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Abstract

The light quark Yukawa couplings are notoriously difficult to measure at the LHC. Current bounds and future pro-
jections for the HL-LHC (High-Luminosity Large Hadron Collider) foresee that the first generation couplings can be
constrained to be a factor of several hundred times their Standard Model value.

This thesis aims at responding to the question on how large they actually can be in UV models. UV models that
generate deviations in light quark Yukawa couplings via dimension-six effective operators at the tree level will be
identified. A particularly good choice not studied yet in depth in literature is models with vector-like quarks.
The list of possible models is finite and can hence be studied systematically, taking into account potential bounds from
direct searches, flavour physics, Higgs physics and electroweak precision tests.
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Chapter 1

Introduction

What we now call Higgs boson was first theorised in 1964 [1] in the context of developing a mechanism to describe
how the massive Standard Model particles acquire their mass, since an explicit mass Lagrangian term would not be
invariant under the Standard Model gauge group. Such mechanism is known as the Englert-Brout-Higgs mecha-
nism [1–3], or simply the Higgs mechanism. Since then, the Higgs boson has been the object of extensive theoretical
studies and experimental searches, which led to the particle’s detection in 2012 at the Large Hadron Collider (LHC)
by ATLAS [4] and CMS [5]. This experimental success was not the end of the story: to date, several of the Higgs
properties still have to be understood.

One of the areas still open to investigation concerns the interactions of the Higgs boson with the lighter generation
fermions. Theoretically, the Higgs mechanism predicts that the couplings associated to such interactions, the Yukawa
couplings yf , are linearly proportional to the fermion masses. This has so far been confirmed [6–8] for the top quark,
for the bottom quark and the tau lepton. For the top quark, the coupling is studied by measuring the rate with which the
Higgs boson is produced in association with a top and anti-top pair, for the other two fermions, the decay rate of the
the Higgs boson into bb̄ and τ+τ− pairs are respectively measured. Additional studies [9,10] have also constrained the
muon’s coupling to be in agreement with the Standard Model prediction, though these measurements currently have
larger uncertainties than those of the third generation couplings. Figure 1.1 shows the associated Feynman diagrams
for the processes previously mentioned.
Experimentally, the study of the lighter fermion couplings is complicated by the small size of their Yukawa couplings,
thus suppressing their contributions to scattering processes involving the Higgs boson. Focusing on the deviations
from the Standard Model predictions for the couplings, parameterised by the ratio κf = yf/y

SM
f , it is of theoretical

interest to find upper bounds for these deviations and of experimental interest to develop ways to probe them. For
the missing charged lepton, the electron, there have been proposals for the study of its coupling at the Future Circular

h

G t

G t̄

t

t̄

h

f

f̄

Figure 1.1: Feynman diagrams for the Higgs boson h production in association with a top and anti-top pair (left) and for the Higgs
boson decays into fermions f (right). The gluons are denoted by the letter G. In both diagrams, the Higgs boson interacts with a
fermion; the Yukawa coupling-dependence is picked up from those interaction vertices.
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CHAPTER 1. INTRODUCTION

Second Generation First Generation

κc < 1.2 κu < 260

κs < 13 κd < 156

Source [23] Source [25]

Table 1.1: Future projections for the values of the modifier κq for the first two quark generations for the High-Luminosity LHC
(HL-LHC). These values will be used as comparison for the results found in this work; they will be referred to as "literature
values".

electron-positron Collider (FCC-ee) [11]. For the strange and the first generation quarks, a further problem consists in
the difficulty to tag them in the detectors.
There have been promising proposals for the charm quark’s coupling: the associated production of the Higgs boson
with a vector boson, with the Higgs then decaying into charm quark anti-quark pair, was studied by CMS [12] and
ATLAS [13]. At a 95% Confidence Level, CMS found the charm quark coupling modifier to be bound by 1.1 < |κc| <
5.5, while ATLAS reported |κc| < 8.5. Another proposal for the charm quark study is to consider the decays of the
Higgs boson into vector mesons [14–16]. As for the other second generation quark, the strange, it has been suggested
to perform strange tagging at the future electron-positron colliders [17].
As for the first generation quarks, many proposals have been made. Of these, three examples are Higgs pair production
[18], Higgs plus jet production [19,20] and Higgs plus photon associated production [21,22]. The last one can also be
applied to the second generation quarks; the CMS search [22] translated upper bounds, at a 95% Confidence Level, on
the Higgs plus photon production cross-sections into constraints for the couplings modifiers, obtaining |κu| ≤ 16000,
|κd| ≤ 17000, |κs| ≤ 1700 and |κc| ≤ 190.
Given that enhanced Yukawa couplings would lead to deviations of the Higgs boson decay branching ratios, global
fits can be performed, finding the projections for the High Luminosity Large Hadron Collider (HL-LHC) |κu| < 560,
|κd| < 260, |κc| < 1.2 and |κs| < 13 [23]. Furthermore, an enhancement of the first generation quark Yukawa
couplings with respect to the Standard Model prediction would mean that Higgs boson production at hadron colliders
receives a contribution directly from the parton constituents; this was taken into account, in the context of off-shell
Higgs production, by [24, 25], with the latter obtaining projections for the HL-LHC of |κu| < 260 and |κd| < 156.

The aforementioned projected sensitivities (or for the charm quark bounds), are still quite loose. Therefore, it is of
interest to consider how different New Physics models can give rise to enhanced Yukawa couplings. This thesis will
hence address the question: how large can the light quark Yukawa couplings be in concrete UV scenarios?
In order to address this question, this thesis will focus on eight models involving pairs of heavy new particles called
vector-like quarks. Even though such particles appear in several different extensions of the Standard Model, here they
will be studied strictly within the context of modifications in the first and second-generation quark Yukawa couplings.
Indeed, it will be shown that all these models generate, once the heavy quarks have been integrated out at the tree level,
dimension-six effective operators that cause deviations in the light quark Yukawa couplings. The assumption that the
vector-like quarks can only couple to one generation of Standard Model quarks at a time will be made.
The Standard Model Effective Field Theory will provide a model-independent framework to study deviations of ex-
perimental observables from the Standard Model predictions. For the models treated in this thesis, ElectroWeak and
Higgs Physics observables will provide relevant constraints. Once the deviations have been studied in terms of the Ef-
fective Theory’s coefficients, a matching condition between the specific New Physics model and the Effective Theory
allows to recast the deviations in terms of the model’s parameters, the vector-like quark masses and their Yukawa-like
couplings to the Higgs boson. The resulting bounds on the parameter space can then be used to find the maximal value
for the modifier κq compatible with the experimental results with a chosen confidence level. Finally, the results found
will be compared to the reference values in Table 1.1.
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CHAPTER 1. INTRODUCTION

The following Chapters are organised as follows:

• A brief review of the Standard Model of Particle Physics and of Effective Field Theories is presented in Chapters
2 and 3 respectively. These chapters will fix the notation used throughout the rest of the thesis;

• In Chapter 4 the Standard Model Effective Field Theory operators that cause deviations in the quark Yukawa
couplings are first of all identified. Then, different New Physics models that can give rise to such operators are
mentioned before selecting the eight models involving pairs of vector-like quarks;

• The matching between the Standard Model Effective Field Theory coefficients and the New Physics parameters
is performed in Chapter 5. One model will be studied in detail in Section 5.1, while for the remaining seven
only the main results will be presented;

• The comparison with experimental observables is performed in Chapter 6. Initially, the bounds from Elec-
troWeak Observables, Section 6.1, will be studied separately from those of Higgs Physics, Section 6.2. Then the
two cases will be combined in Section 6.3;

• In Chapter 7 experimental searches for vector-like quarks at hadron colliders will be presented. In particular, the
search performed by ATLAS [26] for pair-produced vector-like quarks with couplings only to the lighter quarks
will be shown to provide a lower bound for the heavy mass scale;

• The conclusions are drawn and future outlooks are presented in Chapter 8.

Additionally, several Appendices are present. These serve the purpose of presenting material considered useful for the
understanding of the topics being dealt with but that would disrupt the flow of the reading if inserted in the main text.
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Chapter 2

The Standard Model of Particle Physics

The Standard Model of Particle Physics (abbreviated as SM) [27,28] currently provides the best description of particles
and their strong and electroweak interactions.
The Standard Model is a quantum field theory; as such it is identified by:

1. a gauge group G (Section 2.1);

2. the theory’s particle content (Section 2.2);

3. a spontaneous symmetry breaking (SSB) pattern which leads to a new gauge group G′ (Section 2.4).

2.1 Gauge Group

The Standard Model is based on the (local) gauge symmetry G, defined as

G = SU(3)c × SU(2)L × U(1)Y . (2.1)

Each group is associated with one of the three fundamental forces described by the Standard Model. A summary of the
Gauge Groups (containing the names of their couplings, the group generators, the name of the associated gauge bosons
and the structure constants) is presented in Table 2.1. Relevant group theory information is reported in Appendix A.

Strong Interactions: associated with the SU(3) gauge group. Such group has 8 generators TA = 1
2λ

A, where λA

are the Gell-Mann matrices listed in Appendix A.1. The associated gauge boson is GAµ . The associated field
strength tensor is defined as

GAµν = ∂µG
A
ν − ∂µG

A
ν + gsf

ABCGBµG
C
ν . (2.2)

Strong interactions are described within Quantum Chromodynamics.

ElectroWeak Interactions: described by the SU(2)L × U(1)Y group. Treating the two subgroups individually,

Gauge group Couplings Group Generators Gauge boson multiplicity Structure constant

SU(3)c gS TA = 1
2λ

A GAµ 8 fABC

SU(2)L gL τ I = 1
2σ

I W I
µ 3 ϵIJK

U(1)Y gY 1 Bµ 1 0

Table 2.1: Gauge groups and corresponding bosons.

5



2.2. PARTICLE CONTENT CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS

Field ψ qLr =

(
uLr
dLr

)
lLr =

(
νLr
eLr

)
uRr dRr eRr

SU(3)c 3 1 3 3 1
SU(2)L 2 2 1 1 1
U(1)Y 1/6 -1/2 2/3 -1/3 -1

Table 2.2: SM fermions with their charges under G [29].

Gen. ur dr er νr

I (r = 1) u d e νe
II (r = 2) c s µ νµ
III (r = 3) t b τ ντ

Table 2.3: Fermion generations and compact notation.

• SU(2)L has as group generators τ I = 1
2σ

I, where the Pauli matrices, σI, are defined in Appendix A.2. The
gauge bosons associated with the group generators are W I

µ, and the field strength tensor is

W I
µν = ∂µW

I
ν − ∂νW

I
µ + gL ϵ

IJKW J
µW

K
ν ; (2.3)

• U(1)Y is an Abelian group. The associated gauge boson is Bµ, with field strength tensor

Bµν = ∂µBν − ∂νBµ . (2.4)

This sector is affected by the SSB mechanism SU(2)L×U(1)Y → U(1)EM , though the details will be addressed
in the corresponding section.

2.2 Particle Content

The particles described by the SM can be separated into two main categories based on their spin-statistics: fermions
and bosons. Each category contains two subcategories: fermions are divided into quarks and leptons depending on
whether they interact strongly or not, while bosons are separated into scalars and vectors depending on the value of
their spin. In the following, each of these categories is described in more detail.

Fermions: these spin-1/2 particles are often called matter particles [30]. As mentioned, they can be either leptons
or quarks. Their charges under the SM gauge group G are presented in Table 2.2. Fermions are furthermore
organised in three generations, which repetitively have the same charges under G. This motivated the introduc-
tion of the compact notation in Table 2.3, the generations can be read horizontally and are labelled with the
Roman numerals I, II, and III. Each generation consists of two quarks and two leptons; moving horizontally, the
first-column particles all have an electric charge +2/3, the second-column particles have a charge −1/3, the
third −1, and finally the neutrinos are neutral. Except for the neutrinos (which are predicted to be massless by
the SM), the fermions in the second generation are heavier than their first-generation counterparts and lighter
than the third-generation.

Bosons: There are two types of bosons:

Scalars: only one SM particle falls into this category, the Higgs boson. In the unbroken phase, it is typically
identified by the letter ϕ. It is a complex scalar doublet under SU(2)L with hypercharge Yϕ = 1

2 . The
Higgs field can be written in terms of four real scalar fields hi as :

ϕ(x) =
1√
2

(
ih1(x) + h2(x)

ih3(x) + h4(x)

)
. (2.5)

However, as will be discussed in more detail later on, of these four degrees of freedom only one will appear
as a physical particle. This is identified by the symbol h.

6



CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS 2.3. THE LAGRANGIAN

Vectors: particles which serve as force carriers. As seen in the previous section, each group which makes up
G has associated gauge bosons, in number equal to the number of generators of the group. Therefore,
the vector content of the SM consists of the eight gluons Gaµ, three W I

µ, and Bµ. The situation is dif-
ferent in the broken phase: while the gluons remained untouched, the four mediators of the electroweak
sector are "replaced" by the massive mediators of the weak force W± and Z and the massless photon of
electromagnetism Aµ.

A review, including also the masses of the particles, is given in [31].

2.3 The Lagrangian

The SM Lagrangian can be compactly written as shown in Equation (2.6). For convenience, the terms will be dealt
with one by one.

LSM = L
gauge
kin + L

ferm
kin + L

ferm
Y uk + LHiggs. (2.6)

Gauge term: the explicit expression of Lgaugekin is

L
gauge
kin = −1

4
(GAµν)

2 − 1

4
(W a

µν)
2 − 1

4
(Bµν)

2 . (2.7)

This term does not only contain the gauge bosons’ kinetic term but also their triple and quartic self-interactions.
Indeed, given the non-Abelian nature of SU(3)c and SU(2)L, the field strength tensors take the form shown in
Equations (2.2) and (2.3). By expanding the field strength contractions, three fields and one derivative or four
field interactions can appear. Diagrammatically, these are respectively:

∼ gL/S p
µ ∼ g2L/S

Fermion kinetic term: describes both the kinetic term of the fermion, but via the covariant derivative Dµ, also the
interaction of the fermions with the gauge bosons,

L
ferm
kin = iψ̄γµDµψ, where Dµψ = (∂µ + igsT

AGAµ︸ ︷︷ ︸
only for quarks

+ igLτ
aW a

µ︸ ︷︷ ︸
absent in case of SU(2)L singlets

+igY YψBµ)ψ . (2.8)

Higgs sector The Higgs sector of the SM can be written as

LHiggs = (Dµϕ)
†Dµϕ− V (ϕ†ϕ) ,

V (ϕ†ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2 . (2.9)

The first term in the Lagrangian is the Higgs kinetic term, which contains the interaction of the Higgs doublet
with the W I

µ and Bµ gauge bosons via the covariant derivative Dµϕ = (∂µ + igLτ
aW a

µ + igY YψBµ)ϕ.
As for the second term, V (ϕ), denotes the Higgs potential. Two parameters appear, µ2 a parameter with mass
dimension two, and λ a dimensionless parameter. Of these, we must require λ > 0 to have a potential bounded
from below. Instead, µ2 can be both positive and negative. The shape of the potential depending on the sign of
µ2 is shown in Figure 2.1.

Yukawa sector: describes fermion interactions with the Higgs boson. In particular, a fermionic doublet and a fermionic

7



2.4. SYMMETRY BREAKING CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS

Figure 2.1: Higgs potential for two different sign choices for µ2.

singlet are coupled to the Higgs boson; the Lagrangian reads

L
ferm
Y uk = −yuq̄Lϕ̃ uR − ydq̄LϕdR − ye l̄Lϕ eR + h.c. , (2.10)

where ϕ̃ = iσ2ϕ
∗. It is important to notice that these terms are gauge invariant and lead to a mass term for the

fermions upon electroweak symmetry breaking.

2.4 Symmetry Breaking

Up to this point, the SM particles are massless as a mass term would break gauge invariance. However, the particles
that are experimentally observed are massive. The solution was found in the so called Higgs mechanism [1–3,32]: the
SU(2)L×U(1)Y symmetry is spontaneously broken to U(1)EM , and particles acquire a mass. Hence the SSB pattern
in the SM consists in

G
SSB7→ G′ = SU(3)c × U(1)EM . (2.11)

In the broken phase, the massless force mediators are the eight gluons (untouched by the Higgs mechanism since they
do not interact with the Higgs field in the SM) and the photon.
To describe how the other particles in the SM are affected by the Higgs mechanism, one first of all needs to study how
the Higgs boson can acquire a non-zero vacuum expectation value v. Then he can consider how the Higgs, the weak
gauge bosons and the fermions acquire their mass terms.
Considering the Higgs potential in Equation (2.9), one finds that for µ2 > 0, the potential has a minimum for ⟨ϕ⟩ = 0

and the potential has the form on the left in Figure 2.1. In terms of the function hi introduced in Equation (2.5), the
vacuum expectation values satisfy ⟨hi⟩ = 0, ∀i ∈ {1, 4}.
When µ2 < 0, the potential takes the "Mexican hat" form and its minimum is no longer at the origin. The h4(x)

component is chosen to acquire the vacuum expectation value v/
√
2, where v =

√
−µ2

λ = 246GeV. This sponta-
neously breaks the system’s symmetry since a preferred direction has been chosen. The Higgs field can be written in
the following manner around the minimum:

ϕ(x) =
1

2
ei

→
h ·→σ
v

(
0

v + h(x)

)
unitary gauge⇒ ϕ(x) =

1

2

(
0

v + h(x)

)
. (2.12)

The first three real scalars have null vacuum expectation values and make up the Goldstone bosons, denoted by
→
h(x) =(

h1(x) h2(x) h3(x)
)T

. From this point on, the x dependence is dropped.
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CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS 2.4. SYMMETRY BREAKING

Particle Square mass dofs Particle Square mass dofs

W+ ,W− m2
W =

g2Lv
2

4 3+3 W I 0 2+2+2

Z m2
Z =

g2L+g
2
Y

4 v2 3 B 0 2
A 0 2 - - -
h 2λv2 1 ϕ 0 4

12 12

Table 2.4: Bosonic degrees of freedom for the broken (left) and unbroken (right) phases. The total number of degrees of freedom
is preserved, but their distribution varies. The massless gauge bosons carry two degrees of freedom each, while the massive ones
have an extra degree of freedom. As for the Higgs, in the unbroken phase, it is a complex doublet (four degrees of freedom),
while in the broken phase, it is a singlet (one degree of freedom).

2.4.1 Gauge and Higgs bosons masses

Starting from the Higgs kinetic term, equation (2.9), it is possible to derive the gauge boson masses simply by substi-
tuting the form of the Higgs in (2.12) and focusing on the terms that are quadratic in the gauge bosons.
The chargedW±

µ bosons are obtained via the mixing ofW 1
µ andW 2

µ . Their mass and definition in terms of the original
gauge bosons are:

mW =
gLv

2
,

(
W+
µ

W−
µ

)
=

1√
2

(
+1 −i
+1 i

)(
W 1
µ

W 2
µ

)
. (2.13)

The mixing of W 3
µ with Bµ results in a massless field, identified as the photon Aµ, and the massive neutral boson Zµ.

Defining the Weinberg angle to be tan θW = gY
gL

, the Zµ mass and the definitions of Zµ and Aµ are:

mZ =

√
g2L + g2Y v

2
,

(
Aµ

Zµ

)
=

(
sin θW cos θW

cos θW − sin θW

)(
W 3
µ

Bµ

)
. (2.14)

The interactions of the W± and Z bosons with the Higgs can be recovered by performing the substitution v → h+ v;
this means that the coupling between the massive gauge bosons W± and Z with the Higgs boson is proportional to
their mass squared.

The Higgs boson mass is picked up from the potential V (ϕ) defined in Equation (2.9). In Equation (2.15) the entire
Higgs sector is written in the broken phase:

LbHiggs =
1

2
∂µh ∂

µh− µ2
(v + h√

2

)2
− λ

(v + h√
2

)4
=

1

2
∂µh ∂

µh− λv2︸︷︷︸
2m2

h

h2 − λvh3 − λ

4
h4 . (2.15)

From the above expression, one can appreciate that once the Higgs boson’s mass has been measured all the parameters
of the Higgs potential are determined. In particular, the Higgs boson self-coupling is proportional to the mass squared
upon rewriting λ in terms of mh:

m2
h = 2λv2 ⇒ λ =

m2
h

2v2
. (2.16)

The number of bosonic degrees of freedom is the same in the broken (where the bosons are the gluons, the massive
gauge bosons, the Higgs boson and the photon) and the unbroken phase (where the bosons are the Higgs doublet and
the gauge bosons associated to the SM gauge groups), as shown in Table 2.4 for the electroweak sector. What changes
between the two phases is how the degrees of freedom are distributed between the different particles.
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2.4. SYMMETRY BREAKING CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS

Fields u d e ν

Charge 2
3 −1

3 −1 0

Table 2.5: Electromagnetic charges of the SM fermions.

2.4.2 Fermion masses

Considering the Yukawa component of LSM (Equation (2.10)) and using Equation (2.12) to rewrite the Higgs in the
unitary gauge, one finds

−L
ferm
Y uk =

ydv√
2
d̄LdR +

yuv√
2
ūLuR +

yev√
2
ēLeR +

yd√
2
hd̄LdR +

yu√
2
hūLuR +

ye√
2
hēLeR + h.c. . (2.17)

The first three terms will allow the identification of the fermion masses m∗ = 1√
2
vy∗ once the rotation into the mass

basis has been performed (see Subsection 2.4.4), whereas the last three describe the interactions between the quarks
and the Higgs boson. While the massive gauge bosons had coupling to the Higgs bosons proportional to the square of
their mass, the fermion have a coupling with the Higgs boson that linearly depends on their mass.

2.4.3 Fermion interaction with the gauge bosons

Given the relevance in Chapter 7 of the quark interactions with the W±
µ and Zµ bosons, the description of such

interactions is presented here. The steps will be shown explicitly only for the quarks but can be extended to the leptons.
The starting point is in the quark kinetic terms, where the gauge bosons are contained in the covariant derivatives:

L
quarks
kin = q̄L i /DqL + ūR i /DuR + d̄R i /DdR (2.18)

⊃ −q̄L
(gL
2
σI /W

I
+ gY Yq /B

)
qL − gY Yu ūR /BuR − gY Yd d̄R /BdR . (2.19)

Then, using Equations (2.13) and (2.14), the Lagrangian description of the weak and electromagnetic interactions of
the quarks is found:

−LWI+EM =
gL√
2

(
ūL /W

+
dL + d̄L /W

−
uL

)
+

gL
cos θW

(
q̄L /Zg

Zq
L qL + ūR /Zg

Zu
R uR + d̄R /Zg

Zd
R dR

)
+

+ e q̄L /AQqqL + e ūR /AQuuR + d̄R /AQddR . (2.20)

The charges are defined as Qq = τ3q + Yq1 and the Z couplings to left- and right-handed currents are defined, respec-
tively, as

gZqL = τ3q −Qq sin
2 θW , gZqR = −Qq sin2 θW . (2.21)

Using the values for the hypercharges reported in Table 2.2, the electromagnetic charge assignments are those in Table
2.5.

2.4.4 CKM matrix

So far the Lagrangian terms have been written in the so-called interaction basis, where the Yukawa matrices are 3× 3,
non-diagonal matrices: Explicating the flavour indices of Equation (2.10), the Yukawa sector of the Lagrangian is:

−L
ferm
Y uk = [yu]rk q̄Lrϕ̃ uRk + [yd]rk q̄LrϕdRk + [ye]rk l̄Lrϕ eRk + h.c. . (2.22)
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It is possible to diagonalise the Yukawa matrices (going into the mass basis) via a biunitary transformation. Let Lf
and Rf be the unitary matrices, then:

ŷf = diag(yf1, yf2, yf3) = L†
fyfRf . (2.23)

The associated rotations for the quarks, with explicit family indices, are:

qLr → [Lq]rk qLk , qRr → [Rq]rk qRk , (2.24)

where q = u, d. Similarly for the leptons, the rotations read

eLr → [Le]rk eLk , eRr → [Re]rk eRk ,

νLr → [Lν ]rk νLk . (2.25)

These rotations into the mass basis have to be performed in all the sectors of the SM Lagrangian. By construction, the
interactions with the neutral gauge bosons (the photon and the Z boson) in Equation (2.20) are left invariant since they
do not mix the up and down type fermions. This is not true for the charged bosons, which couple fermions of different
generations. Performing the rotations defined in Equations (2.24) and (2.25),

LW = − gL√
2

ūLr [L†
uLd

]
rk︸ ︷︷ ︸

[VCKM ]rk

/W
+
dLk + ν̄Lr

[
L†
νLe

]
rk︸ ︷︷ ︸

[UPMNS ]rk

/W
+
eLk + h.c.

 . (2.26)

The first matrix is the CKM matrix (from Cabibbo, Kobayashi and Maskawa), while the second is the PMNS matrix
(from Pontecorvo, Maki, Nakagawa and Sakata).
The CKM matrix is a complex unitary 3 × 3 matrix. As such, it has nine real degrees of freedom, of which three
correspond to rotation angles and six are associated to phases. However, it is possible to perform quark field rotations
to remove all phases but one. Therefore, the CKM matrix bears four degrees of freedom: three rotation angles and one
phase. The values for the angles and the phase have been measured and are reported in [31].
Since neutrinos are massless within the SM, one can pick an arbitrary Lν to perform the rotation into the mass basis.
If Lν = Le, the UPMNS = 13×3.
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Chapter 3

Effective Field Theories

Effective Theories often appear in Physics. Indeed, besides Particle Physics’ well-known Fermi Theory [33, 34] (that
provided the first description of Weak Interactions and is used for low-energy studies1), they also appear in areas such
as Cosmology (e.g., for the study of inflation [35, 36]) and Nuclear Physics [37]. Effective field theories provide a
tool for the description of processes up to a given order in an expansion parameter without requiring knowledge of the
underlying UV theory.

3.1 Effective Theories

One of the simplest examples of effective theories is how the gravitational force felt by an object of mass m on Earth
can be approximated by the Fg = mg, instead of using Newton’s force. For everyday use the difference between the
two descriptions is negligible.
This simple example will be used to introduce the ingredients for an Effective Theory: let R be the Earth’s radius and
d the height of the object above the Earth’s surface. Then, Newton’s force can be expanded as

FNg = G
mME

(R+ d)2
= G

mME

R2

1

(1 + d
R)

2

d≪R
≈ G

mME

R2

(
1− 2

d

R

)
. (3.1)

Defining g = GME
R2 and truncating at zero order, the usual weight force expression is obtained. The following

ingredients can be identified:

• an expansion parameter, in this case d/R. The approximation made becomes increasingly worse as the distance
d becomes comparable to the radius R. This is related to the existence of a separation of scales between the
more complete theory and the particular case being studied;

• a symmetry, that in the effective theory consists of translational invariance at fixed height and invariance under
rotation about the vertical axis (while the original system was invariant under rotations in the three-dimensional
Euclidean space);

• a degree of freedom, here the presence of an object of mass m.

This example shows the "top-down" approach: the more complete theory is known, but via an appropriate series
expansion a simplified version is found.
The other possible direction in which one can proceed is known as the "bottom-up": only the approximation is known
and one would like to reconstruct the more fundamental description. In the case of the object feeling the gravitational

1As will be better addressed later on, Effective Theories have a validity interval, below which the description provided is accurate and above
which it breaks down. In the case of the Fermi theory, such energy scale is the W -boson mass mW ≈ 80GeV.
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force, the "bottom-up" approach would consist in starting from the weight force Fg = mg, setting it to be the zero-
order term of a series expansion with expansion parameter d/R and adding higher order terms.

Fg = mg

[(
d

R

)0

+ a1

(
d

R

)1

+ a2

(
d

R

)2

+ a3

(
d

R

)3

+ . . .

]
, (3.2)

where the ai coefficients are unknowns that have to be fitted to experimental data.

3.2 Effective Field Theories

When moving from an Effective Theory to an Effective Field Theory, symmetry preserves its relevance and the fields
are the degrees of freedom. The effective theory’s expansion is organised in terms of inverse powers of a heavy scale
Λ. This organisation will be dealt with in the next section, considering the particular example of the Standard Model
Effective Field Theory. In the following, some other general features are briefly addressed.
Consider a quantum field theory describing two interacting scalar particles, one called ϕ with mass m and a second Φ

with mass Λ, such that m ≪ Λ [38]. They are described by a Lagrangian LUV = LUV (ϕ,Φ, c), where c describes
a set of couplings. If the experimental energy scale E satisfies m < E ≪ Λ, then only the lighter ϕ can be produced
and directly observed. The heavy Φ can still virtually contribute to scattering processes involving the lighter field as a
propagator, which can be expanded as

1

p2 − Λ2
=

1

Λ2

−1

1− (p2/Λ2)

p2≪Λ2

≈ − 1

Λ2

(
1− p2

Λ2
+ . . .

)
. (3.3)

Truncating the expansion to the zero-order term corresponds to shrinking the internal propagator to the point of having
a contact interaction. Even if the full theory involving both fields is known, it is convenient to develop and work with
an effective description LEFT = LEFT (ϕ, c̃) which only depends on the lighter ϕ. The effects of Φ are encoded in the
new coefficients c̃: the procedure of expressing c̃ in terms of the original theory’s parameters is referred to as matching.
The matching can be performed in two ways:

1. Starting from the UV Lagrangian, the equations of motion for the heavy field Φ can be derived and substituted
in LUV , losing the dependence on Φ. Rearranging the remaining terms, which only involve the field ϕ, the
correspondence between c and c̃ is found;

2. Using LUV and LEFT , the amplitude for a given process can be evaluated from both viewpoints. Requiring the
two descriptions to be the same, the following matching condition is found:

MUV (ϕ,Φ, c) = MEFT (ϕ, c̃) . (3.4)

This procedure will be explained in more detail in Chapter 5 for the concrete models and EFT considered in this thesis.
Before moving on to the Effective Field Theory relevant to this thesis, a few words are spent on the Fermi Theory
of Weak Interactions: Figure 3.1 puts side-by-side the two descriptions of the decay of the muon provided by the
Standard Model and in Fermi Theory. In the Standard Model description, the decay involves two leptonic currents,
connected by a W boson propagator. Given that the energy scale of the process, the muon mass, is much smaller than
the W boson mass, the propagator shrinks to a point-like interaction as

Dµν =
i

k2 −m2
W

(
−gµν +

kµkν
m2
W

)
=

i

m2
W

(
1 +

k2

m2
W

+ . . .

) (
−gµν +

kµkν
m2
W

)
,

≈ − i

m2
W

gµν +O

(
k2

m2
W

)
. (3.5)
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µ(p)

νµ(q2)

e(p′)

ν̄e(q1)

W µ(p)

νµ(q2)

e(p′)

ν̄e(q1)

Figure 3.1: UV versus EFT description of the muon decay.

The point-like interaction of the two leptonic currents in Fermi’s description is given by

LFermi = 4
GF√
2
[(ν̄µLγ

νµL) (ēLγννeL) + h.c.] . (3.6)

The GF coefficient is known as Fermi’s constant. It has mass dimension -2 and is defined in terms of the Standard
Model gL coupling and the mass of the heavy field that has been integrated out mW ,

GF =
√
2
g2L

8m2
W

= 1.166 · 10−5GeV−2 . (3.7)

Therefore, Fermi’s theory acts like an effective field theory for the Standard Model, which includes the W± bosons, if
the energy scales being considered are much lower than the W± mass.
At this point, the effective field theory relevant to the study performed in this thesis can be presented.

3.2.1 Standard Model Effective Field Theory

The success of the Standard Model in describing current experimental data suggests that there is a mass gap between
its degrees of freedom and those of New Physics. Let Λ denote the energy scale at which New Physics appears: the
Standard Model Effective Field Theory (SMEFT) was developed to parametrise deviations from the Standard Model
at energy scales below Λ due to the presence of heavy new degrees of freedom in a model-independent manner. The
SMEFT’s region of validity is between the ElectroWeak scale and Λ, under the assumption that v ≪ Λ.
Going below the ElectroWeak scale, another field theory known as LEFT (Low Energy Effective Field Theory) is
commonly used. The particle content of LEFT consists in the massless gauge bosons (the photon and the gluons), all
the SM leptons, the three down-type quarks and the two lighter up-type quarks [39].

The SMEFT Lagrangian is built starting from the SM Lagrangian density and adding a tower of higher-dimensional
operators, organised as an expansion in inverse powers of Λ. These operators are required to be invariant under the
SM gauge group G and are built out of the SM fields. In general, the SMEFT Lagrangian can be written as

LSMEFT = LSM +
∑
d>4

nd∑
i=1

C
(d)
i (µ)

Λd−4
O

(d)
i , (3.8)

in which O(d)
i are the new operators with dimension d and the dimensionless C(d)

i (µ) are Wilson coefficients. These
coefficients are not constant: they depend on the energy scale µ being considered. The equations that describe the
running of the Wilson Coefficients as a function of the energy scale are the Renormalisation Group Equations (RGEs)
[40–42].
Figure 3.2 shows how the SMEFT can be used to study New Physics effects in three steps:

1. Matching at the high energy scale of the UV model with the SMEFT to express the corresponding Wilson
coefficients in terms of the UV masses and couplings;
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Figure 3.2: Schematic description of how SMEFT connects the UV parameters to the ElectroWeak Observables. Figure from [43].

2. Using the RGEs to run down the Wilson coefficients to the scale of the experiments of interest. In compact
notation, they read

Ċi =
∑
j

γijCj , Ċi = 16π2µ
d

dµ
Ci , (3.9)

where the matrix γij is known as the anomalous dimension matrix. To integrate them, the leading log approxi-
mation is typically performed. This approximation consists in assuming that the left-hand side of Equation (3.9)
is µ independent. Hence, the expression can be integrated and provides the following result:

Ci(µ) = Ci(Λ) +
1

16π2
log
(µ
Λ

)∑
j

γijCj(Λ) . (3.10)

For the specific example of Figure 3.2, the energy scale corresponds to the W boson mass, so µ = mW ;

3. Mapping, in this particular case, into the ElectroWeak Precision Observables, getting bounds on the New Physics
parameters. Only certain operators can generate deviations to a given observable: as will be shown in Chapter
6, once a dimension d has been fixed and an operator basis has been chosen, model-independent deviations in
terms of Wilson coefficients can be written for each observable. Model-dependence is reintroduced once the
explicit expressions of the Wilson coefficients are introduced.

At a given dimension d, several operators can be built. However, they are not all independent: one calls "redundant"
all the interactions without physical effects. Typical examples of redundant operators are [44]:

• Those corresponding to total derivatives, except for those cases in which the asymptotic behaviour of fields
cannot be neglected (for example in the presence of non-trivial topologies);

• Operators that are equivalent up to a field redefinition to an already present operator;

• Operators related to one another via relations such as the Fierz Identities. For example, at the dimension-six
level, Fierz identities allow to reduce the number of independent four-fermion operators.
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The operator with the smallest dimension introduced by SMEFT is the dimension-five Weinberg operator [45],

[Oνν ]pr =
(
ϕ̃† lp

)T
C
(
ϕ̃† lr

)
. (3.11)

This operator violates lepton number and generates neutrino masses in the broken phase. Since leptons will not be
considered in this thesis and there are no other dimension-five operators, the first contribution is from the dimension-
six operators.

Two operator bases often appear when dealing with the dimension-six SMEFT and will be used in this thesis: the
Green’s basis [46] and the Warsaw basis [47]. The elements of the former are independent under integration by parts,
and those of the latter are independent under both integration by parts and use of equations of motion of the SM fields:
the Warsaw basis is a non-redundant basis for SMEFT at the dimension-six level. Using the SM equations of motion
it is possible to go from the Green’s basis to the Warsaw basis [46].
So why should one not work directly with the non-redundant Warsaw basis? When the matching procedure is per-
formed by imposing that the EFT and the UV amplitudes are the same, the equations of motion of the SM field are
not involved. So the results of such matchings are in the Green’s basis; the final step of a matching will be to go to
Warsaw basis.
Finally, instead of working with dimensionless Wilson coefficients, the convention used here has the heavy scale of
the expansion included in the coefficient. An operator Ox will, therefore, contribute as

LSMEFT ⊃ CxOx , Cx ∝ 1

M1M2
. (3.12)
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Chapter 4

Identifying the New Physics Model

As seen in Chapter 2, in the Standard Model there is a unique correspondence between the fermion masses and the
corresponding Yukawa couplings. Hence, a deviation from such relationship provides evidence of the presence of New
Physics [48].
Figure 4.1, realised by the CMS collaboration [6], shows the search for such modifications performed using LHC data.
The κ formalism1 is introduced to parametrise deviations from the SM predictions of the couplings. If the general
coupling is denoted by g, then the definition for the modifier is κ = gNP /gSM . In Sections 2.4.1 and 2.4.2, it was
shown that in the Standard Model the couplings to the Higgs boson of the fermions and the massive gauge bosons
are proportional to their mass and their mass squared, respectively. This, first of all, motivates why only the heavier
particles are present in Figure 4.1: the larger the particle’s mass, the bigger its coupling to the Higgs boson. Secondly,
the aforementioned sections motivate why, to have a linear dependence on the particle mass in the plot, the modifier
for the fermions κf appears linearly while for the gauge bosons, the modifier κV is under a square root.
Not the entire massive particle content of the Standard Model is present in Figure 4.1; while only the first generation
charged lepton is missing (the electron2), both the first and the second generation quarks are absent. As mentioned in
the Introduction, there have been several experimental proposals for the constraining of the second generation quarks
(for example, the study of V h production followed by the decay h → cc̄ for the charm quark [13, 50] and the use
of strange tagging at lepton colliders for the strange quark [17]) and the modifier projections for the HL-LHC have
been found to be κc < 1.2 and κs < 13 [23]. Meanwhile the currently loose constraints on the couplings of the first
generation, with projections for the HL-LHC κu < 260 and κd < 156 from reference [25], allow it to be a playground
for the development of new models. In particular, it is of interest to see whether it is possible to test interesting model
parameter space when probing the light quark Yukawa couplings.

Before considering the New Physics models, the SMEFT operators which can lead to quark masses no longer being
proportional to the Yukawa couplings have to be identified. In this context, the term "Yukawa coupling" denotes the
coefficient that multiplies the interaction term between the Higgs field and two quarks. Identifying the relevant SMEFT
operators serves as a tool for the identification of the New Physics models: a model which introduces new particles
that do not generate, once they have been integrated out, the SMEFT operators of interest will not be considered as
candidates.

1The κ factors, also known as scale factors, are used to parametrise the deviations from the Standard Model predictions of the couplings,
decay widths and cross-sections [49]. A list of the κ parameters can be found in Table 2 of reference [49].

2The Future e+e− Circular Collider (FCC-ee) might be able to investigate the electron Yukawa coupling [11].
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Figure 4.1: This plot taken from [6] shows the modifiers for the couplings of the Higgs boson with the heavier SM particles.
These heavy particles consist in the third generation quarks, the second and third generation charged leptons, and the massive
gauge bosons.

4.1 SMEFT Operators

Considering the Warsaw basis operators whose particle content consists in a Higgs boson doublet and quarks, the
following two3 are found to affect the quark Yukawa couplings:

LSMEFT ⊃ ∆Ly ≡ CuϕOuϕ + CdϕOdϕ + h.c. = ϕ†ϕ
(
[Cuϕ]ij q̄

i
Lϕ̃u

j
R + [Cdϕ]ij q̄

i
Lϕd

j
R

)
+ h.c.. (4.1)

They give rise to the tree-level Feynman diagrams shown in Figures 4.2 and 4.3. In the following, how the quark
masses and couplings to the Higgs boson are affected is shown [25].

Mass terms: they are determined by substituting Equation (2.12) in L
ferm
Y uk +∆Ly and end up to be

Mu
ij =

v√
2

(
yuij −

1

2
[Cuϕ]ij v

2
)
, Md

ij =
v√
2

(
ydij −

1

2
[Cdϕ]ij v

2
)
. (4.2)

The rotation from the interaction into the mass basis takes place through a bi-unitary transformation V q (with
q = u, d):

mqi =
[
(V q
L)

†M qV q
R

]
ii
. (4.3)

The CKM matrix is provided by VCKM = (V u
L )

†V d
L .

3Actually, there are two further operators (OϕD and Oϕ2 studied in Section 5.1.1) that can affect the Higgs couplings. However, these affect
all the Higgs couplings, not only those to the light quarks, and are therefore constrained to have a small contribution. Furthermore, in the models
that will be considered here, they only appear at the one-loop level. Their contribution to the κ modifier is, therefore, neglected.
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ϕ∗ ϕ ϕ∗

uR q̄L

Figure 4.2: EFT tree level diagram for Ouϕ.

ϕ ϕ∗ ϕ

dR q̄L

Figure 4.3: EFT tree level diagram for Odϕ.

Given (4.2), one can find the transformed Wilson coefficients
[
C̃qϕ

]
ij

=
[
V q
L

]∗
ni
[Cqϕ]nm

[
V q
R

]
mj

in the mass

basis. qL,i 7→
[
V q
L

]
ij
qL,j

qR,i 7→
[
V q
R

]
ij
qR,j

⇒ q̄L,i [Cqϕ]ij qR,j 7→ q̄L,l
[
V q
L

]∗
il
[Cqϕ]ij

[
V q
R

]
jk︸ ︷︷ ︸

[C̃qϕ]lk

qR,k . (4.4)

The tilde notation is dropped in the following to lighten the notation.

Quark interactions with the Higgs boson: These are obtained by matching terms in L
ferm
Y uk +∆Ly with

L ⊃ −ghψiψ̄j
ψ̄jψih− ghhψiψ̄j

ψ̄jψih
2 − ghhhψiψ̄j

ψ̄jψih
3. (4.5)

The modified couplings ghψiψ̄j
, ghhψiψ̄j

and ghhhψiψ̄j
read

ghqiq̄j =
mq

v
δij −

v2√
2
[Cqϕ]ij ; (4.6)

ghhqiq̄j = − 3

2
√
2
v [Cqϕ]ij ; (4.7)

ghhhqiq̄j = − 1

2
√
2
[Cqϕ]ij . (4.8)

In Equation (4.6) the modified Yukawa coupling between two quarks and the Higgs can be recognized. It is convenient
to parameterise the deviation of the Yukawa coupling from the SM value via the κ parameter:

κqi =
ghqiq̄i
mqi/v

= 1− v3√
2mqi

[Cqϕ]ii , q = u, d . (4.9)

Notice that this definition is appropriate only for the diagonal couplings. Additionally, the presence of the quark masses
in the denominator needs to be addressed: following [25] they are set to be mu = 2.2MeV and md = 4.7MeV for
the first generation; for the second generation ms = 95MeV and mc = 1.27GeV are used. This thesis will study,
looking at concrete models, how large the κq factors can become.

4.2 NP Model Choice

At this point, one can consider NP particles contributing to the dimension-six SMEFT Lagrangian. A classification of
all the NP particles that, once they have been integrated out, can contribute at tree level to the dimension-six operators
in LSMEFT can be found in [51]; these particles can be scalars (S), vector-like fermions (F ) or vector bosons (V ).
The complete Lagrangian, including the possibility of mixed terms (those that involve interactions of NP particles with
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Name U D Q1 Q5 Q7 T1 T2

Irrep. (3, 1) 2
3

(3, 1)− 1
3

(3, 2) 1
6

(3, 2)− 5
6

(3, 2) 7
6

(3, 3)− 1
3

(3, 3) 2
3

Table 4.1: Vector-like quarks presented in [51] which generate dimension-six contributions to the SMEFT at tree level.

Singlet + Doublet Doublet + Triplet

Model 1 U +Q1 Model 5 T1 +Q1

Model 2 D +Q1 Model 6 T1 +Q5

Model 3 U +Q7 Model 7 T2 +Q1

Model 4 D +Q5 Model 8 T2 +Q7

Table 4.2: New Physics models to be examined.

different spins), is written in the following manner:

LcNP = LSM + LS + LF + LV + LSF + LSV + LV F︸ ︷︷ ︸
mixed

. (4.10)

From Appendices C and D of [51], one can identify the NP particles that generate at tree level the operator Ouϕ and/or
Odϕ: models can be constructed involving a scalar, a pair of scalars (both shown in Figure 4.4), a pair of vector-like
quarks and a mixed case with one scalar and one vector-like quark. Tree level Feynman diagrams for the last two cases
are found in Figure 4.5. Vector-like quarks will henceforth be referred to as VLQs.

In this thesis, models involving pairs of the VLQs in Table 4.1 will be considered: as an example, the operator of
interest Ouϕ can be obtained by integrating out the cyan propagators of the diagram on the left in Figure 4.5. The
number of models that can be constructed is finite and can be studied systematically: Table 4.2 shows the particle
content of the models that will be studied, as well as the name with which they will be identified throughout the rest
of the thesis. The presence of pairs implies that, besides the interactions of the heavy quarks with the SM ones, also
interactions between VLQs can be studied. As will be explicitly shown in Section 5.1, the presence of a Yukawa-like
coupling between VLQs is especially important as it appears in the unsuppressed term in the κ modifier’s expression
(Equation (4.9)) once the matching has been performed.

The characteristic of VLQs is that their right-handed and left-handed components transform in the same manner under
the SM gauge group. This means that they can have a mass term without requiring the Higgs mechanism since it
would not break gauge symmetry and that they could be very massive without introducing unnaturally big Yukawa-

q̄L

uR ϕ∗

ϕ

ϕ∗

Φ

q̄L

uR ϕ∗

ϕ

ϕ∗

Φ
S

Figure 4.4: Feynman diagrams for the contribution of models involving one new scalar (left) or two new scalars (right) to the
operator Ouϕ.
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ϕ∗ ϕ ϕ∗

uR q̄L

Q1 U

uR
ϕ

ϕ∗

q̄L ϕ∗

U

S

Figure 4.5: Tree level diagrams involving a pair of VLQs (left) and one VLQ and one scalar (right).

like couplings. This is a welcome attribute since the possibility of a further fourth generation of quarks, with Yukawa
couplings bigger than those of the top quark, has already been excluded at LHC [52].

Another promising set of models, which should be the subject of future studies, involves one scalar and one vector-like
quark. For example, a model containing the VLQ singlet U ∼ (3, 1) 2

3
and the scalar S ∼ (1, 1)0 can generate the

Ouϕ SMEFT operator by integrating out the cyan lines in the rightmost diagram of Figure 4.5. Such type of model,
using a Vector-like lepton instead of a quark, was shown to result in up to O(10) deviations of the electron Yukawa
coupling [11]; these deviations are expected to be detectable at the FCC-ee.

4.2.1 Motivation for the use of vector-like quarks

Vector-like Quarks often appear in models aiming to address the open questions within the Standard Model [53,54]. For
example, they appear in Composite Higgs models [55–57], Little Higgs models [58], the Left-Right Mirror Model [59],
Top Colour [60, 61] and in solutions to the Strong CP problem without the use of axions [62, 63].
The focus of the thesis, thought of as a continuation of the work started in [64], will be on the VLQs themselves,
without addressing the above models. In particular, the study of VLQs here is performed in the context of enhancing
the light quark Yukawa couplings.

4.2.2 Lagrangian description

The entire New Physics Lagrangian introduced by [51] involving all seven VLQs reads

LNP = LSM + L
quad
NP + LintNP , (4.11)

where the NP contributions have been split into two terms. The first, LquadNP contains the kinetic and massive term for
the VLQs. The interactions with the gauge bosons can be read here; since there are no triplets in the SM, the expression
of the covariant derivative and the interactions with the W± and Z bosons of the triplets T1 and T2 are reported in
Appendix B. In general, this term is written as

L
quad
NP =

∑
ψ

(
ψ̄i /Dψ −Mψ ψ̄ψ

)
. (4.12)
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Charges
Field −4

3 −1
3

2
3

5
3

U - - U -
D - D - -
Q1 - B T -
Q5 Y B - -
Q7 - - T X

T1 T
−4/3
1 T

−1/3
1 T

2/3
1 -

T2 - T
−1/3
2 T

2/3
2 T

5/3
2

Table 4.3: Electric charge assignments for the components of the different VLQs being studied.

The last term in Equation (4.11) instead contains the Yukawa-like interactions of the VLQs with other terms.

−LintNP = [λU ]r ŪR ϕ̃
†qLr + [λD]r D̄R ϕ

† qLr+

+
[
λuQ1

]
r
Q̄1Lϕ̃ uRr +

[
λdQ1

]
r
Q̄1LϕdRr + [λQ5 ]r Q̄5Lϕ̃ dRr + [λQ7 ]r Q̄7LϕuRr+

+ [λT1 ]r T̄
I
1Rϕ

†σ
I

2
qLr + [λT2 ]r T̄

I
2Rϕ̃

†σ
I

2
qLr+

+ λUQ1ŪLϕ̃
†Q1R + λDQ1D̄1Lϕ

†Q1R + λUQ7ŪLϕ
†Q7R + λDQ5D̄Lϕ̃

†Q5R+

+ λT1Q1 T̄
I
1Lϕ

†σ
I

2
Q1Rs + λT1Q5 T̄

I
1L ϕ̃

†σ
I

2
Q5R ++λT2Q1 T̄

I
2Lϕ̃

†σ
I

2
Q1R + λT2Q7 T̄

I
2Lϕ

†σ
I

2
Q7R + h.c. .

(4.13)

The first three lines describe the interactions of the SM quarks with the VLQ singlets, doublets and triplets respec-
tively; the last two lines contain the eight interactions that identify the models in Table 4.2.
We assume that only one generation of VLQs is present and that they couple to only one generation of SM quarks,
either the first or the second (r = 1, 2).
The Feynman rules associated with such Yukawa-like interactions are written in Appendix C.1.
For future reference, the components of the VLQs and their charges under U(1)Y are reported in Table 4.3. Besides
the usual quark electric charges +2/3 and −1/3, both the triplets and the Q5 and Q7 doublets introduce states with
two new charges, −4/3 and 5/3.

In the next two chapters, the eight models will be studied individually, performing first a matching onto the Warsaw
SMEFT basis and then using these results to extract bounds on the VLQ couplings. Prompted by the recent ATLAS
publication on the search for pair-produced VLQs at LHC [26], in Chapter 7 the branching ratios for the VLQ decay
modes will be studied.
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Chapter 5

Matching

At the beginning of the previous Chapter, it was shown how the introduction of the SMEFT operators Ouϕ and Odϕ

modifies the couplings of the quarks to the Higgs boson and a set of New Physics models that allow such operators to
arise was identified. However, these two operators are not the only ones that can arise: already at the tree level several
other SMEFT operators appear.
Recalling that the goal is to see how big the κq modifier can be made, it is important to first of all find its expression in
terms of the NP parameters (masses of the VLQs and their couplings to the SM quarks and between themselves) and
to have a way to associate a numerical value to such parameters. This is achieved via the following steps:

1. Identifying the relevant SMEFT operators that are obtained by integrating out the VLQs for each model;

2. Expressing the corresponding Wilson coefficients in terms of the NP parameters through a matching procedure;

3. Using ElectroWeak Precision Observables and Higgs Physics data to obtain bounds on the Wilson coefficients,
that can then be translated in the NP parameters. The study of Flavour Changing Neutral Currents would allow
to extract bounds from Flavour Physics; however, given that the VLQs in our models only couple to either the
first or the second generation quarks but never both at the same time, only very weak bounds can be extracted
from Flavour Physics for the VLQ models. More details are in Appendix D.

Starting from the first point, a SMEFT operator is relevant for this discussion if its presence can affect the Higgs or
ElectroWeak observables used as bounds: the operators of interest are reported in Table 5.1. How SMEFT operators

Tree Level One-Loop

ψ2ϕ3 ψ2ϕ2D X2ϕ2 ϕ4D2

Ouϕ
(
ϕ†ϕ

) (
q̄Lϕ̃uR

)
O
(1)
ϕq (ϕ†i

↔
Dµϕ)(q̄Lγ

µqL) OϕG
(
ϕ†ϕ

) (
GAµνG

Aµν
)

Oϕ2
(
ϕ†ϕ

)
2
(
ϕ†ϕ

)
Odϕ

(
ϕ†ϕ

)
(q̄LϕdR) O

(3)
ϕq (ϕ†i

↔
DI

µϕ)(q̄Lσ
IγµqL) OϕW

(
ϕ†ϕ

) (
W I
µνW

Iµν
)

OϕD |ϕ†Dµϕ|2

- - Oϕu (ϕ†i
↔
Dµϕ)(ūRγ

µuR) OϕB
(
ϕ†ϕ

)
(BµνB

µν) - -

- - Oϕd (ϕ†i
↔
Dµϕ)(d̄Rγ

µdR) OϕWB

(
ϕ†σIϕ

) (
BµνW

Iµν
)

- -

- - Oϕud (ϕ̃†iDµϕ)(ūRγ
µdR) - - - -

Table 5.1: Operators in the Warsaw basis of interest for the experimental tests. The operator in grey only arises in the models

involving the Q1 doublet. By definition, ϕ†
↔
Dµϕ = ϕ†(Dµϕ)− (Dµϕ)

†ϕ and ϕ†
↔
DI

µϕ = ϕ†σI(Dµϕ)− (Dµϕ)
†σIϕ.
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Operator Wilson Coefficient

[Ouϕ]rp
1

2M2
U
[λ∗U ]r [λU ]k [yu]kp +

1
2M2

Q1

[yu]rk

[
λuQ1

]∗
k

[
λuQ1

]
p
− 1

MQ1
MU

[λU ]
∗
r [λUQ1 ] (λ

u
Q1

)p

[Odϕ]rp
1

2M2
Q1

[yd]rk

[
λdQ1

]∗
k

[
λdQ1

]
r[

O
(1)
ϕq

]
rp

1
4M2

U
[λU ]

∗
r [λU ]p[

O
(3)
ϕq

]
rp

− 1
4M2

U
[λU ]

∗
r [λU ]p

[Oϕu]rp − 1
2M2

Q1

[
λuQ1

]
p

[
λuQ1

]∗
r

[Oϕd]rp
1

2M2
Q1

[
λdQ1

]
p

[
λdQ1

]∗
r

[Oϕud]rp
1

M2
Q1

[
λuQ1

]∗
r

[
λdQ1

]
p

Table 5.2: Tree level matching results for Model 1.

can affect Higgs and Electroweak Observables will be seen in greater detail in Chapter 6, though some points will be
mentioned in this Chapter to motivate the interest in the operators of Table 5.1.

The focus of this chapter is on the matching. It is performed in the following manner:

• For the tree level generated operators, the results by [51] are checked against the output of the MATHEMATICA

[65] package Matchete1 [66];

• For the one-loop operators, the Matchete results are cross-checked against the ones provided by SOLD2 [67].
An exception is made for the operators OϕD and Oϕ2 which are not included in the current release of SOLD.
These are computed explicitly for each of the eight models. Additionally, for Model 1 also the coefficients for
the four X2ϕ2 operators of interest will be computed.

Given the length of the coefficients’ expressions after the matching, they will not all be explicitly written out. The
results of the tree level matching are always reported, as well as the expressions and some details regarding their
calculation for CϕD and Cϕ2. For Model 1, also the coefficients for the operators of the class X2ϕ2 are presented. The
generation indices are dropped.

5.1 Model 1: Q1 + U

In the first model, the interactions of the VLQs with the Higgs boson and the SM quarks are described by the following
Lagrangian density,

−LintNP,M.1 = [λU ]r ŪRϕ̃
†qLr +

[
λuQ1

]
r
Q̄1Lϕ̃ uRr +

[
λdQ1

]
r
Q̄1LϕdRr + λUQ1ŪLϕ̃

†Q1R + h.c. . (5.1)

The results of the tree-level matching are reported in Table 5.2. Notice the dependence on the Yukawa couplings of
the first two Wilson coefficients: given the interest in studying the light quark Yukawa couplings, they are set to zero.

1Matchete (Matching Effective Theories Efficiently) allows to perform tree-level and one-loop matching to dimension six operators in the
Warsaw basis. The user provides the gauge groups, the particle content, the masses and the couplings of the theory and the Lagrangian of the
UV model.

2SOLD (SMEFT One Loop Dictionary) is another MATHEMATICA which only requires as an input the name of the fields and their charges
under the SM gauge group and performs the one-loop matching to a specified Warsaw basis operator.
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This means that the expressions for the κq modifiers for Model 1 are:

[Cuϕ]ii = − 1

MQ1MU
[λU ]

∗
i

[
λuQ1

]
i
λUQ1 ⇒ κui = 1 +

v3√
2muiMQ1MU

[λU ]
∗
i

[
λuQ1

]
i
λUQ1 , (5.2)

[Cdϕ]ii = 0 ⇒ κdi = 1 . (5.3)

From the expression for κui , it becomes clear why models involving pairs of VLQs are so interesting for the study of
the Yukawa couplings enhancement: they provide an unsuppressed contribution to the coupling modifiers.
As for the remaining operators in Table 5.2, they are associated with deviations of the quark couplings to the gauge
bosons and are therefore constrained by ElectroWeak Precision Observables (Section 6.1.1).

5.1.1 ϕ4D2 class operators

The first pair of one-loop-generated operators to be considered are OϕD and Oϕ2. These operators are relevant for the
Higgs and the Electroweak fit. Indeed, they modify the Higgs kinetic term and a field redefinition is necessary in order
to reobtain the canonical normalisation for the Higgs kinetic term,

ϕ =
1√
2

(
0(

1 + Chkin
)
h+ v

)
, Chkin =

v2

Λ2

(
Cϕ2 − 1

4
CϕD

)
. (5.4)

The consequence of the field redefinition is that the couplings of the Higgs h to all the other SM particles are modified.
The result shown in Equation (4.9) gets corrected to

κqi = 1 + Chkin −
v3√
2mqi

[Cqϕ]ii . (5.5)

In all the models considered in this thesis, Chkin gets generated at one-loop level only, hence this correction is expected
to be negligible compared to the tree-level contribution, which in turn is enhanced by the factor v/mqi that is large for
the first and second family quarks. Additionally, one should notice that it introduces a modification to all the couplings,
including the heavy fermions and massive gauge bosons that are experimentally well-determined (Figure 4.1). The
tree-level definition of the κ-modifier in Equation (4.9) is used in the rest of this thesis.
As for the ElectroWeak sector, an exemplary observable which is affected by the presence of the operator OϕD, is the
T parameter [68]. The formal expression and the experimental result [69] at the mZ scale are expressed below read

T = − v2

2αEM
CϕD, T exp(mZ) = 0.06± 0.06. (5.6)

The matching for OϕD and Oϕ2 is performed by computing the four-point Higgs scattering amplitudes in the New
Physics (UV) models and in the SMEFT, and then requiring the two to provide the same description [70]:

M1L
UV = MT.L.

EFT +M1L
EFT . (5.7)

In the NP model, such scattering process is loop-induced, whereas in the EFT both tree level and one-loop diagrams
can contribute. In particular, the Wilson coefficients of interest both appear in MT.L.

EFT .

There are four operators in the Green’s basis [46] that can contribute to the tree-level SMEFT process, which is
described by the Feynman diagram in Figure 5.1; these operators are listed in Table 5.3. Their Wilson coefficients in
the Green’s basis are, respectively, Gϕ2, GϕD, G′

ϕD, and G′′
ϕ2, where the choice of using G highlights the fact that the

matching is performed in the Green’s basis. To obtain the explicit expressions for these four coefficients, Equation (5.7)
will be set up for four independent external momentum configurations for the Higgs bosons. Once the expressions are
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ϕ, 1

ϕ∗, 3

ϕ∗, 4

ϕ, 2

p1
p2p3
p4

Figure 5.1: Tree level EFT diagrams.

Warsaw basis only Green’s Basis

Qϕ2 (ϕ†ϕ)2(ϕ†ϕ) Q′
ϕD (ϕ†ϕ)(Dµϕ)

†(Dµϕ)

QϕD |ϕ†Dµϕ|2 Q′′
ϕD (ϕ†ϕ)Dµ(ϕ

†
↔
Dµϕ)

Table 5.3: Green’s basis ϕ4D2 class SMEFT operators contributing at tree
level to the four-point Higgs amplitude. In the first column, the two opera-
tors that also appear in the Warsaw basis are reported.

ϕ, 1

ϕ∗, 3

ϕ∗, 4

ϕ, 2

s

d

s

d

ϕ, 1

ϕ∗, 3

ϕ∗, 4

ϕ, 2

s

d

s

d

ϕ, 1

ϕ∗, 3

ϕ∗, 4

ϕ, 2

s

d

s

d

Figure 5.2: The three types of UV diagrams that will be considered, by convention the external momenta are all pointing inwards.
Left: "Box diagram", if the momentum flow is clockwise, the singlets s are of up-type (so either uR orU ), if instead the momentum
flow is counter-clockwise then the singlet can only be dR. Center: "Non-planar diagram type 1", if the upper line is oriented left
to right, then the singlet is either uR or U , otherwise it is dR. Right: "Non-planar diagram type 2", if the rightmost vertical line is
oriented upwards, the singlet is dR, otherwise it can be either uR or U .

found by solving the linear system with four unknowns, the transition into the Warsaw basis can be done by applying
the results in Appendix B3 of [46]:

Cϕ2 = Gϕ2 +
1

2
G′
ϕD , (5.8)

CϕD = GϕD . (5.9)

The labelling shown in Figure 5.1 is employed. The Higgs is charged under SU(2)L, so the corresponding indices
have to be accounted for. Two delta combinations can arise: δ13δ24 and δ14δ23, meaning that the amplitudes can be
split into M = M1δ

13δ24 +M2δ
14δ23. To simplify the study, only the first combination is considered.

Step 1: Identifying and computing relevant UV diagrams.
The interest lies in diagrams that involve at least one vector-like quark since the ones involving only Standard Model
particles would appear on both sides of (5.7) and hence cancel out.
The UV diagrams involve four fermionic propagators and are shown in Figure 5.2, going from left to right they are
labelled as "box", "non-planar type 1" and "non-planar type 2" diagrams. The empty dot is used to indicate that the
lines do not intersect. The doublets d available areQ1 and q, whereas the singlets s are U , u and d. Since they have the
same charges (3, 1) 2

3
, U and u will be called up-type particles. One should notice that in the box diagram the singlets

must either both be up-type or be the d quark, whereas the structure of the non-planar diagrams requires one singlet to
be d and the other to be up-type. This also means that a diagram involving four VLQs can only be of box-type.
Given the interaction Lagrangian in Equation (5.1) and the SM Yukawa Lagrangian in Equation (2.10), the following
particle combinations, extensively reported in Table 5.4, can be built:

1. four VLQs (two Q1 and two U quarks is the only combination);

2. three VLQs and one SM quark. The SM quark can be the doublet q or one of the two singlets;

3Actually, the results in this thesis were found by further assuming that the other terms appearing in the expression for CϕD and Cϕ2 in [46]
give a subleading contribution due to the presence of the gauge couplings gL and gY .
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3. two VLQs and two SM quarks. Depending on whether the two VLQs are placed consecutively or not, the
coupling combination associated with the diagram includes or does not include a SM Yukawa coupling;

4. one VLQ and three SM quarks. In this case there will always be a Standard Model Yukawa coupling dependence.

identifier h. p. l. p. diagram multiplicity UV coefficient

4 heavy 2U, 2Q1 0 box 1 |λUQ1 |4

3 heavy

2U, 1Q1 1q box 2 |λU |2 |λUQ1 |2

1U, 2Q1

1u box 2 |λuQ1
|2 |λUQ1 |2

1d
n.p. type 1 2 |λdQ1

|2 |λUQ1 |2

n.p. type 2 2 |λdQ1
|2 |λUQ1 |2

2 heavy

2U 2q box 1 |λU |4

2Q1

2u box 1 |λuQ1
|4

2d box 1 |λdQ1
|4

1u, 1d
n.p. type 1 2 |λuQ1

|2|λdQ1
|2

n.p. type 2 2 |λuQ1
|2|λdQ1

|2

1U, 1Q1

1u, 1q box 4 λUQ1λ
u∗
Q1
λ∗Uyu and λ∗UQ1

λuQ1
λUy

∗
u

1d, 1q
n.p. type 1 4 y∗dλ

d
Q1
λ∗UQ1

λU and y∗dλ
d
Q1
λ∗UQ1

λU

n.p. type 2 4 y∗dλ
d
Q1
λ∗UQ1

λU and y∗dλ
d
Q1
λ∗UQ1

λU

1 heavy

1Q1

2u, 1q box 2 |λuQ1
|2|y2u|

2d, 1q box 2 |λdQ1
|2|y2d|

1u, 1d, 1q
n.p. type 1 4 y∗uλ

u
Q1
λd∗Q1

yd and yuλu∗Q1
λdQ1

y∗d

n.p. type 2 4 y∗uλ
u
Q1
λd∗Q1

yd and yuλu∗Q1
λdQ1

y∗d

1U

2q, 1u box 2 |λU |2|y2u|

2q, 1d
n.p. type 1 2 |λU |2|y2d|

n.p. type 2 2 |λU |2|y2d|

Table 5.4: Summary of the different contributions to the UV four-point amplitude. The heavy particle (h.p) and light particle (l.p.)
content are specified, as well as the type of diagram they appear in and the total number of contributing diagrams. The various
contributions to the same diagram type arise from the possibility to arrange the particles in the loops and to change the orientation
of the loop momentum.

29



5.1. MODEL 1: Q1 + U CHAPTER 5. MATCHING

u/d

q u/d

q

u/d
q

u/d

q

Figure 5.3: The three one-loop Feynman diagrams contributing to M1L
EFT , where one of the vertices involves a SMEFT operator

from Table 5.5.

Number of particles Type of particles EFT operator involved multiplicity

2
1u, 1q Ouϕ 4

1d, 1q Odϕ 4

3

2u, 1q Oϕu 2

2d, 1q Oϕd 2

1u, 2q
O
(1)
ϕq 2

O
(3)
ϕq 4

1d, 2q
O
(1)
ϕq 2

O
(3)
ϕq 4

1d, 1u, 1q Oϕud 4

Table 5.5: Summary of the one loop EFT contributions which must be accounted for, classified based on the number of particles
in the loop.

Step 2: Identifying and computing relevant EFT operators.
In the Effective Field Theory calculation, the tree-level diagram in Figure 5.1 and the three different types of one-loop

diagrams in Figure 5.3 are involved.
The tree level diagram receives contributions from the four operators in Table 5.3, whose Feynman rules for the δ13δ24

SU(2)L index contraction are summarised in Table 5.6.
As for the one-loop contributions, they can be seen as the counterparts of the UV diagrams with two and one heavy
VLQs. Table 5.5 summarises the contributions to the calculation. Besides the particle content, also the type of Effective
vertex and the number of independent contributions provided are listed. The Effective operators’ Wilson coefficients
in these cases are already known from the tree-level matching.

Step 3: Matching.
At this point four independent external momentum configurations P = (p1, p2, p3, p4) have to be chosen:

P1 = (q,−q, q,−q) , P2 = (q, q,−q,−q) , P3 = (0, 0, q,−q) , P4 = (q,−q,−q, q) . (5.10)

The linear system that has to be solved can be cast in the formAαβGβ = bα, where the Greek indices label the different
momentum configurations. Aαβ is a 4 × 4 matrix, while Gα and bα are column vectors. The latter is defined as the
difference between the UV and EFT one-loop amplitudes for the four momentum configurations, whereas the first two
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Operator Feynman Rule Operator Feynman Rule

Qϕ2 −iGϕ2
(
(p1 + p3)

2 + (p2 + p4)
2
)

Q′
ϕD −iGϕD

(
p1 · p3 + p2 · p4

)
QϕD −iG′

ϕD

(
p1 · p4 + p2 · p3

)
Q′′
ϕD G′′

ϕD

(
p21 + p22 − p23 − p24

)
Table 5.6: Feynman Rules for the Green’s basis operators contributing to the tree level EFT diagram.

are:

[A]αβ = q2


−8i 2i −2i 0

0 2i 2i 0

−2i 0 0 −2

0 −2i 2i 0

 , [G]α =


Gϕ2

GϕD

G′
ϕD

G′′
ϕD

 . (5.11)

The final results, using Equations (5.8) and (5.9) to move from the Green’s to the Warsaw basis and setting yu = yd = 0

and MU =MQ1 = Λ, are written below.

16π2Λ2Cϕ2 =− 6

5
|λUQ1 |4 −

5

4
|λUQ1 |2

(
|λdQ1

|2 + 2|λuQ1
|2 + |λU |2

)
− 3

4

(
|λdQ1

|4 + |λuQ1
|4
)
+

− 2|λdQ1
|2|λuQ1

|2 − |λU |4 , (5.12)

16π2Λ2CϕD =− 12

5
|λUQ1 |4 +

5

2
|λUQ1 |2

(
|λdQ1

|2 − |λuQ1
|2 − 2|λU |2

)
− 2

(
|λdQ1

|4 + |λuQ1
|4
)
+

+ 4|λdQ1
|2|λuQ1

|2 − 3

2
|λU |4 . (5.13)

The results were cross-checked with Matchete and found to be in agreement.
Before moving on to the second class of one-loop generated SMEFT operators, let us point out that the computation
could have been simplified if from the start the SM Yukawa couplings had been set to zero. Indeed, only the tree-
level Effective Field Theory diagram and a reduced number of UV diagrams do not carry a dependence on the SM
Yukawa couplings. For the remaining seven models, this simplification will be performed right from the beginning.
The masses, instead, will be kept separate, with the same mass limit taken only at the end of the matching.
Finally, it is interesting to point out that keeping the Yukawa couplings different from zero and the heavy masses
to be possibly different, a consistency check can be made by requiring momentum independence to hold. Indeed,
when the UV diagrams with one heavy particle and the EFT diagrams are evaluated, terms such as log(M2

α/q
2) and

log(µ2/q2) respectively appear (where α ∈ {MQ1 ,MU}). From the EFT side, the logarithm is multiplied by Wilson
coefficients and SM couplings, whereas from the UV part a combination of UV and SM parameters appears. In the final
expressions for the Wilson coefficients, one must be able to substitute the Wilson coefficients’ expression in terms of
the UV parameters and cancel out the dependence on q2. Indeed, q2 serves the role of Infrared (IR) regulator and, given
that the UV and Effective Theory have the same IR behaviour, it should cancel during the matching. The parameter
µ which appears in the logarithm is called the renormalisation scale; it appears when loop calculations are performed
within the dimensional regularisation scheme4. Consider for example the contributions to GϕD involving two down
quarks d and one doublet q: from Table 5.4 there are two box diagram contributions from the UV side containing the
heavy Q1, whereas from Table 5.5 there are two contributing EFT diagrams, both containing the operator Oϕd. The

4The integration over the internal virtual momentum in loop diagrams can lead to UV divergences. A renormalisation program allows to
identify and remove the divergences. In dimensional regularisation, the dimension of the space being integrated over is reduced by a factor ϵ,
which at the end of the calculations is sent to zero. If the dimension of the space is modified, then also the dimension of the Lagrangian density,
and everything it contains, is affected (recall that, if the dimension of the space considered is d, then the Lagrangian density satisfies [L] = d).
µαϵ terms, with α a number, are introduced in the Lagrangian to guarantee that observables, like the electric charge e, maintain their mass
dimension.

31



5.1. MODEL 1: Q1 + U CHAPTER 5. MATCHING

Xµ

Xν

ϕ, 1

ϕ∗, 2

p2
p1 p4

p3

Figure 5.4: Tree-level Feynman diagram generated by the operator OϕX .

ϕ, 1

ϕ∗, 2

Xµ

Xν

ϕ, 1

ϕ∗, 2

Xµ

Xν

ϕ, 1

ϕ∗, 2

Xµ

Xν

Figure 5.5: The three colour-coded UV diagrams involved in the matching for the OϕX operators. The convention for the external
momenta is that of Figure 5.4. Left: "Box diagram"; Center: "Non-planar diagram type 1"; Right: "Non-planar diagram type 2".

system’s solution results in

GϕD ⊃ Nc

4π2

(
− 1

2M2
Q1

|yd|2|λdQ1
|2 log

(
M2
Q1

q2

)
+ Cϕd log

(
µ2

q2

))
=

Nc

8π2M2
Q1

|yd|2 |λdQ1
|2 log

( µ2

M2
Q1

)
. (5.14)

The logarithmic dependence on the scale µ is typical of leading-log solution of the Renormalisation Group Equations,
Equations (3.9) and (3.10). Indeed, what was just recovered is the Cϕd contribution to the Renormalisation Group
running of CϕD, in agreement with the model-independent results found in reference [41]. The agreement between
reference [41] and the one-loop matching serves as a further cross-check.

5.1.2 X2ϕ2 class operators

Let Xa
µ be the generic gauge boson. The operator of interest can be written in the general form:

OϕX =
(
ϕ†ϕ

) (
XaµνXa

µν

)
, (5.15)

whereXa
µν is the field strength tensor associated withXa

µ. The tree-level Feynman diagram generated by OϕX is shown
in Figure 5.4. These operators are all relevant for Higgs physics: OϕG introduces a tree-level contribution to the gluon-
gluon fusion production mechanism of the Higgs boson, the other three operators will appear in the modifications to
the Higgs to photon-pair decay channel [71].

To perform the matching, Equation (5.7) requires the study of processes with two gauge bosons and two Higgs doublets
as external states. Also, in this case, both the UV and EFT provide one-loop contributions, but only the EFT can
contribute at the tree level.
From the UV point of view, the allowed diagrams involving at least one vector-like quark all contain four fermionic
propagators; depending on the arrangement of the propagators, the diagrams of Figure 5.5 will be labelled as "box",
"non-planar type 1" and "non-planar type 2" (from left to right). While in the previous study of OϕD and Oϕ2 there was
a great number of possible particle arrangements in the loops, here the presence of the gauge bosons in two vertices
sets a constraint: in such vertices the incoming and the outgoing quarks must be the same. This was colour-coded in
Figure 5.5.
To see this, one should recall that the interaction between gauge bosons and quarks is picked up from the quark kinetic
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Identifier h.p. l.p. Diagram type Multiplicity

4 heavy
1U, 3Q1 0 box + non-planar 2 1+1
3U, 1Q1 0 box + non-planar 2 1+1
2U, 2Q1 0 non-planar 1 2

3 heavy
3U 1 qL box + non-planar 2 1+1

3Q1
1uR box + non-planar 2 1+1
1 dR box + non-planar 2 1+1

2 heavy
2U 2 qL non-planar 1 2

2Q1
2uR non-planar 1 2
2 dR non-planar 1 2

1 heavy
1U 3 qL box + non-planar 2 1+1

1Q1
3 dR box+ non-planar 2 1+1
3uR box + non-planar 2 1+1

Table 5.7: UV diagram contributions. All of these contributions are relevant in the matching for the CϕG and CϕB coefficients, the
diagrams in which a singlet would have to interact with a weak gauge boson XI

µ must be removed when dealing with the SMEFT
operators OϕW and OϕWB .

term. If ψ denotes the generic quark, its kinetic term is:

L
ψ
kin = ψ̄iγµ

(
∂µ + igsT

AGAµ + igLτ
aW a

µ + igY YψBµ
)
ψ .

The resulting Feynman rules are reported in Appendix C.2. The allowed combinations are then summarised in Table
5.7: considering that all the quarks couple to Bµ and GAµ while the singlets do not interact with the weak bosons W I

µ,
for CϕG and CϕB all the contributions in Table 5.7 contribute, while six less need to be computed for CϕBW and ten
less for CϕW . This will be addressed in more detail in the relevant sections.

As for the EFT contributions, the tree-level operators will be dealt with individually in the appropriate subsections; the
one-loop contributions are shown explicitly for the first operator. For the other three cases, it is sufficient to replace
the Gluon with the gauge boson of interest.
Considering that the gauge bosons are massless and the presence of the polarisation vectors, some simplifications can
be made. Using the momentum labelling in Figure 5.4, these simplifications are defined as:

• kinematic simplification: p23 = 0 and p24 = 0;

• transversality simplification: p3 · ϵ3 = ϵ4 · p4 = 0.

Finally, the transformation from the Green’s to the Warsaw basis is trivial for the coefficients in the X2ϕ2 class [46]:

CϕX = GϕX . (5.16)

Even though there might be more than one operator contributing to the tree-level process, the solution of the linear
system constructed by picking different external momentum configurations already supplies the Wilson coefficient in
the Warsaw basis.
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ϕ, 1

ϕ∗, 2

GAµ

GBν

URc4
qLc1

qLc2

qLc3

Figure 5.6: UV box diagram involving one VLQ where the colour indices have been explicitly written out.

ϕ, 1

ϕ∗, 2

GAµ

GBν

(a) EFT tree level diagram.

ϕ, 1

ϕ∗, 2

GAµ

GBν

(b) EFT trinagle one-loop diagram.

GAµ

ϕ, 1

ϕ∗, 2

GBν

(c) EFT oval one-loop diagram.

Figure 5.7: Feynman diagrams with EFT vertices which could contribute to the matching of CϕG. A fourth diagram can be
obtained from the third by exchanging the two gluons. In the one-loop diagrams, the internal momenta can oriented clockwise or
counter-clockwise.

5.1.2.1 Operator OϕG

The first case to be studied is the operator OϕG, which appears in the Lagrangian density as:

LSMEFT ⊃ CϕGOϕG = CϕG(ϕ
†ϕ) (GAµνG

Aµν) . (5.17)

UV diagrams.
The UV diagrams in Table 5.7 are all involved since every quark can interact with the Gluons.
Gellmann matrices are present in the Gluon vertices, so it is of interest to study the colour index contractions5. In all
three types of UV diagrams, the contraction results in a factor 1

2δ
AB . For example, the Feynman diagram in Figure 5.6

was obtained by specifying the colour indices of the quarks in the loop; the index contraction is performed as follows:

δc1 c4δc4 c3
λAc3 c2
2

λBc2 c1
2

= Tr
[
λA

2

λB

2

]
=

1

2
δAB. (5.18)

EFT diagrams
The EFT diagrams that can contribute to the matching of CϕG are shown in Figure 5.7, they are:

• The tree level diagram in Figure 5.7a, which is associated with the UV diagrams with four heavy VLQs whose
propagators have been shrunk to a point. There is only one SMEFT operator in the Green’s basis that can
generate such diagram, which is the operator of interest OϕG;

• The one-loop diagram in Figure 5.7b, that involves three SM quark propagators and an EFT vertex containing
two quarks and two Higgs doublets. Its UV counterpart are the diagrams with one heavy VLQ;

• Finally, the UV diagrams involving two heavy particles have as EFT counterpart the diagram in Figure 5.7c. In
this case the Effective vertex involves two Higgs doublets, a gluon and two SM quarks.

Considering both one-loop diagrams, all the operators in Table 5.8 can contribute. The colour cyan is used to highlight
the operators that, once the SM equations of motion are used to go to the Warsaw basis, are no longer present. It
turns out that the knowledge of the expressions for the Wilson coefficients associated to the operators in Table 5.8 is
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Operator Definition Operator Definition

O
(1)
ϕq

(
ϕ†i

↔
Dµϕ

)
(q̄Lγ

µqL) Oϕu

(
ϕ†i

↔
Dµϕ

)
(ūRγ

µuR)

O
′(1)
ϕq

(
ϕ†ϕ

)(
q̄Li

↔
/DqL

)
O′
ϕu

(
ϕ†ϕ

)(
ūRi

↔
/DuR

)
O

(3)
ϕq

(
ϕ†i

↔
DI

µϕ

)(
q̄Lσ

IγµqL
)

Oϕd

(
ϕ†i

↔
Dµϕ

)(
d̄Rγ

µdR
)

O
′(3)
ϕq

(
ϕ†σIϕ

)(
q̄Li

↔
/D
I
qL

)
O′
ϕd

(
ϕ†ϕ

)(
d̄Ri

↔
/DdR

)
Table 5.8: Dimension six operators involved in the EFT computation for the CϕG matching in the Green’s basis. The cyan ones
appear only in the Greens’ basis.

ϕ, 1

ϕ, 2

GAµ

GBν

qiL

qjL

qkL

Figure 5.8: EFT triangle diagram involving the operator O(3)
ϕq with explicit weak structure.

not required: the combination of the kinematic and transversality simplifications, of the weak index contraction and
of the fact that the diagrams appear in pairs with different internal momenta leads to having an overall null one-loop
contribution from the Effective theory side.

The Wilson coefficient, setting the Yukawa matrices to be zero and the masses of the VLQs to be the same Λ, is

16π2Λ2CϕG =
g2s
6

(
|λdQ1

|2 + |λuQ1
|2 + |λU |2 − 2|λUQ1 |2

)
. (5.19)

Before moving on to the next operator, an example of how also index contractions can reduce the number of involved
diagrams is shown. Weak index contraction shows that O(3)

ϕq gives a null contribution: using as reference the diagram
in Figure 5.8 and the Feynman Rules reported in Appendix C.3, weak index contraction leads to

σI21σ
I
ikδijδjk = (2δ2kδ1i − δ12δik) δijδjk = 2δ2jδ1j − δ12δjj = 2δ12 − 2δ12 = 0. (5.20)
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Operator Category Definition Feynman Rule after Transversality and Kinematics

OϕB X2 ϕ2
(
ϕ†ϕ

)
BµνB

µν 4iCϕG (pν4p
µ
3 − p3 · p4gµν)

OBDϕ ϕ2XD2 ∂νB
µν

(
iϕ†

↔
Dµϕ

)
0

ODϕ ϕ2D4 (DµD
µϕ)† (DνD

νϕ) iY 2
ϕ g

2
Y GDϕ

(
gµν(p21 + p22)− 4(pν2p

µ
1 + pµ2p

ν
1)
)

Table 5.9: Green’s basis operators contributing to the tree level EFT diagram for the matching of OϕB . The first one is also present
in the Warsaw basis.

5.1.2.2 Operator OϕB

From the UV point of view, all the contributions in Table 5.7 appear. The only difference with respect to the previous
case is that instead of a Gell-Mann matrix, the hypercharge of the quarks entering and exiting is picked up at the
interaction vertex (for the Feynman rule of quark interactions with the Bµ boson, see Appendix C.2).

Moving to the EFT side, the tree level diagram in Figure 5.4 with Xµ = Bµ can be generated by the three operators in
Table 5.9. The first one belongs to the Warsaw basis, the other two appear in the Green’s basis6. Besides the name and
definition of the operators, also the Feynman rules are listed.
Transversality and kinematic simplifications allow us to recognize that the contribution of the OBDϕ operator is null.
Let us show this: first of all, pick up the two Bµ contributions,

OBDϕ = ∂νB
µν

(
iϕ†

↔
Dµϕ

)
⊃ ∂ν (∂

µBν − ∂νBµ) i
(
2iϕ†Bµϕ

)
.

At this point, notice that the two derivatives act on the same gauge boson field, therefore only the following combina-
tions are generated when moving to momentum space:

pµ3 p
ν
3 , pµ4 p

ν
4︸ ︷︷ ︸

contribution vanishes due to transversality

, p24 g
µν & p23 g

µν︸ ︷︷ ︸
contribution vanishes due to kinematics

. (5.21)

So a two-equation system has to be set up and solved.
The EFT one-loop diagrams can be recovered by Figure 5.7 by substituting the gluons with Bµ bosons, the involved
operators are still those listed in Table 5.8.
The final expression for the Wilson coefficient associated with OϕB is

16π2Λ2CϕB = g2Y

(
1

36
|λdQ1

|2 + 5

18
|λuQ1

|2 + 5

72
|λU |2 −

143

360
|λUQ1 |2

)
. (5.22)

The masses of the VLQ were set to be the same and the Yukawa matrices were set to zero from the beginning.

6The first Bµ boson is picked up from the field strength term, the second comes from the Higgs doublet’s covariant derivative
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ϕ, 1

ϕ∗, 2

Bµ, 4

W I
ν , 3

ϕ, 1

ϕ∗, 2

Bµ, 4

W I
ν , 3

ϕ, 1

ϕ∗, 2

Bµ, 4

W I
ν , 3

Figure 5.9: Allowed singlet (green) and doublet (grey) arrangements in the UV one-loop diagrams involving two Higgs doublets,
one B and one W I gauge bosons.

Identifier h.p. l.p. Diagram type Multiplicity

4 heavy
1U, 3Q1 0 box + non planar 1 1+1
2U, 2Q1 0 non planar 2 1

3 heavy 3Q1
1uR box + non planar 1 1+1
1 dR box + non planar 1 1+1

2 heavy
2U 2 qL non planar 2 1

2Q1
2uR non planar 2 1
2 dR non planar 2 1

1 heavy 1U 3 qL box + non planar 1 1+1

Table 5.10: UV diagram contributions to the matching of the OϕWB operator.

5.1.2.3 Operator OϕWB .

The matching of the NP model to the operator OϕWB is the only case in which two different gauge bosons are involved.
As shown in Figure 5.9, in the UV one-loop diagrams the presence of one vertex involving W I

µ, which only couples to
the doublets, constrains the particles’ placement in the loops. The final counting of the UV contributions is summarised
in Table 5.10.

As for the EFT side, there are a total number of four Green’s operators which can provide the fields of interest. The
different contributions are listed in Table 5.11, along with their Feynman rules after accounting for kinematic and
transversality constraints.

The final expression for the Wilson coefficient in the same mass limit is:

16π2Λ2CϕWB = −gLgY
(

1

12
|λdQ1

|2 + 1

6
|λuQ1

|2 + 1

4
|λU |2 −

19

60
|λUQ1 |2

)
. (5.23)

Operator Category Definition Feynman Rule after kinematics and transversality

OϕWB X2ϕ2
(
ϕ†σIϕ

) (
W I
µνB

µν
)

2iCϕWB(p
µ
3p

ν
4 − p3 · p4gµν)σI

OWDϕ ϕ2XD2 DνW
Iµν(ϕ†i

↔
DI

µϕ) 0

OBDϕ ϕ2XD2 ∂νB
µν(ϕ†i

↔
Dµϕ) 0

ODϕ ϕ2D4 (DµD
µϕ)†(DνD

νϕ) i gLgY YϕGDϕ
(
(p21 + p22)g

µν − 2(pµ1p
ν
2 + pν1p

µ
2 )
)
σI

Table 5.11: EFT operators contributing to the tree-level diagram of interest for the matching of OϕWB . All four can be found in
the Green’s basis, but only the first remains in the Warsaw basis after the equations of motion have been applied.
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Identifier h.p. l.p. Diagram type Multiplicity

4 heavy 1U, 3Q1 0 box + non planar 1 1+1

3 heavy 3Q1
1uR box + non planar 1 1+1
1 dR box + non planar 1 1+1

1 heavy 1U 3 qL box + non planar 1 1+1

Table 5.12: UV diagram contributions to the matching to the CϕW coefficient.

5.1.2.4 Operator OϕW

Out of the four matching computations performed in this section, this one involves the least number of diagrams.
Indeed, compared to the previous case the number of vertices containing W I

µ has been increased to two. The counting
is summarised in Table 5.12, from which one can appreciate how the non-planar type 2 diagrams no longer provide
any contribution. Indeed, while in the other two types of UV diagrams the vertices involving the gauge bosons are
connected by only one propagator, in type 2 two propagators are used to go from one gauge boson vertex to the other,
passing through a Yukawa interaction vertex. Yukawa interactions in this model involve a Higgs doublet, a quark
doublet and a singlet: a non-planar type 2 diagram would lead to having a singlet entering in the W I vertex.
At the interaction vertices with the W bosons, the Pauli matrices are picked up. The study of the weak index construc-
tion is more subtle in this case as two contributions, one proportional to δIJ, the other to ϵIJKσK, arise.

ϕ1, p1

ϕ2 ∗, p2

W I
µ, p4

W J
ν , p3

UR
qi1L

qi2L

qi3L ϵ1i3
σIi3i2
2

σJi2i1
2

ϵi12 = ϵ1i3

(
δIJ

4
δi1i3 + i

ϵIJK

4
σKi3i1

)
ϵi12 =

= −1

4
δIJδ12 +

i

4
ϵIJKσK21 . (5.24)

However, the Feynman rule obtained for the operator OϕW , Table 5.13, only contains a term proportional to δIJ. This
motivates the further simplification7 of keeping only terms proportional to δIJ.

From the EFT side, three operators in the Green’s basis can contribute to the tree-level diagram.
Once the presence of the transversality and kinematic constraints are accounted for, the expression for the Wilson
coefficient is found to be.

16π2Λ2CϕW = g2L

(
1

8
|λU |2 −

7

40
|λUQ1 |2

)
. (5.25)

Operator Category Definition Feynman Rules after transversality and kinematics

OϕW X2ϕ2 (ϕ†ϕ)(W I
µνW

Iµν) 4iCϕW (pµ3 p
ν
4 − p3 · p4 gµν) δIJ

OWDϕ ϕ2XD2 DνW
Iµν(ϕ†i

↔
DI

µϕ) 0

ODϕ ϕ2D4 (DµD
µϕ)† (DνD

νϕ) ig2LGDϕ
(
gµν(p21 + p22)− 4(pν2p

µ
1 + pµ2p

ν
1)
)
δIJ

Table 5.13: SMEFT operators contributing to the tree level EFT diagram containing two Higgs doublets and two W I gauge
bosons. All three belong to the Green’s basis, but only the first remains also in the Warsaw basis. The Feynman rules being shown
have already taken into account the transversality and kinematic constraints.

7The goal of this part of the thesis was to reproduce the results provided by the MATHEMATICA packages SOLD and Matchete, however
another verification of the calculations performed here is to identify all the other contributions proportional to ϵIJK and verify that they cancel
out in the final result.
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Operator Wilson Coefficient

[Ouϕ]rp
1

2M2
Q1

[yu]rt

[
λuQ1

]∗
t

[
λuQ1

]
p

[Odϕ]rp
1

2M2
D
[yd]kp [λD]k [λD]

∗
r +

1
2M2

Q1

[yd]rk

[
λdQ1

]∗
k

[
λdQ1

]
p
− 1

MQ1
MD

[λD]
∗
r

[
λdQ1

]
p
λDQ1[

O
(1)
ϕq

]
rp

− 1
4M2

D
[λD]p [λD]

∗
r[

O
(3)
ϕq

]
rp

− 1
4M2

D
[λD]

∗
r [λD]p

[Oϕu]rp − 1
2M2

Q1

[
λuQ1

]
p

[
λuQ1

]∗
r

[Oϕd]rp
1

2M2
Q1

[
λdQ1

]
p

[
λdQ1

]∗
r

[Oϕud]rp
1

M2
Q1

[
λuQ1

]∗
r

[
λdQ1

]
p

Table 5.14: Tree level matching for Model 2.

5.2 Model 2: Q1 +D

The NP interaction Lagrangian for Model 2 is given by

−LintNP,M.2 = [λD]r q̄LrϕDR +
[
λuQ1

]
r
Q̄1Lϕ̃ uRr +

[
λdQ1

]
r
Q̄1LϕdRr + λDQ1Q̄1LϕDR + h.c. (5.26)

The results of the tree-level matching are given in Table 5.14. Setting the light quark Yukawa couplings to zero, the
up-type quark modifier is κui = 1, while for the down-sector the modifier reads

κdi = 1 +
v3√

2mdi MDMQ1

[λD]
∗
i

[
λdQ1

]
i
λDQ1 . (5.27)

For the CϕD and Cϕ2 coefficients, accounting for the contributions in Table 5.15 where the Yukawa couplings are set
to zero, one finds in the same mass limit:

16π2Λ2Cϕ2 =− 6

5
|λDQ1 |4 −

5

4
|λDQ1 |2

(
|λuQ1

|2 + 2|λdQ1
|2 + |λD|2

)
− 3

4

(
|λdQ1

|4 + |λuQ1
|4
)

− 2|λuQ1
|2|λdQ1

|2 − |λD|4 , (5.28)

16π2Λ2CϕD =− 12

5
|λDQ1 |4 +

5

2
|λDQ1 |2

(
|λuQ1

|2 − |λdQ1
|2 − 2|λD|2

)
− 2

(
|λdQ1

|4 + |λuQ1
|4
)

+ 4|λuQ1
|2|λdQ1

|2 − 3

2
|λD|4 . (5.29)

Identifier h. p. l. p. diagram multiplicity

4 heavy 2D, 2Q1 0 box 1

3 heavy

2D, 1Q1 1q box 2

1D, 2Q1

1d box 2

1u
n.p. type 1 2

n.p. type 2 2

Identifier h. p. l. p. diagram multiplicity

2 heavy

2D 2q box 1

2Q1

2u box 1

2d box 1

1u, 1d
n.p. type 1 2

n.p. type 2 2

Table 5.15: Summary of the different contributions accounted for in the UV diagrams for the matching of OϕD and Oϕ2 of Model
2, organised based on the number and type of heavy particles (h.p.) present and the type of light particles (l.p.). As for Model 1,
the UV diagrams can be a box or the two types of non-planar (n.p.) diagrams.
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5.3. MODEL 3: Q7 + U CHAPTER 5. MATCHING

Operator Wilson Coefficient

[Ouϕ]rp
1

2M2
Q7

[yu]rs [λQ7 ]
∗
s [λQ7 ]p +

1
2M2

U
[yu]sp [λU ]s [λU ]

∗
r −

1
MUMQ7

[λU ]
∗
r [λQ7 ]p λUQ7

[O
(1)
ϕq ]rp

1
4M2

U
[λU ]p [λU ]

∗
r

[O
(3)
ϕq ]rp − 1

4M2
U
[λU ]p [λU ]

∗
r

[Oϕu]rp
1

2M2
Q7

[λQ7 ]
∗
r [λQ7 ]p

Table 5.16: Tree level matching for Model 3.

5.3 Model 3: Q7 + U

The Yukawa-like interactions of the Model 3’s VLQ content, where Q7 ∼ (3, 2) 7
6
, is described by

−LintNP,M.3 = [λU ]r ŪRϕ̃
† qLr + [λQ7 ]r Q̄7LϕuRr + λUQ7ŪRϕQ7L + h.c. (5.30)

From this expression, the absence of d quarks in the tree-level generated operators (Table 5.16) and in the UV one-loop
diagrams contributing to the CϕD and Cϕ2 matching (Table 5.17) is expected. This means that for this model, κdi = 1

exactly, while in the previous two models one of the modifiers was equal to 1 up to corrections proportional to the
Yukawa couplings.
The up-type quark modifier in this case is

κui = 1 +
v3√

2muiMUMQ7

[λU ]
∗
i [λQ7 ]i λUQ7 . (5.31)

Finally, the Wilson coefficients for the two ϕ4D2 operators are found by following the same steps used in Model 1.
Their final expression, having set MU =MQ7 = Λ, is

16π2Λ2Cϕ2 =− 6

5
|λUQ7 |4 +

5

4
|λUQ7 |2

(
|λU |2 − 2|λQ7 |2

)
− |λU |4 −

3

4
|λQ7 |4 , (5.32)

16π2Λ2CϕD =− 12

5
|λUQ7 |4 +

5

2
|λUQ7 |2

(
2|λU |2 − |λQ7 |2

)
− 3

2
|λU |4 − 2|λQ7 |4 . (5.33)

Identifier h.p. l.p. Diagram Multeplicity

4 heavy 2Q7, 2U 0 Box 1

3 heavy
2Q7, 1U 1uR Box 2

1Q7, 2U 1 qL Non-planar type 1 2

2 heavy
2Q7 2uR Box 2

2U 2 qL Box 2

Table 5.17: One-loop diagrams contributing to the UV four point Higgs function for Model 3. In this model there are no down-
type particle contributions.
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CHAPTER 5. MATCHING 5.4. MODEL 4: Q5 +D

Operator Wilson Coefficient

[Odϕ]rp
1

2M2
D
[yd]sp [λD]s [λD]

∗
r +

1
2M2

Q5

[λQ5 ]p [λQ5 ]
∗
s [yd]rs −

1
MDMQ5

[λD]
∗
r [λQ5 ]p λDQ5[

O
(1)
ϕq

]
rp

− 1
4M2

D
[λD]p [λD]

∗
r[

O
(3)
ϕq

]
rp

− 1
4M2

D
[λD]p [λD]

∗
r

[Oϕd]rp − 1
2M2

Q5

[λQ5 ]
∗
r [λQ5 ]p

Table 5.18: Operators generated at the tree level in Model 4 along with their Wilson coefficients in terms of the VLQ masses and
couplings.

5.4 Model 4: Q5 +D

Model 4 introduces, besides D which has the same quantum numbers of the SM down singlet, the doublet Q5 ∼
(3, 2)− 5

6
, with interactions described by

−LintNP,M.4 = [λD]r q̄LrϕDR + [λQ5 ]r Q̄5Lϕ̃ dRr + λDQ5Q̄5Lϕ̃DR + h.c. (5.34)

This model is complementary to the previous one as it does not involve the u singlets. From Table 5.18 we can read
κui = 1, while the down-type coupling modifier is

κdi = 1 +
v3√

2mdiMDMQ5

[λD]
∗
i [λQ5 ]i λDQ5 . (5.35)

The Wilson coefficients for the Oϕ2 and OϕD operators, evaluating the diagrams presented in Table 5.19 in the same
mass limit, are

16π2Λ2Cϕ2 =− 6

5
|λDQ5 |4 +

5

4
|λDQ5 |2

(
|λD|2 − 2|λQ5 |2

)
− |λD|4 −

3

4
|λQ5 |4 , (5.36)

16π2Λ2CϕD =− 12

5
|λDQ5 |4 +

5

2
|λDQ5 |2

(
2|λD|2 − |λQ5 |2

)
− 3

2
|λQ5 |4 − 2|λD|4 . (5.37)

These are tied to the results for Model 3 by performing the replacements

λU 7→ λD , λQ7 7→ λQ5 , λUQ7 7→ λDQ5 . (5.38)

Identifier h.p. l.p. Diagram type Multeplicity

4 heavy 2Q5, 2D 0 Box 1

3 heavy
2Q5, 1D 1 dR Box 2

1Q5, 2D 1 qL Non Planar type 1 2

2 heavy
2Q5 2 dR Box 1

2D 2 qL Box 1

Table 5.19: One-loop diagrams involving Model 4’s VLQ content contributing to the UV four point Higgs function.
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5.5. MODEL 5: Q1 + T1 CHAPTER 5. MATCHING

Operator Wilson Coefficient

[Ouϕ]rp
1

2M2
Q1

[yu]rk

[
λuQ1

]
p

[
λuQ1

]∗
k
+ 1

4M2
T1

[yu]kp [λT1 ]k [λT1 ]
∗
r −

1
2MT1

MQ1
λT1Q1 [λT1 ]

∗
r

[
λuQ1

]
p

[Odϕ]rp
1

2M2
Q1

[yd]rk

[
λdQ1

]
p

[
λdQ1

]∗
k
+ 1

8M2
T1

[yd]kp [λT1 ]k [λT1 ]
∗
r −

1
4MT1

MQ1
λT1Q1 [λT1 ]

∗
r

[
λdQ1

]
p[

O
(1)
ϕq

]
rp

− 3
16M2

T1

[λT1 ]
∗
r [λT1 ]p[

O
(3)
ϕq

]
rp

1
16M2

T1

[λT1 ]
∗
r [λT1 ]p

[Oϕu]rp − 1
2M2

Q1

[
λuQ1

]∗
r

[
λuQ1

]
p

[Oϕd]rp
1

2M2
Q1

[
λdQ1

]∗
r

[
λdQ1

]
p

[Oϕud]rp
1

M2
Q1

[
λuQ1

]∗
r

[
λdQ1

]
p

Table 5.20: Tree-level matching results for Model 5.

5.5 Model 5: Q1 + T1

Model 5 is the first model which introduces an SU(2) triplet, T1 ∼ (3, 3)− 1
3
. Its Yukawa-like interactions with the SM

and with the Q1 doublet read

−LintNP,M.5 =
[
λuQ1

]
r
Q̄1Lϕ̃ uRr +

[
λdQ1

]
r
Q̄1LϕdRr +

[λT1 ]r
2

T̄ I
1Rϕ

†σI qLr +
λT1Q1

2
T̄ I
1Lϕ

†σIQ1Rs + h.c.. (5.39)

The tree level matching results are reported in Table 5.20; in this model, both coupling modifiers deviate from 1. Their
expressions are:

κui = 1 +
v3

2
√
2muiMT1MQ1

[
λuQ1

]
i
[λT1 ]

∗
i λT1Q1 , κdi = 1 +

v3

4
√
2mdiMT1MQ1

[
λdQ1

]
i
[λT1 ]

∗
i λT1Q1 . (5.40)

Finally, the matching for Cϕ2 and CϕD receives the contributions in Table 5.21; the coefficients in the same mass limit
are:

16π2Λ2Cϕ2 =− 3

8
|λT1Q1 |4 +

15

64
|λT1Q1 |2

(
4|λuQ1

|2 − 3|λT1 |2
)
− 3

4

(
|λuQ1

|4 + |λdQ1
|4
)

− 2 |λuQ1
|2|λdQ1

|2 − 1

4
|λT1 |4 , (5.41)

16π2Λ2CϕD =− 3

4
|λT1Q1 |4 −

15

16
|λT1Q1 |2

(
2|λdQ1

|2 − 2|λuQ1
|2 + |λT1 |2

)
− 2

(
|λuQ1

|4 + |λdQ1
|4
)

+ 4|λuQ1
|2|λdQ1

|2 − 19

32
|λT1 |4 . (5.42)

Identifier h.p. l.p. Diagram Mult.

4 heavy 2T1, 2Q1 0 Box 2

3 heavy

2T1, 1Q1 1 qL Box 4

1T1, 2Q1 1uR
n.p. type 1 2

n.p. type 2 2

1T1, 2Q1 1 dR Box 4

Identifier h.p. l.p. Diagram Mult.

2 heavy

2T1 2 qL Box 2

2Q1

2uR Box 1

2 dR Box 1

1dR, 1uR
n.p. type 1 2

n.p. type 2 2

Table 5.21: Summary of the different contributions accounted for in the UV diagrams with Model 5’s particle content.
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CHAPTER 5. MATCHING 5.6. MODEL 6: Q5 + T1

Operator Wilson Coefficient

[Ouϕ]rp
1

4M2
T1

[yu]sp [λT1 ]s [λT1 ]
∗
r

[Odϕ]rp
1

2M2
Q5

[yd]rk [λQ5 ]p [λQ5 ]
∗
k +

1
8M2

T1

[yd]kp [λT1 ]k [λT1 ]
∗
r +

1
4MT1

MQ5
λT1Q5 [λT1 ]

∗
r [λQ5 ]p[

O
(1)
ϕq

]
rp

− 3
16M2

T1

[λT1 ]
∗
r [λT1 ]p[

O
(3)
ϕq

]
rp

1
16M2

T1

[λT1 ]
∗
r [λT1 ]p

[Oϕd]rp − 1
2M2

Q5

[λQ5 ]
∗
r [λQ5 ]p

Table 5.22: Tree-level matching for Model 6.

5.6 Model 6: Q5 + T1

The interaction NP Lagrangian density for Model 6 reads

−LNPint,M.6 = [λQ5 ]r Q̄5Lϕ̃ dRr + [λT1 ]r T̄
A
1R ϕ

†σ
A

2
qLr + λT1Q5 T̄

A
1L ϕ̃

†σ
A

2
Q5R + h.c. . (5.43)

The tree-level generated Warsaw operators are set in Table 5.22, together with the expressions for the Wilson coeffi-
cients after the matching. The expression for the down-type modifier is

κdi = 1− v3

4
√
2mdiMT1MQ5

[λT1 ]
∗
i [λQ5 ]i λT1Q5 . (5.44)

The up-type quark coupling modifier is instead κui = 1 once the SM Yukawa couplings have been set to zero.

Table 5.23 summarises the UV contributions to the matching for Cϕ2 and CϕD, whose expressions in the same mass
limit are, respectively,

16π2Λ2Cϕ2 =− 3

8
|λT1Q5 |4 −

15

64
|λT1Q5 |2|λT1 |2 −

1

4
|λT1 |4 −

3

4
|λQ5 |4 , (5.45)

16π2Λ2CϕD =− 3

4
|λT1Q5 |4 −

15

16
|λT1Q5 |2

(
2|λQ5 |2 − |λT1 |2

)
− 19

32
|λT1 |4 − 2|λQ5 |4 . (5.46)

Identifier h.p. l.p. Diagram Multiplicity

4 heavy 2T1, 2Q5 0 Box 2

3 heavy
2T1, 1Q5 1 qL

n.p. type 1 2

n.p. type 2 2

1T1, 2Q5 1 dR Box 4

2 heavy
2T1 2 qL Box 2

2Q5 2 dR Box 2

Table 5.23: Summary of the different contributions accounted for in the UV diagrams with Model 6’s particle content.
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5.7. MODEL 7: Q1 + T2 CHAPTER 5. MATCHING

Coefficient Matching result

[Ouϕ]
rp 1

2M2
Q1

[yu]rk

[
λuQ1

]
p

[
λuQ1

]∗
k
+ 1

8M2
T2

[yu]kp [λT2 ]k [λT2 ]
∗
r −

1
4MQ1

MT2
λT2Q1 [λT2 ]

∗
r

[
λuQ1

]
p

[Odϕ]rp
1

2M2
Q1

[yd]rk

[
λdQ1

]
p

[
λdQ1

]∗
k
+ 1

4M2
T2

[yd]kp [λT2 ]k [λT2 ]
∗
r −

1
2MQ1

MT2
λT2Q1 [λT2 ]

∗
r

[
λdQ1

]
p[

O
(1)
ϕq

]
rp

3
16M2

T2

[λT2 ]p [λT2 ]
∗
r[

O
(3)
ϕq

]
rp

1
16M2

T2

[λT2 ]p [λT2 ]
∗
r

[Oϕu]rp − 1
2M2

Q1

[
λuQ1

]∗
r

[
λuQ1

]
p

[Oϕd]rp
1

2M2
Q1

[
λdQ1

]∗
r

[
λdQ1

]
p

[Oϕud]rp
1

M2
Q1

[
λuQ1

]∗
r

[
λdQ1

]
p

Table 5.24: Tree-level matching for Model 7.

5.7 Model 7: Q1 + T2

The last VLQ introduced in [51] is another triplet, T2 ∼ (3, 2) 2
3
. It interacts with the SM doublets and the Q1 doublet

as described by the following Lagrangian density

−L
int,M.7
NP =

[
λuQ1

]
r
Q̄1Lϕ̃ uRr +

[
λdQ1

]
r
Q̄1LϕdRr +

[λT2 ]r
2

T̄A2Rϕ̃
†σAqLr +

λT2Q1

2
T̄A2Lϕ̃

†σAQ1R + h.c.. (5.47)

In Tables 5.24 and 5.25 the tree-level matching results and the UV diagrams required for the calculation of Cϕ2 and
CϕD are respectively shown. The coupling modifiers for Model 7 are:

κui = 1 +
v3

4
√
2muiMQ1MT2

[λT2 ]
∗
i

[
λuQ1

]
i
λT2Q1 , κdi = 1 +

v3

2
√
2mdiMQ1MT2

[λT2 ]
∗
i

[
λdQ1

]
i
λT2Q1 . (5.48)

The CϕD and Cϕ2 coefficients read

16π2Λ2Cϕ2 =− 3

8
|λT2Q1 |4 +

15

64
|λT2Q1 |2

(
4|λdQ1

|2 − 3|λT2 |2
)
− 3

4

(
|λuQ1

|4 + |λdQ1
|4
)

− 2|λuQ1
|2|λdQ1

|2 − 1

4
|λT2 |4 , (5.49)

16π2Λ2CϕD =− 3

4
|λT2Q1 |4 +

15

16

(
2|λdQ1

|2 − 2|λuQ1
|2 − |λT2 |2

)
− 2

(
|λuQ1

|4 + |λdQ1
|4
)

+ 4|λuQ1
|2|λdQ1

|2 − 19

32
|λT2 |4 . (5.50)

Identifier h.p. l.p Diagram Mult.

4 heavy 2T2, 2Q1 0 Box 2

3 heavy

1T1, 2Q1 1 qL Box 4

2T2, 1Q1

1uR Box 4

1 dR
n.p. type 1 2

n.p. type 2 2

Identifier h.p. l.p Diagram Mult.

2 heavy

2T2 2 qL Box 2

2Q1

2uR Box 1

2 dR Box 1

1 dR, 1uR
n.p. type 1 2

n.p. type 2 2

Table 5.25: Contributing UV diagrams for Model 7 to the matching for Cϕ2 and CϕD coefficients.
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CHAPTER 5. MATCHING 5.8. MODEL 8: Q7 + T2

Coefficient Wilson Coefficient

[Ouϕ]rp
1

2M2
Q7

[yu]rk [λQ7 ]p [λQ7 ]
∗
k +

1
8M2

T2

[yu]kp [λT2 ]k [λT2 ]
∗
r +

1
4MQ7

MT2
λT2Q7 [λT2 ]

∗
r [λQ7 ]p

[Odϕ]rp
1

4M2
T2

[yd]kp [λT2 ]k [λT2 ]
∗
r[

O
(1)
ϕq

]
rp

3
16M2

T2

[λT2 ]p [λT2 ]
∗
r[

O
(3)
ϕq

]
rp

1
16M2

T2

[λT2 ]p [λT2 ]
∗
r

[Oϕu]rp
1

2M2
Q7

[λQ7 ]
∗
r [λQ7 ]p

Table 5.26: Tree-level matching for Model 8.

5.8 Model 8: Q7 + T2

The interaction NP Lagrangian density for this model reads

−LintNP,M.8 = (λQ7)sQ̄7LϕuRs +
(λT2)s

2
T̄A2Rϕ̃

†σAqLs +
(λT2Q7)

2
T̄A2Lϕ

†σAQ7R + h.c. . (5.51)

The non-trivial coupling modifier in this case regards the up-sector. Using the tree-level matching results in Table 5.26,
the κ-parameter reads

κui = 1− v3

4
√
2muiMT2MQ7

[λQ7 ]i [λT2 ]
∗
i λT2Q7 . (5.52)

To conclude, the final expressions for the coefficients Cϕ2 and CϕD after the matching in the same mass limit are:

16π2Λ2Cϕ2 =− 3

8
|λT2Q7 |4 −

15

64
|λT2Q7 |2|λQ7 |2 −

1

4
|λT2 |4 −

3

4
|λQ7 |4 , (5.53)

16π2Λ2CϕD =− 3

4
|λT2Q7 |4 −

15

16
|λT2Q7 |2

(
2|λQ7 |2 − |λT2 |2

)
− 19

32
|λT2 |4 − 2|λQ7 |4 . (5.54)

The UV contributions in this case are found in Table 5.27.

At this point, having concluded the matching, it is possible to move on to the next Chapter, in which the bounds on the
parameters arising from Higgs Physics and ElectroWeak Precision Observables will be discussed.

Identifier h.p. l.p. Diagram Multeplicity

4 heavy 2T2, 2Q7 0 Box 2

3 heavy

1T2, 2Q7 1uR Box 4

2T2, 1Q7 1qL
n.p. type 1 2

n.p. type 2 2

2 heavy
2Q7 2ur Box 2

2T2 2qL Box 2

Table 5.27: UV diagrams involved in the calculation of Cϕ2 and CϕD for Model 8.

45



5.8. MODEL 8: Q7 + T2 CHAPTER 5. MATCHING

46



Chapter 6

Experimental Tests

With the matching results from the previous chapter, the parameter space of the VLQ Yukawa-like couplings can be
constrained for each of the models. Once the bounds on the couplings have been found, the deviations of the SM
quarks’ Yukawa couplings can be quantified within the κ-parametrisation and compared with the results available in
the literature (Table 1.1). The mass of the VLQs is set to be Λ = 2TeV for the rest of this chapter.

Given the assumption that the VLQs only couple to one generation of SM quarks and the consequent exclusion of
strong bounds from flavour physics, the effects of introducing SMEFT operators on ElectroWeak Precision Observ-
ables (EWPO) and on Higgs Physics (HP) were considered. Let {Oα}α be the set of observables pertaining to either
HP or EWPO; for each observable, there is an associated theoretical value denoted by Othα and an experimental value
Oexpα . Regarding the theoretical values, if OSMα denotes the SM prediction for a given observable, the presence of
SMEFT operators introduces a deviation δOSMEFT

α which can be expressed in terms of the Wilson coefficients and
therefore scales as Λ−2. Considering, for example, the calculation of cross-sections, one finds

σ ∝ |MSM +
1

Λ2
Md=6|2 ≈ |MSM |2 + 1

Λ2
(M∗

SMMd=6 +MSMM∗
d=6) +O(Λ−4) . (6.1)

The squared dimension-six contribution is dropped since it is more suppressed than the other terms. The theoretical
SMEFT predictions read

Othα = OSMα + δOSMEFT
α . (6.2)

The experimental and theoretical values for the observables are used to construct the χ2 function as

χ2
EWPO/HP =

∑
αβ

(Oexpα −Othα )(σ−2)αβ(O
exp
β −Othβ ) , (6.3)

where (σ−2)αβ is the inverse of the covariance matrix, which describes the correlation between the different observ-
ables. The χ2 has a known statistical distribution and is used to test statistical hypotheses [72]: provided a number
of degrees of freedom N and a fixed Confidence Level (CL), a threshold value χ̄2 = χ2(N,CL) is associated. Let
χ2min
EWPO/HP be the minimum of the function just built: two sets of bounds are found by imposing CL= 68% and

CL= 95% and graphically studying

χ2
EWPO/HP ≤ χ2min

EWPO/HP + χ2(N, 0.68) , χ2
EWPO/HP ≤ χ2min

EWPO/HP + χ2(N, 0.95) . (6.4)

At this point, the model independence guaranteed by the use of SMEFT becomes clear: the χ2 function is entirely
constructed within the SMEFT, with no knowledge concerning the original NP model. Model dependence is intro-
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6.1. ELECTROWEAK PHYSICS CHAPTER 6. EXPERIMENTAL TESTS

duced by substituting the matching results found in the previous chapter. The number of degrees of freedom is given
by the number of couplings in the NP model. The regions of the parameter space that do not satisfy Equation (6.4) are
excluded with a CL equal to 68% and 95%.

The HP and EWPO cases are studied independently only for Model 1 coupled to the first generation of quarks; for
the remaining models and for the second generation a combined fit is performed, obtained by considering the total
χ2-function defined as χ2

t = χ2
HP + χ2

EWPO.

6.1 ElectroWeak Physics

The presence of the ψ2ϕ2D-class operators, of OϕD and of OϕWB modifies the couplings of the massive gauge bosons
to the quarks, thus affecting the EWPOs. In this section the form of the modifications is first of all investigated, then
the ElectroWeak χ2 function is constructed following [70, 73].

6.1.1 W± and Z boson coupling to quarks

First of all, the effects of the operators in the ψ2ϕ2D-class of Table 5.1 are presented. Such operators are always
generated at the tree level by the models considered in this thesis. All these operators involve a product of two terms:
one is a quark current while the other contains a pair of Higgs doublets and the covariant derivative, from which the
gauge bosons are picked up. Based on how the latter term is constructed, the study of these operators can be divided
into three cases:

• Oϕu, Oϕd and O
(1)
ϕq can be generalised to (ϕ†i

↔
Dµϕ) (ψ̄γ

µψ), where ψ = uR, dR, qL respectively. Considering
only the contents of the first parenthesis, picking up the W I

µ and Bµ from the covariant derivatives, substituting
Yϕ = 1

2 and performing SSB, the quark currents will be multiplied by

ϕ†i
↔
Dµϕ ⊃ −ϕ†

(
gL σ

IW I
µ + gYBµ

)
ϕ

Eqs.(2.12) (2.14)
⊃ +

gL v
2

2 cos θW
Zµ . (6.5)

All three operators cause a modification to the Z boson couplings to the SM quarks;

• O
(3)
ϕq = (ϕ†i

↔
DI

µϕ) (q̄Lσ
IγµqL): this will generate deviations in the couplings of both the Z and theW± bosons.

Again considering only the Higgs structure, the quark current will be multiplied by

ϕ†i
↔
DI

µϕ ⊃ −ϕ†

gL
2
WK
µ (σIσK + σKσI)︸ ︷︷ ︸

{σI,σK}=2δKI1

+gYBµσ
I

ϕ ,

Eq.(2.12)
⊃ −v

2

2

(
gLW

1
µ δ

1I + gLW
2
µ δ

2I + (gLW
3
µ − gYBµ) δ

3I
)
,

Eqs.(2.13)(2.14)
⊃ −v

2

2

[
gL√
2
W+
µ

(
δ1I + iδ2I

)
+
gL√
2
W−
µ

(
δ1I − iδ2I

)
+

gL
cos θW

Zµ δ
3I

]
; (6.6)

• Oϕud = (ϕ̃†iDµϕ) (ūRγ
µdR): this gives rise to the interaction of the charged gauge bosons W± with right-

handed SM quarks,

(ϕ̃†iDµϕ) ⊃ ϕ̃†
(gL
2
σIW I

µ + gY YϕBµ

)
ϕ

Eqs.(2.12) (2.13)
⊃ +

g v2

2
√
2
W+
µ . (6.7)

The operator Oϕud is non-hermitian, so it appears in the SMEFT Lagrangian along with its hermitian conjugate
that introduces an interaction term of the W− to the right-handed quarks. The coupling of the W± bosons

48



CHAPTER 6. EXPERIMENTAL TESTS 6.1. ELECTROWEAK PHYSICS

Zµ Zν Zµ Zν

Figure 6.1: Feynman diagrams for the Z boson two-point function at the SM tree level (left) and the correction due to the SMEFT
operators OϕWB and OϕD once the Higgs boson has assumed its vacuum expectation value (right).

to right-handed quarks induced by the Oϕud+ h.c. is absent in the SM; Equation (6.1) then states that these
deviations only enter the W -pole observables quadratically since there is no interference term between SM and
dimension-six contributions. The contributions due to Oϕud+h.c. are neglected given that they are suppressed
by Λ−4, while for all the other operators an interference term with the SM prediction is present and leads to
contribution suppressed only by Λ−2.

While the previous effects are quark-family dependent (there are family indices in the quark currents), the effects of
the loop generate operators OϕWB and OϕD turn out to be family-universal.
In the broken phase the OϕD and OϕWB operators cause a deviation in the Z-boson mass (as a correction to the Z
two-point function, as shown in Figure 6.1) and the Weinberg angle θW associated to the rotation from the interaction

to the mass basis. Substituting ϕ =
(
0 v/

√
2
)T

into the expressions for the two operators, one finds:

CϕWB

(
ϕ†σIϕ

) (
W I
µνB

µν
)

→ −v
2

2
CϕWBW

3
µνB

µν , (6.8)

CϕD|ϕ†Dµϕ|2 → v4

16
CϕD

(
−gLW 3

µ + gYBµ
)2
. (6.9)

The ElectroWeak Lagrangian, accounting for some of the SM terms and these two SMEFT operators reads

LSMEFT ⊃ −1

4
W I
µνW

Iµν − 1

4
BµνB

µν − v2

2
CϕWBW

3
µνB

µν +
v2

8

(
1 +

v2

2
CϕD

)(
−gLW 3

µ + gYBµ
)2
. (6.10)

It is therefore possible to identify the modifications to the rotation into the mass basis, the tangent of the Weinberg
angle and the Z boson mass scale, in agreement with the results of [42]. In particular, the last two are written as their
SM definitions multiplied by a correction term between parentheses, so that(

W 3
µ

Bµ

)
=

(
1 −v2

2 CϕWB

−v2

2 CϕWB 1

)(
cos θ sin θ

− sin θ cos θ

)(
Zµ

Aµ

)
, (6.11)

tan θW =
gY
gL

(
1 +

v2

2
CϕWB

(
gL
gY

− gY
gL

))
, (6.12)

M2
Z = v2

g2L + g2Y
4

(
1 +

v2

2
CϕD + 2v2

gY gL
g2L + g2Y

CϕWB

)
. (6.13)

The modification to the electric charge e and the sine and cosine of the Weinberg angle can also be found. However,
this is not the end of the calculation. In order to employ the construction of the χ2 performed by the authors of [70,73],
the (αe, GF ,mZ) input scheme has to be adopted.
The SM is an overconstrained system: it depends on 27 parameters, in terms of which a large number of experimental
observables can be constructed [29]. It is therefore possible to express one observable in terms of others1 to test the
SM predictions. Given that αe, GF and mZ are among the best-known experimental observables, the input scheme
in which these fiducial quantities are fixed to their experimental values is the most used in the ElectroWeak precision
studies [74]. To move to the (αe, GF ,mZ) input scheme, the deviations caused by the SMEFT coefficients have to be
translated onto other ElectroWeak Observables. This is achieved by following the steps detailed in reference [29]: the
fiducial quantities are written in terms of the SM and SMEFT parameters, and then these expressions are inverted. The

1A simple example is provided by the gauge boson masses. Indeed, one can write mW = gLv/2 and mZ =
√
g2L + g2Y v/2, or, recalling

that in the SM cos θW = gL/
√
g2L + g2Y , one has the W boson mass expressed as mW = cos θWmZ .
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newfound SM and SMEFT parameters written in terms of the fiducial quantities are then substituted in the definitions
of other observables. These steps were explicitly performed and led to the following W boson mass modification:

δmW = −v
2

4

g2L
g2L − g2Y

CϕD − v2
gLgY
g2L − g2Y

CϕWB . (6.14)

As for the modifications to the W and Z boson couplings to the quarks, the results found by [70] are reported in the
following. Defining the universal factor δU

(
T 3, Q

)
to be

δU
(
T 3, Q

)
= −v

2

4

(
T 3 +Q

g2Y
g2L − g2Y

)
CϕD − v2Q

gLgY
g2L − g2Y

CϕWB , (6.15)

the modified Z sector in the (αe, GF ,mZ) input scheme can be written as

LZ =− gL
cos θW

Zµ
∑
ψ=u, d

((
gZψL δij +

[
δgZψL

]
ij

)
ψ̄iLγ

µψjL +

(
gZψR δij +

[
δgZψR

]
ij

)
ψ̄iRγ

µψjR

)

+
1

2

g2L + g2Y
4

v2ZµZ
µ . (6.16)

The modified expressions of the couplings, including the CKM matrix, are:

[
δgZuL

]
ij
= −v

2

2
Vil

([
C
(1)
ϕq

]
lm

−
[
C
(3)
ϕq

]
lm

)
V †
mj + δU

(
1

2
,
2

3

)
δij ,[

δgZuR
]
ij
= −v

2

2
[Cϕu]ij + δU

(
0,

2

3

)
δij ,[

δgZdL

]
ij
= −v

2

2

([
C
(1)
ϕq

]
ij
+
[
C
(3)
ϕq

]
ij

)
+ δU

(
−1

2
,−1

3

)
δij ,[

δgZdR

]
ij
= −v

2

2
[Cϕd]ij + δU

(
0,−1

3

)
δij . (6.17)

As for the quark interactions with the W± bosons, the Lagrangian density and the coupling modifier read

LW = − gL√
2
W+
µ

(
Vij + [δgW ]ij

)
ūiLγ

µdjL + h.c. +
g2Lv

2

4
(1 + δmW )2W+µW−

µ , (6.18)

[δgW ]ij = v2Vik

[
C
(3)
ϕq

]
kj

+ Vijδ
U (1, 1) . (6.19)

Alternatively, the W -coupling modifier can be written as [δgW ]ij =
[
gZuL

]
ik
Vkj − Vik

[
gZdL
]
kj

, showing that the
coupling modifiers are not all independent [73].

6.1.2 Application to Model 1

Following [70], the Z-pole and W -pole observables listed in Tables 1 and 2 respectively in [73] are used to construct
the χ2 function in terms of the Wilson coefficients for the ψ2ϕ2D operators (except for Oϕud) with first family indices,
CϕD and CϕWB .
The goal of the procedure that is about to be described, and that will also be followed in the rest of the Chapter, is
twofold: graphically solving the inequalities in Equation (6.4) and finding the largest allowed value for the coupling
modifier at a 95% CL. The model parameter space and the curves associated to the κq modifiers will be shown in the
same plot. To perform two-dimensional plots, the χ2 has to be reduced to depend on only two couplings. Depending
on the model, the starting χ2 function can depend on either three or four couplings. In Model 1’s case, there is a
dependence on the four VLQ couplings λU , λuQ1

, λdQ1
and λUQ1 . The couplings are assumed to be real and the
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(a) Same coupling limit
[
λd
Q1

]
1
=

[
λu
Q1

]
1
. (b) Fourth coupling set to best-fit value.

Figure 6.2: Results for the fit involving only EWPO for Model 1. The darker region corresponds to a 68% Confidence Level (CL),
the lighter one to 95% CL. The associated values for the VLQ-VLQ coupling are reported in the plots, the 95% CL value is used
to draw the κu curve.

expression of the modifier is

κu = 1 +
v3√

2muΛ2
[λU ]1

[
λuQ1

]
1
λUQ1 , (6.20)

with no dependence on the fourth coupling
[
λdQ1

]
1
. To have both the χ2 function and κu depend on two couplings,[

λdQ1

]
1

and one of the other three couplings are fixed. Two different procedures are identified:

1. In the first scenario the Q1 couplings to the SM quarks are set to be the same
[
λdQ1

]
1
=
[
λuQ1

]
1
. The χ2 is

now a function of the remaining three couplings and is minimised to find χ2min
EWPO required by Equation (6.4).

The other fixed coupling is λUQ1 . For the 68% CL case, λUQ1 is set to the value that maximises the coupling
product in Equation (6.20), remaining below χ2min

EWPO + χ2(3, 0.68); similarly is done for the 95% CL region.
The latter value is also used in the κu modifier. This scenario results in Figure 6.2a;

2. In the second scenario the minimum value, χ2min
EWPO, of the χ2 function is found as a function of all four VLQ

couplings. The χ2 is then evaluated at the minimising
[
λdQ1

]
1

value (that will be called henceforth best-fit, or
b.f., value), obtaining once again a function of three couplings. λUQ1 is instead treated in the same manner as the
previous scenario. The allowed values for the remaining two couplings, satisfying the inequalities in Equation
(6.4) are shown in Figure 6.2b.

In both plots of Figure 6.2, two κu lines are shown: the value in green, κu = 260, is the projected sensitivity limit for
the HL-LHC found in [25] while the teal curve is required to be tangent to the 95%CL region and is associated to the
largest value of the coupling modifier. In the first scenario, the up quark Yukawa coupling can be up to 2200 times the
SM prediction; in the second case the enhancement is more constrained, with κu < 1530. While the allowed interval
for [λU ]1 does not differ significantly between the two treatments, a reduction of

[
λuQ1

]
1
’s space when the best-fit

value is used can be noticed.

6.2 Higgs Fit

The presence of SMEFT operators affects Higgs Physics by modifying both the Higgs production modes and the decay
observables. Both these effects are encoded in the signal strength µ: chosen a Higgs decay channel labelled by α, the
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GAµ

GBν

h
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k2
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GAµ

GBν

h

k1

k2

p

GAµ

GBν

h

k1

k2

p

Figure 6.3: Gluon-gluon fusion production of the Higgs boson. The left and middle diagrams are the SM contributions, while the
diagram on the right is generated by the SMEFT operator OϕG.

theoretical prediction for the signal strengths accounting for SMEFT modification reads

µthα =
σSMEFT BRSMEFT, α

σSM BRSM,α
, (6.21)

where σ is the Higgs boson production cross-section and the BRα is the branching ratio for the chosen decay mode.
The associated experimental values are found by replacing the SMEFT predictions with the experimental results at
the numerator. CMS reported in [6] the signal strength measurements for the Higgs boson decays into pairs of gauge
bosons (γγ, W+W− and ZZ) and fermion-antifermion pairs (b̄b, τ̄ τ and µ̄µ).
The final piece for the construction of χ2

HP is the covariance matrix, supplied in the auxiliary files of [6].

6.2.1 Modified Higgs production cross-section

The following two Higgs boson production channels are considered: gluon-gluon fusion and quark anti-quark annihi-
lation.

Gluon-gluon fusion is the leading production channel for the Higgs boson at the Large Hadron Collider [75]. Given
the absence of a coupling in the SM between gluons and the Higgs boson, the production is mediated by a fermionic
loop as shown in the one-loop diagrams of Figure 6.3. The Standard Model amplitude, considering only the top quark
contribution, reads

MSM = i
αs
2πv

ϵAµ ϵ
B
ν δAB (kν1k

µ
2 − k1 · k2gµν) τt (1 + (1− τt)f(τt)) , (6.22)

where τt = 4m2
t /m

2
h and the function f(τt) is defined as

f(τt) =

arcsin2 1√
τt

τt ≥ 1

−1
4

[
log 1+

√
1−τt

1−
√
1−τt

− iπ
]2

τt < 1
. (6.23)

Moving to the SMEFT Lagrangian, one can recognise that the operator OϕG introduces a tree level contribution to
gluon-gluon to Higgs boson fusion, with Feynman diagram also shown in Figure 6.3, as

OϕG =
(
GAµν GAµν

) (
ϕ†ϕ

)
SSB−→

(
GAµν GAµν

) v2
2

(
1 + 2

h

v
+
h2

v2

)
. (6.24)

The amplitude, accounting for the presence of this new operator, becomes

MSMEFT = i
αs
2πv

ϵAµ ϵ
B
ν δAB (kν1k

µ
2 − (k1 · k2)gµν)

(
τt (1 + (1− τt)f(τt)) +

8π

αs
v2CϕG

)
. (6.25)

According to the SM prediction, the production channel associated with the annihilation of first generation quark-
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antiquark pairs is negligible, given the small predicted value for the Yukawa couplings. The quark-antiquark annihila-
tion channels (corresponding to uū → h and dd̄ → h) become increasingly relevant as the Yukawa couplings of the
two quarks are enhanced, as considered in references [18,25], becoming comparable to the gluon fusion cross-section
for O(1000) enhancements.
Overall, the production cross-section has the general form

σSMEFT = σSM + σϕG v
2CϕG + σuuh κ

2
u + σddh κ

2
d . (6.26)

For the numerical values for the cross-sections, the results found by references [18, 25] were used.

6.2.2 Modified Higgs total width and branching ratios

The leading order effects of the SMEFT operators on the Higgs decay width and branching ratios were studied in [71].
Taking also into account that the decay widths for h → γγ and h → GG are affected by the Higgs field redefinition2

and that an enhancement of the first family quark couplings leads to a modification of the decay widths for h → uū

and h→ dd̄, the total decay width reads

ΓSMEFT
h = ΓSMh

(
1− 1.50v2CϕW + 1.21v2CϕWB + 50.6v2CϕG + 1.83v2Cϕ2 − 0.43v2CϕD+

+ 0.002v2C
(1)
ϕq + 0.06v2C

(3)
ϕq + 0.001v2Cϕu − 0.0007v2Cϕd+

+2v2 (BR(h→ γγ) + BR(h→ GG))Chkin

)
+

+ Γ̂
(
(1− κd)

2m2
d + (1− κu)

2m2
u

)
. (6.27)

Γ̂ is obtained by rescaling the decay width for h→ bb̄; once multiplied by (1− κq)
2m2

q it provides the SMEFT decay
width for h→ qq̄, with q = u, d.
The SMEFT branching ratios for the decays considered by [6] are taken from [71], corrected by the Higgs field redef-
inition effects.

It is important to point out that the Higgs Physics construction carries a direct dependence on the coupling modifier: κq
is directly probed. This was not the case in the ElectroWeak case, therefore it is reasonable to expect that the parameter
spaces for the two cases will differ.
Finally, the modifiers enter the χ2 construction quadratically, introducing a dependence on O(1/Λ4) terms.

6.2.3 Application to Model 1

Considering the specific case of Model 1, the χ2 function depends on four couplings while the coupling modifier
depends on three, as was shown in Equation (6.20). Both the χ2 and κu are brought to depend on only two couplings
in the following manner:

• the treatment of
[
λdQ1

]
1

is divided in two cases, in the first it is set to be the same as
[
λuQ1

]
1

while in the second

the HP χ2 function is minimised as a function of the four couplings and then evaluated at the best-fit value for[
λdQ1

]
1
. Both treatments provide a χ2 function that only depends on three couplings;

• the coupling
[
λuQ1

]
1

was set to the value that maximises the contribution to the modifier κu. For the 68% CL

region, the maximisation is performed requiring that the χ2 function stays below χ2min
HP + χ2(3, 0.68); for the

95% CL case the constraint is to stay below χ2min
HP +χ2(3, 0.95). The latter coupling value is substituted in κu;

2Described in Section 5.1, a field redefinition is required to guarantee the canonical normalisation of the Higgs kinetic term. The field
redefinition was presented in Equation (5.4)
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(a) Same coupling limit
[
λd
Q1

]
1
=

[
λu
Q1

]
1
. (b)

[
λd
Q1

]
1

set to the best-fit value.

Figure 6.4: 68% and 95% CL regions as a function of the [λU ]1 and λUQ1
couplings. The value of

[
λuQ1

]
1

is set to the value that
maximises the contribution to κu. The two different choices for the fourth coupling

[
λdQ1

]
1
.

• the couplings λUQ1 and [λU ]1 were left free to vary.

The graphical results are shown in Figure 6.4. Some things should be kept in mind to avoid being misled; first of all,
the fact that the origin is excluded in the 68% CL parameter space but included in the 95% CL case does not have
implications on the validity of the SM. Indeed, the plots were realised by making assumptions on two of the four
couplings, if they were all simultaneously set to zero then the SM would be recovered. Secondly, the two variables
left free to vary in the HP study differ from those employed in the ElectroWeak case, as trying to perform graphical
studies in terms of λuQ1

and λU does not result in a parameter space. This is likely due to the fact that the minimum

value of the HP χ2 in both treatments of the
[
λdQ1

]
1

coupling is ≈ 1.3, while the SM value is ≈ 5.9. Having a small

minimum value for the χ2 has an impact on the solution of the inequalities of Equation (6.4).
An alternative treatment that should be investigated in future studies is the removal of degrees of freedom via marginal-
isation instead of substituting the best-fit value, or the value that maximises the contribution to the coupling modifier.
The solution adopted in this thesis is to study the total χ2

t accounting for both EWPO and HP at the same time.

6.3 Combined Fit

Having determined χ2
EWPO and χ2

HP , they are summed to obtain the total χ2
t . For all models, the 68% and 95% CL

regions are shown along with the κ-modifiers: two κ-curves are shown in each plot, one corresponding to the projected
sensitivity limits of [25] for comparison purposes and the other that is tangent to the region found with the 95% CL
constraints. The following convention for the colours and line style is adopted:

• the curves associated with κd are shown in solid lines, the literature’s value κd = 156 is plotted in cyan, the
tangent is in blue;

• for the up-sector, dashed lines are employed, in green for the value from the literature (κu = 260) and in teal the
value found in this thesis.

The models involving Q1 are separated from those that do not: given that Q1 is the only VLQ that can couple to
two different SM quarks, the models that contain it introduce four VLQ couplings, those that do not introduce three
couplings.
The κq modifiers depend on the product of three couplings, of which one is always associated to the Yukawa-like
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(a) Combined fit for Model 3, probe for κu. (b) Combined fit for Model 4, probe for κd.

(c) Combined fit for Model 6, probe for κd. (d) Combined fit for Model 8, probe for κu.

Figure 6.5: 68% and 95% CL regions for Models 3, 4, 6 and 8.

interaction between two VLQs. Therefore, this is the VLQ coupling that will be fixed to the value that maximises
the contribution to the coupling modifier κq within the 68% and 95% CL constraints; the corresponding values are
written in the plot legends. The value associated to the 95% CL maximisation is also used to draw the κq curves. An
alternative choice would be to set such coupling to 1 and is mentioned in Appendix E.

6.3.1 Models without Q1

Four models do not contain Q1; they involve either the Q5, which can lead to large κd, or the Q7 doublet, which
results in a non trivial κu. Given the presence of only three couplings, the two scenarios considered for Model 1 are
not necessary: it is sufficient to fix the VLQ-VLQ coupling to the value that maximises the contribution to the modifier
and to graphically solve the inequalities in Equation (6.4) in terms of the VLQ singlet/triplet and the VLQ doublet
couplings to the SM quarks.
The results for the various models are shown in Figure 6.5. The κ-curves associated to the literature values always
intersect the allowed parameter space. For these models, κu can reach O(1000) values, while κd can only go up to
O(500), which is expected given that md/mu ≈ 2 and that the coupling modifiers are mass-dependent. The largest
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allowed enhancements are:
κu < 940 , κd < 520 . (6.28)

The singlet and doublet couplings lie in the approximate interval [−1, 1], instead the two triplet couplings are bound
in [−3, 3]. This results in the more elongated forms of plots 6.5c and 6.5d. The plots also exhibit cuts that mimic the
κq curves, hinting at the importance of the Higgs physics contribution (recall that it is in the HP construction that one
explicitly introduces the κ-modifiers in the χ2-function, see Equations (6.26) and (6.27)).

6.3.2 Models involving Q1

Moving on to the models containing the Q1 doublet, the two different scenarios that involve either fixing its two cou-
plings to the SM quarks to be the same or setting one of them to its best-fit value are considered.

The first choice is to set Q1’s two couplings to be the same before χ2
t is minimised. The third coupling (for the VLQ-

VLQ interaction with the Higgs boson) is set to the value that maximises the contribution to the coupling modifier.
The resulting plots are shown in Figure 6.6. Notice that while Model 1 (Figure 6.6a) can only generate deviations from
1 of κu and Model 2 (Figure 6.6b) deviations of κd, Models 5 (Figure 6.6c) and 7 (Figure 6.6d) allow modifications of
both. In Model 7 the sets of lines for κu and κd are very close together: the md/mu ≈ 2 factor is compensated by the
different numerical factors in Cuϕ and Cdϕ from Table 5.24.
Overall, κu can achieve up to O(1000) enhancements except for Model 7 in which κu < 480; as for κd O(500) values
can be reached, except for Model 5 where κd’s maximal allowed value is just slightly above the sensitivity limit found
by [25]. These enhanced are smaller than the ones obtained in by the models without the Q1 doublet.

In the second scenario, one of the two Q1 couplings is set to the best-fit value. For the first two models, the coupling
that is fixed is the one that does not appear in the non-trivial modifier, so λdQ1

for Model 1 (Figure 6.7a) and λuQ1
for

Model 2 (Figure 6.7b). For Models 5 (Figure 6.7c) and 7 (Figure 6.7d), noticing that the electric charge content is
skewed towards negative values for Model 5 and positive values for Model 7 justified fixing the values of λuQ1

and λdQ1

respectively. In this case Models 5 and 7 no longer allow to study both κu and κd as functions of two couplings, as
can be seen by considering their explicit expressions

κM5
u = 1 +

v3

2
√
2muMT1MQ1

[
λuQ1

]
1
[λT1 ]1 λT1Q1 , κM5

d = 1 +
v3

4
√
2mdMT1MQ1

[
λdQ1

]
1
[λT1 ]1 λT1Q1 , (6.29)

κM7
u = 1 +

v3

4
√
2muiMQ1MT2

[λT2 ]1
[
λuQ1

]
1
λT2Q1 , κM7

d = 1 +
v3

2
√
2mdiMQ1MT2

[λT2 ]1

[
λdQ1

]
1
λT2Q1 .

(6.30)

For each model the two modifier expressions differ only for the Q1 coupling: fixing it and the VLQ-VLQ coupling
leaves one of the two modifiers to depend on only one coupling. For Model 5, κM5

u is left to depend only on [λT1 ]1;
reading the left-most allowed value for this coupling from Figure 6.7c, one finds κM5

u < 880. For Model 7, κM7
d only

depends on [λT2 ]1, from Figure 6.7d the modifier κM7
d < 300 is found. Overall, there are no significant differences

with respect to the previous scenario.

Summing up, Models involving pairs of VLQs coupled only to the first generation quarks can generate enhancements
of the up quark coupling to the Higgs boson, making the coupling up to O(1000) times its Standard Model value;
the down quark can have a Yukawa coupling O(500) times the Standard Model prediction, while maintaining a good
agreement with experimental constraints. The largest enhancements are provided by Model 3 for the up quark coupling
and by Model 4 for the down coupling; the corresponding values were reported in Equation (6.28).
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(a) Combined fit for Model 1, probe for κu. (b) Combined fit for Model 2, probe for κd.

(c) Combined fit for Model 5, which introduces deviations both in κu

and in κd.
(d) Combined fit for Model 7 along with the different curves for κu

and κd.

Figure 6.6: 68% and 95% CL regions for models 1, 2, 5 and 7 with
[
λdQ1

]
1
=
[
λuQ1

]
1
. Models 5 and 7 allow to probe both κu

(dashed lines) and κd (continuous lines).

As far as the coupling parameter space is concerned, all the couplings of VLQs to SM quarks are found to live in an
interval centred on the origin that is at most bounded by [−3, 3].
Considering that for Model 1 both the Higgs and the ElectroWeak fit were performed individually, Figure 6.6a can be
compared to the ElectroWeak result in Figure 6.2a, and Figure 6.7a compared to Figure 6.2b, to observe the effects
on the ElectroWeak result of including the Higgs Physics contribution. Starting from the original oval shape of the
ElectroWeak study, the removal of four portions, approximately following the κ-curves, allows to obtain the combined
study’s result. The same form is exhibited by the other three models involving the Q1 doublet: they can all be traced
back to ovals from which four portions along the diagonals of the plot frame have been cut out. An exception occurs
when considering Model 5 and Model 7 in which the best-fit value for one of the Q1 couplings has been chosen
(Figures 6.7c and 6.7d). However, the same models in the same coupling limit (Figures 6.6c and 6.6d) exhibit the
behaviour detailed above; this is another reminder that the choices adopted in this thesis for the removal of coupling-
dependences, though reasonable and motivated, are not the unique available solution.
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(a) Combined fit for Model 1, probe for κu. (b) Combined fit for Model 2, probe for κd.

(c) Combined fit for Model 5. (d) Combined fit for Model 7.

Figure 6.7: 68% and 95% CL regions for models 1, 2, 5 and 7 with one of the two Q1 couplings
[
λuQ1

]
1

or
[
λdQ1

]
1

set to their
best-fit value after the minimisation of the χ2

t . In the case of Model 2, the maximal value of the VLQ-VLQ coupling is the same
in for both the 68% and 95% CL cases.

6.4 Application to the Second Generation

For the application to the second generation quarks, the ElectroWeak χ2 function is constructed considering the pres-
ence of the Wilson coefficients CϕD, CϕWB and the second-family coefficients associated with the ψ2ϕ2D-class oper-
ators, except for the operator Oϕud.
For the study of the effects on Higgs Physics, the χ2 is built accounting for the modifications to Higgs boson decay
branching ratios for the final states considered by CMS [6] and for the modification to the Higgs production cross-
section due to the presence of the OϕG operator and of enhanced charm and strange Yukawa couplings in the quark and
anti-quark annihilation channel. Even though there have been dedicated searches for charm quark Yukawa couplings,
such as [12, 13, 50], they will not be used in the construction of χ2

HP .

The study is divided into two cases, depending on the presence or not of Q1 in the model. As was done for the first
generation quarks, two-dimensional plots are performed, in which both the κq curves and the total χ2 function depend
on two couplings. The VLQ-VLQ couplings always appear in the expressions for the κmodifiers and are fixed in order

58



CHAPTER 6. EXPERIMENTAL TESTS 6.4. APPLICATION TO THE SECOND GENERATION

(a) Plot for Model 3 and κc. (b) Plot for Model 4 and κs.

(c) Plot for Model 6 and κs. (d) Plot for Model 8 and κc.

Figure 6.8: 68% and 95% CL regions plots for the models 3, 4, 6 and 8 in which the VLQs are coupled to the second generation
SM quarks.

to realise the plots, as was done for the first generation. The conventions for colour and line styles are the following:
the curves for the strange quark coupling modifier are solid, in blue for the largest value found in the thesis and cyan
the reference κs = 13; the curves for the charm modifier are dashed, green for the reference κc = 1.2 and teal for the
largest allowed value.

The simpler case is provided by the models withoutQ1, with results presented in Figure 6.8. The largest enhancements
are provided by Model 3 for the charm (Figure 6.8a) and by Model 4 for the strange (Figure 6.8b), they are:

κc < 5.5 , κs < 48 . (6.31)

The approximate factor 10 difference between the two upper bounds is related to the fact that the charm quark is about
10 times more massive than the strange.
Before moving on to the other models, one should notice that in the case of Model 3 and, especially, Model 4 the 68%
CL region is not entirely contained in the 95% CL one, in contrast with the other two models in Figure 6.8 and also
those that will be shown in Figures 6.9 and 6.10. This is due to the fact that, while for most models the two different
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(a) Plot for model 1 with
[
λd
Q1

]
2

set to the best-fit value. (b) Plot for Model 1 with
[
λd
Q1

]
2
=

[
λu
Q1

]
2
.

(c) Plot for Model 2 with
[
λu
Q1

]
2

set to the best-fit value. (d) Plot for Model 2 where
[
λd
Q1

]
2
=

[
λu
Q1

]
2
.

Figure 6.9: Plots for the models involving the doublet Q1 and one of the singlets (either U or D) coupled to the second generation
of the SM quarks. On the left there are the plots in which one of Q1’s coupling has been set to the best-fit value, on the right the
two couplings are set to be the same.

values found for the VLQ-VLQ coupling are very close, having therefore limited impact on the χ2 function once they
are substituted, for Models 3 and 4 there is an approximate 10% difference between the two.

Considering now the models that contain the Q1 doublet, the same two scenarios considered for the first generation
are constructed. While in the previous section the two cases were treated separately, here they are set side-by-side for
each model.
In Figure 6.9, the plots for the models involving Q1 and one of the VLQ singlets are shown: having the two scenarios
close clearly shows that once again there is only a slight difference between the two. The literature projections for
κc and κs intersect the allowed parameter space, though the allowed values for the modifiers found here are more
constrained than those obtained by Models 3 and 4.
In Figure 6.10 the plots for the models containing the Q1 doublet and one of the triplets are presented. In this case,
the two scenarios are very different: if the two couplings of Q1 are set to be the same, both κc and κs can be probed
(Figures 6.10b and Figures 6.10d). If instead one of the two couplings is fixed to its best-fit value, then only one of the
two coupling modifiers remains a function of two couplings, the other instead will only depend on one coupling, as
can be concluded by replacing the first family indices with those of the second family in Equations (6.29) and (6.30).
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(a) Plot for Model 5 with
[
λd
Q1

]
2
=b.f. and κc. (b) Plot for Model 5 with

[
λd
Q1

]
2
=

[
λd
Q1

]
2
.

(c) Plot for Model 7 with
[
λu
Q1

]
2
=b.f. and κs. (d) Plot for Model 7 with

[
λd
Q1

]
2
=

[
λd
Q1

]
2
.

Figure 6.10: Plots for the models involving the doubletQ1 and one of the triplets (either T1 or T2) coupled to the second generation
of the SM quarks. On the left the either

[
λuQ1

]
2

or
[
λdQ1

]
2

is set to the best-fit value, on the right
[
λuQ1

]
2
=
[
λdQ1

]
2
.

In this scenario Model 5 allows for large deviations with respect to the SM in κs (Figure 6.10a) while Model 7 for
large deviation in κc (Figure 6.10c). The graphically omitted enhancements are κM5

c = 1.4 and κM7
s = 20.

Also in this case, larger enhancements were found by considering Models 3 and 4.

For the second generation quarks, VLQs with order one couplings to the SM second-generation quarks can be admitted.
The largest enhancement for the Yukawa couplings was provided by Model 4 for the strange and by Model 3 for the
charm, Equation (6.31). Interestingly, the upper bound found for the charm couplings modifier κc is comparable with
the 95% CL interval found by [12], which is

1.1 < |κCMS
c | < 5.5 . (6.32)

This result was derived considering the associated production of the Higgs boson with a vector boson, under the
assumption that only one quark Yukawa coupling is modified (which is exactly the case of Model 3) and the production
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cross-section is unaffected. This allows to rewrite the signal strength defined in Equation (6.21) as

µh→c̄c =
κ2c

1 + (κ2c − 1)BRSM (h→ c̄c)
, (6.33)

from which the value of |κc| is derived once the signal strength is experimentally determined. This result motivates
the interest in the continued improvements in the charm coupling measurements.
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Chapter 7

Direct Searches

The experimental searches for VLQs are performed in various final states, involving a SM quark and either a massive
gauge boson or the Higgs boson1. The VLQs are considered to be produced either individually or in pairs.
The production of a single VLQ is a model-dependent electroweak process that requires the knowledge of the VLQ
coupling to the W± and Z bosons and on the VLQ mass [76–78]. This type of production is expected to dominate for
larger VLQ masses compared to the pair production; however, the searches that have so far been performed consider
the VLQs to be coupled only to the third generation SM quarks. The final states for these searches therefore involve
only the top or the bottom quark. Given that in the models considered in this thesis the VLQs are coupled only to the
lighter quark generations, the results for the single production cannot be used.
Having excluded the single production searches, VLQ pair production is considered (Figure 7.1). This is a QCD pro-
cess whose cross-section depends solely on the mass of the VLQs and is therefore model independent. However, for
large VLQ masses the energy required to produce two on-shell VLQs is quite large, leading to a phase space suppres-
sion. Pair production has been studied both considering the VLQs coupled to the third generation SM quarks [79–83]
and in the case the VLQs are coupled to the lighter quarks [26], which is exactly what is being studied here. The latter
search is based on the data collected during Run 2 at LHC, its results will be used in this chapter to find the appropriate
value to which the VLQ mass Λ should be set for the study in the previous chapter.

Figure 7.1 also shows the available decay channels for the VLQs, as mentioned involving a boson (the Higgs boson or
the massive gauge bosons) and a light quark.
To perform the analysis, the ATLAS collaboration had to select a decay channel and make an assumption on the

G

G

q

W/Z

q̄

W/Z

G

Q̄

Q
G

G

q

h

q̄

h

G

Q̄

Q

Figure 7.1: Example Feynman diagrams for VLQ pair production via gluon fusion and subsequent possible decays.

1In the context of experimental searches, the name "Higgs boson" h refers to the degree of freedom of the Higgs doublet ϕ that appears as a
physical particle in the broken phase.
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corresponding branching ratio (BR): the two different choices and the consequent bounds on the VLQ masses are
reported in Section 7.1. After that, theoretical predictions of the branching ratios for the VLQs in the models considered
in this thesis are derived and then compared to those assumed by ATLAS. When the BRs for the models are different
from the ones assumed by ATLAS, the bounds from the ATLAS search can be rescaled. Model 1 is studied explicitly,
whereas for the study of the decays in the remaining models a generalised description is developed and employed.
Several formulae and intermediate steps are required for this study; to guarantee readability many intermediate steps
and results are only presented in Appendix G.

7.1 ATLAS Search

The decay channel chosen by ATLAS sees both the VLQs of the pair decaying into a SM quark and aW± boson. Of the
two resulting W bosons, one is selected to decay leptonically (e.g. W− → lr νr , lr = e, µ) and the other hadronically.
The final state is, therefore, characterised by the presence of at least three jets, a charged lepton (electron2 or muon3)
and missing transverse momentum which is associated with neutrino production.
To perform the analysis an assumption had to be made on the branching ratio for the decay channel of the VLQs into
a quark+W final state; ATLAS considers two scenarios and reports the corresponding lower bounds. In the following
let ψ be the VLQ and q the SM quark.

1. In the first scenario, BR (ψ → qW ) = 1 was assumed and led to Λ > 1.530TeV at 95% Confidence Level
(CL);

2. In the second case, a 95% CL lower bound of Λ > 1.150TeV was found in the limit BR(ψ → qW : qZ : qh) =

0.5 : 0.25 : 0.25.

7.2 Decays in Model 1

The calculation of branching ratios requires knowledge of the partial and the total decay widths of the VLQs, which in
turn need the appropriate interaction vertices to be identified. In the original Lagrangian LNP before SSB there is no
interaction of the VLQs with gauge bosons and SM quarks: in the following, it is shown how these interactions arise
after SSB and moving to a basis in which the quark mass matrix is diagonal.

The relevant Lagrangian terms are labelled as follows: LW contains quark interaction with the massive W boson, LZ
involves the quarks and the neutral Z boson, LH+V LQ contains the Yukawa interactions of the Higgs with the quarks
(both SM and vector-like) and the VLQ mass term, finally the Lagrangian component Lh contains the interactions of
the quarks with the Higgs h in the broken phase.
The starting point is LH+V LQ after SSB, this Lagrangian contribution can be split into two parts: mass term and
interaction with the Higgs h term. From the mass term, non-diagonal mass matrices can be identified and can be
put into diagonal form through bi-unitary rotations of the quark fields. The determination of the transformations will
be performed by a perturbative diagonalisation procedure and is valid up to higher-order corrections. The required
rotation has to be performed also in LW and LZ , thus affecting the interactions of the VLQs not only with the Higgs
h but also with the massive gauge bosons. The different interaction vertices and the associated couplings can then be
determined and the decay amplitudes be computed.

7.2.1 Gauge and Higgs sector before and after Spontaneous Symmetry Breaking

Starting from the gauge sector, the interactions of the VLQs with W I
µ and Bµ are picked up from the VLQ covariant

derivative term. This is the same as what was seen in Subsection 2.4.3 for the SM particles (except for the absence of

2Detected in the electromagnetic calorimeter.
3Detected in the muon chamber, the outermost layer in detectors. The schematics for the ATLAS detector are reported in Appendix F.
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projectors to left or right-handed fields)

−L
gauge
NP = Q̄1

(gL
2
σI /W

I
+ gY YQ1

/B
)
Q1 + Ū

(
gY Yu /B

)
U . (7.1)

Including the SM quarks and using Equations (2.13) and (2.14) to rewrite W I
µ and Bµ in terms W±

µ and Zµ:

−LW =
gL√
2

(
q̄L σ

+ /W
+
qL + Q̄1σ

+ /W
+
Q1 + q̄L σ

− /W
−
qL + Q̄1 σ

− /W
−
Q1

)
, (7.2)

−LZ =
gL

cos θW
q̄L

(
1

2
σ3 −Qq sin

2 θW

)
/Z qL +

gL
cos θW

Q̄1

(
1

2
σ3 −QQ1 sin

2 θW

)
/Z Q1+

− gL
cos θW

(
Ū QU sin2 θW /ZU + ūRQu sin

2 θW /ZuR + d̄RQd sin
2 θW /ZdR

)
. (7.3)

As for the term involving the Yukawa interactions and the VLQ mass terms, setting MU =MQ1 = Λ,

−LH+V LQ =yu q̄Lϕ̃uR + yd q̄LϕdR + λuQ1
Q̄1L ϕ̃uR + λdQ1

Q̄1L ϕdR + λU q̄Lϕ̃UR + λUQ1Q̄1Lϕ̃UR + h.c.+

+ Λ ŪLUR + Λ Q̄1LQ1R + h.c. . (7.4)

Accounting for SSB, recalling qL =
(
uL dL

)T
and Q1 =

(
T B

)T
, the above Lagrangian term can be recast as

−LH+V LQ =
(
ūL T̄L ŪL

)
yu

v√
2

0 λU
v√
2

λuQ1

v√
2

Λ λUQ1
v√
2

0 0 Λ


︸ ︷︷ ︸

Mu

uRTR
UR

+
h√
2

(
ūL T̄L ŪL

) yu 0 λU

λuQ1
0 λUQ1

0 0 0


uRTR
UR

+

+
(
d̄L B̄L

)( yd
v√
2

0

λdQ1

v√
2

Λ

)
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Md

(
dR

BR

)
+

h√
2

(
d̄L B̄L

)( yd
v√
2

0

λdQ1

v√
2

0

)(
dR

BR

)
+ h.c. . (7.5)

The mass matrices for the up (Mu) and down (Md) sectors are identified.
As for the gauge sector after SSB, the expressions for LW and LZ are reported in Appendix G.1.

7.2.2 Perturbative diagonalisation of the Mass matrices

Having identified the non-diagonal matrices Mu and Md and setting the two Yukawa couplings yd and yu to zero,
they are diagonalised perturbatively. The difference between perturbative and exact diagonalisation is that the latter
is written in terms of an expansion parameter, in this case v/Λ, and is required to hold up to a given order in this
parameter (the second).
Similarly to what was shown in Subsection 2.4.4 for the change of basis for the Yukawa matrices, the quark rotation has
to be performed in all sectors of the Lagrangian density. Each rotation involves only one VLQ Yukawa-like coupling
at a time; this is included in the notation by giving the rotation matrices an upper index identifying the row and column
where the coupling appears in the mass matrix. So, for example, U13

Lup acts on the left-handed up-type quarks and
contains the couplings λU . The explicit expressions of the transformation matrices are reported in Appendix G.1.
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Using a prime to denote the quarks in the rotated basis, the rotations that diagonalise the mass matrices are:

Mdiag
u = U23

LupU
13
LupMu U

21†
RupU

23†
Rup & Mdiag

d = 12×2MdU
21†
Rdown ; (7.6)u

′
L

T ′
L

U ′
L

 = U23
LupU

13
Lup

uLTL
UL

 ,

u
′
R

T ′
R

U ′
R

 = U23
RupU

21
Rup

uRTR
UR

&

(
d′L
B′
L

)
=

(
dL

BL

)
,

(
d′R
B′
R

)
= U21

Rdown

(
dR

BR

)
.

(7.7)

The diagonalised matrices turn out to be:

Mdiag
u = Λ



0 0 0

0 1− λUQ1

2
√
2
v
Λ 0

0 0 1 +
λUQ1

2
√
2
v
Λ

+O(
v2

Λ2
)

 & Mdiag
d = Λ

[(
0 0

0 1

)
+O(

v2

Λ2
)

]
(7.8)

7.2.3 Effects of the rotation on the interactions

To lighten the notation, the primes on the rotated quarks are dropped. The explicit expressions for LW , LZ and Lh

after the rotation turn out to be quite cumbersome; they are reported in Appendix G.1. The Feynman rules can be
read off the appropriate Lagrangian terms. In the following, only those relevant for the computation of the decays are
reported.

7.2.4 Decay widths and branching ratios

The decay widths for two-body decays are a known result [84], the branching ratios for a particular decay channel is
defined as the ratio between the decay width for that particular channel and the total decay width of the particle.

Considering the VLQ T , simply by looking at charge conservation one can identify the following decay modes:
T → u + h (7.9), T → u + Z (7.10) and T → d +W+ (7.11). For each of these models, the interaction vertex and
the final decay width are reported, assuming that the VLQs are much heavier than the SM quarks and the Higgs boson,
whose can therefore be neglected. The generation index of the couplings is dropped.

T

u

h

−iλU2 PR + i
λuQ1
2 PL ⇒ ΓT→uh =

1

128π

(
λ2U + (λuQ1

)2
)
Λ ; (7.9)

T

u

Zµ

iMZ
2Λ γµ

(
λUPL + λuQ1

PR

)
⇒ ΓT→uZ =

1

128π

(
λ2U + (λuQ1

)2
)
Λ ; (7.10)

T

d

W+
µ

iMW√
2Λ
γµ
(
λUPL + λdQ1

PR

)
⇒ ΓT→dW =

1

64π

(
λ2U + (λdQ1

)2
)
Λ ; (7.11)

Having these results, the total decay width for the T Vector-like Quark is

ΓT =
1

64π

(
(λuQ1

)2 + (λdQ1
)2 + 2λ2U

)
, (7.12)
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from which three branching functions can be derived:

BR (T → Zu) = BR (T → hu) =
1

2

λ2U + (λuQ1
)2

2λ2U + (λuQ1
)2 + (λdQ1

)2
, (7.13)

BR
(
T →W+d

)
=

λ2U + (λdQ1
)2

(λuQ1
)2 + (λdQ1

)2 + 2λ2U
. (7.14)

The graphs shown in Figures 7.2a and 7.2b were made by leaving λdQ1
and λuQ1

free to vary while the third coupling is
set to its best-fit value (from the combined fit in the previous Chapter): λU = −0.210.
In the limit of same squared couplings of the Q1 doublet to the uR and dR quarks, the branching ratios are found to
be:

BR
(
T →W+d

) (λdQ1
)2→(λuQ1

)2

−→ 0.5 , BR (T → Zu)
(λdQ1

)2→(λuQ1
)2

−→ 0.25 BR (T → hu)
λd2Q1

→λu2Q1−→ 0.25 . (7.15)

This reproduces exactly ATLAS’ second scenario, which excludes masses Λ < 1.15TeV with a 95% CL. However,
it comes at the cost of assuming that the two couplings have the same modulus, which is not something expected a
priori.

Turning to the other two VLQ components, U turns out to have the same decay widths as T ; for B, instead, the
branching ratios, shown in Figures 7.2c and 7.2d, are:

BR (B → hd) = BR (B → Zd) =
1

2

(λdQ1
)2

(λuQ1
)2 + (λdQ1

)2

(λdQ1
)2→(λuQ1

)2

−→ 0.25 , (7.16)

BR
(
B →W−u

)
=

(λuQ1
)2

(λuQ1
)2 + (λdQ1

)2

(λdQ1
)2→(λuQ1

)2

−→ 0.5 . (7.17)

Again, ATLAS’ second scenario is found in the same squared-coupling limit. Assumption 1, instead, is not recovered.

In conclusion, this affects the fits performed in the previous chapter for Model 1 in the following manner:

1. For the first scenario in which λdQ1
= λuQ1

was used, one had to set Λ > 1.150TeV;

2. For the second scenario the coupling λdQ1
was set to its best-fit value. In this case the bound could be avoided.

7.3 Generalisation to all models

Table 4.3 of Chapter 4 contained the electromagnetic charges associated to the different VLQ components. Keeping in
mind the particular case of Model 1, the goal is to organise the particle content in multiplets based on their electromag-
netic charge. Then the LW , LZ and Lh Lagrangian contributions can be written as a series of matrices and particle
multiplets. From the mass matrices, recognised in the Higgs sector, it is possible to identify and perform the rotations
that put them in diagonal form, thus affecting all the other interactions.

The generalisation is achieved by consistently introducing all the possible charged particles, with the addition of aux-
iliary couplings and variables. The specific models are uniquely extracted using replacement rules for such auxiliary
couplings and variables.

The available particle content can be organised in categories as follows:
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(a) BRs for the T and U decays into hu or Zu. (b) BRs for the T and U decays into W+d.

(c) BRs for the B decays into hd or Zd. (d) BRs for the B decays into W−u.

Figure 7.2: Contour plots for the BRs for the decays of U , T and B as described by Model 1. For all three cases, the BRs for
the final state involving a SM quark and either the Z or the Higgs boson are the same, so only one plot is shown (plots on the
left). Additionally, the T and U decays have the same final states and associated BRs, hence the plots are shown only once (upper
plots).
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charge 2/3 : five different particles have this charge. They are the SM up quark u, the T component of the doublets
Q1 and Q7, the U singlet and the T 2/3

1,2 component from the triplets. Noticing that U , T 2/3
1 and T 2/3

2 never
appear in the same model, they are denoted by a common symbol Su;

charge -1/3 : again there are five particles satisfying the requirement. They are the SM down quark d, the B com-
ponent of Q1 and Q5, the D singlet and T−1/3

1,2 . Also in this case, since the singlet and the triplets are never
simultaneously present, they are grouped into Sd;

charge -4/3 : charge carried by the Y , associated with Q5, and T−4/3
1 ;

charge 5/3 : corresponds to X from Q7 and T 5/3
2 .

This means that the following multiplets can be built:

U =

 u

T

Su

 whereSu ∈ {U, T 2/3
1 , T

2/3
2 } , (7.18)

D =

 d

B

Sd

 whereSd ∈ {D, T−1/3
1 , T

−1/3
2 } , (7.19)

X =

(
X

T
5/3
2

)
, Y =

(
Y

T
−4/3
1

)
(7.20)

The "Higgs+VLQ mass" term in the Lagrangian can be written as

−LH+V LQ =ŪLMUUR + D̄LMDDR + X̄LMXXR + ȲLMYYR+

+ h
(
ŪLCUUR + D̄LCDUR + X̄LCXXR + ȲLCYYR

)
. (7.21)

The first line contains the mass matrices, defined below, and the second the interactions of the quarks with the Higgs
boson h, where the coupling matrices are defined as Cα = ∂

∂vMα. The mass matrices are:

MU =


yu

v√
2

0 λSu
v√
2

λuQ
v√
2

M λSuQ
v√
2

0 0 M

 , MX =

(
M λXQ

v√
2

0 M

)
, (7.22)

MD =


yd

v√
2

0 λSd
v√
2

λdQ
v√
2

M λSdQ
v√
2

0 0 M

 , MY =

(
M λY Q

v√
2

0 M

)
. (7.23)

The replacement rules for the auxiliary coupling constants introduced before are given for each model in Table 7.1.
The auxiliary variables mentioned above needed for the construction of the generalised rotations to the mass basis
and of the generalised LW and LZ Lagrangian terms are given in Appendix G.2 together with the model specific
replacement rules.

7.3.1 Generalised decay widths

Having the generalised description, the decays as described by other models can now be studied.
Starting from the components bearing the same charges as the SM quarks, there is no further insight: ATLAS’s second
scenario can be recovered by taking the appropriate limit in the VLQ doublet couplings to the SM singlets. Consider
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Model λSu λuQ λSuQ λXQ λSd λdQ λSdQ λY Q

1 λU λuQ1
λUQ1 0 0 λdQ1

0 0
2 0 λuQ1

0 0 λD λdQ1
λDQ1 0

3 λU λQ7 λUQ7 0 0 0 0 0
4 0 0 0 0 λD λQ5 λDQ5 0
5 1√

2
λT1 λuQ1

1√
2
λT1Q1 0 −1

2λT1 λdQ1
−1

2λT1Q1 0
6 1√

2
λT1 0 0 0 −1

2λT1 λQ5
1
2λT1Q5

1√
2
λT1Q5

7 1
2λT2 λuQ1

1
2λT2Q1 0 1√

2
λT2 λdQ1

1√
2
λT2Q1 0

8 1
2λT2 λQ7 -12λT2Q7

1√
2
λT2Q7

1√
2
λT2 0 0 0

Table 7.1: Coupling substitutions to obtain the particular model starting form the generalisation.

(a) D decay into uZ and uh. (b) D decay into uW−.

Figure 7.3: Plots showing the different values the branching ratios for the decays of D as described by Model 4. The decay
channels involving the neutral Z and h have the same branching ratio.

for example the decays of the D VLQ in Model 4 (whose New Physics particle content consists in D and Q5), the
resulting branching ratios are shown in Figure 7.3 and are expressed as:

BR (D → hd) = BR (D → Zd) =
1

2

λ2D + λ2Q5

2λ2D + λ2Q5

λQ5
→0

−→ 0.25 , (7.24)

BR
(
D →W−u

)
=

λ2D
2λ2D + λ2Q5

λQ5
→0

−→ 0.5 . (7.25)

While in the presence of the Q1 doublet there are two couplings λdQ1
and λuQ1

and the scenario is recovered in the limit
they become the same, Q5 can only couple to dR and the coupling λQ5 has to be set to zero.
The overall conclusion is that, as long as the VLQs being studied have SM charges, an appropriate choice of the
couplings can provide Assumption 2, while scenario 1 in the ATLAS analysis does not appear. In the presence of a
SM-charged particle, all three decay channels are available.

The situation is different once the particles with new charges are introduced, which happens in all models except for
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the first two. In this case, the only possible decays are:

X → uW+ and T
5/3
2 → uW+ , (7.26)

Y → dW− and T
−4/3
1 → dW− . (7.27)

Without requiring calculations, the scenario BR(ψ → qW ) = 1 is automatically recovered.

Considering the assumption that the VLQs have the same mass Λ, the take-away message from this study is that the
lower mass bounds can only be avoided for the first two models with the requirement λdQ1

̸= λuQ1
. If λdQ1

= λuQ1
,

or if a VLQ with charge −4/3 or 5/3 is present, then the bounds from scenarios 1 and 2 respectively have to be applied.

To treat all the models equally but still be consistent with the ATLAS result, in the previous Chapter Λ = 2TeV was
picked.
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Chapter 8

Conclusions and Future Studies

Knowing that the Standard Model is not the final theory for our understanding of Particle Physics, many new models
have been developed, each trying to address at least one of the questions left unanswered by the Standard Model. Some
of these models introduce new hypothetical particles known as vector-like quarks, which can couple to the Higgs boson
via Yukawa-like couplings but that do not require the Higgs mechanism to gain a mass term. Simplified models were
considered in this thesis: vector-like quarks were studied in the context of producing enhancements to the couplings
of the two lighter quark generations to the Higgs boson, without referring to any of the specific models that address
open problems in the Standard Model by introducing vector-like quarks.
With the assumption that the vector-like quarks can couple only to one generation of Standard Model quarks at a time,
that they appear in only one generation and can have a coupling amongst themselves, eight different models involving
pairs of vector-like quarks can be built.
The New Physics models were matched onto the dimension-six SMEFT Lagrangian in the Warsaw basis. The SMEFT
provides a model-independent framework to study the departure of observables from the Standard Model predictions;
in particular, the correspondence between SMEFT operator and its effect on an observable has been extensively doc-
umented in the literature. This allows the construction of χ2 functions written entirely out of the SMEFT coefficients
that, after the matching results have been substituted, allow the translation of experimental bounds on the New Physics
parameters. For the models considered in this thesis, the parameters are the Yukawa-like couplings of vector-like
quarks to the Higgs bosons and their masses; the experimental bounds are taken from ElectroWeak Precision Tests and
Higgs Physics.
Accounting for the recent experimental searches for pair-produced vector-like quarks with couplings to the lighter
generation quarks performed by the ATLAS collaboration, the values of the masses were all set to be Λ = 2TeV. In
this case, the models considered in this thesis could produce values for the ratio between the New Physics prediction
for the Yukawa coupling and its Standard Model value for the first generation quarks up to

κu < 940 , (8.1)

κd < 520 , (8.2)

while still being compatible with ElectroWeak Precision Tests and Higgs Physics measurements.
As for the second generation quarks, the models can have values up to

κc < 5.5 , (8.3)

κs < 48 . (8.4)
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The result for the charm quark coupling enhancement is consistent with the one found by the CMS collaboration at
95% CL interval, which is 1.1 < |κCMS

c | < 5.5; such result motivates to improve on these searches since they are
starting to probe realistic parameter space.

Models involving vector-like quarks have therefore been shown to generate considerable enhancements of the light
quark Yukawa couplings. Dedicated searches for the charm quark coupling are already being performed and promis-
ing proposals have been put forward for the other three quarks: the measurements of their enhancements could be
within the reach of future experimental searches.

Throughout the work, several future directions have been identified:

• In Chapter 4 a different type of New Physics model which can generate quark-Yukawa enhancements was
identified: it consists in adding one vector-like quark and one heavy scalar to the Standard Model description.
Also in this case the number of possible pairs that can be made is finite and can be studied in complete analogy
with what was done in this thesis;

• In light of the community effort to identify future collider experiments, these eight models can be a case study.
Since in particular ElectroWeak precision measurements were found to lead to important constraints, the study
of how a future FCC-ee run at the Z pole would impact the parameter space of these models is motivated;

• Still regarding the study of the parameter space, other ways to reduce the number of variables in the χ2 functions
to two should be investigated. For example, marginalisation with respect to a variable, instead of associating to
it a numerical value, could provide interesting results;

• The assumption that the vector-like quarks can only couple to one generation of Standard Model quarks at a
time can be relaxed. This would allow to exploit Flavour Physics as a source of bounds for the couplings;

• The effects of higher dimension operators can also be considered. In this thesis only deviations due to the
dimension-six Warsaw basis operators were accounted for, which cause deviations in the observables propor-
tional to Λ−2. However, in the construction of the Higgs Physics χ2-function, terms proportional to κ2q and
(1 − κq)

2 were introduced: this implies that Λ−4 suppressed terms are expected to have a non-negligible ef-
fect. Given that Λ−4 is associated, in the tower expansion of the Effective Field Theory, to the dimension-eight
operators, such operators could also meaningfully contribute.

• For the Higgs Physics study, the only observables considered were total rates. However, differential measure-
ments are also available, which could potentially provide better constraints on the parameter space.
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Appendix A

Group Theory

In this appendix, relevant group theory results are presented. Several works describing the use of group theory for
particle physics can be found in the literature. For this section [85, 86] were used as references.

Groups which often appear in Physics are the Lie groups SU(N), N ≥ 2, and U(1). Such groups are identified by
their generators T a (where a ∈ {1, . . . , N2 − 1}) and the commutation relations of such generators. The generators
are normalised so that

Tr[T a T b] =
1

2
δab . (A.1)

A group is said to be Abelian if its generators commute, if not the group is said to be non-Abelian. The commutation
relations between the generators of a given group are written as[

T a, T b
]
= ifabcT c . (A.2)

The fabc factors are known as structure constants, they are by definition antisymmetric under permutations of the
indices. The previous definition of Abelian group implies that such groups have vanishing structure constants. The
structure constants are also used to characterise the group in the adjoint representation.
The only groups that appear in this thesis are the SM ones: the Abelian U(1) and the non-Abelian SU(N), with
N = 2, 3.
Starting from U(1), its generator is the identity matrix 1. The generators for SU(3) and SU(2) are presented below.

A.1 Gell-Mann Matrices

The SU(3) gauge group is associacted to the Gell-Mann matrices defined below. To guarantee the normalisation
requirement in Equation (A.1), the group generators are defined to the TA = 1

2λ
A.

λ1 =

0 1 0

1 0 0

0 0 0

 , λ2 =

0 −i 0

i 0 0

0 0 0

 , λ3 =

1 0 0

0 −1 0

0 0 0

 , λ4 =

0 0 1

0 0 0

1 0 0

 ,

λ5 =

0 0 −i
0 0 0

i 0 0

 , λ6 =

0 0 0

0 0 1

0 1 0

 , λ7 =

0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 . (A.3)

75



A.2. PAULI MATRICES APPENDIX A. GROUP THEORY

The non-zero structure constants are listed below. The others are either null or obtained by permuting the indices.

f123 = 1 ,

f147 = f156 = f246 = f345 = −f257 = −f367 = 1

2
,

f458 = f678 =

√
3

2
. (A.4)

A.2 Pauli Matrices

The SU(2) group generators consists in the rescaled Pauli matrices τ I = 1
2σ

I. The Pauli matrices are:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.5)

The structure constant in this case is the Levi-Civita tensor: f IJK = ϵIJK.
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Appendix B

Triplet Interactions with the W± and Z Bosons

Some more detail on the VLQs in triplet presentations of SU(2), namely T1 ∼ (3, 3)− 1
3

and T2 ∼ (3, 3) 2
3
, are

provided. The interaction terms for the VLQs with the electroweak gauge bosons are picked up from the covariant
derivative in the fermionic kinetic term. In the presence of an SU(2) triplet, this has the form (explicating all the
indices):

DµT
a I
α = ∂µ T

a I
1 + igS

λAab
2
GAµT

b I
α + igL(T

I
adj)

JKW J
µ T

aK
α + igYBµT

aI
α , α = 1, 2 . (B.1)

The W± and Z appear in the broken symmetry phase, as shown in Subsection 2.4.1. For T1 ∼ (3, 3)− 1
3

three charge

states can be build out of T1 =
(
T 1
1 T 2

1 T 3
1

)T
; the same can be done for T2 ∼ (3, 3) 2

3
, with T2 =

(
T 1
2 T 2

2 T 3
2

)T
.

The charge states are defined in Tables B.1 and B.2 respectively.
The Lagrangian terms describing T1’s interaction with the W and Z boson are, respectively,

− 1

gL
LW =

(
−T̄−4/3

1
/W

−
T
−1/3
1 + T̄

−1/3
1

/W
−
T
2/3
1 + h.c.

)
, (B.2)

−cos θW
gL

LZ =

(
1− 2

3
sin2 θW

)
T̄
2/3
1

/Z T
2/3
1 +

(
−1 +

4

3
sin2 θW

)
T̄
−4/3
1

/Z T
−4/3
1 +

+

(
0 +

1

3
sin2 θW

)
T̄
−1/3
1

/Z T
−1/3
1 . (B.3)

Similarly, for T2 one can write

− 1

gL
LW =

(
−T̄−1/3

2
/W

−
T
2/3
2 + T̄

2/3
2

/W
−
T
5/3
2 + h.c.

)
, (B.4)

−cos θW
gL

LZ =

(
1− 5

3
sin2 θW

)
T̄
5/3
2

/Z T
5/3
2 +

(
−1 +

1

3
sin2 θW

)
T̄
−1/3
2

/Z T
−1/3
2 +

+

(
0− 2

3
sin2 θW

)
T̄
2/3
2

/Z T
2/3
2 . (B.5)

Notice that T1 and T2 always introduce two particles with SM-singlet-like charges. For convenience, Table B.3

Notation Definition Charge

T
2/3
1

T 1
1−iT 2

1√
2

1 + YT1 = 2
3

T
−4/3
1

T 1
1+iT

2
1√

2
−1 + YT1 = −4

3

T
−1/3
1 T 3

1 0 + YT1 = −1
3

Table B.1: Charge states from the Triplet T1.

Notation Definition Charge

T
5/3
2

T 1
1−iT 2

1√
2

1 + YT2 = 5
3

T
−1/3
2

T 1
2+iT

2
2√

2
−1 + YT2 = −1

3

T
2/3
2 T 3

2 0 + YT2 = 2
3

Table B.2: Charge states from the Triplet T2.
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Charges
Field −4

3 −1
3

2
3

5
3

Q1 - B T -
Q5 Y B - -
Q7 - - T X

T1 T
−4/3
1 T

−1/3
1 T

2/3
1 -

T2 - T
−1/3
2 T

2/3
2 T

5/3
2

Table B.3: Charges introduced by the VLQs in models from 5 to 8.

contains all the possible charges introduced by the particles involved in Models 5 to 8.
Notice that, due to the presence of one of the triplets in each of these models, there will always be a new particle per
sector. In particular, Models 5 and 7, which, besides one of the triplets, also contain the Q1 doublet, introduce a total
of four particles with SM-like charges and a fifth with a new one. Models 6 and 8, instead, add three SM-like particles
and two new ones.
The interaction of the triplets with the other doublets (both SM and VLQ) contains a Pauli matrix, with the "adjoint"
index contracted with the triplet and the "fundamental" one contracted with the doublet’s SU(2) index. Eg, for Model
5,

−LintNP ⊃ λT1
2
T̄ I
1Rϕ

† σI qL =
λT1
2
T̄ I
1Rϕ

i † σIij q
j
L

Eq. (B.7)
=

λT1
2

[
T̄1R

]
ij
ϕi †qjL

SSB.
=

λT1
2

(v + h)

(
T̄
2/3
1R uL − 1√

2
T̄
−1/3
1R dL

)
. (B.6)

Where we defined

T1 = T I
1σ

I =

(
T 3
1 T 1

1 − iT 2
1

T 1
1 + iT 2

1 −T 3
1

)
Tab. B.1
=

(
T
−1/3
1

√
2T

2/3
1√

2T
−4/3
1 −T−1/3

1

)
, (B.7)

T2 = T I
2σ

I =

(
T 3
2 T 1

2 − iT 2
2

T 1
2 + iT 2

2 −T 3
2

)
Tab.B.2
=

(
T
2/3
2

√
2T

5/3
2√

2T
−1/3
2 −T 2/3

2

)
. (B.8)
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Appendix C

Feynman Rules

In this appendix, the Feynman rules for the VLQ interactions with the Higgs doublet ϕ and the gauge bosons GAµ , W I
µ

and Bµ are reported. The different indices that the quark q may have are specified as qia r, where a is the colour index,
r the flavour index and i the isospin index.
Additionally, the Feynman rules associated to the operators of the ϕ2ψ2D-class in the Warsaw SMEFT basis are
summarised. These were employed in the course of Chapter 5.

C.1 VLQ Yukawa-like Interactions

The interactions of the VLQs with the Higgs doublet are generally shown in Figure C.1. While the the SU(2) index of
the Higgs doublet is explicated in the figures, the quarks are generically denoted by ψ1 and ψ2.

In Table C.1 the Feynman rules for the interaction of one VLQ with a SM quark and the Higgs ϕ are specified. These
are associated with the diagram on the left of Figure C.1. The rules associated with the Feynman diagram on the right
of the same figure are found by hermitian conjugation: the roles of ψ1 and ψ2 are exchanged (hence changing the
projector P involved), the complex conjugate of the couplings λ is taken and the indices of ϵ and δ are exchanged.

Instead, Table C.2 summarises the Feynman rules associated with the interaction of a pair of VLQs with the Higgs
boson. Once again, the rules reported are associated with the Feynman diagram on the left of Figure C.1, while the
rules for the diagram on the right are found by considering the hermitian conjugate.

ϕi1

ψ̄1

ψ2

ϕ∗ i1

ψ̄2

ψ1

Figure C.1: Two possible diagrams for Yukawa interactions of the Higgs doublet with quarks, be them the SM quarks or the
VLQs.
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SU(2) VLQ ψ1 ψ2 Feynman Rule

Singlet
U URa2 qi2La1 r i [λU ]r ϵi1i2 δa1a2 PL

D qi2La1 r DRa2 −i [λD]∗r δi2 i1 δa1a2 PR

Doublet

Q1

uRa1 r Qi21La2 i
[
λuQ1

]∗
r
ϵi1 i2 δa1a2 PL

Qi21La2 dRa1 r −i
[
λdQ1

]
r
δi2i1 δa1a2 PR

Q5 dRa1 r Qi25La2 i [λQ5 ]
∗
r ϵi1 i2 δa1a2 PL

Q7 Qi27La2 uRa1 r −i [λQ7 ]r δi2i1 δa1a2 PR

Triplet
T1 qi2La2 r T I

1Ra1
− i

2σ
I
i2i1

[λT1 ]
∗
r δa1a2 PR

T2 qi2La2 r T I
2Ra2

− i
2σ

I
i2j
ϵji1 [λT2 ]

∗
r δa1a2 PR

Table C.1: Feynman rules for the interactions of the VLQs with a SM quark and the Higgs doublet.

Model ψ1 ψ2 Feynman Rule

1 (U +Q1) Ua2 Qi21 a1 iλUQ1 ϵi1i2 δa1a2

2 (D +Q1) qi2La1 r DRa2 −iλ∗DQ1
δi2 i1 δa1a2

3 (U +Q7) Qi27 a1 Ua2 −iλ∗UQ7
δi2 i1 δa1a2

4 (D +Q5) D̄a2 Qi25 a1 iλDQ5 ϵi1i2 δa1a2

5 (T1 +Q1) T̄ I
1 a2

Qi21 a1 − i
2λT1Q1σ

I
i1i2

δa1a2

6 (T1 +Q5) T I
1 a2

Qi25 a1
i
2 λT1Q5 ϵi1jσ

I
ji2
δa1a2

7 (T2 +Q1) T I
2 a2

Qi21 a1
i
2 ϵi1jσ

I
ji2
λT2Q1δa1a2

8 (T2 +Q7) T̄ I
2 a1

Qi27 a2 − i
2λT2Q7σ

I
i1i2

δa1a2

Table C.2: Feynman rules for the interactions between a pair of VLQs and the Higgs doublet. Each interaction is uniquely
associated with one of the models being studied.
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C.2 Quark Interaction with the Gauge Bosons

Here the Feynman rules for the interactions of the quark content of Model 1 with the gauge bosons in the unbroken
phase are presented.
Starting from the interaction with the Gluons, we have:

GAµ

ψia r

ψjb s

= −igsγµPx
λAab
2
δijδrs,


Px = PL ψ = qL

Px = PR ψ = uR, dR

Px = 1

. (C.1)

Next, the interactions with the U(1)Y associated gauge boson,

Bµ

ψ̄ia r

ψjb s

= −igY YψγµPX δab δij δrs, PX =


PL ψ = qL

PR ψ = uR, dR

1 ψ = U, Q1

. (C.2)

Finally, the interactions with the three W I
µ gauge bosons,

W I
µ

ψ̄ia r

ψjb s

= −igL δab
σIij
2
δrsγµPX , PX =


PL ψ = qL

0 ψ = uR, dR, U

1 ψ = Q1

. (C.3)
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qlL

q̄kL

ϕi

ϕ∗ j

(a) EFT vertex with the SM quark doublet q.

ψR

ψ̄R

ϕi

ϕ∗ j

(b) EFT vertex with one of the two SM singlets, ψ = u, d.

Figure C.2: EFT tree level diagrams generated by the operators belonging to the ψ2ϕ2D-class operators, separated depending on
whether the SM quark is the doublet or one of the singlets.

C.3 ψ2ϕ2D-class Operators

In Chapter 5, processes involving SMEFT operators were studied. The Feynman rules for the one-loop generated
operators Qϕ2, QϕD, Q′

ϕD and Q′′
ϕD were presented in Table 5.6. In this section the Feynman rules for the tree level-

generated operators of the ψ2ϕ2D-class are presented.
For the operators Oϕu and Oϕd, the Feynman Rules for the vertex in Figure C.2a read

iCϕuδ
ij
(
/p1 − /p2

)
PR . (C.4)

Moving to the operators with the doublets, O(1)
ϕq is associated with the Feynman Rule

iC
(1)
ϕq δ

ij
(
/p1 − /p2

)
PL . (C.5)

Finally, the Feynman rule for O(3)
ϕq , keeping care of the weak index contractions, provides

iC
(3)
ϕq (2δjlδik − δijδkl)

(
/p1 − /p2

)
PL . (C.6)

For the Feynman rules associated to other operators in the Warsaw basis, a reference is [87].
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Appendix D

Flavour Physics

In the SM there are no tree level Flavour Changing Neutral Current (FCNC) processes, which involve a change in
flavour without a charge transfer. These processes start to appear at the one-loop level: for example, one can consider
meson-antimeson oscillations like the one shown in Figure D.1. Besides the loop suppression, these processes are also
suppressed by the GIM mechanism [88].
From the SMEFT point of view, Warsaw basis operators that can contribute to FCNC are defined in Table D.1. None
of these operators is produced at the tree level in the models being considered here: one must therefore move to the
one-loop level.
In [64, 89], FCNC processes involving VLQs were considered. In particular, [64] used the results reported in [90]
to find lower bounds on the VLQ masses. Higher bounds were however found in this reference from the study of
ElectroWeak Precision Observables and Higgs Physics. In both references [64, 89], the VLQs were allowed to couple
to more than one generation of SM quarks at a time.
In this work, instead, the VLQs are allowed to couple to only either the first or the second generation SM quarks.
Therefore a VLQ cannot be used, for example, to connect a first generation SM quark to a second generation one
unsuppressed by the CKM matrix. From the effective field theory point of view, an effective vertex involving different
flavours cannot arise if the particle being integrated out can only couple to one flavour.
Given this assumption, the bounds to be obtained from the study of Flavour Physics are expected to be weak compared
to those from Electroweak Precision Observables and Higgs Physics, hence they will not be considered in this thesis.
However, in future works in which the assumption is relaxed it could be of interest to investigate the bounds from
Flavour Physics as well.

Category Name Definition Name Definition

(L̄L) (L̄L)
[
O
(1)
qq

]
prst

(q̄LpγµqLr) (q̄Lsγ
µqLt)

[
O
(3)
qq

]
prst

(
q̄Lpγµσ

IqLr
) (
q̄Lsγ

µσIqLt
)

(L̄L) (R̄R)

[
O
(1)
qd

]
prst

(q̄LpγµqLr)
(
d̄Rsγ

µdRt
) [

O
(1)
qu

]
prst

(q̄LpγµqLr) (ūRsγ
µuRt)[

O
(8)
qd

]
prst

(
q̄Lpγµ

λA

2 qLr

)(
d̄Rsγ

µ λA

2 dRt

) [
O
(8)
qu

]
prst

(
q̄Lpγµ

λA

2 qLr

)(
ūRsγ

µ λA

2 uRt

)
(R̄R) (R̄R) [Odd]prst

(
d̄RpγµdRr

) (
d̄Rsγ

µdRt
)

[Ouu]prst (ūRpγµuRr) (ūRsγ
µuRt)

Table D.1: Four-fermion operators in the Warsaw basis which contribute to FCNC processes.
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b
Vib V ∗

kd

d

d̄
V ∗
id Vkb

b̄

ui

W−

W+

ūk

b
Vib V ∗

id

d

d̄
V ∗
kd Vkb

b̄

ui

W− W+

ūk

Figure D.1: Feynman diagrams described the loop induced B0
d ↔ B̄0

d oscillation in the Standard Model.
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Appendix E

Additional Parameter Space Plots

In Sections 6.3 and 6.4, the allowed parameter space for the VLQ Yukawa-like couplings was studied by taking into
account constraints for ElectroWeak and Higgs Physics. Since each model introduces three or four couplings, to
perform two-dimensional plots assumptions had to be made in order to reduce the number of free parameters in the
χ2 function and κq to two. In particular, it was chosen to fix the VLQ-VLQ coupling to the value that maximises the
contribution to the coupling modifier at the two selected CLs. In this Appendix, an alternative choice of setting such
coupling to 1 in the solution of the inequalities in Equation (6.4) is investigated.
The resulting plots for both the first and second generations are shown in the following pages. The colour and line
style conventions used in Sections 6.3 and 6.4 are respected; unsurprisingly, since 1 is smaller than any of the values
used in the main text, the upper bounds turn out to be smaller. The maximal allowed enhancements are κu = 830 from
Model 1 (Figure E.1b), κd = 470 from Model 4 (Figure E.9b), κs = 40 from Model 4 (Figure E.9b) and κc = 3.9

from Model 3 (Figure E.9a). While the possible values for the allowed coupling modifiers become smaller, their order
of magnitude stays the same and doesn’t change the conclusion that the searches for light quark Yukawa deviations at
the HL-LHC is motivated also from a UV perspective.
The 68% CL region is always contained in the 95% CL one; this confirms the idea that Models 3 and 4 in Section 6.4
deviated from such expectation due to the non-negligible difference between the 68% and 95% CL values used for the
VLQ-VLQ coupling. More details are provided in the captions of the plots.

(a) Same coupling limit for the Q1 couplings. (b)
[
λd
Q1

]
1

set to the best-fit value from the χ2 minimisation.

Figure E.1: These two plots show the allowed parameter space for the VLQs in Model 1 coupled to first generation SM quarks.
The two different scenarios for the treatment of the fourth VLQ coupling are both considered.

85



APPENDIX E. ADDITIONAL PARAMETER SPACE PLOTS

(a) Same coupling limit for the Q1 couplings. (b)
[
λu
Q1

]
1

set to the best-fit value from the χ2 minimisation.

Figure E.2: Allowed parameter space for the VLQs in Model 2 coupled to first generation SM quarks.

(a) Model 3. (b) Model 4.

Figure E.3: Parameter space and coupling modifiers for Models 3 and 4.

(a) Scenario in which
[
λd
Q1

]
1
=

[
λu
Q1

]
1
. (b) Scenario where

[
λu
Q1

]
1

is set to the best-fit value.

Figure E.4: Model 5 parameter spaces for the first generation according to the two different treatments of the Q1 couplings.
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(a) Model 6. (b) Model 8.

Figure E.5: Model 6 and Model 8 parameter space, with VLQs coupled to the first generation SM quarks.

(a) Scenario in which
[
λd
Q1

]
1
=

[
λu
Q1

]
1
. (b)

[
λu
Q1

]
1

set to the best-fit value.

Figure E.6: Allowed parameter space for Model 7 according to the two different treatments for the fourth VLQ coupling.

(a) Same coupling limit for the Q1 couplings. (b)
[
λd
Q1

]
2

set to the best-fit value from the χ2 minimisation.

Figure E.7: Parameter space for the VLQs in Model 1 coupled to second generation SM quarks according to the two different
choices for the fourth coupling.
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(a) Same coupling limit for the Q1 couplings. (b)
[
λu
Q1

]
2

set to the best-fit value from the χ2 minimisation.

Figure E.8: Allowed parameter space for the VLQs in Model 2 coupled to second generation SM quarks.

(a) Model 3. (b) Model 4.

Figure E.9: Parameter space and coupling modifiers for Models 3 and 4 coupled to second generation quarks.

(a) Scenario in which
[
λd
Q1

]
2
=

[
λu
Q1

]
2
. (b) Scenario where

[
λu
Q1

]
2

is set to the best-fit value.

Figure E.10: Parameter space for Model 5 with VLQs coupled to the strange and charm quarks. Notice that in the same coupling
limit the largest allowed value coincides with the result found in the literature [23].
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(a) Model 6. (b) Model 8.

Figure E.11: Model 6 and Model 8 parameter space, with VLQs coupled to the second generation SM quarks.

(a) Scenario in which
[
λd
Q1

]
2
=

[
λu
Q1

]
2
. (b)

[
λu
Q1

]
2

set to the best-fit value.

Figure E.12: Allowed parameter space for Model 7 according to the two different treatments for the fourth VLQ coupling.
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Appendix F

Detector Schematics

At many points throughout this thesis, the results of experiments performed at the Large Hadron Collider (LHC),
located at CERN (Conseil Européen pour la Recherche Nucléaire), were mentioned. In this appendix, a few details
concerning the LHC and two of the experiments around its accelerator ring, ATLAS and CMS, are reported.

The Large Hadron Collider, whose accelerator ring has a circumference of 27 km, was designed in the 1990s to study
the Standard Model (in particular, the search for the Higgs boson) and Beyond the Standard Model Physics [91]. The
two beams being collided both consist of protons1 and intersect in four different locations. In each of these points, an
experiment is set up: ALICE, ATLAS, CMS and LHCb.

ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) are two general-purpose experiments at
LHC, both are cylindrical detectors which almost cover the entire solid angle except for the beam’s track.
Both have a solenoid providing a magnetic field equal to 2T for ATLAS and 3.8T for CMS. Going from the innermost
to the outermost layer, the two experiments have silicon trackers for particle trajectory reconstruction, calorimeters for
energy measurements and muon chambers. There are two types of calorimeters: electromagnetic and hadronic. The
former allows the study of electrons and photons, the latter of hadrons. The muons are the last detected particles since
they present the least interactions with the rest of the detectors.

Figure F.1: CMS transverse section showing the internal structure of the detector going from left to right. In particular, the silicon
trackers for the trajectory reconstruction, the electromagnetic followed by the hadronic calorimeter and finally the muon chambers
can be identified.

1The Tevatron at the Fermi National Accelerator Laboratories, instead, was a proton-antiproton collider.
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Figure F.1 shows what has just been stated. The difference between the study of neutral and charged particles is clear
by observing the effect of the magnetic field on the trajectories: neutral particles are unaffected and move in a straight
line, whereas the charged ones are deviated. The development of the particle showers inside the calorimeters is also
shown.

The figures presented in this section were taken from the official webpages of ATLAS and CMS.

Figure F.2: ATLAS detector schematics.

Figure F.3: CMS detector schematics.
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Appendix G

Direct Searches

In this section, intermediate results for the Direct Searches (Chapter 7) are presented. For Model 1, these consist in the
explicit expressions for the rotations matrices and the description of the interactions of the quarks (both the SM and
the VLQs) with the final state bosons after the rotation into the mass basis has been performed.
Additionally, the details of the generalisation for the eight models are presented. In this case, the expressions for the
generalised Lagrangian before and after the rotation are provided. Again, the rotation matrices are reported. For the
generalisation to be made, some auxiliary functions have to be introduced. Their definitions and the set of replacement
rules which uniquely identify the individual models are listed.

G.1 Model 1

The LW and LZ Lagrangians before the rotation into the mass basis are given by:

−LW =
gL√
2

(
ūL T̄L ŪL

)
/W

+

1 0

0 1

0 0

(dL
BL

)
+
gL√
2

(
ūR T̄R ŪR

)
/W

+

0 0

0 1

0 0

(dR
BR

)
+ h.c. . (G.1)

−LZ =
gL

cos θW

(
ūL T̄L ŪL

)
/Z

1
2

1 0 0

0 1 0

0 0 0

− 2

3
sin2 θW 13×3


uLTL
UL

+

+
gL

cos θW

(
ūR T̄R ŪR

)
/Z

1
2

0 0 0

0 1 0

0 0 0

− 2

3
sin2 θW 13×3


uRTR
UR

+

+
gL

cos θW

(
d̄L B̄L

)
/Z

[
−1

2
+

1

3
sin2 θW

]
12×2

(
dL

BL

)
+

+
gL

cos θW

(
d̄R B̄R

)
/Z

[
−1

2

(
0 0

0 1

)
+

1

3
sin2 θW12×2

](
dR

BR

)
. (G.2)

The diagonalised matrices Mdiag
q up to O(v2/M2) corrections are obtained from Mq via the following rotations:

Mdiag
u = U23

Lup U
13
LupMu U

21†
Rup U

23†
Rup , (G.3)

Mdiag
d = 12×2Md U

21†
Rdown . (G.4)
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The transformation matrices for the up sector are:

U23
Lup =


1 0 0

0 1√
2
− λUQ1

v

8M − 1√
2
− λUQ1

v

8M

0 1√
2
+

λUQ1
v

8M
1√
2
− λUQ1

v

8M

 , U23
Rup =


1 0 0

0 1√
2
+

λUQ1
v

8M − 1√
2
+

λUQ1
v

8M

0 1√
2
− λUQ1

v

8M
1√
2
+

λUQ1
v

8M

 ,

U13
Lup =


1 0 − λUv√

2M

0 1 0
λUv√
2M

0 1

 , U21
Rup =


1 −

λuQ1
v

/2M
0

λuQ1
v

√
2M

1 0

0 0 1

 . (G.5)

For the down sector, the transformation matrix is:

U21
Rdown =

 1 −
λuQ1

v
√
2v

λuQ1
v

√
2v

1

 . (G.6)

Having moved into the mass basis, we can rewrite the rotated interactions of the SM quarks and VLQs with the bosons

h, W± and Z. For more compact expressions, define the multiplets U =
(
u T U

)T
and D =

(
d B

)T
containing

quarks with same U(1)EM charge. The results are all truncated at O(v2/M2) level.

Interaction with the Higgs the matrix entries present both an order zero and order one term in the expansion param-
eter are present. Only the order zero term is reported since it provides the dominant contribution.

−Lh = h ŪL


0 −λU

2
λU
2

λuQ1
2 −λUQ1

2
√
2

λUQ1

2
√
2

λuQ1
2 −λUQ1

2
√
2

λUQ1

2
√
2

UR + hD̄L

 0 0
λdQ1√

2

(λdQ1
)2v

2M

DR + h.c. . (G.7)

Interaction with the W boson the interaction turns out to be

−
√
2

gL
LW = ŪL /W

+


1 0

−λUv
2M

1√
2

λUv
2M

1√
2

DL + ŪR /W
+


0 −

λuQ1
v

√
2M

−
λdQ1

v

2M
1√
2

−
λdQ1

v

2M
1√
2

DR + h.c. . (G.8)

Interaction with the Z boson finally, the rotated Lagrangian contribution involving Z amd the quarks is

−cos θW
gL

LZ = ŪL /Z

1

2

 1 −λUv
2M

λUv
2M

−λUv
2M

1
2

1
2

λUv
2M

1
2

1
2

− 2

3
sin2 θW13×3

UL+

+ ŪR /Z

1

2


1 −

λuQ1
v

2M −
λuQ1

v

2M

−
λuQ1

v

2M
1
2

1
2

−
λuQ1

v

2M
1
2

1
2

− 2

3
sin2 θW13×3

UR+

+ D̄L /Z

(
−1

2
+

1

3
sin2 θW

)
12×2DL+

+ D̄R /Z

−1

2

 0 −
λdQ1

v
√
2M

−
λdQ1

v
√
2M

0

+
1

3
sin2 θW12×2

DR . (G.9)
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G.2 Generalisation to all models

For the convenience of the reader, the VLQ components along with their charges are repeated in Table G.1 and the
particle content of the various models are given in Table G.2. Noticing that in all models there is a doublet and either a
singlet or a triplet, the notation Su ∈ {U, T 2/3

1 , T
2/3
2 } and Sd ∈ {D, T−1/3

1 , T
−1/3
2 } was introduced. The multiplets

containing quarks with the same charge are, therefore,

U =

 u

T

Su

 , D =

 d

B

Sd

 , X =

(
X

T
5/3
2

)
& Y =

(
Y

T
−4/3
1

)
. (G.10)

G.2.1 Generalised initial Lagrangian

The generalised Higgs sector was already reported in Chapter 7.

For the W± interactions two auxiliary parameters have to be introduced, let them be:

f =


0 Model with U or D

1 Model with T1

−1 Model with T2

, (G.11)

Θ(q) =

1 if the particle q is present

0 else
. (G.12)

The first accounts for the fact that the singlets do not couple to the W bosons, while the triplets do interact but
with different signs (see Appendix B). The second auxiliary variable instead deals with the possibility offered by the
presence of the triplets to create the multiplets X and Y of quarks with non-SM charges. Indeed, in the model involving
singles and doublets, there can be at most one particle with non-SM charge, provided either by Q5 or by Q7. Once the
triplets are included, this is no longer the case (Models 6 and 8).

Charges
Field −4

3 −1
3

2
3

5
3

U - - U -
D - D - -
Q1 - B T -
Q5 Y B - -
Q7 - - T X

T1 T
−4/3
1 T

−1/3
1 T

2/3
1 -

T2 - T
−1/3
2 T

2/3
2 T

5/3
2

Table G.1: Charge assignments for the VLQ components.

Singlet + Doublet Doublet + Triplet

Model 1 U +Q1 Model 5 T1 +Q1

Model 2 D +Q1 Model 6 T1 +Q5

Model 3 U +Q7 Model 7 T2 +Q1

Model 4 D +Q5 Model 8 T2 +Q7

Table G.2: Summary of the models’ particle content.
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The Lagrangian describing the interaction before the rotation is identified to be:

−
√
2

gL
LW = ŪL /W

+

1 0 0

0 1 0

0 0
√
2 f

 DL + ŪR /W
+

0 0 0

0 1 0

0 0
√
2 f

 DR+

+ X̄L /W
+

(
0 1 0

0 0 −
√
2 fΘ(T2)

)
UL + X̄R /W

+

(
0 1 0

0 0 −
√
2 fΘ(T2)

)
UR+

+ D̄L /W
+

0 0

1 0

0
√
2 fΘ(T1)

YL + D̄R /W
+

0 0

1 0

0
√
2 fΘ(T1)

YR + h.c. . (G.13)

Finally, for the Z part of the New Physics Lagrangian, a further auxiliary parameter is needed. Let it be defined as

x =

1 if the VLQ doublet is Q1

−1 if the VLQ doublet is either Q5 or Q7

. (G.14)

Its role is to account for the doublets’ isospin. Consider the action of σ3 on the doublets:

σ3Q1 =

(
T

−B

)
, σ3Q5 =

(
B

−Y

)
, σ3Q7 =

(
X

T

)
. (G.15)

From this, one can notice how T and B pick up different signs depending on which doublet introduces them.
With x and Θ(q), one can therefore write:

−cos θW
gL

LZ = ŪL /Z

1

2

1 0 0

0 x 0

0 0 2Θ(T1)

− 2

3
sin2 θW13×3

UL+

+ ŪR /Z

1

2

0 0 0

0 x 0

0 0 2Θ(T1)

− 2

3
sin2 θW13×3

UR+

+ D̄L /Z

−1

2

1 0 0

0 x 0

0 0 2Θ(T2)

+
1

3
sin2 θW13×3

DL+

+ D̄R /Z

−1

2

0 0 0

0 x 0

0 0 2Θ(T2)

+
1

3
sin2 θW13×3

DR . (G.16)

G.2.2 Rotation to mass basis

The rotation matrices for MU and MD are of the same form of the ones in Equation (G.18), as long as the appropriate
subsitutions are performed.
However, special care must be placed in the rotations that affect only VLQs. Indeed, while the other two matrices
reduce to the identity once the NP coupling has been set to 0, a generalisation of U23

Lu and U23
Fu would retain an extra

1/
√
2 factor and some off-diagonal entries. Therefore, to achieve generalisation it is necessary to introduce two more
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Model auxu auxd auxX auxY f x Θ(T1) Θ(T2)

1 1
√
2

√
2

√
2 0 1 0 0

2
√
2 1

√
2

√
2 0 1 0 0

3 1
√
2

√
2

√
2 0 -1 0 0

4
√
2 1

√
2

√
2 0 -1 0 0

5 1 1
√
2

√
2 1 1 1 0

6 1 1
√
2 1 1 -1 1 0

7 1 1
√
2

√
2 -1 1 0 1

8 1 1 1
√
2 -1 -1 0 1

Table G.3: Auxiliary function substitutions to recover the particular model of interest.

auxiliary functions:

auxα,β =

1 if λSα, β Q ̸= 0
√
2 if λSα, β Q = 0

α = u , d and β = X , Y . (G.17)

U13
Lα =


1 0 − λSαv√

2M

0 1 0
λαv√
2M

0 1

 , U23
Lα =


1 0 0

0 auxα√
2

− λSαQv
8M − (2−aux2α)√

2
− λSαQv

8M

0 (2−aux2α)√
2

+
λSαQv
8M

auxα√
2

− λSαQv
8M

 ,

U21
Rα =


1 − λαQv√

2M
0

λαQv√
2M

1 0

0 0 1

 , U23
Rα =


1 0 0

0 auxα√
2

+
λSαQv
8M − (2−aux2α)√

2
+

λSαQv
8M

0 (2−aux2α)√
2

− λSαQv
8M

auxα√
2

+
λSαQv
8M

 . (G.18)

As for the diagonalisation of the 2× 2 matrices for the non-SM charged quarks, the following matrices can be used:

U21
Lβ =

 auxβ√
2

− λSβ Qv
8M − (2−auxβ)2√

2
− λSβ Qv

8M
(2−auxβ)2√

2
+

λSβ Qv
8M

auxβ√
2

− λSβ Qv
8M

 , U21
Rβ =

 auxβ√
2

+
λSβ Qv
8M − (2−auxβ)2√

2
+

λSβ Qv
8M

(2−auxβ)2√
2

− λSβ Qv
8M

auxβ√
2

+
λSβ Qv
8M

 .

(G.19)
The transformations required to diagonalise the matrices for the SM-like charged particles are:

Mdiag
α = U23

LαU
13
LαMαU

21 †
RαU

23 †
Rα , (G.20)

while the 2× 2 matrices involving "new-charged" particles are diagonalised via:

MX/Y = U23
LX /YMX /YU

23 †
RX /Y . (G.21)

Hence the multiplets transform in the following manner:

U′
L = U23

LuU
13
Lu UL , U′

R = U23
RuU

21
Ru UR ,

D′
L = U23

LdU
13
Ld DL , D′

R = U23
RdU

21
Rd DR ,

X′
L = U23

LX XL , X′
R = U23

RX XR ,

Y′
L = U23

LY YL , Y′
R = U23

R Y YR . (G.22)
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G.2.3 After the rotation

After the rotation, the three Lagrangian contributions can be compactly written as

−Lh =h ŪL CrUUR + h D̄L CrDDR + h.c. , (G.23)

−
√
2

gL
LW = ŪL /W

+MWr
1L DL + ŪR /W

+MWr
1R DR + X̄L /W

+MWr
2L UL + X̄R /W

+MWr
2R UR+

+ D̄L /W
+MWr

3L YL + D̄R /W
+MWr

3R YR + h.c. , (G.24)

−cos θW
gL

LZ = ŪL /Z MZr
ULUL + ŪR /Z MZr

UR UR + D̄L /Z MZr
DLDL + D̄R /Z MZr

DRDR . (G.25)

Given the great number of auxiliary couplings and variables introduced, the results are not easy to read and, therefore,
will not be explicitly written out. However, let us point out that, once the initial interaction matrices for the different
sectors and the rotation matrices have been identified, all the remaining calculations for the branching ratios can
be easily implemented in a MATHEMATICA notebook. The only operations that have to be performed are matrix
multiplications and substitutions, using the replacements in Tables 7.1 and G.3.
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