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Abstract

The nuclear fusion reactions are among the most important processes in the universe, rep-

resenting the phenomenon that allows the stars to shine and a source of energy potentially

inexhaustible for humanity. The attempt to collect the energy obtained from it has led

to the study of the confining technique of plasmas called magnetic confinement, which

exploits the tendency of charged particles to follow the lines of the magnetic field. In

this context the reversed-field pinch (RFP) is one of the possible toroidal configurations,

together with the tokamak and the stellarator, for the magnetic confinement of thermonu-

clear fusion plasmas. The largest experiment in the world based on the RFP configuration

is called RFX-mod, and is located in Padua, Italy.

In order to make a fusion reaction in an experimental device like RFX-mod, the

reactants (ionized hydrogen isotopes) must be magnetically confined in a high-density

high-temperature regime for a sufficiently long time, in order to overcome the Coulomb

barrier between them. The magnetic confinement can however be disrupted by magnetic

fluctuations within the plasma, called Alfvén waves. They can provide an additional heat

transport mechanism resulting in the degradation of the confinement properties of fusion

plasmas. Energetic particles, such as alpha particles, can also resonantly destabilise the

Alfvén waves, with two negative effects: energy transfer from alpha particles to the Alfvén

waves and a loss of alpha particles due to the resulting Alfvénic fluctuations. All of these

detrimental effects can compromise the stability of the plasma and its performance. Hence

the study of those waves is extremely important for the research field of thermonuclear

controlled fusion.

The importance of Alfvén waves is not limited to fusion plasmas, indeed they have

been theoretically predicted and studied for the first time in the context of space and solar

plasmas. In particular, Alfvén waves are thought to play a fundamental role in the heating

of the solar corona, a physical process which is still not fully understood.

The goal of this Thesis is to contribute to the physical understanding of Alfvén waves

stimulation, features and dynamics in magnetised fusion plasmas, in particular in the case

of the RFP magnetic configuration, by the means of the analysis and interpretation of

numerical simulations based on the nonlinear 3D magnetohydrodynamics (MHD) model.

The main results of this study are a possible explanation of the physical origin of the

experimentally observed Alfvén waves in RFX-mod plasma discharges, and the theoretical

identification as Alfvén eigenmodes of the coherent peaks experimentally observed in the

power spectrum of the magnetic fluctuations at the plasma edge of RFX-mod.

The investigation presented in this Thesis was carried out through a systematic numer-
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ical analysis and theoretical interpretation of different magnetic field and density configu-

rations, with increasing level of complexity. After reviewing the theoretical models, based

on the ideal MHD model in cylindrical geometry, for different Alfvénic modes and related

phenomena encountered during the analysis, the first analysed configuration (the simplest

one) was an equilibrium configuration with uniform axial magnetic field, considered first

with an uniform density profile, then with a variable one. The first case was used as

a verification ground, since it is the only one for which an exact analytical solution for

different Alfvénic modes (namely the shear Alfvén wave, SAW, and compressional Alfvén

eigenmodes, CAEs) can be obtained from the theoretical models. Then more complicated

cases with non-uniform density, and slightly non-uniform magnetic fields (Tokamak-like

configuration), were analysed and theoretically interpreted employing techniques such as

the Wentzel–Kramers–Brillouin (WKB) approximation. Compared to the previous case

new phenomena were observed, like the phase mixing phenomenon, a damping mecha-

nism for the continuous Alfvén waves, and a coupling between different Alfvén modes.

The second step was the analysis of a simplified RFP-like equilibrium configuration of

the magnetic fields, first with uniform and then with different variable densities. This

case provided a first look at a more realistic representation of Alfvénic activity in an

RFP plasma and was used as a bridge to simulations with time-evolving mean magnetic

field, analysed afterwards. A new phenomenon was observed in this case, the resonance

absorption, which is another damping mechanism for Alfvén waves, specifically for the

compressional modes (CAEs) under certain conditions. In addition, a new discrete mode

was observed, called the Global Alfvén Eigenmode (GAE). At last a time-dependent

mean magnetic field in a realistic RFP dynamical configuration was analysed, with both

uniform and variable density profiles. These simulations display a self-consistent MHD

dynamics characterised by periodic magnetic reconnection events, a phenomenon also

encountered in the real RFX-mod discharges, featuring an abrupt conversion of magnetic

energy into kinetic one. Magnetic reconnection events were identified as the fundamental

physical phenomenon that excites Alfvén waves in RFP plasmas. Thus, in the end, the

realistic simulation case was used for the qualitative comparison and explanation of the

experimentally observed Alfvén waves in the RFX-mod device.

This Thesis contains many elements of originality, both in the employed methods and

in the achieved results. Concerning methods, the nonlinear approach of the performed

numerical analysis (that allows to follow the temporal evolution of Alfvén waves) is rather

original since most of the relevant literature uses the linear approach that can only provide

the spectrum but not the dynamics of Alfvén waves. Regarding results, for the first time

in this Thesis it was shown the importance of compressional modes for the RFP (such

modes are usually disregarded because in the tokamak the main role is played by shear

Alfvén waves) and the fact that magnetic reconnection can excite Alfvén waves in the

RFP. Moreover, the qualitative comparison with respect to experimental measurements

in RFX-mod provided a first theoretical interpretation of the experimentally observed

coherent modes.

The results obtained in this Thesis and the employed methods form a solid basis for a

future more refined modelling study, with the inclusion of kinetic and toroidal effects, of

Alfvénic modes in the RFP configuration.
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The Thesis is organized as follows:

Part I: Introduction

In Chapter 1 a definition of magnetized plasmas is given. Then we give a short

and intuitive description of Alfvén waves, namely the shear Alfvén wave (SAW)

and the compressional Alfvén wave (CAW), and their main features in the context

of the ideal MHD model.

In Chapter 2 the concept of thermonuclear fusion is introduced. The need to

confine the fusion reactants, which are in the plasma state due to the high fusion tem-

perature, leads to the study of the magnetic plasma confinement. After a summary

about the general properties of the magnetically confined plasmas, we discuss two

of the main devices for magnetic confinement, the tokamak configuration, which is

the most exploited worldwide, and in deeper details the reversed-field pinch (RFP)

configuration, which is another promising configuration and the one investigated in

this Thesis.

In Chapter 3 the main features of the RFX-mod device are introduced. RFX-

mod was the first experimental device to show and investigate improved confinement

RFP states, the so-called QSH states, for which a brief overview is given. Then ex-

perimental observations of Alfvén waves in the RFX-mod discharges, characterised

by periodic magnetic reconnection events, are presented.

Part II: Theoretical models and numerical tools

In Chapter 4 the MagnetoHydroDynamics (MHD) model is described. The

MHD model is then used to describe plasma equilibrium state and its stability

properties: ideal instabilities and resistive instabilities. Then a brief description of

magnetic reconnection is given. In the end we give a rigorous analytical description

of Alfvén waves in cartesian geometry, SAW and CAE modes, employing the MHD

model in the ideal approximation.

In Chapter 5 the numerical tool used for solving the MHD model equations

will be presented. This numerical tool, called SpeCyl, provided the numerical

simulations, of increasing complexity, employed for the analysis of Alfvén waves

in different magnetic and density configurations. In particular, we will present

the results of a modeling study, based on RFP simulations performed with the

SpeCyl code, which shows a systematic repetition of QSH states in between the

reconnection events. The same simulations from this study will be used in the

final Chapter to characterize the Alfvén waves in the most realistic RFP conditions

presently achievable with the SpeCyl code.

Part III: Performed analysis

In Chapter 6 we will compute the equations of Alfvén waves in cylindrical

geometry employing the ideal MHD model. In particular we will consider waves

in a straight periodic cylinder with both uniform and non-uniform plasma (with

non uniform density and/or magnetic field). The non-uniform case, compared to

the uniform one (characterised only by the shear and the compressional modes),

will be characterised by a new Alfvén mode, the Global Alfvén Eigenmode (GAE),
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and new phenomena like phase mixing and Alfvén resonance absorption. All the

theoretical formulas derived in this Chapter will be then used in the following

chapters to compute the theoretically expected frequency spectra for the different

mean-field configurations, to be compared with numerical spectra from nonlinear

MHD simulations.

In Chapter 7 we list all the analysed configurations, with the respective expected

frequency spectra. We considered configurations with increasing complexity: from

a purely axial uniform magnetic field, through a non-uniform RFP-like field, up to

a “realistic” RFP configuration with time-varying, zero-order magnetic field in the

presence of magnetic reconnection events.

In Chapter 8, finally, we analyse, one by one, all the nonlinear MHD simulations

using the configurations listed in the previous chapter. For each simulation case,

the spectrum of Alfvén waves is computed by performing a Fourier analysis in time

windows much smaller than the total simulation time. Then, the features of the

computed numerical spectrum are discussed, including its temporal evolution, and

a physical interpretation based on the expected theoretical spectrum is provided.

In the end we make a qualitative comparison of numerical results for the RFP

configuration with the experimental observations on the RFX-mod device.

Part IV: Summary and conclusions

In this Part, the results described in the Thesis are summarized and the final

conclusions are drawn.

Part V: Appendices

In this final Part some Appendices, which clarify important details and give

useful informations not included in the body of the thesis, are found. A relevant

bibliography is also provided at the end of this Part.



Prefazione

Le reazioni di fusione nucleare sono tra i processi più importanti dell’universo, rappresen-

tano il fenomeno che consente alle stelle di brillare e una fonte di energia potenzialmente

inesauribile per l’umanità. Il tentativo di raccogliere l’energia ottenibile da questi processi

ha portato allo studio della tecnica di confinamento dei plasmi chiamata confinamento

magnetico, che sfrutta la tendenza delle particelle cariche a seguire le linee del campo

magnetico. In questo contesto il reversed-field pinch (RFP) è una delle possibili config-

urazioni toroidali, insieme al tokamak e allo stellarator, per il confinamento magnetico

dei plasmi da fusione termonucleare. Il più grande esperimento al mondo basato sulla

configurazione RFP si chiama RFX-mod e si trova a Padova, in Italia.

Per realizzare una reazione di fusione in un dispositivo sperimentale come RFX-

mod, i reagenti (isotopi di idrogeno ionizzato) devono essere confinati magneticamente

in un regime ad alta temperatura e densità per un tempo sufficientemente lungo, al fine

di superare la barriera Coulombiana tra loro. Il confinamento magnetico può tuttavia

essere disturbato da fluttuazioni magnetiche all’interno del plasma, chiamate onde di

Alfvén. Queste possono fornire un ulteriore meccanismo di trasporto del calore con

conseguente degradazione delle proprietà di confinamento dei plasmi da fusione. Le

particelle energetiche, come le particelle alfa, possono anche destabilizzare in modo

risonante le onde di Alfvén, con due effetti negativi: il trasferimento di energia dalle

particelle alfa alle onde di Alfvén e una perdita di particelle alfa dovuta alle risultanti

fluttuazioni Alfvéniche. Tutti questi effetti dannosi possono compromettere la stabilità del

plasma e le sue prestazioni. Quindi lo studio di queste onde è estremamente importante

per il campo di ricerca della fusione termonucleare controllata.

L’importanza delle onde di Alfvén non si limita ai plasmi da fusione, anzi sono stati

teoricamente predetti e studiati per la prima volta nel contesto dello spazio e del plasma

solare. In particolare, si ritiene che le onde di Alfvén svolgano un ruolo fondamentale nel

riscaldamento della corona solare, un processo fisico che non è ancora stato completamente

compreso.

L’obiettivo di questa tesi è di contribuire alla comprensione fisica delle stimolazioni,

delle caratteristiche e delle dinamiche delle onde di Alfvén nei plasmi magnetizzati da

fusione, in particolare nel caso della configurazione magnetica RFP, mediante l’analisi

e l’interpretazione di simulazioni numeriche basate sul modello magnetoidrodinamico

3D non lineare. I principali risultati di questo studio sono una possibile spiegazione

dell’origine fisica delle onde di Alfvén osservate sperimentalmente nelle scariche di RFX-

mod e l’identificazione teorica come autostati Alfvénici dei picchi coerenti osservati
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sperimentalmente nello spettro di potenza delle fluttuazioni magnetiche al bordo del

plasma del RFX-mod.

Lo studio presentato in questa Tesi è stato condotto attraverso un’analisi numerica

sistematica e un’interpretazione teorica di diverse configurazioni di campo magnetico e

densità, con un livello crescente di complessità. Dopo aver revisionato i modelli teorici,

basati sul modello MHD ideale in geometria cilindrica, per i diversi modi Alfvénici e i

fenomeni, ad essi legati, incontrati durante l’analisi, la prima configurazione analizzata (la

più semplice) era una configurazione di equilibrio con campo magnetico assiale uniforme,

considerato prima con un profilo di densità uniforme, e poi con uno variabile. Il primo

caso è stato utilizzato come una verifica, poiché è l’unico per il quale è possibile ottenere

una soluzione analitica esatta per i diversi modi Alfvénici (vale a dire la shear Alfvén

wave, SAW e gli compressional Alfvén eigenmodes, CAEs) dai modelli teorici. In seguito

sono stati analizzati casi più complicati con densità non uniforme e campi magnetici

leggermente non uniformi (configurazione stile tokamak), e quindi teoricamente inter-

pretati utilizzando tecniche come l’approssimazione Wentzel-Kramers-Brillouin (WKB).

Rispetto al caso precedente sono stati osservati nuovi fenomeni, come il phase mixing,

un meccanismo di smorzamento per le shear Alfvén waves, e un accoppiamento tra i

diversi modi Alfvénici. Il secondo passo è stato l’analisi di una configurazione di equi-

librio semplificata, simile a RFP, dei campi magnetici, dapprima con un profilo di densità

uniforme e poi con diversi profili variabili. Questo caso ha fornito un primo sguardo ad

una rappresentazione più realistica dell’attività Alfvénica in un plasma RFP e ha fatto da

ponte per le simulazioni con il campo magnetico medio che evolve nel tempo, analizzato

in seguito. In questo caso è stato osservato un nuovo fenomeno, il resonance absorption,

che è un altro meccanismo di smorzamento per le onde di Alfvén, in particolare per i

compressional modes (CAEs) in determinate condizioni. Inoltre, è stato osservato un

nuovo modo discreto, denominato Global Alfvén Eigenmode (GAE). Alla fine è stato

analizzato un campo magnetico medio dipendente dal tempo in una configurazione re-

alistica e dinamica del RFP, dapprima con un profilo di densità uniforme e poi con uno

variabile. Queste simulazioni mostrano una dinamica MHD auto-consistente caratteriz-

zata da periodici eventi di riconnessione magnetica, un fenomeno che si verifica anche

nelle reali scariche del RFX-mod con una brusca conversione dell’energia magnetica in

quella cinetica. Gli eventi di riconnessione magnetica sono stati identificati come il prin-

cipale fenomeno fisico che eccita le onde di Alfvén nei plasmi RFP. Quindi, alla fine, la

simulazione realistica è stata utilizzata per il confronto qualitativo e la spiegazione delle

onde di Alfvén osservate sperimentalmente in RFX-mod.

Questa Tesi contiene molti elementi di originalità, sia nei metodi impiegati che nei

risultati raggiunti. Per quanto riguarda i metodi, l’approccio non lineare dell’analisi

numerica (che consente di seguire l’evoluzione temporale delle onde di Alfvén) è piuttosto

originale poiché la maggior parte della letteratura pertinente utilizza l’approccio lineare

che può fornire solo lo spettro ma non la dinamica delle onde di Alfvén. Per quanto

riguarda i risultati, per la prima volta in questa Tesi è stata mostrata l’importanza dei

modi compressional per l’RFP (tali modi sono solitamente ignorati perché nel tokamak

il ruolo principale è ricoperto dalle shear Alfvén waves) e il fatto che la riconnessione

magnetica può eccitare onde di Alfvén nell’RFP. Inoltre, il confronto qualitativo con le
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misure sperimentali in RFX-mod ha fornito una prima interpretazione teorica dei modi

coerenti osservati sperimentalmente.

I risultati ottenuti in questa tesi e i metodi impiegati costituiscono una solida base

per un futuro studio di modellazione più raffinato, con l’inclusione di effetti cinetici e

toroidali, dei modi Alfvénici nella configurazione RFP.

La Tesi è organizzata come segue:

Parte I: Introduzione

Nel Capitolo 1 viene fornita una definizione di plasma magnetizzato. In seguito

diamo una breve descrizione intuitiva delle onde Alfvén, in particolare la shear

Alfvén wave (SAW) e la compressional Alfvén wave (CAW), e le loro principali

caratteristiche nel contesto del modello MHD ideale.

Nel Capitolo 2 viene introdotto il concetto di fusione termonucleare. La ne-

cessità di confinare i reagenti di fusione, che si trovano nello stato di plasma a

causa dell’elevata temperatura, porta allo studio del confinamento magnetico del

plasma. Dopo una sintesi sulle proprietà generali dei plasmi magneticamente con-

finati, discutiamo due dei principali dispositivi per il confinamento magnetico, la

configurazione tokamak, che è la più studiata a livello mondiale, e in modo più

approfondito la configurazione di reversed-field pinch (RFP), che è un’altra config-

urazione promettente ed è quella studiata in questa tesi.

Nel Capitolo 3 vengono introdotte le principali caratteristiche del dispositivo

RFX-mod. RFX-mod è stato il primo dispositivo sperimentale a mostrare e ad

investigare stati di confinamento migliorati nell’RFP, i cosiddetti stati QSH, per i

quali viene fornita una breve panoramica. Vengono quindi presentate osservazioni

sperimentali delle onde di Alfvén nelle scariche di RFX-mod, caratterizzate da

eventi periodici di riconnessione magnetica.

Parte II: Modelli teorici e strumenti numerici

Nel Capitolo 4 è descritto il modello magnetoidrodinamico (MHD). Il modello

MHD viene quindi utilizzato per descrivere lo stato di equilibrio del plasma e le sue

proprietà di stabilità: instabilità ideali e instabilità resistive. Quindi viene fornita una

breve descrizione della riconnessione magnetica. Alla fine diamo una descrizione

analitica rigorosa delle onde di Alfvén nella geometria cartesiana, in particolare dei

modi SAW e CAE, impiegando il modello MHD nell’approssimazione ideale.

Nel Capitolo 5 verrà descritto lo strumento numerico utilizzato per risolvere

le equazioni del modello MHD. Questo strumento numerico, chiamato SpeCyl,

forniva le simulazioni numeriche, di crescente complessità, impiegate per l’analisi

delle onde di Alfvén in diverse configurazioni di campo magnetico e di densità. In

particolare, presenteremo i risultati di uno studio di modellazione, basato su simu-

lazioni RFP eseguite con il codice SpeCyl, che mostra una ripetizione sistematica

degli stati QSH tra gli eventi di riconnessione. Le stesse simulazioni di questo

studio saranno utilizzate nell’ultimo capitolo per caratterizzare le onde di Alfvén

nelle condizioni di RFP più realistiche attualmente ottenibili con il codice SpeCyl.

Parte III: Analisi sviluppate
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Nel Capitolo 6 calcoleremo le equazioni delle onde di Alfvén nella geometria

cilindrica utilizzando il modello MHD ideale. In particolare considereremo le onde

in un cilindro rettilineo periodico con sia plasma uniforme e non uniforme (con

densità e/o campo magnetico non uniforme). Il caso non uniforme, rispetto a quello

uniforme (caratterizzato solo dalla shear e dalla compressional), sarà caratterizzato

da un nuovo modo Alfvénico, il Global Alfvén Eigenmode (GAE), e nuovi fenomeni

come il phase mixing e Alfvén resonance absorption. Tutte le formule analitiche

derivate in questo capitolo saranno quindi utilizzate nei seguenti capitoli per cal-

colare gli spettri di frequenza teoricamente attesi per le diverse configurazioni di

campo medio, che verrano poi confrontati con gli spettri numerici delle simulazioni

MHD non lineari.

Nel Capitolo 7 vengono elencate tutte le configurazioni analizzate, con i rispet-

tivi spettri di frequenza attesi. Abbiamo considerato configurazioni con di crescente

complessità: da un campo magnetico puramente assiale e uniforme, passando per

un campo non uniforme simile all’RFP, fino a una configurazione RFP "realistica"

con campo magnetico variabile nel tempo e in presenza di eventi di riconnessione

magnetica.

Nel Capitolo 8, infine, analizziamo, una per una, tutte le simulazioni MHD

non lineari utilizzando le configurazioni elencate nel capitolo precedente. Per ogni

simulazione, lo spettro delle onde di Alfvén viene calcolato eseguendo un’analisi

di Fourier in finestre temporali molto più piccole del tempo totale di simulazione.

Quindi, vengono discusse le caratteristiche dello spettro numerico calcolato, inclusa

la sua evoluzione temporale, e viene fornita un’interpretazione fisica basata sullo

spettro teorico previsto. Alla fine facciamo un confronto qualitativo dei risultati

numerici per la configurazione RFP con le osservazioni sperimentali ottenute sul

RFX-mod.

Parte IV: Riassunto e conclusioni

In questa Parte, si riassumono i risultati descritti nella Tesi e si traggono le

conclusioni finali.

Parte V: Appendici

In questa Parte finale sono state raccolte alcune Appendici, che chiariscono

dettagli importanti e forniscono informazioni utili non incluse nel corpo della tesi.

Alla fine di questa Parte è inoltre fornita la bibliografia.
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Chapter 1

Magnetized plasmas and Alfvén

waves

At the beginning of the 20th century it was discovered that low-frequency electromagnetic

waves are able to propagate in conducting fluids, such as plasmas, even though they

cannot propagate in rigid conductors. Hannes Alfvén, in 1942, investigated the properties

of plasmas, assuming the plasma medium to be a highly conducting, magnetized and

incompressible fluid. He found that a distinctive wave mode arises in the fluid, propagating

along the magnetic field direction. This wave is now called the shear or torsional Alfvén

wave. The existence of this wave, in the conducting fluid mercury, was experimentally

verified by Lundquist in 1949. The importance of the waves discovered by Alfvén for

space and astrophysical plasmas was soon realized, and the compressible plasma case,

which leads to the fast and slow magnetoacoustic waves in addition to the shear Alfvén

wave, was treated by Herlofsen in 1950.

The shear Alfvén and magnetoacoustic waves, which are the basic low-frequency wave

modes of magnetized plasmas, have been the subject of intense study in the last decades.

The main reason for the great interest in these waves is that they play important roles

in the heating and energy transport in laboratory, space and astrophysical plasmas. The

"Alfvén wave heating" scheme has been investigated theoretically and experimentally as

a supplementary heating mechanism of the solar and stellar coronae. Alfvén waves are

believed to underlie the transport of magnetic energy in the solar and stellar winds, transfer

angular momentum in interstellar molecular clouds during star formation, play roles in

magnetic pulsations in the Earth’s magnetosphere, and provide scattering mechanisms

for the acceleration of cosmic rays in astrophysical shock waves. These and many other

applications of these waves may be found in the laboratory, space physics and astrophysics

literature.

In realistic physical problems in all plasma environments, shear Alfvén and mag-

netoacoustic waves propagate in nonuniform plasmas. As a result, the waves may be

reflected, transmitted or absorbed. It is also believed that Alfvén’s waves provide a means

of transport for the internal heat of magnetically confined plasmas. This phenomenon of

transport covers an important role in the propagation of heat from the center of the fusion

3



4 Magnetized plasmas and Alfvén waves

plasmas to their edges resulting in the degradation of their confinement, and therefore in

a loss of fusion alpha particles which are needed to provide the required energy input to

keep the plasma in steady state (known as ignition condition, see Section 2.2). Energetic

particles, such as alpha particles, can also resonantly destabilise the Alfvén waves, with

two negative effects: energy transfer from alpha particles to the Alfvén waves and a loss

of alpha particles due to the resulting Alfvénic fluctuations. The practical question of the

heating to high temperatures of laboratory fusion plasmas that are contained in a vessel,

and are therefore necessarily nonuniform, involves such processes. Hence the study of

those waves is extremely important for the research field of thermonuclear controlled

fusion as it involves a toroidally confined plasma by a powerful magnetic field. This field

of research is of strong interest as it is one of the most promising energy sources for the

future, since it is intrinsically safe and the reactants are practically unlimited.

In this chapter we give a definition of magnetized plasmas and a very short and intuitive

description of Alfvén waves and their main features.

1.1 The concept of plasma

At the temperature values required to trigger fusion reactions, the matter is in the plasma

state. A plasma can be defined as an almost neutral ionized gas that exhibits collective

behaviour.

Plasmas make up 99 % of the observable universe, and can vary in a wide spectrum of

density, temperature and size. In plasma physics, density is generally indicated in terms

of particles per unit volume (m−3) and temperature, T , in elettronvolt (eV). In particular,

in this Thesis, we are interested in magnetized thermonuclear plasma, characterized by

density of particles of the order of n ≈ 1019 ÷1020 m−3 and temperatures of the order of

T ≈ 0.1÷10 keV.
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Figure 1.1: Position of various types of plasmas in the temperature-density graph. The

conditions necessary for an ionized gas to behave like a plasma are fulfilled in a wide

range of parameters.

Plasma dynamics is dominated by a collective behavior, which means that the dynamics

of a single charged particle of the plasma depends on long-range interactions with other

charged particles, interactions that tend to balance any spatial charge dishomogeneity,

resulting in the screening of electrostatic potential. The approximate thickness of such

screening effect is represented by the so-called Debye length λD , which measures the

maximum distance where the charge inhomogeneities can take place and is defined as

λD =

√

ǫ0KTe

nee2
, (1.1)

where Te is the electron temperature and ne the electron (number) density. On spatial

scales larger than Debye’s length, plasma is globally neutral, that is, neutral enough so

that one can take, over length-scales much larger than λD ,

ni ≃ ne ≃ n, (1.2)

where ni is the ion (number) density and n is a common density called the plasma

density. Anyway, the plasma is not so neutral that all interesting electrostatic effects

vanish. Equation 1.2 is the quasi-neutrality condition. In addition, any concentrations of

positive or negative charges are neutralized in a time scale given by the inverse of plasma

frequency:

ωp =

√

nee2

meǫ0
. (1.3)

The typical size of Debye length λD for plasmas used to study the fusion phenomenon

varies from micrometer to millimeter, while plasma frequency ωp ranges from gigahertz

to terahertz. The study of phenomena occurring on longer time scales than the inverse of

plasma frequency and spatial scales larger than Debye length, which is the case for typical

fusion plasmas, therefore allows to treat the plasma as a neutral fluid, as for example in the

ideal magnetohydrodynamic model (MHD) that will be described in the next chapters.

1.2 Alfvén waves

Any wave in nature is driven by some restoring force which opposes displacements in the

system. In the context of the MHD model (whose equations will be discussed in Chapter

4), two types of restoring forces are possible: one arising out of magnetic stresses; and the

other arising out of pressure gradients. The ideal MHD theory can therefore support two

basic types of magnetohydrodynamic waves, the Alfvén waves, called Torsional Alfvén

Wave or Shear Alfvén Wave (SAW) and Compressional Alfvén Wave (CAW), also called

magnetoacoustic or magnetosonic waves. The magnetoacoustic mode can be further split

up into two distinct modes, the fast and slow magnetoacoustic waves. Below we give a

short and intuitive description of Alfvén’s shear and compressional waves features.
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1.2.1 Shear Alfvén Wave

The MHD fluid undergoes a magnetic tension B2/µ0 along the field lines and an isotropic

pressure B2/2µ0. The magnetic field lines therefore act as strings under tension connected

to masses (plasma particles are constrained to the field lines in ideal MHD, as we discuss in

Appendix A). Whenever the magnetic field lines are distorted by a transverse perturbation,

the magnetic tension tries to oppose the distortion. Just as a transverse wave can be started

in a string by plucking it, similarly we have the transverse Alfvén wave moving along the

field lines. The velocity of the transverse oscillations moving along a stretched string can

be shown to be

vA =

(

tension

density

)1/2
=

(

B2

µ0ρ

)1/2
. (1.4)

This is the Alfvén’s velocity. Figure 1.2(a) illustrates the transverse nature of fluid motion

and the frozen magnetic field lines. There aren’t density or pressure fluctuations associated

with this wave, the magnetic tension being the only restoring force for it. Because of this

characteristics this wave is called "torsional" or "shear" Alfvén’s wave.

1.2.2 Compressional Alfvén Wave

By extending the analogy, we expect to observe longitudinal oscillations due to pressure

fluctuations. Those are called "magnetoacoustic", or "magnetosonic" or more simply

"compressional" waves involving compressions and rarefactions of the plasma and mag-

netic field lines. Such a wave propagates with a speed vM so to satisfy the relation

∇
(

p+
B2

2µ0

)

= v
2
M∇ρ, (1.5)

which implies

v
2
M =

d

dρ

(

p+
B2

2µ0

)

ρ0

= c2
S +

d

dρ

(

B2

2µ0

)

ρ0

, (1.6)

where c2
S
= γp0/ρ0 is the sound speed and p0, ρ0 are respectively the pressure and

density of the unperturbed plasma. Note that we have included the magnetic pressure

in the restoring force. Because the particles are constrained to the field lines, we have

B/ρ = B0/ρ0 and therefore

v
2
M = c2

S +
d

dρ

(

B2
0
ρ2

2µ0ρ
2
0

)

ρ0

= c2
S + v

2
A, (1.7)

where vA is Alfvén’s speed defined above and B0 is a uniform magnetic field. The nature of

a magnetoacoustic wave is illustrated in Figure 1.2(b). This wave is a mixture of acoustic

and magnetic waves, where both types of restoring forces are present. Furthermore it can

be split up into two distinct modes, the fast and slow magnetoacoustic waves. For the

first one of these modes, the pressure and magnetic restoring forces are roughly in phase,

making the mode propagate fast, so it was called the fast mode. The other mode, for
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which these restoring forces are roughly out of phase, is known as the slow mode. Any

arbitrary disturbance in our system, described by ideal MHD theory, can be represented

as a superposition of the Alfvén, fast and slow modes.

Figure 1.2: a) Shear Alfvén Wave. b) Compressional Alfvén Wave.





Chapter 2

Thermonuclear controlled fusion

Thermonuclear controlled fusion is one of the most promising energy source for the

future, since it is intrinsically safe and the reactants are practically unlimited. In order to

make a fusion reaction, the reactants (ionized hydrogen isotopes) must be confined in a

high-density high-temperature regime for a sufficiently long time, in order to overcome

the Coulomb barrier between them. In these conditions the burning gas, which is fully

ionized due to the high fusion temperature, is found in the plasma state. The plasma can

be confined by embedding it in a confining magnetic field. The most advanced device for

magnetic plasma confinement is the tokamak, an axis-symmetric toroidal configuration.

Other promising configurations are the stellarator and the reversed-field-pinch (RFP).

In this chapter we give a short introduction about thermonuclear controlled fusion,

magnetic confinement and toroidal devices such as the tokamak and the RFP.

2.1 The fusion reaction

Nuclear fusion plays an important role in the Universe as it represents the process which

powers the stars. The nuclear fusion reaction in the stars consists of a chain of reactions

(called pp-chain) that from four protons creates an alpha particle, transforming the energy,

resulting from mass defect between final products and initials reactants, in photons and

kinetic energy of reaction products.

Other chain reactions are used in laboratory situations as the fusion of two protons to

form deuterium, the first step of the pp-chain, is a process that involves weak interaction,

hence characterized by a low cross section and therefore only possible in the stars, where

the large amount of hydrogen allows to compensate for the low probability of reaction and

to obtain anyway the deuterium needed to allow the faster successive steps.

In choosing alternative reactions to pp-chain, the use of light nuclei is mandatory, as

well as their easier availability, for two additional reasons: the first is that the Coulombian

repulsion, which we must overcome in order to bring the reactant nuclei within the range

of the nuclear force, is proportional to the charge product of the nuclei involved, while

the latter is due to the fact that when the particles involved have a smaller mass than that

of 56Fe (this isotope has the highest binding energy per nucleon, as shown in Figure 2.1),

9
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the sum of the masses of the starting nuclei is higher than the final nuclei, and the mass

defect, according to Einstein’s equation E =mc2, released as kinetic energy in the reaction

products.

Figure 2.1: Average binding energy per nucleon as a function of atomic mass A.

In choosing the fusion reaction that best suits a laboratory plasma , it is also necessary

to consider the trend of cross section with the energy of the reagents and the reaction rates,

which impose strict limits on the choice of the energy range in which the reaction will

occur.

Combining all these aspects the best candidate for the reaction is that between deu-

terium and tritium:

2
1D+ 3

1T → 4
2He (3.5 Mev)+ 1

0n (14.1 Mev) (2.1)

characterized by a cross section that at temperatures between 20 and 100 keV, the range

in which a hypothetical thermonuclear fusion reactor must operate, is two orders of

magnitude greater than that of other possible reactions, as can be seen in Figure 2.2.
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Figure 2.2: Cross section for typical fusion reactions: deuterium-tritium (D-T), deuterium-

deuterium (D-D) and deuterium-helium (D-He3
2
). 1 barn = 10−24 cm2.

Nevertheless, the optimal temperature of fusing nuclei is of ∼ 10 keV, because the required

reactions occur in the high energy tail of the Maxwellian distribution of the heated particles.

Considering the availability of reagents, it should be noted that since tritium is a

radioactive element with an average life of about 12 years, it is not present in nature. It

can however be obtained from the following lithium-engaging reaction:

6
3Li+ 1

0n → 4
2He (2.1 Mev)+ 3

1T (2.7 Mev) (2.2)

The natural resources needed to obtain energy from the nuclei are potentially inexhaustible

since the deuterium can be obtained from ordinary water (about 33g from 1 ton), while

current estimates of lithium reserves indicate that they are sufficient to meet the world’s

energy demand for a time of millions of years.

2.2 Thermonuclear ignition criteria

The aim of nuclear fusion research is to get more energy from the fusion processes than

the energy required to trigger one and confine the plasma, having electron and ion density

n and temperature T . Confinement of the plasma can never be absolute, as there are

various causes of energy loss. The two main ones are given by bremsstrahlung, that is,

the emission of radiation by accelerated charged particles and transport losses leading to

plasma and energy confinement loss in a characteristic time τE .

It is therefore necessary to reinvest, to offset these losses, some of the energy provided

by the fusion reactions. In a device that magnetically confines plasma, the alpha particles

produced by the reaction (2.1), being charged, may be confined and thus represent the

means to transfer part of the fusion energy to the plasma, the remaining part being stored

in the neutrons, which cannot be confined and coming out of the confinement chamber

are going to feed some system that converts heat into electricity. We can summarize this

with the relation:
∂W

∂t
= Pheat +Pα −Ploss, (2.3)

where W is the plasma energy density, Pheat is the external heating power, Ploss the power

losses and Pα the power given by the alpha particles.

The ignition criteria formalizes the energy balance in the situation where the reactor is

self-sustaining thanks to the sole power supplied by alpha particles, providing a condition

that links density n and confinement time τE of the energy of plasma for a given temperature

T , given by:

nτE > 1.5 ·1020 m−3s. (2.4)

In Figure 2.3 a plot of the minimum value of the product nτE required to obtain ignition

is shown as a function of the temperature T : this function exhibits a minimum at a value

close to 20 keV.
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Figure 2.3: The minimum value of nτE required to obtain ignition, as a function of

temperature.

A different more compact expression to define fusion conditions is the use of the so-called

fusion triple product:

nTτE > 3 ·1021 m−3keVs. (2.5)

The previous condition does not allow complete freedom in the choice of parameter

values. In particular, the presence of a material wall that cannot withstand too high power

densities places a limit on the density of plasma, with n ∼ 1020 m−3. The typical plasma

temperature in a experiment, as seen in Figure 2.3 , need to have a value T ∼ 20keV,

leading to confinement time of energy, the most critical parameter, to be τ ∼ 1s.

We have seen that, in order to obtain thermonuclear fusion, the plasma must be kept

in a regime of high temperature and high density for a sufficiently long time. This process

is called plasma confinement. Two schemes of plasma confinement are presently studied:

Inertial Confinement. In this case spherical targets of deuterium and tritium are uni-

formly irradiated by sharp electromagnetic impulses in order to compress them and

obtain conditions of temperature and density leading to a complete burn before

thermal equilibrium.

Magnetic Confinement. Plasma is confined through magnetic fields, and heated with

ohmic dissipation, radio frequency waves and neutral beams. In the following

Sections we give a general introduction of this scheme.

2.3 Magnetic confinement: the toroidal configuration

One of the main confinement techniques is the magnetic one, which originates from the

knowledge of the motion characteristics of a charged particle in a magnetic field.

In the presence of a uniform and static magnetic field B, the motion of a particle with
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mass m and charge q can be decomposed in a uniform straight motion in the direction

parallel to the field and in a uniform circular motion in a perpendicular direction, the

latter characterized by a frequency said cyclotronic frequency and a radius said Larmor’s

radius, defined as:

ωc ≡
q |B|

m
rL ≡ v⊥

ωc

=

mv⊥
q |B| , (2.6)

where v⊥ is the velocity of the particle in the direction perpendicular to the magnetic field.

For a thermonuclear fusion plasma the value of rL range from fractions of millimeter for

ions to microns for electrons, small compared to the size of the confinement chamber.

The fact that in the direction of the field the motion is straight and uniform, has led to

the exclusion of configurations in which the magnetic field lines are not closed and to

consider a toroidal type system.

The presence of drift motions due to the curvature and possible disomogeneities of the

magnetic field lines in a toroidal configuration makes it more problematic to prevent

the plasma from touching the wall of the vacuum chamber; the solution is to create a

magnetic field characterized by a helical structure that appropriately compensates for such

drift motions.

A torus can be more easily described considering the following frame of reference:

minor radius r which spans the region from the center of the plasma (r = 0) to the

boundary (r = a);

poloidal angle θ which measures the angle on the shorter loop;

toroidal angle φ which measures the angle with respect to the toroidal axis, i.e. the

longer loop.

The ratio between the major radius R0 and the minor one a is called aspect ratio. This

frame of reference is sketched in Figure 2.4, along with another possible choice, namely

the (R, φ, Z) frame of reference, involving the radial coordinate R which measures the

distance with respect to the toroidal axis and the coordinate Z along the axis itself.

Figure 2.4: a) The toroidal system of reference (r , θ, φ) and the cylindrical coordinates

(R, φ, Z). b) Motion of gyration of a charged particle around a force line of the magnetic

field.
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In toroidal geometry, a field can be expressed in normal modes as a Fourier expansion

over the poloidal and toroidal angles. For instance, the magnetic field B can be written as

B(r, θ, φ) =
∑

m,n

Bmn(r)ei(mθ+nφ), (2.7)

where (m,n) is a pair of integer numbers and Bmn(r) is the Fourier component of the

normal mode (m,n), whose (geometric) helicity h is hence defined as

h ≡ − n

m
. (2.8)

In particular, the (0,0) Fourier component corresponds to the axis-symmetric part of the

field B0, which does not depend on θ and φ:

B0 ≡ B(0,0)(r), (2.9)

whereas the perturbation to B0 is referred as B1.

2.4 The main toroidal devices for magnetic confinement

The main toroidal devices for magnetic confinement of plasma are distinguished by their

geometry and by different role of the magnetic field components. There are three different

configurations: the stellarator, the tokamak and the reversed field pinch (RFP).

The stellarator belongs to the category of non-axisymmetric toroidal devices. The

magnetic field is entirely produced by a complex helical arrangement of the coils

around the plasma, designed to obtain a helical magnetic field in equilibrium. This

implies that a stellarator configuration does not have a plasma current that would

create additional magnetic fields than that generated by the coils.

Tokamak and RFP belong to the category of axisymmetric toroidal devices. The for-

mation of plasma from the gas contained in the toroidal confinement chamber of a

device such as tokamak or RFP occurs by inducing a toroidal electric field through

the use of a transformer whose primary circuit consists of an iron or an air core

and whose secondary is the plasma itself. The electric field thus produced ionizes

the atoms of the gas thus becoming capable of supporting a plasma current Ip in

the toroidal direction which, by the Ampère’s law, produces a poloidal magnetic

field. The toroidal component of the magnetic field is generated by an external coil

system, in which the current flows in a poloidal direction, forming a solenoid-like

device.

The sum of the two magnetic field components thus obtained leads to the forma-

tion of a magnetic field with lines helically wrapped on coaxial toroidal surfaces.

Figure 2.5 shows a representation of all the external structures needed to create and

maintain the plasma.
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Figure 2.5: Main components of the plasma-forming circuit (transformer) and its confine-

ment (external coils).

2.4.1 Tokamak configuration

In the tokamak the main component of the magnetic field is the toroidal, Bφ, generated

by a series of external coils. The magnetic field component in the poloidal direction Bθ ,

created by the plasma current circulating in the torus, is typically one order of magnitude

smaller.

An important parameter that regulates plasma dynamics in a device that magnetically

confines plasma is the safety factor:

q(r) ≡ r

R0

Bφ(r)
Bθ(r)

. (2.10)

It can be interpreted as the number of toroidal turns for a single poloidal turn of field

line, and in a tokamak, for stability reason, it is always greater than one. This results in

a greater intensity of the field toroidal component than the poloidal component, as seen

in Figure 2.6, which also schematizes the components of the magnetic field in the RFP

configuration, which we discuss in the following section.
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Figure 2.6: Radial profiles of the poloidal and toroidal components of the magnetic field

in typical tokamak and RFP configurations. a represents the minor radius of the torus.

2.4.2 RFP configuration

The RFP configuration shares with the tokamak the main features, in particular the axial

symmetrical toroidal structure and the fact that the circulating current in the plasma

produces a component of the magnetic field further to that generated by the outer coils,

which is crucial for plasma confinement.

The characteristics that distinguish the RFP from tokamak are primarily the intensity

of the magnetic field generated by the coils external to the plasma, which in a tokamak

experiment typically results in an order of magnitude greater than that in a RFP experiment,

which also translates into a different energy cost for field creation (the energy associated

with a magnetic field is proportional to the square of its intensity).

The two configurations are distinguished by the different ratio between the intensity of the

toroidal and poloidal components of the magnetic field: these have on average the same

order of magnitude in the RFP, as can be seen in Figure 2.7, unlike the tokamak in which

the toroidal component dominates.

The peculiar feature of the RFP is then the reversal of the toroidal magnetic field that

in the edge area of the confining chamber assumes a negative value, lesser in absolute

value than that present in the axis of the torus. This is a technological advantage with

respect to the tokamak, because the outer coils have to produce only the small and reversed

magnetic field at the edge, while the field in the central region is mainly generated by

currents circulating in the plasma itself. The poloidal component, which compresses and

confines the plasma (squeezing "pinch" effect), has a higher value in RFP than tokamak,

and is also created by the plasma current Ip circulating in the plasma: the fact that Ip is

very high makes it possible to heat the plasma up to high temperatures with only ohmic

heating, without the use of additional methods (radiofrequency heating and injection of

neutral particles beam) that are required in a tokamak reactor.

From a technological point of view the fact of having to produce with external conductors
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a much smaller magnetic field intensity in the RFP promises to overcome problems such

as excessive strain on outer coils and the need of superconductor technology and related

expensive cooling systems (a tokamak thermonuclear reactor will require magnetic fields

greater than 10 T).

Figure 2.7: Radial profile of the poloidal and toroidal components of the magnetic field

in RFP.

Another effect of reversal the toroidal field at the edge of the RFP is on the profile of

the safety-factor q, defined in equation (2.10), which is quite different between the two

configurations, as can be seen in Figure 2.8.

Figure 2.8: Typical radial profiles of the safety factor q for tokamak and the Reversed

Field Pinch.

The reversal of the magnetic field is observed beyond a certain value of the pinch

parameter defined as:

Θ =
Bθ(a)
< Bφ >

=

µ0aIP

2Φ
, (2.11)
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wherein a, IP, Φ represent the radius of the plasma column, the plasma current and the

toroidal flux of the magnetic field, Bθ and Bφ the poloidal and toroidal components of the

magnetic field, < · > an average on a section at a fixed toroidal position. The parameter

Θ represents substantially the relationship between the plasma current and toroidal flux

of the magnetic field, and its typical value in the RFP configuration is greater than one,

whereas in the tokamak case, in which the toroidal field is much more intense than the

poloidal one, Θ assumes values lower then one.

Another useful parameter to describe how deep the reversal of the field at the edge is

in the RFP configuration is given by:

F =
Bφ(a)
< Bφ >

, (2.12)

said reversal parameter, which represents the normalized toroidal field at the edge.





Chapter 3

The RFX-mod device and

experimental highlights

RFX-mod (Reversed Field eXperiment-modified) is the largest experiment in the world

to investigate the magnetic confinement of hot plasmas in the RFP configuration, and is

located in Padua, Italy.

RFX-mod was the first experimental device to show and investigate improved confinement

RFP states, previously theoretically predicted using the MHD model. Such improved

confinement RFP states are characterized by a dominant mode in the MHD spectrum,

which impresses its helical symmetry to the plasma column, and are hence called quasi-

single helicity (QSH) states. The RFX-mod experiment is also equipped with a system of

saddle coils for the feedback control of MHD instabilities, and with a full set of diagnostics.

In particular in-vessel magnetic probes make possible to measure and characterize Alfvénic

oscillations, whose theoretical interpretation is provided in this Thesis.

Experimentally high-frequency magnetic activity has been detected at the edge region

of the RFX-mod device. In particular a presence of five coherent peaks, in the form of

Alfvén Waves (AW) in the power spectrum of the magnetic fluctuation, were measured

at the edge of the plasma. While the first three peaks at lower frequency (≤ 1MHz) are

present only during the SHAx state, the two highest frequency peaks (around 1 MHz) are

found during almost the full discharge duration. The Alfvénic nature of all the peaks were

deduced by a linear relation between their frequency and the Alfvén velocity.

In this Chapter we will introduce the main features of the RFX-mod device, and we

will briefly discuss the discovery of improved confinement QSH states and experimental

observation of Alfvén Waves.

3.1 The RFX-mod device

RFX-mod (Reversed Field eXperiment-modified) is the largest experiment in the world

that uses the RFP configuration and is located in Padua, Italy. Its main geometrical and

physical features are shown in table 3.1.

20
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R0 2.00 m

a 0.459 m

IP ≤ 2.0 MA

B ≤ 0.7 T

pvacuum ∼ 10−10 Pa

pplasma 103 Pa

nplasma 5 ·1019 m−3

Te,max 1.3 keV

tmax 0.5 s

Table 3.1: Main features of the RFX-mod experiment. R0 and a represent the major radius

and the minor radius of the torus, IP represents the maximum achievable plasma current,

B the maximum magnetic field strength that can be created by the coils and pvacuum the

pressure inside the confinement chamber before the gas is inserted, usually hydrogen or

helium, whose ionization will form the plasma. pplasma represents the typical pressure

of the plasma, nplasma the density of ions and electrons, Te,max the maximum electronic

temperature obtained and tmax the maximum duration of a discharge.

The main components of the system for confinement and the creation of the magnetic

field are described below (for further details see [Sonato et al., 2003]):

• The confinement chamber in toroidal geometry, with a major radius R0 and a minor

radius a, is characterized by an aspect ratio of 4.

• The inner surface of the confinement chamber is composed of 18 mm thick graphite

plates, a material chosen because of the low Z value which reduces the effective

value of the atomic number of ions present as impurities in the plasma.

• Outside the confinement chamber there is a copper toroidal structure (3 mm thick

stabilizing shell) that contains it, its role is important in the control of the charac-

teristics of balance and stability of the plasma contained in the vacuum chamber.

• The 48 poloidal coils that generate a toroidal magnetic field of maximum intensity

equal to about 0.7 T.

• The magnetizing winding provides for the oscillation of the poloidal flux which

causes the plasma current to grow up to 2 MA. It is composed of 200 windings that

form 40 coils, each carrying a maximum current of 50 kA.

• The field shaping windings are formed by 16 coils that provide a vertical magnetic

field that guarantees the correct positioning of the plasma in the vacuum chamber.

• A set of 192 coils for a feedback control of the magnetic field, they allow a good

control of the external surface of the plasma avoiding excessive interactions between

plasma and wall.
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In Figure 3.1 are shown schematically the main components of the machine:

Figure 3.1: Schematic poloidal section of the RFX-mod machine.

3.2 Quasi Single Helicity RFP state

For several decades the RFP magnetized plasma has been observed in the Multiple Helicity

(MH) state, characterized by high levels of magnetic fluctuations that led to reduced

confinement levels. MH are states in which the non axis-symmetric perturbations are

spectrally characterized by a wide range of the wave numbers m, n, in particular m = 0

and m = 1. The interaction of a broad spectrum of perturbed modes, that can be modelled

using the magnetohydrodynamic model, leads to a turbulent behavior of the plasma. In

particular, the magnetic field lines become chaotic and are free to move from the central

region of the plasma to the edge one, which establishes a very fast transport mechanism

of particles and energy, a mechanism that clearly degrades the confinement properties of

the RFP plasma.

A strategy for the reduction of chaos in the RFP configuration was based on the

theoretical prediction of the possible existence of the RFP in the so-called single helicity

(SH) configuration, in which only one helical mode and its harmonics are present [Cappello

and Paccagnella, 1992; Escande et al., 2000b].

Starting from the 2000s, first on the RFX experiment (previous to RFX-mod) and then on

other RFP experiments scattered around the world, quasi-helical states with a spectrum

called QSH (Quasi-Single-Helicity) have been observed, which approach the ideal SH

states theoretically predicted, and which possess improved confinement thanks to the

reduced level of magnetic chaos compared to the MH states [Martin et al., 2003]. The

experimental results of the last few years on RFX-mod and on other operational RFPs

showed, in particular through high current operations, a tendency of the RFP plasma to
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move to the QSH regime. From the most recent experiments on RFX-mod it is observed

that as the plasma current IP increases, the system tends to spend a longer and longer

time in the QSH state, moreover, always with increasing current, the QSH tends towards

a state of SH equilibrium, in the sense that the amplitude of secondary modes decreases

[Piovesan et al., 2009].

It is also observed that if the dominant perturbed mode reaches a width equal to about 4%

of the poloidal field at the edge, a topological change takes place in the configuration of

the magnetic field, as shown in Figure 3.2, that brings the plasma to achieve an almost

stationary equilibrium with helical symmetry with a single magnetic axis (Single-Helical-

Axis, SHAx, to distinguish it from the previous case with two different magnetic axis,

double-helical-axis, DHAx) [Piovesan et al., 2009; Lorenzini et al., 2009a; Lorenzini

et al., 2009b]. Improvement of RFP confinement properties (“chaos healing”) following

the expulsion of the magnetic separatrix of the dominant mode, DHAx-SHAx transition,

was theoretically predicted in [Escande et al., 2000a]. This new state exhibits the presence

of strong transport barriers, characterized by the presence of high temperature gradients

of the electrons associated with the presence of regions of good confinement, as shown in

Figure 3.3.

Figure 3.2: Magnetic topology reconstructed using only the axisymmetric fields and the

eigenfunction of the dominant mode: (a) QSH with a magnetic island, (b) SHAx state.

(from [Lorenzini et al., 2009a]).
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Figure 3.3: Electron temperature profiles measured by Thomson scattering during (a) a

QSH state and (b) a SHAx state. (c) Relative amplitudes of the n = −7 mode (circles)

and of the secondary modes (diamonds): flattop average (grey) and instantaneous values,

when Thomson scattering data are available, during QSH (blue) and SHAx (red) (from

[Piovesan et al., 2009]).

3.3 Experimental observation of Alfvén Waves in RFX-mod

plasmas

High-frequency magnetic activity has been detected at the edge region of the RFX-mod

reversed-field pinch (RFP) device [Spagnolo et al., 2011]. In particular, in this section,

we will focus on the observation of coherent peaks in the power spectrum of the magnetic

fluctuation measured at the plasma edge. These peaks are interpreted as Alfvén waves

because their frequencies scale linearly with the Alfvén velocity of the plasma.

In Figure 3.4, taken from Ref. [Spagnolo et al., 2011], the color-coded spectrogram

of a signal coming from a probe measuring the time derivative of the poloidal magnetic

field ( Ûbθ) fluctuation at r/a = 1 (where a is the minor radius of the torus) is shown, along

with the time trace of the plasma current. Superimposed to the spectrogram, in red, is

the time behavior of amplitude of the (m,n) = (1,−7) mode (actually what is shown is the

toroidal magnetic field component at the edge) to highlight the spontaneous transitions

to the SHAx (Single Helical Axis) state. The vertical bright lines occurring during the

crashes of the dominant mode are a sign of a global (i.e. at all frequencies) enhancement

of the fluctuation level.
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Figure 3.4: Top: plasma current Ip time trace; bottom: spectrogram of a Ûbθ signal and (red

line) amplitude of the dominant (m,n)=(1,-7) mode (y-axis on the right-hand side). The

three arrows refer to the three time instants for the analysis in Figure 3.6 (from [Spagnolo

et al., 2011]).

During the phases associated to large values of the dominant mode amplitude, a

number of coherent modes (where coherent means in this case localized in frequency)

are instead (hardly) visible, at values in the range 130÷ 500 kHz. Indeed five distinct

peaks, as more evident in Figure 3.5, where a frequency power spectrum evaluated during

a single helical plasma is shown, are recognizable.

Figure 3.5: Power spectrum of a Ûbθ signal evaluated during a SHAx state.
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These peaks have been named a, b and c, d and e following the increase of their frequency

(the amplitude associated to such coherent fluctuation is of the order of few tens of µT).

While the first three peaks (a,b,c) are present only during the SHAx state, the two highest

frequency peaks, d and e, (around 1 MHz) are found to exhibit different characteristics:

they do not seem to be associated to any particular behavior of the dominant mode, being

present during almost the full discharge duration.

To clarify this point, in Figure 3.6 three power spectra, evaluated in different time

instants are plotted together. The time instants chosen for this analysis are those indicated

by the three arrows in Figure 3.4. Two of the spectra shown (black and red ones) are

associated to single helical axis states (it is worth to note the frequency shift associated to

different plasma conditions), while the third one (green) is evaluated in an axis-symmetric

RFP plasma. The three low frequency peaks are not present in the green spectrum, while

the d and e ones seem not to be affected by the magnetic topology of the discharge.

Figure 3.6: Power spectrum of a Ûbθ signal evaluated during the three time instants indicated

by the arrows of Figure 3.4: black and red lines refer to SHAx states, the green one to an

axis-symmetric state.

The Alfvénic nature of all the peaks observed has been deduced by the linear relation

between their frequency and the Alfvén velocity (evaluated by considering the poloidal

magnetic field at the edge, and the electron density deduced by a central chord of the

interferometer, and assuming Ze f f = 1.5 as a reasonable value for H discharges) in a

number of discharges, as shown in Figure 3.7. In particular, in the shots analyzed the

plasma current Ip was varied in the range 300 kA - 2 MA. The usual working gas is

Hydrogen, but also Helium discharges have been considered. It is worth to note that,

while the highest frequency modes (d and e) have been observed at almost all plasma

current values, modes a, b and c, being associated to SHAx states, are present in the

spectra only at the highest plasma currents, Ip > 1.5 MA.
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Figure 3.7: Relation between modes frequency and Alfvén velocity for a large database

of H and He plasmas.

In the next chapters we will try to explain the above experimental observations from

a theoretical point of view, through the analysis of frequency spectra from nonlinear

MHD simulations with the SpeCyl code and the comparison with related analytical results

deduced from ideal MHD model.
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Theoretical models and numerical
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Chapter 4

The magnetohydrodynamic model

and Alfvén Waves

There are many physical models for the description of astrophysical and laboratory plasmas

that differ in the level of complexity and the resulting physical phenomena they can

describe.

There are two fundamental approaches: the microscopic-kinetic and the macroscopic-fluid

one [Chen, 1984; Goldston and Rutherford, 1995].

The first , i.e. microscopic approach, deals with the description of a plasma as a system

of many interacting bodies through long-range electromagnetic forces and works through

the knowledge of the system configuration in phase space; this is done by determining

the equations that describe the time evolution of the distribution function f (r,v, t), which

represents the density of particles in the phase space.

The second approach leads to describe the characteristics of plasma by macroscopic

quantities that are a function of the three-dimensional position in space and of time, and

through the relationships that determine the temporal evolution and the mutual relations.

Modeling in terms of macroscopic quantities such as density, temperature, velocity and

pressure is called the fluid approach.

The relationship between the two approaches is hierarchical because one can obtain

the equations of the fluid model by starting from those that describe the distribution

function, assuming that the frequency of the collisions between the components of the

plasma is such as to bring the plasma close to thermodynamic equilibrium. In the process

of derivation of a fluid model from a kinetic one some information is lost, which limits

the field of application of the fluid model with respect to the kinetic one even if, within

the limits of the approximations made, the macroscopic model describes a wide variety

of phenomena in a much simpler way than its microscopic counterpart.

Macroscopic fluid models, in turn, can provide basically two levels of description: the

description of a plasma as composed by two or more fluids of charged particles coupled

together by the collisions and the Maxwell equations (for example, an electron fluid and

an ion fluid), or the single-fluid MHD description, which is obtained through further

approximations and will be analyzed and used in the following.

30
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As we already stated previously, the MHD theory can support two basic types of mag-

netohydrodynamic waves, the Shear Alfvén Wave (SAW), also called torsional Alfvén

wave, and the Compressional Alfvén Wave (CAW), also called magnetoacoustic or mag-

netosonic wave. The magnetoacoustic mode can be further divided into two distinct

modes, the fast and slow magnetoacoustic waves. In this Chapter we will obtain the

exact analytical solution for those waves, considering small amplitude linear waves in a

spatially uniform plasma and in cartesian coordinates. This will provide a reference for

the discussion in the following chapters of the waves in the nonuniform plasmas and cylin-

drical geometry. The waves will be assumed to have frequencies below the ion cyclotron

frequency.

In this chapter we will introduce the magnetohydrodynamic model and its application

limits. Then we will describe the waves in the MHD model: the Alfvén waves and their

characteristics.

4.1 The single-fluid MHD model

The single-fluid magnetohydrodynamics model, also simply called MHD model, provides

a description of a plasma as a conductive fluid in an electromagnetic field, with its own

mass density ρ, velocity v, and pressure p through a system of differential equations.

Appropriate algebraic manipulations of the two fluid model equations described in [Gold-

ston and Rutherford, 1995] make possible to derive a system of single fluid differential

equations in which unknown quantities such as ρ, v and p are defined as appropriate

linear combinations of relative quantities for ions and electrons. The use of specific ap-

proximations, which will be described below, then allows to obtain the equations of the

single-fluid magnetohydrodynamic model, which we will call MHD model for brevity,

which are given by:

∇ ·B = 0 No magnetic monopoles (4.1a)

∇×E = −∂B

∂t
Faraday’s law (4.1b)

∇×B = µ0J Ampére’s law (4.1c)

E = ηJ−v×B Ohm’s law (4.1d)

∂ρ

∂t
+∇ · (ρv) = 0 Continuity equation (4.1e)

ρ

[

∂v

∂t
+ (v · ∇)v

]

= J×B−∇p+ ρν∇2v Equation of fluid motion (4.1f)

d

dt

(

p

ργ

)

= 0 Adiabatic equation of state (4.1g)

where E and B represent the electrical and magnetic field, J current density, γ represents

the ratio between the specific heat at constant pressure and constant volume, and η and ν

represent the electrical resistivity and the viscosity of the fluid.

This model can describe the equilibrium, stability and dynamical properties of a plasma in
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a wide range of physical parameters, which encompass astrophysical, laboratory and fusion

plasmas. From now on, our discussion will mainly focus to the field of thermonuclear

fusion plasma, which is the subject of this Thesis.

Scope of validity and approximations

The scope of validity of the MHD model is determined by the approximations made to

obtain equations (4.1), which essentially consist in limiting to the study of phenomena

characterized by times scales longer than the inverse of plasma frequency ωp and spatial

scales greater than the Debye length λD , both of which are defined in section 1.1. This

allows the study of the macroscopic dynamics of a fusion plasma in a magnetic confinement

device, as the two constraints described above are widely respected.

Considering this spatial and temporal constraints is equivalent to imposing the quasi-

neutrality of the plasma, ni ∼ ne, which allows to neglect the density of electric charge

ρc = ni − ne. It should be noted however that the quasi-neutral condition does not imply

that the electric field is divergence-free, as can be seen by integrating the Poisson equation

ǫ0∇ ·E = ρc once the equations (4.1) are solved.

An additional approximation is to neglect the mass of electrons compared to that of the

ions, while the isotropic viscosity term in (4.1f) is a simplification of the general case in

which the viscosity is a tensor quantity.

If the electrical resistance η and the viscosity ν of the plasma are neglected, the equations

(4.1) are called the ideal MHD model.

4.1.1 Ideal MHD equilibrium of toroidal plasmas

The use of the MHD model allows the study of the properties that a magnetic field has

to possess in order to produce the forces necessary to maintain a plasma in a state of

equilibrium. The configuration of the magnetic field in such a situation must be such as

to compensate, with the forces it exerts, the tendency of the plasma to expand outwardly.

The simplifications to be used to study equilibrium situations using the MHD model

consist of assuming a stationary state, where no physical quantity depends on time, and

a static plasma, so v = 0. A further simplification is to consider the ideal MHD model,

which therefore imposes E = 0 for (4.1d).

Under this simplifications, an equilibrium of the toroidal configuration is regulated by

the ideal MHD equilibrium equation, the so-called force-balance equation

∇p = J×B. (4.2)

If we substitute for J from Ampère’s law into the force-balance equation (4.2), we

obtain the pressure balance condition

∇
(

p+
B2

2µ0

)

=

1

µ0

(B · ∇)B. (4.3)

The terms on the right-hand side of equation (4.3) comes from the bending and parallel

compression of the field lines, whereas the terms on the left-hand side indicate that the
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magnetic field may be considered to have a magnetic pressure given by B2/2µ0. The ratio

of the plasma pressure to the magnetic pressure is defined as

β =
2µ0p

B2
. (4.4)

The quantity β is a measure of the efficiency of a given magnetic field to sustain a given

plasma equilibrium. Laboratory plasmas tends to have β values in the range of a ten per

cent at most, so that the magnetic field plays a major role in the dynamics of the plasma.

Equation (4.2) obviously tells us that J and B are each perpendicular to ∇p. As a

result, they must lie on the surfaces of constant p, which are called magnetic surfaces.

In the axis-symmetric case, the magnetic field profiles of the equilibrium configuration

can be obtained by solving the Grad-Shafranov equation. In this approach, the magnetic

field is computed by solving an equation for the poloidal magnetic flux function Ψ, and

the magnetic surfaces correspond to surfaces of constant Ψ [Grad and Rubin, 1958]. In

a first approximation, one can assume β = 0, thus neglecting toroidal effects. In this

case, the magnetic field admits a component Bφ in the toroidal direction and a component

Bθ in the poloidal one, but no radial component; the same is true for every other field.

Moreover, there is a smooth radial density gradient ∇p so that the surfaces of constant

p are nested, concentric tori. The magnetic axis (defined as the zero radius magnetic

surface) corresponds to the geometric axis of the torus. This configuration is sketched in

Figure 4.1.

Figure 4.1: Schematic view of magnetic and current density field lines, pressure gradient

and magnetic surfaces for a typical magnetic confinement configuration. The toroidal

system of reference and the cylindrical coordinates are shown in Figure 2.4.

Since the resulting equilibrium configuration is axis-symmetric, the torus can be approx-

imated as a straight periodical cylinder. The toroidal coordinate φ is thus substituted by

the axial coordinate

z ≡ R0φ, (4.5)

and all of the equilibrium variables are taken to be periodical in this coordinate.
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4.1.2 Ideal instabilities

Once an equilibrium configuration has been obtained, the stability properties of such a

configuration must be studied. In general, an equilibrium is stable if any perturbation

applied to it does not grow in time. We expect that unstable displacements cause the

magnetic field lines to bend: since this, in general, results in an increase of the magnetic

energy, the instability is further stabilized by the elastic reaction of the field line, which

behaves like a rubber band.

The stabilizing effect vanishes in special surfaces where the wavefront k of the per-

turbation is parallel to the magnetic field:

0 = k ·B = kφBφ + kθBθ =
n

R0

Bφ +
m

r
Bθ, (4.6)

where

k ≡ n

R0

êφ +
m

r
êθ (4.7)

is the wave vector of the perturbation, described by an helical normal mode in the plasma.

Indeed, it can be proved that unstable perturbations are localized near these surfaces.

The stability of the equilibrium configuration can be characterized using the safety

factor q(r) defined in (2.10). The resonance condition (4.6) then becomes

q(r) = −m

n
. (4.8)

Magnetic modes (i.e. m,n pairs) for which equation (4.8) is satisfied are called

resonant modes, and surfaces where a magnetic mode is resonant are called resonant

surfaces. Clearly, on such surfaces the field lines close upon themselves after a finite

number of toroidal transits. In principle, unstable perturbations with mode numbers

(m,n) can be avoided by constructing the magnetic geometry such that the corresponding

resonant surface does not appear in the plasma. One of the most common modes in

toroidal confinement devices is a kink mode with poloidal mode number m = 1, whose

dynamics is characterized by a helical displacement of the toroidal plasma, as shown in

Figure 4.2.
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Figure 4.2: Plasma perturbation corresponding to a long wavelength m = 1 kink instability

(from [Freidberg, 2014, p. 374]).

The previous discussion applies to perfectly conducting (i.e. zero resistivity) plas-

mas, whose instabilities are thus called ideal instabilities. The characteristic time scale

associated with those modes comes from a possible solution for incompressible waves

propagating along the field lines, which travels with Alfvén velocity:

vA =
|B|

√
ρµ0

. (4.9)

The characteristic time spent for travelling a distance equal to the system size is called the

Alfvén time:

τA =
a

vA

, (4.10)

which represents the shortest time scale supported by the MHD model.

4.1.3 Resistive instabilities

The introduction of resistivity can completely alter the stability properties of the plasma

described by the MHD model. Indeed, in the ideal case the plasma is tied to the magnetic

field lines, and the topology of the magnetic field cannot change. On the contrary, the

addition of even the smallest amount of resistivity relaxes this constraint and allows the

magnetic field lines to reconnect across the resonant surface, with a change in magnetic

topology, and the formation of a magnetic island.

Modes of this type are called resistive instabilities, and the most common of these

is the tearing mode, so named because the magnetic flux surface “tears” at the resonant

surface. The tearing modes evolve on a time scale which is between τA and τR, where

τR ≡ µ0a2

η
(4.11)

is the so-called resistive diffusion time which in hot plasmas is the longest of the time

scales described by resistive MHD equations. The ratio between these two time scale is

given by the so-called Lundquist number

S =
τR

τA
. (4.12)

In most cases of interest S ≫ 1 (S ∼ 106 for thermonuclear plasmas, S ∼ 1012 for solar

corona). Thus tearing modes evolve on a time scale that can be many order of magnitude

slower that that of ideal instabilities or Alfvén waves.

Of course, though the addition of resistivity introduces a new class of instabilities,

ideal instabilities can be present in resistive plasmas too. In other words each ideal

instability has a resistive counterpart. For instance, with a finite resistivity the kink mode

is called resistive kink.
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4.1.4 Magnetic reconnection

As mentioned in the previous section, the introduction of a finite resistivity allows the

magnetic field lines to reconnect across the resonant surfaces, with a change in magnetic

topology. In fact the magnetic topology is perfectly preserved only in a magnetofluid with

zero electrical resistivity, as the Alfvén’s theorem of flux-freezing states (see Appendix A).

Since electrical resistivity appears in the induction equation (for derivation see Appendix

A)

∂B

∂t
= ∇×(v×B)+ η

µ0

∇2B, (4.13)

as a coefficient in front of the second derivative ∇2B, even if it’s small, its effect can

become important in a layer where the magnetic field gradient is large. Since large

gradients of magnetic field are associated with large current densities, such regions are

often called current sheets. In a low-resistivity plasma, cutting and pasting of field lines

can take place within current sheets, while everywhere else the magnetic topology may

be taken to be preserved.

To explain this phenomenon lets consider a typical current sheet with oppositely directed

magnetic fields above and below, as shown in Figure 4.3. The large value of ∇2B in the

central region would make the electrical resistivity term important there and hence the

magnetic field would decay away in the central region. Since the magnetic fields have

the pressure B2/2µ0 associated with them, a decrease in the magnetic field would cause

a pressure decrease in the central region. If the plasma-β defined in Eq. (4.4) is of the

order of 1 or smaller, then the magnetic pressure constitutes an important fraction of the

total pressure and the decay of the magnetic field in the central region would cause an

appreciable depletion of the total pressure there. Therefore we expect that the plasma from

above and below with fresh magnetic fields would be sucked into the central region. This

fresh magnetic field would then decay and more plasma from above and below would be

sucked in to compensate for the pressure decrease due to this decay. Thus the cutting and

pasting of field lines takes place in the central region. This process, known as magnetic

reconnection or neutral-point reconnection, may go on as long as fresh magnetic fields

are brought to the central region. Since plasmas from the top and the bottom in Figure

4.3 push against the central region, the plasma in the central region is eventually squeezed

out sideways with an outward velocity v0. This process therefore converts the magnetic

energy of the plasma into the kinetic energy.

The solar flares are a striking example of magnetic reconnection events that takes place

on the Sun’s surfaces and cause the coronal mass ejection. An analogous phenomenon

in the fusion plasmas (in particular tokamak) are the so-called sawtooth oscillations, in

which due to the resistive internal kink instability there is a periodic collapse of the core

temperature as a result of periodic reconnection phenomena [Wesson, 2004, p. 365].
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Figure 4.3: Magnetic reconnection in a current sheet with oppositely directed magnetic

field lines above and below (from [Choudhuri, 1998, p. 322]).

4.2 Waves in the MHD model: Alfvén waves

In this section we consider the properties of small amplitude waves in a spatially uniform

plasma, using the ideal MHD or hydromagnetic model described in section 4.1. The

properties of small amplitude waves in the uniform plasma provide a reference for the

discussion in the following chapters of the waves in the nonuniform plasmas. The waves

will be assumed to have frequencies below of the ion cyclotron frequency Ωi ≡ Be/mi.

Let us assume the equilibrium with the plasma at rest and with no zero-order electric

field. We neglect the inertial term (v · ∇)v ≃ 0 in Eq. (4.1f) and we assume that the plasma

has zero resistivity and viscosity (the ideal MHD model condition). If subscript 0 denote

the equilibrium state, and subscript 1 denote the first-order perturbations associated with

the wave motion, the equilibrium satisfies the force balance equation obtained from Eq.

(4.1f),

∇p0 = J0 ×B0. (4.14)

From Eq. (4.1e) and Eq. (4.1g), the perturbed density and pressure satisfy

∂ρ1

∂t
+∇ · (ρ0v1) = 0 (4.15)

and

p1 =
γp0

ρ0

ρ1. (4.16)

From the equation of fluid motion (4.1f), the perturbed fluid velocity satisfies

ρ0
∂v1

∂t
= −∇p1+J0 ×B1+J1 ×B0. (4.17)
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The perturbed electric and magnetic fields satisfy the equations

∂B1

∂t
= −∇×E1 (4.18)

and, from Eq. (4.1d) with η = 0,

E1 = −v1 ×B0. (4.19)

If the wavelengths are much shorter than the scale lengths over which the equilibrium

quantities ρ0, p0 and B0 change, these quantities can be assumed to be constant, and

the plasma is effectively uniform. The equilibrium current density J0 can therefore be

neglected in Eq. (4.17). We have from Eq. (4.1c)

µ0J1 = ∇×B1. (4.20)

The uniform equilibrium magnetic field is chosen to lie along the z-axis. Let us also define

the fluid vorticity in the magnetic field direction as

ζ1z = (∇×v1)z . (4.21)

Equations (4.15)-(4.20) can then be manipulated to yield the following set of six

differential equations:

ρ0
∂ζ1z

∂t
−B0

∂J1z

∂z
= 0 (4.22)

µ0
∂J1z

∂t
−B0

∂ζ1z

∂z
= 0 (4.23)

ρ0
∂

∂t
∇ ·v1+

B0

µ0

∇2B1z + c2
s∇2ρ1 = 0 (4.24)

∂B1z

∂t
+B0

(

∇ ·v1 −
∂v1z

∂z

)

= 0 (4.25)

ρ0
∂v1z

∂t
+ c2

s

∂ρ1

∂z
= 0 (4.26)

∂ρ1

∂t
+ ρ0∇ ·v1 = 0. (4.27)

where cs = (γp/ρ)1/2 is the sound speed.

It is seen that the two differential equations (4.22) and (4.23) for ζ1z and J1z are

uncoupled from the four differential equations (4.24)-(4.27) for ∇·v1, B1z , v1z and ρ1. We

should also note that in the equations for ζ1z and J1z , the spatial derivatives are only in the

direction of the equilibrium magnetic field. Taking the Fourier transforms (see Appendix

B) of Eq. (4.22) and Eq. (4.23) (or simply substituting the plane wave solution Eq. (B.3)

into the differential equations), we obtain a consistency equation for a nontrivial solution

which relates the frequency to the wavenumber. This is the dispersion equation for waves

described by the variables ζ1z and J1z :

ω2 − v
2
Ak2

z = 0, (4.28)
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where the Alfvén speed vA in the equilibrium plasma is given by

vA =
B0

(µ0ρ0)1/2
. (4.29)

The dispersion equation (4.28) is independent of the components of the wavevector per-

pendicular to the equilibrium magnetic field, and is also independent of the sound speed

cs.

Taking the Fourier transforms of Eqs. (4.24)-(4.27) yields a separate dispersion

equation for waves described by the variables ∇ ·v1, B1z , v1z and ρ1:

ω4 −ω2(v2
a + c2

s )k2
+ v

2
ac2

s k2k2
z = 0, (4.30)

where k = |k|. This dispersion equation does involve the perpendicular components of

the wavevector, and the sound speed, in contrast to Eq. (4.28).

It is evident that the two dispersion equations (4.28) and (4.30), together with their

corresponding sets of characteristic wave field variables, correspond to two distinct types

of wave modes. The waves described by Eq. (4.28) are called shear Alfvén waves, and

the waves described by Eq. (4.30) are called magnetoacoustic (or magnetosonic) waves

(see Table 4.1). The magnetoacoustic mode may be further split into two distinct modes,

the fast and slow magnetoacoustic waves. An arbitrary low-frequency disturbance can be

represented as a superposition of the Alfvén wave and the fast and slow magnetoacoustic

waves.

Dispersion equation Characteristic variables

Shear Alfvén wave ω2 − v
2
A

k2
z = 0 J1z , ζ1z

Magnetoacoustic waves ω4 −ω2(v2
A
+ c2

s )k2
z ∇ ·v1, v1z , B1z , ρ1

+v
2
A

c2
s k2k2

z = 0

Table 4.1: The dispersion equations and characteristic variables for the Alfvén and mag-

netoacoustic modes in the ideal MHD model.

Let us define the angle θ between the wavevector and the magnetic field B0, so that

kz = k cosθ. The first dispersion equation (4.28) then gives the positive frequency solution

ωA = va |kz | = vAk | cosθ | (4.31)

of the shear Alfvén mode. The second dispersion equation (4.30) gives two positive

frequency solutions: the fast magnetoacoustic mode, with

ω2
F =

k2

2

(

v
2
A+ c2

s + ((v2
A+ c2

s )2 −4v2
Ac2

s cos2 θ)(1/2)
)

(4.32)

and the slow magnetoacoustic mode, with

ω2
S =

k2

2

(

v
2
A+ c2

s −((v2
A+ c2

s )2 −4v2
Ac2

s cos2 θ)(1/2)
)

. (4.33)
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We note that the phase velocity vph = ω/k is independent of k for all three modes, so all

the modes are nondispersive, although they are anisotropic because vph depends on the

angle of propagation θ. The characteristic phase velocity surfaces, that is, polar plots of

the phase velocities of three modes against the angle θ, are plotted in Fig. 4.4

Figure 4.4: Dispersion curves ωA,F,S(θ), Eqs. (4.31), (4.32), (4.33), for v2
A
/c2

s = 2.

4.2.1 The Shear Alfvén Wave

If the wave is purely in the shear Alfvén mode, we can assume the characteristic variables

listed in Table 4.1 for the magnetoacoustic mode to be zero. Also without loss of generality,

for a uniform plasma we can choose the k vector to lie in the x-z plane

k = (sinθ,0,cosθ). (4.34)

Thus we have (with ky = 0),

v1z = 0 and ∇ ·v1 = ikxv1x = 0. (4.35)

Provided that kx , 0 (i.e. sinθ , 0), we conclude that v1x = 0 (the case of kx = 0, i.e.

propagation parallel or antiparallel to the magnetic field, is discussed in the next section).

Thus the velocity perturbation v1 = vA of the Alfvén mode is in the y-direction only,

perpendicular to both the equilibrium magnetic field B0 and the wavevector k. Therefore

the field lines are bent, giving the rise to a magnetic tension. Also because ∇ · v1 = 0,

there is no density or particle pressure perturbation for this mode.

Since B1z = 0 and ∇ ·B1 = 0, it follows that B1x = 0, so that this mode only has a

magnetic field perturbation in the y-direction, as exemplified in Figure 4.5. The absence

of a magnetic field perturbation in the equilibrium magnetic field direction implies, since

we have B1 ·B0 = 0 and B2 ≃ B2
0
+2B1 ·B0 (to first order), that the magnetic field strength

is constant to first order. The strengths of the magnetic and particle pressures in the plasma

are thus each conserved; there is no compressive stress due to this wave, which therefore is
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said to be a noncompressional shear wave. The phase speed of the wave lies between the

speeds of the slow and fast magnetoacoustic waves (see Figure 4.4), so the shear Alfvén

wave is also sometimes referred to as the intermediate wave.

Plasma flow across the magnetic field can increase the bending of the field; the shear

wave acts to reduce the additional curvature of the field line. The currents that are set

up to reduce the bending are closed partly along the field, so the shear wave introduces

the field-aligned current J1z . In a cylindrical geometry, the shear Alfvén wave is referred

to as a torsional wave, with adjacent magnetic surfaces able to shear past each other

without coupling to each other. Since ω is independent of k⊥, the mode may be strongly

localized to some field lines. This property is the origin of the singular Alfvén modes in

and inhomogeneous sheared configuration which form the Alfvén continuum (as we will

discuss in Section 6.2.1).

Figure 4.5: Magnetic field and velocity perturbations for the shear Alfvén wave shown in

(a) vector component form and (b) combined form (from [Freidberg, 2014, p. 332]).

An important point to note is that the Alfvén wave dispersion relation is independent

of the wavevector component perpendicular to the equilibrium magnetic field, and the

wave cannot propagate perpendicular to the field (i.e. the phase velocity drops to zero).

The group velocity

vg =
∂ωA

∂k
= vAcosθ ẑ (4.36)

is aligned with the background magnetic field, that is, the wave energy is always carried

along the direction of the background field, regardless of the direction of the wavevector.

4.2.2 The Fast and Slow Magnetoacoustic Modes

For a wave in the fast and slow magnetosonic mode, the characteristic variables for the

shear Alfvén mode are zero. Thus, with the choice (Eq. 4.34) for the direction of k, we

have

ζ1z = ik×v1 |z = ikxv1y = 0, (4.37)

so v1y = 0. Also since J1z = 0 and µ0J1 = ∇×B1, it follows that B1y = 0.



42 The magnetohydrodynamic model and Alfvén Waves

There are density perturbation in the wave (since ∇ · v1 , 0), and perturbations of

the magnetic field parallel to B0 (and thus of the field strength). Thus these modes are

compressive in nature, even if the sound speed is zero. In contrast to the shear Alfvén

wave, the fast and slow magnetoacoustic waves act to reduce magnetic or particle pressure

gradients in the plasma.

The fast wave is sometimes called a compressional Alfvén wave. In the case of a low-β

plasma, that is with v
2
A
≫ c2

s , the fast wave dispersion relation is

ωF = vAk (4.38)

and the v1 is perpendicular to B0. See Figure 4.6. The fast wave can propagate and

transport energy in any direction. The particle pressure and magnetic pressure in the fast

wave increase and decrease in phase. In the slow wave, the particle and magnetic pressure

vary out of phase.

Figure 4.6: Magnetic field and velocity perturbations for the compressional Alfvén wave

shown in (a) vector component form and (b) combined form (from [Freidberg, 2014,

p. 333]).

For parallel or antiparallel propagation (sinθ = 0), the fast mode loses its compressive

character and becomes degenerate with the Alfvén mode, in that both modes have a phase

speed vA, with a perturbation magnetic field perpendicular to the equilibrium field. The

slow mode in this case is a pure sound mode with phase speed cs.

Equations (4.31), (4.32) and (4.33) indicate that ω2 ≥ 0. Hence frequencies are real.

Adding dissipation will only introduce wave damping, ω→ ω+ iγ, γ < 0. There are no

unstable MHD modes in a homogeneous plasma, which represents global thermodynamic

equilibrium, the lowest energy state a system may reach. Instability arises only for

sufficiently strong spatial inhomogeneity. The overall above analysis of waves solutions

in the MHD model will be considered again in Chapter 6 for cylindrical plasmas, both

uniform and with space inhomogeneities.





Chapter 5

The SpeCyl code

The SpeCyl code is a non-linear visco-resistive 3D MHD code, that is used since the

early 90ties in the theoretical physics group of Consorzio RFX as the main modeling tool

for numerical simulations of RFP and tokamak plasmas. The SpeCyl code was used to

provide nonlinear MHD simulations of Alfvén waves analyzed in this Thesis. In this

Chapter we will introduce its physical model and numerical formulation. Then, we will

present the results of a modeling study, based on RFP simulations performed with the

SpeCyl code, which shows a systematic repetition of quasi-single helicity states (QSH) in

between the reconnection events, in agreement with experimental observations from the

RFX-mod device. This is done both to show an example of application of the SpeCyl code

and because the same numerical simulations studied in that work will used in this Thesis

to characterize the Alfvén waves in the most realistic RFP conditions achievable with the

SpeCyl code.

5.1 Numerical simulations of fusion plasma: the SpeCyl code

The SpeCyl code [Cappello and Biskamp, 1996] is a numerical code that integrates

numerically, in cylindrical geometry, the equations of a simplified version of the visco-

resistive MHD model. This model derives from the equations of the visco-resistive MHD

model under two fundamental hypotheses: the first is that the mass density of the plasma

remains constant during the temporal evolution of the plasma, while the second consists

in neglecting the role of pressure, a hypothesis justified by the value assumed in the RFP

configuration by the beta parameter β < 0.1. As we will see in the next chapters, even

with these approximations the code is able to provide a qualitative agreement with the

frequency spectrum of Alfvén waves observed experimentally.

The importance of the SpeCyl code in the work carried out in this Thesis is given by

the fact that the frequency spectrum, used to study and characterize the Alfvén waves, is

derived from the simulation data by tacking their Fast Fourier Transform in time.
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5.1.1 Physical model

SpeCyl solves the equations of the MHD model written in dimensionless form. The

derivation of MHD equations using dimensionless quantities is carried out in Appendix

C, and leads to the following set of equations:

ρ

[

∂v

∂t
+ (v · ∇)v

]

= J×B+ ρν∇2v (5.1a)

∂B

∂t
= ∇×(v×B−ηJ) (5.1b)

∇×B = J (5.1c)

∇ ·B = 0. (5.1d)

Here, the radial coordinate r is normalized to a, time and velocity are normalized to

the Alfvén time τA and velocity vA respectively, and B is normalized to the initial value

B0 of the toroidal magnetic field on axis. Moreover, η is the inverse Lundquist number,

η = τA/τR ≡ S−1, and ν corresponds to the inverse viscous Lundquist number, ν = τA/τV ≡
M−1, see Appendix C.

In the SpeCyl code, the resistivity and viscosity profiles are not calculated in a self-

consistent manner but are selected a priori and kept constant throughout the duration of

the simulation. In particular, the functional form for these profiles is:

ν(r) = ν0

(

1+ arb
)

(5.2a)

η(r) = η0

(

1+ crd
)

(5.2b)

with the values of the parameters a, b, c, and d chosen to have profiles similar to those

estimated experimentally.

The choice of the η0 value allows to define the number of Lundquist S that characterizes

the system, while the choice of the central value of the viscosity profile ν0 allows to fix

the value of another important dimensionless quantity called magnetic Prandtl number:

P ≡ ν0

η0

. (5.3)

Another important parameter that controls the dynamics of the system, in particular

in situations in which the term of inertia in the equations is negligible, is the Hartmann

number:

H ≡ (η0ν0)−
1
2 . (5.4)

An important feature of the code is the geometry in which the equations are solved.

This is the cylindrical geometry, with periodic conditions on the cylinder bases. This

choice allows to simulate the plasma of a toroidal device for magnetic confinement (such

as a tokamak or an RFP) in the approximation of large aspect ratio R0/a, where the toroidal

effects are negligible. This approximation is particularly suitable for treatment of plasmas

of the RFP type for which the effects due to the toroidal geometry are less important.
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Up to recent years the plasma boundary condition were chosen to be an ideal, i.e.

perfectly conducting shell. The magnetic field was tangent to the shell, while the electric

field was perpendicular to it. Plasma flow was taken to be vanishing at r = 1. In the

[Bonfiglio et al., 2013] (a brief review is given in Section 5.2) and following articles based

on the SpeCyl code simulations, the boundary conditions were generalized to also admit a

magnetic field that was not purely tangent, but on the contrary admitted an imposed radial

component.

The parameters which must be set for each simulation are the applied axial electric

field and the profiles of resistivity and viscosity. From these parameters, the initial

magnetic field profiles are derived, which also define the plasma current, toroidal flux

and pinch parameter. The model equations are hence solved by finite differencing in the

radial coordinate r and a Fourier decomposition along the periodic θ and z coordinates.

The discretization in time is performed using the so-called semi-implicit algorithm, which

allows for a relatively large time step ∆t and prevents numerical instabilities [Cappello

and Biskamp, 1996].

The nonlinear verification benchmark between SpeCyl and another MHD code, called

PIXIE3D, demonstrated an excellent agreement between the two codes in their common

limit of application, showing that both code solve the nonlinear MHD equations with high

accuracy and reliability [Bonfiglio, Chacón, and Cappello, 2010].

5.1.2 Spectral formulation of the code

The equation system (5.1) is solved in cylindrical coordinates (r, θ, z) with r ∈ [0 : 1],
θ ∈ [0 : 2π], z ∈ [0 : 2πR0] where R0 is given by the aspect ratio of the torus. Typically we

use R0 = 4 to have the same aspect ratio as the RFX-mod experimental device.

The spatial discretization of the physical quantities is carried out in a radial direction

through the finite difference method on a mesh formed by a number Nr of points, while

the periodicity conditions in the directions θ and z allow a spectral decomposition formed

by Nθ harmonics in the poloidal direction and by Nz harmonics in axial direction.

It follows that the generic quantity f (r, θ, z, t) can be written in the following form:

f (r, θ, z, t) =
Nθ
∑

m=−Nθ

Nz
∑

n=−Nz

fm,n(r, t)exp

[

i

(

mθ +
n

R0

z

)]

, (5.5)

in which the Fourier components fm,n(r, t) are constrained by the condition on the reality

of the quantity f (r, θ, z, t), which can be written as:

f−m,−n = f ∗m,n. (5.6)

Using the Fourier decomposition (5.5) to rewrite equations (5.1) provides the following
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system of equations:

dvm,n

dt
+ [(v · ∇)v]m,n = [J×B]m,n +

[

ν∇2v
]

m,n
(5.7a)

∂Bm,n

∂t
= [∇× (v×B)]m,n −[∇(ηJ)]m,n (5.7b)

[∇×B]m,n = Jm,n (5.7c)

[∇ ·B]m,n = 0 (5.7d)

where [ ]m,n denotes the Fourier component (m,n) of the term in brackets. Nonlinear

terms such as [J×B]m,n are computed through convolution sums like:

am,n =

∑

p,q

Jp,qB∗
p−m,q−n. (5.8)

The advantage of the spectral formulation consists in being able to select the Fourier

modes to be included in the calculation, based on their importance in the dynamics of

the system. This allows a quite significant reduction in the calculation time compared

to other numerical approaches. In the practical use of the code, one can choose a single

mode (and possibly its helical harmonics) that allows to make simulations with a given

helical symmetry, or a range of modes with different helicity, which allows to do“fully-3D”

simulations.

5.2 Experimental-like helical self-organization in RFP model-

ing

In this Section we will give a brief review of the first nonlinear three-dimensional magne-

tohydrodynamic (MHD) numerical simulations , performed with the SpeCyl code, of the

reversed-field pinch (RFP) that exhibit a systematic repetition of quasi-single helicity states

with the same dominant mode in between reconnection events [Bonfiglio et al., 2013].

This was the first time that this distinctive experimental feature have been reproduced by

a 3D MHD code. This analysis gave a satisfactory qualitative and quantitative agreement

with respect to experimental observations that has been lacking so far (although previous

modeling studies with the SpeCyl code played a fundamental role for the discovery of

helical RFP states).

The same numerical simulation used in this publication will be later analyzed in this

Thesis to see if the experimental observation of Alfvén Eigenmodes in RFP plasmas can

be numerically reproduced in conditions of a “realistic ” RFP configuration ( although

with present limitations of the code, such as cylindrical approximation, zero-β etc.).

The key ingredient to observe QSH states is the use of helical boundary conditions

for the edge radial magnetic field Br , consistent with a small helical modulation of the

plasma magnetic boundary. Helical boundary conditions with m = 1 poloidal and n = −7

toroidal periodicity are used, corresponding to the standard dominant mode in RFX-mod.

In the simulation a wide spectrum of 225 modes with 0 ≤ m ≤ 4 is used. This spectrum
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was employed and validated in previous simulation studies [Cappello, 2004; Cappello and

Biskamp, 1996; Bonfiglio, Chacón, and Cappello, 2010].

We first consider a simulation with ideal boundary conditions. The on-axis Lundquist

and viscous Lundquist numbers are set to S = 106 and M = 104, respectively. This cor-

responds to Hartmann and Prandtl numbers H ≡ (SM)1/2 = 105 and P ≡ S/M = 100, re-

spectively. The initial condition is a nonreversed axis-symmetric Ohmic equilibrium with

pinch parameterΘ= Bθ(a)/< Bθ >≃ 1.6 and reversal parameter F = Bφ(a)/< Bφ >≃ 0.15,

where < · > represents a volume average. The temporal evolution of the reversal parameter

F and the normalized edge Bφ amplitudes of the most active m = 1 modes is shown in Figs.

5.1(a) and 5.1(b). The resulting sawtoothing dynamics closely reproduces what was al-

ready reported in past viscoresistive MHD studies with similar ideal boundary conditions.

After a strong initial reconnection event leading to the reversal of the F parameter (i.e.,

to the formation of the RFP configuration), the system undergoes quasiperiodic cycles

with reconnection events. This is followed by relatively longer phases with reduced MHD

activity. In this simulation, the MH regime is typically observed in between reconnection

events, while QSH phases occasionally occur, although without any specific dominant

mode and with a rather small amplitude separation with respect to secondary modes.

Figure 5.1: The temporal evolution of the simulation with ideal boundary condition, as

discussed in the modeling study of the RFP [Bonfiglio et al., 2013].

A qualitative change occurs with the inclusion of helical boundary conditions. We

consider now a simulation with the addition of a helical perturbation of the edge radial

magnetic field. This perturbation is chosen with m = 1, n = −7 periodicity and a constant

in time amplitude around 2% of the mean edge field. Such boundary conditions provide a
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schematic representation of the plasma magnetic boundary during high current discharges

in RFX-mod. The temporal evolution of the simulation with helical boundary conditions

is shown in Figs. 5.2(a) and 5.2(b). It can be clearly seen that QSH phases with 1,−7

dominant mode regularly occur in between reconnection events, while MH conditions

seldom intervene. Thus, the observed numerical QSH dynamics presents the peculiar

experimental features missing in previous modeling. The finite helical Br perturbation

also affects the periodic sawtoothing activity of the reversal parameter F, which on average

becomes more frequent and less intense. This trend is confirmed for increasing helical

perturbation amplitudes.

Figure 5.2: The temporal evolution of the simulation with helical boundary condition, as

discussed in the modeling study of the RFP [Bonfiglio et al., 2013].

For comparison, a typical RFX-mod discharge with standard feedback control at high

current is shown in Figs. 5.3(a) and 5.3(b). The main quantitative differences with

respect to experimental findings are the wider range of numerical F oscillations and the

larger level of secondary modes. This difference is mainly due to the use of unrealistic

dissipation parameters. Taking Lundquist numbers of the order of S = 107 a temporal

evolution of the simulation is obtained, which is qualitatively similar to the previous one

Fig. 5.2. However, the average total amplitude of secondary modes decreases. This

makes the repetition of QSH phases in between reconnection events particularly clear

and systematic. In fact, QSH phases turn out to occur always in between reconnection

events,with a close to realistic amplitude separation with respect to secondary modes.
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Figure 5.3: RFX-mod discharge, as discussed in the modeling study of the RFP [Bonfiglio

et al., 2013].



Part III

Performed analysis
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Chapter 6

Alfvén waves in cylindrical plasmas

In the ideal MHD approximation, the behaviour of the shear Alfvén wave is not sensitive

to the plasma geometry since this wave propagates only along B0 lines and does not reflect

off the plasma boundaries. However, the compressional wave does reflect off the plasma

boundary or off metal wall boundaries, which can act like a waveguide or resonant cavity.

Thus eigenmodes of the waves may exist, with spectra of discrete eigenfrequencies called

Compressional Alfvén Eigenmode (CAE). The geometry is therefore very significant in

determining the modes of propagation of the compressional wave. Nevertheless, wave

propagation in a toroidal plasma is often modelled in cylindrical geometry, first because

the mathematics is much simpler and second because a torus behaves, in most respects,

like a bend cylinder.

In this Chapter we will compute the equations of Alfvén waves in cylindrical geometry

and with ideal boundary condition (perfectly conducting wall that contains the plasma).

This analytical study is an original synthesis of several textbooks and scientific articles

[Cramer, 2001; Villard and Vaclavik, 1997; Musielak and Suess, 1989]. The resulting

equations will be compared to those for free Alfvén waves in cartesian coordinates, as

derived in Chapter 4. In particular we will consider waves in periodic straight cylindrical

column of both uniform and non-uniform plasma (with non uniform density ρ0(r) and

/or magnetic field B0(r)). The non-uniform case, compared to the uniform one, will

be characterised by a new Alfvén mode, the Global Alfvén Eigenmode (GAE), and

new phenomena like phase mixing and Alfvén resonance absorption. As we will see,

while in the uniform case we are still able to obtain an analytical solution for shear and

compressional modes, in the non-uniform case this is not always possible. Therefore we

will employ the local or Wentzel-Kramers-Brillouin (WKB) approximation and numerical

calculations to obtain the frequencies we are interested in for the analysis of SpeCyl

simulations in Chapter 8.

It has to be noted that the SpeCyl code, as discussed in Section 5.1.1, is a visco-resistive

numerical code, with viscosity and resistivity given by Eqs. (5.2), and so one could argue

that the ideal MHD model is not suited for the analysis of SpeCyl simulations. But as we

will see in the following chapters these dissipative terms only introduce a damping effect

and cause the fields to decay in time, without actually affecting the frequency spectra
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themselves. A more detailed treatise of the effects of dissipative terms on MHD waves

can be found in [Cramer, 2001, p. 29].

6.1 Uniform plasma case

In this Section we will consider a uniform plasma in cylindrical geometry with ideal

boundary conditions. As in Chapter 4 we will use the ideal MHD model in the cold

plasma approximation (p = 0). Therefore, as before, we assume the equilibrium with the

plasma at rest and with no zero-order electric field. We neglect the inertial term (v ·∇)v≃ 0

in Eq. (4.1f) and we assume that the plasma has zero resistivity and viscosity (the ideal

MHD model condition). The subscript 0 will denote the equilibrium state, and subscript

1 will denote the first-order perturbations associated with the wave motion. In particular

we will compute the dispersion relations for shear Alfvén and compressional modes to

see if and how they change from the free case discussed in Chapter 4.

6.1.1 Shear Alfvén Wave

We now will compute the dispersion relation for the Shear Alfvén Wave in a uniform

axial magnetic field B0, uniform density ρ0 and v0 ≡ 0 (plasma at rest), in the cold plasma

approximation p0 = 0. For the shear Alfvén mode we can assume the characteristic

variables listed in Table 4.1 for the magnetoacoustic mode to be zero. Therefore ρ1 = 0

and for Eq. 4.16 p1 = 0. If the equilibrium quantities ρ0 and B0 are constant, the

equilibrium current density J0 can be neglected in Eq. (4.17).

From Eq. (4.17) and Eq. (4.20), the perturbed velocity then satisfy

ρ0
∂v1

∂t
=

1

µ0

(∇×B1)×B0. (6.1)

From Eq. (4.18) and Eq. (4.19), and the following identity

∇×(A×B) = A(∇ ·B)−B(∇ ·A)+ (B · ∇)A−(A · ∇)B, (6.2)

we can see that the perturbed magnetic field satisfies

∂B1

∂t
= ∇×(v1 ×B0) = (B0 · ∇)v1 = B0

∂v1

∂z
, (6.3)

where in the last two steps we used fact that B0 is uniform and ∇·v1 = 0 (condition (4.35)).

Taking the time derivative of Eq. (6.1) and putting it together with the previous

equation we obtain

ρ0
∂2v1

∂t2
=

1

µ0

(

∇× ∂B1

∂t

)

×B0 =
B0

µ0

(

∇× ∂B1

∂t

)

× ẑ =
B2

0

µ0

(

∇× ∂v1

∂z

)

× ẑ.

Using the two identities:

∇(A ·B) = A×(∇×B)+B×(∇×A)+ (A · ∇)B+ (B · ∇)A (6.4)
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and

A×(B×C) = (A ·C)B−(A ·B)C, (6.5)

and the condition v1z = 0 (4.35) it follows that

B2
0

µ0

(

∇× ∂v1

∂z

)

× ẑ =
B2

0

µ0

[

−∇
(

ẑ · ∂v1

∂z

)

+

∂v1

∂z
×(∇× ẑ)+ (ẑ · ∇)∂v1

∂z
+

(

∂v1

∂z
· ∇

)

ẑ

]

=

B2
0

µ0

[

−∇∂v1z

∂z
+

∂2v1

∂z2

]

=

B2
0

µ0

∂2v1

∂z2
.

Finally we get

∂2v1

∂t2
− v

2
A

∂2v1

∂z2
= 0, (6.6)

where v
2
A
= B2

0
/(µ0ρ0) is the Alfvén velocity.

Let us compute this equation in cylindrical coordinate. We seek solutions of perturbed

velocity in the form

v1(t,r, θ, z) = v
m,n

1
(r)expi(mθ+ n

R
z−ωt) . (6.7)

Putting it in Eq. (6.6) we obtain
(

ω2 − v
2
A

n2

R2

)

v
m,n

1
(r) = 0,

and finally the dispersion relation is

ω2 − v
2
Ak2

z = 0, (6.8)

where k2
z = n2/R2 . This expression is identical to the one obtained in cartesian coordinates

(Eq. 4.28). This is due the fact that, as said before, the shear Alfvén wave is not sensitive

to the plasma geometry since it propagates only along B0 lines and does not reflect off the

plasma boundaries, which we indeed did not had to impose in this discussion. In Figure

6.1 the normalized frequency dependence on kz wavevector component is shown, in the

case of m = 0, for the shear Alfvén wave.

6.1.2 Compressional Alfvén Eigenmode

To compute the compressional mode dispersion relation let us rewrite Eqs. (4.24)-(4.26)

in the cold plasma approximation (p0 = 0 ⇒ c2
s = γp0/ρ0 = 0)

ρ0
∂

∂t
∇ ·v1+

B0

µ0

∇2B1z = 0 (6.9)

∂B1z

∂t
+B0

(

∇ ·v1 −
∂v1z

∂z

)

= 0 (6.10)

ρ0
∂v1z

∂t
= 0. (6.11)
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Taking the time derivative of Eq. (6.10)

∂2B1z

∂t2
+B0

[

∂

∂t
(∇ ·v1)−

∂

∂z

∂v1z

∂t

]

= 0

and using the Eqs. (6.11) and (6.9) we get

∂2B1z

∂t2
− v

2
A∇2B1z = 0, (6.12)

where v
2
A
= B2

0
/(µ0ρ0) is the Alfvén velocity.

Let’s compute this equation in cylindrical coordinates

B1z(t,r, θ, z) = B
m,n

1z
(r)expi(mθ+ n

R
z−ωt) . (6.13)

We seek solutions of Eq. (6.12), with ideal boundary conditions

0 = Eθ

�

�

r=a
= ηJθ

�

�

r=a
=

η

µ0

d

dr
Bz

�

�

�

�

r=a

. (6.14)

Replacing Eq. (6.13) in Eq. (6.12) we obtain

∂2B1z

∂t2
− v

2
A

[

1

r

∂

∂r

(

r
∂B1z

∂r

)

+

1

r2

∂2

∂θ2
B1z +

∂2

∂z2
B1z

]

= 0.

Deriving B1z
{

−ω2 − v
2
A

[

d2

dr2
+

1

r

d

dr
− m2

r2
− n2

R2

]}

Bmn
1z (r) = 0,

and multiplying both members with −r2/v2
A

we obtain

[

r2 d2

dr2
+ r

d

dr
+

(

ω2

v
2
A

− n2

R2

)

r2 −m2

]

Bmn
1z (r) = 0. (6.15)

Defining the quantity

ξ2 ≡
(

ω2

v
2
A

− n2

R2

)

, (6.16)

and performing the following substitution

r ′ = ξr (6.17)

we obtain the Bessel’s differential equation

[

r ′2
d2

dr ′2
+ r ′

d

dr ′
+ r ′2 −m2

]

Bmn
1z (r ′) = 0, (6.18)
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where m is the order of the Bessel function.

The solution is given by a Bessel function of order m, which expression is, resubsti-

tuting r ,

Bmn
1z (r) = Bmn

1z (0)Jm(ξr). (6.19)

Let’s now impose the ideal boundary condition (6.14)

d

dr
Bmn

1z (r = a) = 0 =⇒ Bmn
1z (0) d

dr
Jm(ξa) = 0. (6.20)

The solutions are the roots of the first derivative of the Bessel function of order m (this

values can be derived and are well know1), which we name χmj , where j is the j-th root,

ξa = χmj with j = 1,2,3 . . . . (6.21)

Therefore, taking the square of Eq. (6.21), we find the following dispersion relation

ξ2
=

ω2
mj

v
2
A

− n2

R2
=

χmj
2

a2

ω2
mj = v

2
A

(

k2
z +

χmj
2

a2

)

with j = 1,2,3 . . ., (6.22)

where k2
z = n2/R2.

The first thing to note is that in this case we are considering only the fast magnetoa-

coustic mode, indeed assuming c2
s = 0 the slow magnetoacoustic mode’s frequency is null,

as can be seen from Eq. (4.33). Furthermore the expression of the compressional mode

itself is different from the one in cartesian coordinates (Eq. (4.32)). In fact the effect

of moving to cylindrical geometry and imposing the ideal boundary conditions (6.14)

brings a set of Compressional Alfvén Eigenmodes (CAEs), whose frequency depends on

j-th root of the derivative of Bessel function of order m. In Figure 6.1 the normalized

frequency dependence on kz wavevector component is shown, in the case of m = 0, for

the first five CAEs.

1See for example http://wwwal.kuicr.kyoto-u.ac.jp/www/accelerator/a4/besselroot.htmlx

http://wwwal.kuicr.kyoto-u.ac.jp/www/accelerator/a4/besselroot.htmlx
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Figure 6.1: Case m = 0. Normalized frequency dependence on kz wavevector component

for SAW and the first five CAEs in cylindrical geometry.

6.2 Non-uniform plasma case

In this Section we will consider the case of a non-uniform plasma in cylindrical geometry

with ideal boundary conditions. Compared to the previous uniform case, now the magnetic

field B0 and/or plasma density ρ0 are allowed to vary with radial coordinate r . Apart

from that, we will use the same model and conditions used in the previous Section. In

particular we will compute the dispersion relations for shear Alfvén and compressional

modes as well as for the new Alfvén mode, the Global Alfvén Eigenmode. Also we

will briefly discuss the new phenomena that arise from the non-uniformity of the plasma:

phase mixing and Alfvén resonance absorption.

6.2.1 Continuous Shear Alfvén Wave and phase mixing

The magnetic field is assumed to have θ and z components and is allowed to vary with r

in magnitude and direction:

B0(r) = B0θ(r)θ̂ +B0z(r) ẑ. (6.23)

The plasma density ρ0 is also allowed to vary with r .

To derive the shear Alfvén dispersion relation we start from the general case with

finite pressure (p0 , 0). Let us consider the linearized MHD equation of motion (4.1f)
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expressed in terms of perturbed fluid velocity v1, magnetic field B1 and (particle plus

magnetic) pressure pT :

ρ0
∂v1

∂t
= −∇pT +

1

µ0

(B1 · ∇)B0+
1

µ0

(B0 · ∇)B1. (6.24)

We also employ Faraday’s equation (4.1b), combined with Ohm’s law (4.1d) with zero

resistivity η = 0:
∂B1

∂t
= ∇×(v1 ×B0) (6.25)

and the linearized version of the adiabatic equation of state (4.1g). For a wave of given

frequency ω, we can derive from Eqs. (6.24)-(6.25), in cylindrical geometry, two coupled

differential equations in pT and velocity component v1r (the analogous calculus but in

cartesian coordinates was done by Musielak and Suess, 1989):

dpT

dr
− τv1r = 0 (6.26)

1

r

d

dr
(rv1r )−

q2

τ
pT = 0 (6.27)

where

τ = i
ρ0

ω

(

ω2 −(k ·vA)2
)

(6.28)

and

q2
= k2 − ω4

ω2(c2
s + v

2
A
)− c2

s (k ·vA)2
, (6.29)

where k = (0, kθ, kz) = (0,m/r,n/R) is the wavevector, k = |k| and vA = B0/
√
µ0ρ0 is the

vector Alfvén velocity which now depends on r . The Alfvén wave and fast and slow

magnetoacoustic waves described by ideal MHD model in Section 4.2 can be recovered,

using cartesian geometry, from Eqs. (6.26) and (6.27) in the limit of a uniform plasma

density and magnetic field (in the z-direction). This shows us that in the non-uniform case

the two waves are coupled. In general when the wavevector k of the perturbation is not

parallel or perpendicular to the equilibrium magnetic field B0 but oblique to it, we expect

such perturbation to excite both types of the waves.

The second-order differential equation for v1r is then

d

dr

[

τ

q2r

d

dr
(rv1r )

]

− τv1r = 0 (6.30)

and that for pT is
τ

r

d

dr

(

r

τ

dpT

dr

)

− q2pT = 0. (6.31)

There are two possible singularities of Eqs. (6.30) and (6.31). One singularity occurs

where τ = 0, that is, at a point where

ω(r) = |k ·vA| = |k ‖(r) · vA(r)| =
|kθB0θ + kzB0z |√

µ0ρ0

=

|m
r

B0θ +
n
R

B0z |√
µ0ρ0

, (6.32)
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where k ‖ = k ·B0/|B0 | and vA = |B0 |/
√
µ0ρ0. This is the Alfvén resonance condition.

The condition (6.32) is also said to define the continuous shear Alfvén wave spectrum,

or the Alfvén continuum, in a nonuniform plasma. For a given frequency and k, the

condition (6.32) is possibly satisfied only at isolated points in the density and magnetic

field profiles. However, if just k is specified, every point in the plasma profile is associated

with different frequency, given by Eq. (6.32). In a smoothly varying plasma profile

we therefore have a continuous spectrum of frequencies, which formally corresponds to

localized shear Alfvén waves with the same wavevector. It is noteworthy that the analogous

calculation in cartesian coordinates bring the same result (ω = |k · vA|). The existence of

the continuous spectrum is also related to a phase mixing in time, leading to the decay of

wave fields. We will discuss this phenomenon shortly below.

A second singularity occurs where 1/q2
= 0, that is, at a position in the density and

magnetic field profile where the following condition holds:

ω2
=

c2
s (k ·vA)2

v
2
A
+ c2

s

. (6.33)

This condition is called the cusp or compressive resonance condition. However, in our

case of cold plasma approximation, this singularity does not occur as c2
s = 0. Therefore

in the following sections we will introduce a consequence of Alfvén resonance condition,

that is the Alfvén resonance absorption process.

To illustrate the phase mixing phenomena let us consider a simpler case: an equilibrium

uniform magnetic field B0 = B0ẑ and non-uniform plasma density profile ρ0(r), with

corresponding local Alfvén speed vA(r). For a wave with given frequency ω, we can

derive from Eqs. (6.24)-(6.25), in cylindrical geometry, two coupled differential equation

in pT and the fields components v1θ and B1θ :

ρ0
∂v1θ

∂t
= −ikθpT +

B0

µ0

∂B1θ

∂z
(6.34)

∂B1θ

∂t
= B0

∂v1θ

∂z
. (6.35)

Taking kθ = m/r = 0, the perturbed velocity component v1θ than satisfies the equation

∂2
v1θ

∂t2
= v

2
A(r)

∂2
v1θ

∂z2
, (6.36)

with the local dispersion relation ω(r) = kzvA(r) for each magnetic surface oscillating

with its own frequency. For the initial condition of standing wave of fixed kz , as time

proceeds the phase of the wave on each field line changes, that is, we have phase mixing.

In fact, each field line oscillates at the local Alfvén frequency, losing coherence with the

motion of adjacent lines. This fact qualitatively explains the reason of the name “phase

mixing”. This effect effectively leads to the damping of any initial Alfvén perturbation in

an inhomogeneous plasma at the rate:

γd ∼
�

�

�

�

d

dr
(kzvA(r))

�

�

�

�

. (6.37)



6.2 Non-uniform plasma case 61

Of course this considerations are also valid for any mode numbers (m,n) and in case

of non-uniform magnetic field B0 and uniform plasma density ρ0 or both B0 and ρ0

non-uniform, as long as the shear dispersion relation is given by Eq. (6.32).

6.2.2 Compressional Alfvén Eigenmode and resonance absorption

Compared to the uniform case, with nonuniform magnetic field and/or plasma density

there are no exact solutions for the compressional mode. In fact we can still solve the

MHD equations in cylindrical geometry and ideal boundary conditions, Equations from

(6.14) to (6.15). In this case, however, ξ will depend on the radial coordinate r

ξ2
=

(

ω2

v
2
A
(r)

− n2

R2

)

, (6.38)

where, in the general case

v
2
A(r) =

B2
0
(r)

µ0ρ0(r)
. (6.39)

Therefore the differential equation (6.18) with ξ(r) cannot be cast anymore in the form

of a Bessel equation and does not possess an analytic solution.

We can still solve the CAE equation (6.15) using a local or WKB approximation

(similarly to what was done in Cramer, 2001, p. 183). That is we assume that each

point in the plasma locally satisfies the homogeneous plasma dispersion relation. It’s a

good approximation when the density or magnetic field varies by only a small amount

in a distance equal to one wavelength in the radial direction. Nevertheless, the WKB

approximation is very useful for qualitative discussion even in cases with relatively high

variable density and/or magnetic field in radial coordinate.

When this approximation is applied, the solution of the differential equation for Bmn
1z

is found in the form

Bmn
1z (r) ∝ Jm

(∫ r

0

ξ(r ′)dr ′
)

. (6.40)

Of course if ξ doesn’t depend on r this expression becomes the same as in the homogeneous

case (6.19).

Imposing the ideal boundary condition (6.14) we get

d

dr
Bmn

1z (r = a) = 0 =⇒ d

dr
Jm

(∫ a

0

ξ(r ′)dr ′
)

= 0. (6.41)

In this case the solution, from which we can derive the frequencies of the CAEs, is

given by the condition

∫ a

0

ξ(r ′)dr ′ = χmj with j = 1,2,3 . . ., (6.42)

where, as before, χmj is the j-th root of derivative of Bessel function of order m.
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We can rewrite the previous condition as

∫ a

0

(

ω2
mj

v
2
A
(r ′)

− n2

R2

)1/2

dr ′ = χmj with j = 1,2,3 . . ., (6.43)

with the following constrain on ω2
mj

values

ω2
mj ≥

n2

R2
v

2
A(r ′) ∀r ′ ∈ [0,a]. (6.44)

The values of the frequencies ωmj can be derived then via numerical calculation,

searching for ωmj values for which the conditions (6.43) and (6.44) are satisfied.

A smooth plasma nonuniformity has an important effect for the propagation of the

fast magnetoacoustic wave. This process, called Alfvén resonant absorbtion, has been

proposed as a mean of providing supplementary heating of fusion plasmas, and as a

possible explanation of the heating of the corona of the Sun and other stars.

When a magnetoacoustic wave propagates in a plasma of varying density and/or mag-

netic field, it can be absorbed under certain conditions, leading to a local heating of the

plasma. The damping of the magnetoacoustic wave occurs because of the coupling with

the continuous spectrum of the shear Alfvén wave. In particular it occurs when, in a

specific location of the plasma, the frequency of the compressional wave is equal to that

of the Alfvén resonance condition (6.32).

The ideal MHD model confirms the existence of this process and can describe some of

its characteristics, but it doesn’t provide an explicit damping mechanism and so gives no

indication of how the energy in the wave is finally dissipated. When more realistic models,

including kinetic effects, are employed, it is shown that the energy of the compressional

mode may be absorbed via mode conversion into a short-wavelength mode, such as Ki-

netic Alfvén Wave (KAW) or Inertial Alfvén Wave (IAW), with subsequent collisionless

and collisional damping of those waves.

Because of the difficulty in dealing analytically with this process, in this Thesis we will

limit ourselfs into discussing the phenomenological features of this process when encoun-

tered in the analysed numerical simulations. For more information on this phenomenon

see [Cramer, 2001; Vlad, Zonca, and Briguglio, 2008; Chen and Hasegawa, 1974].

6.2.3 Global Alfvén Eigenmode

In case the Alfvén continuum, given by the Eq. (6.32), has a minimum in its spectrum

(for instance due to a non-uniform density ρ0(r)), a new type of mode appears just below

the Alfvén continuum minimum, the so-called Global Alfvén Eigenmode (GAE). To

analytically describe the Global Alfvén Eigenmode we present here the analysis made by

Villard and Vaclavik, 1997, which perfectly suits the plasma model (ideal MHD model)

and configuration (cylindrical geometry) we are interested in this Thesis.

Let’s start considering a toroidal axis-symmetric plasma that we assume to be in an

ideal magnetohydrodynamic (MHD) equilibrium configuration with nested flux surfaces
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labelled with the variable ψ. Let us define e‖ = B0/B0, en = ∇ψ/|∇ψ |, eb = e‖ × en. The

electromagnetic oscillations are described by the variational form

∫

Vp

{

�

�∇×E−JEb

�

�

2 −2J · ∇‖en |Eb |2 −
ω2

c2
E∗ ·

(

ǫnn ǫnb
ǫbn ǫbb

)

·E
}

d3x+

+

∫

Vv

�

�∇×E
�

�

2
d3x = 0,

(6.45)

where J = (µ0j0 × en)/B0, j0 is the equilibrium current, Vp and Vv are the plasma and

vacuum volumes respectively, and

ǫnn = ǫbb =
c2

v
2
A

∑

i

fi

1−(ω/ωci)2
(6.46a)

ǫnb = ǫ
∗
bn = i

c2

v
2
A

∑

i

fi(ω/ωci)
1−(ω/ωci)2

(6.46b)

fi =
nimi

∑

j njmj

. (6.46c)

The plasma is surrounded by a vacuum region Vv, enclosed by a perfectly conducting wall.

This model includes finite ω/ωci, and, in the limit ω/ωci → 0, is equivalent to linearized

full ideal MHD in the approximation of γp → 0, where γ is the adiabaticity index and p

is the plasma pressure. There are no limiting assumptions on the ratio of the poloidal to

the toroidal components of the magnetic field. There are no geometrical expansions or

simplifications.

In order to obtain approximate dispersion relations with analytical means we model

the toroidal axis-symmetric plasma of major radius R by a cylindrical, circular, current

carrying plasma column of periodicity 2πR. In general both B0θ and B0z are functions

of the radial coordinate r . The equations for the low frequency oscillations in the ideal

MHD model limit (ω/ωci → 0) can be written as

d

dr

(

AB2
0

A− k2
b

1

r

d

dr
(rξr )

)

+

+

[

AB2
0 −

r

R2

d

dr

(

B2
0z

q2

)

−
4n2B2

0z

R4q2(A− k2
b
)
+ r

d

dr

(

2nkbB0B0z

R2qr(A− k2
b
)

)]

ξr = 0,

(6.47)

with

q =
rB0z

RB0θ

(6.48)

the safety factor (defined in (2.10)), and

k ‖ =
B0z

B0R

(

n+
m

q

)

(6.49)

kb =
B0z

B0

(

m

r
− nr

qR2

)

(6.50)
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A =
ω2 −ω2

A

v
2
A

(6.51a)

ω2
A = v

2
Ak2

‖ (6.51b)

v
2
A =

B2
0

µ0ρ0

, (6.51c)

where n and m are as usual the toroidal and poloidal mode numbers, ξr is the plasma

radial displacement and ρ0 = ρ0(r) is the mass density. Equation (6.47) is equivalent to

Eq. (6.45) in the limit of large aspect ratio and small ω/ωci. It is important to point out

that no approximation on the smallness of B0θ/B0z has been made in the derivation of

Eqs. (6.45) and (6.47).

Equation (6.47) describes two types of wave: a continuum, which we have already

discussed, and a discrete set of eigenmodes called the GAEs. The existence of GAEs

can be demonstrated by carrying out a Wentzel-Kramers-Brillouin (WKB) analysis of Eq.

(6.47). We obtain

ω2
= ω2

A−
1

µ0ρ0k2
r

[

(

2B0zn

qR2

)2

− k2
b

r

R2

d

dr

(

B2
0z

q2

)]

. (6.52)

For n = 0, we have then

k2
r =

(−1/µ0ρ0)
ω2

A
−ω2

B2
0z

B2
0

m2

r

1

R2

d

dr

(

B2
0z

q2

)

. (6.53)

For a plasma of finite size (radius a) the quantization condition
∫ a

0

krdr = jπ with j = 1,2,3 . . . (6.54)

gives a discrete spectrum of eigenfrequencies of the Alfvén wave.

We can rewrite the Eq. (6.53) as

k2
r = −

B2
0z

B2
0

1

r

1

△

(

d

dr
ln(ω2

A)+
d

dr
ln ρ0

)

, (6.55)

where

△ ≡
ω2

A
−ω2

ω2
A

(6.56)

is the frequency separation between the GAEs and the continuum.

Putting together Eqs. (6.55) and (6.54) and after a few steps we obtain the following

condition:
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(6.57)
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with the following constrain on ω2
j

values

ω2
j < ω

2
A(r) ∀r ∈ [0,a]. (6.58)

The values of the frequencies ωj can be derived then via numerical calculation, in

analogous way as for the CAEs in nonuniform plasmas we discussed before. That is

searching for the values of ωj for which the conditions (6.57) and (6.58) are satisfied.

Keeping in mind the Eq. (6.49), for n=0 we can write the continuum frequency as

ω2
A(r) =

B2
0z
(r)m2

µ0ρ0(r)q2(r)R2
. (6.59)

Let’s analyze the case we are interested in, that is when ω2
A
(r) has a local extremum at

r = rc , 0. This means that

d

dr

(

B2
0z

q2ρ0

) �

�

�

�

�

r=rc

= 0. (6.60)

Defining x ≡ r−rc and looking for solutions of the type ξr = xα, the characteristic equation

can be written as

α2
+α−g = 0 (6.61a)

g = −2

r

B2
0z

B2
0

d(ln ρ0)/dr

d2(lnω2
A
)/dr2

. (6.61b)

If the discriminant of Eqs. (6.61) is negative then there exists an oscillatory solution in

the vicinity of r = rc and the extremum of the continuum is an accumulation point of a

discrete spectrum, whose frequencies ωj are given by the condition (6.57). The sufficient

condition for this is g > 1/4.
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Figure 6.2: Schematic diagram of GAEs discrete spectrum and continuous SAW spectrum

in the cylindrical plasma. The red line represents the continuous spectrum and red crosses

show the discrete spectrum.

Standing wave structure

It has to be noted that because of the condition (5.6), in all SpeCyl simulations analyzed

in the following chapters, all of the Alfvén modes previously computed have a standing

wave structure as the perturbed velocity field v (for simplicity we omit the subscript 1) and

magnetic field B are a superposition of two couples of mode numbers (m,n) with opposite

signs that satisfies such condition. We can easily show this by considering the perturbed

velocity field as a superposition of two such modes: for example one with (m,n) = (0,1)
Fourier component and the other with (m,n) = (0,−1). Choosing v = v01+v0−1 and using

the expression (6.7) we have

v(r) = v01(0)
[

ei( 1
R
z−ω1t)

+ ei( 1
R
z+ω1t)

]

= v01(0)ei
z
R

[

e−iω1t
+ eiω1t

]

= v01(0)ei
z
R cos(ω1t),

(6.62)

where ω1 is the frequency of shear Alfvén or compressional mode with the toroidal and

poloidal mode numbers n = 1 and m = 0. Thus we obtained a standing wave solution. An

analogous consideration applies to B.

For GAE case we can see that Eq. (6.47) is invariant under the couples of mode num-

bers (m,n) that satisfies the condition (5.6). This means that for any given eigenfrequency

the eigensolution is a superposition of two such modes and the GAE will also have a

standing wave structure.





Chapter 7

Analysed configurations and

expected solutions

To study and characterize Alfvén modes in nonlinear MHD simulations, in this Thesis

we considered configurations with increasing complexity: from a purely axial uniform

magnetic field, through a non-uniform RFP-like field, up to a “realistic” RFP configuration

with time-varying, zero-order magnetic field in the presence of magnetic reconnection

events.

In this Chapter we will list, in order of increasing complexity, all the magnetic config-

urations that were considered in nonlinear MHD simulations whose results are discussed

in the next Chapter. For each configuration we will show the equilibrium (mean-field)

magnetic field and density profiles. In addition, we will discuss the expected Alfvén

wave solutions for selected (m,n) modes, according to the theoretical models developed

in Chapter 6. Such theoretical solutions will prove to be a powerful tool to interpret and

understand the results of nonlinear simulations discussed in Chapter 8.

7.1 Equilibrium configuration with uniform axial magnetic

field

In this section we consider the simplest magnetic configuration analysed, that is a uniform

equilibrium magnetic field in the axial direction z (see Figure 7.1 with field components

normalized to the B0 on the axis, as done in SpeCyl). We will see two configurations

which differ for the radial density profile: one with an uniform equilibrium density ρ0 = 1,

the other with an RFX-mod-like hollow density ρ0(r) profile, shown in Figure 7.3, which

is qualitatively similar to the density profile in RFX-mod RFP experiments at high plasma

current.

As discussed in Chapter 5, SpeCyl uses dimensionless quantities and consistently we

have chosen to represent all the quantities in abscissa and ordinate, of all the following

figures, in dimensionless units. Furthermore since SpeCyl is a fully spectral code (as

discussed in Section 5.1.2) we are able to select independently the Fourier modes (m,n)

68
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to be included in the simulation accordingly to our needs. Therefore, except for the

“realistic” case, to characterize the Alfvén modes we will always analyse simulations with

one single mode, in particular with low mode numbers, which are the most interesting

from the experimental point of view.

The first Fourier mode that we will consider is (m,n)= (0,1) (with aspect ratio R/a = 4,

that is kza = na/R = 0.25) because, as discussed in Chapter 6, this is the simplest mode

that presents both SAW and CAE solutions.

Figure 7.1: Radial profiles of the components of the normalized magnetic field B0 for the

uniform equilibrium case.

7.1.1 Uniform density ρ0 = 1

The first configuration we analysed was with all the uniform quantities, so that we could

compare the simulation spectra with exact analytical predictions, discussed in Section 6.1,

in the case of uniform plasma. The analytical dispersion relations to check are given by

Eq. (6.8) and Eq. (6.22), respectively for the Shear Alfvén Wave and Compressional

Alfvén Eigenmode. The corresponding frequencies as a function of the axial wavenumber

are displayed for the m=0 case in Figure 6.1.

7.1.1.1 (m, n) = (0,1) mode

The simplest mode that can present both SAW and CAE solutions is (m,n) = (0,1). The

expected frequency spectrum for this configuration is shown in Figure (7.2), where CAEs

frequencies are given by Eq. (6.22), while the SAW is given by Eq. (6.8). For the sake of

simplicity we will always consider the first three CAE. In particular only for this case we
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also displayed the nodes on the compressional eigenmodes, i.e., the radial locations were

the B1z component of the compressional mode do not oscillate being equal to zero. These

are due to the fact that the fields components depend on the Bessel functions, as can been

seen from Eq. (6.19) for example for B1z component, and in turn these functions become

zero when their argument is equal to their roots. We can see for what radial coordinates r

the Bessel function of order m goes to zero from the following condition:

ξr = Xm
k with k = 1,2,3 . . ., (7.1)

where ξ is given by Eq. (6.16) and Xm
k

are the roots of the Bessel function of order m.

To be noticed that there may be none, one or many indices k that satisfies this condition

for a fixed ωj and different r values. This means that different ωj can present none, one

or many nodes. Note also that the number of nodes in CAE modes increases with their

harmonic number as can been seen from Figure 7.2.

In this case of uniform magnetic field B0 = B0z and (m,n) = (0,1), the resulting

k = (0, kθ, kz) = (0,m/r,n/R) = (0,0, kz) is parallel to the equilibrium field, and therefore

either the SAW or the CAEs will be excited depending on the initial perturbed velocity

component. Thus the frequency spectra of SAW and CAE won’t appear together in the

same component of magnetic field or velocity field.

Figure 7.2: Uniform axial field configuration with uniform density. (m,n) = (0,1) mode.

Analytical frequency spectra for SAW and CAE modes. For CAEs, crosses locate the

nodes of the B1z perturbation component.
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7.1.2 RFX-mod-like hollow density profile

Let us now complicate the analysed configuration, that is let’s consider a variable plasma

density. In particular we will consider a density profile typical of RFX-mod plasmas at

high current, where a brawback of the increased core confinement is that core density

fueling is more difficult, resulting in a hollow density profile. A typical RFX-mod-like

hollow density profile is shown in Figure 7.3. This profile corresponds to the analytical

fit:

ρ0(r) = 1.0+2.12r5.0 −3.12r8.5
+0.1r100.0. (7.2)

Unlike the previous case of uniform density, now the dispersion relation of CAEs

can’t be obtained analytically. Therefore the CAEs frequencies will be derived in WKB

approximation through numerical calculation as discussed in Section 6.2.2. On the other

hand, the SAW will now exhibit a continuous spectrum given by Eq. (6.32).

Figure 7.3: Normalized density profile used for the RFX-mod like hollow density case.

7.1.2.1 (m, n) = (0,1) mode

Considering the same mode as in case of uniform density, (m,n) = (0,1), we can see

from Figure 7.4 that the expected frequency spectrum for CAEs, obtained in the WKB

approximation from the condition (6.43) via numerical calculation, is almost identical to

the one in Figure 7.2, obtained instead with CAEs analytical dispersion relation (6.22).

This means that the radial dependence of this density profile doesn’t change much the

CAEs frequencies (and makes us confident of using the numerical calculation based on

the WKB approximation).
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On the other hand the SAW will now have a much different spectrum given by Eq.

(6.32), as shown in Figure 7.4. Furthermore, as discussed in 6.2.1 we expect the frequency

to be damped in time in the spatial regions where it has a gradient because of the phase

mixing. We will verify this phenomenon in the next chapter by analyzing the evolution of

the SAW amplitude in time.

Figure 7.4: Uniform axial field configuration with hollow density profile. (m,n) = (0,1)
mode. (Top) Frequency spectra in WKB approximation for CAEs and analytical frequency

spectrum for continuous SAW. (Bottom) Magnification of SAW spectrum.
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7.2 Tokamak-like equilibrium configuration

Let us now consider a more complex case of slightly non-uniform magnetic field B0(r) in

a Tokamak like configuration shown in Figure 7.5. In this case, the axial magnetic field is

still uniform, but a linearly increasing small azimuthal component is now included, which

implies the presence of a small axial current. Furthermore with non-uniform magnetic

field a coupling between the SAW and CAEs is expected, as mentioned in Section 6.2.1.

For this magnetic configuration we will only consider the case with the uniform density

ρ0 since our aim here will be only to verify the coupling between SAW and CAEs and to

investigate how a slightly non-uniform magnetic field can change the frequency spectrum

of Alfvén modes.

Figure 7.5: Radial profiles of the components of the normalized magnetic field B0(r/a)
for the tokamak-like equilibrium case.

We consider here again the Fourier mode (m,n) = (0,1). The expected frequency spec-

trum for this magnetic configuration is shown in Figure 7.6, where CAEs frequencies are

obtained in the WKB approximation from the condition (6.43) via numerical calculation

while the continuous SAW spectrum is given by Eq. (6.32). The CAEs and SAW spectra

are very similar to the uniform case shown in Figure 7.2. This was also a way to test the

reliability of the numerical calculation based on the WKB approximation in the case of

weakly variable magnetic field.
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Figure 7.6: Tokamak-like configuration with uniform density. (m,n) = (0,1) mode. Fre-

quency spectrum in WKB approximation for CAEs and analytical frequency spectrum for

continuous SAW.

7.3 “Academic” RFP-like equilibrium configuration

After having introduced the equilibrium configurations that will be used for a first basic

assessment of Alfvén waves in MHD simulations (namely, uniform axial magnetic field

and tokamak-like equilibrium), we now move the configurations that will be employed

for the physical characterization of Alfvén waves in the RFP and the comparison with

experimental observations in the RFX-mod device. In this Section we consider a first,

simplified RFP-like case, that we dub "academic" RFP configuration. By "academic"

we mean without the axial field reversal at the edge and, most importantly, with fixed

equilibrium profiles. Indeed, this "academic" RFP configuration is a numerical solution

of the 1D zero-β paramagnetic pinch equilibrium equations, discussed for instance in

[Bonfiglio, Chacón, and Cappello, 2010]. The lack of the axial field reversal at the edge

is just a mathematical consequence of the 1D equilibrium assumption, also known as

Cowling’s theorem (see also [Escande et al., 2000b]). The specific RFP-like equilibrium

used in this Thesis is shown in Fig. 7.7. It corresponds to a paramagnetic pinch equilibrium

with aspect ratio R/a = 4, uniform resistivity and α0 = 3.25 (the parameter α0 is defined in

[Bonfiglio, Chacón, and Cappello, 2010] and corresponds to the ratio between the applied

induction electric field and the central resistivity).
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Figure 7.7: Radial profiles of the magnetic field components of the "academic" RFP-like

equilibrium configuration.

7.3.1 Uniform density ρ0 = 1

7.3.1.1 (m, n) = (1,0) mode

From now on we will mostly focus on the (m,n) = (1,0) mode as experimentally it is the

Fourier component with the strongest Alfvénic activity, and also because this mode is the

most excited by Alfvén waves in "realistic" RFP simulations, as we will see in the next

Chapter.

The expected frequency spectrum for this configuration is shown in Figure 7.8, where

CAEs frequencies are obtained in the WKB approximation from the condition (6.43) via

numerical calculation while the continuous SAW is given by Eq. (6.32). With respect to

the previous magnetic configurations, now the SAW frequency range increases while the

CAE frequencies are shifted down, so that a very peculiar condition occurs in which the

SAW and the 1st CAE intersect each other. Instead in the uniform and tokamak cases, as

seen previously, the SAW and the CAE are well separated in frequency. This is the reason

why in the tokamak the CAEs are considered of little importance and are decoupled from

the shear mode.

As discussed in 6.2.1 we expect the SAW frequency to be damped in time in the spatial

regions where it has a frequency gradient because of the phase mixing. We will verify

this phenomenon in the next chapter by analyzing the evolution of the SAW frequency

spectrum in time. In this case we would also expect, as discussed in 6.2.2, to see the

Alfvén resonance absorption of the 1st CAE since its frequency is equal to that of the
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Alfvén resonance condition (6.32) in a radial position, around r/a = 0.5. However, as we

will see in the next chapter, the damping of the 1st CAE is absent in this case of uniform

density ρ0, although it will be indeed found in the case of variable density profile.

Figure 7.8: RFP-like configuration with uniform density. (m,n) = (1,0) mode. Fre-

quency spectrum in WKB approximation for CAEs and analytical frequency spectrum for

continuous SAW.

7.3.2 RFX-mod-like hollow density profile

7.3.2.1 (m, n) = (1,0) mode

Let us now consider the same simulation with (m,n) = (1,0) mode but RFX-mod-like

hollow density profile. As shown in Figure 7.9, we expect a very similar frequency

spectrum but with a qualitative difference: now the Alfvén continuum has a minimum

around r/a = 0.9. As a consequence, we would expect a new mode to show up below the

frequency minimum, the Global Alfvén Eigenmode (GAE) discussed in Section 6.2.3. The

GAE frequency spectrum is obtained from the condition (6.57) via numerical calculation.

It’s important to note that with the equilibrium magnetic field configuration and density

profile here examined the GAE spectrum, which in general is characterized by a discrete

spectrum of frequencies with the Alfvén continuum minimum as an accumulation point, is

given by a single discrete mode very close to the minimum. However, as we will see in the
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next chapter, nonlinear MHD simulations for this equilibrium case showed a rather weak

GAE signal. To investigate this, as we will discuss below, we analysed several different

density profiles in order to see if we could better excite the GAE mode.

In this case however, compared to the previous with uniform density, we did observe the

resonance absorption process by looking the time evolution of the frequency spectrum.

Figure 7.9: RFP-like configuration with hollow density profile. (m,n) = (1,0) mode.

Frequency spectrum in WKB approximation for CAEs and GAE, and analytical frequency

spectrum for continuous SAW.

7.3.2.2 (m, n) = (0,2) and (m, n) = (4,4) modes

To further investigate the phenomenon of resonance absorption we analysed two cases:

one with the Alfvén continuum below the 1st CAE ((m,n) = (0,2) mode), the other with

the Alfvén continuum crossing the 1st and the 2nd CAE ((m,n) = (4,4) mode). In the

first case we don’t expect to see the resonance absorption process, in the second one we

expect the first two CAEs to be damped in time as both of them have their frequency equal

to that of Alfvén resonance condition (6.32) in some radial position. These theoretical

expectations will be confirmed by numerical results discussed in the next Chapter. The

expected spectra for the two selected modes are shown below, see Figures 7.10 and 7.11.
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Figure 7.10: RFP-like configuration with hollow density profile. (m,n) = (0,2) mode.

Frequency spectrum in WKB approximation for CAEs and analytical frequency spectrum

for continuous SAW.
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Figure 7.11: RFP-like configuration with hollow density profile. (m,n) = (4,4) mode.

Frequency spectrum in WKB approximation for CAEs and analytical frequency spectrum

for continuous SAW.

7.3.3 Center-peaked density profile

In order to try to better excite the GAE mode and see its qualitative relation with the profile

of the equilibrium density we analysed the same Fourier mode as before, (m,n) = (1,0),
with five different density ρ0(r) profiles shown in Figure 7.12. In particular we considered

density profiles with different radial locations of their peak density, moving it from the

wall to the center of the cylinder. Note that the (d) profile is the RFX-mod-like hollow

density profile from Figure 7.3.

In the next chapter we will analyse the density profile that results in the strongest excitation

of the GAE mode, that is the central peaked density profile (a) which analytical expression

is:

ρ0(r) = 1.2−1.2r2.0
+0.1r100.0. (7.3)

Figure 7.12: Different profiles of normalized density ρ0(r/a).

7.3.3.1 (m, n) = (1,0) mode

The expected frequency spectrum for (m,n) = (1,0) mode with central peaked density

profile (marked as (a) in Figure 7.12) is shown in Figure 7.13, where CAEs frequencies are

obtained in the WKB approximation from the condition (6.43) via numerical calculation,

GAE frequency value is obtained from the condition (6.57) also via numerical calculation

and the continuous SAW spectrum is given by Eq. (6.32). Compared to the RFX-mod-like
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density profile case, now the CAEs are higher in frequency, while the SAW turns out to be

flatter. As a result the 1st CAE and GAE are closer in frequency to each other. To note that

while the density peak changed a lot its radial position, compared to the RFX-mod-like

density case, shifting all the way to the center of the cylinder, the SAW minimum shifted

only slightly toward the center. As already mentioned, this case with density profile

peaked in the plasma core will prove in next Chapter to be the one where the GAE is most

excited.

Figure 7.13: RFP-like configuration with center-peaked density profile. (m,n) = (1,0)
mode. Frequency spectrum in WKB approximation for CAEs and GAE, and analytical

frequency spectrum for continuous SAW.
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7.4 "Realistic" time-evolving RFP configurations

The most advanced case, that we will consider in this Thesis, is a “realistic” RFP dy-

namical configuration, where with “realistic” we mean the closest to the experimental

conditions we can presently achieve with the SpeCyl code. Such realistic conditions

include time-evolving mean-field B0 profiles1 with quasi-periodic magnetic reconnection

events triggered by nonlinear bursts of global MHD instabilities, as described in the mod-

eling study of QSH states in the RFP configuration [Bonfiglio et al., 2013] (and briefly

recalled in Section 5.2). We will consider simulations with two different density profiles:

one with uniform density profile, the other with a RFX-mod-like hollow density profile.

These simulations will be used in the next Chapter to try to explain from a theoretical

point of view the experimental observation of Alfvén Eigenmodes in RFP plasmas, which

we discussed in Section 3.3.

All the simulations of this Section are based on the simulation with uniform density

profile reported in Figure 5.2, and here in Figure 7.14.

Figure 7.14: “Realistic” RFP configuration with uniform density. Profile of the component

B0z(r/a, t/τA) of the magnetic field B0(r/a, t/τA) as a function of normalized time t/τA
at a fixed radius r/a = 1.0.

As already mentioned, this simulation is characterized by a quasi periodic repetition

of magnetic reconnection events. Therefore, to qualitatively characterize the dynamics of

1Note that in this case the subscript 0 doesn’t stand for the stationary equilibrium component of the

magnetic field, as in these simulations the mean magnetic field B0 is time evolving. However, such mean

field is still changing much slowly than the evolution of Alfvén waves, and therefore it can be used as before

for theoretical predictions of the Alfvén modes frequency spetrum.
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Alfvén modes, it is sufficient to focus on a single dynamical cycle. In this Thesis we have

chosen to focus on the time window, centered around a magnetic reconnection event, from

t = 3×104 τA to t = 4×104 τA. The mean magnetic field profiles at several times along the

selected time window are displayed in Figure 7.15. It should be noted that unlike in the

“academic” case, now we have the reversal of the axial component of the mean magnetic

field on the edge, which is the distinctive feature of the RFP configuration.

Figure 7.15: Radial profiles of the components of the normalized mean magnetic field B0

at several times along the time window centered around a magnetic reconnection event

that was chosen for the characterization of Alfvén modes in "realistic" RFP conditions.

7.4.1 Uniform density ρ0 = 1

First we consider the case with uniform density profile. The nonlinear MHD simulation

analyzed in this case is just a repetition, starting from t = 3×104 τA, of the original uniform

density simulation, with same MHD spectrum but with fields saved each 0,1τA (a high

sampling frequency suitable for the analysis of Alfvén times) instead of each 10τA as in the

original simulation. The time step is also reduced from t = 5×10−2 τA to t = 10−3 τA, and

the semi-implicit term is turned off, to obtain a more accurate characterization of Alfvén

modes. The temporal evolution of the safety factor on edge q(a) and the normalized edge

Bφ amplitudes of the most active m = 1 modes is shown in Fig. 7.16.

It’s important to note that, unlike in all the previous cases, Alfvén modes in these simu-

lations do not depend on specific details of the initial velocity perturbations. Indeed, we

will see in the next Chapter that now each reconnection events provides a new velocity

perturbation (produced self-consistently by the nonlinear MHD dynamics itself) that will

trigger Alfvén modes in a quasi-periodic fashion.
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Figure 7.16: “Realistic” RFP configuration with uniform density. The temporal evolution

of the simulation is centered around a magnetic reconnection event, from t = 3× 104 τA
to t = 4×104 τA.

7.4.1.1 (m, n) = (1,0) mode

As already mentioned the (m,n) = (1,0) mode is the most excited one by Alfvén modes

in this “realistic” simulations, as we will see in the next chapter, and so it’s the one we

will analyse here. The expected frequency spectrum is shown in Figure 7.17, where

CAEs frequencies are obtained in the WKB approximation from the condition (6.43) via

numerical calculation while the continuous SAW is given by Eq. (6.32)2. This spectrum

appears qualitatively similar to the one in the “academic” RFP case with uniform density

(Figure 7.8), and therefore that case will prove to be an important basis for the interpretation

of this one.

2To compute the CAEs and SAW frequencies here we used the mean magnetic field profiles at the time of

the magnetic reconnection event.
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Figure 7.17: “Realistic” RFP configuration with uniform density. (m,n) = (1,0) mode.

Frequency spectrum in WKB approximation for CAEs and analytical frequency spectrum

for continuous SAW.

7.4.2 RFX-mod-like hollow density profile

7.4.2.1 (m, n) = (1,0) mode

The last analysed configurations was with a RFX-mod-like hollow density profile as

experimentally the plasma density is a function of r and we want to obtain a frequency

spectrum as close as possible to the experimental one discussed in Section 3.3 to try to

identify the coherent peaks in the power spectrum of the magnetic fluctuation measured

at the edge of the RFX-mod plasma.

In this case, the analyzed nonlinear MHD simulation starts from time t = 3× 104 τA
of the original uniform density simulation, but now the hollow density profile is imposed

(together with reduced time-step and high sampling frequency as in the previous uniform

density simulation for Alfvén modes). As an effect of the modified density profile, the

nonlinear MHD dynamics is slightly different from the original simulation. Indeed, now

the reconnection event around t = 3.5× 104 τA is weaker, and a second much stronger

reconnection event occurs around t = 3.9× 104 τA, as shown in Fig. 7.18. In the next

Chapter, we will focus on a time window around this second reconnection event.
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Figure 7.18: “Realistic” RFP configuration with hollow density profile. The temporal

evolution of the simulation centered around a magnetic reconnection event, from t =

3×104 τA to t = 4×104 τA.

The expected frequency spectrum is shown in Figure 7.19, where as usual CAEs

frequencies are obtained in the WKB approximation from the condition (6.43) via nu-

merical calculation, GAE frequency value is obtained from the condition (6.57) also via

numerical calculation and the continuous SAW spectrum is given by Eq. (6.32). This

spectrum also appears qualitatively similar to the one in the “academic” RFP case with

RFX-mod-like density (Figure 7.9), and therefore that case will also be used as a basis for

the interpretation of this one.
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Figure 7.19: “Realistic” RFP configuration with hollow density profile. (m,n) = (1,0)
mode. Frequency spectrum in WKB approximation for CAEs and GAE, and analytical

frequency spectrum for continuous SAW.





Chapter 8

Analysis of nonlinear MHD

simulations and experimental

comparison

In this Chapter we will analyze the results of nonlinear MHD simulations performed with

the SpeCyl code, for the different magnetic configurations introduced in Chapter 7. We

will consider simulations in configurations of increasing complexity: from a purely axial

uniform magnetic field, through a non-uniform RFP-like magnetic field, up to a “realistic”

RFP configuration with time-evolving mean magnetic field in the presence of the magnetic

reconnection events. For each simulation case, we will test the presence of Alfvén waves

and characterize their properties (such as frequency spectra and nonlinear dynamics) by

computing the Fast Fourier Transform (FFT) of simulation data. In particular, FFTs are

performed on time windows of 500τA. All the computed spectra will be compared with the

expected ones shown in Chapter 7 which in turn were derived from the theoretical models

discussed in Chapter 6. Finally, we will try to explain the experimentally observed Alfvén

Eigenmodes in RFX-mod experiment through the analysis of “realistic” RFP simulations.

Except for the “realistic” case, for which we will specify the simulation parameters

later, for all the other SpeCyl simulations we considered the ideal boundary conditions

given by (6.14), aspect ratio R/a = 4, a radial resolution of 256 points and a single

Fourier harmonic in the angular directions, with periodicity (m,n) to be specified for each

simulation case. Lundquist number and Prandtl number were set to S = 106 and P = 1

respectively. The time-dependent magnetic and velocity field components computed by

SpeCyl with a time step of 10−4τA are saved to disk every 0.1τA, and later the FFT in

time of such fields is performed. Moving time windows of 500τA are used for the FFTs,

hence corresponding to 5000 time snapshots. The sampling rate of 0.1τA and the time

window of 500τA are chosen to obtain temporal FFTs with good resolution and range of

the resulting frequency spectra. On the other hand, a time window of 500τA is not too

long for the field components to change significantly within it.

88
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8.1 Equilibrium configuration with uniform axial magnetic

field

We start with the analysis of the most simple case, that is the equilibrium configuration

with uniform axial magnetic field discussed in Section 7.1. We will first consider the case

with uniform density and then with RFX-mod-like hollow density profile.

8.1.1 Uniform density ρ0 = 1

8.1.1.1 (m, n) = (0,1) mode with initial vθ perturbation

In all the following simulations (except for the “realistic" RFP cases) the Alfvén waves

are excited starting from a stable equilibrium configuration by applying a small initial

perturbation to the velocity field. This can be intuitively understood with the analogy of

plucking a string originally at rest, giving it an initial speed different from zero and letting

it evolve in time.

However, it is important on which component of the magnetic field or velocity field

the initial perturbation, which excites the Alfvén modes, is applied. This is especially

true when the Alfvén modes SAW and CAEs are uncoupled as in this case of uniform

magnetic field. In fact, depending on which component (r, θ, z) of the field is perturbed, it

is possible to excite separately the SAW or CAEs, as can be deduced from the theoretical

model discussed in Section 6.1. Therefore for all the analyzed modes (m,n) we will

consider two separate simulations, one with initial vθ perturbation, the other with initial

vr perturbation.

Let’s start discussing the simulation with uniform density and initial velocity pertur-

bation on the azimuthal component vθ , with radial profile given by

v(r) = εr(1− r), (8.1)

where ε≪ 1.

Let’s first look at the overall trend of the simulation, shown in Figure 8.1. We observe

that by perturbing the vθ component, only the bθ and perturbed vθ components are

finite, and evolve in time by slowly decaying. Which component is excited by the initial

perturbation depends on the MHD relations between B1 and v1 and fields configuration.

The decaying in time of the fields is due to, as we already mentioned, the SpeCyl code

being a visco-resistive numerical code, with viscosity and resistivity expressions given by

Eqs. (5.2). These terms introduce a damping of the amplitude of the fields, making them

to decay in time.
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Figure 8.1: Simulation with uniform axial magnetic field and uniform density. (m,n) =
(0,1) mode with initial vθ perturbation. The time traces of v1 and B1 normalized fields

components are shown at a fixed radius r/a = 0.5.

If we zoom in the initial phase of the simulation (Fig. 8.2) we see that the time traces of

bθ and vθ , which previously were indistinguishable because too compressed, now clearly

appear as sinusoids with a period ∆T such that about 10 cycles are observed in a range

of 250 τA. It is therefore expected that by doing the FFT of these time signals a single

frequency ωτA = 2πτA/∆T ≃ 2π/25 ≃ 0.25 would be obtained. Indeed doing the FFT in

the interval t ∈ [0,500τA], as shown in Figure 8.3, we obtain a spectrum with a single

frequency centered on the expected value. This is the SAW that we expected from the

theoretical analysis of Chapter 6. In general the color scale can be different for velocity

components and field components. It must also be noted that the color scale in not linear

but follows a power law, which is necessary to detect higher order harmonics, and it refers

to the absolute value of the spectral amplitude. As we can see from Figure 8.4, we have

an excellent agreement regarding both the frequency spectrum of the mode and its radial

form.
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Figure 8.2: Simulation with uniform axial magnetic field and uniform density. (m,n) =
(0,1) mode with initial vθ perturbation. The time traces of v1 and B1 normalized fields

components are shown at a fixed radius r/a = 0.5.
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Figure 8.3: Simulation with uniform axial magnetic field and uniform density. (m,n) =
(0,1) mode with initial vθ perturbation. The frequency spectra of v1 and B1 normalized

fields components are shown as a function of radius, as computed for the time window

t ∈ [0,500τA].

Figure 8.4: Simulation with uniform axial magnetic field and uniform density. (m,n) =
(0,1) mode with initial vθ perturbation. Verification of frequency spectrum with the

theoretical model for v1θ velocity field component. On the top panel the agreement of

simulation’s frequency spectrum of the v1θ component and the expected theoretical one

(the SAW spectrum in Fig. 7.2) are shown. On the bottom panel the analytical perturbation

given by Eq. (8.1) (solid line) is displayed together with the corresponding values from

the simulation’s spectrum (solid dots).

8.1.1.2 (m, n) = (0,1) mode with initial vr perturbation

Let’s see now what we obtain from a simulation in which the radial component of velocity

is perturbed instead of the azimuthal one. As we can see from Figure 8.5 in this case we

obtain a time trend in which we have three non-zero components, Br , Bz and vr , which

decay over time relatively quickly. If we plot the temporal traces on a narrower window of

time (Fig. 8.6), again we recognize a wave pattern but this time it does not correspond to a

simple sinusoidal wave. We therefore expect the spectrum to contain not only a dominant

frequency but also higher harmonics. This is confirmed by Figure 8.7, in which multiple

harmonics are observed. Looking at the frequency spectrum we can see the CAEs with

their nodes, radial locations where the Alfvénic oscillations have zero amplitude for a

specific field component.
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Figure 8.5: Simulation with uniform axial magnetic field and uniform density. (m,n) =
(0,1) mode with initial vr perturbation. The time traces of v1 and B1 normalized fields

components are shown at a fixed radius r/a = 0.5.
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Figure 8.6: Simulation with uniform axial magnetic field and uniform density. (m,n) =
(0,1) mode with initial vr perturbation. The time traces of v1 and B1 normalized fields

components are shown at a fixed radius r/a = 0.5.

Figure 8.7: Simulation with uniform axial magnetic field and uniform density. (m,n) =
(0,1) mode with initial vr perturbation. The frequency spectra of v1 and B1 normalized

fields components are shown as a function of radius, as computed for the time window

t ∈ [0,500τA].

Again we have an excellent agreement between the simulation’s spectrum and the-

oretical model as can be seen from Figure 8.8. This is a further demonstration of the

robustness of the SpeCyl code, after the nonlinear verification benchmark discussed in

[Bonfiglio, Chacón, and Cappello, 2010].

The above analysis was applied to similar single-mode simulations with mode numbers

m = 0 and 0 ≤ n ≤ 6 for both vr and vθ initial perturbations in order to verify the analytical

dispersion relations for CAEs and SAW shown in in Figure 6.1. As can be seen from

Figure 8.9 the values of the CAEs and SAW frequencies (solid dots) from the simulations

are in complete agreement with the theoretical model (solid lines).
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Figure 8.8: Simulation with uniform axial magnetic field and uniform density. (m,n) =
(0,1) mode with initial vr perturbation. Verification of frequency spectrum with the

theoretical model for B1z magnetic field component. On the top panel, the simulation’s

frequency spectrum of the B1z component and the corresponding analytical spectrum

(CAE spectrum in Fig. 7.2) are shown. On the bottom panel the analytical Bessel

function J0 for the frequencies of the first three CAEs (solid lines) are displayed together

with the corresponding values from the simulation’s spectrum (solid dots). Note that on

the top panel the oscillations are shown with their absolute values, while in the bottom

panel they are not.
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Figure 8.9: Simulation with uniform axial magnetic field and uniform density. Verification

of numerical results against analytical spectra for m = 0. Frequency dependence on kz
wavevector component for SAW and the first five CAEs.

8.1.2 RFX-mod-like hollow density profile

Now let’s consider the two previous cases with (m,n) = (0,1) perturbed mode but in the

presence of a hollow density profile, shown in Figure 7.3. We will see that there are

no qualitative changes regarding the CAE, instead we will observe for the first time the

phenomenon of phase mixing of the SAW.

8.1.2.1 (m, n) = (0,1) mode with initial vr perturbation

Let’s first analyse the simulation with initial velocity perturbation on the radial compo-

nent, which gives the CAE solutions. The resulting frequency spectrum for initial vr
perturbation, shown in Figure 8.10, is qualitatively very similar to the one with uniform

density in Figure 8.7, with the CAEs frequencies now just slightly lower than before.

The verification with the expected spectrum from theoretical model (Fig. 7.4) is

shown in Figure 8.11. In this case there is a small discrepancy due to the fact that now the

expected CAEs frequencies are obtained in the WKB approximation through numerical

calculation from the condition (6.43) as the MHD equations are no longer analytically

solvable for CAEs in case of non-uniform plasma. Although approximate, the numerical

computation of CAE frequencies will prove to be quite useful in all this Thesis to identify

and interpret the observed frequency spectra from nonlinear MHD simulations.
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Figure 8.10: Simulation with uniform axial magnetic field and hollow density profile.

(m,n) = (0,1) mode with initial vr perturbation. The frequency spectra of v1 and B1

normalized fields components are shown as a function of radius, as computed for the time

window t ∈ [0,500τA].
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Figure 8.11: Simulation with uniform axial magnetic field and hollow density profile.

(m,n) = (0,1) mode with initial vr perturbation. Verification of frequency spectrum with

the theoretical model for B1z magnetic field component.

8.1.2.2 (m, n) = (0,1) mode with initial vθ perturbation

We now proceed with the analysis of the nonlinear MHD simulation with initial velocity

perturbation on the azimuthal component, which gives the Shear Alfvén Wave solution.

We can see from Figure 8.12 that the frequency’s profile is much different from the one

with uniform density in Figure 8.3. Now we have a Shear Alfvén Wave characterized by

a continuous spectrum with a frequency that depends on the radius, with the ω(r) profile

resembling the inverse of the density profile (Fig. 7.3). This is perfectly expected, as

the Alfvén frequency is inversely proportional to the root of the density (Eq. (6.32)).

Indeed, as expected we can see from Figure 8.13 that the frequency spectrum is perfectly

superimposed to the theoretical shear Alfvén spectrum from Fig. 7.4.

Figure 8.12: Simulation with uniform axial magnetic field and hollow density profile.

(m,n) = (0,1) mode with initial vθ perturbation. The frequency spectra of v1 and B1

normalized fields components are shown as a function of radius, as computed for the time

window t ∈ [0,500τA].
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Figure 8.13: Simulation with uniform axial magnetic field and hollow density profile.

(m,n) = (0,1) mode with initial vθ perturbation. Verification of the nonlinear MHD

simulation results against the theoretical Shear Alfvén solution, for the B1θ magnetic field

component.

We now look at the time evolution of the SAW spectrum during the nonlinear MHD

simulation. To do this, we do the FFT of simulation data on a moving time window,

with same time interval of 500τA but increasing initial time, as exemplified with square

brackets in Fig. 8.14. In this way it is possible to see that the SAW spectrum changes in

time, as shown in Figure 8.15. By looking at the temporal evolution of the SAW spectrum,

one can observe an interesting phenomenon, that is the fact that the amplitude of the wave

is damped very quickly in the radial positions that correspond to regions with a radial

gradient of the Alfvén frequency, while it remains almost constant in the radial positions

that correspond to the extremes of the ω(r), i.e. the initial region and the region around

r/a = 0.75. This is perfectly consistent with the phase mixing phenomenon, discussed

in Section 6.2.1, due to which the Alfvén wave tends to be more rapidly damped in the

regions with spatially variable Alfvén frequency. This damping mechanism is added to

the damping due to the visco-resistive dissipation, which instead occurs in a similar way

throughout the plasma volume since the dissipation coefficients (resistivity and viscosity)

are assumed to be uniform in these SpeCyl simulations.
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Figure 8.14: Simulation with uniform axial magnetic field and hollow density profile.

(m,n) = (0,1) mode with initial vθ perturbation. The time traces of the normalized

magnetic field component B1θ are shown at a fixed radius r/a = 0.2, 0.5, 0.75. The time

windows indicated are those used in the analysis of Fig. 8.15.

Figure 8.15: Simulation with uniform axial magnetic field and hollow density profile.

(m,n) = (0,1)mode with initial vθ perturbation. Time evolution of the frequency spectrum

of the normalized magnetic field component B1θ at the beginning of the simulation (panels

a-e) and the end of the simulation (panel f).1

8.2 Tokamak-like equilibrium configuration

Now we consider the first case with a variable magnetic field. A weak azimuthal field is

added to the uniform axial field, as shown in Figure 7.5. This is an intermediate case that

we consider before moving on to the configuration that most interests us, namely the RFP.

For this tokamak configuration we consider only the case with uniform density as here we

are mainly interested in the consequences of the non-uniformity of the magnetic field.

1For those interested the corresponding movie can bee seen at the following link:

https://www.dropbox.com/s/k269k77xv2c95ap/Bt_denn_pertvt.mp4?dl=0.

https://www.dropbox.com/s/k269k77xv2c95ap/Bt_denn_pertvt.mp4?dl=0
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8.2.1 Uniform density ρ0 = 1

8.2.1.1 (m, n) = (0,1) mode with initial vr and vθ perturbation

Perturbing vr we can see in Figure 8.16 that now the CAE spectrum is present (albeit

weak) also in the Bθ , vθ and vz components, compared with the analogous Figure 8.7

in the uniform field case in which these components weren’t excited at all. In addition,

now in the Bθ and vθ components appears a weak SAW signal. Vice versa, by perturbing

the vθ component (Figure 8.17), the SAW signal is dominant as in the analogous uniform

field case in Figure 8.3, but there also appears a weak signal that corresponds to the CAE

spectrum. So there is a weak coupling of the shear and the compressional modes (as the

magnetic field has a weakly variable azimuthal component). As mentioned in Section

6.2.1 this coupling is due to the fact that the wavevector k is oblique to the magnetic field

B0, in this case k is oblique due to the weak azimuthal component of the magnetic field.

A stronger coupling will be seen in the RFP case (which presents a more strongly variable

magnetic field), where the SAW and the CAE will have similar amplitude by perturbing

either vr or vθ , and therefore only the perturbation in vr will be discussed there.

Figure 8.16: Simulation with Tokamak-like magnetic field and uniform density. (m,n) =
(0,1) mode with initial vr perturbation. The frequency spectra of v1 and B1 normalized

fields components are shown as a function of radius, as computed for the time window

t ∈ [0,500τA].
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Figure 8.17: Simulation with Tokamak-like magnetic field and uniform density. (m,n) =
(0,1) mode with initial vθ perturbation. The frequency spectra of v1 and B1 normalized

fields components are shown as a function of radius, as computed for the time window

t ∈ [0,500τA].



104 Analysis of nonlinear MHD simulations and experimental comparison

Figure 8.18: Simulation with Tokamak-like magnetic field and uniform density. (m,n) =
(0,1) mode with initial vr perturbation. Verification of the frequency spectrum with the

theoretical model for the B1θ magnetic field component. The dotted line is used in this

case (instead of a solid line) due to the rather low amplitude of the spectrum.

In Figure 8.18 we show the comparison between the numerical frequency spectrum

resulting from the SpeCyl simulation with initial vr perturbation and the expected theoret-

ical one from Fig. 7.6. The agreement between the two is excellent, even with numerically

calculated CAE frequencies as the WKB approximation in this case of weakly variable

magnetic field is a very good approximation.

8.3 “Academic” RFP-like equilibrium configuration

We will now discuss the most interesting results of this Thesis considering the RFP-like

configuration (Figure 7.7). The results discussed in this section and in the next one

will allow us to obtain physical indications on the experimental observations of Alfvén

Eigenmodes in the RFX-mod experiment.

8.3.1 Uniform density ρ0 = 1

8.3.1.1 (m, n) = (1,0) mode with initial vr perturbation

From now on we will consider the (m,n)= (1,0)mode (instead of the (0,1)mode considered

in previous cases), as experimentally it is the Fourier component with the strongest

Alfvénic activity, and also because this mode is the most excited by Alfvén waves in

"realistic" RFP simulations, as we will see in Section 8.5.1.1. The frequency spectrum

in this case of uniform density ρ0 is shown in Figure 8.19. Now all the components

of v1 and B1 fields are affected by both continuous SAW and CAEs, with comparable

amplitudes. Therefore, as anticipated before, in the RFP case with strongly variable fields

we will analyse only the simulations with the initial vr perturbation. Also now the SAW

frequency range increases while the CAE frequencies are shifted down, so that a very

peculiar condition occurs in which the SAW and the 1st CAE intersect each other.

In Fig. 8.20 we show the comparison of the numerical spectrum resulting from SpeCyl

simulations with the expected theoretical spectrum for this configuration (Fig. 7.8). A

good qualitative agreement between the numerical and theoretical spectra is observed. As

mentioned before the small discrepancy of the CAE spectrum is due to the fact that now the

expected CAEs frequencies are obtained in the WKB approximation through numerical

calculation from the condition (6.43) as the MHD equations are no longer analytically

solvable in this configuration.
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Figure 8.19: Simulation with RFP-like magnetic field and uniform density. (m,n) = (1,0)
mode with initial vr perturbation. The frequency spectra of v1 and B1 normalized fields

components are shown as a function of radius, as computed for the time window t ∈
[0,500τA].
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Figure 8.20: Simulation with RFP-like magnetic field and uniform density. (m,n) = (1,0)
mode with initial vr perturbation. Verification of frequency spectrum with the theoretical

model for B1z magnetic field component.

We now look at the time evolution of the B1z component, as shown in Figure 8.21.

The SAW vanishes rather quickly, due to the phase mixing phenomenon already discussed

in Section 6.2.1. On the other hand, the amplitudes of CAE modes just slightly decay in

time, as damped by viscosity and resistivity, as we have seen for example in Figure 8.5.

We would also have expected in this case to see the Alfvén resonance absorption of the

1st CAE since its frequency is equal to that of the Alfvén resonance condition (6.32) in a

radial location around r/a = 0.5. Such effect is not actually observed in this case, although

it will be recovered in the case with non-uniform density profile, as will be discussed in

Section 8.3.2.

Figure 8.21: Simulation with RFP-like magnetic field and uniform density. (m,n) = (1,0)
mode with initial vr perturbation. Time evolution of the frequency spectrum of the

normalized magnetic field component B1z at the beginning of the simulation (panels 1-5)

and the end of the simulation (panel 6).2

To see the damping processes more clearly we can plot the frequency in function of

time, as shown in Fig. 8.22 at a fixed radius r/a. In this case we plotted the evolution of the

2The corresponding movie can bee seen at the following link:

https://www.dropbox.com/s/dacwcppg047yzdg/Bz_Var_pertvr.mp4?dl=0.

https://www.dropbox.com/s/dacwcppg047yzdg/Bz_Var_pertvr.mp4?dl=0
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frequency spectrum of B1z component for two radius values r/a = 0.3 and r/a = 0.9. As

we can see the CAE amplitudes remain slightly unchanged until the end of the simulation,

while SAW is quickly and completely damped in the first 150 Alfvén times.

Figure 8.22: Simulation with RFP-like magnetic field and uniform density. (m,n) = (1,0)
mode with initial vr perturbation. Time evolution of the frequency spectrum of the

normalized magnetic field component B1z at a fixed radius r/a = 0.3 and r/a = 0.9.

8.3.2 RFX-mod-like hollow density profile

8.3.2.1 (m, n) = (1,0) mode with initial vr perturbation

We now analyze the same mode (m,n) = (1,0) but with an RFX-mod like density profile

ρ0(r). The resulting frequency spectrum is shown in Figure 8.23. This spectrum is

very similar to the one with uniform density (Fig. 8.19) except that now the Alfvén

continuum has a minimum at around r/a = 0.9. In Fig. 8.24 we superimpose this

spectrum with the expected theoretical one (Fig. 7.9) to identify the various frequencies.

The qualitative agreement is good, again the quantitative differences can be ascribed to

the WKB approximation used to compute the theoretical spectra. However, in this case

we would also have expected to see the GAE solution, a global mode right below the

Alfvén continuum minimum like in Fig. 7.9. In the following sections we will see that

the GAE mode is actually observed in "academic" RFP simulations when a density profile

peaked in the plasma center is used. The GAE solution will be also found in "realistic"

RFP simulations discussed in Section 8.5.2.
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Figure 8.23: Simulation with RFP-like magnetic field and hollow density profile. (m,n) =
(1,0) mode with initial vr perturbation. The frequency spectra of v1 and B1 normalized

fields components are shown as a function of radius, as computed for the time window

t ∈ [0,500τA].
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Figure 8.24: Simulation with RFP-like magnetic field and hollow density profile. (m,n) =
(1,0) mode with initial vr perturbation. Verification of frequency spectrum with the

theoretical model for B1z magnetic field component.

We now look at the time evolution of the B1z spectrum, as shown in Figure 8.25. As in

the case with uniform density, we can observe again the phase mixing of the SAW, which

completely disappears at the end of the simulation, even if now the SAW amplitude at the

minimum of the Alfvén continuum survives for a longer time. This time, however, we also

observe the expected resonance absorption of the 1st CAE, which is indeed completely

vanished at the end of the simulation. To better quantify the different damping processes,

in Figure 8.26 the frequency spectrum is shown as a function of time for fixed radial

locations. On the top panel, for r/a = 0.3, we can see that SAW is damped in the same

time window as in the case of uniform density, but now, while the 2nd and 3rd CAE remain

over time, the 1st one is damped because of the resonance absorption. In particular the

1st CAE completely vanishes before t = 3000τA. On the bottom panel, for r/a = 0.9, we

can see that Alfvén minimum survives for a longer time than the uniform density case (see

Fig. 8.22) as it does not undergo the phase mixing.

Figure 8.25: Simulation with RFP-like magnetic field and hollow density profile. (m,n) =
(1,0) mode with initial vr perturbation. Time evolution of the frequency spectrum of the

normalized magnetic field component B1z at the beginning of the simulation (panels 1-5)

and the end of the simulation (panel 6).3
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Figure 8.26: Simulation with RFP-like magnetic field and hollow density profile. (m,n) =
(1,0) mode with initial vr perturbation. Time evolution of the frequency spectrum of the

normalized magnetic field component B1z at a fixed radius r/a = 0.3 and r/a = 0.9.

8.3.2.2 (m, n) = (0,2) and (m, n) = (4,4) modes with initial vr perturbation

To further characterize the resonance absorption phenomenon, we investigated two ad-

ditional cases to confirm that a necessary condition for resonance absorption to occur is

the fact that the discrete frequency of a CAE mode falls into the Alfvén continuum. We

analysed two cases with different periodicities of the initial applied perturbation. The first

case, corresponding to the (m,n) = (0,2) perturbed mode, is characterized by the Alfvén

continuum everywhere below the 1st CAE frequency. On the contrary, in the second case

with (m,n) = (4,4) perturbed mode, the Alfvén continuum crosses not only the first but

also the second CAE. The temporal evolution of the two simulations is shown in Fig. 8.27

(first case) and in Fig. 8.28 (second case). As expected, we see that in the first case the

CAEs are not damped, while in the second case both the 1st and the 2nd CAE are damped

very quickly in time.

These numerical findings confirm that the a necessary condition for the resonance

absorption of the CAEs is that their frequencies fall into the Alfvén continuum. This is

indeed the reason why the resonance absorption phenomenon is also called continuum

damping. In this Thesis, the only case where the resonance absorption of the first CAE was

not observed, even if the necessary resonance condition was satisfied, was the case with

3The corresponding movie can bee seen at the following link:

https://www.dropbox.com/s/jqjir6v4z9nezc9/Bz_Var_denn_pertvr.mp4?dl=0.

https://www.dropbox.com/s/jqjir6v4z9nezc9/Bz_Var_denn_pertvr.mp4?dl=0
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uniform density discussed in Section 8.3.1. We have not yet found a proper explanation for

this observation. Indeed, continuum damping is theoretically predicted even with uniform

density [Chen and Hasegawa, 1974] as we also found in other cases. In particular, the

simulation with the (m,n) = (4,4) mode was also performed with uniform density4, and

again the continuum damping of the two first CAEs was observed as expected, quite

similarly to the case discussed in this Section with hollow density profile.

Figure 8.27: Simulation with RFP-like magnetic field and hollow density profile. (m,n) =
(0,2) mode with initial vr perturbation. Time evolution of the frequency spectrum of the

normalized magnetic field component B1z at the beginning of the simulation (panels 1-5)

and the end of the simulation (panel 6).5

4The movie of (m,n) = (4,4) mode with uniform density profile can bee seen at the following link:

https://www.dropbox.com/s/5i1vdw9mbja6l1k/Bz_var_pertvr_m4n4.mp4?dl=0

5The corresponding movie can bee seen at the following link:

https://www.dropbox.com/s/zdb10ez0dic7sz1/Bz_var_denn_pertvr_m0n2.mp4?dl=0.

https://www.dropbox.com/s/5i1vdw9mbja6l1k/Bz_var_pertvr_m4n4.mp4?dl=0
https://www.dropbox.com/s/zdb10ez0dic7sz1/Bz_var_denn_pertvr_m0n2.mp4?dl=0
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Figure 8.28: Simulation with RFP-like magnetic field and hollow density profile. (m,n) =
(4,4) mode with initial vr perturbation. Time evolution of the frequency spectrum of the

normalized magnetic field component B1z at the beginning of the simulation (panels 1-5)

and the end of the simulation (panels 6).6

8.3.3 Center-peaked density profile

We now come back to the characterization of the GAE, that is the discrete global mode that

is expected to be found whenever the Alfvén continuum has a minimum inside the plasma,

as discussed in Section 6.2.3. We have discussed the first case where this condition is

satisfied, namely the academic RFP case with hollow density profile, in Section 8.3.2.

In that case, however, a clear indication of the GAE solution was not found. In order to

try to excite the GAE mode, we investigated the five equilibrium density profiles shown

in Figure 7.12. In particular we considered density profiles with different position of

their peak density, going from the wall to the plasma center. In the next Subsection, we

will accurately examine the density profile that is most efficient to excite the GAE mode,

namely the center-peaked density profile (a), afterwards we will show a summary graph

with all density profiles.

6The corresponding movie can bee seen at the following link:

https://www.dropbox.com/s/yxr7r4t6y53vdbo/Bz_var_denn_pertvr_m4n4.mp4?dl=0.

https://www.dropbox.com/s/yxr7r4t6y53vdbo/Bz_var_denn_pertvr_m4n4.mp4?dl=0
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8.3.3.1 (m, n) = (1,0) mode with initial vr perturbation

The frequency spectrum resulting from the SpeCyl simulation with perturbed (m,n)=(1,0)

mode and center-peaked density profile is shown in Figure 8.29, while in Figure 8.30

we superimpose the resulting numerical spectrum with the expected theoretical one (Fig.

7.13) in order to identify the various frequencies. As we can see now we observe a new

global mode near the Alfvén continuum minimum, that is the GAE. Indeed, by looking for

instance at Figure 8.30 we see a global discrete mode (marked by the dashed horizontal

line) at the minimum frequency of the continuum spectrum.

Figure 8.29: Simulation with RFP-like magnetic field and center-peaked density profile.

(m,n) = (1,0) mode with initial vr perturbation. The frequency spectra of v1 and B1

normalized fields components are shown as a function of radius, as computed for the time

window t ∈ [0,500τA].
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Figure 8.30: Simulation with RFP-like magnetic field and center-peaked density profile.

(m,n) = (1,0) mode with initial vr perturbation. Verification of frequency spectrum with

the theoretical model for B1z magnetic field component. The analytical curve of the GAE

is dashed to avoid covering its spectrum.

Lets now look at the time evolution of the B1z component, as shown in Figure 8.31.

We can observe, as in previous cases, the phase mixing of the SAW and the resonance

absorption of the 1st CAE. Both waves disappear as before, but now the GAE mode

survives even after the SAW is gone, and it takes the whole simulation for the GAE to

disappear as well.
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Figure 8.31: Simulation with RFP-like magnetic field and center-peaked density profile.

(m,n) = (1,0) mode with initial vr perturbation. Time evolution of the frequency spectrum

of the normalized magnetic field component B1z at the beginning of the simulation (panels

1-5) and the end of the simulation (panel 6).7

Let’s also look at the time evolution at fixed radius, as reported in Figure 8.32. We

can see that now, unlike the case with hollow density profile, the damping rate of the

resonance absorption is very high since the 1st CAE is completely damped in the same

time as SAW, while the GAE is just weakly damped and remain over the entire simulation.

In Figure 8.33 we verify that the GAE is actually a global eigenmode. Solid dots

indicate the absolute value of the amplitude of the normalized magnetic field component

B1z at the frequency corresponding to the GAE. We see that indeed the GAE takes a finite

amplitude not just close to the edge radial position where the minimum of the Alfvén

continuum is located, but also up to the plasma center.

7The corresponding movie can bee seen at the following link:

https://www.dropbox.com/s/ye33wigaisxc30j/Bz_var_center_denn_pertvr_m1n0.mp4?dl=0.

https://www.dropbox.com/s/ye33wigaisxc30j/Bz_var_center_denn_pertvr_m1n0.mp4?dl=0
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Figure 8.32: Simulation with RFP-like magnetic field and center-peaked density profile.

(m,n) = (1,0) mode with initial vr perturbation. Time evolution of the frequency spectrum

of the normalized magnetic field component B1z at a fixed radius r/a = 0.3 and r/a = 0.8.
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Figure 8.33: Simulation with RFP-like magnetic field and center-peaked density profile.

(m,n) = (1,0) mode with initial vr perturbation. Verification of GAE being a global

eigenmode. For the analysis was considered the time window ∆t = 400−900τA in order

to eliminate the contribution to the spectrum of the 1st CAE and continuous SAW.

Figure 8.34: Simulations with RFP-like magnetic field and five different density profiles.

(m,n) = (1,0) mode with initial vr perturbation. Time evolution of the frequency spectrum

of the normalized magnetic field component B1z at a fixed radius r/a = 0.3 and r/a =

0.8−0.95 for all the density profiles from Fig. (7.12).
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The case we have just discussed, with density profile peaked in the center, is the one

in which the GAE mode is most excited. In Figure 8.34 we show a summary plot for

all density profiles from Figure 7.12. We can see that moving the peak density from the

center, panel (a), to the wall of the cylinder, panel (e), the resonance absorption of the

1st CAE is less and less effective, until it disappears for the (e) density profile, where the

1st CAE survives over the entire simulation and is slightly damped only due to resistivity.

We can also note an opposite trend for the GAE, which is less and less excited moving the

density peak from the center to the edge. This confirms that the GAE mode is more easily

excited with density profiles peaked near the plasma center. The SAW damping rate due

to phase mixing seems to be independent of the density profile.
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8.4 Effect of resistive dissipation

Before concluding this Section on "academic" RFP simulations, let’s examine how the

amplitude of the 1st CAE, SAW and GAE evolve in time for different values of Lundquist

number S = τR/τA, that it for different values of the dimensionless resistivity, while the

dimensionless viscosity is kept constant at M = τV/τA = 106. In particular we anal-

ysed simulations with (m,n) = (1,0) mode, RFX-mod like density profile and initial vθ
perturbation.

Figure 8.35: Simulations with RFP-like magnetic field and hollow density profile. (m,n)=
(1,0)mode with initial vθ perturbation. Attenuation of CAE, SAW and GAE Alfvén modes

due to the variation of the Lundquist number.

As we can see from Figure 8.35, the SAW and CAE modes do not seem to depend

on resistivity, while on the contrary the GAE is less and less damped when increasing the

Lundquist number , that is decreasing the resistive dissipation. In particular for S ≥ 107

the GAE becomes the dominant mode after ∼ 700τA. Although in the following we will
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return to consider only simulations with S = 106, this brief analysis shows the potential

importance of the dissipative terms (resistivity and/or viscosity) for a correct qualitative

and quantitative interpretation of the experimental observations.

8.5 "Realistic" time-evolving RFP configurations

Finally we consider the time-dependent mean magnetic field in a “realistic” RFP dynamical

configuration, that is the closest to the experimental conditions we can presently achieve

with the SpeCyl code, as exemplified in Figure 7.15. This is the highest sophistication

level considered in this Thesis and will make possible a direct qualitative comparison

with experimental observations in the RFX-mod device, as will be discussed in the next

Section. In the following, we will first discuss a simulation case with uniform density and

then a case with RFX-mod-like hollow density profile.

We will still focus on the (m,n) = (1,0) mode as in the previous Section on the "academic"

RFP case, but a fundamental difference is that now the nonlinear simulations include not

just the (1,0) mode as before, but a complete spectrum of modes as discussed in Section

5.2.

In this section we will consider simulations with a times step of 10−3τA and radial

resolution of 100 points. The on-axis Lundquist and viscous Lundquist numbers are

set to S = 106 and M = 104 , respectively. This corresponds to Hartmann and Prandtl

numbers H = 105 and P = 100, respectively. The on-axis resistivity and viscosity are the

inverse Lundquist number η0 = τA/τR ≡ S−1 and the inverse viscous Lundquist number

ν0 = τA/τV ≡ M−1, respectively (τR and τV being the resistive and viscous time scales).

ν is assumed to be uniform, while an increasing radial profile is assigned for η, of

the form η(r) = η0[1+ 19(r/a)10]. In the simulations is used a wide spectrum of 225

modes with 0 ≤ m ≤ 4. In particular for the m = 0 and m = 1 modes, which are the

most important in the nonlinear RFP dynamics, we used −25 ≤ n ≤ 1 and −55 ≤ n ≤ 10,

respectively. Furthermore we will consider a helical boundary condition on the edge Br ,

opposed to ideal boundary conditions used in “academic” RFP simulations. Indeed, the

addition of a helical perturbation of the edge radial magnetic field is considered in these

simulations. This perturbation is chosen with m = 1, n = −7 periodicity and a constant in

time amplitude around 2% of the mean edge field. Such boundary conditions provide a

schematic representation of the plasma magnetic boundary during high current discharges

in RFX-mod, as discussed in [Bonfiglio et al., 2013].

8.5.1 Uniform density ρ0 = 1

8.5.1.1 (m, n) = (1,0) mode

Up to now we have analyzed the simulations starting from the initial time in which was

applied the velocity perturbation. Now instead we will consider a time window (away

from the beginning of the simulation) centered around a typical magnetic reconnection

event. In particular we first discuss the frequency spectrum corresponding to the time
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window ∆t = 4500− 5000τA8, centered around the magnetic reconnection event shown

in the bottom panel of the Figure 7.14 of Chapter 7. This spectrum is reported in Figure

8.36, and shows intense low-frequency fluctuations in all the magnetic field and velocity

components, but also weaker discrete signals (horizontal lines) which can be recognized

in particular in the radial components of both magnetic field and velocity. In this case

the colorbar was calibrated with respect to v1r component as it presents the most clear

spectrum. The low-frequency fluctuations, which are stronger in θ and z components of

the fields, are due to low-frequency tearing modes which dominate the dynamic of the

system in this configuration. The discrete signals, on the other hand, can be identified as

Alfvén modes as we now discuss.

Figure 8.36: Simulation with “realistic” time-evolving RFP magnetic field and uniform

density. (m,n) = (1,0) mode. The frequency spectra of v1 and B1 normalized fields

components are shown as a function of radius for a time window around the magnetic

reconnection event.

In Figure 8.37 we superimpose the frequency spectrum of v1r component with the

expected one (Fig. 7.17) in order to identify the various Alfvénic frequencies. We can

recognize the first three CAE frequencies, the first one being the most excited while the

third being barely visible. We also note that we don’t see the SAW frequency. This can

8The time intervals considered in this Section are rescaled to the beginning of the particular simulation

centered around the magnetic reconnection event taken into consideration. In this case the time window

∆t = 4500−5000τA corresponds to ∆t = 34500−35000τA in Figure 7.14.
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be explained by looking at the “academic” RFP simulations discussed before. Indeed the

SAW spectrum was always very weak in the r component of the fields. Moreover in this

case besides being weak it’s also covered up by the low-frequency fluctuations. In order

to indirectly confirm the SAW presence in "realistic" RFP simulations, we will analyse

in the following a similar "realistic" simulation but with RFX-mod-like hollow density

profile, to try to detect the GAE, which derives from the SAW mininum as discussed in

Section 6.2.3.

Figure 8.37: Simulation with “realistic” time-evolving RFP magnetic field and uniform

density. (m,n) = (1,0) mode. Verification of frequency spectrum in the middle of the

magnetic reconnection event with the theoretical model for v1r velocity field component.

We now discuss the time evolution of v1r component, as shown in Figure 8.38. This

figure confirms that the Alfvénic modes are excited by the magnetic reconnection event

itself, in fact they are absent just before it (panel 1). The Alfvénic modes disappear again

after some thousand Alfvén times after the magnetic reconnection event (panel 6), due

to the various damping mechanisms already discussed for "academic" RFP simulations.

The numerical result we have obtained, showing that Alfvén waves can be excited by

magnetic reconnection events, is quite important because it provides a theoretical confir-

mation of experimental observations in the RFX-mod device, where the same qualitative

phenomenology (with Alfvénic fluctuations excited after reconnection events) is found.
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Figure 8.38: Simulation with “realistic” time-evolving RFP magnetic field and uniform

density. (m,n) = (1,0) mode. Time evolution of the frequency spectrum of the normalized

velocity field component v1r just before (panel 1) during (panels 2-5) and long after (panel

6) the magnetic reconnection event.9

Finally we look at the time evolution at fixed radius r/a = 0.6 of v1r component as

shown in Figure 8.39, where we also plot the time trace of B0z normalized magnetic

field component at the wall of the cylinder and the corresponding trend of kinetic and

magnetic energy. As it is theoretically expected (see Section 4.1.4), during the magnetic

reconnection event, starting around t = 4000τA, we have a drop in magnetic energy while

the kinetic one rises. In addition, clearly the excitation of the CAEs happens during the

event, after which they are damped in time, with only the 1st CAE being able to remain

for some time after the event.

9The corresponding movie can bee seen at the following link:

https://www.dropbox.com/s/xyxpqlqjrnw4wzl/Vr_m1_n0_realistic_case.mp4?dl=0.

https://www.dropbox.com/s/xyxpqlqjrnw4wzl/Vr_m1_n0_realistic_case.mp4?dl=0
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Figure 8.39: Simulation with “realistic” time-evolving RFP magnetic field and uniform

density. (m,n) = (1,0) mode. (Top) The time trace of the normalized kinetic energy Ek

and normalized magnetic energy Em. (Middle) The time trace of the normalized magnetic

field component B0z at a fixed radius r/a = 1.0. (Bottom) Time evolution of the frequency

spectrum of the normalized velocity field component v1r at a fixed radius r/a = 0.6. The

color scale has been adjusted, compared to the Fig. 8.37, to better highlight the CAEs.

Excitation of Alfvénic modes for different Fourier harmonics (m, n)

As we mentioned before, we have chosen to analyse the (m,n) = (1,0) harmonic because

it is the one in which the Alfvénic modes are most excited. We can clearly see this

from Figure 8.40 in which we plotted the 1st CAE amplitude for a wide range of Fourier

modes, in particular −1 ≤ m ≤ 1 and −9 ≤ n ≤ 9 (technically we analysed only half of

those modes as the other half derives from the symmetry condition (5.6)). This numerical

observation is also in agreement with experimental observations [Spagnolo et al., 2011]
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in the RFX-mod experiment, where the poloidal and toroidal periodicities of the measured

Alfvénic fluctuations can be reconstructed and appear to be consistent with a dominant

m = 1, n = 0 component.

Figure 8.40: Simulations with “realistic” time-evolving RFP magnetic field and uniform

density. The variation in the amplitude of the 1st CAE for different harmonics (m,n).

8.5.2 RFX-mod-like hollow density profile

8.5.2.1 (m, n) = (1,0) mode

The same analysis of the previous Section was made for a nonlinear MHD simulation

with same setup and similar temporal evolution of the mean magnetic field, but with

a hollow density profile typical of RFX-mod discharges at high plasma current. In

particular the analysis was performed on the magnetic reconnection event centered around

t = 3.9× 104 τA, shown in the bottom panel of the Figure 7.18 of Chapter 7. As before,

in this Section the time intervals are rescaled to the beginning of the particular simulation

centered around the magnetic reconnection event taken into consideration. In this case

the beginning of the simulation corresponds to t = 3.6×104 τA in Figure 7.18.

Lets start by analysing the frequency spectrum corresponding to the time window ∆t =

2500 − 3000τA, centered around the magnetic reconnection event. This spectrum is

reported in Figure 8.41. Compared with the previous case with uniform density (Fig.

8.36), low-frequency fluctuations are slightly more intense, especially closer to the center.

As before we note the discrete signals, in particular in the radial components of both

magnetic field and velocity, which correspond to the CAE modes. In general the qualitative

picture is similar to the previous case.



126 Analysis of nonlinear MHD simulations and experimental comparison

Figure 8.41: Simulation with “realistic” time-evolving RFP magnetic field and RFX-

mod-like hollow density profile. (m,n) = (1,0) mode. The frequency spectra of v1 and B1

normalized fields components are shown as a function of radius for a time window around

the magnetic reconnection event.

In Figure 8.42 we show the time evolution of the v1r component. As previously (Fig.

8.38) the Alfvénic modes are excited by the magnetic reconnection event itself, while

before (panel 1) and after (panel 6) it there is no Alfvénic activity. Note that right after

the reconnection event (panel 5), when the low-frequency fluctuations are gone, a faint

discrete signal can be seen around ωτA = 0.5. As will be shown below this is the GAE

mode, which is expected to be excited in this case of hollow density profile, as discussed

in Chapter 7.
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Figure 8.42: Simulation with “realistic” time-evolving RFP magnetic field and RFX-mod-

like hollow density profile. (m,n)= (1,0)mode. Time evolution of the frequency spectrum

of the normalized velocity field component v1r just before (panel 1) during (panels 2-5)

and long after (panel 6) the magnetic reconnection event.10

In Figure 8.43 we superimpose the frequency spectrum of v1r component with the

expected one (Fig. 7.19) in order to identify the various Alfvénic frequencies (the color

scale for this figure was saturated in order to better highlight the presence of the GAE). We

recognize the first three CAE frequencies, with similar frequency values as in the previous

uniform case (Fig. 8.37). Now however we also recognize the GAE mode, which also

indirectly confirms the presence of the continuous SAW, which we were not able to check

with the previous simulation due to the low frequency fluctuations covering its signal.

10The corresponding movie can bee seen at the following link:

https://www.dropbox.com/s/o182qaef77b8g6y/Vr_m1_n0_denn_realistic_case.mp4?dl=0.

https://www.dropbox.com/s/o182qaef77b8g6y/Vr_m1_n0_denn_realistic_case.mp4?dl=0
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Figure 8.43: Simulation with “realistic” time-evolving RFP magnetic field and RFX-mod-

like hollow density profile. (m,n) = (1,0) mode. Frame with ∆t = 3000−3500τA from the

Fig. 8.42. Verification of frequency spectrum in the middle of a magnetic reconnection

event with the theoretical model for v1r velocity field component. The color scale has

been adjusted, compared to the Fig. 8.42, to better highlight the presence of the GAE.

By looking at the time evolution at the fixed radius r/a = 0.6 of v1r component, shown

in Figure 8.44, we can see that the GAE is weak and is damped in time rather quickly,

while the 1st CAE is damped more quickly compared to the uniform density case (Fig.

8.39) due to resonance absorption process. Those observations are in agreement with the

corresponding “academic” RFP configurations discussed before.
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Figure 8.44: Simulation with “realistic” time-evolving RFP magnetic field and RFX-mod-

like hollow density profile. (m,n) = (1,0) mode. (Top) The time trace of the normalized

kinetic energy Ek and normalized magnetic energy Em. (Middle) The time trace of the

normalized magnetic field component B0z at a fixed radius r/a = 1.0. (Bottom) Time

evolution of the frequency spectrum of the normalized velocity field component v1r at a

fixed radius r/a = 0.6. The color scale has been adjusted, compared to the Fig. 8.42, to

better highlight the CAEs.

8.6 Comparison with experimental observations

We now conclude this Chapter, on numerical results from nonlinear MHD modelling, with

a qualitative comparison of numerical RFP results with experimental observations on the

RFX-mod device. As discussed in Section 3.3, five distinct peaks have been observed in

the power spectrum of the magnetic fluctuation measured at the plasma edge of RFX-mod
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device (Figure 3.5). These peaks have been named a, b, c, d and e following the increase of

their frequency, from∼ 130 kHz to∼ 1 MHz. While the first three peaks (a,b,c) are present

only during the SHAx state, in which the plasma is in an almost stationary equilibrium

with helical symmetry with a single magnetic axis, as discussed in Section 3.2, the two

highest frequency peaks, d and e, do not seem to be associated to any particular behavior

of the dominant mode, being present during almost the full discharge duration. All of

these peaks are interpreted as Alfvén waves because their frequencies scale linearly with

the Alfvén velocity of the plasma, as shown in Figure 3.7.

We will give now an interpretation of those experimental observations, based on the

results of the analysis carried out in this Thesis. In particular we want to compare the

experimental findings with the analysis results of the most sophisticated and the closest to

the experimental conditions simulation, that is the one with the “realistic” time-evolving

RFP magnetic fields with hollow-like density profile, discussed in the previous section.

We start by comparing the frequencies of the experimentally observed Alfvén waves (the

five peaks) with the frequency spectrum of the “realistic” simulation from Figure 8.43.

In order to so we first need to plot the numerical frequency spectrum in physical units,

as until now we have always considered dimensionless units. By tacking the RFX-mod

minor radius a = 0.459 m and a reference Alfvén speed of vA = 2500 km/s, we obtain the

following Alfvén time τA = a/vA ≃ 0.2 µs. The resulting frequency spectrum in physical

units is shown in Figure 8.45, where we indicated the Alfvénic nature of the discrete

signals, identified in the previous Sections. On the other hand, in Figure 8.46 we mark

the frequencies of d and e peaks corresponding to the reference Alfvén speed.
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Figure 8.45: Simulation with “realistic” time-evolving RFP magnetic field and RFX-mod-

like hollow density profile. (m,n) = (1,0) mode. Frame with ∆t = 3000− 3500τA from

the Fig. 8.42. Frequency spectrum, in the middle of a magnetic reconnection event, in

physical units by tacking vA = 2500 km/s and minor radius of RFX-mod a = 0.459 m.

Figure 8.46: Relation between modes frequency and Alfvén velocity for a large database

of H and He plasmas (from [Spagnolo et al., 2011]). In red is marked the frequency for

peaks d and e corresponding to the Alfvén velocity vA = 2500 km/s.

Comparing the two previous plots, we immediately notice that the GAE and the

1st CAE frequencies values appear in the same frequency range of d and e peaks, with

comparable separation between them. This brings us to formulate the following hypothesis

on the Alfvénic nature of those peaks, namely that d corresponds to a GAE mode,

while e corresponds to the 1st CAE. Moreover this tells us the physical mechanism from

which these Alfvén waves (d and e peaks) arise. Indeed from analysing the “realistic”

simulations, we have found out that the Alfvén modes, such as CAE and GAE, are excited

by the reconnection magnetic events. The phenomenon of periodic magnetic reconnection

events is also found in the RFX-mod discharges from which the data in Figure 8.46 were

taken. We can see the signature of those events in the power spectrum of the magnetic

fluctuation in Figure 3.4. Thus we can conclude that the Alfvén waves corresponding to

the d and e peaks are physically excited by the magnetic reconnection events taking place

in the plasma. We also point out the resemblance of the experimental frequency spectrum

in time during a magnetic reconnection event of Figure 3.4 and the numerical one in

Figure 8.44. In particular similarly to the experimental spectrum, in the numerical one

during a reconnection event we can also see the vertical bright lines, which are a global

(i.e. at all frequencies) enhancement of the fluctuation level. As mentioned before, the

d and e peaks are present during almost the full discharge duration, while the numerical

one are excited only during the reconnection events, after which they decay more or less

quickly in time, especially in case of the hollow-like density profile because of resonance

absorption. This discrepancy can be explained by taking into account the kinetic effects,
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which were not considered in the ideal MHD numerical simulations. In fact, as discussed

in Section 4.1.4, we know that the reconnection magnetic events generate high energy

particles which in turn are known ([Vlad, Zonca, and Briguglio, 2008]) to excite the

Alfvén waves in the plasma. Thus physically the experimental Alfvén waves (d and e

peaks) are excited by each reconnection event and sustained by the energetic particles in

between them, allowing them to stay there during the full discharge duration. Kinetic

effects are also most likely the reason why we didn’t observed the three peaks (a, b and

c) in our numerical simulations. In fact as we can see from Figure 3.4, in 130−500 kHz

range, these Alfvén waves are excited after the reconnection events, most likely by the

energetic particles.

At last, to further validate the numerical findings with respect to the experimental

ones, we show below in Figure 8.47 the experimental frequency spectrum in time, of the

derivative of the poloidal magnetic field ( Ûbθ) fluctuation at r/a = 1, in particular plasma

conditions for which the d and e peaks are shifted in frequency from ∼ 1 MHz to around

600 kHz, as can bee seen from the power spectrum in Figure 8.48. This shift allows us

to see higher frequencies in the power spectrum, and as we can see a new faint signal

( f peak) appears around 1,2 MHz. By qualitatively comparing this spectrum with the

numerical one in Figure 8.45, the natural conclusion is to identify this new peak with

the 2nd CAE, both for its frequency value in relation to the d and e peaks and its lower

amplitude, being much less excited that the e peak, similarly to the excitation of the 2nd

CAE compared to the 1st one in Figure 8.45.

Figure 8.47: Top: plasma current Ip time trace; bottom: spectrogram of a Ûbθ signal. The

black arrows refer to the time instant for the analysis in Figure 8.48. [M. Zuin, private

communication]
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Figure 8.48: Power spectrum of a Ûbθ signal evaluated during the time instant indicated by

the arrow of Figure 8.47. [M. Zuin, private communication]

To conclude we have a qualitative agreement between the numerical simulations and

the experimental observations of Alfvén waves in the RFX-mod device, and therefore we

propose the following physical interpretation: in RFX-mod some Alfvén waves are excited

directly by the magnetic reconnection events occurring during the plasma discharge in

which high energy particles are also generated, and afterwards they are sustained by these

energetic particles in between the reconnection events. In particular, we have identified

the experimental peaks d, e and (when observed) f as a GAE, the 1st CAE, and the 2nd

CAE, respectively.
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Summary and conclusions

The subject of this Thesis is a systematic theoretical investigation of the physics of Alfvén

waves in magnetically confined thermonuclear plasmas, by means of analytical theory

and numerical simulations based on the nonlinear 3D MHD model. The main goal of

this research was to theoretically characterize the Alfvén waves in the RFP magnetic

configuration, as presently the scientific studies in the context of Alfvén waves in fusion

plasmas are mainly focused on the tokamak configuration, being the most promising for

a fusion reactor, and less attention is devoted to the RFP. However, a renewed interest

has been shown for this configuration in recent years because of the discovery, first

theoretically and then experimentally in the RFX-mod device, of improved confinement

helical states, the QSH states. An experimental characterization of Alfvén waves in the

RFX-mod device showed the presence of several coherent modes with Alfvénic nature, but

a theoretical interpretation of such experimental findings was still missing. The specific

aim of this Thesis was to fill this gap and provide a qualitative physical interpretation of

experimental observations.

The theoretical characterization of Alfvén waves performed in this Thesis was based

on the analysis of nonlinear 3D MHD simulations in cylindrical geometry for different

configurations of increasing complexity, and the interpretation of resulting frequency

spectra through the ideal MHD model. It’s important to note that the numerical simula-

tions were obtained from a non-linear code, SpeCyl, which can give the plasma temporal

evolution, unlike the linear stability codes widely used in literature that can just provide

the frequency spectrum and related linear growth rates for a given magnetic configuration.

The analysis started with an equilibrium configuration with uniform axial magnetic field

and uniform density profile. This was the only case for which an exact analytical solution

for Alfvénic modes SAW and CAE can be obtained from the theoretical models. The

verification of the numerical frequency spectra with the theoretical ones showed complete

agreement, thus demonstrating the applicability of the SpeCyl code as a well suited simu-

lation tool for the study of Alfvén waves. As a second step, more complex configurations

were analysed, first with non-uniform RFX-mod-like hollow density and then with slightly

non-uniform magnetic fields (Tokamak-like configuration). In these cases the comparison

with the theoretical models was done employing the WKB approximation for the CAE

mode, as this mode does not possess an analytic solution for non uniform plasmas. The

good agreement between numerical and theoretical spectra in this cases allowed us to be

confident on the interpretation of numerical spectra for non-uniform cases. Furthermore

the theoretically predicted phenomena for those cases, namely the damping mechanism
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of the continuous SAW, called phase mixing, and the coupling between SAW and CAE

modes, were observed.

After having analysed the previous cases, used as a first basic assessment of Alfvén

waves in our MHD simulations, as a further step we analysed a simplified RFP-like

equilibrium configuration of the magnetic fields, first with uniform and then with different

variable density profiles. This case provided a first look at a more realistic representation

of Alfvénic activity in an RFP plasma and was used as a training before going to the

realistic simulation regime with time-evolving mean magnetic field. In particular this

case showed us that in the RFP configuration a peculiar condition occurs, that is the

direct coupling between the SAW continuum and the 1st CAE, unlike in the tokamak

configuration in which the compressional modes are usually neglected, as they are much

higher in frequency that the shear mode. Thus the observation of the CAE modes near

the shear Alfvén frequency is a novelty for fusion plasmas. Besides modes coupling and

phase mixing, a new phenomenon was observed in this case, the resonance absorption,

which damps any compressional mode directly coupled to the continuous spectrum of

the shear Alfvén wave. Moreover, a new discrete mode was observed, called the Global

Alfvén Eigenmode (GAE), just below the Alfvén continuum. In particular, by analysing

multiple configuration with different peak profiles of the density, we saw that moving the

peak density from the center to the wall of the cylinder the resonance absorption of the

1st CAE, which was coupled to the continuum, was less and less effective. We also noted

an opposite trend for the GAE, which was less and less excited moving the density peak

from the center to the edge. This established that the GAE mode is more easily excited

with density profiles peaked near the plasma center. The SAW damping rate due to phase

mixing seemed to be independent of the density profile.

The last step was the analysis of a time-dependent mean magnetic field in a “realistic”

RFP dynamical configuration, with both uniform and RFX-mod-like hollow density pro-

files. These simulations display a self-consistent MHD dynamics and are characterised by

periodic magnetic reconnection events, also observed in real RFX-mod discharges. This

part of the Thesis was crucial for the determination of the triggering mechanism of Alfvén

waves in RFP plasmas. Indeed we discovered that the Alfvén waves are excite by periodic

magnetic reconnection events. In fact the Alfvén activity, composed of SAW, CAE and

GAE modes, show clear bursts during these events. The excitation of Alfvén modes by

magnetic reconnections is another novelty in the current modeling landscape of fusion

plasmas, where the emphasis is focused rather on the study of the excitation of Alfvén

modes by beams of neutral atoms or α particles produced by fusion reactions in burning

plasmas.

Finally we used the “realistic” simulation case for the qualitative comparison and

theoretical interpretation of the experimentally observed Alfvén waves in the RFX-mod

device. First we showed that the most excited Fourier harmonic in numerical simulations

was (m,n)= (1,0), the same dominant component of Alfvénic fluctuations in the RFX-mod

device, thus confirming the similarity of the “realistic” numerical simulations compared to

the RFX-mod discharges. Then, we compared the numerical spectrum from the “realistic”

RFP case, with hollow density profile, with the RFX-mod one, with good resulting

qualitative agreement. This allowed us to propose the identification of the experimental
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coherent Alfvén modes, named d, e and f in Section 8.6, as a GAE, the 1st CAE,

and the 2nd CAE, respectively. The theoretical interpretation of experimental Alfvénic

fluctuations in RFX-mod was the original goal of this Thesis and represents a further

element of originality of this research study.

In conclusion, the results achieved in this Thesis and the employed theoretical methods

contribute to the understanding of the physics of Alfvén waves in fusion plasmas, in

particular in the RFP configuration, and form a solid basis for future more advanced

modelling studies with the inclusion of kinetic and toroidal effects, with the final goal of

contributing in making magnetic confinement fusion a viable and practical solution for

thermonuclear power production.



Part V

Appendices
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Appendix A

Induction equation and Alfvén

theorem

In this appendix we derive the induction equation. The Ampère’s law (4.1c) states

∇×B = µ0J. (A.1)

We can write the Ohm’s law (4.1d) as

J =
1

η
(E+v×B). (A.2)

Combining (A.1) and (A.2) we can write the electric field as

E =
η

µ0

∇×B−v×B. (A.3)

Finally substituting from (A.3) into the Faraday’s law (4.1b), and using the following

identity

∇×(∇×B) = ∇(∇ ·B)−∇2B, (A.4)

where ∇ ·B = 0, we obtain the induction equation

∂B

∂t
= ∇×(v×B)+ η

µ0

∇2B. (A.5)

Now we will prove the Alfvén’s theorem of flux freezing. In ideal MHD limit (η = 0),

we can write
∂B

∂t
= ∇×(v×B). (A.6)

To continue we state a more general version of Kelvin’s vorticity theorem: if any vector

field Q in a fluid satisfies the equation

∂Q

∂t
= ∇×(v×Q), (A.7)
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then
d

dt

∫

S

Q ·dS = 0. (A.8)

where S is a surface inside the fluid. The proof of this theorem can be found in [Choudhuri,

1998, p. 67]. Since (A.6) is of (A.7) form, we can directly apply this theorem and conclude

that
d

dt

∫

S

B ·dS = 0, (A.9)

where the surface integral can be thought to be over a surface made up of definite fluid

elements and the Lagrangian time derivative implies that we are considering the variation

in time while following the surface as the fluid elements making it are moving. Physically

we can say that the magnetic fields move with the fluid, i.e. the magnetic fields are

completely “frozen” in the fluid. This result is called Alfvén’s theorem of flux-freezing.

A direct consequence of this theorem is that if two fluid elements are connected by a

field line, they will always remain connected by a field line in the limit of ideal MHD.

The preservation of such connectivities introduce some constrains on the dynamics of the

system. In particular the magnetic topologies are exactly preserved in a magnetofluid with

zero electrical resistivity.



Appendix B

Fourier Transforms

Both the fluid and kinetic descriptiopns of a plasma employ the theory of Fourier trans-

forms, which we summarize here. If the equilibrium state of the plasma is assumed

uniform, and the fluid equations are linearized, the coefficients in the resulting wave equa-

tios are constants. A Fourier transform in space and time will then yield an algebraic

equation in the Fourier amplitude of, for example, the perturbation velocity v1, which is a

function of time t and space x. The Fourier transform of v1 is defined as

v(ω,k) =
∫

dt d3x exp (i (ωt −k ·x))v1(t,x) (B.1)

with the inverse transform

v1(t,x) =
∫

dω d3k

(2π)4
exp(−i(ωt −k ·x))v(ω,k). (B.2)

Taking the Fourier transform in the uniform plasma case is simply equivalent to seeking

plane wave solutions, that is, to assuming the form

exp[i(kx x+ kyy+ kz z−ωt)] (B.3)

for the wave fields, with kx , ky and kz the constant wavenumbers in a Cartesian coordinate

system.
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Visco-resistive MHD equations in

dimensionless units

The equations of the visco-resistive MHD model in dimensionless form can be obtained

from those in SI units:

ρ

[

∂v

∂t
+ (v · ∇)v

]

= J×B+ ρν∇2v (C.1a)

∂B

∂t
= −∇×E (C.1b)

∇×B = µ0J (C.1c)

E+v×B = ηJ (C.1d)

∇ ·B = 0. (C.1e)

The physical variables will be normalized to the characteristic values of the system

under examination and the density will be considered constant equal to ρ0, in particular

we have:

r = r̃a (C.2a)

t = t̃τA (C.2b)

ρ = ρ0 (C.2c)

B = B̃B0 (C.2d)

J = J̃J0 (C.2e)

v = ṽvA, (C.2f)

with a plasma radius in cylindrical geometry, B0 value of the axial component of the

magnetic field at the axis of the cylinder at the initial instant, vA =
B0

(µ0ρ0)1/2
Alfvén’s speed

and τA =
a
vA

Alfven’s time.

From the equation (C.1c) we obtain the normalization factor for the current:

J̃J0
µ0a

B0

= ∇̃ × B̃ ⇒ J0 =
B0

µ0a
. (C.3)

144



145

From the equation (C.1a) we obtain the normalization factor for the resistivity:

dṽ

dt̃
=

τA

vA

(

J0B0

ρ0

J̃× B̃+
νvA

a2
∇̃2ṽ

)

= J̃× B̃+
ν

vAa
∇̃2ṽ ⇒ ν̃ =

ν

vAa
=

1

M
, (C.4)

where M is the viscous Lundquist number, which represents the inverse of viscosity in

dimensionless units. The analysis of the equation (C.1c) makes it possible to find the

normalization factor for the electric field E:

∂B̃

∂ t̃
=

E0

vAB0

∇̃ × Ẽ ⇒ E0 = vAB0. (C.5)

Considering the Ohm equation (C.1d) instead we obtain:

Ẽ+ ṽ× B̃ =
η

µ0vAa
J̃ = η̃J̃. (C.6)

One notices in particular the identity:

η̃ =
η

µ0vAa
=

ηa

µ0vAa2
=

τA

τR
= S−1, (C.7)

wherein τR =
µ0a

2

η
represents the resistive diffusion time and S the Lundquist number.

With these normalizations, the visco-resistive MHD equations in dimensionless units

are obtained (tildas have been omitted):

∂v

∂t
+ (v · ∇)v = J×B+ ν∇2v (C.8a)

∂B

∂t
= −∇×(ηJ−v×B) (C.8b)

J = ∇×B (C.8c)

∇ ·B = 0 (C.8d)

Note that our model equations highlights only two dimensionless parameters η and ν that

matter for the dynamics of the system. In other words, once the dimensionless values of η

and ν have been chosen, SpeCyl provides a solution of the visco-resistive MHD equations

in dimensionless units, which can be rescaled for different choices of the normalization

factors.
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