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Introduction

Likelihood inference provides a valuable and general inferential framework for several

statistical models, especially parametric ones. However, in some settings maximum like-

lihood estimators may be affected by a non-negligible presence of bias, thereby requiring

research effort towards the mitigation of such issue. As a matter of fact, a branch of sta-

tistical literature is specifically devoted to the topic of bias reduction, which constitutes

the theoretical background of this thesis.

The main purpose of this work is to investigate the performance of a modified score

test statistic, defined within the framework of bias reduction in parametric models.

The idea beneath this research is to study whether such statistic provides a valuable

alternative to the currently-used tests, typically Wald-type ones. In such case, the

modified score statistic could be used not only in place of standard likelihood-based

tests, but also of Wald-type statistics based on bias reduction.

The thesis is organized as follows: in the first chapter, we provide a brief overview

on the statistical literature on likelihood inference and bias reduction. In the second

chapter, we focus our attention on the modified score test statistic, discussing some

computational details and showing numerical examples of the corresponding implemen-

tation. In the third chapter, we assess the performance of the modified score statistic

by means of simulation studies, considering different possible settings.
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Chapter 1

Likelihood inference and bias

reduction

1.1 Model specification

In the following, we provide a general overview on likelihood inference and, more impor-

tantly, on the theory of bias reduction. As a starting point, we choose to first discuss

the problem of model specification for two reasons. In the first place, it can be regarded

as an important and often delicate phase of statistical inference. Secondly, it allows us

to introduce the relevant notation used throughout this work.

Let us consider the data y = (y1, . . . , yn), where n is the sample size. Assuming

that y is generated by an underlying unknown distribution p0(y), specifying a statistical

model means defining a family of probability distributions F such that, provided a

correct specification, p0(y) belongs to F . Here, p0(y) corresponds to either a joint

density function in the continuous case or a joint probability mass function in the case

of discrete data.

As described in more detail in Pace & Salvan (1997, Section 1.3.1), a statistical

model can be specified following one of three levels of specification: parametric, semi-

parametric and nonparametric. Throughout this work, we exclusively focus on para-

metric statistical models, namely

F = {p(y; θ), y ∈ Y , θ ∈ Θ ⊆ R
p}, (1.1)

3



4 Section 1.2 - Likelihood inference

where Y is the sample space, Θ is the parameter space and θ is a p-dimensional real

parameter. For the sake of simplicity, we generally assume that the model is correctly

specified, which means that p0(y) = p(y; θ0) for a θ0 ∈ Θ.

Following the principle of repeated sampling, we denote by Y the random variable

whose realization corresponds to the observed data y. Given a generic function of

the data g(y), possibly depending on the parameter θ, we indicate with Eθ[g(Y )] the

expectation of g(Y ) with respect to the density p(y; θ) in (1.1), assuming θ as the true

value of the parameter. Analogously, the same notation holds for the variance, denoted

by varθ[g(Y )].

1.2 Likelihood inference

With respect to the parametric statistical model (1.1), the likelihood function can be

defined as

L(θ) = c(y)p(y; θ), (1.2)

where c(y) is a positive constant of proportionality. For algebraic manageability, the log-

likelihood function ℓ(θ) = logL(θ) is often used in place of (1.2). The likelihood function

is the core of likelihood inference, the influential and widespread inferential framework

addressed in this section. Nonetheless, here we focus only on a few key concepts required

for the main topic of this work. A thorough and comprehensive volume on likelihood

inference is Pace & Salvan (1997), which provides the main source for this section.

Relevant likelihood-related quantities include the score function

U(θ) =
∂

∂θ
ℓ(θ) (1.3)

and the observed information

j(θ) = − ∂

∂θ⊤
U(θ). (1.4)

Respectively, (1.3) and (1.4) correspond to the gradient and to the negative Hessian

matrix (or simply the second derivative in the case of a scalar parameter) of the log-

likelihood. Furthermore, the quantity

i(θ) = Eθ[j(θ)] = Eθ[j(θ;Y )]

is referred to as the expected information. It is worth mentioning that, when using

the principle of repeated sampling, we may not explicit the dependence of the involved

functions on Y in order to preserve compactness of notation. Notable properties that
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hold under regular problems (see for example Cox & Hinkley, 1974, Section 4.8) include

Eθ[U(θ;Y )] = 0

and

varθ[U(θ;Y )] = Eθ[U(θ;Y )U(θ;Y )⊤] = i(θ).

Among the several quantities related to the likelihood, a central role in likelihood

inference is played by the maximum likelihood estimate, defined as the value θ̂ ∈ Θ such

that

L(θ̂) ≥ L(θ), θ ∈ Θ,

where strict inequality holds when the likelihood has a unique global maximum. Pro-

vided its existence, in several applications the maximum likelihood estimate is obtained

by solving the score equation

U(θ) = 0, (1.5)

which corresponds to the first-order conditions. Then, the solution θ̂ is such that j(θ̂)

is positive definite.

Under suitable regularity conditions it can be shown (Cox & Hinkley, 1974, Sections

9.1 and 9.2) that the maximum likelihood estimator θ̂ = θ̂(Y ) satisfies desirable frequen-

tist properties, namely asymptotic unbiasedness, asymptotic efficiency and consistency.

Furthermore, it holds that

θ̂
·∼ N(θ, i(θ)−1), (1.6)

for large n and assuming θ as the true value of the parameter. Here and in the following

the symbol “
·∼” reads as “is approximately distributed as”. Another useful result is

given by the equivariance, which allows to obtain the maximum likelihood estimate for

a reparameterized model by simply transforming θ̂ through the desired reparameteriza-

tion.

In several practical settings with p-dimensional θ, for p > 1, it is often of interest

to focus only on a subset of components of the parameter. That is, partitioning θ =

(ψ, λ), we address ψ as a p0-dimensional parameter of interest, whereas λ is a (p− p0)-

dimensional nuisance parameter. Here and in the following, if v and u are p1 and

p2-dimensional vectors respectively, we denote as (v, u) the (p1+ p2)-dimensional vector

obtained by concatenation of v and u, therefore we avoid the use of transposition symbols

to avoid excessive notational clutter.

Among the possible pseudo-likelihoods used to tackle the presence of nuisance pa-

rameters (see for example Pace & Salvan, 1997, Section 4), a standard implicit choice
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is the profile likelihood LP (ψ) = L(ψ, λ̂ψ), where λ̂ψ is the constrained maximum like-

lihood estimate of λ, obtained by maximizing the likelihood function in λ with fixed ψ.

It may be worth noting that λ̂ψ̂ = λ̂, where we wrote the maximum likelihood estimate

θ̂ as θ̂ = (ψ̂, λ̂).

In the presence of interest and nuisance parameters, let us write the score function

as

U(θ) = (Uψ(θ), Uλ(θ))

and the observed information matrix as

j(θ) =

[

jψψ(θ) jψλ(θ)

jλψ(θ) jλλ(θ)

]

,

with the corresponding inverse indicated as

j(θ)−1 =

[

jψψ(θ) jψλ(θ)

jλψ(θ) jλλ(θ)

]

.

An analogous notation will be used for the expected information matrix i(θ), with

respect to the subscripts and superscripts referring to the components of θ.

Then, the constrained estimate λ̂ψ can be generally obtained by solving in λ

Uλ(ψ, λ) = 0, (1.7)

keeping ψ fixed. However, due to the computational efforts required to solve (1.7),

it is worth mentioning that a first-order approximation is available through a linear

expansion of Uλ(ψ, λ̂ψ) around θ̂, namely

Uλ(ψ, λ̂ψ)
.
= Uλ(ψ̂, λ̂) +

∂

∂ψ⊤
Uλ(ψ̂, λ̂)(ψ − ψ̂) +

∂

∂λ⊤
Uλ(ψ̂, λ̂)(λ̂ψ − λ̂).

Observing that Uλ(ψ, λ̂ψ) = Uλ(ψ̂, λ̂) = 0, we can therefore write

λ̂ψ
.
= λ̂+ jλλ(ψ̂, λ̂)

−1jλψ(ψ̂, λ̂)(ψ̂ − ψ), (1.8)

which corresponds to updating the respective component of θ̂ by a weighted difference

between ψ̂ and ψ. The derivation of (1.8) is also shown in Cox & Hinkley (1974,

page 308), following from the asymptotic normality (1.6) and from the properties of

multivariate Gaussian distributions.
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1.3 Approximate pivots

In order to make inferences on θ we can use approximate pivots, available from the

aforementioned likelihood-related quantities. Assuming fixed θ, the Wald statistic can

be defined as

We(θ) = (θ̂ − θ)⊤j(θ̂)(θ̂ − θ), (1.9)

where j(θ), i(θ) or i(θ̂) can be interchangeably used in place of j(θ̂). A second quantity

of interest is the score statistic, which is defined for fixed θ as

Wu(θ) = U(θ)⊤i(θ)−1U(θ), (1.10)

where the maximum likelihood estimate is not required for its computation. Thirdly, it

is important to mention the log-likelihood ratio statistic

W (θ) = 2{ℓ(θ̂)− ℓ(θ)}. (1.11)

The quantities (1.9), (1.10) and (1.11) are closely linked by asymptotic equivalence to

the first order (Azzalini, 1996, Section 4.2.2). Furthermore, they asymptotically follow

a χ2
p distribution if θ is the true value of the parameter, which allows to use them as

approximate pivotal quantities. Moreover, if computed in a hypothesized parameter

value θ0 ∈ Θ, they can be used to test for H0 : θ = θ0 against H1 : θ 6= θ0 with respect

to an approximate significance level.

Although being asymptotically equivalent, in general the quantity (1.11) is preferred

since it allows to use directly the shape of the likelihood, thereby providing qualita-

tively superior confidence and acceptance regions when the quadratic approximation

of ℓ(θ) around θ̂ is not suitable (Pace & Salvan, 1997, page 92). Moreover, a further

difference among the aforementioned approximate pivots is that (1.10) and (1.11) are

parameterization-invariant, while in contrast (1.9) is not.

Also in the case of profile likelihood, approximate pivots are available for large sample

inference. That is, the profile Wald statistic is given by

WPe(ψ) = (ψ̂ − ψ)⊤jψψ(θ̂)−1(ψ̂ − ψ), (1.12)

while the profile score statistic is

WPu(ψ) = Uψ(ψ, λ̂ψ)
⊤iψψ(ψ, λ̂ψ)Uψ(ψ, λ̂ψ). (1.13)
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Thirdly, the profile likelihood ratio statistic is defined as

WP (ψ) = 2{ℓP (ψ̂)− ℓP (ψ)}, (1.14)

where ℓP (ψ) = logLP (ψ). Assuming θ = (ψ, λ) as the true value of the parameter, the

quantities (1.12), (1.13) and (1.14) approximately follow a χ2
p0

distribution for large n

(see for example Pace & Salvan, 1997, Section 4.6). It is worth observing that, while (1.9)

does not require λ̂ψ, both (1.13) and (1.14) do, which may require more computational

effort when constructing confidence regions. In such situations, the approximation (1.8)

may help reducing the computing time, which can prove useful in models when p is not

negligible and/or in simulation studies.

When p0 = 1, it is possible to use the corresponding one-sided, or signed, approximate

pivots, namely the signed profile Wald statistic

rPe(ψ) = (ψ̂ − ψ)/

√

jψψ(θ̂), (1.15)

the signed profile score statistic

rPu(ψ) = Uψ(ψ, λ̂ψ)

√

iψψ(ψ, λ̂ψ) (1.16)

and the signed root likelihood ratio statistic

rP (ψ) = sign(ψ̂ − ψ)
√

WP (ψ). (1.17)

The quantities (1.15), (1.16) and (1.17) asymptotically follow a standard Gaussian dis-

tribution, assuming (ψ, λ) as the true value of the parameter. Furthermore, they can

be used to test for one-sided alternative hypotheses and, besides, they can prove useful

when computing confidence intervals.

1.4 Issues with maximum likelihood estimation

As briefly described in the previous sections, likelihood inference provides a valuable

framework which not only allows to obtain “automatic” parameter estimates, but also

gives useful quantities for approximate hypothesis testing and for the construction of

approximate confidence regions. That being said, however, maximum likelihood esti-

mation is affected by issues which, in realistic settings with finite n, may deteriorate its

overall performance.
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In the first place, the maximum likelihood estimator is generally biased. Despite

not being an issue with diverging n, being the bias generally of order O(n−1), in finite

datasets such bias may not be negligible. Some examples of such situations can be

found, for instance, in Cordeiro & McCullagh (1991).

A second related problem involved in maximum likelihood estimation is frequently

encountered when the parameter size p is large, especially if compared to n. Without

taking into account problems where p is larger than n, suppose that p < n and that they

both diverge with p/n → κ, for an arbitrary constant κ ∈ [0, 1/2). Then, as notably

shown in Sur & Candès (2019) with respect to logistic regression models, maximum

likelihood inference not only fails to yield reliable estimates, but also the standard

asymptotic distribution does not hold anymore. This result is also important since it

shows that, even for a relatively small p/n ratio, a large number of parameters may

likewise affect the properties of maximum likelihood inference.

A third issue involved in maximum likelihood estimation is given by the phenomenon

known as complete or quasi-complete data separation that may occur in models for

discrete data. For instance, given a binary response vector and p covariates (possibly

including a unit term associated with an intercept), this problem occurs when there

exists a p-dimensional hyperplane which separates the response classes. An artificially

generated toy example of such situation, with p = 2 continuous covariates, is illustrated

in Figure 1.1.

As shown in Albert & Anderson (1984), given a logistic regression model for separated

data, the maximum likelihood estimate does not exist. Analogously, this holds also

with respect to quasi-separated data. In such cases, standard software typically yields

estimates with meaningless standard errors and the Iteratively Reweighted Least Squares

algorithm (Green, 1984) does not converge. A thorough discussion on the existence of

the maximum likelihood estimates in logistic regression model is provided by Candès

& Sur (2020), where the authors investigate the relationship between the limiting p/n

ratio κ and the underlying signal strength.

In general, manually checking for data separation or quasi-separation becomes an

increasingly difficult task if p > 2. For this reason, there are linear programming

algorithms which allow to solve such a problem. An implementation of such routines is

provided in the R package detectseparation (Kosmidis et al., 2022).
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Figure 1.1: Illustration of complete data separation (left) and quasi-complete data
separation (right), with respect to a binary classification problem with two continuous
covariates, denoted by x1 and x2. The point shapes denote the class, while the dotted
line is the true data-separating hyperplane.

1.5 Bias reduction in parametric models

In this section, we provide a brief literature review on the topic of bias reduction. Indeed,

our work is contextualized within this particular framework, therefore here we aim at

illustrating its key concepts.

Given a regular parametric statistical model in the form (1.1) and given the maximum

likelihood estimator θ̂, the corresponding bias B(θ) = Eθ(θ̂ − θ) can be expressed as

(see for example Kosmidis, 2014)

B(θ) =
b1(θ)

n
+
b2(θ)

n2
+
b3(θ)

n3
+O(n−4), (1.18)

where b1(θ), b2(θ) and b3(θ) are O(1) functions as n diverges. Although a natural way

to define an unbiased estimator is θ̃ = θ̂ −B(θ), in several cases this is unfeasible since

B(θ) generally depends on θ and, moreover, the exact expression of (1.18) may not be

available in closed form.

Following the schematic structure as in Kosmidis (2014), bias reduction can be

achieved by means of two approaches: explicit or implicit bias reduction. Both strate-

gies generally succeed in removing the first-order term in the expansion (1.18), namely

b1(θ)/n, yielding in some cases second-order efficient estimators (Firth, 1993). Nonethe-

less, in both cases there are advantages and drawbacks that need to be carefully ad-

dressed.
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1.5.1 Explicit bias reduction

The methods entailed in the class of explicit bias reduction are based on the definition

of an estimator

θ̃ = θ̂ − b1(θ̂)

n
,

following thereby a corrective rather than preventive approach with respect to θ̂ (Firth,

1993). This correction can be achieved through computationally intensive methods such

as Jackknife (Quenouille, 1949) and bootstrap (Efron, 1979), which do not require any

analytical calculation. A further class of explicit bias reduction is given by asymptotic

techniques, whose aim is to directly obtain the expression of b1(θ)/n. A notable example

of this approach is provided in the work of Cordeiro & McCullagh (1991), where the

authors derive the explicit formulae of the first-order bias with respect to generalized

linear models. Further landmark studies and their respective roles on this approach are

concisely summarized in the review of Kosmidis (2014).

Of particular interest for our discussion is the general expression of the first-order

asymptotic bias, shown in matrix notation in Kosmidis & Firth (2010), which is

b1(θ)

n
= −i(θ)−1A⋆(θ), (1.19)

where the t-th component of A(θ) is given by

A⋆t (θ) =
1

2
trace

{

i(θ)−1[Pt(θ) +Qt(θ)]
}

, t = 1, . . . , p, (1.20)

with Pt(θ) = Eθ[U(θ)U(θ)
⊤Ut(θ)] and Pt(θ) = −Eθ[j(θ)Ut(θ)]. Note that we use the

subscript t in order to refer to each component of the involved vectors, with t = 1, . . . , p.

The main issue with explicit bias reduction is that it relies on the existence of the

maximum likelihood estimate, which, as seen in the previous section, is not always

guaranteed. Thus, in the case of models for binary response with linearly separated

datasets, explicit bias reduction is not feasible.

1.5.2 Implicit bias reduction

A class of bias reduction methods which allows to deal with non-existent maximum

likelihood estimates is given by implicit bias reduction. Originating from the work in

Firth (1993), such class of methods is based on the definition of adjusted score equations,
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which can be expressed in the form

Ũ(θ) = U(θ) + A(θ) = 0, (1.21)

where A(θ) is a p-dimensional adjusting vector. In both Firth (1993) and Kosmidis &

Firth (2010), there are two different expressions for A(θ), one based on the observed

information matrix and the other using the expected information. More specifically, the

latter defines A(θ) = A⋆(θ) as in (1.20), therefore the adjusting vector does not depend

on the data. Throughout this work, we only refer to this version, addressing it as “mean

bias reduction” as in Kosmidis et al. (2020).

Moreover, Firth (1993) shows that, for the canonical parameter θ of an exponen-

tial family, the adjusting vector corresponds to the derivative of the Jeffreys prior in

logarithmic scale, namely

A⋆(θ) =
1

2

∂

∂θ
log|i(θ)|, (1.22)

where the operator |·| indicates the determinant. A useful incidental property following

from (1.22) is the possibility of defining a corresponding penalized log-likelihood function

ℓ̃(θ) = ℓ(θ) +
1

2
log|i(θ)|, (1.23)

which, from a Bayesian perspective, is the logarithm of the unscaled posterior density

resulting from using the Jeffreys prior. As a result, we can regard (1.21) as the first-order

conditions associated to (1.23). Therefore, maximizing (1.23) equivalently yields the

bias-reduced estimate θ̃. It may be worth noting that, outside of canonical exponential

family models, a corresponding penalized likelihood function does not generally exist,

therefore θ̃ is only the solution of the estimating equation (1.21).

An important issue of mean bias reduction consists on its dependence on the working

parameterization. That is, given a smooth one-to-one function φ(·) and the mean bias-

reduced estimator θ̃, it is in general not true that φ̃ = φ(θ̃) is the mean bias-reduced

estimator corresponding to the reparameterized model. Nevertheless, as shown for in-

stance in Kosmidis et al. (2020), there is exact invariance with respect to the class of

affine transformations, which includes for instance parameter contrasts.

A further implicit method for bias reduction is introduced in Kenne Pagui et al.

(2017) under the name of “median bias reduction”. By means of such technique, it is

possible to obtain bias-reduced estimates by solving (1.21), defining another adjusting

vector A(θ) = A†(θ). The resulting estimators share some degree of mean bias reduction,

however the emphasis is placed in drawing the probability of underestimating the true
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value of the parameter closer to 1/2 than θ̂ does, reducing as a matter of fact the median

bias. Moreover, in Kenne Pagui et al. (2017) it is shown that the median bias-reduced

estimators have an invariance property with respect to nonlinear and componentwise

reparameterizations.

With respect to generalized linear models indexed by the parameter θ = (β, φ), where

β is a vector of regression coefficients and φ denotes a dispersion parameter, the work

of Kosmidis et al. (2020) proposes a mixed adjustment approach. More specifically, this

method exploits the Fisher orthogonality of β and φ, defining the corresponding adjusted

score equation (1.21) in such a way that A(θ) = (A⋆β(θ), A
†
φ(θ)), where A

⋆
β(θ) is the mean

bias-reducing adjustment for β and A†
φ(θ) is the median bias-reducing adjustment for

φ. As a result, the estimators β̃ and φ̃ respectively share the invariance properties of

mean and median bias reduction, which is desirable in practical settings.

This approach is currently implemented as the default fitting routine in the R pack-

age brglm2 (Kosmidis, 2023), however the mixed adjustment collapses to a mean bias

reduction in the case of generalized linear models for Poisson and binomial data, where

the dispersion parameter is fixed as φ = 1.

As far as our work is concerned, we especially focus on binomial generalized linear

models. For this reason and to favor more simplicity of discussion, throughout this thesis

we restrict our attention towards mean bias reduction, also when illustrating examples

of other parametric models.

1.5.3 Quasi-Fisher scoring

A practical aspect involved in bias reduction is to solve the adjusted score equations

(1.21). In general, as with the usual score equations (1.5), it is not possible to find a

solution in closed form, especially when dealing with more complex models. As a result,

it may be necessary to rely on numerical methods to obtain a solution θ̃.

The maximum likelihood estimate can be numerically computed by means of the

well-known Newton-Raphson algorithm (see Cox & Hinkley, 1974, page 308)

θ̂(k+1) = θ̂(k) + j(θ̂(k))−1U(θ̂(k)),

where the superscript denotes the iteration step k ≥ 0, increasing until a proper con-

vergence criterion is satisfied. In several cases, such as in generalized linear models,

the expected information matrix i(θ) substitutes j(θ). Such alternative is typically

addressed as the Fisher scoring algorithm.
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Following from the work Kosmidis & Firth (2010), the bias reduced estimate θ̃ can

be numerically obtained in a similar fashion through the quasi-Fisher scoring step

θ̃(k+1) = θ̃(k) + i(θ̃(k))−1Ũ(θ̃(k)), (1.24)

the difference being the adjusted score function Ũ(θ). In particular, the term “quasi”

derives from using the expected information instead of the actual negative Jacobian

̃(θ) = −∂Ũ(θ)/∂θ⊤ or the corresponding expectation (Kosmidis & Firth, 2010). A

similar strategy is used in the case of mixed adjustments, as described by Kosmidis

et al. (2020), by simultaneously applying quasi-Fisher scoring steps with respect to the

regression coefficients β and the dispersion parameter φ.



Chapter 2

Modified score statistic

2.1 Available approximate pivots

In the previous chapter, we have briefly addressed the methods of bias reduction in

parametric models with respect to point estimation. As a matter of fact, focusing

on implicit bias reduction, we have only discussed the problem of finding the solution

of (1.21), which yields the bias-reduced estimate θ̃. Nonetheless, from an inferential

point of view we are especially interested in characterizing the uncertainty underlying

the parameter estimates, which amounts to define suitable procedures for hypothesis

testing and for constructing confidence regions.

In this respect, as in maximum likelihood estimation, finding an exact pivotal quan-

tity or test statistic in the case of implicit bias reduction methods can be unfeasible,

especially when the estimator θ̃ = θ̃(Y ) cannot be expressed in closed form. Indeed,

in typical applications we rely on numerical methods such as the quasi-Fisher scoring

iterations (1.24). For this reason, in this section we address some available approximate

pivotal quantities and test statistics which provide automatic inferential procedures, in

a similar fashion as the approximate pivots for likelihood inference.

In the first place, in both cases of mean and median bias reduction, the asymptotic

distribution of θ̃ is given by (see for example Kosmidis et al., 2020, Section 3.1)

θ̃
·∼ N(θ, i(θ)−1), (2.1)

for diverging n and provided that θ is the true parameter value. From such result, it is

possible to construct the Wald-type statistic

W̃e(θ) = (θ̃ − θ)⊤i(θ̃)(θ̃ − θ), (2.2)

15
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where i(θ̃) could be replaced with i(θ). In this work, we refer to (2.2) as the modified

Wald statistic since it can be considered as a modification of (1.9). Assuming that θ

is the true value of the model parameter, the statistic (2.2) asymptotically follows a χ2
p

distribution, as a result of the property (2.1).

In the second place, under exponential family models in canonical parameterization

and in the case of mean bias reduction, it is possible to define a test statistic based on

the penalized log-likelihood ℓ̃(θ), given by (1.23), in the form

W̃ (θ) = 2{ℓ̃(θ̃)− ℓ̃(θ)}. (2.3)

Since the quantity (2.3) resembles (1.11), in our work we refer to it as the modified

likelihood ratio statistic. Besides, due to the fact that (1.23) is a penalized log-likelihood

with a O(1) penalization term, it holds that (2.3) asymptotically follows a χ2
p distribution

(see for example Sartori, 2006, Section 2), assuming θ as the true parameter value.

Although the approximate pivots (2.2) and (2.3) allow the construction of approxi-

mate confidence regions and hypothesis testing, in practice it can be useful to focus only

on a p0-dimensional parameter of interest ψ, where θ can be partitioned as θ = (ψ, λ)

and λ is a (p− p0)-dimensional nuisance parameter. For this reason, we should consider

the profile versions of both (2.2) and (2.3), in a similar way as with profile likelihood

inference.

It is easy to define the modified profile Wald test statistic as

W̃Pe(ψ) = (ψ̃ − ψ)⊤iψψ(θ̃)−1(ψ̃ − ψ), (2.4)

which has a limiting χ2
p0

distribution under θ. Moreover, when ℓ̃(θ) exists, there exists

a modified profile likelihood ratio test, which can be expressed as

W̃P (ψ) = 2{ℓ̃P (ψ̃)− ℓ̃P (ψ)}, (2.5)

where ℓ̃P (ψ) = ℓ̃(ψ, λ̃ψ) and λ̃ψ is the constrained estimate obtained by solving the

λ-component of (1.21), keeping ψ fixed. For instance, such test statistic was studied

with respect to logistic regression models by Heinze & Schemper (2002), where it is

stated that it follows a χ2
p0

limiting distribution as n diverges and assuming θ as the

true parameter value.
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2.2 Modified score statistic

2.2.1 Definition and motivation

Considering the case of implicit bias reduction and with respect to the adjusted score

Ũ(θ) as in (1.21), it is easy to note that

Eθ[Ũ(θ)] = Eθ[U(θ)] + A(θ) = A(θ),

where A(θ) = O(1) for diverging n in both cases of mean and median bias reduction.

Furthermore, the corresponding variance is given by

varθ[Ũ(θ)] = varθ[U(θ) + A(θ)] = i(θ),

which follows from the fact that A(θ) is a non-stochastic quantity. Along with the

asymptotic normality of U(θ), such properties allow us to derive the approximate pivot

W̃u(θ) = Ũ(θ)⊤i(θ)−1Ũ(θ), (2.6)

which has a limiting χ2
p distribution for large n if θ is the true value of the parameter.

The latter property is satisfied since A(θ) is a O(1) term and it is dominated by i(θ) and

U(θ), which are respectively O(n) and Op(
√
n) as n diverges (see for example Pace &

Salvan, 1997, Section 3.4). In this work, we refer to (2.6) as the modified score statistic

since it can be regarded as a modification of (1.10).

With respect to the partition of the model parameter θ = (ψ, λ), let us write in block

notation the modified score function Ũ(ψ, λ) as

Ũ(ψ, λ) = (Ũψ(ψ, λ), Ũλ(ψ, λ)),

and let us define the corresponding negative Jacobian matrix as

̃(ψ, λ) = −∂Ũ(θ)
∂θ⊤

=

[

̃ψψ(ψ, λ) ̃ψλ(ψ, λ)

̃λψ(ψ, λ) ̃λλ(ψ, λ)

]

.

This thesis originates from the discussion in Kosmidis et al. (2020, page 58), where

the test statistic

W̃Pu(ψ) = Ũψ(ψ, λ̃ψ)
⊤iψψ(ψ, λ̃ψ)Ũψ(ψ, λ̃ψ) (2.7)

is proposed as an alternative to Wald-type inference within the framework of mean and
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median bias reduction. Furthermore, in Kosmidis et al. (2020, page 58) it is stated

that (2.7) asymptotically follows a χ2
p0

distribution, assuming θ = (ψ, λ) as the true

parameter, which follows from the asymptotic normality of the score statistic and from

the fact that the adjustment is of order O(1). Such result holds in both cases of mean

and median bias reduction. The quantity (2.7) is denoted in our work by the name of

modified profile score statistic because it can be regarded as the profile version of (2.6).

In the case of a one-dimensional parameter of interest, namely when p0 = 1, it can

be useful to use the signed version of (2.7) given by

r̃Pu(ψ) = Ũψ(ψ, λ̃ψ)

√

iψψ(ψ, λ̃ψ),

which can be easily handled when computing confidence intervals for ψ and has asymp-

totic standard Gaussian distribution if θ is the true value of the parameter.

It is important to highlight the core reasons which motivate a more in-depth study of

both (2.6) and (2.7). In the first place, Wald-type inference provided by (2.2) can yield

unsatisfactory results in cases where the (profile) penalized likelihood (1.23), if available,

is highly asymmetric (see Heinze & Schemper, 2002). As a matter of fact, analogously as

the usual Wald test (1.9), only symmetric confidence intervals can be obtained in such

a way, however this is typically appropriate when the log-likelihood (or its penalized

version) can be well approximated by the corresponding quadratic approximation around

the global maximum. On the contrary, the modified score statistic may provide non-

elliptical confidence regions that could better reflect the behaviour of the penalized

log-likelihood.

A second motivation for investigating the performance of the modified (profile) score

statistic is given by the absence of (1.23) in more general settings. Despite its nice

properties addressed in the literature, a prominent example being Heinze & Schemper

(2002) with respect to logistic regression, outside of canonical exponential families and

mean bias reduction the equivalence (1.22) does not hold in general. On the contrary,

the approximate pivots (2.6) and (2.7) can be defined with respect to more general

models, in the same way as Wald-type inference.

In the case of mean and median bias reduction for generalized linear models, the

inferential procedures are typically carried out by means of Wald tests (2.2) and (2.4).

As an example, the default procedures for computing p-values and confidence intervals

for the model parameters in the brglm2 package are based on Wald-type inference.

Therefore, in our work we also provide an implementation of alternative inferential

procedures based on (2.6) and (2.7), which can be used with respect to brglmFit objects
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with known dispersion parameter. The R code of such implementation is reported in

the Appendix.

2.2.2 Computational considerations

An important issue, which has not yet been addressed in this work, is how to compute

the constrained bias-reduced estimate λ̃ψ. It is worth noting that such quantity is

required for both modified profile likelihood ratio test (2.5) and modified profile score

statistic (2.7), in the same way as the constrained maximum likelihood estimate of the

nuisance parameter λ is needed to compute (1.13) and (1.14).

To begin with, the quantity λ̃ψ is the solution of

Ũλ(ψ, λ) = Uλ(ψ, λ) + Aλ(ψ, λ) = 0, (2.8)

keeping ψ fixed, which amounts to solving the λ-related component of the adjusted

equations (1.21).

Although such approach may remind that of solving the usual λ-related score equa-

tion (1.7) to obtain λ̂ψ, there is however a distinction to be made. On the one hand,

solving (1.7) amounts to finding the maximum likelihood estimate of λ in the sub-model

with ψ kept fixed. This result follows from the fact that equations (1.7) and (1.5) coin-

cide. On the other hand, in the case of mean or median bias reduction such equivalence

is no longer true. Such discrepancy can be explained by the fact that the adjusted score

equations (1.21) depend on the adjustment term A(θ), which is model-dependent in

both mean and median bias reduction. As a consequence, considering the sub-model

with fixed ψ, the bias-reduced estimate of the nuisance parameter is a quantity denoted

by λ̃⋆ψ which generally differs from λ̃ψ.

In general, it is unfeasible to solve (2.8) analytically, therefore numerical procedures

are required. Keeping ψ fixed, a first-order Taylor expansion of Ũλ(ψ, λ̃ψ) around the

point λ yields

Ũλ(ψ, λ̃ψ)
.
= Ũλ(ψ, λ) +

∂

∂λ⊤
Ũλ(ψ, λ)(λ̃ψ − λ),

from which it follows that

̃λλ(ψ, λ)(λ̃ψ − λ)
.
= Ũλ(ψ, λ),

where ̃λλ(ψ, λ) = −∂Ũλ(ψ, λ)/∂λ⊤. Therefore, we can write

λ̃ψ
.
= λ+ ̃λλ(ψ, λ)Ũλ(ψ, λ),
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from which we can derive the Newton-Raphson step

λ̃
(k+1)
ψ = λ̃

(k)
ψ + ̃λλ(ψ, λ̃

(k)
ψ )−1Ũλ(ψ, λ̃

(k)
ψ ), k = 0, 1, . . . , (2.9)

where λ̃
(k)
ψ denotes the current constrained estimate for λ. A difficulty which may

arise is that the term ∂Aλ(ψ, λ)/∂λ
⊤ can be algebraically tedious. For this reason, we

have tried two possible solutions. Firstly, we can rely on the numerical derivation of

the negative Jacobian matrix ̃λλ(ψ, λ) at each iteration of (2.9). A second possibility,

inspired by the quasi-Fisher scheme of (1.24), is to use as negative Jacobian the λ-

related block of expected information matrix, namely iλλ(ψ, λ), thereby omitting the

term ∂Aλ(ψ, λ)/∂λ
⊤. Throughout our simulation studies, the latter approach has proven

numerically more stable in the case of a relatively high number of nuisance parameters.

An efficient implementation of (2.9) in R is available by means of the routine nleqslv,

contained in the homonymous package (Hasselman, 2023), which also allows to use the

quasi-Fisher counterpart by imposing −iλλ(ψ, λ) as Jacobian matrix.

An issue that needs to be addressed is that solving (2.8) may entail expensive com-

putational effort. As a matter of fact, considering for instance the implementation of

confidence regions, it is required to compute the constrained solution λ̃ψ several times

with respect to a suitable grid of ψ values. Besides, such an approach may be unfeasible

when the nuisance parameter has a non-negligible size, for example when dealing with

generalized linear models, when profiling for each regression parameter.

For this reason, in our work we also take into consideration an approximate solution

to (2.8), given by

λ̃ψ
.
= λ̃+ ̃λλ(θ̃)

−1̃λψ(θ̃)(ψ̃ − ψ). (2.10)

Such result reminds that of (1.8). Indeed, it follows from a first-order Taylor expansion

of Ũλ(ψ, λ̃ψ) around θ̃ = (ψ̃, λ̃), namely

Ũλ(ψ, λ̃ψ)
.
= Uλ(ψ̃, λ̃) +

∂

∂ψ⊤
Ũλ(ψ̃, λ̃)(ψ − ψ̃) +

∂

∂λ⊤
Ũλ(ψ̃, λ̃)(λ̃ψ − λ̃).

The approximation (2.10) allows a fast implementation of the inferential procedures

based not only on (2.7), but also on (2.5), which analogously needs the computation of

the constrained estimate λ̃ψ.

A further issue that has been encountered throughout our numerical trials concerns

the initialization of algorithm (2.9), namely λ̃
(0)
ψ . As a matter of fact, a generic initial

value for the nuisance parameter can result in a very slow convergence towards the

constrained estimate λ̃ψ, if not even numerical errors. Besides, such a problem may
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occur even in cases where ψ is not too far away from ψ̃, for instance when computing

confidence intervals. For this reason, it is important to rely on a proper initialization

strategy that takes into account the value of ψ requested by the user.

We propose two possible solutions, which in our trials have proven the most numer-

ically stable and effective. As a first option, we suggest as initial value λ̃
(0)
ψ the linear

approximation provided by (2.10) since it can be readily obtained through a reasonable

computational effort.

A second possibility is provided by the initialization λ̃
(0)
ψ = λ̃⋆ψ, namely by using the

bias-reduced estimate of the sub-model with fixed ψ. If ψ is a subset of coefficients of a

generalized linear model, it is possible to obtain λ̃⋆ψ by fitting the model with an offset

term, where the latter is a linear combination of ψ and the associated columns of the

model matrix. In our numerical trials, obtaining λ̃⋆ψ was easier than λ̃ψ since the fitting

routine in brglmFit uses automatic and stable initial points.

Throughout our numerical trials, such approach proved fairly more stable than the

first one in the case of logistic regression models with relatively high number of covari-

ates. Nonetheless, this numerical stability is achieved at the cost of more computing

time, considering that λ̃⋆ψ is obtained through numerical procedures such as (1.24). For

this reason, our proposed strategy is to use λ̃⋆ψ as initial point in case the first initial-

ization approach failed.

2.3 Examples

In this section, we illustrate some numerical examples with respect to simple parametric

models. In particular, we mainly consider cases in which p = 2, allowing us to investigate

the behaviour of the modified profile score statistic (2.6), the constrained estimates

λ̃ψ and also the corresponding approximations, as described in the previous sections.

Furthermore, we also consider different sample sizes, namely n ∈ {20, 50, 100, 200}, in
order to illustrate the effect of increasing the amount of information about the model

parameters. At the end of this section, we also provide a numerical illustration which

involves a real data set, with respect to the logistic regression model, considering that

the latter is of particular interest for bias reduction.
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2.3.1 Canonical gamma model

Let us consider n independent observations y1, . . . , yn sampled from a gamma distri-

bution under canonical parameterization θ = (α, λ), where α, λ > 0. Then, the corre-

sponding log-likelihood is

ℓ(θ) = −n log Γ(α) + nα log λ+ (α− 1)
n

∑

i=1

log yi − λ
n

∑

i=1

yi,

where Γ(α) =
∫∞

0
xα−1e−x dx is the gamma function. From this, we derive the score

function

U(θ) =

[

n log λ− nΨ(α) +
∑n

i=1 log yi

nα/λ−∑n
i=1 yi

]

where Ψ(α) = ∂ log Γ(α)/∂α denotes the digamma function. The observed information

matrix is given by

j(θ) =

[

nΨ(1)(α) −n/λ
−n/λ nα/λ2

]

where Ψ(k)(α) = ∂kΨ(α)/∂αk denotes the polygamma function, for k ∈ {1, 2, . . . }. We

observe that j(θ) is equal to the expected information i(θ) = Eθ [(j(θ;Y )] due to the

canonical parameterization.

The maximum likelihood estimate θ̂ can be obtained by numerically solving (1.5),

whereas the mean bias-reduced estimate θ̃ can be computed by solving (1.21). For the

latter, we need the expression for the adjusting vector A(θ), which can be conveniently

derived through equality (1.22). In this regard, the Jeffreys prior in logarithmic scale is

given by

1

2
log|i(θ)| = 1

2
log

{

n2

λ2
[αΨ(1)(α)− 1]

}

= log n− log λ+
1

2
log[αΨ(1)(α)− 1],

from which we can express

A(θ) =
∂

∂θ

{

1

2
log

∣

∣i(θ)
∣

∣

}

=

[

1
2
Ψ(1)(α)+αΨ(2)(α)

αΨ(1)(α)−1

−1/λ

]

.

By simulating n independent gamma observations, with n = 20, 50, 100, 200 and

θ = (5, 2), we compute the maximum likelihood estimate θ̂ = (α̂, λ̂) and the mean bias-

reduced estimates θ̃ = (α̃, λ̃), shown in Table 2.1. In this case, even if it is only a single

sample, it is noteworthy that mean bias reduction yields fairly more accurate results

than maximum likelihood estimation. Besides, as n increases, both methods lead to
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Table 2.1: Maximum likelihood and mean bias-reduced estimates of the canonical
gamma model with respect to different sample sizes.

n = 20 n = 50 n = 100 n = 200

α̂ 8.5979 6.3699 6.6308 5.4012

λ̂ 3.9633 2.6586 2.8236 2.1416
α̃ 7.3396 6.0005 6.4384 5.3234

λ̃ 3.3602 2.4961 2.7374 2.1088

estimates that are closer to the true parameter value, as expected from the asymptotic

theory.

In Figure 2.1, we illustrate the 95% confidence regions obtained with the modified

score statistic (2.6). As expected, the increasing sample size shrinks the area of the

confidence regions, thereby locating with more certainty plausible values for the model

parameters. Furthermore, we also observe that with large sample size all the modified

statistics yield almost juxtaposing confidence regions, as expected from their asymptotic

equivalence.

The confidence intervals for each parameter can be obtained by profiling both α and

λ through (2.7), for which the constrained bias-reduced estimates λ̃α and α̃λ are needed

respectively.

In the first place, we need to solve

Ũλ(α, λ) = nα/λ−
n

∑

i=1

yi − 1/λ = 0,

whose solution can be easily expressed in closed form as

λ̃α =
nα− 1
∑n

i=1 yi
.

Such constrained estimate is a linear function in α, hence the corresponding linear

approximation given by (2.10) yields the same result. In Figure 2.2, we illustrate the

modified score function W̃Pu(α), along with W̃Pe(α) and W̃P (α), where we highlight the

resulting approximate 95% confidence interval. We can observe that, in accordance with

the global modified score regions, increasing n concentrates the modified profile score

statistic around α̃, thereby defining narrower confidence intervals for α. Furthermore,

all the modified profile statistics yield almost analogous results considering a large n.
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Figure 2.1: Approximate 95% confidence regions of θ obtained through W̃u(θ) (solid
line), W̃e(θ) (long-dashed line) and W̃ (θ) (dot-dashed line) for the canonical gamma
model, with respect to different sample sizes. The dot corresponds to the mean bias-
reduced estimates.

In the second place, we compute α̃λ by solving

Ũα(α, λ) = n log λ− nΨ(α) +
n

∑

i=1

log yi +
1

2

Ψ(1)(α) + αΨ(2)(α)

αΨ(1)(α)− 1
= 0,

which is a nonlinear equation in α that needs to be solved numerically. In Figure 2.3, we

show the constrained bias-reduced estimate α̃λ as a function of λ and the corresponding

linear approximation. Quite unexpectedly, there is no appreciable difference between

the exact and approximate solutions, although α̃λ is nonlinear in λ. In Figure 2.4, we

illustrate the modified profile score statistic W̃Pu(λ), computed with both the exact and

approximate solutions α̃λ. A slight difference can be noticed between the two curves,

considering the case of n = 20 and small values of λ, however such difference becomes

almost negligible for higher sample sizes.

Numerical results with respect to the confidence intervals are summarized in Table
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Figure 2.2: Modified profile score statistic for α (solid line) in the canonical gamma
model, along with W̃Pe(α) (long-dashed line) and W̃P (α) (dot-dashed line), with
respect to different sample sizes. The horizontal dotted line corresponds to the 0.95-
quantile of a χ2

1 distribution, while the vertical dotted line is the mean bias-reduced
estimate α̃.

2.2. We can notice that, at least for the simulated sample trajectory, all the confidence

intervals include the true parameter value.

Table 2.2: Confidence intervals obtained through the modified profile score statistic
in the canonical Gamma model, for each parameter and with respect to different
sample sizes.

n α λ

20 (2.1459, 12.5653) (0.8746, 5.8431)
50 (3.5693, 8.4338) (1.4386, 3.5534)
100 (4.6456, 8.2316) (1.9439, 3.5309)
200 (4.2961, 6.3508) (1.6817, 2.5358)
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Figure 2.3: Constrained estimates of α as functions of λ for the canonical gamma
model, with respect to different sample sizes. The solid line corresponds to the exact
solution, whereas the dashed line shows the linear approximation, although in this
example they are graphically indistinguishable. The dotted horizontal and vertical
lines correspond to the global solution θ̃.

2.3.2 Canonical inverse Gaussian model

Let us consider n independent observations y1, . . . , yn as realizations of an inverse Gaus-

sian distribution in canonical parameterization, namely with joint density

p(y; θ) =
n
∏

i=1

√

λ

2πy3i
exp

{

√

λφ− λ

2yi
− φyi

2

}

,

where yi > 0 for all i = 1, . . . , n and θ = (λ, φ) is such that λ > 0 and φ ≥ 0. Discarding

additive constants independent of θ, we express the log-likelihood of such model as

ℓ(θ) =
n

2
log λ+ n

√

λφ− λ

2

n
∑

i=1

1

yi
− φ

2

n
∑

i=1

yi.
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Figure 2.4: Modified profile score statistic (solid line) for λ in the canonical gamma
model, along with the corresponding approximation (dashed line), W̃Pe(λ) (long-
dashed line) and W̃P (λ), with respect to different sample sizes. The horizontal dotted
line corresponds to the 0.95-quantile of a χ2

1 distribution, while the vertical dotted
line is the mean bias-reduced estimate λ̃.

The specified model is an exponential family with minimal sufficient statistic given by

(−1/(2
∑n

i=1 yi),−
∑n

i=1 yi/2) and canonical parameter θ. Nonetheless, such exponential

family is full but not regular, since the natural parameter space is not open in R
2,

admitting indeed φ = 0 (see for more detail Pace & Salvan, 1997, pages 175 and 186).

For this reason, throughout the following computations we assume that φ > 0.

The score function can be expressed as

U(θ) =





n
2λ

+ n
2

√

φ
λ
− 1

2

∑n
i=1

1
yi

n
2

√

λ
φ
− 1

2

∑n
i=1 yi





and the corresponding observed information matrix

j(θ) =

[

n
2λ2

+ n
4

√
φλ−3/2 −n

4
(φλ)−1/2

−n
4
(φλ)−1/2 n

4

√
λφ−3/2

]

.
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Due to the canonical parameterization j(θ) = i(θ), then equality (1.22) still holds, which

allows us to easily obtain the adjustment vector for mean bias reduction

A(θ) =
∂

∂θ

{

1

2
log

∣

∣i(θ)
∣

∣

}

= −3

4

[

1/λ

1/φ

]

.

After generating n ∈ {20, 50, 100, 200} pseudo-observations from an inverse Gaussian

distribution with θ = (3, 2), we obtain the maximum likelihood and the bias-reduced

estimates θ̂ and θ̃ by solving (1.5) and (1.21). Defining s1 =
∑n

i=1 1/yi and s2 =
∑n

i=1 yi,

we can express θ̂ in closed form as

φ̂ =
n3

s1s22 − n2s2
,

and

λ̂ =
ns2

s1s2 − n2
.

Note that the positivity of λ̂ and φ̂ follows from the fact that s1s2 > n2 since s1s2 =

n2ȳ/ȳa and ȳ > ȳa, using Jensen’s inequality for the latter, where ȳ and ȳa are the

sample arithmetic and harmonic mean respectively.

Also in the case of mean bias reduction, it is possible to obtain θ̃ analytically, however

this requires fairly more algebraic effort. In the first place, we can obtain the constrained

estimate λ̃φ as

λ̃φ =

[

n
√
φ+

√

n2φ+ 4s1(n− 3/2)

2s1

]2

,

Secondly, by substituting λ̃φ into the φ-related modified score equation, we obtain a

quadratic equation whose solutions are given by

φ1,2 =
−b±

√
b2 − 4ac

2a
,

where a = 4s1s2(s1s2 − 1), b = 6(2s1s2 − n2)/n2 − 4s1(n− 3/2) and c = 9s21/n
2. Thus,

the modified score equation admits two solutions. However, our numerical trials suggest

that we use

φ̃ =
−b+

√
b2 − 4ac

2a
,
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in order to obtain reasonable estimates for θ. The existence of two solutions could be

explained from the fact that the penalized log-likelihood is

ℓ̃(θ) =
n

2
log λ+ n

√

λφ− λ

2

n
∑

i=1

1

yi
− φ

2

n
∑

i=1

yi −
3

4
log λ− 3

4
log φ, (2.11)

which is not globally concave, since ℓ̃(θ) diverges to infinity as φ → 0+. As far as our

numerical trials are concerned, the inspection of the negative Hessian matrix of (2.11)

̃(θ) =

[

n
2λ2

+ n
4

√
φλ−3/2 − 3

4λ2
−n

4
(φλ)−1/2

−n
4
(φλ)−1/2 n

4

√
λφ−3/2 − 3

4φ2

]

reveals that the point (λ̃, φ̃) corresponds to a local maximum of (2.11) because ̃(θ̃) is

positive definite. Instead, computing ̃(θ) in the other solution leads to an indefinite

matrix, therefore solving the modified score equation also locates a saddlepoint of (2.11).

In Table 2.3, we show the maximum likelihood and the mean bias-reduced estimates

with respect to the simulated data, with n ∈ {20, 50, 100, 200}. As in the previous

example, the mean bias-reduced estimates are generally closer to the true parameter

value than the maximum likelihood ones.

Table 2.3: Maximum likelihood and mean bias-reduced estimates of the canonical
inverse Gaussian model with respect to different sample sizes.

n = 20 n = 50 n = 100 n = 200

λ̂ 3.3175 3.5664 3.6483 3.4560

φ̂ 2.5799 2.4069 2.1302 1.9493

λ̃ 2.8118 3.3512 3.5385 3.4041

φ̃ 2.0523 2.2121 2.0431 1.9088

In Figure 2.5, we illustrate the 95% confidence regions determined through the mod-

ified score statistic W̃u(λ, φ) and we can observe that, as n increases, the confidence

regions shrink around the mean bias-reduced estimate. We also note that, in the case

of n = 20, the confidence region could not be fully determined near the boundary of the

parameter space.

The constrained estimate φ̃λ can be easily expressed in closed form as

φ̃λ =

[

n
√
λ+

√
n2λ− 6s2

2s2

]2

,



30 Section 2.3 - Examples

n = 20

λ

φ

0 1 2 3 4 5 6 7

0
1

2
3

4
5

n = 50

λ

φ

0 1 2 3 4 5 6 7

0
1

2
3

4
5

n = 100

λ

φ

0 1 2 3 4 5 6 7

0
1

2
3

4
5

n = 200

λ

φ

0 1 2 3 4 5 6 7

0
1

2
3

4
5

Figure 2.5: Approximate 95% confidence regions of θ obtained through W̃u(θ) (solid
line), W̃e(θ) (long-dashed line) and W̃ (θ) (dot-dashed line) for the canonical inverse
Gaussian model, with respect to different sample sizes. The dot corresponds to the
mean bias-reduced estimates.

which is a nonlinear function of λ. Nevertheless, we note that such estimate is avail-

able provided that λ > 6s2 due to the root term. Such condition can be problematic

when computing confidence intervals for λ, considering that we may need to obtain the

modified score statistic W̃Pu(λ) for sufficiently small λ.

The availability of a closed-form expression for φ̃λ makes the corresponding linear

approximation useless from a computational perspective. However, we are also inter-

ested in studying the suitability of such approximation, especially as n varies. For this

reason, we provide an illustration of both versions of the constrained estimates of φ in

Figure 2.6, where we can observe an almost complete overlap between the two curves in

each panel.

The modified score function for λ is illustrated in Figure 2.7, where we also highlight

the resulting approximated 95% confidence interval. We can notice that the confidence

intervals become narrower as n increases, in accordance with the global confidence re-

gions.
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Figure 2.6: Constrained estimates of φ as functions of λ in the canonical inverse
Gaussian model, with respect to different sample sizes. The solid line corresponds to
the exact solution, whereas the dashed line shows the linear approximation, although
in this example they are graphically indistinguishable. The dotted horizontal and
vertical lines correspond to the global solution θ̃.

Considering φ as the parameter of interest, the expression for the constrained estimate

λ̃φ is already available from obtaining θ̃ and corresponds to a nonlinear function of φ.

Unlike φ̃λ, in this case we do not require further constraints with respect to the parameter

space, since for a reasonable problem we assume that n ≥ 2. The constrained estimate

and the corresponding linear approximation are displayed in Figure 2.8, where we can

notice a slight difference between the two curves in each panel, especially when φ is

sufficiently close to 0.

Such discrepancy becomes more appreciable when we consider the modified score

statistic W̃Pu(φ), as represented in Figure 2.9. From such illustration, we can address

two relevant phenomena. In the first place, the modified score statistic W̃Pu(φ) is shaped

in such a way that we cannot explicitly obtain a lower bound for the confidence interval

in the case n = 20. This also holds when considering the linear approximation for λ̃φ

since both curves reach a local maximum when φ is small enough.
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Figure 2.7: Modified profile score statistic (solid line) and corresponding approxi-
mation (dashed line) for λ in the canonical inverse Gaussian model, with respect to
different sample sizes. In this case, the two curves are graphically indistinguishable.
We also display W̃Pe(λ) (long-dashed line) and W̃P (λ) (dot-dashed line). The hor-
izontal dotted line corresponds to the 0.95-quantile of a χ2

1 distribution, while the
vertical dotted line is the mean bias-reduced estimate λ̃.

In the second place, we see that the performance of the linear approximation of λ̃φ

degrades as φ gets closer to 0. Nonetheless, we also note that such discrepancy becomes

irrelevant when n is relatively large, following from the fact that the modified score

statistic becomes more concentrated around a neighborhood of φ̃ where the approxima-

tion seems to be sufficiently accurate.

In Table 2.4, we numerically show the confidence intervals, with respect to the sim-

ulated data. Also in this case, even though it is only one simulated sample, all of them

include the true value of the model parameters.

2.3.3 Gamma ratio

Let us consider n independent pairs (y11, y12), . . . , (yi1, yi2), . . . (yn1, yn2) as realizations of

the random vector (Yi1, Yi2) such that Yi1 ∼ Exp(ψλ), Yi2 ∼ Exp(λ), where the symbol
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Figure 2.8: Constrained estimates of λ as functions of φ in the canonical inverse
Gaussian model, with respect to different sample sizes. The solid line corresponds
to the exact solution, whereas the dashed line shows the linear approximation. The
dotted horizontal and vertical lines correspond to the global solution θ̃.

Exp(ω) denotes an exponential distribution parameterized with rate ω > 0, and Yi1 is

independent of Yi2 for i = 1, . . . , n. Then, we can define Y1 =
∑n

i=1 Yi1 and analogously

Y2 =
∑n

i=1 Yi2, where for the well-known properties of the exponential distribution it

follows that Y1 ∼ Ga(n, ψλ) and Y2 ∼ Ga(n, λ). Such a model is parameterized by

θ = (ψ, λ), with ψ, λ > 0.

This example is a simplified version of a more general problem, addressed for instance

in Severini (1998, Example 4) and in the thesis of Emireni (2004, Section 3.2), in which

the main issue is to carry out inference in the presence of several nuisance parameters.

Dealing with such a problem is outside of the scope of the present example, where we

aim at showing an application of the techniques of our interest in a relatively simple

model.

Given that the parameter of interest is typically ψ, namely the ratio Eθ(Y2)/Eθ(Y1),

we refer to this model as “gamma ratio” for mere simplicity. Nevertheless, we carry out
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Figure 2.9: Modified profile score statistic (solid line) and corresponding approxima-
tion (dashed line) for φ in the canonical inverse Gaussian model, along with W̃Pe(φ)
(long-dashed line) and W̃P (φ) (dot-dashed line), with respect to different sample sizes.
The horizontal dotted line highlights the 0.95-quantile of a χ2

1 distribution, while the
vertical dotted line is the mean bias-reduced estimate φ̃.

inference through the modified profile score with respect to both parameters, as shown

in the previous examples.

Using the independence between Y1 and Y2, it is easy to express their joint density

in the form

p(y1, y2; θ) =
ψnλ2n

Γ(n)2
(y1y2)

(n−1) exp {−(ψλy1 + λy2)} ,

from which we can obtain the log-likelihood, discarding additive constants, as

ℓ(θ) = n logψ + 2n log λ− ψλy1 − λy2.

From the previous expression or, equivalently, from the joint density, we note that the

gamma ratio model is an exponential family with minimal sufficient statistic (y1, y2)

and canonical parameter ω = ω(θ) = (−ψλ,−λ). For this reason, θ is not the canonical
parameter, hence in the case of mean bias reduction equality (1.22) does not hold and
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Table 2.4: Confidence intervals obtained through the modified profile score statistic
in the canonical inverse Gaussian model, for each parameter and with respect to
different sample sizes. The symbol † indicates that it was not possible to explicitly
determine the confidence limit, therefore 0 was assigned.

n λ φ

20 (0.7246, 4.8715) (0†, 4.1411)
50 (1.9523, 4.7496) (0.9601, 3.4395)
100 (2.5272, 4.5498) (1.264, 2.8183)
200 (2.7267, 4.0815) (1.399, 2.4177)

we cannot base our inferential procedures on a penalized log-likelihood as in (1.23).

The score function can be expressed as

U(θ) =

[

Uψ(θ)

Uλ(θ)

]

=

[

n/ψ − λy1

2n/λ− ψy1 − y2

]

,

from which we obtain the observed information matrix

j(θ) =

[

n
ψ2 y1

y1
2n
λ2

]

and the expected information matrix

i(θ) = Eθ[j(θ;Y1, Y2)] =

[

n
ψ2

n
ψλ

n
ψλ

2n
λ2

]

,

whose inverse can be easily expressed as

i(θ)−1 =

[

2ψ2

n
−ψλ

n

−ψλ
n

λ2

n

]

.

It is easy to solve the score equation U(θ) = 0, leading to the solution θ̂ = (ψ̂, λ̂) =

(y2/y1, n/y2). Note that, unlike canonical exponential families, j(θ) 6= i(θ) and therefore

it is not guaranteed that the likelihood is globally concave. However, the log-likelihood

is concave in θ̂, which follows from the fact that |j(θ̂)| = y1 > 0 and n/ψ2 > 0, which

suffices to prove that j(θ̂) is definite positive and that θ̂ is the maximum likelihood

estimate of θ.
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In order to obtain the adjusting vector for mean bias reduction, we need to explicitly

use (1.20), namely

A(θ) =

[

Aψ(θ)

Aλ(θ)

]

=
1

2

[

trace {i(θ)−1[Pψ(θ) +Qψ(θ)]}
trace {i(θ)−1[Pλ(θ) +Qλ(θ)]}

]

,

where Pψ = Eθ[U(θ)U(θ)
⊤Uψ(θ)], Pλ = Eθ[U(θ)U(θ)

⊤Uλ(θ)], Qψ(θ) = Eθ[−j(θ)Uψ(θ)]
and Qλ(θ) = Eθ[−j(θ)Uλ(θ)]. Tedious but straightforward algebra, along with the

properties E[Y j
1 ] = (n+ j − 1)!/[(n− 1)!ψjλj] and E[Y j

2 ] = (n+ j − 1)!/[(n− 1)!λj]

for j ∈ {1, 2, 3}, allows us to obtain

Pψ(θ) = Eθ

[

( n
ψ
− λY1)

3 ( n
ψ
− λY1)

2(2n
λ
− ψY1 − Y2)

( n
ψ
− λY1)

2(2n
λ
− ψY1 − Y2) ( n

ψ
− λY1)(

2n
λ
− ψY1 − Y2)

2

]

=

[

− 2n
ψ3 − 2n

ψ2λ

− 2n
ψ2λ

− 2n
ψλ2

]

and

Pλ(θ) = Eθ

[

( n
ψ
− λY1)

2(2n
λ
− ψY1 − Y2) ( n

ψ
− λY1)(

2n
λ
− ψY1 − Y2)

2

( n
ψ
− λY1)(

2n
λ
− ψY1 − Y2)

2 (2n
λ
− ψY1 − Y2)

3

]

=

[

− 2n
ψ2λ

− 2n
ψλ2

− 2n
ψλ2

−4n
λ3

]

.

Analogously, the remaining matrices Qψ(θ) and Qλ(θ) can be expressed as

Qψ(θ) = −Eθ
[

n
ψ2 (

n
ψ
− λY1) Y1(

n
ψ
− λY1)

Y1(
n
ψ
− λY1)

2n
λ2
( n
ψ
− λY1)

]

=

[

0 n
ψ2λ

n
ψ2λ

0

]

and

Qλ(θ) = −Eθ
[

n
ψ2 (

2n
λ
− ψY1 − Y2) Y1(

2n
λ
− ψY1 − Y2)

Y1(
2n
λ
− ψY1 − Y2)

2n
λ2
(2n
λ
− ψY1 − Y2)

]

=

[

0 n
ψλ2

n
ψλ2

0

]

.
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Such quantities allow us to express

Aψ(θ) =
1

2
trace

{[

2ψ2

n
−ψλ

n

−ψλ
n

λ2

n

][

− 2n
ψ3 − n

ψ2λ

− n
ψ2λ

− 2n
ψλ2

]}

=
1

2

(

−4ψ2

n

n

ψ3
+
ψλ

n

n

ψ2λ
+
ψλ

n

n

ψ2λ
− λ2

n

2n

ψλ2

)

= − 2

ψ

and analogously

Aλ(θ) =
1

2
trace

{[

2ψ2

n
−ψλ

n

−ψλ
n

λ2

n

][

− 2n
ψ2λ

− n
ψλ2

− n
ψλ2

−4n
λ3

]}

=
1

2

(

−4ψ2

n

n

ψ2λ
+
ψλ

n

n

ψλ2
+
ψλ

n

n

ψλ2
− λ2

n

4n

λ3

)

= −3

λ
.

The mean bias reduced estimate θ̃ = (ψ̃, λ̃) can be obtained by solving the modified

score equation

Ũ(θ) =

[

Ũψ(θ)

Ũλ(θ)

]

=

[

n
ψ
− λy1 − 2

ψ

2n
λ
− ψy1 − y2 − 3

λ

]

,

whose solution can be analytically expressed as

θ̃ =

[

ψ̃

λ̃

]

=

[

n−2
n−1

y2
y1

n−1
y2

]

.

We simulate the pseudo-observation (y1, y2) following the gamma ratio model with

θ = (3, 7). Furthermore, we also consider different n ∈ {20, 50, 100, 200}, which can

be considered either as the sample size or as an index that quantifies the amount of

information available from the data. With respect to the generated data, we show in

Table 2.5 the maximum likelihood and the mean bias reduced estimates of the model

parameters. We see that the estimates for ψ improve as n increases and also that ψ̃

performs slightly better than ψ̂, nonetheless this is evidently not the case if we consider

the estimates for λ with respect to n < 200.

Focusing our attention on the modified score statistic W̃u(θ), we are able to obtain

the resulting 95% confidence region of the model parameters, as illustrated in Figure

2.10, where we see that increasing n concentrates the modified score statistic around the

mean bias-reduced estimate. Unlike the previous examples, in this case the non-elliptical
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Table 2.5: Maximum likelihood and mean bias-reduced estimates of the gamma
ratio model with respect to different sample sizes.

n = 20 n = 50 n = 100 n = 200

ψ̂ 4.4043 3.9461 2.6627 2.8981

λ̂ 5.5755 6.9425 6.7210 7.9614

ψ̃ 4.1725 3.8656 2.6358 2.8835

λ̃ 5.2967 6.8037 6.6538 7.9216
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Figure 2.10: Approximate 95% confidence regions of θ obtained through W̃u(θ)
(solid line) and W̃e(θ) (long-dashed line) for the gamma ratio model, with respect to
different sample sizes. The dot corresponds to the mean bias-reduced estimates.

shape of the confidence regions is much more appreciable, however as n increases such

feature seems to vanish, resembling Wald-type elliptical confidence regions. This is a

quite expected outcome since W̃u(θ) is asymptotically equivalent to W̃e(θ), therefore

both approximate pivots should lead to analogous results as n diverges.
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Figure 2.11: Constrained estimates of λ as functions of ψ in the gamma ratio model,
with respect to different sample sizes. The solid line corresponds to the exact solution,
whereas the dashed line shows the linear approximation. The dotted horizontal and
vertical lines correspond to the global solution θ̃.

The constrained estimate of λ given ψ is readily available as

λ̃ψ =
2n− 3

ψy1 + y2
,

which is a nonlinear function of ψ, as shown in Figure 2.11. Despite the availability of a

closed-form expression for λ̃ψ, we also consider the corresponding linear approximation.

In this case, there is a noticeable discrepancy between the two curves in each panel,

which suggests inadequacy of the approximation for values of ψ that are too far from

the bias-reduced estimate ψ̃.

The effect of such discrepancy becomes more apparent when considering the modified

profile score statistic for ψ, which is illustrated in Figure 2.12. Quite clearly, the shape

of W̃Pu(ψ) computed through the linear approximation of λ̃ψ fails to yield a reliable

result, with respect to the exact version of the statistic, considering even a relatively

large sample size such as n = 100.
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Figure 2.12: Modified profile score statistic (solid line) and corresponding approxi-
mation (dashed line) for ψ in the gamma ratio model, along with W̃Pe(ψ) (long-dashed
line), with respect to different sample sizes. The horizontal dotted line highlights the
0.95-quantile of a χ2

1 distribution, while the vertical dotted line is the mean bias-
reduced estimate ψ̃.

In accordance with our observations regarding the global confidence regions, the

confidence intervals resulting from W̃Pu(ψ) are clearly asymmetrical for small to modest

sample size, namely n = 20 and n = 50, whereas for larger n such asymmetry becomes

less apparent.

Considering λ as the parameter of interest, we obtain quite similar results with

respect to the constrained estimate ψ̃λ = (n − 2)/(λy1), shown in Figure 2.13. Anal-

ogously, the shape of W̃Pu(λ), illustrated in Figure 2.14 appreciably differs from the

corresponding approximated version. Therefore, once again the linear approximation of

the constrained estimate yields unsatisfactory results, in this case at least for n = 50.

In contrast to the confidence intervals of ψ, those of λ do not show appreciable

asymmetry, even considering a relatively small sample size.

In Table 2.6, we show the numerical results as regards the approximate 95% confi-

dence intervals of both ψ and λ, taking into consideration different sample sizes. As in
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Figure 2.13: Constrained estimates of ψ as functions of λ in the gamma ratio model,
with respect to different sample sizes. The solid line corresponds to the exact solution,
whereas the dashed line shows the linear approximation. The dotted horizontal and
vertical lines correspond to the global solution θ̃.

the previous examples, also in this simulated case all the confidence intervals include

the true value of the parameters.

Table 2.6: Confidence intervals obtained through the modified profile score statistic
in the gamma ratio model, for each parameter and with respect to different sample
sizes.

n ψ λ

20 (2.0629, 8.3249) (2.8532, 7.7402)
50 (2.5637, 5.8185) (4.8793, 8.728)
100 (1.9851, 3.4983) (5.3365, 7.9711)
200 (2.3652, 3.5152) (6.8182, 9.0249)
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Figure 2.14: Modified profile score statistic (solid line) and corresponding approxi-
mation (dashed line) for λ in the gamma ratio model, along with W̃Pe(λ) (long-dashed
line), with respect to different sample sizes. The horizontal dotted line highlights the
0.95-quantile of a χ2

1 distribution, while the vertical dotted line is the mean bias-
reduced estimate λ̃.

2.3.4 Logistic regression model

In this section, we illustrate two different examples related to the logistic regression

model. In the first case, we consider a simulated n-dimensional binary response with

respect to a (n × 2) fixed design matrix X, whose columns are obtained by simulating

from two independent standard Gaussian distributions. Such a case consists of a logistic

regression model with two covariates and no intercept. As a second example, we illus-

trate a case study involving a true data set, which is of our particular interest mainly

due to the presence of quasi-complete data separation.

Let us consider n observations y1, . . . , yn and let y = (y1, . . . , yn). With respect to a

fixed (p×n) design matrix denoted by X, let us assume that y is generated by a random
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vector Y = (Y1, . . . , Yn) whose joint density is

p(y; β) =
n
∏

i=1

(

mi

yi

)

πyii (1− πi)
mi−yi ,

where πi = Eβ[Yi] = g−1(xiβ), g(·) is a smooth one-to-one link function, xi is the i-

th row of X and β = (β1, . . . , βp) is a vector of regression parameters in R
p. As far

as our examples are concerned, we assume that mi = 1 for all i = 1, . . . , n and that

g(π) = log[π/(1− π)], with π ∈ (0, 1), is the canonical logit link.

The log-likelihood of the model can be easily written as

ℓ(β) =
n

∑

i=1

{yi log[πi/(1− πi)] + log(1− πi)},

from which we derive the score function, expressed in matrix notation as

U(β) = X⊤(y − µ),

where µ = (π1, . . . , πn), and the observed information matrix

j(θ) = X⊤WX,

where W = diag(w1, . . . , wn), with wi = πi(1 − πi) for i = 1, . . . , n. Note that such

model is once again a canonical exponential family, where the canonical parameter is

given by β. For this reason, the mean bias-reduced estimate β̃ of β can be obtained by

maximizing the penalized log-likelihood

ℓ̃(β) = ℓ(β) +
1

2
log|i(β)|.

Such interpretation of the mean bias-reduced estimate is quite useful because log|i(β)|
is strictly concave, provided that X has full rank. For this reason, it follows that ℓ̃(β)

has a unique global maximum β̃, as shown for example in Firth (1993, Section 3.3) and

in Kosmidis & Firth (2020, Section 2). Among other useful quantities with respect to

exponential dispersion families, Kosmidis et al. (2020) provides the expression of the

adjusting vector for mean bias reduction, which in our case corresponds to

A(β) = X⊤ξ,
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where ξ = (ξ1, . . . , ξn), ξi = hi(1 − 2πi)/2 and hi is the i-th diagonal element of the

“hat” matrix

H = X(X⊤WX)−1X⊤W.

Therefore, it follows that the modified score statistic for β can be written as

Ũ(β) = X⊤(y − µ+ ξ),

and the modified score equation Ũ(β) = 0 is a nonlinear equation in β with unique

solution given by β̃. We note that β̃ generally needs to be found numerically, for

instance by means of the quasi-Fisher algorithm (1.24), with an exception for special

cases in which β̃ has explicit solution (see Firth, 1993, page 31).

Considering the first example of a logistic regression with two covariates and no

intercept and denoting as xij the generic element of X, with i = 1, . . . , n and j = 1, 2,

we can express the score function as

U(θ) =

[

Uβ1(β)

Uβ2(β)

]

=

[

∑n
i=1 yixi1 −

∑n
i=1 xi1πi

∑n
i=1 yixi2 −

∑n
i=1 xi2πi

]

and the observed information matrix as

j(β) = i(β) =

[

∑n
i=1 x

2
i1πi(1− πi)

∑n
i=1 xi1xi2πi(1− πi)

∑n
i=1 xi1xi2πi(1− πi)

∑n
i=1 x

2
i2πi(1− πi)

]

.

The adjusting vector for mean bias reduction can be obtained by using (1.22) due to

the canonical parameterization, namely

A(β) =
1

2
|i(β)|−1

[

a1(β)

a2(β)

]

where, defining for compactness of notation νi = πi(1− πi)(1− 2πi) and ζi = πi(1− πi),

we can write

aj(β) =
∂

∂βj
|i(β)|

=
n

∑

i=1

x2i1xijνi

n
∑

i=1

x2i2ζi +
n

∑

i=1

x2i2xijνi

n
∑

i=1

x2i1ζi

− 2
n

∑

i=1

xi1xi2xijνi

n
∑

i=1

xi1xi2ζi

for j = 1, 2.
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To provide an illustration of this case, we first simulate a (200× 2) design matrix X

from a bivariate standard Gaussian distribution with independent components. Then,

we consider the corresponding first n rows, with n = 20, 50, 100, 200 and a parameter

β = (β1, β2) = (−0.3, 0.4) from which we simulate the binary response y for each n.

From the simulated data, we obtain the maximum likelihood and mean bias-reduced

estimates provided in Table 2.7. In particular, we note that the mean bias-reduced esti-

Table 2.7: Maximum likelihood and mean bias-reduced estimates of the biparamet-
ric logistic regression with respect to different sample sizes.

n = 20 n = 50 n = 100 n = 200

β̂1 -0.4534 -0.3387 -0.3349 -0.4178

β̂2 0.7775 0.9037 0.5895 0.5123

β̃1 -0.3877 -0.3206 -0.3238 -0.4097

β̃2 0.6613 0.8391 0.5676 0.5031

mates are shrunk towards 0, which for the simulated sample trajectory results in slightly

more accurate estimates with respect to the true parameter value. Such shrinkage prop-

erty is a well-known aspect of mean bias reduction and of the penalization based on the

Jeffreys prior for binomial logistic regression (Firth, 1993, Section 3.3).

By means of the aforementioned relevant quantities, we are able to obtain the mod-

ified score statistic W̃u(β) and to construct confidence regions, an illustration of which

is provided in Figure 2.15 with respect to a 0.95 approximate confidence level. We can

observe that the confidence regions shrink around β̃ and that they seem more elliptically-

shaped as n increases, in accordance with the results of the previous examples and with

the asymptotic equivalence to the modified Wald statistic W̃e(β) (and W̃ (β)).

Let us focus our attention on the regression parameter β2, while in contrast consider-

ing β1 as a nuisance parameter. Then, denoting the constrained bias-reduced estimate

of β1 given β2 as β̃1(β2) to avoid an excessive clutter due to subscripts, we obtain such

estimate by numerically solving the β1-related adjusted equation through the Newton-

Raphson iterations (2.9). We provide an illustration of β̃1(β2) in Figure 2.16, along with

the respective linear approximation.

Clearly, β̃1(β2) is a nonlinear function of β2, resulting in a discrepancy between its

exact and approximated version. However, as shown in Figure 2.17, such difference does

not seem to dramatically reflect on the approximation of the modified score statistic

W̃Pu(β2), even when considering n = 20. Moreover, in accordance with the global

confidence regions, we can notice that, for instance considering n = 20, W̃Pu(β2) follows
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Figure 2.15: Approximate 95% confidence regions of β obtained through W̃u(β)
(solid line), W̃e(β) (long-dashed line) and W̃(β) (dot-dashed line) for the biparametric
logistic regression model, with respect to different sample sizes. The dot corresponds
to the mean bias-reduced estimates.

a slightly asymmetric shape around β̃2, which may be regarded as a desirable property

for confidence intervals.

In order to avoid redundancy, we do not show the converse case, namely the situation

of β1 as parameter of interest. Indeed, in this example we may regard the roles of the

two regression parameters as equivalent, given the structure of the model matrix.

Nonetheless, for completeness of discussion we show in Table 2.8 the approximate 95%

confidence intervals obtained through the modified profile score statistic for β1 and β2.

Also in this case, the confidence intervals include the true value of the parameters, but

we can also notice that the effect of the covariates may be regarded as non-significant,

especially for small or modest n.

Let us now carry out our analysis on the endometrial data set, available for instance

in the brglm2 package. Such data were provided by Dr E. Asseryanis from the Medical

University of Vienna and were first analyzed in the work of Heinze & Schemper (2002),

to which we refer for a more thorough description.
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Figure 2.16: Constrained estimates of β1 as functions of β2 in the biparametric
logistic regression model, with respect to different sample sizes. The solid line corre-
sponds to the exact solution, whereas the dashed line shows the linear approximation.
The dotted horizontal and vertical lines correspond to the global solution β̃.

The data set consists of n = 79 statistical units, corresponding to subjects diagnosed

with endometrial cancer. For each statistical unit, four variables are measured. In the

first place, each subject is classified with respect to histology (HG), which is a binary

variable such that 0 corresponds to grade 0-II and 1 denotes grade III-IV of endometrial

cancer. A second variable is given by neovascularization (NV), which is dichotomous

and coded as 0 and 1 to respectively denote absence and presence of neovascularization

for each subject. A third variable measures the pulsatility index of arteria uterina (PI),

which is a continuous variable ranging from 0 to 49 with mean 17.38 and standard devia-

tion 9.93. The fourth and last variable is given by the endometrium height (EH), which

is continuous, ranging from 0.27 to 3.61 and with mean 1.66 and standard deviation

0.66.

As in Heinze & Schemper (2002), we carry out our analysis considering HG as the

response variable and NV, PI, EH as risk factors. In particular, we specify the logistic
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Figure 2.17: Modified profile score statistic (solid line) and corresponding approxi-
mation (dashed line) for β2 in the biparametric logistic regression model, along with
W̃Pe(β2) (long-dashed line) and W̃P (β2) (dot-dashed line), with respect to different
sample sizes. The horizontal dotted line corresponds to the 0.95-quantile of a χ2

1 dis-
tribution, while the vertical dotted line is the mean bias-reduced estimate β̃2.

regression model

log

(

πi
1− πi

)

= β0 + βNVxi1 + βPIxi2 + βEHxi3, i = 1, . . . , 79, (2.12)

with respect to the parameter vector β = (β0, βNV, βPI, βEH) and to the model matrix

X, whose rows are denoted by xi = (1, xi1, xi2, xi3).

To briefly illustrate the relationship between the response variable and the afore-

mentioned risk factors, we show in Figure 2.18 that HG = 1 seems to be associated

with a visibly lower endometrium height and to a slightly lower pulsatility index. We

place more emphasis on the results shown in Table 2.9, where we note that no statistical

unit such that HG = 0 is associated with NV = 1, which causes quasi-complete linear

separation in the data. As illustrated in Agresti (2015, section 5.7.1), the maximum

likelihood estimate of βNV is infinite and the corresponding confidence interval based
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Table 2.8: Confidence intervals obtained through the modified profile score statistic
in the biparametric logistic regression model, for each parameter and with respect to
different sample sizes.

n β1 β2

20 (-1.2174, 0.4143) (-0.1568, 1.5711)
50 (-0.9444, 0.3013) (0.1813, 1.5293)
100 (-0.7649, 0.1148) (0.1345, 1.0065)
200 (-0.7196, -0.1019) (0.2032, 0.8047)
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Figure 2.18: Boxplots of PI (left) and EH (right), illustrated conditionally on HG,
with respect to the endometrial data set.

on the profile likelihood ratio test (1.14) has no upper bound. Moreover, Wald-type

inference is unfeasible due to the non-finiteness of the maximum likelihood estimate.

Table 2.9: Absolute frequency contingency table of HG and NV in the endometrial
data set.

NV = 0 NV = 1

HG = 0 49 0
HG = 1 17 13

Quite the contrary, applying mean bias-reduced estimation to such problem allows us

to obtain finite and therefore interpretable estimates, along with Wald-type confidence
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intervals based on (2.4), as shown in Table 2.10.

Table 2.10: Summary of the mean bias-reduced parameter estimates for the
endometrial data and approximate 95% Wald-type confidence intervals.

Estimate Standard error Confidence interval

β0 3.7746 1.4887 (0.8568, 6.6923)
βNV 2.9293 1.5508 (-0.1102, 5.9687)
βPI -0.0348 0.0396 (-0.1123, 0.0428)
βEH -2.6042 0.7760 (-4.1251, -1.0832)

Besides, as displayed in Figure 2.19 the profile score for βNV follows a horizontal

asymptote that prevents from finding a finite solution to the corresponding equation.

In contrast, we can see that mean bias reduction results in a correction to the profile

score function that allows to find a finite estimate.
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Figure 2.19: Profile score function (solid line) and modified profile score function
(dashed line) for βNV, with respect to the endometrial data.

Nonetheless, if we base our inferential analysis on Wald-type inference (2.4) and

provided that we use a 0.05 or a lower significance level, we may regard the effect of NV

as non-significant, since the corresponding confidence interval includes 0. In the work of

Heinze & Schemper (2002), this particular problem is addressed by using the modified

profile likelihood ratio statistic (2.5), which allows to obtain confidence regions that

take into account the particular shape of the penalized likelihood (1.23). Indeed, the
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penalized profile log-likelihood for βNV, displayed in the top-right panel in Figure 2.20,

has a clearly skewed shape that may not be well characterized by the quadratic shape

of W̃Pe(βNV). This observation seems to hold considering the other model coefficients

as well, as illustrated in Figure 2.20.
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Figure 2.20: Relative penalized profile log-likelihood for each regression coefficient,
with respect to the endometrial data. The vertical dotted line in each panel indicates
the mean bias-reduced estimate of the corresponding parameter.

Focusing on βNV, we decide to compare the shapes of the profile modified Wald

statistic W̃Pe(βNV), the modified profile log-likelihood ratio W̃P (βNV) and the modified

profile score statistic W̃Pu(βNV), as displayed in Figure 2.21. As expected, we can see

that W̃Pe(βNV) is symmetric around β̃NV, while in contrast W̃P (βNV) follows a more

complex shape and defines wider and asymmetric confidence regions for βNV. In partic-

ular, W̃P (βNV ) allows to obtain confidence intervals that include a relatively large upper

bound, which can be explained by the fact that NV is the data-separating covariate.

Quite unexpectedly, the shape of W̃Pu(βNV) seems to be almost symmetric around

β̃NV and defines narrower confidence regions than the other approximate pivots. More-

over, we notice that W̃Pu(βNV) closely follows W̃P (βNV) as regards the definition of lower
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Figure 2.21: Shapes of the approximate test statistics based on mean bias reduction
for βNV in the logistic regression model, with respect to the endometrial data. The
solid line indicates W̃Pu(βNV), the long-dashed line is W̃Pe(βNV) and the dot-dashed
line corresponds to W̃P (βNV). The dotted vertical line indicates the mean bias-reduced
estimate of βNV, while the dotted horizontal line corresponds to the 0.95-quantile of
a χ2

1 distribution.

bounds for βNV, nonetheless the two statistics show a very different behaviour as soon

as βNV > β̃NV.

A further point of interest is to investigate the suitability of the linear approximation

(2.10) for the estimation of nuisance parameters. Since profiling each regression coef-

ficients requires estimating a three-dimensional nuisance parameter, we cannot show a

direct comparison between exact and approximate constrained estimates. Nonetheless,

we are more interested in the effect of plugging the approximate solution in the modified

score statistic, a representation of which is displayed in Figure 2.22.

The linear approximation seems to be inadequate for βEH and, most notably, for the

intercept β0, where the resulting statistic follows an irregular shape compared to its

exact version. Such phenomenon also occurred in the gamma ratio model, as displayed

in Figure 2.12 and 2.14, and highlights the fact that the approximate version r̃Pu(·) is
not guaranteed to be a monotonic function of the parameter of interest. Perhaps, such

undesirable behaviour occurs when the constrained bias-reduced estimate is affected by

a too prominent curvature, for which a linear approximation is unsuitable.

In Table 2.11, we report the confidence intervals obtained through the modified profile

score test and the corresponding approximation, with respect to a nominal confidence
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Figure 2.22: Modified profile score statistic (solid line) and corresponding approx-
imation (dashed line) for each regression parameter, along with W̃Pe (long-dashed
line) and W̃P (dot-dashed line) with respect to the endometrial data. The horizon-
tal dotted line corresponds to the 0.95-quantile of a χ2

1 distribution, while the vertical
dotted line is the mean bias-reduced estimate for each parameter.

level of 0.95. Such results point out an important issue of the approximated modified

profile score, considering that the lower bound of the approximated confidence interval

for β0 is quite lower than 0. From a hypothesis testing perspective, this means that

Table 2.11: Approximate 95% confidence intervals of the model parameters based on
the modified profile score statistic and the corresponding approximation, with respect
to the endometrial data.

Exact Approximate

β0 (0.9254, 6.9029) (-2.6587, 6.2074)
βNV (0.4700, 5.3512) (0.7587, 5.5351)
βPI (-0.1198, 0.0424) (-0.1081, 0.0368)
βEH (-4.1861, -1.0928) (-5.3299, -1.4246)
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using the linear approximation of the constrained estimate could lead us to dramatically

different inferential conclusions than by using the exact modified profile score. Of course,

we are typically not interested in the intercept term, nonetheless in other data sets such

an issue may reflect on possibly important coefficients.

Although we considered confidence intervals constructed through the modified profile

score statistic, we can analogously test for nullity of the model parameters and of sets

of parameters, which allows for example to compare nested models. In this respect,

we notice from the confidence intervals in Table 2.8 that the modified profile score test

rejects the null hypotheses H0 : βNV = 0 against H1 : βNV 6= 0 in the same way as the

modified log-likelihood ratio test would, considering at least a nominal significance level

of 0.05.

Due to the good properties of the modified likelihood ratio statistic addressed in

Heinze & Schemper (2002), the similar outcome with respect to the aforementioned

hypothesis testing problem could be regarded as desirable. Nonetheless, this does not

suffice to regard inference based on the modified (profile) score statistic as a competitive

alternative to Wald-type inference. In order to assess this, we need proper simulation

studies from which we can further analyze the statistical properties beneath our proposed

test statistic.



Chapter 3

Simulation studies

3.1 Structure of our simulation studies

In this chapter, we illustrate some simulation studies taking into consideration the mod-

els introduced in the previous chapter. In this respect, we particularly focus our atten-

tion on logistic regression models for two reasons. In the first place, such models are

extensively used in practical settings, therefore simulation studies in this respect may

be particularly useful. The second is that logistic regression models allow us to address

potentially interesting situations such as linear separation of the data and an increasing

number of covariates, the latter implying an increasing parameter dimension.

Our aim is to investigate the performance of the proposed modified (profile) score

statistic, especially in comparison with Wald-type inference. A second objective is to

assess whether the approximate version of the modified profile score statistic yields

accurate results, so that it could be a competitive alternative to both its exact version

and to the modified Wald test.

To better explain the logic beneath our simulation studies, let us consider a para-

metric model specified as (1.1) and a known parameter value θ0. Then, we simulate

a sufficiently large number B of datasets and from each one we compute the modified

score statistic W̃
(b)
u (θ0), where b = 1, . . . , B. We note that such statistics are com-

puted to test H0 : θ = θ0 against H1 : θ 6= θ0, therefore the empirical distribution of

W̃
(1)
u (θ0), . . . , W̃

(B)
u (θ0) is the simulated null distribution of the modified score statistic.

From this result, we can compare the simulated null distribution with the corresponding

asymptotic χ2
p distribution, for instance through quantile-quantile plots. For simplicity,

from now on we denote as θ the true value of the parameter, instead of θ0.

55
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Another point of interest is to assess whether the simulated significance level

α(B) =
1

B

B
∑

b=1

I(W̃ (b)
u (θ) > χ2

p;1−α),

where I(·) is the indicator function and χ2
p;1−α is the (1−α)-quantile of a χ2

p distribution,

is sufficiently close to the nominal significance level α. Moreover, by evaluating 1 −
α(B) we obtain the simulated coverage of the corresponding confidence region without

explicitly computing the latter. Indeed, if θ is the true value of the model parameter,

there is a one-to-one correspondence between the acceptance and confidence regions.

This result allows to carry out simulation studies with more reasonable computational

effort.

Clearly, the same holds if we consider other approximate pivots instead of the modi-

fied score statistic and, analogously, focusing on a p0-dimensional parameter of interest

for inference. With respect to the latter case, it is of interest to also study the attained

coverage of the modified profile score obtained by plugging in the approximation (2.10).

The following simulation studies are carried out using R, version 4.2.3 (R Core Team,

2023).

3.2 Simple biparametric models

In this section, we show the results from our simulation studies with respect to the

canonical gamma (Section 2.3.1), canonical inverse Gaussian (Section 2.3.2) and gamma

ratio (Section 2.3.3) models. In our work, such models play the role of introductory

toy examples that illustrate the key aspects of the modified (profile) score statistic.

Nonetheless, for completeness of discussion we report the simulation studies related also

to these models.

3.2.1 Simulation from the canonical gamma model

Considering the gamma model with canonical parameter θ = (α, λ) = (5, 2), we simulate

B = 10000 data sets and obtain the simulated coverage of the modified statistics based

on bias reduction, along with their profile versions for α and λ, considering different

sample sizes n ∈ {20, 50, 100, 200}. We also take into account the standard likelihood-

based approximate pivots for a more complete comparison.

The results are reported in Table 3.1, considering a fixed nominal significance level of

0.05. Here and in the following tables, we denote the approximate pivots omitting the
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argument, considering that the latter shall be clear within the structure of the tables.

Similarly, we indicate as W̃ ∗
Pu the approximate version of the modified profile score

statistic.

Table 3.1: Simulated coverage of the approximate 95% confidence regions based on
the modified and standard statistics for the canonical gamma model, with respect to
different sample sizes.

Parameter Statistic n = 20 n = 50 n = 100 n = 200

Global W̃u 0.9212 0.9338 0.9428 0.9467

W̃e 0.8981 0.9243 0.9397 0.9447

W̃ 0.9452 0.9462 0.9476 0.9511
Wu 0.9509 0.9493 0.9490 0.9506
We 0.9577 0.9522 0.9512 0.9516
W 0.9425 0.9429 0.9465 0.9506

α W̃Pu 0.9375 0.9399 0.9473 0.9463

W̃Pe 0.9032 0.9247 0.9417 0.9427

W̃P 0.9452 0.9438 0.9475 0.9477
WPu 0.9612 0.9506 0.9512 0.9486
WPe 0.9613 0.9506 0.9512 0.9486
WP 0.9394 0.9407 0.9472 0.9485

λ W̃Pu 0.9401 0.9420 0.9491 0.9462

W̃ ∗
Pu 0.9424 0.9431 0.9494 0.9466

W̃Pe 0.9035 0.9290 0.9404 0.9424

W̃P 0.9476 0.9453 0.9503 0.9496
WPu 0.9619 0.9511 0.9523 0.9510
WPe 0.9619 0.9511 0.9523 0.9510
WP 0.9390 0.9435 0.9487 0.9495

The results in Table 3.1 highlight that inference based on bias reduction may not

always provide a better outcome. In this case, the standard global likelihood-based

statistics provide overall better coverage than the modified counterparts, although with

the exception of W̃ (θ), which yields satisfying performance for all n.

The modified profile score and likelihood ratio statistics seem to provide overall com-

petitive results, with attained coverage sufficiently close to the nominal 0.95 coverage.

The same holds for the W̃ ∗
Pu as well. Conversely, the modified profile Wald statistic

seems to provide unreliable inference with respect to lower sample sizes.

In accordance with their asymptotic properties, increasing the sample size enhances

the performance of both modified and standard likelihood-based statistics.

In simulation studies with lower α (not reported here), W̃ and W̃P were less accurate,

while the results of W̃u and W̃Pu were comparable to those in Table 3.1.
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3.2.2 Simulation from the canonical inverse Gaussian model

With respect to the canonical inverse Gaussian model, we set the true value of the

parameter as θ = (λ, φ) = (3, 2) and simulate B = 10000 data sets, considering the

sample sizes n ∈ {20, 50, 100, 200}. Then, computing for each replication the modified

and standard likelihood-based statistics in the true parameter value, along with their

profile versions for both λ and φ, we obtain the results shown in Table 3.2.

Table 3.2: Simulated coverage of the approximate 95% confidence regions based on
the modified and standard statistics for the canonical inverse Gaussian model, with
respect to different sample sizes.

Parameter Statistic n = 20 n = 50 n = 100 n = 200

Global W̃u 0.9130 0.9343 0.9448 0.9493

W̃e 0.8724 0.9219 0.9388 0.9470

W̃ 0.9487 0.9469 0.9549 0.9522
Wu 0.9486 0.9488 0.9553 0.9533
We 0.9540 0.9511 0.9564 0.9539
W 0.9446 0.9468 0.9539 0.9520

α W̃Pu 0.9381 0.9441 0.9485 0.9529

W̃ ∗
Pu 0.9386 0.9441 0.9485 0.9529

W̃Pe 0.8941 0.9285 0.9416 0.9495

W̃P 0.9473 0.9479 0.9498 0.9534
WPu 0.9621 0.9538 0.9538 0.9548
WPe 0.9621 0.9538 0.9538 0.9548
WP 0.9412 0.9442 0.9486 0.9479

λ W̃Pu 0.9362 0.9448 0.9492 0.9518

W̃ ∗
Pu 0.9461 0.9483 0.9512 0.9515

W̃Pe 0.8848 0.9271 0.9408 0.9479

W̃P 0.9481 0.9470 0.9522 0.9507
WPu 0.9641 0.9541 0.9558 0.9523
WPe 0.9615 0.9532 0.9552 0.9520
WP 0.9413 0.9421 0.9519 0.9502

As in the case of the canonical gamma model, the standard global likelihood-based

statistics provide overall better results than the modified counterparts, in terms of at-

tained coverage.

Similarly as in the previous example, the modified profile score and likelihood ratio

statistics provide acceptable results, even in cases of relatively small sample size. As

regards the approximation W̃ ∗
Pu, it provides acceptable performance, in comparison to

both the exact statistic and to the expected coverage. In contrast, the modified profile



Chapter 3 - Simulation studies 59

Wald statistic seems to be unreliable from an inferential point of view, considering its

lack of attained coverage for relatively small n.

As the sample size increases, all the involved statistics improve in terms of simulated

coverage. Such result may be of interest since the inverse Gaussian model in canonical

parameterization lacks the regularity conditions related to its parameter space, and

besides the corresponding modified score equation admits multiple solutions.

3.2.3 Simulation from the gamma ratio model

Focusing our attention on the gamma ratio model, we generate B = 10000 data sets

by setting the true parameter value as θ = (ψ, λ) = (3, 7). Computing the modified

and standard likelihood-based statistics in θ and considering n ∈ {20, 50, 100, 200}, we
obtain the results illustrated in Table 3.3.

Table 3.3: Simulated coverage of the approximate 95% confidence regions based
on the modified and standard statistics for the gamma ratio model, with respect to
different sample sizes.

Parameter Statistic n = 20 n = 50 n = 100 n = 200

Global W̃u 0.9214 0.9394 0.9443 0.9463

W̃e 0.8601 0.9138 0.9298 0.9404
Wu 0.9483 0.9493 0.9513 0.9514
We 0.9227 0.9378 0.9419 0.9479
W 0.9473 0.9510 0.9504 0.9508

α W̃Pu 0.9644 0.9569 0.9550 0.9539

W̃ ∗
Pu 0.9766 0.9761 0.9754 0.9633

W̃Pe 0.9113 0.9292 0.9432 0.9445
WPu 0.9511 0.9527 0.9524 0.9520
WPe 0.9358 0.9396 0.9487 0.9480
WP 0.9456 0.9504 0.9513 0.9510

λ W̃Pu 0.9408 0.9482 0.9497 0.9489

W̃ ∗
Pu 0.9682 0.9696 0.9599 0.9561

W̃Pe 0.9283 0.9438 0.9477 0.9477
WPu 0.9510 0.9515 0.9504 0.9509
WPe 0.9510 0.9515 0.9504 0.9509
WP 0.9452 0.9504 0.9498 0.9492

It is clear that, as in the previous examples, the modified statistics for θ seem to

provide worse performance than the standard likelihood-based statistics. Due to the

fact that θ is not the canonical parameter, in this case the modified likelihood ratio

statistic is not available for comparison.
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Considering the profile cases, the modified profile score statistic provides acceptable

performance in terms of attained coverage. The corresponding approximation, however,

shows an overall conservative behaviour, providing fairly too large coverage than ex-

pected. Such outcome seems to agree with the results in Section 2.3.3, where the exact

constrained estimates show a curvature that cannot be suitably approximated.

In contrast, modified Wald-type inference seems to provide unreliable inference due

to lack of attained coverage, analogously as in the previous simulation studies. As n

increases, its performance seems to improve, as for the other involved statistics.

3.3 Biparametric logistic regression

Let us consider the biparametric logistic regression model without intercept, introduced

in Section 2.3.4. In contrast to the other biparametric models addressed in the previous

section, in this case we develop a more detailed simulation study, involving the modified

likelihood ratio test (2.3) and its profile version (2.5), as well as all the other likelihood-

based approximate pivots.

We simulate B = 10000 data sets from β = (β1, β2) = (−0.4, 0.3) and we compute

the approximate statistics in the true parameter value. The model matrix is kept fixed

for all the simulated data sets. As regards the corresponding profile versions, we only

consider β2 as the parameter of interest since both β1 and β2 have a similar scale and

are associated with covariates with almost same scale and position. Furthermore, we

also take into account an increasing sample size n ∈ {20, 50, 100, 200} in order to better

characterize the asymptotic properties involved.

We mention that, in the case of n = 20, one of the simulated data sets is affected

by linear separation, which prevents us from obtaining the standard likelihood-based

tests, except for the global score statistic (1.10). Excluding the latter, for the standard

likelihood-based statistics we compute the simulated coverage discarding the linearly

separated data set.

In Table 3.4, we illustrate the results obtained in this simulation study, considering

also different nominal significance levels α ∈ {0.01, 0.05, 0.10}. Considering the cases of

n = 20 and n = 50, we can observe that the modified score statistic performs well since

the attained coverage is close to each nominal confidence level. In this respect, we also

notice a slightly better performance than the modified likelihood ratio test.

In contrast, Wald-type inference with both (2.2) and (1.9) provides too broad con-

fidence intervals, resulting in a higher simulated coverage than expected. From a hy-

pothesis testing perspective, the standard and modified Wald tests tend to reject the
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Table 3.4: Simulated coverage of the standard and modified likelihood-based statis-
tics for the biparametric logistic regression model, with respect to different nominal
significance levels α and different sample sizes n. The values denoted by the symbol
∗ are obtained excluding the linear separated data set.

n Statistic α = 0.01 α = 0.05 α = 0.10

20 W̃u 0.9913 0.9504 0.8956

W̃e 1.0000 0.9983 0.9818

W̃ 0.9942 0.9611 0.9129
Wu 0.9943 0.9553 0.9024
We 1.0000∗ 0.9956∗ 0.9635∗

W 0.9857∗ 0.9354∗ 0.8760∗

50 W̃u 0.9902 0.9516 0.9019

W̃e 0.9978 0.9778 0.9385

W̃ 0.9924 0.9555 0.9090
Wu 0.9917 0.9543 0.9046
We 0.9970 0.9685 0.9227
W 0.9884 0.9467 0.8957

100 W̃u 0.9907 0.9511 0.8989

W̃e 0.9952 0.9663 0.9196

W̃ 0.9909 0.9543 0.9017
Wu 0.9909 0.9544 0.8990
We 0.9936 0.9607 0.9073
W 0.9892 0.9497 0.8941

200 W̃u 0.9896 0.9477 0.8970

W̃e 0.9925 0.9565 0.9073

W̃ 0.9902 0.9486 0.9001
Wu 0.9900 0.9479 0.8986
We 0.9914 0.9524 0.9038
W 0.9890 0.9470 0.8947

null hypothesis less often than desired, which may result in too conservative acceptance

regions. In this respect, we also note that the modified Wald statistic yields even worse

results than the unmodified counterpart.

An analogous analysis is reported in Table 3.5 as regards the profile version of each

statistic. Also in this case, the modified profile score yields satisfactory results as regards

the attained coverage, especially in comparison to the modified Wald test and in the

case of n = 20 and n = 50. Unlike the global case, we notice that the modified profile

likelihood ratio test provides a coverage that is slightly closer to the nominal confidence

levels than that of our proposed statistic. Besides, as theoretically expected from the

asymptotic results, increasing n in both global and profile cases improves the overall
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Table 3.5: Simulated coverage of the standard and modified profile likelihood-based
statistics for the biparametric logistic regression model, with respect to different nom-
inal significance levels α and different sample sizes n. The values denoted by the
symbol ∗ are obtained excluding the linear separated data set.

n Statistic α = 0.01 α = 0.05 α = 0.10

20 W̃Pu 0.9893 0.9444 0.8934

W̃Pe 0.9995 0.9843 0.9487

W̃P 0.9929 0.9529 0.9060
WPu 0.9899∗ 0.9435∗ 0.8902∗

WPe 0.9990∗ 0.9752∗ 0.9213∗

WP 0.9844∗ 0.9315∗ 0.8741∗

50 W̃Pu 0.9902 0.9483 0.8970

W̃Pe 0.9960 0.9651 0.9205

W̃P 0.9906 0.9524 0.9032
WPu 0.9897 0.9479 0.8953
WPe 0.9944 0.9568 0.9048
WP 0.9869 0.9437 0.8910

100 W̃Pu 0.9914 0.9486 0.8973

W̃Pe 0.9940 0.9588 0.9099

W̃P 0.9918 0.9507 0.9017
WPu 0.9914 0.9483 0.8973
WPe 0.9932 0.9520 0.9016
WP 0.9906 0.9471 0.8951

200 W̃Pu 0.9899 0.9483 0.8973

W̃Pe 0.9923 0.9526 0.9038

W̃P 0.9901 0.9494 0.8981
WPu 0.9899 0.9481 0.8973
WPe 0.9911 0.9503 0.8986
WP 0.9888 0.9463 0.8940

performance of all statistics, thereby reducing differences in this respect.

A more in-depth analysis with respect to the modified score statistic requires studying

the corresponding simulated distribution in more detail, especially assessing its corre-

spondence to the asymptotic null distribution. In order to address such a problem, we

compare the simulated and asymptotic null distribution by means of quantile-quantile

plots.

For the global modified score statistic, we obtain the quantile-quantile plots displayed

in Figure 3.1, with respect to the theoretical χ2
2 distribution. Taking into consideration

the varying sample size as well, we observe that there is no substantial discrepancy

between the simulated and asymptotic null distribution of the modified score test, even
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Figure 3.1: Biparametric logistic regression model. Quantile-quantile plots com-
paring the simulated null distribution of the modified score statistic for β to the
theoretical asymptotic χ2

2 null distribution for increasing sample size.

in the case of n = 20.

In contrast, the simulated distribution of the modified Wald statistic shows a lighter

right tail than the χ2
2, as illustrated in Figure 3.2. This result explains the over-coverage

shown by the modified Wald statistic. We also note that the discrepancy between the

simulated and expected distribution vanishes as the sample size increases, in accordance

with the asymptotic theory and with the results in Table 3.4.

As regards the modified profile score statistic for β2, comparing the corresponding

simulated distribution to its asymptotic null χ2
1 distribution reveals a substantial cor-

respondence between the former and the latter. As illustrated in Figure 3.3, this holds

also for smaller sample sizes.

In contrast, the modified profile Wald statistic shows a worse performance in this

respect, as clear from Figure 3.4. Especially for smaller sample sizes, the simulated

distribution of W̃Pe(β2) is affected by a lighter right tail than expected, which may

result in too wide confidence intervals or, analogously, in a too conservative bilateral
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Figure 3.2: Biparametric logistic regression model. Quantile-quantile plots com-
paring the simulated null distribution of the modified Wald statistic for β to the
theoretical asymptotic χ2

2 null distribution for increasing sample size.

hypothesis testing.

In order to assess the reliability of using the linear approximation instead of the

actual nuisance parameter estimate, we report in Table 3.6 a comparison between W̃Pu

and the corresponding approximation denoted by W̃ ∗
Pu, in terms of simulated coverage.

In this case, we observe a substantially satisfactory performance since the simulated

coverage is quite close to the nominal levels. Besides, we see that the results almost

coincide for n = 200. Hence, in this case the linear approximation seems to provide a

reliable alternative for hypothesis testing and the construction of confidence intervals.

3.4 Simulation from endometrial cancer data

The desirable properties of the modified (profile) score statistic in the case of a bipara-

metric logistic regression with no intercept have been assessed in the previous section.
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Figure 3.3: Biparametric logistic regression model. Quantile-quantile plots compar-
ing the simulated null distribution of the modified profile score statistic for β2 to the
theoretical asymptotic χ2

1 null distribution for increasing sample size.

Nevertheless, such setting is both artificial and relatively simple, which may result un-

representative with respect to real data problems. For this reason, we focus on the

endometrial data set and on the corresponding model (2.12) illustrated in Section

2.3.4, for which n = 79 and p = 4. Besides, considering such a problem for a simulation

study may be of particular interest due to the presence of quasi-complete separation.

In this case, we simulate B = 10000 data sets from model (2.12) setting β = β̃ =

(3.7746, 2.9293,−0.0348,−2.6042) and keeping the model matrix fixed. This approach

amounts to generating B parametric bootstrap replicates of the model response from

the mean bias-reduced estimate β̃.

Our simulations lead to 6013 linearly separated data sets, as assessed by using the

detectseparation package. For this reason, unlike the previous simulation study, we

focus exclusively on the modified approximate tests based on bias reduction, thereby

excluding the standard likelihood-based approximate pivots.

In Table 3.7, we report the simulated coverage with respect to the modified statistics
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Figure 3.4: Biparametric logistic regression model. Quantile-quantile plots compar-
ing the simulated null distribution of the modified profile Wald statistic for β2 to the
theoretical asymptotic χ2

1 null distribution for increasing sample size.

and to their profile counterparts, considering also each regression parameter. Further-

more, we also include in the comparison the approximate version of the modified profile

score statistic, denoted by W̃ ∗
Pu. For the sake of completeness, we also report the results

related to the intercept term β0, nonetheless we are usually more interested in the other

regression coefficients.

Unlike the previous simulation studies, in this case the modified score statistic seems

to underperform in terms of simulated coverage, since the attained values are quite far

from the nominal ones. For global confidence regions, the modified likelihood ratio test

seems the most adequate, while Wald-type inference yields still better results than the

modified score.

As regards the intercept term, the corresponding profile modified score yields ac-

ceptable performance, nonetheless its approximation fails to provide reliable confidence

regions. This outcome seems to be in agreement to the issue illustrated in Figure 2.22,

where the inadequacy of the linear approximation becomes quite evident considering β0.
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Table 3.6: Simulated coverage of the modified profile score statistic and the cor-
responding approximation for β2 in the biparametric logistic regression model, with
respect to different nominal significance levels α and different sample sizes n.

n Statistic α = 0.01 α = 0.05 α = 0.10

20 W̃Pu 0.9893 0.9444 0.8934

W̃ ∗
Pu 0.9887 0.9492 0.9036

50 W̃Pu 0.9902 0.9483 0.8970

W̃ ∗
Pu 0.9908 0.9491 0.8973

100 W̃Pu 0.9914 0.9486 0.8973

W̃ ∗
Pu 0.9915 0.9489 0.8975

200 W̃Pu 0.9899 0.9483 0.8973

W̃ ∗
Pu 0.9900 0.9484 0.8973

For the coefficient βNV, the modified profile score statistic provides a lower empirical

coverage than the nominal one, thereby yielding too narrow confidence intervals. Such

phenomenon seems in accordance with Figure 2.21. Quite unexpectedly, in this case the

approximation W̃ ∗
Pu seems to perform better in this respect. In contrast, both Wald-type

inference and the modified likelihood ratio test yield an overall better performance.

Considering βPI, the modified profile score statistic shows an acceptable performance

in terms of simulated coverage, however we note that the corresponding approximation

provides a simulated coverage that is greater than the nominal one. Also in this case,

the modified Wald and likelihood ratio tests equally show good results. The same

considerations hold for βEH as well.

To better investigate the simulated distribution of the modified score statistic, we

consider the quantile-quantile plots displayed in Figure 3.5. It is clear that the empirical

distribution of W̃u(β) is far from its asymptotic null distribution. As a matter of fact,

the former shows a heavier right tail than the χ2
4 distribution, which explains why

the simulated coverage is so low. In contrast, the modified Wald statistic seems more

adequate with respect to the χ2
4 distribution, although there is still a deviation for larger

values. As far as the modified likelihood ratio statistic is concerned, its asymptotic null

distribution seems to be the most accurate with respect to its simulated distribution.

Considering the modified profile score statistic for each parameter, we display in Fig-

ure 3.6 the corresponding quantile-quantile plots. It becomes evident that the simulated

distribution of W̃Pu(βNV) yields a much heavier right tail than desired, which results

in under-covering confidence intervals or, equivalently, in hypothesis testing with a too

large significance level if the χ2
1 distribution is employed. Such an issue seems to occur
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Table 3.7: Simulated coverage of the modified statistics and of the corresponding
profile versions in the simulation study from the endometrial data, with respect to
different nominal significance levels α.

Parameter Statistic α = 0.01 α = 0.05 α = 0.10

Global W̃u 0.9594 0.8821 0.8348

W̃e 0.9790 0.9338 0.8774

W̃ 0.9908 0.9537 0.9105

β0 W̃Pu 0.9888 0.9546 0.9101

W̃ ∗
Pu 0.9565 0.9125 0.8757

W̃Pe 0.9914 0.9533 0.9053

W̃P 0.9918 0.9561 0.9058

βNV W̃Pu 0.9692 0.9218 0.8763

W̃ ∗
Pu 0.9841 0.9484 0.9033

W̃Pe 0.9850 0.9518 0.9076

W̃P 0.9923 0.9653 0.9337

βPI W̃Pu 0.9919 0.9573 0.9138

W̃ ∗
Pu 0.9960 0.9741 0.9454

W̃Pe 0.9942 0.9542 0.9025

W̃P 0.9912 0.9505 0.9050

βEH W̃Pu 0.9871 0.9517 0.9079

W̃ ∗
Pu 0.9928 0.9719 0.9374

W̃Pe 0.9880 0.9496 0.9007

W̃P 0.9921 0.9557 0.9060

also with respect to β0 and βEH. However, this affects larger quantiles than the com-

monly used critical thresholds, resulting in a still acceptable performance considering a

nominal approximate significance level α ∈ {0.01, 0.05, 0.10}.
Clearly, inference on the coefficient βNV is quite problematic when using our proposed

statistic. Perhaps, such phenomenon is related to the fact that NV is the data-separating

covariate. For this reason, let us focus our attention on such parameter, addressing in

more detail the distributions of the modified Wald and likelihood ratio statistics as well,

as shown in Figure 3.7. Such illustration highlights the fact that also W̃Pe(βNV) and

W̃P (βNV) seem to be affected by the same issue, namely a clear deviation from the

expected asymptotic distribution, although not in the same magnitude as W̃Pu(βNV).

To investigate this further, an inspection of the simulated density of the modified

signed statistics r̃Pu(βNV), r̃Pe(βNV) and r̃P (βNV) reveals an appreciable discrepancy

from the asymptotic standard Gaussian distribution. Indeed, from the histograms re-

ported in Figure 3.8 the simulated distributions resemble a mixture of two bell-shaped
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Figure 3.5: Simulation study based on the endometrial data set. Quantile-quantile
plots comparing the simulated null distribution of the modified score (top-left), Wald
(top-right) and likelihood ratio (bottom-left) statistics for β to the theoretical asymp-
totic χ2

4 null distribution.

distributions. Indeed, conditionally on data separation, the two conditional simulated

distributions clearly differ in location and scale, as illustrated in the three left-hand side

panels in Figure 3.8.

To get a better understanding of the problem, a possibility is to increase the amount

of information contained in the data with respect to the model parameters, which can

be easily done by increasing the sample size. We achieve such a task by conducting a

second simulation study from the endometrial data set, however this time we duplicate

the rows of the model matrix. As a result, we simulate from the same model, obtaining

B = 10000 data sets of size n = 158.

Nonetheless, such a sample size does not protect from the presence of complete or

quasi-complete separation, indeed in our simulation 3634 data sets are still affected by

such an issue. In spite of this, it is of interest to assess possible improvements of our

proposed statistic stemming from an increased sample size.
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Figure 3.6: Simulation study based on the endometrial data set. Quantile-quantile
plots comparing the simulated null distribution of the modified profile score statistic
for each component of β to the theoretical asymptotic χ2

1 null distribution.
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Figure 3.7: Simulation study based on the endometrial data set. Quantile-quantile
plots comparing the simulated null distribution of the modified profile Wald (left)
and likelihood ratio (right) statistics for βNV to the theoretical asymptotic χ2

1 null
distribution.
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Figure 3.8: Histograms of the simulated distribution of the signed modified statistics
(left-hand side) and of their simulated distribution conditionally on data separation,
with respect to the simulation study based on the endometrial data set. The dashed
curve in the left-hand side panels corresponds to the standard normal density.

The results obtained from this simulation study are reported in Table 3.8. In the

first place, we can see a slight improvement of the modified score statistic for β since

the simulated coverage is slightly greater than that shown in Table 3.7. However, its

overall performance is still unsatisfying, considering that Wald-type inference provides

a fairly better protection against a too large type-I error probability.

Secondly, increasing the sample size seems to only slightly improve the attained

coverage of the modified score test in the most critical case, namely that of βNV as

parameter of interest. In this respect, the modified profile likelihood ratio statistic shows

no appreciable change in terms of simulated coverage, whereas Wald-type inference

provides slightly better results.

As regards the other regression coefficients, increasing the sample size results in an

overall improvement of our proposed statistic and of the corresponding approximation.

Nonetheless, considering the latter and β0 the attained coverage is still rather unsatisfy-

ing, which underlines a difficulty in providing a reliable approximation of the modified
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Table 3.8: Simulated coverage of the modified statistics and of the corresponding
profile versions in the second simulation study from the endometrial data, with
respect to different nominal significance levels α.

Parameter Statistic α = 0.01 α = 0.05 α = 0.10

Global W̃u 0.9700 0.9197 0.8653

W̃e 0.9829 0.9334 0.8841

W̃ 0.9923 0.9563 0.9078

β0 W̃Pu 0.9908 0.9528 0.9070

W̃ ∗
Pu 0.9685 0.9310 0.8954

W̃Pe 0.9910 0.9510 0.9020

W̃P 0.9912 0.9524 0.9039

βNV W̃Pu 0.9752 0.9346 0.8925

W̃ ∗
Pu 0.9859 0.9503 0.9094

W̃Pe 0.9860 0.9498 0.9096

W̃P 0.9936 0.9658 0.9305

βPI W̃Pu 0.9898 0.9534 0.9058

W̃ ∗
Pu 0.9947 0.9659 0.9250

W̃Pe 0.9890 0.9477 0.8957

W̃P 0.9887 0.9476 0.8978

βEH W̃Pu 0.9897 0.9519 0.9032

W̃ ∗
Pu 0.9923 0.9617 0.9178

W̃Pe 0.9897 0.9498 0.8989

W̃P 0.9928 0.9518 0.9041

profile score in this respect.

From the simulation studies from the endometrial data, we can draw possibly more

insightful conclusions than with those based on the biparametric logistic regression.

In the first place, in the case of a high probability of data separation it seems that

the theoretical assumptions related to the usual asymptotic distributions do not hold,

according to the results in Figure 3.8. In this case, such a problem does not seem to

dramatically affect the attained coverage of the modified Wald and log-likelihood ratio

statistics, provided that the usual nominal approximate levels are used. Nevertheless,

problems may arise when testing for unidirectional alternative hypotheses. We limit

ourselves to pointing out such an issue, nonetheless further theoretical investigation

may be required.

In the second place, the modified score statistic does not seem to be reliable in the

presence of data separation, for which the other alternatives provide a qualitatively

superior inference. Regardless, the profile version of the modified score statistic seems
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to be sufficiently reliable in terms of attained coverage, although with the exception

of βNV. In this respect, a higher sample size does not seem to substantially protect

from unsuitable coverage. Perhaps, such a problem persists due to the fact that βNV is

associated with the data-separating covariate.

Thirdly, approximating the modified profile score function does not seem to provide

reliable results in this case, considering the intercept term β0. This problem seems to

persist even with a double sample size, although in a slightly lower magnitude. Perhaps,

this issue may analogously derive from the high probability of data separation. In this

respect, the suitability of such approximation needs to be carefully considered in the

following simulation studies.

3.5 Logistic regression with increasing number of

covariates

In order to provide a more thorough characterization of our proposed statistic, in this

section we focus our attention on the dimensionality of the parameter space. Referring

to logistic regression models for both ease of discussion and for the existence of the

penalized log-likelihood (1.23), our aim is to study possible interactions between the

performance of the modified (profile) score statistic and an increasing dimension p of

the parameter, keeping the sample size n fixed.

We simulate B = 10000 data sets consisting of n = 200 observations and a p-

dimensional regression parameter β = (β1, . . . , βp), with p ∈ {5, 10, 20, 30}. More

specifically, we first generate the p components of β from a standard Gaussian dis-

tribution. Then, for each p we simulate p − 1 covariates from independent standard

normal distributions, while keeping an intercept term corresponding to β1. Such model

matrix is kept fixed for each p.

In our simulations, complete or quasi-complete separation occurred only in the case

of p = 30, resulting in a total of 242 separated data sets. Considering a higher p resulted

in a much greater amount of separated data sets, therefore we limit ourselves to p ≤ 30.

Considering nominal approximate significance levels α ∈ {0.01, 0.05, 0.10}, we report
in Table 3.9 the simulated coverage of the modified statistics. The structure of our

simulation study allows us to focus on a single parameter of interest, namely β2, in

order to compare the corresponding modified profile statistics.

Clearly, W̃u(β) seems to lose attained coverage as p increases, which entails misleading

inference on the model parameters. In contrast, the modified Wald and likelihood ratio
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Table 3.9: Simulated coverage of the modified statistics and of the corresponding
profile versions for β2 in the logistic regression model, with respect to different nominal
significance levels α and parameter dimensions p.

p Parameter Statistic α = 0.01 α = 0.05 α = 0.10

5 Global W̃u 0.9863 0.9439 0.8928

W̃e 0.9923 0.9591 0.9169

W̃ 0.9891 0.9505 0.9000

β2 W̃Pu 0.9896 0.9477 0.8973

W̃ ∗
Pu 0.9902 0.9486 0.8987

W̃Pe 0.9930 0.9557 0.9068

W̃P 0.9906 0.9501 0.8996

10 Global W̃u 0.9787 0.9303 0.8729

W̃e 0.9921 0.9590 0.9157

W̃ 0.9910 0.9532 0.9061

β2 W̃Pu 0.9902 0.9494 0.8971

W̃ ∗
Pu 0.9920 0.9535 0.9026

W̃Pe 0.9932 0.9553 0.9030

W̃P 0.9906 0.9477 0.8972

20 Global W̃u 0.9608 0.8883 0.8163

W̃e 0.9897 0.9613 0.9248

W̃ 0.9920 0.9551 0.9073

β2 W̃Pu 0.9909 0.9515 0.9046

W̃ ∗
Pu 0.9930 0.9575 0.9089

W̃Pe 0.9925 0.9551 0.9081

W̃P 0.9897 0.9511 0.9019

30 Global W̃u 0.9102 0.8047 0.7216

W̃e 0.9775 0.9302 0.8832

W̃ 0.9924 0.9610 0.9182

β2 W̃Pu 0.9942 0.9618 0.9169

W̃ ∗
Pu 0.9958 0.9702 0.9282

W̃Pe 0.9933 0.9560 0.9053

W̃P 0.9913 0.9528 0.9059

statistics show a satisfying behaviour with respect to the corresponding asymptotic null

distributions.

As regards W̃Pu(β2), the corresponding attained coverage seems to be sufficiently

close to the nominal ones and comparable to the other modified profile statistics, if not

for slight over-coverage in the case p = 30. Furthermore, the corresponding approx-

imation denoted by W̃ ∗
Pu provides an overall acceptable result in terms of simulated

coverage, although when p = 30 it shows a more conservative behaviour than W̃Pu.
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A further comparison can be made considering also the standard likelihood-based

statistics, whose simulated coverage is reported in Table 3.10.

Table 3.10: Simulated coverage of the standard likelihood-based statistics and their
profile versions for β2 in the logistic regression model, with respect to different nom-
inal significance levels α and parameter dimensions p. The values denoted “∗” were
computed considering the 9758 non-separated data sets.

p Parameter Statistic α = 0.01 α = 0.05 α = 0.10

5 Global Wu 0.9888 0.9488 0.8993
We 0.9924 0.9585 0.9130
W 0.9870 0.9449 0.8887

β2 WPu 0.9898 0.9476 0.8946
WPe 0.9909 0.9500 0.8972
WP 0.9894 0.9450 0.8937

10 Global Wu 0.9885 0.9511 0.9026
We 0.9957 0.9711 0.9339
W 0.9846 0.9371 0.8805

β2 WPu 0.9882 0.9375 0.8824
WPe 0.9908 0.9412 0.8863
WP 0.9860 0.9322 0.8791

20 Global Wu 0.9867 0.9466 0.9009
We 0.9985 0.9870 0.9703
W 0.9677 0.8911 0.8126

β2 WPu 0.9803 0.9170 0.8568
WPe 0.9864 0.9248 0.8620
WP 0.9756 0.9093 0.8515

30 Global Wu 0.9835∗ 0.9412∗ 0.8974∗

We 0.9995∗ 0.9965∗ 0.9918∗

W 0.9009∗ 0.7593∗ 0.6494∗

β2 WPu 0.9554∗ 0.8535∗ 0.7752∗

WPe 0.9813∗ 0.8854∗ 0.7972∗

WP 0.9309∗ 0.8311∗ 0.7606∗

We notice that the score statistic for β yields considerable performance in terms of

attained coverage, even as p becomes larger. Nonetheless, all the standard likelihood-

based profile statistics for β2 clearly fail to provide sufficient coverage with respect to

each nominal α, especially as p becomes larger. In contrast, a more reliable profile

inference is available by means of the modified profile statistics based on bias reduction,

including the approximation W̃ ∗
Pu.

In order to get a further understanding on the simulated distribution of the mod-

ified score statistic, we provide a comparison with respect to the asymptotic null χ2
p

distribution for different p, as shown in Figure 3.9.



76 Section 3.5 - Logistic regression with increasing number of covariates

0 5 10 15 20 25

0
5

1
0

1
5

2
0

2
5

3
0

p = 5

Theoretical χ5
2
 quantiles

E
m

p
ir

ic
a
l 
q
u
a
n
ti
le

s
 o

f 
W~

u
(β

)

0 10 20 30

0
1
0

2
0

3
0

4
0

p = 10

Theoretical χ10
2

 quantiles

E
m

p
ir

ic
a
l 
q
u
a
n
ti
le

s
 o

f 
W~

u
(β

)

10 20 30 40 50

1
0

2
0

3
0

4
0

5
0

6
0

p = 20

Theoretical χ20
2

 quantiles

E
m

p
ir

ic
a
l 
q
u
a
n
ti
le

s
 o

f 
W~

u
(β

)

10 20 30 40 50 60

2
0

4
0

6
0

8
0

1
2
0

p = 30

Theoretical χ30
2

 quantiles

E
m

p
ir

ic
a
l 
q
u
a
n
ti
le

s
 o

f 
W~

u
(β

)

1
0
0

Figure 3.9: Logistic regression model with varying parameter dimension p. Quantile-
quantile plots comparing the simulated distribution of W̃u(β) to the corresponding
asymptotic χ2

p null distribution.

It is clear that, as p becomes larger, the empirical simulated distribution of W̃u(β)

becomes affected by a too heavy right tail if compared to that of a χ2
p distribution,

which results in insufficient attained coverage. In contrast, even considering p = 30,

Wald-type inference and the modified likelihood ratio statistic provide more cohesion

between the simulated and asymptotic null distributions, as illustrated in Figure 3.10.

Focusing our attention on the modified profile score statistic for β2, there seems to

be no dramatic departure from its asymptotic χ2
1 distribution. Only considering p = 30,

the right tail of the corresponding simulated distribution is appreciably lighter than the

expected one, which may result in too conservative confidence intervals and hypothesis

testing for β2.

Again, considering the highest dimension p = 30, we also report the quantile-quantile

plots of the modified profile Wald and likelihood ratio statistics in Figure 3.12. Such

illustration highlights that W̃Pe(β2) provides an overall worse cohesion to the χ2
1 dis-

tribution than our proposed statistic does, especially considering the right tail of the
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Figure 3.10: Logistic regression model with p = 30. Quantile-quantile plots compar-
ing the simulated distribution of W̃e(β) (left) and W̃(β) (right) to the corresponding
asymptotic χ2

30 null distribution.
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Figure 3.11: Logistic regression model with varying parameter dimension p.
Quantile-quantile plots comparing the simulated distribution of W̃Pu(β2) to the cor-
responding asymptotic χ2

1 null distribution.
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simulated distribution. Nonetheless, this does not seem to affect the corresponding per-

formance as regards the usual nominal confidence levels, for which Wald-type inference

provides a better simulated coverage. Furthermore, focusing on W̃P (β2), it is evident

that such statistic yields the best overall performance.
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Figure 3.12: Logistic regression model with p = 30. Quantile-quantile plots com-
paring the simulated distribution of W̃Pe(β2) (left) and W̃P (β2) (right) to the corre-
sponding asymptotic χ2

1 null distribution.

From this simulation study, it is clear that a higher dimensionality of the parameter

dramatically affects the performance of the modified score statistic, while in contrast its

profile counterpart seems to be more stable in this respect. Furthermore, the previous

simulation study based on the endometrial data provides a similar outcome, namely

showing the inadequacy of the global modified score statistic, although in the latter

example the dimensionality is relatively low.

The issues of the modified score statistic do not seem to be related to the over-

all parameter dimension p. Therefore, an important question that stems from these

results is whether the dimension p0 of the parameter of interest affects the overall

performance of the modified profile score statistic. To investigate this further, let

us consider the case p = 30 and an increasing dimension of the parameter of inter-

est. Then, for each simulated data set we compute the modified profile score statis-

tic with respect to the first p0 components of the regression parameter β, considering

p0 ∈ {2, 5, 8, 11, 14, 17, 20, 23, 26, 29}. Given a nominal significance level α = 0.05, we

compute the attained coverage for each p0 for both W̃Pu and its approximation W̃ ∗
Pu,

and display the outcome in Figure 3.13 as functions of p0. For a broader comparison,

we also consider W̃Pe and W̃P .
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Figure 3.13: Percentage of attained coverage of W̃Pu (solid line), W̃ ∗
Pu (dashed

line), W̃Pe (long-dashed line) and W̃P (dot-dashed line), with respect to the logistic
regression model with p = 30 and a nominal significance level α = 0.05. The horizontal
dotted line shows the desired 95% coverage.

Quite evidently, the performance of the proposed statistic degrades as we consider

higher-dimensional parameters of interest, in accordance with the previous results. This

suggests that the modified (profile) score statistic should be used with respect to rela-

tively low-dimensional parameters, whereas for higher p0 the other modified statistics

are more suitable. Moreover, from Figure 3.13 we notice that the approximate modified

profile score statistic is affected by a faster and more accentuated degradation in terms

of attained coverage. Regardless, for a relatively small value of p0 it still provides a

qualitatively satisfying inference.

This simulation study clearly illustrates that the modified profile score statistic and

its approximation can yield acceptable performance even in cases of a relatively high

parameter dimension. Nonetheless, the corresponding inferential procedures should be

carried out considering low dimensional parameters of interest. In practical settings

this could be an unimportant limitation, provided that for instance confidence intervals

or single-parameter significance tests are of interest. Conversely, if the practitioner

is interested in testing for higher-dimensional parameters, additional care needs to be

taken when using the modified score and profile score statistics.
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3.6 Simulation from infertility data

In the previous section, we considered a simulation study based on an artificially gen-

erated problem, which could provide us with a better understanding on the modified

score statistic, especially with respect to the related issues in the presence of relatively

high-dimensional parameters of interest. Nonetheless, analogously as with the simu-

lations based on the biparametric logistic regression, such an artificial setting may be

unrepresentative with respect to real data problems.

For this reason, let us consider a further simulation study based on a real data set.

In this respect, we take into consideration the infert data, available for instance from

the datasets (R Core Team, 2023) package in R. Such data were collected in the work

of Trichopoulos et al. (1976), whose objective was to study the relationship between

secondary sterility and abortion.

As described in Kosmidis et al. (2020, Section 5.4), from which our study is inspired,

the infert data stems from a retrospective and matched case-control study involving

83 patients affected by secondary sterility. For each patient, two healthy controls are

matched based on corresponding age, education and parity, with the exception of a

patient for which only one control is available. As a result, the data set consists of a

total of n = 248 rows corresponding to either cases or matched controls.

In the first place, for each statistical unit a dichotomous variable denoted by case

is available and coded as 0 and 1 to indicate controls and cases respectively. In the

second place, stratum is a qualitative ordinal variable coded with integers ranging from

1 to 83, labeling each matched set of cases and controls. Thirdly, for each subject the

variables spontaneous and induced respectively measure the presence of spontaneous

and induced abortions. Both variables are coded in such a way that 0 corresponds to

absence of abortions, 1 indicates one abortion and 2 denotes that two or more abortions

have occurred. Further information such as age and education is available for each

subject, nonetheless our focus is exclusively on the aforementioned variables. A brief

summary of the data is reported in Table 3.11, considering the absolute frequencies of

each combination of case, spontaneous and induced.

Based on Kosmidis et al. (2020, Formula (12)), a suitable statistical model for such

data is

log

(

πij
1− πij

)

= λi + β1xij + β2x
′
ij + β3zij + β3z

′
ij, (3.1)

where πij corresponds to the probability of secondary infertility for the j-th subject that

belongs to i-th matched set, for i = 1, . . . , 83 and j = 1, . . . , ni, with ni being the total

subjects in the i-th stratum. Model (3.1) corresponds to a logistic regression model,
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Table 3.11: Absolute frequencies with respect to the variables case, spontaneous
and induced in the infert data.

spontaneous

case induced 0 1 2

0 0 60 25 11
1 33 11 1
2 20 4 0

1 0 7 22 18
1 12 5 6
2 9 4 0

where λi are strata-specific intercepts that can be regarded as 83 nuisance parameters.

In contrast, β = (β1, β2, β3, β4) denotes the vector of regression parameters associated

with the model covariates, therefore it can be regarded as our parameter of interest. As

regards the covariates, xij and x
′
ij are dummy variables corresponding to spontaneous

being 1 and 2 respectively, while analogously zij and z
′
ij indicate induced being 1 and

2 respectively. For this reason, the design matrix corresponding to model (3.1) consists

of n = 248 rows and p = 87 columns.

Following the terminology and definitions of Pace & Salvan (1997, page 124), in this

case the nuisance parameter λ = (λ1, . . . , λ83) corresponds to an incidental parameter,

considering that its dimension depends on the sample size. In contrast, the parameter β

can be regarded as a structural parameter since it characterizes the common structure

of the data.

In this problem, we also note that the sample size within each stratum is at most

3, while in contrast the number of strata is 83. In such settings, suitable modifica-

tions of the profile likelihood can provide a qualitatively superior inference than profile

likelihood, considering that the size of the incidental parameter is O(n) and causes in-

consistency of the maximum likelihood estimator of β (for a more thorough discussion,

see Sartori, 2003).

An additional and well-known approach used to deal with incidental parameters is

given by the conditional likelihood, obtained by conditioning on a partially sufficient

statistic for λ (see for example Pace & Salvan, 1997, pages 128 and 133). Nonetheless,

as mentioned in Kosmidis et al. (2020, Section 5.4), such a method lacks the generality

of both mean and median bias reduction, considering that the existence of a sufficient

statistic for the strata-specific parameters is not guaranteed, for instance considering

probit regression instead of model (3.1). Furthermore, inference based on mean and
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median bias reduction allows to obtain estimates for the nuisance parameters as well,

in contrast with conditional likelihood.

Through the application of mean bias reduction, we obtain the estimate for β re-

ported in Table 3.12, along with the corresponding standard errors and approximately

95% Wald-type confidence intervals. From such results, we can see that the components

of the mean bias-reduced estimate β̃ are positive and statistically significant, with re-

spect to a component-wise hypothesis testing against nullity and considering a nominal

approximate significance level of 0.05.

Table 3.12: Summary of the mean bias-reduced parameter estimates for the infert
data and approximate 95% Wald-type confidence intervals.

Estimate Standard error Confidence interval

β1 2.0550 0.4721 (1.1297, 2.9804)
β2 3.9538 0.7077 (2.5669, 5.3408)
β3 1.3050 0.4742 (0.3756, 2.2345)
β4 2.7145 0.7438 (1.2567, 4.1723)

Considering the profile modified score statistic and its approximation for each re-

gression parameter, we obtain the approximately 95% confidence intervals reported in

Table 3.13. From such results, we observe that the approximate modified profile score

statistic yields a comparable outcome with respect to its exact counterpart. Further-

more, from a hypothesis testing perspective both statistics lead to analogous results

as with Wald-type inference, at least considering testing against nullity of the model

coefficients.

Table 3.13: Approximate 95% confidence intervals of the model parameters based on
the modified profile score statistic and the corresponding approximation, with respect
to the infert data.

Exact Approximate

β1 (1.3015, 2.9385) (1.2115, 2.7761)
β2 (2.8368, 5.2472) (2.8393, 5.1487)
β3 (0.5280, 2.2038) (0.4176, 2.0331)
β4 (1.4947, 4.0783) (1.2625, 3.8542)

In this case, it could also be of interest to profile the parameters (β1, β2) and (β3, β4),

which amounts to respectively testing for nullity of the effects of spontaneous and

induced on the probability of second sterility. Furthermore, in this case it could be of
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interest to assess the significance of the overall effect of both spontaneous and induced

abortions, which amounts to testing for H0 : β = 0 against H1 : β 6= 0.

In Table 3.14, we report the results obtained with the modified profile score statistic,

along with the corresponding approximation denoted by W ∗
Pu and with the modified

Wald and likelihood ratio statistics. Clearly, in this case all the employed statistics lead

to an analogous result, namely that of considering the main effects of induced and/or

spontaneous abortions as statistically significant, at least with respect to an approximate

significance level of 0.05.

Table 3.14: Hypothesis testing for nullity of the effects of spontaneous, induced
and their overall effect β, with respect to the infert data

Degrees of freedom W̃Pu W̃ ∗
Pu W̃Pe W̃P

β 4 69.0699 45.5388 34.6281 56.8201
(β1, β2) 2 69.1558 48.2024 34.6103 56.6829
(β3, β4) 2 22.5631 10.5476 14.0661 19.0974

To better investigate the inferential reliability of the modified score and profile score

statistics, we conduct a simulation study by generating B = 3000 data sets from model

(3.1), setting (λ, β) = (λ̃, β̃), where λ̃ is the mean bias-reduced estimate for the strata-

specific parameters in λ. The model matrix is kept fixed as that of the original data.

Due to the computational effort entailed by the relatively large number of covariates, in

this case we could consider an appreciably lower number of simulated replications.

Unfortunately, all of our simulated data sets are affected by complete or quasi-

complete data separation, which prevents us from considering standard likelihood-based

inference for further comparisons in this simulation study. As assessed by using the

detectseparation package, in 2982 cases separation occurred exclusively due to co-

variates associated with λ.

After computing all the modified profile statistics for β, (β1, β2), (β3, β4) and for each

scalar component of β in the true parameter value, we obtain the simulated coverage

reported in Table 3.15, considering different nominal approximate significance levels.

From such results, we observe that the modified profile score statistic provides slightly

low but not unsatisfying attained coverage when profiling β. Conversely, in accordance

with the previous simulation study, the approximate modified profile score statistic

shows noticeable inadequacy in terms of coverage. As regards the modified Wald statis-

tic, we notice a clear over-coverage with respect to each nominal confidence level.
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Table 3.15: Simulated coverage of the modified statistics and of the corresponding
profile versions in the logistic regression model, with respect to the simulation study
based on the infert data and to different nominal significance levels.

Parameter Statistic α = 0.01 α = 0.05 α = 0.10

β W̃Pu 0.9850 0.9373 0.8840

W̃ ∗
Pu 0.9657 0.9010 0.8427

W̃Pe 0.9983 0.9783 0.9487

W̃P 0.9937 0.9583 0.9210

(β1, β2) W̃Pu 0.9870 0.9510 0.9097

W̃ ∗
Pu 0.9783 0.9363 0.8880

W̃Pe 0.9960 0.9730 0.9410

W̃P 0.9927 0.9647 0.9267

(β3, β4) W̃Pu 0.9850 0.9400 0.8883

W̃ ∗
Pu 0.9720 0.9193 0.8697

W̃Pe 0.9967 0.9693 0.9283

W̃P 0.9910 0.9570 0.9050

β1 W̃Pu 0.9937 0.9530 0.9033

W̃ ∗
Pu 0.9873 0.9517 0.9073

W̃Pe 0.9950 0.9703 0.9247

W̃P 0.9953 0.9620 0.9123

β2 W̃Pu 0.9910 0.9633 0.9270

W̃ ∗
Pu 0.9843 0.9487 0.9137

W̃Pe 0.9953 0.9693 0.9310

W̃P 0.9950 0.9683 0.9287

β3 W̃Pu 0.9883 0.9413 0.8863

W̃ ∗
Pu 0.9810 0.9390 0.8843

W̃Pe 0.9960 0.9603 0.9117

W̃P 0.9920 0.9497 0.8963

β4 W̃Pu 0.9880 0.9520 0.9017

W̃ ∗
Pu 0.9780 0.9400 0.8947

W̃Pe 0.9947 0.9637 0.9250

W̃P 0.9920 0.9580 0.9120

Furthermore, while W̃Pu provides acceptable results when profiling the overall effect

of spontaneous and induced, the corresponding approximation W̃ ∗
Pu fails to yield suffi-

cient coverage with respect to each nominal confidence level. The converse case is given

by Wald-type inference, where we observe that the corresponding confidence regions

result in a too large coverage, or equivalently to conservative hypothesis testing.

Considering scalar parameters of interest, the modified profile score statistic and the

corresponding approximation provide a simulated coverage that is quite close to each
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nominal one. In contrast, also in this case Wald-type inference seems to show a too

conservative behaviour.

To further investigate the simulated distribution of the modified profile score statistic

for β and profiling the effects of spontaneous and induced, we illustrate the quantile-

quantile plots in Figure 3.14, comparing the simulated and asymptotic null distributions.

Clearly, the modified score function shows considerable cohesion with respect to its
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Figure 3.14: Simulation study based on the infert data. Quantile-quantile plots
comparing the simulated distribution of W̃Pu for β, (β1, β2) and (β3, β4) to the corre-
sponding asymptotic null distributions.

asymptotic distribution, although the simulated distribution of W̃Pu(β) has a slightly

heavier tail than expected, resulting in under-coverage as shown in Table 3.15.

On the contrary, the simulated distribution of W̃Pe when profiling β and the main

effects of spontaneous and induced, as displayed in Figure 3.15, shows a more evident

departure from the corresponding asymptotic null distributions, namely with lighter

right tails than expected. Such discrepancy entails the over-coverage of Wald-type

inference, consistently to the results in Table 3.15.
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Figure 3.15: Simulation study based on the infert data. Quantile-quantile plots
comparing the simulated distribution of W̃Pe for β, (β1, β2) and (β3, β4) to the corre-
sponding asymptotic null distributions.

Focusing on scalar parameters of interest, we consider the simulated distribution of

W̃Pu for each component of the structural parameter β, as illustrated in Figure 3.16.

In accordance with the simulated coverage shown in Table 3.15, there seems to be no

substantial departure from the χ2
1 distribution, entailing an overall reliable inference

with respect to scalar parameters of interest.

Conversely, addressing in more detail the simulated distribution of the modified Wald

statistic as in Figure 3.17, we notice a comparably worse performance in terms of co-

hesion to the χ2
1 distribution. Clearly, the presence of a lighter right tail than expected

may result in a too conservative inference on the model coefficients, in accordance with

the over-covering confidence intervals as reported in Table 3.15.

This simulation study allows us to regard the modified profile score statistic as reliable

from an inferential perspective, even considering a real data setting with a relatively

high-dimensional nuisance parameter.

In contrast to the simulation study based on the endometrial data, in this case the
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Figure 3.16: Simulation study based on the infert data. Quantile-quantile plots
comparing the simulated distribution of W̃Pu for each scalar component of β to the
corresponding asymptotic null distribution.

presence of exclusively complete or quasi-complete separated data sets in our simulation

does not seem to affect the inferential quality provided by the modified profile score

statistic. Perhaps, the lack of such a problem could be explained by the fact that,

in this case, the data-separating covariates are mostly associated with the incidental

parameter λ and not with β, on which we focused our attention.

As regards the approximate modified profile score statistic, in this case it has proven

unsuitable in the presence of non-scalar parameters of interest, with particular regard

to β. Such result seems to agree with that of the previous simulation study, namely the

effect of the increasing dimension of the parameter of interest, as was shown in Figure

3.13. In contrast to the simulation study based on endometrial, where the inadequacy

of W ∗
Pu was evident even considering scalar parameters of interest, in this case such a

problem does not seem to occur.

For what concerns the modified profile likelihood ratio statistic, as expected from

the previous simulation studies, it clearly provides the most accurate inference on the
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Figure 3.17: Simulation study based on the infert data. Quantile-quantile plots
comparing the simulated distribution of W̃Pe for each scalar component of β to the
corresponding asymptotic null distribution.

model parameters, with respect to the corresponding simulated coverage in Table 3.15.

A considerably accurate performance is provided in all cases, also when profiling β,

where in contrast the modified profile score statistic underperforms. Nonetheless, in

more general settings we should also consider that the existence of a penalized likelihood

as (1.23) is no longer guaranteed, considering for instance non-canonical link functions,

such as the probit.



Conclusion

Inference within the framework of bias reduction can provide a valuable alternative to

standard likelihood inference, as also addressed in this work. For this reason, further

research towards suitable approximate pivotal quantities based on bias reduction can

be of particular interest.

The foregoing simulation studies highlight that the modified score statistic, along

with its profile version, can provide a valuable alternative to Wald-type inference within

the framework of bias reduction. Although the modified profile likelihood ratio statistic

can yield more reliable inference, such results are of interest for models in which the

penalized log-likelihood as (1.23) does not exist.

More specifically, the previous results suggest that the proposed statistic should be

preferably used in the presence of relatively low-dimensional parameters of interest,

for instance when constructing confidence intervals. Conversely, inference on higher-

dimensional parameters should be carried out with caution due to the potentially high

type-I error probability.

Furthermore, in the presence of binary data affected by complete or quasi-complete

separation, our results suggest that the modified profile score statistic should be used

when profiling parameters that are not involved in the data separation. On the contrary,

inference involving such parameters needs to be carried out with additional care when

using the proposed statistic.

As far as the approximate modified profile score statistic is concerned, our simulations

illustrate that it can provide a reliable and fast alternative to the corresponding exact

version, provided that we consider low-dimensional parameters of interest. This may not

be too strict of a limitation, since the computational advantage of the approximation

proves useful when constructing confidence intervals.

Nonetheless, such approximation should be used with caution in the presence of

constrained bias-reduced estimates with too prominent curvature or in the case of data

separation. In the latter situation, even inference on parameters that are not associated

with the data-separating hyperplane could be misleading.

89
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Surely, our work has limitations that needs to be addressed. To begin with, through-

out our simulation studies we mainly considered binary logistic regression models. This

is motivated by the fact that such models are notorious for the non-existence of max-

imum likelihood estimate and, moreover, we could provide a comparison including the

modified likelihood ratio statistic.

Nonetheless, additional simulation studies could be required when considering non-

canonical link functions and binomial regression models with non-unit weights. Further-

more, other studies could be of interest with respect to regression models with Poisson

response. Our implementation, reported in the Appendix, could be useful in this re-

spect, considering that it allows to carry out the inferential procedures addressed in

our work with respect to most of the generalized linear models with unit dispersion

parameter.

In contrast, a further implementation effort is needed with respect to generalized

linear models with unknown dispersion parameter, an example being gamma regression.

Of course, further simulation studies could prove useful to address such problems as

well.

Another limitation of our work is that we exclusively considered the case of mean bias

reduction, due to both ease of discussion and to the corresponding invariance properties,

which can be of more interest in practical settings. Nevertheless, it is clear that further

simulation studies considering mean bias reduction and the mixed adjustment approach

could provide a further understanding on the modified score statistic.

Further research could focus on studying the performance of

W̃ †
u(θ) = Ũ(θ)⊤i(θ̃)−1Ũ(θ),

namely the modified score statistic with i(θ) replaced with i(θ̃). Considering the parti-

tion of the model parameter θ = (ψ, λ), the corresponding profile version for ψ is

W̃ †
Pu(ψ) = Ũψ(ψ, λ̃ψ)

⊤iψψ(θ̃)Ũψ(ψ, λ̃ψ).

The replacement of the information matrix computed in θ could have noticeable effects

on the performance of such statistics. The implementation provided in the Appendix

also allows to use such a replacement, which could be useful for simulation studies in

this respect.

Further investigation is required to study the theoretical asymptotic distribution of

r̃P (ψ), r̃Pe(ψ) and r̃Pu(ψ), when ψ is involved in data separation. As a matter of fact,

the results in Figure 3.8 point out a potential issue in the distribution of the signed
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modified statistics based on bias reduction. Namely, the empirical distribution of such

statistics resembles a mixture of two different distributions instead of the asymptotic

standard Gaussian one. Perhaps, this phenomenon could be explained by the fact that

the standard asymptotic results hold no longer in case of data separation, since the

maximum likelihood estimator is located in the boundary of the parameter space with

non-negligible probability.





Appendix

### Libraries

require(brglm2)

###===============================================

### 1. Test statistic

###===============================================

### Modified score

modified.score.fun = function(object, beta){

y = object$y

x = model.matrix(object)

nobs = nrow(x)

nvars = ncol(x)

linkfun = object$family$linkfun

linkinv = object$family$linkinv

mu.eta = object$family$mu.eta

d2mu.deta = object$family$d2mu.deta

variance = object$family$variance

etas = drop(x %*% beta)

mus = linkinv(etas)

d1mus = mu.eta(etas)

d2mus = d2mu.deta(etas)

varmus <- variance(mus)

weights = object$prior.weights

working_weights <- weights * d1mus^2 / varmus

score_components <- weights * d1mus * (y - mus) / varmus * x

93
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## Score function

s_beta = .colSums(score_components, nobs, nvars, TRUE)

## Mean bias reduction adjustment:

## firstly obtain the "hat" values. As in the original code from

## ‘brglmFit‘, we use the QR decomposition to compute them

wx <- sqrt(working_weights) * x

qr_decomposition <- qr(wx)

Qmat <- qr.Q(qr_decomposition)

hatvalues = .rowSums(Qmat * Qmat, nobs, nvars, TRUE)

## Adjustment (mean bias reduction)

A_beta = .colSums(0.5 * hatvalues * d2mus/d1mus * x,

nobs, nvars, TRUE)

## Modified score

return(s_beta + A_beta)

}

### Expected information matrix

i.fun = function(object, beta, inverse = FALSE){

y = object$y

x = model.matrix(object)

nobs = nrow(x)

nvars = ncol(x)

linkfun = object$family$linkfun

linkinv = object$family$linkinv

mu.eta = object$family$mu.eta

d2mu.deta = object$family$d2mu.deta

variance = object$family$variance

etas = drop(x %*% beta)

mus = linkinv(etas)

d1mus = mu.eta(etas)

varmus <- variance(mus)

weights = object$prior.weights
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working_weights <- weights * d1mus^2 / varmus

## As in the original code from brglmFit, use QR decomposition

wx <- sqrt(working_weights) * x

qr_decomposition <- qr(wx)

R_matrix <- qr.R(qr_decomposition)

if (inverse) {

## return(dispersion * tcrossprod(solve(R_matrix)))

return(chol2inv(R_matrix))

}else{

return(crossprod(R_matrix))

}

}

### Jacobian matrix of the modified score function

### (we derive it numerically)

jtilde.fun = function(object, beta){

-numDeriv::jacobian(function(x) modified.score.fun(object, x),

x = beta)

}

### Global test

Wu.fun = function(object, beta, type = "variable"){

s_beta = modified.score.fun(object, beta)

i_betabeta = switch(type,

variable = i.fun(object, beta, TRUE),

local = vcov(object))

return(drop(crossprod(s_beta, i_betabeta) %*% s_beta))

}

### Profile test

### 1. Approximate constrained estimate

nuisance_approximate = function(object, parm, beta, jtilde = NULL,

jtilde.inv = NULL){

## jtilde.inv refers to j_{\lambda \lambda}^{-1} computed in

## the bias-reduced estimate
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if(is.null(jtilde)) jtilde = jtilde.fun(object, object$coefficients)

if(is.null(jtilde.inv)) jtilde.inv = solve(jtilde[-parm,-parm])

interest.br = object$coefficients[parm]

nuisance.br = object$coefficients[-parm]

drop(nuisance.br + jtilde.inv %*% jtilde[-parm,parm] %*%

(interest.br - beta))

}

### 2. Exact constrained estimate

nuisance_exact = function(object, parm, beta, init = NULL,

quasifisher = TRUE, maxit = 500){

if(is.null(init)){

init = nuisance_approximate(object, parm, beta)

}

if(!quasifisher){

out = nleqslv::nleqslv(init,

function(x){

beta.all = object$coefficients

beta.all[-parm] = x # nuisance

beta.all[parm] = beta # interest

modified.score.fun(object,

beta.all)[-parm]

},

method = "Newton",

global = "none",

control = list(maxit = maxit,

allowSingular = TRUE))

}

else{

out = nleqslv::nleqslv(init,

function(x){

beta.all = object$coefficients

beta.all[-parm] = x # nuisance

beta.all[parm] = beta # interest
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modified.score.fun(object,

beta.all)[-parm]

},

jac = function(x){

beta.all = object$coefficients

beta.all[-parm] = x # nuisance

beta.all[parm] = beta # interest

-i.fun(object,

beta.all)[-parm, -parm]

},

method = "Newton",

global = "none",

control = list(maxit = maxit,

allowSingular = TRUE))

}

if(!(out$termcd %in% c(1,2))){

print(out$message)

return(NA)

}

out$x

}

### 3. Constrained estimate computed by refitting the model.

### It does not yield the exact constrained solution,

### but it may provide a more stable starting point than

### the linear approximation

nuisance_refit = function(object, parm, beta){

x = model.matrix(object)

y = object$y

beta.est = object$coefficients

offset = drop(as.matrix(x[,parm]) %*% beta)

nuisance = glm(y ~ x[,-parm] - 1, method = object$method,

type = object$type, family = object$family,

offset = offset,

control = list(maxit = 10000))$coefficients

names(nuisance) = names(beta.est[-parm])
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return(nuisance)

}

### Modified profile score test statistic

Wpu.fun = function(object, parm, beta, approximate = FALSE,

init = NULL, quasifisher = TRUE,

maxit = 500, jtilde = NULL, jtilde.inv = NULL,

type = "variable"){

## type = "variable" means that the expected

## information is compute in the parameter value

## type = "local" computes the expected information in

## the bias-reduced estimate, but unbounded

## confidence intervals may occur

if(is.character(parm)){

parm = which(names(object$coefficients) == parm)

}

if(is.logical(parm)){

parm = which(parm)

}

if(is.null(jtilde)) jtilde = jtilde.fun(object,

object$coefficients)

if(is.null(jtilde.inv)) jtilde.inv = solve(jtilde[-parm,-parm])

if(approximate){

nuisance = nuisance_approximate(object,

parm,

beta,

jtilde,

jtilde.inv)

}

else{

if(is.null(init)){

init = nuisance_approximate(object,

parm,

beta,

jtilde,
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jtilde.inv)

}

if(any(init == "refit")){

init = nuisance_refit(object, parm, beta)

}

nuisance = nuisance_exact(object, parm, beta,

init, quasifisher, maxit)

if(any(is.na(nuisance)) & any(init != "refit")){

## try a better but slower initial point

init = nuisance_refit(object, parm, beta)

nuisance = nuisance_exact(object, parm, beta,

init, quasifisher, maxit)

}

}

if(any(is.na(nuisance))) stop(

"A numerical error occurred. Please try a better inital point"

) ## in case of errors

beta.all = object$coefficients

beta.all[parm] = beta

beta.all[-parm] = nuisance

s_interest = modified.score.fun(object, beta.all)[parm]

i_interest = switch(type,

variable = i.fun(object,

beta.all,

TRUE)[parm, parm],

local = vcov(object)[parm, parm])

return(drop(crossprod(s_interest, i_interest) %*% s_interest))

}

###=========================================================

### 2. Confidence intervals

###=========================================================

### Modified profile score test statistic (one parameter)

rpu.fun = function(object, parm, beta, approximate = FALSE,

init = NULL, quasifisher = TRUE, maxit = 500,
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jtilde = NULL, jtilde.inv = NULL,

type = "variable"){

if(is.character(parm)){

parm = which(names(object$coefficients) == parm)

}

if(is.logical(parm)){

parm = which(parm)

}

if(approximate){

nuisance = nuisance_approximate(object,

parm,

beta,

jtilde,

jtilde.inv)

}

else{

if(is.null(init)){

init = nuisance_approximate(object,

parm,

beta,

jtilde,

jtilde.inv)

}

if(any(init == "refit")){

init = nuisance_refit(object, parm, beta)

}

nuisance = nuisance_exact(object, parm, beta,

init, quasifisher, maxit)

if(any(is.na(nuisance)) & any(init != "refit")){

## try a better but slower initial point

init = nuisance_refit(object, parm, beta)

nuisance = nuisance_exact(object, parm, beta,

init, quasifisher, maxit)
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}

}

if(any(is.na(nuisance))) stop(

"A numerical error occurred. Please try a better initalization"

) ## in case of errors

beta.all = object$coefficients

beta.all[parm] = beta

beta.all[-parm] = nuisance

s_interest = modified.score.fun(object, beta.all)[parm]

i_interest = switch(type,

variable = i.fun(object,

beta.all,

TRUE)[parm, parm],

local = vcov(object)[parm, parm])

return(sqrt(i_interest)*s_interest)

}

### Confint

confint.brglmFit = function(object, parm, level = 0.95,

approximate = FALSE, init = NULL,

quasifisher = TRUE, maxit = 500,

type = "variable", trace = TRUE){

if(missing(parm)){

parm = seq.int(length(object$coefficients))

}

if(is.character(parm)){

parm = which(names(object$coefficients) == parm)

}

if(is.logical(parm)){

parm = which(parm)

}

alpha = 1-level

out = matrix(nrow = length(parm), ncol = 2)

colnames(out) = paste(round(c(alpha/2, 1-alpha/2) * 100,
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digits = 1), "%")

rownames(out) = names(object$coefficients[parm])

rownumber = 1

jtilde = jtilde.fun(object, object$coefficients)

if(trace) cat("Profiling ...\n")

for(i in parm){

mle = object$coefficients[i]

std.err = sqrt(summary(object)$cov.unscaled[i,i])

jtilde.inv = solve(jtilde[-i, -i])

## initialize search space considering 3 standard errors

search = c(3, 3)

grid.ok = rep(FALSE, 2)

## check if the grid contains the required quantiles

while(any(!grid.ok)){

grid = seq(mle - search[1] * std.err,

mle + search[2] * std.err,

length = 100)

rval.limits = c(rpu.fun(object, i, grid[1], approximate,

init, quasifisher, maxit, jtilde,

jtilde.inv,

type),

rpu.fun(object, i, grid[100], approximate,

init, quasifisher, maxit, jtilde,

jtilde.inv,

type))

grid.ok = rval.limits^2 > qchisq(1-alpha, df = 1)

## extend search space

search[!grid.ok] = search[!grid.ok] + 1

if(any(search > 15)){

break

}

}

rval = numeric(100)

rval[1] = rval.limits[1]
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rval[100] = rval.limits[2]

rval[2:99] = sapply(grid[2:99],

function(x){

rpu.fun(object, i, x,

approximate, init,

quasifisher, maxit, jtilde,

jtilde.inv, type)

})

if(approximate){

## linear approximation may yield non-monotonic

## signed modified profile

## score, therefore we cannot use interpolation

## through splines

out[rownumber,] = c(-Inf, Inf)

if(grid.ok[1]){

out[rownumber, 1] = uniroot(function(x){

Wpu.fun(object, i, x,

approximate, init,

quasifisher, maxit,

jtilde, jtilde.inv,

type) - qchisq(1-alpha,

df = 1)

},

interval = c(grid[1], mle))$root

}

if(grid.ok[2]){

out[rownumber, 2] = uniroot(function(x){

Wpu.fun(object, i, x,

approximate, init,

quasifisher, maxit,

jtilde, jtilde.inv,

type) - qchisq(1-alpha,

df = 1)

},

interval = c(mle, grid[100]))$root
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}

}

else{

mod = pspline::sm.spline(rval, grid)

out[rownumber,] = c(-Inf, Inf)

out[rownumber, grid.ok] = predict(mod,

qnorm(c(1-alpha/2,

alpha/2)[grid.ok]))

}

if(trace){

cat(" Profiled ", rownumber, " out of ",

length(parm), "\n")

}

rownumber = rownumber + 1

}

return(out)

}
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