

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale Corso di Laurea in Ingegneria dell'Energia

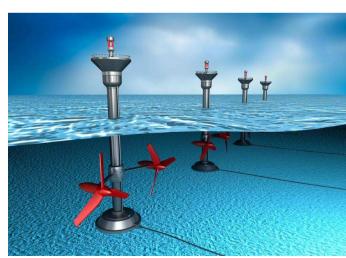
IL MOTO ONDOSO COME RISORSA ENERGETICA

Relatore: Prof. Angelo Zarrella

Laureando: Crema Saverio

Anno Accademico: 2021/2022

INTRODUZIONE

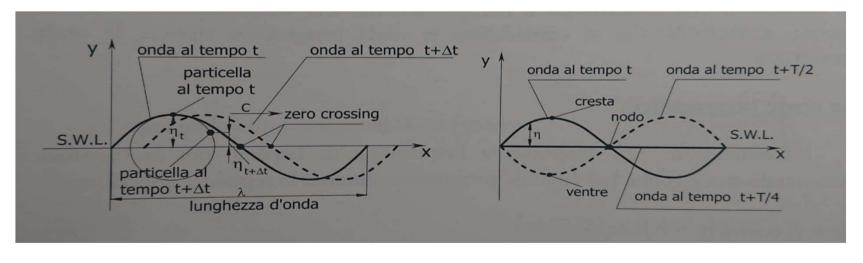

Fonti energetiche in base all'origine:

- PRIMARIE
- SECONDARIE

Fonti energetiche in base alla disponibilità:

- RINNOVABILI
- ESAURIBILI

CARATTERISTICHE MOTO ONDOSO



ONDE PROGRESSIVE:

I punti della superficie libera, cosi come le creste e le valli, si muovono in direzione x con una certa velocità di fase e dopo un certo tempo T l'onda si ripete identica ma spostata in direzione x della lunghezza d'onda λ

ONDE STAZIONARIE:

La cresta, ad una fissata coordinata x, modifica periodicamente la sua quota al di sopra e al di sotto della SWL

CARATTERISTICHE MOTO ONDOSO

IPOTESI:

Fluido omogeneo e incomprimibile Profondità fondale $>> \lambda$ Moto 2D, irrotazionale e non stazionario

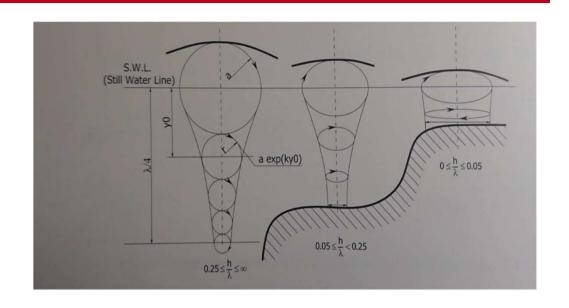
Onde progressive:

$$\varphi = A * cosh[k(y+h)] * cos[k(x-ct)]$$

Onde stazionarie:

$$\varphi = A * cosh[k(y+h)] * sin(kx) * sin(\sigma t)$$

TRAIETTORIA PARTICELLE FLUIDE E POTENZA DELL'ONDA



Detti α e β gli spostamenti della particella fluida, per mari molto profondi abbiamo:

$$\alpha^2 + \beta^2 = [a \exp(ky_0)]^2 = r^2$$

Per mari poco profondi invece:

$$\frac{a}{\sin(kh)} = \alpha e \beta = 0$$

POTENZA

$$E_{onda} = E_{cinetica} + E_{potenziale}$$
; $E_{specifica} = \frac{E_{onda}}{\lambda}$; $P_{specifica} = \frac{E_{specifica}}{T}$

Se poi consideriamo la velocità di gruppo C_q allora:

$$P = P_{specifica}C_g$$

CONVERTITORI DI ENERGIA DEL MOTO ONDOSO

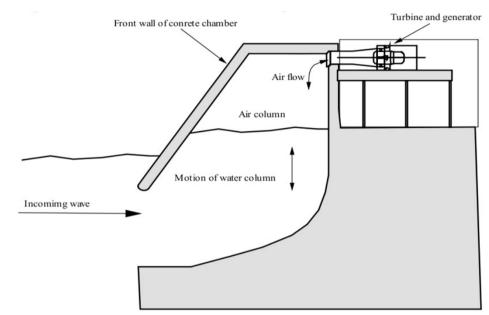
SHORELINE DEVICES

Mari poco profondi o dispositivi fissati alla costa o sulle barriere frangiflutti. Facilità di installazione, costi ridotti di manutenzione

NEAR TO SHORE DEVICES

Mari fino a 20 m di profondità e distanza dalla costa fino a 1 km. Possibilità di evitare ormeggi profondi a differenza dei shoreline devices

OFF-SHORE DEVICES


Tecnologia più promettente ma con costi elevati. Elemento di svantaggio sono le linee di trasmissione dell'energia elettrica a terra

SISTEMI OWC «OSCILLATING WATER COLUMN»

Camera d'aria parzialmente immersa nell'acqua, aperta alla base

Le onde producono una variazione d'altezza dell'acqua e quindi di pressione

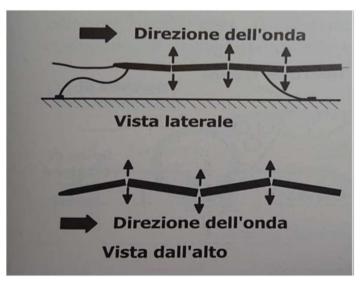
La turbina Wells viene azionata ed è collegata ad un generatore

La camera degli impianti può arrivare fino a 400 m^2 e un'altezza di 10/20 m

Assenza di elementi mobili a contatto con l'acqua -> affidabilità superiore

SISTEMA PELAMIS

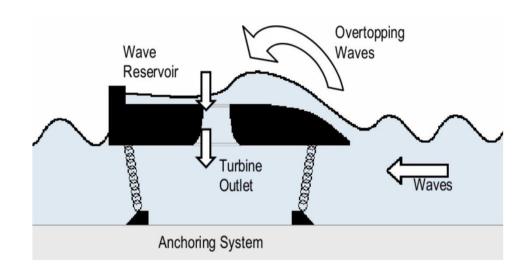
Dispositivo galleggiante off-shore


4 corpi cilindrici collegati in serie tra di loro

La resistenza al movimento delle onde viene offerta da cilindri idraulici

Gli stessi cilindri alimentano poi i motori idraulici collegati ad un generatore elettrico

Lunghezze anche fino a 150 m e potenza di 750 kW



OVERTOPPING DEVICES

Dispositivi galleggianti o fissi alla costa

Raccolgono l'acqua trasportata dall'onda in serbatoi sopraelevati rispetto al pelo libero del mare

Un esempio è il Wave Dragon

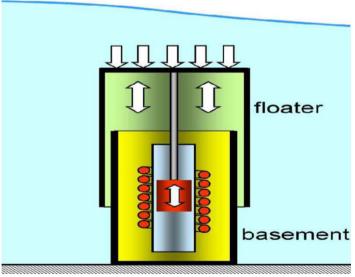
Esso non presenta parti mobili. Due pareti rigide semi sommerse si aprono verso il mare con lo scopo di convogliare le onde verso il bacino

L'acqua raccolta viene convogliata verso una o più turbine Kaplan

Prototipo già installato in Danimarca nel 2003

SISTEMI A GALLEGGIANTE ANCORATI SUL FONDALE

Il più noto è l'AWS, che si basa sul principio di Archimede.


Può essere semi sommerso o completamente sommerso. Viene attivato dalle variazioni di pressione causate dalle onde superficiali.

Camera d'acciaio cilindrica riempita d'aria, il coperchio invece è un corpo oscillante.

L'aria all'interno della camera si comporta come una molla.

La conversione dell'energia avviene attraverso un generatore sincrono lineare

ANALISI ECONOMICA

Costi fissi ->> costi della struttura, parti meccaniche, delle linee elettriche e di trasporto

Costi operativi ->> costi delle parti di ricambio, di manutenzione ecc...

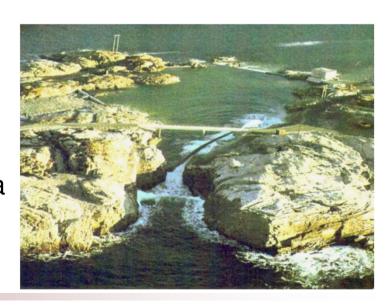
Disponibilità ->> Probabilità che un impianto possa funzionare per un determinato tempo

Produzione annuale ->> Quantità di energia che può essere prodotta

	Shoreline OWC	Nearshore OWC	Offshore Assorbitori puntuali
Costo fissi del dispositivo, €/kW	2240	1680	1920-3200
Costi operativi, di manutenzione e di assicurazione, €/kW/anno	46	51	30
Disponibilità, %	96	96	90
Produzione annuale, kWh/kW	3680	4000	4800-8000

IMPATTO AMBIENTALE

Habitat acquatici: formazione di un nuovo habitat. Può essere considerato positivo ma aumentano i costi di manutenzione



Emissioni acustiche ed effetti elettromagnetici:

Il rumore dei convertitori si trasmette per lunghe distanze, può provocare disagi a chi abita in prossimità di essi.

Effetti elettromagnetici ->> possono trarre in inganno alcune specie di pesci migratori

Aree vietate e barriere artificiali: Intralcio alla pesca commerciale e possibilità di creare nuove barriere artificiali

CONCLUSIONI FINALI

SVILUPPARE QUESTA TECNOLOGIA RISULTA FATTIBILE?

Essenziale riuscire ad allontanarci sempre di più dai combustibili fossili

Grande versatilità del moto ondoso ed emissioni nulle

Principale ostacolo è di tipo economico

L'Italia con 7500 km di coste ha una vasta «scelta» per quanto riguarda i siti più favorevoli per convertire l'energia