree rooted in w;

end for

begin [visit]

2.2. ENTROPIC PROFILER 13

if v is an internal node whose entropy is still equal to 0 then
the algorithm calls the function Entropy computation.

end if

The total time spent in the nonrecursive portions of the algorithm is pro-
portional to the time spent visiting the children of each node in the tree.
Thus, a postorder traversal of a tree T with O(m) nodes takes O(m) time,
assuming that visiting each node takes O(1) time. Nevertheless the function
Entropy computation, described below, is not always O(1).

The following de�nition will be useful:

De�nition 4. ϕ is set to 1
4
. L∗ is de�ned as the length L′ such that, ∀L ≥ L′:

L+1∑
k=1

4kϕk · c ([i− k + 1, i]) =
L∑

k=1

4kϕk · c ([i− k + 1, i]) + 1

where 4kϕk = 1. In other words, L∗ is the length of the longest su�x that
occurs two times, that is a word of length L ≥ L∗ cannot occur more than
one time. L∗ can be worked out by Postorder traversal 1 thanks to a static
variable storing the temporary L∗, which is updated every time an internal
node with count equals to 2 is visited.

It is essential to notice that the counts required in order to compute the
main EP function are easily retrieved following a trail of su�x links. In
fact, substring (xi−k+1 . . . xi) is a su�x of (xi−(k+2)+1 . . . xi). For instance,
see Figure 2.21.

For the sake of simplicity, since
∑L

k=0 ϕ
k is easily assessable, from now on

the main EP function will be considered as:

L∑
k=1

4kϕk · c ([i− k + 1, i]) (2.1)

In addiction this method requires to preliminarily construct an auxiliary
array a of length L∗ that contains 4kϕk at each position k, 1 ≤ k ≤ L. The
real parameter ϕ should be set.

Entropy computation

A su�x tree T and a node v are given.
k← length of v

1$ is considered implicitly: every copy of the terminal symbol $ is removed from the
edge labels, then any edge that has no label is removed.

14 CHAPTER 2. FINDINGS

Figure 2.2: Su�x tree of string TCGGCGGCAAC, whose nodes are labeled
by the respective counts. Su�x links are dotted. Red dotted lines show a
trail of su�x links.

if the variable entropy of v is 0 then
the su�x link from v to s(v) is followed.

else

the algorithm returns its value.
end if

if s(v) is the root then
the algorithm returns the value of the entropy of v which is equal
to a[1]·(its count).

else

its entropy is equal to a[k −−]·(its count) plus what Entropy
computation returns with input s(v).

end if

This strategy might at �rst seem slow but the worst-case time bound of
Postorder traversal 2 is O(m) even though Entropy computation do not run
in constant time. This kind of visit needs to traverse a trail of su�x links
which, since each interior node has an unique su�x link from it, could be
O(m), in other words it could be long as the number of su�x links/internal
nodes. Nevertheless each su�x link is traversed only once so that, even if a
visit can take O(m) time, its amortized running time is O(1).

After preprocessing the main EP function for each sequence belonging to
the latter case cannot be retrieved in constant time by simply word matching.
The following high level algorithm works out the main EP function of any

2.2. ENTROPIC PROFILER 15

L-motif. All possible cases are considered:

1. motif not found;

2. the motif is spelled out by the concatenation of the edge-labels on the
path from the root to an internal node, L ≤ L∗;

3. the motif ends between two internal nodes, L ≤ L∗;

4. L > L∗, the motif ends in a leaf or between an internal node and a leaf.

The main EP function of any L-motif

A motif of length L is given.
if L ≤ L∗ then

The motif of length L is considered from now on.
else

Its su�x of length L∗ is considered from now on.
end if

Look up the considered string in the su�x tree.
if case 1 then

the algorithm returns 0.
end if

if case 2 then
the algorithm returns the preprocessed value of the variable entropy
of the corresponding internal node.

end if

if case 3 or 4 then
After matching each su�x of length from 1 to min(L,L∗) in the tree
in order to retrieve each corresponding count, the main EP function
is computed.

end if

if case 3 then
the algorithm returns the entropy just computed.

end if

if case 4 then
the algorithm returns the correction of the entropy just computed,
that is that entropy plus

∑L
k=L∗+1 4

kϕk.
end if

In cases 3 and 4 the main EP function must be worked out since it cannot
be preprocessed. Pattern matching queries can be performed in O(k) time,
where k is the length of the pattern. Since 1 ≤ k ≤ L and L queries

16 CHAPTER 2. FINDINGS

are needed, the worst-case time bound is O(L2), that is O(m2) if L = m.
Nonetheless su�x tree properties allow every count to be retrieved in O(m)
time: after the O(min[L,L∗])-time query for the su�x of length min[L,L∗],
the trail of su�x links is traversed in O(m) thanks to the skip/count trick
that allows moving from one node to the next node on the trail in constant
time.

In case 4, that is if L > L∗, the counts of the su�xes of length more than
L∗ are considered separately in the last step. By de�nition 4, these su�xes
occur only one time, so the main EP function is the main EP function of the
su�x of length L∗ plus

∑L
k=L∗+1 4

kϕk.

2.3 Looking up the maximum EP with �xed L

The aim is to work out the normalized EP 1.2 without looking through all
the positions in order to compute the main EP function 1.1 ∀L.

Algebraic considerations [3] allow the mean mL,ϕ 1.3 to be rewritten as:

mL,ϕ =
(ϕ− 1)(m2 +

∑L
i=1C

2[k])

m2(ϕL+1 − 1)
(2.2)

where C2[k] stands for the sum of the squared counts of all distinct words
of size k in the whole sequence. Similarly, the standard deviation sL,ϕ 1.4
becomes:

sL,ϕ =

√√√√√√ 1

m− 1

 S[L](
ϕL+1−1
ϕ−1

)2 −m2
L,ϕ ·m

 (2.3)

where the recursive function S[L], depending on the number of distinct motif
of length L, is fairly intricate.

Even if L-tuples are less than the length of the whole sequence m, this
kind of normalization is still too expensive. In addiction the su�x tree of
the new entropic pro�ler do not provide side links which allow the counts of
all words of length L to be retrieved e�ciently.

Nevertheless EPL,ϕ(xi) 1.2 can be rede�ned as:

EPL,ϕ(xi) ≡
f̂L,ϕ(xi)

max[f̂L,ϕ(xi)]
(2.4)

where the function max[f̂L,ϕ(xi)] returns the maximum EP for a �xed L.
Instead of naively comparing each word of length L, the search for the max-
imum EP can be restricted to some regions of the tree.

2.3. LOOKING UP THE MAXIMUM EP WITH FIXED L 17

For this purpose the su�x tree of the reverse string is useful since the
counts needed to work out the EP can be retrieved on a path from the root
as illustrated in the following example:

Example 2.3.1 Consider the string TATTA. The needed su�xes, which are
linked by su�x links, are TATTA, ATTA, TTA, TA, A. The reverse substring
is ATTAT. Strings A, AT, ATT, ATTA, ATTAT, whose counts are the same
of the corresponding needed su�xes, lie on a path from the root. See Figure
2.3.

Figure 2.3: Su�x tree of string TATTA and ATTAT respectively. $ is con-
sidered implicitly.

For the sake of simplicity, the parameter ϕ is �rstly set to 1
4
. If L = 1, the

maximum EP is the number of times the most frequent character occurs and
can be worked out by simply comparing. If L > 1, two de�nitions are needed
to clearly de�ne which regions of the tree must be taken into consideration
and which not:

De�nition 5. L > 1, ϕ = 1
4
. The minimum potential maximum mpm

de�nes a lower bound to the maximum EP for L:

1 +max[f̂L−1,ϕ(xi)]

Next, the maximum potential maximums MPMs are bounds that are pro-
gressively rede�ned and make it possible to simplify the search for the maxi-
mum EP. The following numerical example, which works out themax[f̂L,ϕ(xi)]
for a �xed string ∀L from 1 to 5, clari�es these concepts leading to an exact
de�nition of MPM.

Example 2.3.2 Take string AGCCGGCCGCGAAGGAAGCCGCCGT and
consider its reverse string TGCCGCCGAAGGAAGCGCCGGCCGA whose

18 CHAPTER 2. FINDINGS

su�x tree is drawn in Figure 2.4 in the end of the chapter. ϕ = 1
4
.

If L=1: The most frequent character is G. It occurs 10 times.

max[f̂1, 1
4
] = 10

If L=2: it must be max[f̂2, 1
4
] ≥ max[f̂1, 1

4
] + 1 = 11, where the second

term is the minimum value of the potential maximum, mpm. In fact, it is
max[f̂2, 1

4
] = max[f̂1, 1

4
]+1 if and only if there is a word of length 2 beginning

with character G that occurs only 1 time. The value of the maximum poten-
tial maximum, MPM, depends on the followed path from the root. It stands
for the case in which the string of length 2 occurs the number of times the
string of length 1 occurs. There are 4 cases since the string of length 2 may
begin with:

A: MPM = 5 · 2 = 10 < mpm = 11 → NOT acceptable path;

C: MPM = 9 · 2 = 18 > mpm = 11 → acceptable path;

G: MPM = 10 · 2 = 20 > mpm = 11 → acceptable path;

T: MPM = 1 · 2 = 2 < mpm = 11 → NOT acceptable path;

Two paths are left out because a priori themax[f̂2, 1
4
] cannot be found travers-

ing those edges of the tree. Thus, after following every acceptable path, the
max[f̂2, 1

4
] is worked out by simply comparing:

CG: 9 +max(5, 4) = 14

GC: 10 +max(2, 3, 5) = 15 > 14→max[f̂2, 1
4
] = 15

If L=3: it must be max[f̂3, 1
4
] ≥max[f̂2, 1

4
]+1 = 16 = mpm. The procedure

is the same as before but one more step is needed.
Step 1

The string of length 2 may begin with:

A: MPM = 5 · 3 = 15 < mpm = 16 → NOT acceptable path;

C: MPM = 9 · 3 = 27 > mpm = 16 → acceptable path;

G: MPM = 10 · 3 = 30 > mpm = 16 → acceptable path;

T: MPM = 1 · 3 = 3 < mpm = 16 → NOT acceptable path;

Step 2

The string of length 3 may begin with:

2.3. LOOKING UP THE MAXIMUM EP WITH FIXED L 19

CG: MPM = 9 + 5 · 2 = 19 > mpm = 16 → acceptable path;

CC: MPM = 9 + 4 · 2 = 17 > mpm = 16 → acceptable path;

GG: MPM = 10 + 2 · 2 = 14 < mpm = 16 → NOT acceptable path;

GA: MPM = 10 + 3 · 2 = 16 = mpm = 16 → NOT acceptable path;

GC: MPM = 10 + 5 · 2 = 20 > mpm = 16 → acceptable path;

It is worthwhile noting that the path of edge-labels beginning with string
GA is cut o� because MPM=mpm. In fact the max[f̂3, 1

4
] will be 16 if and

only if there are not any other acceptable path.
Step 3

The max[f̂3, 1
4
] is �nally worked out by simply comparing. The string of

length 4 may begin with:

CGC: 9 + 5 +max(1, 2) = 16

CGA: 9 + 5 +max(1, 2) = 16

CCG: 9 + 4 + 4 = 17

GCC: 10 + 5 +max(1, 4) = 19 > 17→max[f̂3, 1
4
] = 19

If L=4: it is easy to verify that max[f̂4, 1
4
] = 23

If L=5: it must be max[f̂5, 1
4
] ≥ max[f̂4, 1

4
] + 1 = 24 = mpm. If a path is

cut o� analysing the length L, it can be unlocked analysing the consecutive
length L+ 1.
Step 1

A: MPM = 5 · 5 = 25 > mpm = 24 → acceptable UNLOCKED path;

C: MPM = 9 · 5 = 45 > mpm = 24 → acceptable path;

G: MPM = 10 · 5 = 50 > mpm = 24 → acceptable path;

T: MPM = 1 · 5 = 5 < mpm = 24 → NOT acceptable path;

Step 2

If a path is acceptable analysing the length L at step j, it is still acceptable
analysing the length L + 1 at step j. Hence, from now on these paths are
not explicitly enumerated.

20 CHAPTER 2. FINDINGS

AG: MPM = 5 + 2 · 4 = 13 < mpm = 24 → NOT acceptable path;

AA: MPM = 5 + 2 · 4 = 13 < mpm = 24 → NOT acceptable path;

GG: MPM = 10 + 2 · 4 = 18 = mpm = 24 → NOT acceptable path;

GA: MPM = 10 + 2 · 4 = 18 = mpm = 24 → NOT acceptable path;

Step 3

CGG: MPM = 9 + 5 + 1 · 3 = 17 < mpm = 24 → NOT acceptable path;

CGA: MPM = 9 + 5 + 1 · 3 = 17 < mpm = 24 → NOT acceptable path;

CGC: MPM = 9 + 5 + 2 · 3 = 20 < mpm = 24 → NOT acceptable path;

GCG: MPM = 10 + 5 + 1 · 3 = 18 < mpm = 24 → NOT acceptable path;

Step 4

CCGA: MPM = 9 + 4 · 2 + 2 · 2 = 21 < 24 → NOT acceptable path;

CCGC: MPM = 9 + 4 · 2 + 1 · 2 = 19 < 24 → NOT acceptable path;

Step 5

GCCGA: 10 + 5 + 4 · 2 +max(1, 1, 2) = 25 →max[f̂5, 1
4
] = 25

These are the main conclusions:

Observation 1. Finding max[f̂L,ϕ(xi)] needs max[f̂L−1,ϕ(xi)].

Observation 2. Finding max[f̂L,ϕ(xi)] needs L steps.

The maximum potential maximums MPMs are related to the followed
path from the root. They are reworked out at each step de�ning an upper
bound to the maximum EP f̂L,ϕ. In fact, if a MPM is less than the mpm
that region of the tree is cut o� and not considered in the following steps.
De�ning c[i] as the number of times the i-th character of the edge-labels of
the followed path occurs, at step 1 there are 4 MPMs, each one of them is
equal to:

c[1] · L

At step 2:
c[1] + c[2] · (L− 1)

At step j:
c[1] + c[2] + . . .+ c[j] · (L− j + 1)

2.3. LOOKING UP THE MAXIMUM EP WITH FIXED L 21

At step L the maximum EP is directly worked out:

max[f̂L,ϕ(xi)] = c[1] + c[2] + . . .+max[c[L]]

Thus,

De�nition 6. L > 1, ϕ = 1
4
, ∀j ∈ [1, L − 1]. The maximum potential

maximum MPM is de�ned as:
j−1∑
i=1

c[i] + c[j] · (L− j + 1)

If ϕ 6= 1
4
, formulas are trickier:

De�nition 7. L > 1, ϕ 6= 1
4
. The minimum potential maximum mpm is:

4LϕL +max[f̂L−1,ϕ(xi)]

De�nition 8. At step 1 every MPM is:

c[1] ·
L∑

k=1

4kϕk

At step 2:

4ϕ · c[1] + c[2] ·
L−1∑
k=2

4kϕk

At step j:

4ϕ · c[1] + 42ϕ2 · c[2] + . . .+ c[j] ·
L−1∑
k=j

4kϕk

At step L:

max[f̂L,ϕ(xi)] = 4ϕ · c[1] + 42ϕ2 · c[2] + . . .+ 4LϕL ·max[c[L]]

The query for the maximum EP does not need to look all distinct motifs of
length L up in the tree because MPM/mpm heuristic allows a more targeted
search since not all paths are acceptable a priori. Nevertheless the running
time is slowed down by many factors. As Observation 1 states,max[f̂L,ϕ(xi)]
is recursive. In addition, paths, that are left out analysing the length L,
should be analysed when considering the consecutive length L + 1 because
they might be unlocked. As a consequence the search must begin from the
root every time. Finally it is worthwhile noting that if a path is acceptable
analysing the length L at step j, it is still acceptable analysing the length
L + 1 at step j. Hence, even if in this case the analysis does not have to
begin all over again, it means that, increasing length L, wider regions have
to be explored.

22 CHAPTER 2. FINDINGS

Figure 2.4: Su�x tree of TGCCGCCGAAGGAAGCGCCGGCCGA. $ is
considered implicitly.

Chapter 3

Conclusions

This report analyses a sequence pro�ler based on a local entropy formulation
and shows that there is a viable alternative to the truncated standard trie.
The main features of the su�x tree allow the main EP function to be cal-
culated e�ciently and the challenging normalization to be further improved.
Future works may characterize the running time of the suggested entropic
pro�ler more precisely and �nd useful heuristics in order to allow an e�cient
implementation.

Even if the considered entropic pro�ler is only one of the many existing
approaches to DNA analysis, data structures as the considered su�x trees
and the related algorithms will likely remain important even as the present-
day interests change and molecular biology develops.

23

Bibliography

[1] Gus�eld D: Algorithms on Strings, Trees, and Sequences: Computer Sci-

ence and Computational Biology. Cambridge University Press; 1997.

[2] Vinga S, Almeida JS: Local Rényi entropic pro�les of DNA sequences.
BMC Bioinformatics; 2007.

[3] Fernandes F, Freitas AT, Almeida JS, Vinga S: Entropic Pro�ler - detec-
tion of conservation in genomes using information theory. BMC Research
Notes; 2009.

[4] Goodrich MT, Tamassia R: Data Structures and Algorithms in Java. John
Wiley and Sons, Inc; 2007.

[5] Apostolico A, Denas O, Dress: E�cient tools for comparative substring

analysis. Journal of Biotechnology; 2010.

[6] Apostolico A: Maximal Words in Sequence Comparisons Based on Sub-

word Composition. Georgia Institute of Technology and Università di
Padova; 2010.

24

