
The Matrix Completion Problem

Gianmarco Nalin
Registration Number: 591875

Supervisor: Professor Michele Pavon
University of Padua

Faculty of Engineering
Bachelor Degree in Information Engineering

July 21st, 2011

2

Contents

1 Introduction 5

2 Useful Mathematical Concepts on Matrices 7
2.1 Notation and Definitions . 7
2.2 Singular Value Decomposition 8

2.2.1 Example on SVD of a matrix 10
2.3 Frobenius Norm . 12

2.3.1 Example on Frobenius norm 12

3 The Matrix Completion Problem 13
3.1 Some Examples about MCP 13
3.2 Motivation . 14

3.2.1 The Netflix Problem 14
3.2.2 Triangulation from incomplete data 14

3.3 Basics . 15
3.3.1 The kind of matrices 15
3.3.2 The Sampling Set . 16
3.3.3 The Optimization Problem 16

4 Mazin Results and an Algorithm 19
4.1 Main Results . 19
4.2 The Algorithm . 20
4.3 Open Issues . 22

5 Numerical Experiments for MCP 23
5.1 Some preliminar hypotheses 23
5.2 Main results . 24

A A MATLAB approach to MCP 27
A.1 The Code . 27

B Useful MATLAB Functions 33
B.1 The Code . 33

3

4 CONTENTS

Chapter 1

Introduction

The aim of this thesis is giving a brief introduction to the matrix completion
problem(MCP).

After recalling some useful mathematical concepts and results such as
the Singular Value Decomposition (SVD) and the Frobenius Norm (FN),
we give an intuitive idea about what is meant with the matrix completion
problem.

As the reader well knows, nowadays the relevant amount of information
exchanges force the experts to create more reliable, secure and error-less
devices through which these can happen.

A possible solution to this problem is to create an algorithm for recon-
structing corrupted data based on the knowledge of the devices’ physics and
the data’s structures to exchange. Within this context, the thesis will give a
simple introduction to the algorithm proposed by Montanari, Keshevan and
Oh in their article [1]. This field of science is an open stage where the story
has not been fully written yet. Being an open field, the algorithm proposed
works fine with a very small subset of all the possibilities; in fact this works
with systems we can model with a low-rank matrix.

As we will see in the Chapters 3 and 4 the correct recovering of the entire
structure should be done under some additional hypothesis which restrict
the class of possibilities in which we can apply this method.

This algorithm will be detailed in Chapter 5 to understand how works
and which kind of data it can restore. The algorithm is based on the concepts
of SVD and FN of which we give a definition in the following chapter.

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

Useful Mathematical
Concepts on Matrices

In this chapter, we state the basic concepts the reader should have to fully
understand the Matrix Completion strategies. We start with the definition
of singular value following with singular value decomposition of a matrix.
After introducing the SVD we give the definition of the Frobenius norm.

2.1 Notation and Definitions

In this section, we give the basic notation that will be in used in the entire
thesis.

AT Transpose matrix: Matrix whose rows and columns are the A’s columns
and rows, respectively.

A∗ Conjugate matrix: Matrix whose elements are the complex conjugate of
A’s elements.

AH Adjoint matrix: The transpose conjugate of A.

Other important definitions are those of symmetric matrix and Hermitian
matrix.

Definition 2.1 (Symmetric Matrix). A matrix A is said to be symmetric if

A = AT (2.1)

Example 2.1.1. The matrix A is symmetric

A =

1 5 3
5 7 2
3 2 4

 = AT

7

8CHAPTER 2. USEFULMATHEMATICAL CONCEPTS ONMATRICES

Definition 2.2 (Hermitian Matrix). A matrix H is said to be Hermitian if

H = H
T

(2.2)

Example 2.1.2. The matrix H is hermitian

H =

 2 −i −1
i 1 0
−1 0 1

 = H
T

Proposition 2.1.1. Let H be Hermitian. Then all of its eigenvalues are
real. Moreover, there exists a unitary matrix U such that

UHUH = D (2.3)

with D diagonal.

Other important definitions are those of positive definite matrix and
positive semidefinite matrix.

Definition 2.3 (Positive Definite Matrix). An Hermitian matrix P is said
to be positive definite if

xHPx > 0 ∀x 6= 0 ∈ Cn (2.4)

Definition 2.4 (Positive Semidefinite). An Hermitian matrix P is said to
be positive semidefinite if

xHPx ≥ 0 ∀x ∈ Cn (2.5)

2.2 Singular Value Decomposition

Before giving the definition of singular value and expressing the singular
value decomposition of a matrix, we formulate the following proposition,

Proposition 2.2.1. Given two matrices A ∈ Mm,n and B ∈ Mn,m, the
matrices AB and BA have the same non-zero eigenvalues with the same
geometric multiplicities.

We now replace B with AH in AB. By 2.2.1, the matrices AAH and
AHA have the same rank of A. If A is in Mm,n and it have rank r, λ = 0
is eigenvalue of AAH if and only if m > r, and in such case its geometric
multiplicity is m − k. Likewise, λ = 0 is eigenvalue of AHA if and only if
n > r, and in such case its geometric multiplicity is n− k. From this point
of view, λ = 0 could be eigenvalue of AHA but not of AAH and vice versa.
This cannot happen by the following propositions.

2.2. SINGULAR VALUE DECOMPOSITION 9

Proposition 2.2.2. Let A ∈ Mm,n. The following statements are equiva-
lent:

1. the matrices AHA and AAH are hermitian, so they are diagonalizable
by unitary matrices;

2. the eigenvalues of AAH are nonnegative real numbers; the positive ones
are equal to the eigenvalues of AHA.

In order to achieve the singular value decomposition of a matrix A, we
must study the eigensystem of AAH , i.e. we have to find the eigenvalues
and the eigenvectors of AAH .

From this study, we derive the following definition

Definition 2.5 (Singular Value). We define singular values of A as the
square root of the non-zero eigenvalues of AAH

σi(A) :=
√
λi(AAH) =

√
λi(AHA). (2.6)

Remark 1. From proposition 2.2.2, we have that

σ1(A) > σ2(A) > · · · > σr(A) > σr+1(A) = · · · = σmin(m,n)(A) = 0

where r = rank(A).

Now, we give the definition of SVD for an arbitrary n×m matrix.

Definition 2.6 (Singular Value Decomposition). For each A ∈ Mm,n(C)
with rank r is always possible to find two unitary matrices U ∈ Mm, V ∈
Mn and a diagonal matrix D = diag(σ1, σ2, . . . , σr) such that

A = U

[
D 0
0 0

]
V H (2.7)

with σ1 > σ2 > · · · > σr.

σ1, σ2, . . . , σr are called singular values of A. The factorizazion in 2.7 is
called singular value decomposition of A and the columns of U and V are
called left and right singular vectors for A, respectively.

We now proceed with the proof of the existence of the singular value
decomposition of a matrix A; this proof is constructive because it shows
how to find the matrices U , V and D.

Theorem 2.2.3. Every complex matrix A with rank r admits a singular
value decomposition like 2.7 and such a factorization is unique.

10CHAPTER 2. USEFULMATHEMATICAL CONCEPTS ONMATRICES

Proof. First Step. From Proposition 2.2.2, AAH is diagonalizable by a uni-
tary matrix U so that AAH = UΛUH , where U = [u1, u2, . . . , un] and
Λ = diag(λ1, . . . , λr, 0, . . . , 0). The columns of U satisfy the following
properties: {

AAH · ui = λiui i 6 r

AAH · ui = 0 i > r
.

Let σi =
√
λi. From Proposition 2.2.2, if we set

vi = σ−1
i AHui, i 6 r

the vectors v1, v2, . . . , vr make up a orthonormal base of AHA.

Second Step. Now, we have to complete the base of AHA to a Cn base. To
achive this, we consider the nullspace of AHA, i.e. the eigenspace of
λ = 0. If [vr+1, . . . , vn] denotes a orthonormal base of AHA nullspace,
we can choose the vectors {v1, . . . vr, vr+1, . . . , vn} as a Cn base and
we set V = [v1 . . . vn].

2.2.1 Example on SVD of a matrix

Let A be

A =

[
3 1 1
−1 3 1

]
.

Now, we follow the steps in Theorem 2.2.3 to decompose the matrix A in
its SVD.

As we have seen in Definition 2.6, the matrices U , V , Σ have dimensions
2× 2, 3× 3 and 2× 3, respectively.

Step Zero In order to find the singular values of A, we compute AAH :

AAH =

[
3 1 1
−1 3 1

]3 −1
1 3
1 1

 =

[
11 1
1 11

]

Now we find the eigenvalues of AAH

det(λI −AAH) = det

[
λ− 11 −1
−1 λ− 11

]
=

= (λ− 11)2 − 1 =

= λ2 − 22λ+ 120 = (λ− 12)(λ− 10)

so
λ1 = 12 λ2 = 10

2.2. SINGULAR VALUE DECOMPOSITION 11

As we have defined before, the singular values of A are the square
roots of non-zero eigenvalues of AAH , so

σ1 =
√

12 σ2 =
√

10

Once we have found the singular values of A, we have that the matrix
Σ is uniquely identified and it is equal to

Σ =

[√
12 0 0

0
√

10 0

]
First Step The left singular vectors are the columns of the matrix which

diagonalize the matrix AAH . With the usually diagonalization method
(see [5] for more details about this topic) we find that

U =

[√
2

2 −
√

2
2√

2
2

√
2

2

]
Now we can find the first two columns of the matrix V by the formula

vi = σ−1
i AHui

so

v1 = σ−1
1 AHu1 =

√

6
6√
6

3√
6

6

v2 = σ−1

2 AHu2 =

−2
√

5
5√
5

5
0

Second Step in order to complete the {v1, v2} orthonormal base to a R3

orthonormal base, we have to find the nullspace of AHA.

With the usually methods used to find an eigenspace, we find the third
vector that complete the R3 base that is

v3 =

−1

6

√
6
5

−1
3

√
6
5

5
6

√
6
5

After completed these steps, we have find the singular value decomposition
of A that is

U =

[√
2

2 −
√

2
2√

2
2

√
2

2

]
Σ =

[√
12 0 0

0
√

10 0

]
V =

√

6
6 −2

√
5

5 −1
6

√
6
5√

6
3

√
5

5 −1
3

√
6
5√

6
6 0 5

6

√
6
5

The reader can simply check that A = UΣV H .

12CHAPTER 2. USEFULMATHEMATICAL CONCEPTS ONMATRICES

2.3 Frobenius Norm

Definition 2.7 (Frobenius Norm). The Frobenius norm of a matrix A is
defined as

‖A‖F =
√

trace(AAH) (2.8)

If we have a singular value decomposition of a matrix A we can simply
calculate the Frobenius norm of a matrix by the following proposition

Proposition 2.3.1. If A is a complex matrix with rank r and A = UΣV H

is the singular value decomposition of A then

‖A‖F =

√√√√ r∑
i=1

σ2
i (2.9)

where σi’s are the singular value of A

2.3.1 Example on Frobenius norm

With respect to the example in 2.2.1, we calculate the Frobenius Norm of
the matrix A by the Definition 2.7 and by the Proposition 2.3.1 and we will
show that the results are the equivalent.

Following the Definition 2.7, the Frobenius norm of A is

‖A‖F =
√

trace(AAH) =

√
trace

[
11 1
1 11

]
=
√

11 + 11 =
√

22

Instead, following the Proposition 2.3.1, the Frobenius norm of A is

‖A‖F =

√√√√ 2∑
i=1

σ2
i =

√
σ2

1 + σ2
2 =
√

12 + 10 =
√

22

Chapter 3

The Matrix Completion
Problem

In this chapter, we give some important results about the matrix completion
problem (MCP).

3.1 Some Examples about MCP

In daily life situations we are interested in lost data recover. For instance,
if we lost an important document, we use tools for automatic data restore.
Sometimes we cannot backup data, e.g. data communications, and we sim-
ply loose our information. In other situations, the information leakage is
intentional, e.g. someone left a question unanswered. At this point, the
reader could think what is the relation between the MCP and the above ex-
amples? In the next section, we will try to explain this connection giving a
model for such situations.

13

14 CHAPTER 3. THE MATRIX COMPLETION PROBLEM

3.2 Motivation

3.2.1 The Netflix Problem

Imagine to have a movie rental site where users can rate movies they watched.
The rate consists in a fixed number of stars (e.g. from one star to five stars).
Hence, we can model this system with a matrix whose rows and columns
represent users and movies, respectively, while the generic element rij rep-
resents the rating for the jth movie given by the ith user. Since users can
only rate a few moves, we are interested in inferring their preferences for
unrated movies. Starting with this situation, can we hope to make a guess
on the missing rating? Under which conditions is it possible?

3.2.2 Triangulation from incomplete data

Another important application regards distances between objects. Suppose
we obtain partial information from sensors scattered randomly across a re-
gion. We would like to reconstruct the low-dimensional geometry describing
their location. Suppose each sensor can construct distance estimates based
on information retrieved from its nearest sensors. From these estimates, we
can form a partially observed distance matrix. Now we can estimate the
true distance matrix whose rank is two if these sensors are placed in a plane
or three if they are located in space.

3.3. BASICS 15

3.3 Basics

In general, one can say that it is impossible without other additional in-
formation. In practical cases, however, these matrices have a well-definite
structure, that is they are low-rank or approximately low-rank. In the previ-
ous examples we can suppose to model these systems with low-rank matrices
because, in the former, it is commonly believed that the users base their rat-
ing only on a few factors while, in the latter, the matrix rank can assume only
two value and in general they can be smaller than the number of sensors.

In the following sections, we focus our attention on which additional
hypothesis are necessary to infer the entire matrix from a subset of its entries.

3.3.1 The kind of matrices

For simplicity, we want to recover a square n × n matrix with rank r. As
it is apparent, this matrix M can be represented by n2 elements but it only
has (2n− r)r degrees of freedom.This fact can be revealed by counting pa-
rameters in the SVD of M , i.e. the number of degrees of freedom associated
with the description of its singular values and left and right singular vec-
tors. As seen before, one cannot recover a matrix form a subset of its entries.
Consider the following example with a 1-rank matrix

M = e1e
H
n =

1
0
· · ·
0

 [0 0 . . . 1
]

=

0 0 · · · 0 1
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

 (3.1)

As the reader can see, we cannot infer the entire matrix without seeing all
of its entries. Indeed, many subsets of its entries contain only zeros so one
can guess that M is the all-zero matrix.

From this example, we could think it is impossible to infer all low-rank
matrices from a sampling of their entries. Thus, a more reasonable question
is: can one recover most of them? We can answer this question introducing
the SVD of a matrix M

M = USV H =
r∑

k=1

σkukv
H
k (3.2)

where, as we have seen in chapter 2, uk’s, vk’s and σk’s are the left and
right singular vectors and singular values, respectively. With the SVD of
matrix M , we can restate the definition of a low-rank matrix as follow: the
uk family is selected uniformly random among all families of r orthonormal
vectors, and similarly for the vk family. We do not make any assumption
on the singular values, so the uk and vk may or may not be independent of
each other.

16 CHAPTER 3. THE MATRIX COMPLETION PROBLEM

At this point, the main question is whether or not one can recover such
a matrix from a subset of its entries.

3.3.2 The Sampling Set

As we have seen in the above example, there is no hope to recover a matrix
M if the sampling set leaves out a column or a row of it. For the sake of
simplicity, suppose that M is a 1-rank matrix obtained by the product of

xT =
[
x1 x2 . . . xn

]T
and y =

[
y1 y2 . . . ym

]
. Then, the generic

element Mij is given by
Mij = xiyj ,

and the matrix M is of the form
x1y1 x1y2 · · · x1ym−1 x1ym
x2y1 x2y2 · · · x2ym−1 x2ym

...
...

. . .
...

...
xny1 xny2 · · · xnym−1 xnym

 (3.3)

It is easy to see that if we do not have samples from the first row, there
is no hope to guess the first component x1. This argument can be extended
to any row or column.

This simple example suggests us that if we want to recover the matrix M
the sampling set must contain at least one sample per row and one sample
per column.

What happens for most sampling set? Can one recover a matrix from
almost sampling set of cardinality m? Let Ω be the set of known entries (i.e.
(i, j) ∈ Ω if Mij is observed) of cardinality m whose elements are picked
uniformly at random. Then, can one recover a generic low-rank matrix M ,
with very large probability, from the knowledge of the value of its entries in
the set Ω?

3.3.3 The Optimization Problem

If the number of observed entries is sufficiently large and if these ones are
sufficiently uniformly distributed, one can hope that there is only one low-
rank matrix with these entries. If the above hypothesis are satisfied, the
matrix completion problem reduces to the following optimization problem

minimize rank(X)

subject to Xij = Mij (i, j) ∈ Ω
(3.4)

The problem formulate in (3.4) is a common sense approach that try to
find the simplest solution fitting the observed data. This approach is un-
fortunately of little practical use because these algorithms provide the right
solutions in time doubly exponential in the dimension n of the matrix.

3.3. BASICS 17

If the matrix has rank r, then it has exactly r non-zero singular values
so the rank in (3.4) is simply the number of non-vanishing singular values.
As in [3], we introduce the nuclear norm of X as the sum of X’s singular
values

‖X‖∗ =
r∑

k=1

σk(X) (3.5)

where σk(X) is the kth singular value of X. With the definition of nuclear
norm, we can restate a new optimization problem as

minimize ‖X‖∗
subject to Xij = Mij (i, j) ∈ Ω

(3.6)

In order to state the most important theorem about the MCP, we give the
definition of the coherence of a matrix U in the following:

Definition 3.1. Let U be a subspace of Rn of dimension r and PU be the
orthogonal projection onto U . Then the coherence of U (with respect to
standard basis (ei)) is defined to be

µ(U) =
n

r
max

1≤i≤n
‖PUei‖2. (3.7)

To state the main results we will give in the next chapter, we introduce
two assumptions about the matrix M whose SVD is given by 2.7.

A0 The coherences obey max(µ(U), µ(V)) ≤ µ0 for some positive µ0.

A1 The n1 × n2 matrix
∑

1≤k≤r ukv
∗
k has a maximum entry bounded by

µ1

√
r/(n1n2) in absolute value for some positive µ1.

The µ’s above may depend on r and n1, n2. Morover, the A1 always holds
with µ1 = µ0

√
r since the (i, j)th entry of the matrix

∑
1≤k≤r ukv

∗
k is given

by
∑

1≤k≤r uikv
∗
jk and by the Cauchy-Schwarz inequality,∣∣∣ ∑

1≤k≤r
uikv

∗
jk

∣∣∣ ≤√ ∑
1≤k≤r

|uik|2
√ ∑

1≤k≤r
|vik|2 ≤

µ0r√
n1n2

.

In this position, we can say that (as we’ll state in the next chapter) if a
matrix has row and column incoherent with the standard basis, the nuclear
norm minimizer in 3.6 can recover the entire matrix from a small sampling
set of its entries.

18 CHAPTER 3. THE MATRIX COMPLETION PROBLEM

Chapter 4

Mazin Results and an
Algorithm

In this chapter, we state the theorems which constitute the foundations of
the MCP and give the first main results about the algorithm.

4.1 Main Results

Theorem 4.1.1. Let M be an n1 × n2 matrix of rank r sampled from the
random orthogonal model, and put n = max(n1, n2). Suppose we observe m
entries of M with locations sampled uniformly at random. Then, there are
numerical constants C and c such that if

m ≥ Cn5/4r log n, (4.1)

the minimizer to the problem 3.6 is unique and equal to M with probability
at least 1 − cn−3. In addition, if r ≤ n1/5, then the recovery is exact with
probability at least 1− cn−3 provided that

m ≥ Cn6/5r log n. (4.2)

This first theorem states that a very small number of entries are nec-
essary in order to complete the entire low-rank matrix. For small values
of the rank r, one only needs to see of the order of n5/6 entries. This is
considerably smaller than the n2 entries of a square matrix. The content of
this recovery algorithm is that it is tractable and very concrete. Hence the
the contribution is twofold:

• Under the hypotheses of Theorem 4.1.1, there is a unique low-rank
matrix that matches the observed entries;

• The matrix can be recovered by solving the optimization problem in
3.6.

19

20 CHAPTER 4. MAZIN RESULTS AND AN ALGORITHM

Theorem 4.1.1 is in fact a special instance of a more general theorem that
covers a larger set of matrices M . If the matrices U and V (U and V are
the M ’s singular value decomposition matrices) satisfied the assumptions in
3.3.3, the following theorem holds:

Theorem 4.1.2. Let M be an n1×n2 matrix of rank r obeying the assump-
tions in 3.3.3 and put n = max(n1, n2). Suppose we observe m entries of
M with locations sampled uniformly at random. Then there exist constants
C, c such that if

m ≥ C max(µ2
1, µ

1/2
0 µ1, µ0n

1/4)nr(β log n) (4.3)

for some β > 2, then the minimizer problem in 3.6 is unique and equal to
M with probability at least 1 − cn−β. For r ≤ µ−1

0 n1/5this estimate can be
improved to

m ≥ Cµ0n
6/5r(β log n) (4.4)

with the same probability of success.

Theorem 4.1.2 suggests that if the coherence is low (i.e. the matrices U
and V are incoherent), few samples are necessary to recover the matrix M .
In order to better explain the meaning of Theorem 4.1.2, we proceed with
an example. As we have seen in our first example 3.1, we have no hope to
recover a matrix that is equal to zero in nearly all of its entries unless we
observe all the entries. To recover a low-rank matrix, this one cannot be in
the null space of the sampling operator giving the values of a subset of the
entries. If we consider the following 2-rank matrix

M =

2∑
k=1

σkuku
∗
k with u1 =

e1 + e2√
2

u2 =
e1 − e2√

2
. (4.5)

The matrix vanishes everywhere except in the top-left corner and, as the
reader should have understood, one would need to see all the entries for
perfect recovery. Hence, we can say that if the singular vectors are somehow
sufficiently spread (i.e. uncorrelated with the standard basis), we can min-
imize the number of observations needed to recover the matrix. Given the
two above theorems, we can explain the algorithm proposed by Keshavan,
Montanari, Oh in their article [1].

4.2 The Algorithm

The algorithm proposed by Keshavan, Montanari and Oh is based on the
theorems in Section 4.1. For more details about the algorithm we refer to
the Appendix A where the MATLAB implementation is provided.

4.2. THE ALGORITHM 21

The algorithm expects that the unknown entries of the matrix M are set
to zero. In other words, defining as Ω the set of pairs (i, j) such that

(i, j) ∈ Ω if Mij is revealed, (4.6)

we construct a new matrix MΩ in this way

MΩ
ij =

{
Mij if (i, j) ∈ Ω
0 otherwise

. (4.7)

We recall that n and m are the matrix dimensions. In the following the real
case is considered.

Now, we are ready to use the algorithm. This one consists of only three
steps:

1. Projecting

2. Trimming

3. Cleaning

Projecting Compute the SVD of MΩ (with σ1 ≥ σ2 ≥ · · · ≥ 0)

MΩ =

min(m,n)∑
i=1

σiuiv
T
i (4.8)

and return the matrix

Tr(MΩ) =
mn

|Ω|

r∑
i=1

σiuiv
T
i (4.9)

obtained by setting to 0 all but the r largest singular values. Notice
that, omitting the factor mn

|Ω| , Tr(M
Ω) is the projection of MΩ onto

the set of rank-r matrices.

Trimming • Set to zero all columns in MΩ with degree1 larger than
2|Ω|
n

• Set to zero all rows in MΩ with degree larger than 2|Ω|
m

From this step we obtain a new matrix which we denote by M̃Ω.

Cleaning Given U ∈ Rm×r, V ∈ Rn×r with UUT = Im, V V T = In, we
define

F (U, V) ≡ min
S∈Rr×r

F(U, V, S), (4.10)

F(U, V, S) ≡ 1

2

∑
(i,j)∈Ω

(Mij − (USV T)ij)
2. (4.11)

The cleaning step consists in writing Tr(M̃Ω) = U0S0V
T

0 and minimiz-
ing F (U, V) locally with initial condition U = U0, V = V0

1In this context we define as the degree of a row, the number of its non-zero entries.

22 CHAPTER 4. MAZIN RESULTS AND AN ALGORITHM

In order to evaluate the goodness of this algorithm it is necessary to intro-
duce a new index which is called relative root mean square error and it is
defined as

RMSE =

[
1

mnr
‖M − Tr(M̃Ω)‖2F

]1/2

(4.12)

where ‖A‖F is the Frobenius normwhich was recalled in Chapter 2. With
the definition 4.12, we can introduce another important result about the
algorithm just presented. This theorem concernes the maximum value that
RMSE can reach, under the assumptions in 3.3.3.

Proposition 4.2.1. Assume M to be a rank r ≤ n1/2 matrix that satisfies
the incoherence assumptions in 3.3.3. Then, with very high probability

RMSE2 ≤ C(α)
nr

|Ω|
(4.13)

for some C(α).

4.3 Open Issues

The above results are really great but they have some limitations. For
instance, as we have said before, this algorithm works with a very small set
of system models, i.e. the low-rank matrices. It could be of interest to be
able to extend these results to unknown matrices which are approximately
low-rank. Suppose we write the SVD of a matrix M as

M =
∑

1≤k≤n
σkukv

H
k

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 and assume, for the sake of simplicity, that
σi 6= 0, i = 1, . . . , n. It is clear that, in general, it is impossible to recover
the entire matrix from a partial subset of its entries. However, one can hope
to complete a good approximation of it if, for example, most of the singular
values are small or negligible. Consider, for instance, the truncated SVD of
M ,

Mr =
∑

1≤k≤r
σkukv

H
k

where the sum is extended to the r largest singular values of M and let M∗
be the solution to 3.6. In what follows, ‖·‖ denotes any matrix norm. It is
obvious that it is impossible that M = M∗ but if ‖M −Mr‖ is comparable
with ‖M∗ −M‖ then we can say that approximately low-rank matrices can
be recover from a small set of sampled entries.

Chapter 5

Numerical Experiments for
MCP

In this chapter we test the algorithm implementation proposed by Monta-
nari, Oh and Keshavan in their article [1].

5.1 Some preliminar hypotheses

In order to do a statistically significant test, we have given as input to the
algorithm different kinds of matrices with different quantities of revealed
entries. To achieve this, we have created ad-hoc functions that we report in
Appendix B.

In these experiments, we used square matrices of different dimensions
and we tried to vary the number of revealed entries with a given fixed rank.
To create a matrix with a given rank, we have generated its singular value
decomposition, i.e. we have created the matrices U , V (the matrices of
left and write singular vectors, respectively) and Σ (the matrix of singular
values). In particular, fixing the rank r is equivalent to fixing the dimension
of the matrix Σ which is diagonal with all elements grater than zero. For
instance if we want to create a random square matrix A with rank r = 3
and dimension n = 100, we have to choose the above matrices in this way

• U ∈M100,3

• V ∈M100,3

• Σ =

x 0 0
0 y 0
0 0 z

 x, y, z ≥ 0

and then A = UΣV ∗ ∈ M100,100 (the notation Mn,m is declare in Section
2.1). After creating the matrix, we picked uniformly at random a fixed

23

24 CHAPTER 5. NUMERICAL EXPERIMENTS FOR MCP

number of entries. When this was done, we tested the algorithm on these
matrices and we repeated this procedure 50 times for every single matrix.

5.2 Main results

To manage the informations of the algorithm execution, we introduced an
index which shows how much the recovered matrix is close to the real one.
This index is defined as

µ =
‖M̂ −M‖F
‖M‖F

(5.1)

where M the real matrix and M̂ is the recovered matrix. For every iteration,
we store the related µ and we report the mean and the variance of the set of
µ’s calculated during the execution. We consider a matrix Mi as correctly
recovered if µi < 10−3. Under this assumption, we can give to the reader
the fraction of correctly recovered matrices.

In the following table, we report the results of the experiment with Σ = Ir
while we denote with m the number of revealed entries.

r = 3, n = 100

m Mean Variance % Successes

1000 8.78× 10−1 2.04× 10−1 0.0
2000 2.06× 10−1 1.06× 10−1 70.0
3000 1.88× 10−2 8.65× 10−3 96.0
4000 8.06× 10−9 2.78× 10−18 100.0
5000 6.80× 10−9 2.50× 10−2 100.0
6000 6.10× 10−9 2.30× 10−18 100.0

r = 5, n = 100

m Mean Variance % Successes

1000 1.51× 100 1.05× 10−1 0.0
2000 5.91× 10−1 1.66× 10−1 24.0
3000 2.66× 10−1 1.32× 10−1 62.0
4000 6.54× 10−2 5.03× 10−2 92.0
5000 4.50× 10−2 3.30× 10−2 94.0
6000 5.60× 10−9 7.80× 10−19 100.0

5.2. MAIN RESULTS 25

r = 10, n = 100

m Mean Variance % Successes

1000 1.79× 100 1.03× 10−1 0.0
2000 1.13× 100 1.93× 10−2 0.0
3000 7.99× 10−1 5.91× 10−2 0.0
4000 5.98× 10−1 1.46× 10−1 12.0
5000 3.80× 10−1 1.90× 10−1 56.0
6000 1.60× 10−1 1.10× 10−1 80.0
7000 1.76× 10−2 1.54× 10−2 98.0
8000 3.65× 10−9 4.64× 10−19 100.0

With respect to the lower bound on the number of revealed entries in 4.1.1,
we have that for r = 3, m ≥ C1900: the experiment confirms this bound.
The reader should not be surprised by the fact that, when the rank of the
unknown matrix increases, the algorithm needs more entries in order to
recover correctly the entire matrix. The tables show this fact: in order to
achieve a success rate grater than 50%, the minimum number of entries are
2000, 3000 and 5000 for rank values of 3, 5 and 10, respectively.

The tests also confirm that when the number of revealed entries increase,
the algorithm works better and it is able to recover the matrix more precisely.
From the tests, it seems that the value of the constant C in 4.1.1 is affected
by the value of the singular values. Indeed, as the reader can see in the
following tables, the success rates decreases if the singular values of the
matrix are not equal to 1.

The following tables are the results of a test where the singular value
matrix is a random diagonal matrix with singular values such that 1 ≤ σi ≤
10, i = 1, . . . , r.

r = 3, n = 100

m Mean Variance % Successes

1000 6.57× 10−1 1.43× 10−1 0.0
2000 3.09× 10−1 5.55× 10−2 12.0
3000 2.46× 10−1 4.82× 10−2 26.0
4000 1.51× 10−1 2.49× 10−2 42.0
5000 7.24× 10−2 1.14× 10−2 60.0
6000 6.86× 10−2 1.10× 10−2 58.0
7000 4.10× 10−2 4.33× 10−3 68.0
8000 2.11× 10−2 1.74× 10−3 76.0
9000 4.24× 10−3 4.40× 10−4 96.0

26 CHAPTER 5. NUMERICAL EXPERIMENTS FOR MCP

r = 5, n = 100

m Mean Variance % Successes

1000 1.06× 100 7.93× 10−2 0.0
2000 6.34× 10−1 4.52× 10−2 0.0
3000 4.04× 10−1 4.62× 10−2 0.0
4000 2.81× 10−1 2.87× 10−2 4.0
5000 2.15× 10−1 2.57× 10−2 10.0
6000 1.76× 10−1 3.27× 10−2 18.0
7000 8.27× 10−2 6.91× 10−3 40.0
8000 6.45× 10−2 3.52× 10−3 38.0
9000 3.38× 10−2 1.81× 10−3 54.0

r = 10, n = 100

m Mean Variance % Successes

1000 1.54× 100 1.18× 10−1 0.0
2000 8.75× 10−1 1.32× 10−2 0.0
3000 6.44× 10−1 4.41× 10−2 0.0
4000 5.53× 10−1 5.39× 10−2 0.0
5000 6.02× 10−1 5.74× 10−2 0.0
6000 4.47× 10−1 7.49× 10−2 0.0
7000 3.85× 10−1 7.83× 10−2 2.0
8000 2.93× 10−1 8.04× 10−2 8.0
9000 1.20× 10−1 2.45× 10−2 14.0

In conclusion, the experiments confirm that in order to achieve a valid
recover of a matrix this algorithm works fine when the rank is small, as said
in 4.1.1 about the value of the rank.

Appendix A

A MATLAB approach to
MCP

In the following sections, we give the MATLAB code implementation of the
algorithm proposed by Keshavan, Montanari and Oh in [1] and discussed
in Chapter 4.

A.1 The Code

function [X S Y dist] = OptSpace(M_E,r,niter,tol)

if(nargin==1)

M_E = sparse(M_E);

[n m] = size(M_E);

E = spones(M_E);

eps = nnz(E)/sqrt(m*n) ;

tol = 1e-6;

fprintf(1,’Rank not specified. Trying to guess ...\n’);

r = guessRank(M_E) ;

fprintf(1,’Using Rank : %d\n’,r);

m0 = 10000 ;

rho = 0;

niter = 50;

elseif(nargin==4)

M_E = sparse(M_E);

[n m] = size(M_E);

E = spones(M_E);

eps = nnz(E)/sqrt(m*n) ;

27

28 APPENDIX A. A MATLAB APPROACH TO MCP

if(length(tol) == 0)

tol = 1e-6;

end

if(length(r) == 0)

fprintf(1,’Rank not specified. Trying to guess ...\n’);

r = guessRank(M_E) ;

fprintf(1,’Using Rank : %d\n’,r);

end

m0 = 10000 ;

rho = 0;

if(length(niter) == 0)

niter = 50 ;

end

else

fprintf(1,’Improper arguments (See "help OptSpace")\n’);

fprintf(1,’Usage :\n[X S Y dist] = OptSpace(A,r,niter,tol) \n’) ;

fprintf(1,’[X S Y dist] = OptSpace(A)\n’);

return;

end

rescal_param = sqrt(nnz(E) * r / norm(M_E,’fro’)^2) ;

M_E = M_E * rescal_param ;

fprintf(1,’Trimming ...\n’);

% Trimming

M_Et = M_E ;

d = sum(E);

d_=mean(full(d));

for col=1:m

if (sum(E(:,col))>2*d_)

list = find(E(:,col) > 0);

p = randperm(length(list));

M_Et(list(p(ceil(2*d_):end)) , col) = 0;

end

end

d = sum(E’);

d_= mean(full(d));

for row=1:n

if (sum(E(row,:))>2*d_)

list = find(E(row,:) > 0);

p = randperm(length(list));

M_Et(row,list(p(ceil(2*d_):end))) = 0;

end

A.1. THE CODE 29

end

fprintf(1,’Sparse SVD ...\n’);

% Sparse SVD

[X0 S0 Y0] = svds(M_Et,r) ;

clear M_Et;

% Initial Guess

X0 = X0*sqrt(n) ; Y0 = Y0*sqrt(m) ;

S0 = S0 / eps ;

fprintf(1,’Iteration\tFit Error\n’);

% Gradient Descent

X = X0;Y=Y0;

S = getoptS(X,Y,M_E,E);

dist(1) = norm((M_E - X*S*Y’).*E ,’fro’)/sqrt(nnz(E)) ;

fprintf(1,’0\t\t%e\n’,dist(1)) ;

for i = 1:niter

% Compute the Gradient

[W Z] = gradF_t(X,Y,S,M_E,E,m0,rho);

% Line search for the optimum jump length

t = getoptT(X,W,Y,Z,S,M_E,E,m0,rho) ;

X = X + t*W;Y = Y + t*Z;S = getoptS(X,Y,M_E,E) ;

% Compute the distortion

dist(i+1) = norm((M_E - X*S*Y’).*E,’fro’)/sqrt(nnz(E));

fprintf(1,’%d\t\t%e\n’,i,dist(i+1)) ;

if(dist(i+1) < tol)

break ;

end

end

S = S /rescal_param ;

% Function to Guess the Rank of the input Matrix

function r = guessRank(M_E);

[n m] = size(M_E);

epsilon = nnz(M_E)/sqrt(m*n);

S0 = svds(M_E,100) ;

S1=S0(1:end-1)-S0(2:end);

30 APPENDIX A. A MATLAB APPROACH TO MCP

S1_ = S1./mean(S1(end-10:end));

r1=0;

lam=0.05;

while(r1<=0)

for idx=1:length(S1_)

cost(idx) = lam*max(S1_(idx:end)) + idx;

end

[v2 i2] = min(cost);

r1 = max(i2-1);

lam=lam+0.05;

end

clear cost;

for idx=1:length(S0)-1

cost(idx) = (S0(idx+1)+sqrt(idx*epsilon)*S0(1)/epsilon)/S0(idx);

end

[v2 i2] = min(cost);

r2 = max(i2);

r = max([r1 r2]);

% *

% Function to compute the distortion

function out = F_t(X,Y,S,M_E,E,m0,rho)

[n r] = size(X) ;

out1 = sum(sum(((X*S*Y’ - M_E).*E).^2))/2 ;

out2 = rho*G(Y,m0,r) ;

out3 = rho*G(X,m0,r) ;

out = out1+out2+out3 ;

function out = G(X,m0,r)

z = sum(X.^2,2)/(2*m0*r) ;

y = exp((z-1).^2) - 1 ;

y(find(z < 1)) = 0 ;

out = sum(y) ;

% *

% Function to compute the gradient

function [W Z] = gradF_t(X,Y,S,M_E,E,m0,rho)

[n r] = size(X);

[m r] = size(Y);

XS = X*S ;

YS = Y*S’ ;

XSY = XS*Y’ ;

A.1. THE CODE 31

Qx = X’* ((M_E - XSY).*E)*YS /n;

Qy = Y’* ((M_E - XSY).*E)’*XS /m;

W = ((XSY - M_E).*E)*YS + X*Qx + rho*Gp(X,m0,r);

Z = ((XSY - M_E).*E)’*XS + Y*Qy + rho*Gp(Y,m0,r);

function out = Gp(X,m0,r)

z = sum(X.^2,2) /(2*m0*r) ;

z = 2*exp((z-1).^2).*(z-1) ;

z(find(z<0)) = 0;

out = X.*repmat(z,1,r) / (m0*r) ;

% *

% *

% Function to find Sopt given X, Y

function out = getoptS(X,Y,M_E,E)

[n r] = size(X);

C = X’ * (M_E) * Y ; C = C(:) ;

for i = 1:r

for j = 1:r

ind = (j-1)*r + i ;

temp = X’ * ((X(:,i) * Y(:,j)’).*E) * Y ;

A(:,ind) = temp(:) ;

end

end

S = A\C ;

out = reshape(S,r,r) ;

% *

% *

% Function to perform line search

function out = getoptT(X,W,Y,Z,S,M_E,E,m0,rho)

norm2WZ = norm(W,’fro’)^2 + norm(Z,’fro’)^2;

f(1) = F_t(X, Y,S,M_E,E,m0,rho) ;

t = -1e-1 ;

for i = 1:20

f(i+1) = F_t(X+t*W,Y+t*Z,S,M_E,E,m0,rho) ;

if(f(i+1) - f(1) <= .5*(t)*norm2WZ)

out = t ;

return;

end

t = t/2 ;

end

32 APPENDIX A. A MATLAB APPROACH TO MCP

out = t ;

Appendix B

Useful MATLAB Functions

In this section, we give the MATLAB code used to generate the partially
revealed matrices.

B.1 The Code

%

% Function to pick uniformly at random a fixed number of entries from a matrix

%

function [M_E] = PickRandomlyFixedNumberOfEntries(M, m, n)

E = zeros(n,n);

k = 1;

while k <= m

r = randi(n);

c = randi(n);

if (E (r,c) == 0)

E(r,c) = 1;

k = k + 1;

end

end

M_E = sparse(M.*E);

end

%

% Sequence of operation used to make the experiments

% Modify the values of r, n and m to understand how the method works

%

clear;

n = 100;

r = 10;

m = 8000;

times = 50;

mu = [1:50];

alpha = [1:50];

33

34 APPENDIX B. USEFUL MATLAB FUNCTIONS

for i = 1 : times

U = randn(n,r);

V = randn(n,r);

Sigma = eye(r);

M0 = U*Sigma*V’;

M_E = PickRandomlyFixedNumberOfEntries(M0, m, n);

[X S Y dist] = OptSpace(sparse(M_E), [], 200, 1e-8);

mu(i) = norm(X*S*Y’ - M0,’fro’)/norm(M0,’fro’);

if(mu(i) < 1e-6)

alpha(i) = 1;

else

alpha(i) = 0;

end

fprintf(1,’Mu (without noise) : %e\n\n\n\n’,mu(i));

end

fprintf(1,’Mu (MEAN) : %e\n’,mean(mu));

fprintf(1,’Mu (VARIANCE) : %e\n’,var(mu));

success = sum(alpha) / times;

fprintf(1,’success : %f\n’,success*100);

Bibliography

[1] Raghundan H. Keshavan, Andrea Montanari, Sewoong Oh, Matrix Com-
pletion from a Few Entries, IEEE Trans. Inform. Theory, 56, Issue 6,
June 2010, 2980-2998.

[2] A. Ferrante and M. Pavon, Matrix Completion à la Dempster by the
Principle of Parsimony, IEEE Trans. Information Theory, 57, Issue 6,
June 2011, 3925-3931.

[3] Emmanuel J. Cands, Benjamin Recht, Exact Matrix Completion via
Convex Optimization, Found. of Comput. Math., 9 717-772, 2008.

[4] Luigi Salce, Lezioni sulle matrici, Teoria degli autosistemi e sue appli-
cazioni con argomenti avanzati di teoria delle matrici, Zanichelli Editore,
1993.

[5] Cristina Ronconi, Appunti di Geometria, Univer Editrice, 2009

35

