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Abstract

In this study, we investigate voids, which are regions of low density within the cos-

mic web, which provide valuable insights into cosmological evolution and can help

constrain cosmological parameters. To identify voids, we utilize simulations with

both normal and inverted initial conditions and employ the Zel’dovich approxima-

tion, a first-order Lagrangian perturbation theory that simplifies the evolution of

density fluctuations by assuming matter moves along straight lines. The initial con-

ditions are generated by the GenetIC (Stopyra et al., 2021b) algorithm and the

simulations are evolved using GADGET2 (Springel, 2005) with dark matter only. By

mapping the halos from the inverted simulation onto the normal simulation, we ef-

fectively detect voids in the normal simulation. Our analysis reveals a high degree

of correspondence between Zel’dovich and full N-body voids and halos, especially

when comparing power spectra and autocorrelation functions, suggesting a promis-

ing method for void cataloguing. However, some discrepancies are observed which

raise questions about the suitability of the Zel’dovich model for accurately describing

void evolution and, notably, testing void linearity.
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Chapter 1

Introduction

Voids are regions of space with low matter density relative to the rest of the universe.

They are of interest to researchers as they might offer insights into the Universe’s

formation through the constraining of cosmological parameters.

These under-dense regions of the universe form a pattern called the "cosmic web".

We use cosmological simulations to simulate this web accurately by adjusting cos-

mological parameters and introducing equations of motion for particles, which form

the cosmic web.

To achieve high simulation accuracy, we must increase the number of particles and

use sophisticated equations. Increasing these comes at a cost of time and CPU

power.

In this thesis, I introduce the concept of simulation pairs, which involves comparing

the halos formed from inverted initial conditions to find voids. Moreover, I quantify

the reliability of the Zel’dovich approximation, a first-order Lagrangian perturbation

theory, in predicting the linear evolution of voids within the cosmic web.

The overarching objective is to assess the validity of the Zel’dovich approximation

in being able to reproduce the linear evolution of voids within the cosmic web ac-

curately. This approach may first enable us to improve our cosmological simulation

efforts, as well as refine our understanding of essential cosmological parameters and

provide deeper insights into the origin and development of the universe.

1.1 What are Halos and Voids?

During the very early stages of the universe, a process called inflation occurred. The

hypothetical scalar field responsible for this phenomenon is called the inflaton field.

Quantum fluctuations arise in the overall density of dark matter from very early on,

but because the early universe is comprised of hot, ionized plasma, the overdensities

formed by the fluctuations barely affect baryonic matter (Guth, 1981).
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These quantum fluctuations, which are particles that pop into existence and annihi-

late, change the overall distribution of energy and matter in the early universe. This

initially only affects dark matter as it is only subject to the gravitational influence

that these fluctuations provide and is not slowed down or heated up by interactions

with radiation or other particles, allowing it to collapse into denser structures more

rapidly. The collapse of these density peaks arises from the primordial density field,

which exhibits a density contrast δ(x) = (ρ(x) − ρ̄m)/ρ̄m, where ρ̄m is the mean

mass density of the Universe. Peaks with positive δ(x) serve as the seeds of struc-

ture formation as dark matter aggregates and collapses onto itself here (Kravtsov

and Borgani, 2012).

We can assume that δ(x) is a homogeneous and isotropic Gaussian random field

since it ties in well with observations. This density contrast quantifies the deviation

of the actual density of matter from the average density across the Universe. In the

beginning, any fluctuations that do exist will have a δ much less than 1. That is,

the relative over (or under) density will be much lower than the average (Peebles,

1980).

As the universe expands, it cools enough for protons and electrons to combine

to form Hydrogen atoms - an epoch called recombination. After recombination,

the overdensities formed during inflation are now much larger and begin to affect

baryonic matter. These serve as seeds for the formation of larger density fields as

the Universe evolves, called halos. These density perturbations grow and amplify,

attracting baryonic matter onto them and leading to the formation of large-scale

structures that we observe in the universe today. Between these overdense regions

lie underdense regions; complementary regions of space that have less density than

the average density of the universe and therefore tend to contain fewer galaxies and

galaxy clusters than their halo counterparts, called voids.

The equations that describe how these overdensities and underdensities grow are

complex, but they can be simplified, at least during the early stages. They can be

approximated by adding together the solutions of simpler linear equations, a process

called linear perturbation theory (LPT). These equations can predict the statistical

properties of the resulting large-scale structure, for example, the distribution of

matter and the clustering properties of galaxies. One such example of LPT is the

Zel’dovich approximation, which relies only on first-order perturbation theory.

Now, the evolution of these density fluctuations or fields is not exactly linear in real-

ity. It is quite non-linear and involves, as previously mentioned, complex equations

that describe processes such as shell crossing and virialization. It is, therefore, useful

to consider simplified models to better describe the linear and non-linear regimes of

these density fields to simulate them adequately (Peebles, 1980).
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1.2 Introduction to Cosmological Simulations

Cosmological simulations are tools used to model the evolution of the universe at

different epochs. Typically, they simulate the universe’s early stages up to the

present day. They include several physical processes by employing physical models

such as gravity, structure formation, and gas dynamics.

When studying halos and voids, cosmological simulations are very important in

several ways:

1. The distribution of dark and baryonic matter at large scales can be simulated

and thus researchers can study the properties of the distribution of voids.

2. The formation and evolution of voids can be simulated, revealing how gravita-

tional collapse and expansion can form these structures.

3. The size, shape, density profile, and abundance of halos and voids are important

properties that simulations can discern. Indeed, this thesis relies heavily on the

computational ability to discern these properties and then compare them to

observational data. This helps constrain cosmological parameters.

4. Galaxies present within voids have some interesting properties that Cosmo-

logical simulations allow researchers to investigate. The way voids can affect

galaxy formation, evolution, and even clustering is an ongoing and interesting

subject (Correa, 2022).

When simulating many different aspects of the universe, such as dark matter, dark

energy, baryonic matter and gas dynamics, the computational stress increases dras-

tically. The number of particles that simulations can handle increases every year

following Moore’s Law (Figure 1.1). While this seems promising, it poses a problem

of computational power in that the time needed to simulate the increasing number

of particles increases more rapidly than the readily available CPU power. Indeed,

the complexity of an N -body, collisional, simulation grows as N2, where N is the

number of particles.

IllustrisTNG example

The IllustrisTNG simulation on galaxy formation is a good example. They run

several simulations, one of which involves all hydrodynamical aspects, evolving

18203 = 6, 028, 568, 000 hydrodynamical cells, with the same number of dark

matter particles and Monte Carlo tracers, in a box of size 106.5 Mpc3 from

redshift z = 127 to z = 0. This required 8, 192 computer cores, a peak memory

of 25TB, and 19 million CPU hours (IllustrisTNG, 2018).

Hence, if we want to increase the number of simulated particles to better understand

our Universe, we are going to need ever-growing computational power or a lot of

patience. It is no surprise, therefore, that attempts at minimizing the required power
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Figure 1.1: Figure showing how the number of particles in collisionless (blue) and

collisional (red) simulations increases over the years, taken from Dehnen and Read

(2011).

are constantly underway and several methods of simplification have been developed

by the scientific community. Methods such as considering only specific types of

particles, zooming techniques, softening, and tree codes, just to name a few.

Before thinking about applying a simplification, a framework within which the ap-

proximation will operate should be constructed. The objective or purpose of this

experiment is to see if a useful number of voids can be simulated accurately only

by considering a first-order Lagrangian approximation to the gravitational evolution

of particles that make up the void. This would decrease the computational power

needed significantly because if only first-order mechanics are considered, the number

of equations a PC must solve decreases for each particle, exponentially decreasing

the CPU power needed to simulate a universe. To assess if the desired accuracy

holds, we must first be able to detect the voids and measure important quantities,

such as the density field and halo mass function. To this end, we must first define

what halo mass and density are.

Figure 1.1 shows, for example, that the difference in simulated particles in 2010 be-

tween a collisional (Harfst) and collisionless (Teyssier) was very significant. Indeed,

the Teyssier simulation included 105 times more particles than the Harfst simulation.

1.3 Particle Linear Theory

Here I review particle linear theory (PLT) as developed by Marcos et al. (2006), anal-

ogous in this work to linear perturbation theory (LPT). PLT is important because

it exactly describes the initial configuration of particles as presented in cosmological
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simulations, and the evolution of a collection of particles that are self-gravitating in

an expanding universe. It is a method that the Zel’dovich approximation attempts

to simplify, due to its inherent complexity.

PLT Formalism

Garrison et al. (2016) offers a concise background on PLT which I shall briefly

discuss as it is useful when considering the Zel’dovich approximation.

Consider an imaginary box of side lengths L. Inside this box, there are N

particles arranged in a cubic lattice.

This box has special walls that let particles go from one side to the other, i.e.

we apply periodic boundary conditions.

We can explain the variation in each particle’s speed, considering that the

universe around them is expanding and given that each particle exerts a grav-

itational pull on every other particle. This is explained with the following

equation:

ẍi + 2H(t)ẋi = − 1

a3

∑

i 6=j

Gmj(xi − xj)

|xi − xj |3
(1.1)

Where H is the Hubble parameter, G is the gravitational constant and a is the

scale factor. The left side of the equation describes the acceleration of each

particle. The right side of the equation instead describes the gravitational

force between particles, which depends on their relative positions. This is,

therefore, an equation that primarily describes the balance between two forces:

the expansion of the universe and the gravitational pull of particles on one

another.

Now we can describe the position of any of the particles relative to the ex-

panding universe: i.e. comoving position:

xi(t) = Ri + u(Ri) (1.2)

Where Ri is the particle’s original position and therefore u(Ri) is the displace-

ment that particle i experiences. Because there are (almost) infinitely many

particles in the universe, summing up their gravitational contribution exactly

is very difficult. Therefore, special tools are used (such as Ewald-type Summa-

tion (Marcos et al., 2006) or an N-body Force Solver) to accurately simulate

the contributions.

For the scope of this thesis, this is where depart, since the Zel’dovich approx-

imation does not take into account the full description and certainly does not

calculate the gravitational contribution of every particle in the system.
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1.4 The Zel’dovich Approximation

First proposed in 1970 (Zel’dovich, 1970), this approximation is a simplification of

otherwise very complex mechanics that occur between dark matter particles. What

it proposes is a simple, ballistic trajectory that dark matter particles undertake. An

application of such an idea is revisited years later in 1989.

Shandarin and Zeldovich (1989) originally imagined a mini-universe where all the

particles are cold and moving with some initial speed v(q), where q are their initial

Lagrangian coordinates. The Lagrangian coordinate is used to track particles - think

of them as markers that are initially attached to the particle and can be used to

track the movement. Because this universe is cold, particles will keep moving in a

straight line at the same speed (hence, ballistic trajectory).

They propose that, initially, particles have random velocities, rather than some

pattern.

Since the gas is cold, no viscous or pressure forces are acting on the particles and

hence no acceleration. This means that all particles move with constant velocity.

Over time, particles will experience "trajectory intersections", where their paths

will cross. This leads to forming overdensities. Particularly, the authors mention

that particles with these initial properties and dynamics will go on to form "cellular

structures" or "foam" regions - exactly reminiscent of the large-scale structures we

see today.

Much like turbulent flow, the evolution of these particles follows a smooth, orderly

initial state called laminar flow, which then, over time, evolves and becomes chaotic

and unpredictable, characterised by irregular motion and the formation of overden-

sities (vortices and eddies in the case of gas dynamics).

The term "turbulence" originates from classical descriptions of incompressible fluids.

In such fluids, density remains constant, leading to a divergence-free flow. Then the

velocity is defined as the curl of a potential v = curlA. At large scales, irregular ed-

dies of intermediate size emerge, while smaller scales are governed by viscosity. This

phenomenon mirrors the complexity that the Zel’dovich approximation attempts

to resolve by considering only ballistic trajectories and therefore almost entirely

ignoring the small-scale viscosity effects.

If we were considering normal gas particles, these would collide, heat up and form

shock waves; processes necessary for the formation of large-scale structures. How-

ever, in a medium of collisionless dark matter, we only observe multi-stream con-

figurations which means that at some Eulerian point x, particles that have arrived

from different Lagrangian coordinates q1, q2, . . . , qn will intersect and form re-

gions of higher density. These particles have different velocities v1, v2, . . . , vn. The

particles’ position over time is therefore given by:
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x(t,q) = q + t · v(q) (1.3)

Where v(q) is a vector containing particle velocities at their Lagrangian coordinates

q.

As time goes on, these regions of higher density grow to form a web-like structure

characterised by thin filaments of high density separated by large regions of low

density (voids). These structures can be seen today through observations of large-

scale structures.

At this point, the use of Fourier analysis to analyse the different modes that have

chaotically arisen fails to work, since the different modes are not statistically inde-

pendent. Hence, they propose to study the patterns formed by particles, without

allowing them to interact with each other. This helps them to focus on how particles

move and form patterns without getting distracted by other factors.

As the universe expands, matter behaves like cold dust due to the influence of gravity.

To include the growth rate of regions of higher density which causes perturbations,

as well as the expansion of the universe, a simple formula is proposed by Zel’dovich

(1970):

r(t,q) = a(t)[q − b(t)s(q)] (1.4)

Where, as in Eq 1.3, r and q are the Eulerian and Lagrangian coordinates respec-

tively and a(t) is the cosmological scale factor which accounts for the expansion of

the universe over time: As the universe expands (a(t) increases), distances between

objects increase proportionally. b(t) is the growth rate of linear density fluctuations

in an expanding universe. This term represents how quickly small density fluctua-

tions in the universe grow as the universe expands. It’s related to the evolution of

structures in the universe due to gravitational instability.

s(q) is the gradient of the gravitational potential s(q) = ∇Φ(q) and represents

spatial perturbations or how the gravitational force varies from its average value

at each point in space. To clarify, the right-hand side of the equation combines

the effects of cosmic expansion (a(t)q) and the growth of density perturbations

(b(t)s(q)). The term a(t)q represents how the particle’s Lagrangian position q

evolves due to the expansion of the universe. As a(t) increases with time, the

particle’s Lagrangian position is stretched along with the expansion of space.

The term b(t)s(q) describes how the particle’s position is affected by the growth of

density fluctuations. The gradient of the gravitational potential s(q) captures the

spatial variations in density, and b(t) scales the effect of these density fluctuations on

the particle’s motion. As density perturbations grow, they influence the particle’s
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trajectory, causing it to move towards regions of higher density and away from

regions of lower density.

This equation is very different from Eq 1.1, as it describes the spatial distribution

of matter in the universe, rather than the positions of individual particles. The

Zel’dovich approximation is a first-order Lagrangian perturbation approximation

because it involves perturbations. The growth function b(t) depends on the mean

density of the universe Ω = ρ̄/ρcrit, but if we consider a flat matter-dominated uni-

verse (Ω = 1), then the growth factor b(t) and the scale factor a(t) are approximately

equal.

The overdensity ∆ = δρ/ρ is proportional to the gradient of the spatial perturbation

s(q) and therefore ∆ ∝ ∇2Φ(q). We can make the following transformations:

x = r/a(t), τ = b(t), v(q) = −s(q), (1.5)

to Eq 1.4 to obtain:

x = q + τ · v(q) (1.6)

Which is equivalent to Eq 1.4. Eq 1.6 can describe the motion of a non-interacting

medium up to the formation of caustics (regions of infinite density), after which the

approximation becomes invalid.

The Zel’dovich approximation tends to remain accurate for a longer duration com-

pared to the Eulerian linear theory, which describes how the density contrast δ

evolves according to linear differential equations - derived from linearised versions

of the equations of motion.

To conclude: the Zel’dovich approximation is more reliable because it uses the La-

grangian approach rather than using a Eulerian framework, where observations are

made at fixed points in space. The method is also able to translate the Lagrangian

positions of particles into their Eulerian positions, as can be seen in Figure 1.2

1.5 Defining a Halo

Now that we understand cosmological simulations, why they are important, how

they are generated, what theoretical process is used to evaluate the evolution of

constituent particles within the simulation, and why this Zel’dovich approximation

can be very useful, we go on to define Halos and their properties.

To identify halos within a simulation, some constraints on their mass and density

must be employed. There are a few theoretical definitions of halos, so we shall start

by introducing the Spherical Top-Hat collapse model and the Friends-Of-Friends

method, which are tools used by software to "detect" halos.
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Figure 1.2: In the Zel’dovich approximation, the Lagrangian positions of particles

are mapped into Eulerian space by using the initial gravitational potential field,

denoted as Φ0(q). This process involves a geometrical technique where a paraboloid,

described by Equation 17 in Shandarin (2009), is adjusted until it is tangent to the

surface of the initial potential at the Lagrangian point q. The Eulerian position of

the particle is then determined by projecting the apex of the paraboloid onto the

surface, providing the corresponding Eulerian coordinates

1.5.1 Top-Hat Spherical Collapse Model

The Top-Hat Spherical Collapse (TSC) (Gunn and Gott, 1972) model describes how

a spherically symmetric density perturbation expands and collapses to form a halo

in an Einstein de Sitter (EdS) Universe. When a halo of dark matter first forms,

its expansion rate is the same as that of the background universe. However, since

it contains more matter than its surroundings, the halo’s expansion gradually slows

due to self-gravitation until it reaches its turn-around radius Rta, where it stops

expanding. At this point, the dark matter halo begins to re-collapse onto itself due

to its growing gravity. The collapse halts when the density of the halo reaches a

critical density value ∆c = 18π2 ' 178 times the background critical density. The

halo is now virialized and hence in gravitational equilibrium with itself and the

surroundings (Figure 1.3).

Figure 1.3 shows the evolution of a halo’s density over time with the scale factor on

the x-axis. Four different scenarios are shown:

1. The lowest curve shows the density evolution of the background universe, which

is well-known to follow a a−3 scaling.

2. The next lowest dotted curve shows a standard linear Eulerian theory approach

which, as we’ve discussed, breaks down quite early in being able to describe

the density evolution of halos.
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Figure 1.3: Depiction of density evolution for different models (Brooks, 2021).

3. The top-most dotted curve shows the Spherical Collapse model, which cor-

rectly predicts the turn-around of an overdensity but then fails to incorporate

virialization and shell crossing.

4. The middle, the solid line shows the real path an overdensity would take in an

expanding universe and therefore correctly shows shell crossing and virialization

- processes necessary for the formation of halos.

Throughout this work, different definitions of halo mass are employed. When a halo

is located using halo finding techniques, and a "centre" is defined, its mass, M∆, is

calculated by considering the density contrast ∆ contained within a certain radius

r∆:

ˆ r∆

0

r2drρ(r) =
∆

3
ρcritr

3
∆ (1.7)

Recall that the density contrast ∆ is the ratio of the actual density of the halo to

the mean density of the universe at a given time. We call this the virial mass from

a spherical top-hat collapse model, Mth - vir.

Alternatively, we define the virial radius as the radius at which all mass has virialised,

and beyond which the mass continues to collapse onto the dark matter object. In

general, this occurs at a density contrast ∆ = 200, but it does depend on the

cosmology used. Hence, a common estimator is M200. (White, 2001)

Alternatively, a different mass estimator can be employed, similar to the approach

adopted by Jenkins et al. (2001). In their analysis of simulations done by the Virgo

consortium, they assign a mass equal to the sum of masses of the particles that make
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up the halo, as found by their halo finder. Although it is hard to interpret theoret-

ically, this method has an advantageous trait: its mass function is independent of

cosmology. This is very similar to the approach I employ when calculating the Halo

Mass Function in Chapter 2.6.

1.5.2 The Friends of Friends method

One approach to distinguishing halos from a group of dark matter particles is the

Friends of Friends algorithm. This specific algorithm is employed and improved

upon in Amiga’s Halo Finder (AHF), which we shall cover shortly.

In this method of halo finding, pairs of particles that supposedly make up a halo

are "linked" to one another by selecting a linking length hlink and checking if these

particles lie within the linking length distance. If they are, they are designated

friends. Halos are defined as sets of particles that are connected by one or more

friendship relations. This means that if Particle A is a friend of Particle B, and

Particle B is a friend of Particle C, then Particles A, B, and C would all belong to

the same halo because they are connected through the friendship relations.

The linking length is controlled with a certain density parameter:

ρmin =
2m̄

4
3πh

3
link

(1.8)

Where m̄ is the single average mass of particles in the simulation. The minimum

density that a sphere can have to be considered a halo is controlled by the linking

length that defines a volume. While computationally simple, this method struggles

when it comes to choosing the arbitrary minimum number of particles to consider,

Nmin(Figure 1.4).

A minimum number of particles must be chosen to eliminate spurious halos. The

problem here is that if Nmin is too low, a larger fraction of unwanted halos will be

detected. If too large, some smaller, real halos will be rejected. Furthermore, FoF

has a tough time distinguishing between a large halo, and a collection of small halos

nearby, not to mention halos within halos.

In both TSC and FoF, the most crucial parameter that is used to detect a halo is

its density.

1.6 Amiga’s Halo Finder

The Amiga Halo Finder (AHF) (Knollmann and Knebe, 2009) is the successor to the

halo finder MHF (Gill et al., 2004) and therefore is based on its operational idea.

A hierarchical grid structure is generated by a process called Adaptive Mesh Re-

finement (AMR). Instead of using a traditional grid, which has a fixed resolution
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Figure 1.4: All particles closer than 0.2 of the mean inter-particle separation (s) are

linked, and all links of particles are followed recursively to form the halo groups.

(Skory, 2010)

throughout, which can be wasteful in regions where we don’t need high precision,

AMR intelligently and dynamically adjusts its resolution based on the complexity of

the problem. Vast voids and smooth airflow can have a coarse grid associated with

them, whereas regions of dense star formation and turbulent eddies have a refined

grid associated with them.

This refinement of the grid is done dynamically, as the simulation progresses. It

allows MHF to then organize, hierarchically, individual prospective halo centres by

simply identifying regions of localized peaks in density. This is what we mean by a

hierarchical grid structure.

Within AHF, the AMR technique sections off grids that are effectively isodensity

contours that encompass particles. Isodensity contours represent surfaces in three-

dimensional space where the density of dark matter particles remains constant.

As long as the contours are not ambiguous, AHF will collect them. If they are

ambiguous, misidentification of halos can occur. This could happen if the density

variations in the region of interest are too subtle or irregular.

Once AHF has traced the isodensity contours and identified potential halo regions,

it analyses the density peaks and pinpoints a prospective halo centre.

AHF assumes spherical symmetry (ρ = ρ(r)) in the distribution of dark matter

within halos. It implies that the density ρ of dark matter particles depends only on



1.7. HALO MASS FUNCTION 17

Figure 1.5: Hierarchical grid that contains several prospective halo centres. Adopted

from Knollmann and Knebe (2009)

the radial distance r from the halo centre1.

Both Poisson’s equation (∆φ = 4πGρ) and Newton’s Force equation
(

dφ
dr =

GM(<r)
r2

)

are solved. The former determines the gravitational potential within halos by relat-

ing it to the density distribution of matter using the Laplacian operator ∆, while the

latter is used to calculate the gravitational force acting on the dark matter particles

inside the prospective halo.

Once the equations are solved, AHF iteratively examines the distribution of density

within the region to attempt to identify a halo edge. This is because not all particles

may be gravitational bound. Unbound particles are removed iteratively until a fully

bound halo edge is deduced.

This was the process employed on all simulations that were run. AHF outputs files

that can be analysed. Given the halos, we can now turn to the Halo Mass Function.

1.7 Halo Mass Function

In cosmology, the halo mass function (HMF) is a mass distribution of dark matter

halos. Specifically, it gives the number density of dark matter halos per mass interval.

Tinker et al. (2008) chose to portray the HMF as follows:

1This can be quite a powerful assumption as, realistically, halos do not form completely
spherically but, rather, follow a more complex pattern of flattening in one direction and
then collapsing in the other two dimensions, much more like a pancake (Achitouv and
Corasaniti, 2011).
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dn

dM
= f(σ)

ρm
M

d ln σ−1

dM
(1.9)

Where f(σ) is parameterised as:

f(σ) = A

[

(

σ

b

)−a

+ 1

]

e−c/σ2

(1.10)

expressed as a combination of constants (A, a, b, c) to be calibrated.

Then, σ(M, z) is the variance of the linear matter density field smoothed on a certain

scale R, defined as:

σ =

ˆ

P (k)Ŵ (kR)k2dk (1.11)

and P (k) is the linear, matter power spectrum as a function of wave-number k, and

Ŵ is the Fourier transform of the real-space top-hat window function of radius R

(Ŵ (kR)). A top-hat window function just means that it assigns a value of 1 within

a certain radius R and 0 outside that radius. Its Fourier transform is the frequency

of the window function. All in all, this describes the spatial distribution of density

fluctuations.

Indeed the number of halos we expect (Nexp) is just the integral of the halo mass

function in Equation 1.9 (Stopyra et al., 2021a):

Nexp =
ρm
M

ˆ

dn

dM
dM (1.12)

In this work, we utilize the pynbody routine hmf to compare the expected halo mass

function of a simulation with the real halo mass function derived from Eq 1.12. This

comparison is crucial to understanding the behaviour of a simulation.

Analyzing the halo mass function is important when it comes to constraining cos-

mological parameters because it is sensitive to these parameters. For instance, the

Navarro–Frenk–White (NFW) profile (Navarro et al., 1996) characterizes halos in

terms of their spatial mass distribution and is sensitive to the critical density of the

universe, denoted as ρc:

ρc =
3H2

0

8πG
(1.13)

This explains the importance of the analysis of the HMF; if dark matter halos can

accurately be simulated, important cosmological parameters can be constrained.
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1.8 Generating Initial Conditions

When initializing simulations to study how galaxies and structures form in the

universe, initial conditions are required. These conditions include the position of

particles and how they move at a very early time in the universe’s history when

deviations from homogeneity are still linear - meaning just before the clumping of

matter begins.

To this end, a random pattern is formed that matches our current understanding of

the distribution of matter, a Gaussian Random Field (GRF).

A GRF, pictured in Figure 1.6, is what we believe the universe may have looked

like soon after the Big Bang and is also the distribution of matter in the initial

conditions file that will be fed to Gadget, the simulation algorithm.

Figure 1.6: Shown here is a simulated depiction of a two-dimensional, Gaussian

random field exhibiting a scale-invariant power spectrum P (k) ∝ k−2. This realiza-

tion encapsulates statistical properties fully characterized by the two-point function

〈φ(x)φ(y)〉, emphasizing the Gaussian nature of the field. Adopted from Goon

(2021).

To allow the computer to work with such an abstract concept, convolutions (a way

to combine two sets of data into a third so that a CPU can understand them) are

involved. GenetIC generates the starting conditions for the simulation, and then

performs small changes to these conditions to create "genetic modifications."

By producing a cosmological covariance matrix (i.e. a matrix representing the re-

lationship between different density fluctuations), we can set the scene for density
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contrasts to be input. A vector δ is formed which contains discrete values: the aver-

age density of specific cells or regions of the simulation. Then, each vector element

is translated into particles with positions and velocities using Lagrangian perturba-

tion theory, the lowest-order terms of which can be approximated by the Zel’dovich

approach.

With the initial conditions generated, we are ready to run the simulation.

1.9 Running the Simulation

Gadget2 (Springel, 2005) is the software used to simulate the generated initial con-

ditions in this thesis. It combines the hierarchical tree method of gravitational

interaction and the smoothed particle hydrodynamics (SPH) method for gases and

liquids to accurately simulate many aspects of the Universe. Since this thesis mainly

dealt with dark matter, SPH was not implemented in any of the simulations. Rather,

the calculation and evolution of dark matter solely used gravitational interaction.

This hierarchical tree method of gravitational interaction involves two steps. One

involves computing the gravitational forces using a hierarchical multipole expansion

(HME) method, which works on various scales.

The other step is the TreePM algorithm, which combines the HME method with

Fourier techniques for more advanced computation, able to simulate short-range and

long-range gravitational interactions.

More specifically, it operates by solving the collisionless Boltzmann equation coupled

with the Poisson equation within an expanding background Universe, typically rep-

resented by the Friedman-Lemaitre model. These equations describe the evolution

of dark matter particles in a vast cosmic web of structure formation.

Gadget takes initial conditions, including positions and velocities of particles, and

can employ various methods to generate the final z=0 snapshot. This thesis uses

two methods: the full N-body approach and the Zel’dovich approach. The latter has

already been discussed. In the former method, phase-space density is sampled using

a finite number of N tracer particles. By iteratively solving the equations governing

gravitational interactions and particle dynamics, Gadget generates simulations that

capture the emergence and evolution of cosmic structures, such as galaxies, clusters,

and filaments. An example of a final product of simulated particles is shown in

Figure 1.7.

1.10 Power Spectrum

It’s important to understand how our knowledge of the density field has evolved.

Scientists have studied the Cold Dark Matter (CDM) theory in detail, which helps

us understand how density varies across the universe.



1.10. POWER SPECTRUM 21

Figure 1.7: A subset of the 20,000 particles at z = 0 from the GADGET-2 simulation.

The particles are shown with vector arrow glyphs which are sized and coloured by

their velocity magnitude (blue: slowest, red: fastest) (Heitmann et al., 2007).

When the universe was dominated by radiation, density fluctuations could only

grow significantly if they were bigger than the horizon scale. Fluctuations smaller

than this faced limitations due to interactions with radiation and pressure. As the

universe shifted to being matter-dominated, gravity started affecting all fluctuations

equally, leading to similar growth rates for all.

When we track the fluctuation spectrum over cosmic history, we notice a change in

growth rate at a specific scale, marking the transition between these two cosmic eras

(check out Figure 1.8). If the initial density fluctuations follow a certain pattern, we

see a gradual change in density power over time. This shift is significant, spanning

a wide range of sizes, from larger to smaller. We can describe this change with an

equation that shows how density evolves:

|δk|2 ∝= Ak/(1 + αk + βk3/2 + γk2)2 (1.14)

Here, A is a normalization constant (Davis et al., 1985). k can be taken with

different units, but if it is taken to have present length units, then the parameters

in the above equation take the values α = 1.7l, β = 9.0l3/2 and γ = 1.0l2 where l is

the cosmological density parameter at the present time.

Understanding the initial conditions of the universe is crucial, particularly in this

thesis which plays with these conditions. Therefore, changing the Hubble parame-

ter, for example, would alter the power spectrum overall. The power spectrum of
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Figure 1.8: Matter power spectrum inferred from various cosmological probes.

(Collaboration, 2018)

matter, especially at large scales, provides insights into the typical sizes and distri-

bution of voids, which is why it is so important to our understanding of cosmological

structures.

1.11 Autocorrelation Function

Often denoted as ξ(r), the autocorrelation function is a measure of the degree of

spatial correlation between density fluctuations at different points in the universe as

a function of their separation distance, r, which can have any units. In this thesis,

r is chosen to have simple units of Mpc as we are analysing voids.

More plainly put, this function can show how matter, at different scales, tends

to cluster and offers the probability of finding two halos separated by a distance

r. It can reveal patterns across different scales; patterns that only exist based on

the cosmological parameters (Peebles, 1980). The relationship between the power

spectrum P (k) and the autocorrelation function ξ(r) is given by the forward Fourier

transform:

ξ(r) =
1

(2π)3

ˆ

eik·rP (k)d3r (1.15)

It is also defined as the average of the product of fluctuations in density at two

points, normalized by the average density:
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ξ(|x1 − x2|) = 〈δ(x1)δ(x2)〉 (1.16)

where δ(x) = (ρ(x) − ρ̄)/ρ̄. In this thesis, the autocorrelation function is used as

a tool to quantify analytically the usefulness of the Zel’dovich approximation in

showcasing the clustering properties at small and large scales when compared to

a full N-body simulation of dark matter - which tends to exhibit a more accurate

result.

In conclusion, this function is a viable tool and should be used to evaluate how

accurately voids are distributed in a simulation solely using dark matter and the

Zel’dovich approximation to model particle dynamics. The more accurate the dis-

tribution of voids is when compared to full N-body simulations and real observa-

tions, the more promising the conclusions will be and therefore the more likely this

approximation can be used for new science.

1.12 Void Density Profile

In the vast regions known as cosmic voids, the distribution of matter is still far

from uniform. Spanning tens of millions of light-years across, these voids represent

significant components of the cosmic web which play an important role in the shaping

of the large-scale structures of the universe.

The study of voids and especially the defining of their density profiles is of great

importance to modern cosmology and is thus explored thoroughly in this thesis.

The profiles provide unique insights into the processes that control the formation

and evolution of cosmic structures. By analysing the distribution of matter den-

sity, valuable information on void evolution, cosmic expansion, dark matter and the

nature of dark energy can be gathered.

Hence, voids serve as valuable laboratories for testing cosmological theories since

their relatively simple geometry and low-density contrast with the outside universe

make them ideal candidates for theoretical modelling and numerical simulations. By

comparing the N-body simulation void density profile to the Zel’dovich void profiles,

we can analyse whether the approximation can predict and/or constrain important

cosmological parameters, such as the density of dark matter and dark energy, and

the amplitude of primordial density fluctuations (Beygu et al., 2016).

Moreover, the properties of void density profiles, such as their shape, have very

important implications for galaxy formation and evolution. This is not explored

in this thesis but if we can constrain cosmological parameters and therefore the

shape of the density profile of voids, then the evolution of galaxies within can be

further explored. For example, Courtois et al. (2023) delve into the relationship

between luminous and dark matter in cosmic voids, highlighting discrepancies in

void emptiness assessments and identifying the Hercules void as a potential "pristine
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volume" with minimal dark matter content, which has very important consequences

for both galaxy formation and cosmological parameter constraining.

This thesis hoped to compare the density profiles of voids found in all simulations

with a more theoretical approach, but it was limited due to time. If time was

given, then the calculated density profiles would have been compared to a theoretical

profile, such as the one in Hamaus et al. (2014), where the void density profile is

defined as the spherical average of the deviation in mass density around a void

centre from the mean density across the Universe, expressed as ρv(r)/ρ̄−1. To then

estimate the density within a shell of thickness 2δr at a distance r from the void

centre located at the origin, tracer particles are used. This density is expressed as

follows:

ρv(r) =
3

4π

∑

i

mi(ri)Θ(ri)

(r + δr)3 − (r − δr)3
(1.17)

where mi is the mass of any singular particle i, ri is its coordinate and Θ(ri) is a

sort of "radial bin selector" and helps with counting the number of particles that

fall within a specified shell thickness, much like a filter. This theoretical process is

extremely similar to the process outlined in methodology Section 2.8

Overall, the density profile of voids is a fundamentally important concept which

should be studied in more detail and the Zel’dovich approximation for large-scale

structure evolution could offer new insights into the overall profiles, since with a sim-

pler approximation to PLT, one may generate much larger cosmological simulations

and be able to stack a greater number of voids, thus possibly reducing uncertain-

ties and constraining important cosmological parameters, shedding new light on the

origin and evolution of the Universe.



Chapter 2

Methodology

In this section, the steps taken for the work done in this thesis are explored. Below

is a brief outline, with more specific descriptions to follow.

First, initial conditions are generated using GenetIC. This is done for both the

normal simulation pair and the Zel’dovich simulation pair. A pair of simulations

consists of a normal and reverse initial condition simulation.

Then, the full N-body simulations are evolved using Gadget2, wherein only dark

matter particles are considered. When the simulations reach z = 0 from z = 50, their

power spectrum is generated to see the distribution of matter, clustering properties,

cosmological parameters, etc. The Zel’dovich simulations do not require the same

evolution from z = 50 and can be modelled at z = 0 since the effects of cosmological

expansion are ignored.

Then, AHF is employed to find the halos in the pairs of simulations using a hier-

archical grid structure and adaptive mesh refinement. The halo mass function is

calculated and plotted which shows the halo number density that falls within spec-

ified mass bins. After the HMF, a plot of the position of halos is done that shows

promising matching between Zel’dovich-generated halos and full N-body halos.

Particles that belong to specific halos have IDs associated with them. They are

matched with the ID location of the normal simulation to detect the voids. The

same is done to the Zel’dovich pair.

Then, the density profile of voids is calculated in the following way: First, the density

for each particle is retrieved, and then its volume. The volumes are summed over

all particles in the void to get the total void volume. The radius is that of a sphere

with the same volume. The centre of mass is then computed and the density profile

is generated in radial shells around each centre of mass. The profile shows density

as a function of radius. The density profiles of Zel’dovich voids are compared to full

N-body voids.
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From the density profile, we can retrieve important conclusions, such as void evolu-

tion and possibly constraining cosmological parameters.

2.1 Generating the Initial Conditions

The plot on the left in Figure 2.1 shows the positions of particles based on the initial

conditions, which have been generated by GenetIC (Stopyra et al., 2021b). When

generating the initial conditions, only very few parameters are tweaked to explore

different simulation outcomes. To test whether the Zel’dovich approximation is

suitable for linear void evolution, the cosmological parameters for all simulations

are kept the same and can be seen in Table 2.1.

Table 2.1: Cosmological Parameters

Parameter Value

Ωb 0.0

Ωm 0.3111

ΩΛ 0.6889

s8 0.8288

ns 0.9665

Hubble 0.6766

zin 50.0

where:

1. Ωb is the fraction of the critical density of the universe contributed by baryonic

matter (ordinary matter composed of protons and neutrons). In this case, it’s

set to 0.0 because we are only interested in dark matter.

2. Ωm is the fraction of the critical density of the universe contributed by total

matter, including both dark matter and baryonic matter.

3. ΩΛ is the fraction of the critical density of the universe contributed by the cos-

mological constant or dark energy. It represents the energy density associated

with the vacuum of space, causing the universe’s expansion to accelerate.

4. s8 is the amplitude of matter fluctuations on scales of 8 h−1 Mpc. It’s a measure

of the overall level of clustering of matter in the universe.

5. ns is the spectral index of the primordial power spectrum of density fluctuations.

It describes the shape of the spectrum and how the amplitude of fluctuations

varies with scale. A value of 0.9665 indicates a slightly red-tilted spectrum,

where smaller scales have slightly less power compared to larger scales.

6. "Hubble" is the present-day value of the Hubble parameter, which describes

the rate of expansion of the universe, expressed in units of km/s/Mpc.
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Figure 2.1: Comparison between matter density plots at z = 50 (right) and z = 0

(left) for the full N-body simulation.

7. zin is The initial redshift or starting redshift of the simulation. It represents

the redshift at which the simulation begins its evolution.

2.2 Running the Simulations

Initial conditions are generated using GenetIC at z = 50 for the full N-body model

and z = 0 for the Zel’dovich model. While simulating the universe from an earlier

time, say z = 99, would give more detail, z = 50 was chosen to maximize accu-

racy while minimizing the computational power needed, thereby also maximizing

efficiency. A pair of simulations for both models are generated. One has its initial

conditions reversed compared to the other meaning that overdensities are considered

underdensities and vice versa so that δA(x, tinitial) = −δB(x, tinitial), a process that

was suggested by Pontzen et al. (2015). Once the initial conditions are prepared on

both simulations, they are evolved using the software Gadget2 which, for the case

of the Zel’dovich simulation, can be configured to implement the relevant approx-

imation. Therefore, this simulation is computationally less expensive compared to

full gravitational simulation. An example of the initial conditions for the case of the

full N-body simulation can be seen in Figure 2.1.

Figure 2.1 shows the initial matter density in a 500Mpc2 slice at z=50 (left) and

z=0 (right). The density is measured in gcm−3/ρb, meaning it has been normalised

by the average cosmological density, ρb. What we are seeing is the initial almost

completely homogeneous distribution of matter (notice the colour bar) on the left

transforms, after the right mechanical equations are computed, to the very different

distribution of matter on the right. The right shows a more modern-day visual

of large-scale structures: nodes and filaments of high density (halos), surrounding

almost empty regions (voids).
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2.2.1 Snapshot Loading and Density Distribution

An analysis of the density distribution of both the Zel’dovich and full N-body simu-

lation is carried out, firstly by loading the snapshot data using the Python package

pynbody. Then, slices in space are formed using specific parameters, chosen to en-

sure consistency. The lower and upper bounds for the z-axis are a = 5 Mpc and b =

10 Mpc and the width is set to 1000 Mpc. The mean density is calculated for each

slice and converted to gcm−3. Then, the density distribution is generated with the

sph.image function and is re-scaled against the cosmological mean density.

sph.image can visualise the distribution of a specified array, in this case density,

within the simulation volume provided.

Figure 2.2 displays the notable contrast in density distributions, showing that the

Zeldovich approximation (left) tends to yield a more uniform distribution with an

average density of approximately 0.2, whereas the simulation incorporating higher-

order mechanics (right) displays greater variability, with an average density of 0.01.

Figure 2.2: Comparison between density plots at z=0 generated from just varying the

initial conditions (left) and full N-body simulation (right). The density is plotted

in gcm−3/ρb and hence is normalised by the background average density and is

therefore unitless.

2.3 Power spectrum

To investigate the efficacy of the Zel’dovich approximation in simulating voids, the

power spectra of the forward and reverse simulations were compared. The power

spectrum serves as a valuable tool for quantifying the distribution of matter density

fluctuations on different spatial scales.

First, using nbodykit, a CSV catalogue is formed that contains the position of every

particle in the simulation as well as their masses.
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Then, this catalogue is converted into a mesh. This conversion is achieved using

Triangular Shaped Cloud (TSC) interpolation on a 2563 mesh grid. This process

discretizes the continuous distribution of objects in the catalogue into a discrete

grid, with the following routine and parameters:

mesh = f.to_mesh(resampler = ’tsc’, compensated = True,

interlaced = True, Nmesh=256, position=’Position’,

BoxSize=s.properties[’boxsize’].ratio("Mpc a h**-1"))

Where s is the snapshot to be considered. "Compensated" being true means that

correction factors to the density field in Fourier space are applied for the TSC to

work. "Interlaced" means that the effects of aliasing are reduced. Aliasing occurs

when we are Fourier transforming the density field onto the mesh - it involves in-

terpolating objects onto two separate meshes distinguished by half of the cell size.

When these two are combined in Fourier space, aliasing effects are reduced.

Next, the power spectrum of the density field is computed using Fast Fourier Trans-

form (FFT). It calculates the power spectrum in 1D mode, meaning it assesses

the distribution of fluctuations along the line-of-sight direction. Parameters can be

varied to control the spacing and minimum value of the wavenumber k.

In Figure 2.3, we compare the power spectra of the Zel’dovich simulation with that

of the full simulation.

Figure 2.3: Comparison of power spectra between Zel’dovich and full simulations.

The Zel’dovich power spectrum deviates noticeably from the full simulation at high

wavenumbers (k), indicating its limitations in capturing small-scale structures.
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2.4 Autocorrelation

The autocorrelation function is calculated for the power spectra generated in the

previous chapter. We initialise a range of separation distances r for which we will

compute the autocorrelation function ξ(r) and, for each value of r, perform the

following calculations:

• Exclude any nan numbers from the power spectrum.

• Utilize the inverse Fourier transform of the power spectrum to obtain the inte-

grand, which means multiplying the exponential term eikr by the power spec-

trum P (k).

• The integral is calculated using the trapezoidal rule over the specified range r

following Eq 1.15.

Finally, it is plotted in Figure 2.4. Two other separation distance ranges are explored

in the conclusion.

Figure 2.4: Comparison between different autocorrelation functions calculated using

the Fourier transform of the previous power spectra and focusing on separation

distances that correlate with large-scale structures ranging from 150 - 1000 Mpc,

which the Zel’dovich approximation can follow very accurately.

2.5 Finding Halos using AHF

Amiga’s Halo finder was employed to find halos in the full and Zel’dovich simulation

using the data provided in Table 2.2.

The criteria in the table are mostly kept by default, except NminPerHalo, which

controls the number of particles needed to define a halo, ρvir, controlling the virial
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Table 2.2: AHF Parameters
Parameter Full Simulation Zel’dovich Simulation

LgridDomain 64 64

LgridMax 16777216 16777216

NperDomCell 2.0 2.0

NperRefCell 2.5 2.5

VescTune 1.5 1.5

NminPerHalo 25 10

ρvir 0 1

Dvir 200 30

RmaxGatherRad 3.0 3.0

LlevelDomainDecomp 6 6

NcpuReading 1 1

density, and Dvir, which controls the virial overdensity criterion. The rest are as

follows:

1. LgridDomain: Size of the domain grid in 1D.

2. LgridMax: Size of finest refinement level to be generated, which in short con-

trols the spatial resolution.

3. NperDomCell: Number of particles triggering a refinement on LgridDom.

4. NperRefCell: Number of particles triggering a refinement on refinement grids.

5. VescTune: If during the process particles have speeds that exceed: v > VescTune∗
vesc, then they are considered unbound.

6. RhoVir: The halo edge is defined with the following equation:

M(< Rhalo)
4π
3 R3

halo

= ∆ρref (2.1)

Then this integer parameter defines what to use as ρref:

• RhoVir = 0 use ρvir = ρcrit(z)

• RhoVir = 1 use ρvir = ρback(z)

For the Zel’dovich simulations, RhoVir was chosen to be 1 as opposed to 0 due

to technical difficulties with finding halos when using the critical density.

7. Dvir: based on Eq 2.1, Dvir defines what to use as ∆.

8. MaxGatherRad: limits the distance within which particles are collected.

9. LevelDomainDecomp: sets the grid to be used to do the domain decomposition.
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10. NcpuReading: number of CPUs reading the data.

AHF then outputs a catalogue of halos, which contains a host of important and useful

information. These catalogues are then accessed using pynbody so that analysis can

be carried out.

2.6 Halo Mass Function

The HMF was computed by loading the snapshot and extracting the masses. Then

the masses of each halo were calculated by counting the number of particles present,

n, and multiplying by the mass of one particle, m, since all particles share the same

mass. Hence the halo mass was calculated:

Mhalo(M�) = nm ∗ 1010

h
(2.2)

where the mass is normalised to retain solar mass units.

Then, halos are distributed in logarithmic bins according to their mass, ranging

from the smallest halo to the largest into 15 equally spaced bins. The halo mass

function is calculated by taking this distribution and dividing it by the volume of

the snapshot. This yields the dn/dlogM . Figure 2.5 shows the difference in HMFs

between theoretical (line), full and three different Zel’dovich simulations, each with

varying definitions for virial density.

The noise associated with each mass bin is also calculated and is Poissonian. For

each count, the lower and upper bounds of the confidence interval are calculated

using the inverse chi-squared distribution function chi2.ppf at the 5% and 95%

levels, based on the assumption that the counts follow a Poisson distribution. Then

the lower and upper bounds are normalized by dividing by the volume.

This process quantifies the uncertainty associated with the observed counts of halos

in each mass bin, as found by AHF.

2.7 Loading and comparing the halos

The halos identified by Amiga’s Halo Finder (AHF) are imported into a Jupyter

Notebook for analysis. These files contain extensive data, including identification

numbers or particle IDs corresponding to the halo’s centre position, allowing for

comparisons with the standard forward simulation.

First, given the halo catalogue, the centre of mass positions are calculated by taking

the mean position of all particles making up a halo. Then, a loop checks each centre

of mass and looks for matches between the Zel’dovich and full simulations, with some
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Figure 2.5: Comparison of different HMFs by varying the virial overdensity Dvir =

∆vir × ρcrit from 20 to 15 to 10, with associated Poissonian noise.

tolerance both in the centre of mass position and the actual mass. The tolerance is

as follows:

if (comf[j, :] < com[i, :]+10).all() and

(comf[j, :] > com[i, :]-10).all() and

math.isclose(massZ, massF, abs_tol= 3* massZ):

Where com is the centre of mass of the full or Zel’dovich halos, massZ are the masses

of each halo and massF are the masses of each halo in the full simulation. The

tolerance therefore allows for ±10 Mpc in each direction (x, y, z) between halos in

the full simulation and Zel’dovich-generated halos as well as a total of three times

the mass of the Zel’dovich halos. This is to allow for the fact that the halos in

the Zel’dovich simulation have, on average, 3 to 3.5 times less mass than the Full

N-body simulation (as seen in the HMF plot in Figure 2.6). As to why this occurs

is explored in the conclusions.

Halo matches are collected and plotted on a single subplot (Figure 2.6). The x-axis

represents spatial coordinates in megaparsecs (Mpc), while the y-axis represents

similar spatial coordinates, creating a "2D slice". The number of matches is then

recorded while discrepancies are noted.

Furthermore, we can analyse the similarity between Zel’dovich and full N-body halos

to view the distribution of particle IDs within the halos themselves. To this end, we
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Figure 2.6: Positions of the centre of masses of the Zel’dovich (blue) simulation and

the full N-body (red) simulation. 177 halos are found.

iterate over each pair of corresponding halos, retrieve the particle IDs for each and

count the overlapping IDs. Then, we filter out halos with no overlapping IDs.

The ratio of overlapping particle counts is calculated as well as the total mass so

that it can be normalised. The normalised mass is then plotted against the number

of matching particle IDs between the halos. Figure 2.7 shows this.

2.7.1 Finding Voids

Once the halos are found a process of bridging, stacking and density profiling begins:

1. Using pynbody’s routine bridge, we create a link between the particles in the

reverse simulation with those in the forward simulation, purely through the

particles’ ID.

2. The halos detected are bridged and the position of constituent particles are

found as well as their centre of mass calculated. This "finds" the void because

the location of the void in the normal simulation is approximately the location

of the centre of mass of the halo in the inverted simulation.

3. For each position, we check the absolute value between particle positions and

the centre of mass. If this exceeds a chosen threshold, the void is considered to

be "cut" and a new position/centre of mass must be calculated.

4. The voids are then plotted and can be seen in Figure 2.8.
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Figure 2.7: Relationship between halo mass and the ratio of particles present be-

tween Zeldovich and full N-body (left) and the number of halos with the shown

ratio of particles present (right). On average, Zel’dovich halos contained only 5̃0%

of particles that the matching full N-body halo was made up of.

Figure 2.8: Comparison between the voids found by mapping the halos from the full

reverse simulation (left) and the Zel’dovich reverse simulation (right).



2.8. VOID DENSITY PROFILE 36

2.8 Void Density Profile

The void density profile, as mentioned before, is a very important tool to be able to

discern the capability of the Zel’dovich approximation in being able to accurately

simulate the evolution and growth of a void. The density profile of voids is done

by stacking them on top of one another - so it is a comprehensive analysis of the

simulation.

First, we iterated over each halo selected that was matched between the Zel’dovich

and full N-body simulations.

For each halo, the constituent particles are extracted, their IDs converted and

matched onto the same particles in the corresponding reverse simulation, making

use of the bridge function once again.

Then, the corresponding centre of mass of the voids is calculated by simply taking

the mean of the position of the constituent particles, similarly to how the centre of

mass was calculated for halos previously.

From the centre of mass, the volume and radii of the voids are calculated by mea-

suring the total mass and density of the particles within the halo. Here, particles

are removed from the void if they exceed a chosen tolerance.

Following the calculation of void properties, it can then be divided into several bins

(31) to sample the density profile at different radial distances from the void centre.

For each bin, a function sums the masses of constituent particles within a spherical

region of that radius centred around the void centre. Naturally, the volume of each

spherical region and the density of particles within can now be calculated.

The average density is finally calculated for each bin across all selected voids and is

plotted and the result is shown in Figure 2.9.
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Figure 2.9: In this figure, 70 of the largest voids out of the 123 initially found voids

are plotted. The filter took away any voids that originated from mismatched halos

in the inverted simulation. The density profile is smooth as it has been averaged

over all 70 halos.





Chapter 3

Results and Discussion

In this section, we discuss the results of the graphs, plots and other statistics that

were presented in the methodology, as well as discuss the reasons why such results

were obtained. Scientific insights and future improvements are briefly covered in

Chapter 4.

3.1 Matter Density Plot Results

Given that we aim to evaluate the fidelity of the Zel’dovich approximation in pre-

dicting void behaviour on large scales, particularly assessing the linearity of void

evolution compared to theoretical examples, our analysis of matter density plots

yields promising, albeit coarse, insights. As depicted in Figure 2.2, the density

distribution at z = 0 in the Zel’dovich simulation appears more uniform, with an

average dark matter density of approximately 0.2g cm−3 compared to the full sim-

ulation, which has an average dark matter density of 0.01g cm−3. This means that

nodes of high density are much denser and voids are much emptier in the full sim-

ulation compared to the Zel’dovich simulation. This is to be expected, of course,

because the Zel’dovich approximation struggles to fully capture the gravitational

interactions of particles.

However, most large-scale structures such as massive halos and voids are still evident.

While the inability of the Zel’dovich simulation to accurately capture small-scale

structures may pose limitations when studying the evolution of singular structures,

it does not significantly impact our current analysis when it comes to studying the

linear evolution of voids, which is one of the main objectives of this thesis.

3.2 Power Spectrum Analysis

The examination of the power spectrum offers valuable insights into the structure

formation processes in the universe. In this analysis, the efficacy of the Zel’dovich
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approximation is briefly explored in reproducing the power spectrum, particularly

concerning its inability to capture smaller-scale structures such as local voids.

Our investigation reveals that while the Zel’dovich approximation provides a useful

framework for understanding the overall dynamics of linear structure formation,

it exhibits limitations in accurately representing smaller-scale structures. These

limitations stem from the simplifications inherent in the Zel’dovich approximation,

which neglects complex gravitational interactions among particles, especially over

large spatial scales. Consequently, discrepancies arise between the power spectrum

predicted by the Zel’dovich approximation and that derived from more detailed

simulations (see Figure 2.3).

In the above figure, it is clear that the Zel’dovich approximation ceases to be accurate

at around k = 0.1hMpc−1, which corresponds to a scale of approximately 20h−1Mpc

from the relation λ = 2π/k, corresponding to relatively large galaxy clusters, but

still well within the scale of larger voids (at least 40h−1Mpc). Hence, while the

approximation may be unsuitable in reconstructing our local group, it can still

provide insights into the larger picture of void structures - especially up until the

end of the linear regime.

3.3 Autocorrelation Function

The autocorrelation function, as mentioned in Section 1.11, is a measure of the clus-

tering of matter across different spatial scales. Figures 2.4 and 3.1 show an expected

result: The Zel’dovich approximation can reproduce the expected clustering of mat-

ter at large scales (>100 Mpc) but it fails to reproduce the accuracy of smaller-scale

structures (<20 Mpc).

Figure 3.1 shows that the Zel’dovich approximation’s clustering of matter at small

scales is relatively linear with varying separation distance, as expected. This is due

to the simple ballistic trajectories particles undertake when simulated only using

first-order perturbation theory.

This linearisation of the autocorrelation function appears at all separation distances.

When zooming in to a separation distance r of 100 < r < 150 (Figure 3.2) we

see that the structure of clustering of matter within this range is relatively well-

approximated by the Zel’dovich approximation. While the approximation is losing

the finer details, it is very capable of following the average clustering properties of

the large-scale universe.

The validity of whether the Zel’dovich approximation can be used for large-scale

simulations in determining the linear evolution of voids and therefore be able to

extract cosmological parameters to better understand our universe hinges on its

ability to reproduce observable phenomena, such as the autocorrelation function.

Comparing these results to full N-body simulations is of critical importance and
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Figure 3.1: Comparison between different autocorrelation functions calculated using

the Fourier transform of the previous power spectra and focusing on separation

distances that correlate with large-scale structures ranging from 0 - 20 Mpc.

Figure 3.2: Zoom of the autocorrelation function showcasing Zel’dovich linearisation.
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this should also be compared to physical data - which this work had very little

access to, unfortunately.

3.4 Halo Mass Function Analysis

Three reverse Zel’dovich simulations with varying virial overdensity (Dvir) were an-

alyzed and their halo mass functions were calculated alongside a fourth, full-forward

simulation. Figure 2.5 shows the results and some interesting conclusions can be

drawn:

1. The HMF shape changes as Dvir is varied. Lowering it to 10 results in a higher
dN

dlogM (HMF) compared to Dvir = 20 for a broader range of halo masses. This

indicates that the choice of Dvir has a significant effect on the abundance of

halos across different mass scales.

2. AHF with Dvir = 10 detects more halos across a wider range of masses compared

to Dvir = 20. This suggests that lowering Dvir increases the sensitivity of the

halo finder, allowing it to detect smaller halos that may have been excluded

when using a higher threshold.

3. Despite the differences in the abundance of low-mass halos, the HMFs for Dvir =

10 and Dvir = 20 show similar trends for larger halo masses. This suggests that

the impact of Dvir variations is more pronounced at smaller mass scales.

4. The emergence of smaller halos (less mass) in the Zel’dovich simulations com-

pared to the normal simulation could be a consequence of the simplified nature

of the approximation and its inability to capture all the relevant physics in-

volved in halo formation.

Figure 2.7 shows an interesting conclusion and opens up a discussion for future

work, which will be covered in the next section. None of the matching halos that

were identified in the halo matching section contained above 80% of the intended

particles. By intended particles we mean the particles that make up a full N-body

halo. The Zel’dovich halos were all at least 20% emptier when compared to the full

simulation counterparts, suggesting that many of the particles destined to populate

a halo were not sufficiently affected by the growing density perturbations calculated

within the Zel’dovich approximation, but instead continued along their trajectories

without being captured by halos and possibly polluting other nearby halos. This

is a severe limitation of the Zel’dovich approximation and hints towards its break-

ing point, particularly when caustics are involved. Furthermore, it was observed

that smaller halo masses exhibited fewer missing particles, indicating a correlation

between halo size and the extent of particle loss. Larger halos exhibit stronger grav-

itational pull towards new prospective particles, but this phenomenon is not present

in the Zel’dovich approximation simulation. Hence, smaller halos are more closely

simulated by just assuming ballistic trajectories.
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It is interesting to see from Figure 2.6 that not all halos are completely matched,

and make use of the tolerances discussed previously. This may be due to the applied

tolerances themselves, the physical variability of halos (since they could exhibit a

wide range of physical properties such as mass, shape and behaviour), simulation

artefacts and possible sampling effects. This highlights the need for careful consid-

eration of simulation parameters and methodologies in the future.

3.5 Void Profile Conclusions

Based on Figure 2.9, the Zel’dovich approximation struggles to simulate the very

centre of the voids. By analysing the centre of halos and voids generated by the

approximation, we were able to view an interesting conclusion: particles seem to

remain in a grid pattern around the centre (at a radius of less than 0.3 r/r̄v, where

r̄v is the average void radius) rather than the expected behaviour of dispersing. It

is presently unknown as to why there is an increase in density towards the centre,

although it is assumed it is either noise or some other spurious behaviour.

The Figure also shows a relatively promising conclusion: the Zel’dovich approxi-

mation is fairly reliable when it comes to constructing the void linearly, by simply

considering the ballistic trajectories of particles combined with the growing effect of

the density fluctuations surrounding them. It is promising to see that the profiles

are not very different, but it should be noted that any cosmological parameter con-

straint should be avoided when using the Zel’dovich approximation, as it lacks fine

detail. Void evolution is now understood non-linearly, so the approximation should

be used for linear studies only.

We also see that both simulations correctly show a negative relative density within

the void radius, and then converge to the average radius outside the void. When

compared to Figure 4.1, we can see some similarities in both shape and pattern, but

this examination is left for the conclusion and improvements.

One interesting remark however is that, in the work cited above, the relative density

of the void never exceeds 0.6, while the density profile in this thesis tends to converge

up to 1.0. This may be due to some erroneous calculations.





Chapter 4

Conclusions

In this section, I briefly discuss some important improvements that could be made

to this work given more time and resources as well as provide an overall conclusion

to the work.

4.1 Future work and improvements

4.1.1 Initial Conditions

The initial conditions of a simulation are important ingredients that shape the overall

physics and statistics of the work that is done on it. While theoretical models for the

evolution of particles in a simulation may seem more important, the initial conditions

of said simulation are as consequential to the final picture. Indeed, the statistical

distribution of primordial fluctuations alone completely governs the overarching final

distribution of large-scale structures of our universe. These primordial fluctuations,

in turn, are completely determined by the cosmological parameters provided by the

user. Given more time, multiple simulations would have been run that were able

to simulate varying hypothetical models of the universe - especially those whose

large-scale structures can be easily analysed. It would be interesting to see what

difference the initial redshift (Table 2.1) would cause if it were to be varied.

Furthermore, since this work introduces the concept of simulation pairs wherein the

initial conditions are simply reversed, it may be scientifically interesting to apply

other geometric differences to the initial conditions and simulate three or 4 different

versions of the same simulation to better understand the consequences of varying

particle positions, velocities, masses, etc.

4.1.2 Matter Density Plots

Improvements in the matter density analysis include the use of contour levels to

highlight regions of varying density levels and changing the resolutions to analyse
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in more detail the smaller-scale structures. This would aid us in understanding the

limitations of the approximation. A three-dimensional plot may also be visually

stimulating.

4.1.3 Power Spectrum and Auotocorrelation

To bolster the argument that the Zel’dovich approximation can be used for large-

scale analysis, further analytical scrutiny can be applied. This may involve conduct-

ing statistical analyses, such as comparing the correlation functions or clustering

statistics derived from the Zel’dovich approximation to those obtained from full sim-

ulations. Additionally, investigating the behaviour of specific large-scale structures,

such as galaxy clusters or cosmic voids, and comparing their properties between the

Zel’dovich approximation and full simulations can provide valuable insights into the

limitations of the approximation. Such analyses can strengthen the validity of our

findings and deepen our understanding of the Zel’dovich approximation’s capabilities

and shortcomings in modelling large-scale structure formation.

Based on findings in Figures 2.4, 3.1 and 3.2, I propose that there could be a few sig-

nificant improvements to the quality of the Zel’dovich approximation. If one would

be able to use a similar technique to adaptive mesh refinement used in AHF, whereby

the Zel’dovich approximation is used throughout a simulation, but higher-order per-

turbation theory is applied to regions of interest, then this hybrid approach may

significantly increase the statistical significance of such a simulation while retaining

high degrees of efficiency.

4.1.4 Halo Finding Problems

The process of finding halos in the simulations was carried out using the algorithm

Amiga’s Halo Finder (AHF), which as mentioned before uses a combination of algo-

rithms to accurately discern whether a collection of particles (dark matter only in

this case) constitute a halo or not. Several parameters can be altered to improve or

change the selection criteria, thereby altering the final catalogue of halos that AHF

returns to the user. "Exploring various parameters, including the virial overdensity

Dvir, has allowed for an assessment of the Zel’dovich approximation’s capability in

generating voids. However, considering other parameters in both the Zel’dovich ap-

proximation and the Full N-body simulation, when applying AHF, could offer further

insights. How would adjusting these parameters affect the outcomes, and how would

they compare between the two methods?

4.1.5 Halo Mass Function Improvements

A few improvements could be made to the plot shown in Figure 1.9. By varying

parameters other than Dvir, some useful conclusions could be made. It may be

possible to explore the parameter space using numerical simulations to constrain the



4.1. FUTURE WORK AND IMPROVEMENTS 47

discrepancy between the Zel’dovich approximation and the full N-body simulation,

for example.

By increasing the volume of the simulation, I believe the Halo Mass Function for

the simulations using the Zel’dovich approximation may more closely resemble the

overall shape and statistics of the Halo Mass Function of the full N-body simulation.

It would be interesting to repeat the experiment using a hybrid approach, as men-

tioned in section 4.1.3, to observe the potential of combining Zel’dovich with an

adaptive higher-order perturbation theory.

Furthermore, it may be interesting to inspect how poorly the Zel’dovich approxima-

tion would perform when calculating a theoretical non-spherical halo mass function

that is non-gaussian in evolution, as explored in Achitouv and Corasaniti (2011).

Indeed, I suspect that the approximation will do poorly in simulating such halos

and therefore not be a suitable candidate for constraining any sort of important

parameter.

Finally, it would be interesting to incorporate baryonic effects, such as gas cooling,

star formation, and feedback processes, in simulations that primarily employ the

Zel’dovich approximation. While smoothed particle hydrodynamics would be re-

quired for such simulations, at least the evolution of dark matter particles could be

interpreted with the Zel’dovich approximation, reducing the required CPU hours to

achieve a z=0 simulation from high redshift.

4.1.6 Void Finding and Density Profile Improvements

Detecting the voids from particle IDs has proven to be an effective method, meaning

that running pairs of simulations with inverted conditions is an effective technique

for finding voids. While voids have no real theoretical definition, this technique

proves to be quite successful and the Zel’dovich approximation successfully follows

the full N-body simulation when it comes to mapping the halos that were generated

onto the forward simulation to locate voids. Figure 2.8 shows a promising correlation

between the two, but some improvements can be made:

• The threshold values used to define void boundaries can be refined and re-

evaluated.

• The accuracy of volume calculations of voids can be improved by implementing

more sophisticated methods, such as using the volume-weighted centre rather

than the centre of mass of a void, as it is less susceptible to fluctuations

• The implementation of KD-tree data structures should be considered, as it

is a more rapid neighbour search tool instead of iterating through all particles

within each radius, which can drastically reduce computation time and improve

performance.
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Figure 4.1: Adopted from Hamaus et al. (2014), showing the density profiles for

voids in eight different radial bins. It includes mean values, standard deviations and

standard errors on the mean profile σ/
√
Nv.

• The density profile calculations could be refined by applying smoothing tech-

niques or adjusting the binning strategy to capture finer details.

• Error calculation in the void profile should be included - Poissonian error should

first be considered if the counting of particles is employed.

• Finally, validation against observable data is highly needed.

The density profile of voids presented in this work shows interesting results, albeit

lacking some standard important points. Statistics such as error bars and standard

deviations would be included in the plots if more time was allocated, and comparison

to other works could be explored. For example, Figure 2.8 adopted from Hamaus

et al. (2014) shows the stacked void densities for varying radii. Interestingly, their

largest halos also exhibit an increase in density towards the very centre of the void.

Their y-axis is different to the work presented in this thesis, but it can be shown

that the shapes are very similar and that, therefore, the Zel’dovich approximation

can indeed reconstruct at least the basic shape of a void, especially larger ones and

for a larger sample

4.2 Conclusion

In conclusion, our investigation into the comparative analysis of the Zel’dovich ap-

proximation (ZA) and full N-body simulations has provided significant insights into

the capabilities and limitations of the ZA in modelling the linear structure of voids.
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While the ZA demonstrates remarkable accuracy in reproducing the overall distri-

bution of filaments, halos, and voids, it falls short in displaying small-scale matter

densities, as seen by the obvious differences observed in matter density plots.

The analysis of the power spectrum and autocorrelation function also emphasizes the

strengths and weaknesses of the ZA, especially in its ability to follow the distribution

of matter density across varying spatial scales. Notably, the smoothness observed in

the autocorrelation function of the ZA, compared to the undulating nature of the full

N-body simulations, highlights ZA’s simplicity, linearity and the diminishing of its

accuracy when it comes to smaller scales, where non-linear gravitational interactions

are dominant.

Our examination of the halo mass function revealed intriguing discrepancies between

the ZA and full simulation, which shows the challenges in reproducing halo masses

and distributions accurately. Despite these difficulties, the fundamental shape of the

halo mass function is preserved, suggesting potential solutions for further refinement.

Additionally, our investigation into the void density profile unveiled interesting dif-

ferences in the ZA’s representation of void centres. The inaccuracies at the centre

of voids are evident, but overall, the ZA still manages to follow the full N-body void

density profile.
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.1 Extra Plots

Figure 2: Positions of halos of the Zeldovich (blue) simulation using Dvir = 15 and

the full N-body (red) simulation. 187 halos are found.
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Figure 3: Positions of halos of the Zeldovich (blue) simulation using Dvir = 10 and

the full N-body (red) simulation. 220 halos are found.

Figure 4: Here we are comparing the 40 largest halos (left) vs the remaining 83

halos (right).
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