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Introduction

This thesis project is dedicated to the study of some p-adic locally analytic objects which

are classically defined on a neighborhood of Zp in Cp, such as Morita’s Γ-function, the p-adic

Riemann zeta function ζp, and Kubota-Leopoldt’s L-functions, and to the possibility of ex-

tending them to a neighborhood of all of Qp in Cp. We only mention in passing the interest

of shedding any light whatsoever on the values of Riemann’s zeta function ζ at rational

non-integral points, values for which no closed formula is available and no conjectures seem

to have been formulated. The relation of Morita’s p-adic Γ-function Γp to Gauss sums is the

content of the Gross-Koblitz formula. Maurizio Boyarsky ([9]) following Dwork ([16]) ex-

plained the appearance of Γp in the Frobenius matrix of Fermat curves with p-adically good

reduction. The variable of Γp was then naturally interpreted as parametrizing and analyt-

ically interpolating characters of the geometric fundamental group of P1 − {0, 1,∞}, while

the value of Γp at the character χ was giving the action of Frobenius on the (1-dimensional)

χ-isotypical component of cohomology. This is the essence the so-called Boyarsky Principle.

It was Coleman [11] who performed the calculation of the Frobenius matrix in the Hyodo-

Kato cohomology of potentially semistable Fermat curves (which admit a semistable model

over Zp[µpn ], for some n). He showed that the action of Frobenius on 1-dimensional isotypical

components of that cohomology, when expressed in dependence of characters of the geometric

fundamental group of P1 − {0, 1,∞}, could naturally be expressed in terms of an analytic

extension of Γp to Qp, with a number of remarkable properties.

In a different vein, Jack Diamond in [13] defined a p-adic log Γ on Cp \ Zp, and corre-

spondingly introduced, using the distribution formula, certain Gamma measures. In terms of

such measures, Lp(s, χ) admits an integral expression; Diamond then obtained new formulas

for the values Lp(r, χ) for a Dirichlet character modulo pm and r a positive integer.

The classical Amice transform (see [1] and [12]) defines an isomorphism between the

algebra of Zp-valued measures on Zp and the algebra of Qp-analytic functions defined and

bounded by 1 on the open unit disc. Colmez himself has extended that construction to a

certain algebra of Zp-valued measures on Qp; values are taken in a ring of projective systems
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of the previous type of analytic functions. On the other hand, in ancient thesis work, [3] F.

Baldassarri had proposed the same type of extension of the Amice transform which applies

to Zp-valued uniform measures on Qp and takes values in the ring of functions on the formal

perfectoid open disc defined over Zp. That construction, still unpublished, will appear in [2].

In view of the previous facts, the goal of this thesis is to propose a possible way to

generalise the definition of Kubota-Leopoldt’s p-adic L-functions.

The thesis is organised as follows. The first chapter is dedicated to introduce the p-adic

analytic tools that we need, with particular emphasis on the definition and properties of

two special functions, namely the Morita Γp-function and Baldassarri’s Ψ = Ψp function.

We define the former in the style of Dwork, using in particular the construction of Γp as

Frobenius matrix in a certain exponential analytic cohomology. One obtains a p-adic analytic

function defined in a neighborhood of Zp such that

Γp(s+ 1) = −sΓp(s) |s| = 1

Γp(s+ 1) = −Γp(s) |s| < 1

and Γp(0) = 1.

The latter special function Ψ was introduced by F. Baldassarri in [4]and [6] via the functional

equation:
∞∑
j=0

p−jΨ(pjT )p
j

= T .

The role of Ψ is the one of analytically trivializing the addition law of Barsotti’s Witt covec-

tors and it has a relation, via the Artin-Hasse isomorphism, with a system of exponential-like

test functions for a Fourier theory on Qp.

In the second chapter we introduce the classical theory of p-adic measures over Zp and,

in particular, we give the definition of the Kubota-Leopoldt p-adic L functions Lp via Mellin

transform M and Bernoulli measures ν1,c:

Lp(1− s, χ) =
−1

1− χ(c)〈c〉s
M (χν1,c)(s)

Here we get our first result: in fact, after a reformulation of this definition we calculated the

Mahler series associated to Lp i.e. :

Lp(−s, χ) =
1− p

1− χ(c)〈c〉s+1

∞∑
n=0

pn
Bn+1,χ

n+ 1

(
s

n

)
After that we define, following Diamond, the p-adic logΓ function Gp and the related Γ-

measures. As an application, we can:
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• Reformulate the definition of Lp using the Diamond’s Gamma measure µ1,c (observe

that the left hand side of the equation does not depend by the constant c):

Lp(1− s, χ) =
−1

1− χ(c)〈c〉s

∫
Z×p
〈x〉sχ(x)dµ1,c(x)

• Prove the following formulas about special values of p-adic L functions:

Lp(0, ω) =
c

(c− 1) logp(c)

∫
Z×p

logp(x)dν1,c = 0

Lp(1 + k, ω−k) =
(−1)k(1− c−(k+1))

(c−k − 1)k!
(logp Γp)

(k+1)(0)

with k ≥ 1

• In particular, we can produce the Amice transform of the measure µ1,c:

µ1,c = logp(c)

(
1− 1

p

)
+
∞∑
n=2

(
logp(c)

(
1− 1

p

)
+

n∑
k=2

s(n, k)

n!

Bk,ωk(1− ck)
k

)
(∆1−∆0)

n

In the third chapter, we address the study of the Coleman’s Γ-function denoted ΓC and its

geometric meaning linked with the action of the Frobenius automorphism in the de Rham

cohomology of some Fermat curves. A similar interpretation exists also for the classical

p-adic Γ function of Morita as explained in [5]. First of all we prove the crucial (for our

applications) arithmetic properties of ΓC . Namely, for s = i
pn

+ m with 0 < i
pn

< 1 and

m ∈ N we check that

ΓC

(
i

pn
+m

)
=

∏m−1
k=0 expp logp

(
i
pn

+ k
)

expp logp

(
i
pn

)
expp logp

(
i
pn
− 1
) ,

in which logp is the Iwasawa logarithm, which says in particular that for s ∈ Qp \ Zp the

value ΓC(s) ≡ 1 mod pZp. Then we compare that to Gp which, a priori, is a quite different

function. We prove that there is a formula which expresses ΓC in terms of Gp and the p-adic

exponential:

ΓC(s) = expp(Gp(s)−Gp(s− [s]p)) s ∈ Qp \ Zp

This allows us to remark that ΓC is a locally analytic function and that it can be easily

linked to the Diamond’s measure and so to p-adic L functions, in fact the above formula say

to us that:

logp ΓC(s) = Gp(s)−Gp(s− [s]p)
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where Gp(s− [s]p) is a locally costant function and in particular:

(logp ΓC(s))′ = G′p(s)

but µ1,c is defined by G′p. This fact could open the possibility of a geometric interpretation

of these p-adic measures.

The last part of this thesis is dedicated to motivate a possible extension of Lp to Qp. We

first review Huber’s adic spaces and introduce Scholze’s perfectoid spaces. We recall from [2]

the definitions of the “formal perfectoid open unit discs” D(0) and D(1) (centered at 0 and

1, respectively), and a special choice of coordinates on them. We also review the notions of

uniform and bounded measures over Qp following [2]. Since the measure µ1,c is so versatile,

we propose the following extension to Qp of µ1,c:

µ̃1,c(a+ pNZp) =

p−vp(a) · µ1,c(u+ pN−vp(a)Zp) a+ pNZp ⊂ Qp \ pZp
0 a+ pNZp ⊂ pZp

(1)

with a ∈ Q×p and a = pvp(a)u, in particular µ̃1,cis a uniform measure.

The main point is that D(0) and D(1) are isomorphic and that their perfectoid algebra

is isomorphic to the ring Dunif(Qp,Zp) of Zp-valued uniform measures on Qp. Moreover,

Dunif(Qp,Zp) = the (p, T )-adic compl. of Zp[T 1/p∞ ] .

. This is Baldassarri’s extension of the Amice transform. The choice of coordinates on D(0)

and D(1) is as follows. We change the original choice of parameter T = ∆1 −∆0, where ∆a

is the Dirac mass at a ∈ Qp into

µcan := lim
n→+∞

Ep(∆p−n −∆0)
pn ∈ Dunif(Qp,Zp) ,

where Ep(x) ∈ 1+xZp[[x]] is the Artin-Hasse logarithm. Then a “coordinate” on D(0) (resp.

on D(1)) is the monoid morphism

(Z[1/p]>0,+)→ (Dunif(Qp,Zp), ·) , q 7−→ µqcan

(resp.

(Z[1/p]≥0,+)→ (Dunif(Qp,Zp), ·) , q 7−→ ∆q ) .

Then, for any perfectoid extension field K of Qp, the K-valued analytic points of D(0) (resp.

of D(1)) are monoid morphisms

χ : (Z[1/p]>0,+)→ (K◦◦, ·) , (µqcan)q 7−→ (χ(q))q
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(resp.

ψ : (Z[1/p]≥0,+)→ (1 +K◦◦, ·) , (∆q)q 7−→ (ψ(q))q .

which in fact extends to (Qp,+)→ (1 +K◦◦, ·)). We denote by DK(0) (resp. on DK(1)) this

set of K-valued analytic points.

Notice that the classical open analytic discs of radius rp := p−
1

p−1 are isomorphic through

the action of expp and logp:

D(0, rp)
expp−−→ D(1, rp) .

Let Fp(x) ∈ 1 + xZp[[x]] be the Artin-Hasse analytic function D(0, 1) → D(1, 1) and let

Ep(x) ∈ xZp[[x]] be its inverse. We denote by F p(x) ∈ 1 + xFp[[x]] the Artin-Hasse series

reduced modulo p. The perfectoid analog, following from Scholze’s theory and spelled-out

in [2], is the isomorphism D(0)
F ]
p−→ D(1) obtained from the untilting F ]

p of Fp. For every χ ∈
DK(0), the image F ]

p(χ) is then a continuous group homomorphism (Qp,+)→ (1 +K◦◦, ·).

9
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Chapter 1

Preliminaries

1.1 p-adic analytic tools

We fix a prime p > 2 and denote by Qp the field of p-adic numbers, Zp the ring of p-adic
integers with standard valuation vp such that vp(p) = 1, Qp will be an algebraic closure of
Qp and Cp its completion with absolute value denoted by | · |.
For this part we will follow [28],[27],[12] and [18].

Definition 1. Let x ∈ Cp the closed disc centered in x of radius r is defined as:

D(x, r) = {a ∈ Cp|x− a| ≤ r}

the open disc centered in x of radius r is defined as:

D(x, r−) = {a ∈ Cp|x− a| < r}

Proposition 1. A power series in Cp

f(x) =
∞∑
n=0

anx
n

converges in the open disc of radius ρ (i.e. in D(0, ρ)) given by:

ρ =
1

lim supn→∞ |an|1/n

and diverges for |x| > ρ.

Definition 2. A function

f : D(a, r)→ Cp

is called analytic if could be written as a power series converging in D(a, r).
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Definition 3. Let X ⊂ Cp, a function :

f : X → Cp

is called locally analytic if for every x ∈ X exists rx > 0 such that:

f|D(x,rx) : D(x, rx) ⊂ X → Cp

is analytic.

Definition 4. A p-adic Banach space is a Qp-vector space with a lattice B0 wich is a Zp-
lattice such that:

B0 = lim←−
n∈N

B0/pnB0

and it is endowed by a valuation vB satisfying:

1. vB(x+ y) ≥ min(vB(x), vB(y));

2. for λ ∈ Qp, vB(λx) = vp(λ) + vB(x)

s.t. B is complete under the norm induced by the valuation.

Definition 5. A Banach basis for a p-adic Banach space B is a family (ei)i such that:

1. For every x ∈ B we have x =
∑

i xiei and xi → 0 for i→∞ for xi ∈ Qp;

2. vB(x) = infi vp(xi)

An example of p-adic Banach space the set of continuous functions from Zp to Qp denoted
C(Zp,Qp) A well know result is:

Theorem 1. A Banach basis for C(Zp,Qp) is given by
(
x
n

)
i.e. if f ∈ C(Zp,Qp) then:

f =
∞∑
n=0

an(f)

(
x

n

)
this basis is called Mahler basis and the coefficients are given recoursively by:

f [0] = f f [k−1](x) = f [k](x+ 1)− f [x](x)

and setting an(f) = f [n](0) More explicitely:

f [x](x) =
n∑
i=1

(−1)i
(
n

i

)
f(x+ n− i)

an(f) =
n∑
i=1

(−1)i
(
n

i

)
f(n− i)
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Example 1. Another example is given by the space of analytic functions on the disc
D(x, r−), where the norm is induced by the valuation :

vD(x,r−)(φ) = inf
x∈D(x,r−)

(φ(x))

with the banach basis given by the functions:

χD(x,r−)
(a− x)k

pbkrc
k ∈ N

and χ the characteristic function.

Definition 6. Let K be a NA field then a topological vector space X over K is a Fréchet
space if:

• X is an Hausdorff space;

• exists a countable family of valuations {wi}i∈N which defines the topology of X i.e. a
base of neighborhoods of x ∈ X is given by:

{y ∈ X|wi(x− y) > N, N > 0}

• X is complete with respect to this topology.

Definition 7. (p-adic exponential) We define the p-adic exponential as the power series:

expp(x) =
∞∑
n=0

xn

n!

so the region of convergence of this power series is: D(0, p1/1−p
−

) and we observe that
p1/(1−p) < 1 so we don’t have an anologous of the real e.

Observation 1. In Qp we have that the disk of convergence of expp is pZp.

Definition 8. (p-adic logarithm) We define the p-adic logarithm as the power series:

logp(x) =
∞∑
n=1

(−1)n+1 (x− 1)n

n

We recall that this power series converges in the disc D (1, 1−).

Observation 2. In Qp we have that the disk of convergence of logp is 1 + pZp.

Observation 3. In the disc of convergence these two functions have the same proprierties
of their real analogous.

13



Proposition 2. The map logp : (1 + pZp, ·)→ (pZp,+) is an isomorphism with inverse the
p-adic exponential expp.

Unfortunately these two function can’t be extended to entire functions in all Cp, for us
it will be enough to give a definition of an extension of this logarithm which will be locally
analytic and the restriction it will coincide with the power series above.

Definition 9. (Iwasawa logarithm) Exists a unique continuos and locally analytic function
f : C×p → Cp such that:

1. f(xy) = f(x) + f(y)

2. f|D(1,1−) = logp

3. f(p) = 0

This logarithm is called ”Iwasawa logarithm” and it will be still denoted as logp.

Definition 10. (Artin-Hasse exponential) The Artin-Hasse exponential is defined as:

Fp(x) = expp

(
∞∑
n=0

xp
n

pn

)

It converges on the disc D(0, 1−)

Definition 11. Let π ∈ Cp such that πp−1 = p, we define the following function

Θ(x) = expp(π(x− xp))

which is the Dwork-exponential.

Definition 12. [28, p.77] Let f : X → Qp, X ⊂ Qp without isolated points, f is strictly
differentiable at a ∈ X iff the following limit exists for every (x, y), x 6= y:

lim
(x,y)→(a,a)

f(x)− f(y)

x− y

In [28, p. 167] is defined the integral of a (strictly differentiable function) as:∫
Zp

f(t)dt = lim
n→∞

p−n
pn−1∑
i=0

f(i)

So if the function is strictly differentiable it converges and it has the follwing proprierties:

Proposition 3. Let f strictly differentiable, s ∈ Zp then:

1.
∫
Zp
f(t+ x+ 1)dx =

∫
Zp
f(t+ x)dx+ f ′(x)

14



2. d
dt

∫
Zp
f(x+ t)dx =

∫
Zp
f ′(x+ t)dx

Proof. See [28]

Proposition 4. Let f strictly differentiable then:∫
i+pnZp

f(t)dt =

∫
pnZp

f(i+ t)dt = p−n
∫
Zp

f(i+ pnt)dt

Proof. Consider that by definition:∫
i+pnZp

f(t)dt =

∫
pnZp

f(i+ t)dt

Now again by definition:∫
pnZp

f(i+ t)dt = lim
s→∞

p−s(f(j) + · · ·+ f(j + (ps−n − 1)pn))

Set now h(x) = f(j + pnx) then the above limits could be written as:

lim
s→∞

p−s(h(0) + h(1) + · · ·+ h(ps−n − 1)) = p−n
∫
Zp

h(x)dx

1.2 Dwork’s approach on Gamma functions

First of all we give a brief review of the properties of the p-adic Gamma function from[17]
and [18]. We recall also the definition and basic proprierties of the classic Γ from [30]:

Definition 13. The Γ function is defined as:

Γ(s) =

∫ ∞
0

e−tts−1dt

The main properties are:

• The functional equation: Γ(s+ 1) = sΓ(s)

• In particular for n ∈ N: Γ(n+ 1) = n!

• The reflection formula:
Γ(s)Γ(1− s) =

π

sin(πs)

• The distribution formula:

n−1∏
i=1

Γ

(
s+ i

n

)
= n1−sΓ(s)

n−1∏
i=0

Γ

(
i

n

)
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We will see that there are a lot of analogous formulas in the p-adic case, so let’s introduce
the p-adic Gamma function following Dwork:

Definition 14. [17, p.2] The Morita’s Gamma function is defined by the functional equation:

ΓM(s+ 1) = −sΓM(s) |s| = 1

ΓM(s+ 1) = −ΓM(s) |s| < 1

and ΓM(0) = 1

Observation 4. For n ∈ N this function works like the factorial in fact:

ΓM(n) = (−1)n
∏

0<i<n,p-n

i

Definition 15. Let a ∈ U = Q∩Zp \Z consider Xa a symbol, L0,∞ the set of Laurent series
converging in some {r1 < |x| < r2} with r1 < 1 < r2 then :

Ω0
a = {Xaξ|ξ ∈ L0,∞}

We can define a derivation operator D setting:

D(Xaξ) = Xa

(
X

d

dX
+ a+ πX

)
ξ

and set Ωa = Ω0
a/DΩ0

a which is a vector space of dimension 1 with base the image of Xa.
The base depends only on a mod Z and the relation for the change of the basis is:

Xa+m ≡ Γ(a+m)

Γ(a)
(−π)−mXa

Consider the map α : Ωa → Ωb defined as αXaξ = Xbψ(ξXa−pbΘ) where

ψ(ξ) = p−1
∑
Xp=y

ξ(X)

then γp(a, b) is the unique number given by αXa ≡ γp(a, b)X
b mod DΩ0

a and is given ex-
plicitely by :

γp(a, b) = (−π)−i
∑
pi+t≥0

cpi+t
Γ(b+ i)

Γ(b)

where ci are the coefficient of the series expansion of Θ.

Theorem 2. [18, p.245] The function γ(a, b) satisfies for every integers m and n the fol-
lowing relation:

γp(a+m, b+ n) = γp(a, b)
Γ(a+m)

Γ(a)

Γ(b)

Γ(b+ n)
(−π)n−m

where π is such that πp−1 = −p
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Observation 5. We can define the Boyarsky’s Gamma function using γp by setting a = pb−t
with 0 < t = Rep(−a) < p− 1 (Rep(−a) ∈ {0, . . . , p− 1} and |a+Rep(−a)| < 1)

ΓB(a) = γp(a, b)π
−Rep(−a)

in fact if t 6= 0:

ΓB(a+ 1) = γp(pb− t+ 1, b)π−Rep(−a)−1 = −γp(a, b)
Γ(pb− t+ 1)

Γ(pb− t)
π−Rep(−a) = −aΓB(a)

otherwise we can write a = pb then a+ 1 = pb+ 1− p+ p = p(b+ 1)− (p− 1) then

ΓB(a+ 1) = −γp(a, b)π−Rep(−a)
py

y
= −ΓB(a)

so this function satisfies the functional equation of he Morita’s gamma function.

From now on we will denote the Morita Gamma function as Γp

1.3 The function Ψ

We introduce now a new special function after Γp, we follow [2].

Definition 16. The function Ψ is defined by the following functional equation:

∞∑
j=0

p−jΨ(pjT )p
j

= T

We have that Ψ(T ) ∈ T + T 2Z[[T ]] i.e.

Ψ(T ) = T +
∞∑
j=2

ajT
j

We list now some proprierties of this functions discussed in [2]:

Proposition 5. The function Ψ is entire i.e.

lim sup
n→∞

|ai|1/i = 0

Proposition 6. The function Ψ has the property that for x ∈ Qp then Ψ(x) ∈ Zp, and in
particular if:

x =
+∞∑

i>>−∞

xip
i

then Ψ(pix) ≡ x−i mod pZp i.e.

x =
+∞∑

i>>−∞

[Ψ(pix)]pi

where [.] is the Teichmuller character.
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Observation 6. Using these remarkable properties of Ψ we can define now a new function
Ψi, consider x ∈ Qp we define the following:

Ψi(x) =
Ψ(pix)

expp logp Ψ(pix)

where logp is the Iwasawa logarithm.
If x ∈ Qp and x−i is a non-zero −i-th p-adic component then:

x−i =
Ψ(pix)

expp logp Ψ(pix)
= Ψi(x)

Proof. Consider Ψ(pix), since we have the property that

Ψ(pix) ≡ x−i

then |Ψ(pix)| = 1. Now Ψ(pix) ∈ Z×p then by the fact that Z×p ∼= µp−1 × (1 + pZp),
Ψ(pix) = ζu where ζ = [Ψ(pix)] and u it will be denoted 〈Ψ(pix)〉. Now the logarithm
kills roots of 1 i.e. logp Ψ(pix) = logp〈Ψ(pix)〉 and since 〈Ψ(pix)〉 ∈ 1 + pZp we have
〈Ψ(pix)〉 = expp logp〈Ψ(pix)〉 = expp logp Ψ(pix). So, by Ψ(pix) = [Ψ(pix)]〈Ψ(pix)〉

x−i = [Ψ(pix)] =
Ψ(pix)

〈Ψ(pix)〉
=

Ψ(pix)

expp logp〈Ψ(pix)〉
=

Ψ(pix)

expp logp Ψ(pix)

In general it does not work for zero p-adic components, in fact, if x−i = 0 we have that

Ψ(pix) = pnα α ∈ Zp

and so

Ψi(x) =
pnα

α/ω(α)
= pnω(α)

which is 0 is and only is Ψ(p−ix) = 0. So in general using Ψ we know that xi = limn→∞Ψ(p−ix)p
n

and we obtain the i-th p-adic component, but this is not an analytic process. If xi 6= 0 using
this trick we can revover it in an ’analytical way’.
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Chapter 2

p-adic measures on Zp

2.1 p-adic distributions and measures

Definition 17. We define the Bernoulli polynomials Bk(x) by the following generaing func-
tion [23, p.35 ]):

tetx

et − 1
=
∞∑
k=0

Bk(x)

k!
tk

and we call Bk(0) (denoted by Bk) k-th Bernoulli number.

By this definition we can immediately deduce some useful properties like B
′

k(x) =
kBk−1(x) (where ′ means differeniation), Bk(x + 1) = Bk(x) + kxk−1 and the distribution
formula for N > 0:

N−1∑
j=0

Bk

(
x+ j

N

)
=
Bk(x)

Nk−1

Proof.
N−1∑
i=0

te(x+a)t

eNt − 1
=

1

N

N−1∑
i=0

Nte
(x+a)

N
Nt

eNt − 1

Using now the series expansion of the exponential and the definition of Bernoulli polynomial

1

N

N−1∑
i=0

∞∑
k=0

Bk

(
x+ i

N

)
(Nt)k

k!
=
∞∑
k=0

N−1∑
i=0

Nk−1Bk

(
x+ i

N

)
tk

k!

On the other hand
∑N−1

i=0 eit =
1− eNt

1− et
and so:

N−1∑
i=0

te(x+a)t

eNt − 1
=

tetx

et − 1
=
∞∑
k=0

Bk(x)
tk

k!
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Definition 18. We can define more generally the χ-Bernoulli Polinomials and [23, p. 37])
as:

tetx
∑m

r=0 χ(r)ert

emt − 1
=
∞∑
k=0

Bk,χ(x)

k!
tk

(with χ a Dirichlet character mod m).

Proposition 7. There is an integral formula for Bk which is:

Bk =

∫
Zp

xkdx

Proof. Let a ∈ pZp then :∫
Zp

expp(ax)dx =
a

expp(a)− 1
=
∞∑
k=0

Bk

k!
ak

(see [28] pag.171) on the other hand∫
Zp

expp(ax)dx =
∞∑
n=0

(∫
Zp

xndx

)
an

n!

So comparing the terms of the 2 series above:∫
Zp

xkdx = Bk

which is the result.

Definition 19. (we follow now[23] , [22]) Consider Zp ⊂ Qp then a distribution on Zp is a
map ν from the set {x+ pNZp|x ∈ Zp, N ≥ 0} to Qp such that, for every x+ pNZp ⊂ Zp

ν(x+ pNZp) =

p−1∑
i=0

ν(x+ ipN + pN+1Zp)

If the distribution is bounded then is called measure.

Observation 7. We can define the set of distributions as a continuous linear map to the
set of locally costant functions from Zp to Qp and given a distribution ν then we define∫
Zp
fdν = ν(f) where f is locally costant. We recover the old definition setting:

ν(x+ pNZp) =

∫
Zp

χx+pNZp
dν

with χx+pNZp
the characteristic function. We recall also that locally costant functions are

countinuous because Zp is totally disconnected then clearly if f is locally costant is costant
in different connected components which does not intersect. So we have clearly a continuous
function.
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Lemma 1. The set of locally costant functions is dense in the set of continuous functions
C(Zp,Qp).

Proof. Let f continuos functions, define the sequence of functions gn(x) = f(i) such that
0 ≤ i ≤ pn−1 and i ≡ x mod pnZp. By the continuity of f we have that gn ⇒ f . To see this
we observe that x = i+ pna then |f(x)− gn(x)| = |f(i+ pna)− f(i)| → 0 for n→∞.

Definition 20. Let f be a locally costant function (assume costant in discs of radius p−n)
then we define the integral of f against a distribution ν (thought as a locally costant map
on the balls) as: ∫

Zp

fdν =

pn−1∑
i=0

f(i)ν(i+ pnZp)

We can think a measure as a map from the set of continuous functionals to Qp, in fact
we have an isomorphism:

Meas(Zp,Qp) ∼= (C(Zp,Qp))
′
strong

where C(Zp,Qp) is the set of continuous functions from Zp to Qp and Meas(Zp,Qp) is the
set of measures on Zp with values in Qp. So, given a measure ν, we can define the integral
of a continuous function as:∫

Zp

f(x)dν(x) = lim
N→∞

pN−1∑
i=0

f(i)ν(i+ pNZp)

(i.e. extending by continuity the definition above, this definition does not depend on the
choice of the sequence converging to f) now we can see the duality stated before, in fact
given an addittive map µ on balls in Zp we get the continuous functional:

µ 7→

(
f 7→

∫
Zp

fdµ

)

Conversely given a continuous functional φ we define the measure µφ :

µφ(x+ pnZp) = φ(χx+pnZp)

where χ is the characteristic function.

Observation 8. In general for distributions is not well defined the Integral defined using
”Riemann sums” like measures.

Definition 21. Consider ν a measure and f a continuous function we define the measure
fν as: ∫

Zp

h(x)d(fν)(x) =

∫
Zp

(fh)(x)dν(x)
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Definition 22. (Convolution product)
Given two measures µ and ν we define the convolution product µ ∗ ν in the following way:∫

Zp

f d(µ ∗ ν) =

∫
Zp

(∫
Zp

f(x+ y) dµ(x)

)
dν(y)

Definition 23. (Amice transform) For a measure ν we define the Amice transform as the
power series:

Aν(T ) =

∫
Zp

(1 + T )xdν(x) =
∞∑
n=0

(∫
Zp

(
x

n

)
dν(x)

)
T n

Theorem 3. The map µ→ Aµ defines an isomorphism :

(C(Zp,Qp))
′
strong → Zp[[T ]]

from the space of measures and power series with coefficients in Zp.

Observation 9. This theorem tells us an important fact: the topological isomorphism stated
in the theorem is given by

T 7→ ∆1 −∆0

Where ∆a is the dirac measure i.e. the measure which acts on the functions in the following
way: ∫

Zp

f d∆a = ∆a(f) = f(a)

for a fixed a ∈ Zp. So as remarked in [10] the Amice transform of a measure µ gives a way
to write this measure with respect to the basis {T n}n∈N (which is in fact the dual basis of
the Mahler basis) i.e.

µ =
∞∑
n=0

(∫
Zp

(
x

n

)
dµ(x)

)
T n =

∞∑
n=0

(∫
Zp

(
x

n

)
dµ(x)

)
(∆1 −∆0)

n

in fact if f is continuous by Mahler’s theorem :

f =
∞∑
n=0

an(f)

(
x

n

)
then :

∞∑
n=0

(∫
Zp

(
x

n

)
dµ(x)

)
T n(f) =

∞∑
n=0

(∫
Zp

(
x

n

)
dµ(x)

)
(∆1 −∆0)

n (f) =

∞∑
n=0

(∫
Zp

(
x

n

)
dµ(x)

)
an(f) =

∫
Zp

(
∞∑
n=0

an(f)

(
x

n

))
dµ(x) =

∫
Zp

fdµ(x) = µ(f)

so these measures coincides.
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Example 2. We can define the Haar ”measures” as :

µhaar(x+ pNZp) =
1

pN

We stress that in our context the Haar measure is not bounded and so it is not properly
a measure but a distribution. We remark also that in this case the definition of the integral
of a function against a distribution using Riemann sums make sense, in fact, in general we
have this definition:

∫
Zp

f(x)dµ(x) = lim
n→∞

pn−1∑
i=0

f(i)µ(i+ pnZp)

but in this case we clearly have:

lim
n→∞

pn−1∑
i=0

f(i)µhaar(i+ pnZp) = lim
n→∞

p−n
pn−1∑
i=0

f(i)

so we get: ∫
Zp

f(x)dx =

∫
Zp

f(x)dµhaar(x)

which make sense for every strictly differentiable functions.

2.2 Bernoulli Measures and p-adic L functions

Definition 24. (Bernoulli Distributions) see [23, p.36] and [22, p. 34] Using Bernoulli
polynomials we can define a distribution on Zp as:

νk(x+ pNZp) = pN(k−1)Bk

(
x

pN

)
where 0 ≤ x ≤ pN − 1 thank to the distribution formula this is a well defined distribution
on the p-adic integers:

νk(x+ pNZp) = pN(k−1)

(
pk−1

p−1∑
j=0

Bk

(
x+ pNj

pN+1

))
=

p−1∑
j=0

νk(x+ jpN + pN+1Zp)

since: 0 ≤ x+ pNj ≤ x+ pN+1− pN ≤ pN − 1 + pN+1− pN = pN+1− 1 In general this is not

a measure since Bk

(
x
pN

)
∼
(

x
pN

)k
which is not bounded.

23



Observation 10. We can easily build a measure with a standard technique: fix c rational
integer prime to p then

νk,c = νk(x+ pNZp)− c−kνk(cx+ pNZp)

these are called Bernoulli-Measures. We can observe also this interesting relation (since the
function 1 is constant): ∫

Zp

dνk = νk(Zp) = p0Bk(0) = Bk

(all the relations with Bernoulli polynomials can be translated with similar properties in-
volving χ-Bernoulli polynomials for example the expression above becames:Bk,χ =

∫
χdνk).

Proposition 8. ([22, p.37 Th. 5] and [23, p.39 Thm 2.1])
Take Dk the least common denominator of Bk(x) and dk = vp(Dk).

• ν1,c takes values in Zp

• Dkνk,c(x+ pNZp) ≡ kDkx
k−1ν1,c(x+ pNZp) mod pN

• νk,c takes values in Zp

Proof. For the first assertion, first of all, we observe that B1(x) = x− 1
2

then let’s compute
explicitely ν1,c(a+ pNZp) (we denote by [cx] the reduction mod pN of cx):

ν1,c(x+ pNZp) =
x

pN
− 1

2
− 1

c

(
[cx]

pN
− 1

2

)
=

1/c− 1

2
+

x

pN
− 1

c

(
cx

pN
−
[
cx

pN

])
=

and so

µ1,c(x+ pNZp) =
1

c

[
cx

pN

]
+

1/c− 1

2

For the second statement we have to make a similar calculation. We observe that since the
congruence mod pN and the presence pN(k−1) we can only consider the first two terms of
DkBK(x) which are Dkx

k + k
2
Dkx

k−1 and so:

Dkνk,c(x+ pNZp) ≡ Dkp
N(k−1)

[(
x

pN

)k
−
(

1

2

)k
−
(
c[c−1x]pN

pN

)k
+ c

k

2

(
c[c−1x]

pN

)k−1]

using now the same argument as above we find Dkνk,c(x + pNZp) ≡ Dkx
k−1ν1,c(x + pNZp)

mod pN . For the last part, if N − dk > 0 then it is clear for the firsts two points. Otherwise
by the distribution law we have:

νk,c(x+ pNZp) =
∑

i≡xmodpN
νk,c(i+ pMZp)

with M − dk > 0.
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Observation 11. νk,c = kxk−1ν1,c in fact by the definition of integral e by the proposition
above:∫
Zp

f(x)dνk,c(x) = lim
N→∞

pN−1∑
i=0

f(i)νk,c(i+ pNZp) = lim
N→∞

pN−1∑
i=0

f(i)kik−1ν1,c(i+ pNZp) + p2N−dk

but the last term on the right goes to zero, this proves the equality
∫
Zp
f(x)dνk,c(x) =

k
∫
Zp
f(x)xk−1dν1,c(x).

These measures are important for p-adic L-functions, in fact we can introduce the Mellin
transorm ([23, p.105]):

Definition 25. (Mellin transform) Take µ a measure on Zp then the Mellin transform of µ
is:

M (µ)(s) =

∫
Z×p
〈a〉sa−1dµ(a)

Considering now s a variable in Zp we can define the p-adic L-function as:

Definition 26. (Mazur, Kubota-Leopoldt) Taking χ a Dirichlet character mod pN , and
c ∈ Z×p s.t. χ(c)〈c〉 6= 1 we define (see [23, p.107]):

Lp(1− s, χ) =
−1

1− χ(c)〈c〉s
M (χν1,c)(s)

Lemma 2. Take k > 0, using the above assumptions we get:

Bk,χ

k
=

1

1− χ(c)c−k

∫
Zp

xk−1χ(x)dν1,c

Proof. By the integral formula for Bernoulli numbers seen before:

Bk,χ

k
=

∫
Zp

χdνk,c +

∫
Zp

χckdνk(c
−1x)

Then from the relation νk,c = kxk−1ν1,c and sending x 7→ cx we find:

Bk,χ = k

∫
Zp

xk−1χdν1,c + χ(c)c−kBk,χ

and so the result.

Theorem 4. For every k > 0 we have:

Lp(1− k, χ) = −
Bk,χω−k

k
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Proof. Using the lemma above with a direct calculation:∫
Zp

〈x〉k−1χ(x)ω(x)−1dν1,c =

∫
Zp

xk−1χ(x)ω(x)1−kω(x)−1dν1,c =
1

k
(1− χω−k(c)ck)Bk,χω−k

Theorem 5. (Mahler expansion of Lp) The Kubota-leopoldt p-adic L function satisfies the
following formula:

Lp(−s, χ) =
1− p

1− χ(c)〈c〉s+1

∞∑
n=0

pn
Bn+1,χ

n+ 1

(
s

n

)
Proof. Recall that the p-adic Mellin trasform is defined as:

M (µ)(s) =

∫
Z×p
〈x〉sx−1 dµ(x)

With a change of variables we get:

M (µ)(s) = (p− 1)

∫
1+pZp

xs−1 dµ(x)

Now the last change is : x→ 1 + px, so we get an integral on Zp:

M (µ)(s) = (p− 1)

∫
Zp

(1 + px)s−1 dµ(x)

Now we want to make all the calculations i.e.:

(1 + px)s−1 =
∞∑
n=0

(
s− 1

n

)
(px)n

and so:

M (µ)(s+ 1) =
∞∑
n=0

(
pn
∫
Zp

xn dµ

)(
s

n

)
So this is a continuous function defined by the above Mahler series. Recall that if f ∈
C(Zp,Zp) then:

f(x) =
∞∑
n=0

an(f)

(
x

n

)
where:

an(f) =

∫
Zp

f(x) d(∆1 − 1)n

So we get (let T = ∆1 − 1) :∫
Zp

M (µ)(s+ 1) dT n = an(M (µ)(s+ 1)) = (p− 1)pn
∫
Zp

xn dµ(x)
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By definition the Kubota-Leopoldt p-adic L function is defined as:

Lp(−s, χ) =
−1

1− χ(c)〈c〉s+1
M (χν1,c)(s+ 1)

with χ a Dirichlet character and ν1,c the Bernoulli measure. Eventually:

an(M (χν1,c)(s+ 1)) = (p− 1)pn
∫
Zp

xnχ(x) dν1,c(x) = (p− 1)pn
Bn+1,χ

n+ 1

2.3 Diamond’s LogGamma function

Definition 27. ( We follow in particular [13] but also[28, p.182]) The Diamond’s LogGamma
function is defined in Cp \ Zp by:

Gp(x) = lim
k→∞

1

pk

pk−1∑
n=0

(x+ n) log(x+ n)− (x+ n)

We can see this definition using an inegral form on Zp:

Gp(x) =

∫
Zp

(x+ t)(logp(x+ t)− 1)dt

Observation 12. We observe that in this case we have an action of the Haar distribution on
the function f(x) = x logp(x)− x, similar to the action of measures to continuous functions
defined in [10] by ’convolution’

(µf)(x) =

∫
Zp

f(x+ t)dµ(t)

The same argument could be done for Bernoulli polynomials :

Bk(x) =

∫
Zp

(x+ t)kdµhaar(t)

see [28].

Theorem 6. This function Gp is locally analytic in Cp \ Zp and for every x ∈ Cp the disc
of holomorphicity is the largest disc such that it does not intersect Zp.

Proof. Let f(x, t) = (x+ t) logp(x+ t)− (x+ t) fix a ∈ Cp and ρ = d(a,Zp) take x ∈ Cp s.t.
|x| < ρ then Gp(a+ x) =

∫
Zp
f(x+ a, t)dt. Now :

f(a+ x, t) = (a+ x+ t)

(
logp

(
1 +

x

a+ t

)
+ logp(a+ t)

)
− (a+ t+ x) =
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(a+ x+ t)

(
∞∑
n=1

(−1)n+1

n

xn

(a+ t)n

)
+ (a+ t+ x)(logp(a+ t)− 1)

Now making calculations and taking the integral we obtain:

Gp(a+ x) = Gp(a) + x

∫
Zp

logp(x+ t)dt+
∞∑
n=1

(−1)n+1

n(n+ 1)

(∫
Zp

(x+ t)−ndt

)
xn+1

Proposition 9. The function Gp satisfies the functional equation [28, p.182, Thm 60]:

Gp(x+ 1)−Gp(x) = logp(x)

Proof. let f(x, t) = (x+ t) logp(x+ t)− (x+ t) then f(x+1, t)−f(x, t) = f(x, t+1)−f(x, t)

then by the properties of the Volkenborn integral Gp(x+1)−Gp(x) =
∂

∂t
f(x, 0) = logp(x)

For us one of the most important proprierties is:

Theorem 7. We have a distribution law:

Gp(x) =

pr−1∑
a=0

Gp

(
x+ a

pr

)
Proof. Let f(x, t) = (x + n) logp(x + n) − (x + n), using the additivity of the integral we
have: ∫

Zp

f(x, t)dµhaar(t) =

pN−1∑
i=0

∫
i+pNZp

f(x, t)dµhaar(t)

now using the properties of Haar measures:∫
i+pNZp

f(x, t)dµhaar(t) =
1

pN

∫
Zp

f(x, i+ pN t)dµhaar(t)

using the definition of f(x, t):∫
Zp

f(x, i+ pN t)dµhaar(t) = pN
∫
Zp

f

(
x+ i

pN
, t

)
dµhaar(t)

and so:

Gp(x) =

pr−1∑
a=0

Gp

(
x+ a

pr

)
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Observation 13. In the paper of Diamond and in [28, p.175] is proved a stronger version
of this distribution law:

Gp(x) =

(
x− 1

2

)
logp(m) +

m−1∑
a=0

Gp

(
x+ a

m

)
But for our purpose is enought the case in which m = pr.

Theorem 8. Gp satisfies the following ”Stirling Formula” for |x| > 1:

Gp(x) =

(
x− 1

2

)
log(x)− x+

∞∑
r=1

Br+1

r(r + 1)xr

Proof. Recall hat by definition Gp(x) =
∫
Zp
f(x, t)dµhaar(t) and

∫
Zp

(x+ t)kdµhaar(t) = Bk(x)
so:

Gp(x) =

∫
Zp

(x+ t)(logp(x+ t)− 1)dµhaar(t) =

∫
Zp

(x+ t)(logp(x(1 + t/x))dµhaar(t)−B1(x)

Using then the series expansion of logarithm (since |t/x| < 1)∫
Zp

(x+ t)(logp(x(1 + t/x))dµhaar(t) = logp xB1(x) +

∫
Zp

(x+ t)
∞∑
n=1

(−1)n−1

n

tn

xn
dµhaar(t)

then, in the last integral, separating the sum and interchanging the integral sign with the
series sign we obtain the following two series:

∞∑
n=1

(−1)n+1

nxn+1

∫
Zp

tndµhaar(t) +
∞∑
n=1

(−1)n+1

nxn

∫
Zp

tn+1dµhaar(t)

Now changing the index in the first series n → n + 1 we obtain that the term for n = 0 is
B1 and so:

1

2
+
∞∑
n=1

(−1)n+2

(n+ 1)xn

∫
Zp

tn+1dµhaar(t) +
∞∑
n=1

(−1)n+1

nxn

∫
Zp

tn+1dµhaar(t)

Then comparing term by term the two series and adding this to the first part of the calcu-
lation we obtain the result:

Gp(x) = logp(x)B1(x)− x+
∞∑
r=1

Br+1

r(r + 1)xr

Proposition 10. The function Gp has the following reflection formula:

Gp(x) +Gp(1− x) = 0
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Proof. By the Stirling formula proved above we have Gp(x) − Gp(−x) = logp(x), then for
|x| > 1 we have also the functional equation Gp(x + 1) = Gp(x) + logp(x) and so changing
x→ −x in the last formula we have:

Gp(1− x) = Gp(−x) + logp(x) = −Gp(x)− logp(x) + logp(x) = −Gp(x)

For |x| ≤ 1 we have :

Gp(x) +Gp(1− x) =

pr−1∑
a=0

(
Gp

(
x+ a

pr

)
+Gp

(
1− x+ a

pr

))
=

pr−1∑
a=0

(
Gp

(
x+ a

pr

)
+Gp

(
1− x+ a

pr

))
=

pr−1∑
a=0

(
Gp

(
x+ a

pr

)
−Gp

(
1− 1− x+ a

pr

))
then :

Gp(x) +Gp(1− x) =

pr−1∑
a=0

(
Gp

(
x+ a

pr

)
−Gp

(
pr + 1− x+ a

pr

))
= 0

Theorem 9. We have a relation with Morita’s Gamma functions and the Gp, let x ∈ Zp
then:

logp Γp(x) =

p−1∑
j=0,|x+j|=1

Gp

(
x+ j

p

)

2.4 Gamma measures and special values of p-adic L

functions

Thank to the distribution property we can define a distribution and then a measure using
Gp (see [14]) and its derivatives in fact we have:

G(k)
p (x) = p−k

p−1∑
j=0

G(k)
p

(
x+ j

p

)
where the (k) at he exponent means k-th derivative.

Definition 28. We define the p-adic k − th Gamma distribution as:

µG,k(a+ pNZp) = p−kNG(k)
p

(
a

pN

)
where a ∈ Z s.t. 0 < a < pN and (a, p) = 1
Diamond’s in his paper defines measures in a similar way in which are defined Bernoulli
measures:
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Definition 29. Fix c ∈ Z with (c, p) = 1 in such a way to obtain a p-adic unit then:

• µ0,c(X) := µG,0(X)− c−1µG,0(cX) +
logp(c)

c
ν1,c(cX)

• µ1,c(X) := µG,1(X)− µG,1(cX) + logp(c)µhaar(cX)

• For k > 1 µk,c(X) :=
(−1)k

(k − 2)!
(µG,k(X)− c−kµG,k(cX))

Theorem 10. In the same hypothesis as above we have the following equalities of measures
in Z×p :

1. µ0,c(x) = logp(x)ν1,c(x)

2. µ1,c(x) = 1
x
ν1,c(x)

3. k > 1 µk,c(x) = (1− k)x−kν1,c(x)

Proof. By definition we have the following:

µ1,c(x+ pmZp) = p−mG′p

(
[cx]

pm

)
− p−mG′p

(
x

pm

)
+ p−m logp(x)

Now we use the ”Stirling formula” proved above to obtain (all he congruences are meant
mod pm):

µ1,c(x+ pmZp) ≡ p−m
(

logp

(
cx

[cx]

)
− pm

2x
+

pm

2[cx]

)
≡

p−mlogp

(
1 +

pm(cx/pm − [cx/pm])

[cx]
+

1

2

1

x

(
1

c

)
− 1

)
≡ 1

c

(
1

c

[
cx

pn

]
+

1/c− 1

2

)
finally:

µ1,c(x+ pmZp) ≡
1

x
ν1,c(x+ pmZp)

Then by the definition of integral (using Riemann sums) we have the equality of the integrals∫
X⊂Z×p

f(x)dµ1,c =

∫
X⊂Z×p

f(x)x−1dν1,c

The other cases are similar.

Application 1. Recall the definition of p-adic L function given in the section before:

Lp(1− s, χ) =
−1

1− χ(c)〈c〉s

∫
Z×p
〈x〉sχ(x)x−1dν1,c(x)

we can trivially reformulate these definition in terms of Diamond’s Gamma measures:

Lp(1− s, χ) =
−1

1− χ(c)〈c〉s

∫
Z×p
〈x〉sχ(x)dµ1,c(x)

This type of integral is called in [23] Gamma transform, so the p-adic L function can be seen
as the Gamma transform of the measure χµ1,c
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Application 2. We can compute L(0, ω) in fact:∫
Z×p

logp(x)dν1,c =
logp(c)

c

∫
Z×p
dν1,c = 0

and so

Lp(0, ω) =
c

(c− 1) logp(c)

∫
Z×p

logp(x)dν1,c = 0

Proof. For the Diamond’s distribution we have:∫
Z×p
dµG,0 =

p−1∑
i=1

∫
i+pZp

dµG,0 =

p−1∑
i=1

Gp

(
i

p

)
By theorem 9 we get:

p−1∑
i=1

Gp

(
i

p

)
=

p−1∑
i=1

Gp

(
0 + i

p

)
= logp Γp(0) = 0

by the relation above we have: ∫
Z×p
dµG,0 = 0

Now by definition:∫
Z×p
dµ0,c(x) =

∫
Z×p
dµG,0(x)− c−1

∫
Z×p
dµG,0(cx) +

logp(c)

c

∫
Z×p
dν1,c(cx)

with the change x→ c−1x (which is an isomorphism of Z×p )in the second and third integral
in the right hand side we obtain:∫

Z×p
dµ0,c(x) = (1− c−1)

∫
Z×p
dµG,0(x) +

logp(c)

c
ν1,c(Z×p )

eventually ∫
Z×p

logp(x) dν1,c =
logp c

c
ν1,c(Z×p ) = 0

because:

ν1,c(x+ pNZp) =
1

c

[
cx

pN

]
+

1/c− 1

2

Then:
ν1,c(Z×p ) = ν1,c(Zp)− ν1,c(pZp) = ν1,c(0 + p0Z×p )− ν1,c(0 + pZp) = 0

The link with p-adic L-functions is given now by:∫
Z×p
dν1,c =

∫
Z×p
xx−1dν1,c =

∫
Z×p
〈x〉ω(x)x−1dν1,c = (〈c〉ω(c)− 1)Lp(0, ω)
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Lp(0, ω) =
c

(c− 1) logp(c)

∫
Z×p

logp(x)dν1,c

Application 3. We can compute
∫
Z×p
x−1dν1,c(x) in fact:∫

Z×p
dµ1,c(x) =

∫
Z×p
dµG,1(x)−

∫
Z×p
dµG,1(cx) + logp(c)µhaar(Z×p )

as usual x→ c−1x gives to us∫
Z×p
x−1dν1,c(x) = logp(c)

(
1− 1

p

)
Application 4. (Values of L-functions at positive integers and p-adic logGamma functions)
Consider Lp(1 + k, ω−k) , where as usual ω is the Teichmuller character and k ≥ 1 we can
give an interesting link from Gp and these special values of p-adic L functions. Consider :

Lp(1− (−k), ω−k) =
−1

1− ω−k(c)〈c〉−k

∫
Z×p
〈x〉−kω−k(x)x−1dν1,c

Now we have: ∫
Z×p
〈x〉−kω−k(x)x−1dν1,c =

∫
Z×p
x−kx−1dν1,c =

∫
Z×p
x−(k+1)dν1,c

By the equalities of measures given by Diamond:∫
Z×p
x−(k+1)dν1,c = −1

k

∫
Z×p
dµk+1,c =

(−1)k(1− c−(k+1))

k!
p−(k+1)

p−1∑
i=1

G(k+1)
p

(
i

p

)
Again by theorem 9 we get:

(logp Γp)
(k)(x) = p−k

p−1∑
j=0,|x+j|=1

G(k)
p

(
x+ j

p

)

Then:

Lp(1 + k, ω−k) =
(−1)k(1− c−(k+1))

(c−k − 1)k!
(logp Γp)

(k+1)(0)

Theorem 11. The expansion in base ∆1 −∆0 of µD is given by:

µD = logp(c)

(
1− 1

p

)
+
∞∑
n=2

(
logp(c)

(
1− 1

p

)
+

n∑
k=2

s(n, k)

n!

Bk,ωk(1− ck)
k

)
(∆1 −∆0)

n
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Proof. To compute the Amice transform of a measure it’s necessary to compute the integrals:∫
Zp

(
x

n

)
dµ

for every n ∈ N, in particular using the fact that:(
x

n

)
=

n∑
k=0

s(n, k)

n!
xk

where s(n, k) are the Stirling numbers, it is enough to know the integral only over the
monomials xk, so let’s compute it (we think µD as extended by 0 in pZp). The degree zero
of the series is given by the integral:∫

Z×p
dµ1,c(x) =

∫
Z×p
x−1dν1,c(x) = logp(c)

(
1− 1

p

)
The higher degrees are: ∫

Z×p
xkdµ1,c =

∫
Z×p
xk−1dν1,c =

Bk,ωk

k
(1− ck)

for k ≥ 2, which gives:

µ1,c = logp(c)

(
1− 1

p

)
+
∞∑
n=2

(
logp(c)

(
1− 1

p

)
+

n∑
k=2

s(n, k)

n!

Bk,ωk(1− ck)
k

)
(∆1 −∆0)

n

In practice this is the Amice transorm of the measure µD which is given in fact setting
T = ∆1 −∆0 i.e.

Aµ1,c(T ) = logp(c)

(
1− 1

p

)
+
∞∑
n=2

(
logp(c)

(
1− 1

p

)
+

n∑
k=2

s(n, k)

n!

Bk,ωk(1− ck)
k

)
T n

We observe that there is no term of degree one because:∫
Z×p

(
x

1

)
dµ1,c =

∫
Z×p
x dµ1,c =

∫
Z×p
dν1,c = 0
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Chapter 3

Coleman’s Gamma function

3.1 Relations between Gp and ΓC

Definition 30. We follow the notations of Coleman introduced in [11], the Coleman’s Γ
function is defined by the following functional equation for s ∈ Qp:

ΓC(s+ 1) = s∗ΓC(s) s ∈ Qp − Zp

ΓC(s+ 1) = −{s}ΓC(s) s ∈ Zp
with the normalization ΓC(s) = 1 if s ∈ Z[1/p] and 0 ≤ s < 1.

We recall that s∗ = p−v(s)ζ−1s s. In this case by ζs we mean the unique root of 1 (with
order prime with p) in Qp such that |ζs − sp−v(s)| < 1. So for s ∈ Z×p we define {s} = 1 for
s ∈ Z×p and {s} = s for s ∈ pZp. This implies that in Zp, ΓC coincides with the classical
Morita’s Γ function.
In general the properties of the Morita’s Γ function are well known so we will focus our study
of ΓC outside Zp in particular our purpose is to understand some crucial (for us) arithmetic
properties, if this is an analytic function and if there are relations with p-adic L functions.
Our approach will be to study the properties of ΓC and to compare them with the ones of
Gp, the advantage is that Diamond gives to us precise analytic properties for its function
and it will hallow us to deduce a lot of informations for ΓC .

Proposition 11. Let s ∈ Qp \ Zp such that s = i
pn

+m with 0 < i
pn
< 1and m ∈ N, then

ΓC

(
i

pn
+m

)
=

∏m−1
k=0 expp logp

(
i
pn

+ k
)

expp logp

(
i
pn

)
expp logp

(
i
pn
− 1
)

and extends by continuity to all Qp \ Zp, in particular ΓC(s) ∈ 1 + pZp for s ∈ Qp \ Zp.

Proof. By the definition of Coleman, we recall again that :

s∗ =
s

pvp(s)ζs
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where ζs is the unique root of 1 of order prime to p such that |ζs − sp−v(s)| < 1, it’s easy
now to determine it in fact, if we denote [·] the Teichmuller character, the (p − 1)-root of
1 [p−vp(s)s] satisfies clearly the property |[p−vp(s)s]− p−vp(s)s| < 1. In particular this implies
that:

s∗ =
p−vp(s)s

[p−vp(s)s]
∈ 1 + pZp

The function s∗ for s 6= 0 could be expressed in a more ’analytic way’ in fact we claim that:

s∗ = expp logp(s)

with logp the Iwasawa logarithm. This beacuse if s ∈ Q×p then s = pvp(s)u with u ∈ Z×p
because |u| = 1. Then u = [u]〈u〉 so evaluating that we get:

expp logp(s) = expp logp(p
vp(s)[u]〈u〉) = expp logp(〈u〉)

we observe that in fact 〈u〉 = s∗ ∈ 1 + pZp but we already mentioned the isomorphism:

logp : (1 + pZp, ·)→ (pZp,+)

and so:
expp logp(s) = expp logp(〈u〉) = 〈u〉 = s∗

Considering numbers on the form i
pn

+ m with 0 < i
pn
< 1 and m ∈ N, which are dense in

Qp \ Zp, ΓC could be written as the extension by continuity of:

ΓC

(
i

pn
+m

)
=

∏m−1
k=0 expp logp

(
i
pn

+ k
)

expp logp

(
i
pn

)
expp logp

(
i
pn
− 1
)

and in particular

ΓC

(
i

pn
+m

)
∈ 1 + pZp

It’s easy to check that it satisfies the functional equation:

ΓC

(
i

pn
+m+ 1

)
=

∏m
k=0 expp logp

(
i
pn

+ k
)

expp logp

(
i
pn

)
expp logp

(
i
pn
− 1
) =

= expp logp

(
i

pn
+m

) ∏m−1
k=0 expp logp

(
i
pn

+ k
)

expp logp

(
i
pn

)
expp logp

(
i
pn
− 1
)

which says that:

ΓC

(
i

pn
+m+ 1

)
=

(
i

pn
+m

)∗
ΓC

(
i

pn
+m

)
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Finally:

ΓC

(
i

pn

)
=

expp logp

(
i
pn

)
expp logp

(
i
pn
− 1
)

expp logp

(
i
pn

)
expp logp

(
i
pn
− 1
) = 1

Later we will give a more conctrete formula which will enphasize the analyticness of ΓC .

We can see this formula as an anlogue of the classical product formula for the Gamma
function which is:

Γ(s) =
1

s

∞∏
n=1

(
1 + s

n

)s
1 + s

n

= lim
n→∞

n!(n+ 1)s

s(s+ 1) . . . (s+ n)

for more details we suggest [30, Pg. 237]

Corollary 1. For s ∈ Qp \ Zp we have that ΓC(s) 6= 0.

Proof. It’s an easy consequence of the proposition in fact |ΓC(s)| = 1 so it can’t vanish.

Definition 31. Consider now logp the Iwasawa logarithm, we define the Coleman’s log-
Gamma function as logp ΓC , this definition make sense since ΓC(s) does not vanish (the
Iwasawa logarithm is defined in all C×p ). We start studying the analytical properties of ΓC
by comparing Gp and logp ΓC (we denote our ζs as ω(s)):

Proposition 12. The function logp ΓC is locally analytic, it is given explicitely by :

logp ΓC(s) = Gp(s)−Gp(s− [s]p)

in particular (logp ΓC(s))′ = G′p(s)

Proof. By applying the logarithm to the Gamma function we obtain that by the functional
equation for |s| > 1 :

logp ΓC(s+ 1)− logp ΓC(s) = logp(s) + logp(p
−v(s)ω−1(s))

but by the properties of this logarithm logp(p
−v(s)) = 0 and logp ω

−1(s) = 0 since ω−1(s)
is a root of 1 (if x is a root of 1 then 0 = logp(1) = logp(x

n) = n logp(x) which implies
logp(x) = 0)so the Coleman’s logGamma function satisfies the same functional equation of
the Diamond’s logGamma function (i.e. f(x+ 1)− f(x) = logp(x)). This implies that: call
y(s) = logp ΓC(s)−Gp(s), where Gp(s) is the Diamond’s logGamma function, then:

y(s+ 1)− y(s) = 0

by the observation above. We can conclude that logp ΓC(s) = Gp(s) + y(s) where y is a
locally costant function on discs of radius 1 in Qp.
This because if y(s + 1)− y(s) = 0 then we clearly have y(s + n)− y(s) = 0 for n ∈ Z and
so by continuity:

y(s) = y(s+ Z) = y(s+ Zp)
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Now we want describe more explicitely the Coleman’s gamma function using the information
above: we know that ΓC(s) = 1 if s ∈ Z[1/p] such that 0 < s = i/pn < 1 by the above
relation:

0 = logp 1 = logp ΓC(i/pn) = Gp(i/p
n) + y(i/pn)

so y(i/pn) = −Gp(i/p
n). For every s ∈ Qp−Zp we have to find i/pn such that |s− i/pn| ≤ 1.

This is easy in fact, for example, we can write s =
a−i
pi

+ · · ·+ a−1

p
+ a0 + a1p+ . . . and take

the fractional part which is in fact x− [x]p, so we obtain:

logp ΓC(s) = Gp(s)−Gp(s− [s]p)

By the equation logp ΓC(s) = Gp(s) + y(s) we deduce also that

(logp ΓC(s))
′
= G

′

p(s)

We know already that Gp is locally analytic and the discs of convergence are given by the
largest discs which does not intersect Zp. Since the radius of convergence of the function is
the same of its derivative we get that logp ΓC (thought as a function with domain Qp−Zp)is
locally analytic with radius of convergence of the discs equal of the one of the Gp.

Observation 14. We have that, since (logp ΓC(s))
′
= G

′
p(s), then (logp ΓC(s))

′
can be used

to define distributions. We know in fact that the p-adic L function could be written as the
Gamma transorm of the measure µ1,c as:

Lp(1− s, χ) =
−1

1− χ(c)〈c〉s

∫
Z×p
〈x〉sχ(x)dµ1,c(x)

but we have already seen that the derivative of the Coleman’s logGamma function and the
Diamond’s one are equal. So the L-function could be described using a measure linked with
the Coleman’s gamma function which could be interesting in view of the geometrical meaning
of this function.

Proposition 13. Consider s ∈ Qp \ Zp, then ΓC(s) is a locally analytic function satisfying
the following formula which relates it to Gp:

ΓC(s) = expp(Gp(s)−Gp(s− [s]p))

Proof. Consider in fact expp(Gp(s) − Gp(s − [s]p) this because we proved ΓC(s) ∈ 1 + pZp
where the logarithm is invertible by the p-adic exponential but let’s check precisely that this
function satisfies the functional equation given at the beginning of the chapter.

Recall thatGp(s+1)−Gp(s) = logp(s) if s ∈ Qp−Zp and so by definition : [s+1]p = [s]p+1
which gives:

expp(Gp(s+ 1)−Gp(s+ 1− [s+ 1]p) = expp(Gp(s)−Gp(s− [s]p) + logp(s))
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Now by the properties of the Iwasawa logarithm logp s = logp(s
∗) hence:

expp(Gp(s)−Gp(s−[s]p)+logp(s)) = expp(Gp(s)−G(s−[s]p)+logp(s
∗)) = expp(Gp(s)−G(s−[s]p)s

∗

morover if a ∈ Z[1/p] and 0 < a < 1 we get a− [a]p = a because [a] = 0 hence:

expp(Gp(a)−Gp(a− [a]p)) = expp(Gp(a)−Gp(a)) = 1

This function is a solution for the functional equation of the Coleman Gamma function
so we get:

ΓC(s) = expp(Gp(s)−Gp(s− [s]p))

In this way we see that it is a composition of locally analytic functions, by this definition we
get in fact that ΓC is locallyt analytic in a neighborhood of Qp in Cp.

We recall that if we consider Γp, the classical Morita’s Gamma function, it is well known
that is analytic (see [18], [5]) in the uninion of the discs:

D =

p−1⋃
t=0

D(−t, ρ)

where ρ = p−
1
p
− −1

p−1 so globally ΓC is locally analytic. From now on we denote 〈x〉p = x− [x]p
For Gp we have already studied the distribution and reflection formula, these reflects

directly on ΓC in fact:

Theorem 12. We give for ΓC the distribution formula (|s| > 1) :

ΓC(s) =

p−1∏
j=0

ΓC

(
s+ j

p

)
Proof. Recall that in this situation:

ΓC(s) = expp(Gp(s)−Gp(〈s〉p))

By the distribution properties of Gp(s):

ΓC(s) = expp

(
p−1∑
j=0

(
Gp

(
s+ j

p

)
−Gp

(
〈s〉p + j

p

)))
Clearly now we have :

〈s〉p + j

p
=

〈
s+ j

p

〉
p

And finally:

ΓC(s) = expp

(
p−1∑
j=0

(
Gp

(
s+ j

p

)
−Gp

〈
s+ j

p

〉
p

))
=

p−1∏
j=0

ΓC

(
s+ j

p

)
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Theorem 13. For |s| > 1 we prove the reflection formula:

ΓC(s)ΓC(1− s) = 1

Proof.

ΓC(s)ΓC(1− s) = expp(Gp(s)−Gp(〈s〉p)) expp(Gp(1− s)−Gp(〈1− s〉p))

ΓC(s)ΓC(1− s) = expp(Gp(s) +Gp(1− s)− (Gp(〈s〉p) +Gp(〈1− s〉p)))

Since Gp(s) +Gp(1− s) = 0

ΓC(s)ΓC(1− s) = expp(0) = 1

3.2 Overview of the De Rham cohomology

We follow [21], let R an S-algebra (where S is a ring), we define the R-module of Kahler
differential ΩR/S as the free algebra generated by symbols dr with r ∈ R modulo the relations:

• ds = 0 for every s ∈ S

• d(a+ b) = da+ db

• d(ab) = d(a)b+ ad(b)

We denote now Ωi
R/S =

∧i
n=0 ΩR/S, now we have a linear derivation d : R → ΩR/S with the

universal property that if f : R → M is S linear then f factors throught d. Thank to this
universal property we have maps Ωi

R/S → Ωi+1
R/S in this way we obtain a complex Ω•R/S:

Proposition 14. It exists a unique map d : Ωi
R/S → Ωi+1

R/S such that:

1. d2 = 0

2. At degree 0 coincides with the dirrerential d : R→ ΩR/S

Proof. The definition is the one of the classical exterior differential i.e.:

d(y df1 ∧ · · · ∧ dfn) = dy ∧ df1 · · · ∧ dfn

and then we extend by linearity.

Observation 15. If ωp is a p-form and ωq is a q-form then:

d(ωp ∧ ωq) = dωp ∧ ωq + (−1)pωp ∧ dωq
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Let f : X → S be an S-scheme with X = SpecR and S = SpecA then we define
ΩX/S = (ΩR/A)˜. With˜we mean the OX-module associated to ΩR/S (if we have any scheme
we can take an open affine cover and glue the sheaves) so now we have an induced complex
of sheaves:

OX → Ω1
X/S → Ω2

X/S →
which we call the ”algebraic De Rham complex”.

Now we want to introduce the ” Hypercohomology ”, take C and D abelian categories,
C with enought injectives and F : C → D a left exact functor, consider A• a bounded below
complex in C, let A• → I• be a quasi isomorphism then we define the right hyper-derived
functor of F as:

RnF (A•) = Hn(F (I•))

Now if C is the category of Sheaves on abelian groups of X we define the Hypercohomology
groups as:

Hn(X,F •) = Rn(Γ(X,F •))

We are ready to define De Rham cohomology, in fact consider the De Rham complex Ω•R/S
then the n-th de Rham cohomology group of X is :

Hn
dR(X) = Hn(X,Ω•R/S)

Observation 16. If X is affine then we clearly have (recall that ΩX/S is quasi-coherent):

Hn
dR(X) = Hn(Γ(X,Ω•X/S)) = Hn(Ω•R/A)

where (ΩR/S)˜= ΩX/S

As an example we compute the de Rham cohomology of X = Gm(K) = SpecK[x, x−1],
Let R = K[x, x−1] we clearly have:

Ω0
R/K = K[x, x−1] −→ Ω1

R/K

Since K[x, x−1] = K[x]x (the localization of K[x]at x) we can compute : Ω1
K[x]/K = K[x]dx

because the exterior differential acts in the way f(x) 7→ f ′(x)dx. A well known property
ofthe module of Kahler differential is :

ΩS−1R/K
∼= S−1ΩR/K

i.e. Ω1
R/K = (K[x]dx)x = K[x, x−1]dx, so we have only the 0 differential:

d0 : K[x, x−1]→ K[x, x−1]dx

(Ωi = 0 for i ≥ 2 because the wedge product vanishes if there are repetitions i.e. · · · ∧ dx ∧
dx ∧ · · · = 0). So if f(x)

xk
∈ K[x, x−1] then d

(
f(x)
xk

)
= f ′(x)

xk
dx− kx−k−1 .

Eventually :

H0
dR(Gm) ∼= K H1

dR(Gm) ∼= Ω1
R/K/dK[x, x−1] ∼= K

dx

x
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3.3 Connections and Frobenius action in De Rham co-

homology

Consider X a scheme over Fp (see [26]), so OX is a sheaf of rings of characteristic p. The
Frobenius endomorphism induces a map of sheaves : OX → OX and clearly it induces on X
the following map:

FX : X → X

called the absolute Frobenius. Let now S be a scheme over Fp and consider the S-scheme
X → S then we call X(p) the fibered product X ×S S via FS : S → S. Then consider
FX : X → X so by the pullback property we have the following commutative diagram:

X

X(p) X

S S

FX

FX/S

p

FS

Definition 32. The map of S-schemes FX/S is called relative Frobenius.

It is in general an important problem to understand the action in cohomology induced
by the Frobenius automorphism, in the next section we will sketch the ideas of Dwork
and Coleman. They were able to compute explicitely the matrix of the endomorpshim in
cohomology associated, in fact, to the Frobenius.

Definition 33. Let X be a scheme, a vector bundle E on X is an OX-module locally free
of finite rank.

Definition 34. Let X a smooth algebraic variety over a field of characteristic 0, let ΩX its
sheaf of differentials, consider E a vector bundle on X then a connection is an OX-linear
map :

∇ : E → E ⊗OX
ΩX

s.t. for every U ⊂ X open and f ∈ Γ(U,OU) and every s ∈ Γ(U,E ) it satisfies the Leibniez
rule:

∇(fs) = f∇(s) + s⊗ df
A section s is horizontal if ∇(s) = 0. ∇ is called integrable if ∇2 = 0. Now given a pair (E ,
∇) we can define the complex:

E → E ⊗OX
Ω1
X → E ⊗OX

Ω2
X → . . .

taking the hypercohomology of this complex we can define the de Rham cohomology with
coefficients in (E , ∇):

Hn
dR(X, (E ,∇)) = Hn(X,E ⊗OX

Ω•X)
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Now we can review the part of the first section regarding p-adic Gamma functions, we follow
[5]: Consider X = SpecCp[x, x

−1] =: Gm for a ∈ Qp ∩ Zp − Z, the connection:

∇a : Cp[x, x
−1] −→ Cp[x, x

−1]dx

f 7→
(
x
d

dx
+ πx+ a

)
(f)

dx

x

recall that π is such that πp−1 − p = 0. Completing p-adically Cp[x, x
−1] we obtain the

algebra L0,∞ so we have that (we still denote the connection ∇a):

∇a : L0,∞ −→ L0,∞
dx

x

Finally we have:

H1
dR(Gm, (OGm ,∇a)) = L0,∞

dx

x
/∇aL0,∞

. This cohomology group is spanned by classes
[
dx
x

]
a

satisfying the following:[
xm

dx

x

]
a

=

[
dx

x

]
a+m

=
Γ(a+m)(−π)−m

Γ(a)

[
dx

x

]
a

Consider now a, b like above and s.t. a− pb = t ∈ Z we define the map

F (a, b) : (L0,∞,∇a) −→ (L0,∞,∇b)

f(x) 7→ f(xp)xt

Θ(x)

and the left inverse:
D(a, b) : (L0,∞,∇b) −→ (L0,∞,∇a)

f(x) 7→ ψ(f(x)xtΘ(x))

Recall that here ψ is:

ψ(f) =
∑
xp=y

f(y)

These two maps induces two isomorphism (one the inverse of the other) in cohomology

Frob(a, b) : H1
dR(Gm, (OGm ,∇b))→ H1

dR(Gm, (OGm ,∇a))

and
Dw(a, b) : H1

dR(Gm, (OGm ,∇a))→ H1
dR(Gm, (OGm ,∇b))

such that:

Dw(a, b)

([
dx

x

])
a

=
1

p
γp(a, b)

[
dx

x

]
b

so the function γp(a, b) gives the ’matrix’ associated to the morphism Dw(a, b). We remark
that this function was introduced by Dwork and is more flexible than Γp in fact it is also a
meromorphic function in the set :

D (t)(pρ) = {(x, y) ∈ C2
p |py − x = t, |y| = pρ}
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3.4 The geometric meaning of ΓC

Now we recall some facts of [7], as usual denote by Qp an algebraic closure of the field of
p-adic numbers and denote by Qur

p the maximal unramified extension of Qp.

Definition 35. We define the ’Cristalline’ Weil group as:

Wcris(Qp) = {φ ∈ Gal(Qp/Qp) : φ|Qur
p

= Frobn, n ∈ Z}

i.e. the elements of this group are automorphisms of Gal(Qp/Qp) which restricted to Qur
p

are integral powers of the Frobenius automorphism.

Given the map deg : Wcris(Qp) → Z defined as deg(φ) = n, we recall that it exists an
exact sequence:

1→ Icris(Qp)→ Wcris(Qp)→ Z→ 1

Here: Icris(Qp) := Ker(deg) is, in fact, the Galois group Gal(Qp/Qur
p ).

Definition 36. Let V be a Qp-vector space, we define a semi-linear action Wcris(Qp) on V
as a map

ρ : Wcris(Qp)→ EndQp
(V )

such that ρ(φ)(ax) = φ(a)ρ(φ(x)) for every a ∈ Qp and x ∈ V .

Definition 37. Let X a smooth proper Qp-scheme, we say that X has good reduction iff
exists a finite extension K of Qp and a smooth proper OK-scheme X ′ toghether with an
isomorphism α : X ′Qp

→ X where X ′Qp
= X ′ ×SpecOK

SpecQp.

Definition 38. Let X a smooth proper K-scheme with K finite extension of Qp, we say
that X has potentially good reduction if XKp

has good reduction.

Theorem 14. Let X a smooth proper Qp-scheme with good reduction, then exists a unique

action ρcris of Wcris(Qp) on Hn
dR(X/Qp) which is functorial in X.

Proof. See [7] theorem (4.2).

Observation 17. If X/K has potentially good reduction we have an action of the Weil
group on Hn

dR(XQp
/Qp).

Before to explain the geometric meaning of ΓC , we need to introduce the notion of the
Jacobian of a curve. We will only sketch the main results that we need, more details are
given in [24]. To a non singular curve C it is in fact possible to associate an abelian variety
J called the jacobian of C.

Let C a complete non-singular curve over a field k then:
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Definition 39. Consider T a connected k-scheme, let L an invertible sheaf on C ×Spec k T
we define the abelian group:

P 0
C(T ) = {L ∈ Pic(C ×Spec k T )|deg(L ) = 0}/q∗Pic(T )

we recall that Pic(X) = {Invertible OX modules}/ ∼=, i.e. the abelian group under ⊗OX
of

invertible sheaves up to isomorphisms.

Theorem 15. The functor :
P 0
C : Sch(k) −→ Ab

is representable, its representant is an abelian variety J called the Jacobian of C.

Proof. See [24] Theorem 1.1

Proposition 15. The tangent space of the Jacobian variety J at 0 is isomorphic with
H1(C,OC).

Proof. See [24] Proposition 2.1

Theorem 16. It exists an isomorphism :

Γ(J,ΩJ)→ Γ(C,ΩC)

Proof. For details see [24] proposition 2.2 .

Observation 18. This theorem hallow us to identify the first de Rham cohomology group
of the curve with the one of its jacobian variety.

Let Fm be the Fermat curve (affine) with equation xm + ym = 1, if (m, p) = 1 then Fm
has good reduction over Qp so we can study the action of the Frobenius endomorphism in
cohomology using techniques (briefly) described in section 3.3. Now, if p|m, the situation
is much more complicated (all he calculations are due to Coleman) but we have that the
Jacobian Jm of Fm has still potentially good reduction i.e. the Weil group Wcris(Qp) acts on
H1
dR((Jm)Qp

). Now since we have:

H1
dR((Jm)Qp

) ∼= H1
dR(Jm/Qp)⊗Qp

(this is true for every proper smooth scheme [7] section (4.7)). By our remarks on the
jacobian we have also :

H1
dR(Jm/Qp)⊗Qp

∼= H1
dR(Fm/Qp)⊗Qp

So ρcris acts in the Cohomology of Fm, the work [11] of Coleman describes the matrix of this
action using the extension of the classical p-adic Gamma function which we have denoted
ΓC . Let now r, s ∈ Q/Z − 0 such that r + s is not 0 then for a fixed Fermat curve Fm we
denote by 〈r〉 the smallest representative of r mod Z.
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Observation 19. We recall (see [11]) that a base of differentials (of the second kind) for
Fm is given by:

ωi,j = xiyj(x/y)d(x/y)

with 0 < i, j < m and i+ j different from m.

Let ε(r, s) = 〈r+ s〉 − 〈r〉 − 〈s〉 and L(r, s) = 〈r+ s〉ε(r,s). vr,s will denote the class of the
differential mL(r, s)ωi,j where i = m〈r〉 and j = m〈s〉.

Proposition 16. Denote by q = (r, s), let mq = 0 , (m, p) = 1 then :

ρcris(σ)(vσ−1q) = βσ(q)vq

where βσ(q) is the matrix of the action and in this case is given explicitely by :

βσ(q) = (−1)ε(q)pε(σ
−1q) ΓC〈r + s〉

ΓC〈r〉ΓC〈s〉

Proof. [11] Theorem 1.7

Consider now the case in which p|m, let q ad above denote by ηq the following differential
form:

ηq = L(q)xiyj(x/y)d(x/y)

(where i, j are as above) then define γσ(q) as the matrix of the action:

ρcris(σ)ησ−1q = γσ(q)ηq

then

Theorem 17. Let q as always, we have that :

γσ(q) = (−1)µ(σ,r)+µ(σ,s)βσ(q)

(here µ(σ, r) = 〈σ−1rσ(−〈r〉)〉 ) Morover if mq = 0 and degσ = 1 by the theorem above:

γσ(q) =
(−p)ε(σ−1q)

ΓC〈−(r + s)〉ΓC〈r〉ΓC〈s〉

Proof. [11] Proposition 1.9
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Chapter 4

p-adic measures on Qp

In the first part of this section we recall some definitions and results of the theory of perfectoid
and adic spaces the main references are : [25], [8] and [29] but most of the proofs for adic
spaces are in [20] and [19].

4.1 Perfectoid rings

Definition 40. Let R be a topological ring, R is said to be integral perfectoid if :

• exists a non zero divisor π such that R ∼= lim←−nR/π
nR;

• p ∈ πpR;

• The map R/πR→ R/πpR, x→ xp is an isomorphism.

Such an element π is called (perfectoid) pseudo-uniformizer (p.u.).

Example 3. Consider the field:

Qp(p
1/p∞) = lim−→

n

Qp(p
1/pn)

then the p-adic completion of its ring of integers Zp[p1/p
∞

] is integral perfectoid, the same
for Qp(ζp∞) and Zp[ζp∞ ].

Definition 41. (Tilting functor) For an integral perfectoid ring R we define the tilting
functor (−)[ as :

R[ := lim←−
x→xp

(R/pR)

In this way R[ is a perfect ring of characteristic p equipped with the inverse limit topology.
The elements of R[ are in fact sequences of compatiple p-power roots i.e. if a ∈ R[ then
a = (ai)i∈N such that:

(ai+1)
p = ai
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Proposition 17. If R is π-adically complete and π|p then, we have the following isomor-
phism:

lim←−
x→xp

R ∼= lim←−
x→xp

(R/πR)

the isomorphism is clearly only of multiplicative monoids.

Proof. Let {an}, {bn} two sequences such that an ≡ bn mod π in particular by the prop-

erties of the projective limit ap
k

n+k = an. We can observe also that by the above equality

limk→∞ a
pk

n+k = an then by assumpion limk→∞(bn+k + πx)p
k

= an, but

lim
k→∞

(bn+k + πx)p
k

= lim
k→∞

bp
k

n+k = bn

and finally an = bn.
For the surjectivity: let {ãn} ∈ lim←−(R/pR) for every ãn let an be a lift in R. This implies in

particular apn+k+1 ≡ an+k mod π, a well known fact is that: a ≡ b mod π ⇒ ap
n ≡ bp

n
mod

πn+1. The last implies that the sequence k → ap
k

n+k is Cauchy then it has a limit xn.

Now (xn+1)
p = (limk→∞ a

pk

n+k+1)
p = limk→∞ a

pk+1

n+k+1 = limk→∞ a
pk

n+k = xn. Finally:

xn = lim
k→∞

ap
k

n+k = lim
k→∞

ãp
k

n+k = lim
k→∞

ãn = ãn

Lemma 3. Let R integral perfectoid and π a p.u. then, up to a unit, π has in R a compatible
system of p-power roots : π1/p, π1/p2 , . . . .

Proof. Since the Frobenius R/πR→ R/πpR is an isomorphism we have an induced isomor-
phism lim←−x→xp(R/πR) ∼= lim←−x→xp(R/πpR). By the above lemma we get the isomorphism:
lim←−x→xp(R/πpR) ∼= lim←−x→xp R so it exists a = (a0, a1, . . . ) ∈ lim←−x→xp R such that a0 ≡ π mod

πpR and a0 = uπ with u ∈ 1 + πp−1R ⊂ R× which is a unit.

Definition 42. Consider a ring R and consider its tilting R[, we define the ’untilting’ map
as:

] : R[ → R

b = (b0, b1, . . .) 7→ lim
i→∞

b̃i
pi

= b]

where b̃i is any lift of bi ∈ R/pR in R.

Observation 20. This is in general the projection to the zero factor.

Observation 21. In general ] is multiplicative but not additive in fact:

(a+ b)] = lim
i→∞

(
(a

1

pi )] + (b
1

pi )]
)pi
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] in particular we can compose it with the reduction mod p :

R[ = lim←−
x→xp

(R/pR)
red ◦ ]−−−→ R/pR

obtaining in fact a ring homomorphism. Moreover if R is in characteristic p the map ] is an
isomorphism.

Example 4. (see [25]) Let R an integral perfectoid ring and consider π a p.u., define
R〈T 1/p∞〉 the π-adic completion of

⋃
n≥0R[T 1/pn ]. Then this is an integral perfectoid ring,

moreover we remark that R〈T 1/p∞〉[ contains the element T [ = (T, T 1/p, . . . ) which provides
the following topological isomorphism:

R[〈U1/p∞〉
∼=−→ R〈T 1/p∞〉[

U 7→ T [

Definition 43. We define a perfectoid field as a complete NA field K with norm |·| : K → R
such that:

• |K∗| ⊂ R is dense;

• exists π ∈MK s.t. p ∈ πpOK ;

• the Frobenius map OK/p→ OK/p is an isomorphism.

In this assumption we have in fact that OK is integral perfectoid, so we get the following
definition:

Definition 44. (Tilting of a perfectoid field) Let K be a perfectoid field then the tilting of
K is defined as:

K[ := Frac(O[
K)

we observe that: Frac(O[
K) = O[

K

[
1
πb

]
where π is a pseudo-uniformizer.
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4.2 Adic spaces

Definition 45. (Huber ring)
An Huber ring is a topological ring R such that it exists an open subring R0 ⊂ R with

a finitely generated ideal I ≤ R0 which induces the I-adic topology on R (i.e. the family
{In}n≥0 is a base of open neighborhoods of 0). R0 is usually called ring of definition and I
ideal of definition.

Example 5. An example is Qp with ring of definition Zp and ideal of definition pZp.

Definition 46. A subset S of a topological ring R is called bounded if for all open neigh-
borhoods U of 0 exists an open neighborhood V of 0 such that V S ⊂ U .

Definition 47. (Tate ring)
An Huber ring is called Tate ring if it contains a unit π ∈ R× such that πn → 0 as n→∞

(An element satisfying this condition is called topological nilpotent).

Definition 48. An element f ∈ R with R a Huber ring is called power bounded if the set
{fn|n ≥ 0} is bounded. The set of all power bounded elements is denoted R◦.

We denote also by R◦◦ the set of topological nilpotent elements and so:

Proposition 18. Let R a Huber ring then :

• R◦ is open and integrally closed;

• R◦ is the union of all rings of definition:

• R◦◦ is an open ideal of R◦.

Proof. [25, Lemma 2.13]

Observation 22. In the case of a NA field K we have that K◦ is the ring of integers OK

and K◦◦ is the maximal ideal MK .

Definition 49. (Huber pair) An Huber pair (R,R+) is given by a Huber ring R and an
open and integrally closed subring R+ ⊂ R0 (R0 is the ring of definition). In particular we
can choose R+ = R◦.

Definition 50. A morphism of Huber pairs (A,A+)→ (B,B+) is a continuous ring homo-
morphism f : A→ B such that f(A) ⊂ B.

Definition 51. (Affinoid Tate ring) An affinoid Tate ring is given by a pair (R,R+) of a
Tate ring R and a ring of integral elements R+ of R.

Definition 52. A continuous absolute value (or valuation) on a topological ring R is a map:

| · | : R→ Γ ∪ {0}

with Γ a totally ordered (multiplicative) abelian group, such that:
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• |0| = 0 , |1| = 1 ;

• |ab| = |a||b| ;

• |a+ b| ≤ max(|a|, |b|);

• for every γ ∈ Γ, the set {x ∈ R | |x| < γ} is open.

The usual convention is that for evert γ ∈ Γ then 0γ = 0 and 0, γ.

Definition 53. (Adic spectrum) The adic spectrum of an Huber pair (R,R+) is defined as:
Spa(R,R+) := the set of equivalence classes of continuous valuations such that |R+| ≤ 1. It
is endowed with the coarsest topology given by the sets:

Spa(R,R+)

(
f

g

)
= {x ∈ Spa(R,R+)| |f(x)| ≤ |g(x)| 6= 0}

for any f, g ∈ R (for x ∈ Spa(R,R+) we denote x(f) as |f(x)|).

Definition 54. (Rational subset) Given a finite family of Spa(R,R+)
(
fi
g

)
with i = 1, . . . , n

we define :

Spa(R,R+)

(
f1, . . . , fn

g

)
=

n⋂
i=1

Spa(R,R+)

(
fi
g

)
which are called rational subsets.

Theorem 18. Given a Huber pair (R,R+) we have the following facts:

• Spa(R,R+) is spectral;

• the rational subsets form a basis;

• the rational subsets are quasi-compact;

• R◦ = {f ∈ R|∀x ∈ Spa(R,R+) |f(x)| ≤ 1} ;

• R◦◦ = {f ∈ R|∀x ∈ Spa(R,R+) |f(x)| < 1};

• R× = {f ∈ R|∀x ∈ Spa(R,R+) |f(x)| 6= 0} .

Proof. All the he proofs are in [19].

Observation 23. The map (R,R+) → Spa(R,R+) gives a contravariant functor from the
category of Huber pairs to the one of topological spaces.

Definition 55. Let K a perfectoid field with tilt K[ and pseudo uniformiser t such that,
letting π = t], |p| ≤ |π| < 1 then: a K-algebra R is perfectoid if R◦ is bounded and the
Frobenius R◦/p→ R◦/p is surjective.
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Observation 24. Let K be a perfectoid field, and let R be a perfectoid K-algebra. Then
(R,R◦) is a complete affinoid Tate ring, and it admits a natural structure map from (K,K◦).

Definition 56. An affinoid Tate K-algebra (R,R+) is perfectoid if R is perfectoid.

Theorem 19. (Tilting of adic spaces) Let K a perfectoid field and (R,R+) a perfectoid
affinoid K-algebra then for any continuous valuation x ∈ Spa(R,R+) the composition:

R[ ]−→ R
x−→ Γ ∪ {0}

gives an element x[ ∈ Spa(R[, R[+) which induces an isomorphism of adic-spaces:

Spa(R,R+) ∼= Spa(R[, R[+)

preserving rational subsets i.e. if U ⊂ Spa(R,R+) is a rational subset then U [ ⊂ Spa(R[, R[+)
is a rational subset.

Definition 57. (Perfectoid spaces). The adic space Spa(R,R+) attached to a perfectoid
affinoid K-algebra (R,R+) is called an affinoid perfectoid space over K. More generally, a
perfectoid space over K is an adic space over Spa(K,K◦) that is locally isomorphic to an
affinoid perfectoid space.

Proposition 19. The category of perfectoid spaces over K admits fiber products.

Proof. (Sketch)
Consider (A,A+), (B,B+) and (C,C+) three perfectoid affinoid K-algebras such that we
have the diagram:

(A,A+) (B,B+)

(C,C+)

Let D0 = B⊗AC and D+
0 the integral closure of the image of the map B+⊗A+C+ → D0. Fi-

nally consider (D,D+), the t-adic completion of (D0, D
+
0 ). Locally we define Spa(A,A+)×K

Spa(B,B+) := Spa(D,D+), this gives the required pullback because the pair (D,D+) is a
pushout in the category of (K,K◦)-perfectoid affinoid algebras.

4.3 The modules of Measures on Qp

The goal of this section is to develop what we need about the theory of measures on Qp( the
main reference is [2]), for this purpose we need some notions of adic spaces and perfectoid
rings that we introduced in the previous sections. We will see that is possible to extend
the notions of measures in Zp to Qp (which is clearly non-compact) using in fact the theory
of perfectoids and adic spaces. We will give also a definition of a possible extension of the
measure of Diamond µ1,c.
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Definition 58. Consider R a complete and separated linearly topologized ring and denote
by P (R) the basis of open ideals, let M a R-linearly topologized separated and complete
topological R-module with basis of submodules {IM}I∈P (R). For every set of indices A we
say that the series

∑
a∈Ama is unconditionally convergent iff for every IM open sumbodule

ma ∈ IM for almost all a ∈ A.

Definition 59. We define the set Σunif (Qp) as the set of uniformly open subsets i.e. those
subsets which are union of balls of the same radius (for balls of radius p−n in Qp we mean
sets on the form a+ pnZp with a ∈ Qp and n ∈ Z).

Definition 60. We denote by Σn(Qp) the family of open subset which are union of balls of
the same radius p−n for every n ∈ Z.

Definition 61. We define Σ(Qp) as the family of clopen subset of Qp.

Definition 62. (Uniform measure)

A uniform measure in Qp with values in k (separated and complete linearly topologized
ring) is an additive map

µ : Σunif (Qp)→ k

such that: for every n ∈ Z and any family {Uα} ⊂ Σn(Qp) then if U =
⋃
α Uα we have that∑

α µ(Uα) converges unconditionally to µ(U).

Definition 63. (Bounded measure)

A bounded measure in Qp with values in k(separated and complete linearly topologized
ring) is an additive map

µ : Σ(Qp)→ k

such that: for any I ∈ P (k) exists an open compact subset ZI ⊂ Qp such that µ(V ) ∈ I for
any V ∈ Σ(Qp − ZI).

Definition 64. We denote the algebra of p-adic uniform measures over Qp with values in k
as Dunif (Qp, k) and we give to it the topology induced by the family of submodules:

Un,J = {µ ∈ Dunif (Qp, k)|µ(U) ∈ J, ∀U ∈ Σn(Qp)}

with J ∈ P (k)

Definition 65. We denote the algebra of p-adic bounded measures over Qp with values in
k as Dbd(Qp, k) and we give to it the topology induced by the family of submodules:

UJ = {µ ∈ Dbd(Qp, k)|µ(U) ∈ J, ∀U ∈ Σ(Qp)}

with J ∈ P (k)
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Definition 66. Consider now the the direct system of Zp[[T 1/pn ]] induced by the inclusion
maps Zp[[T 1/pn ]] ↪→ Zp[[T 1/pm ]] for n ≤ m , so we define D as :

D = lim−→
n

Zp[[T 1/pn ]]

i.e. D could be identified with the completion of the Zp-algebra Zp[T 1/p∞ ] =
⋃
n≥0 Zp[T 1/pn ]

in the (p, T )-adic topology. Moreover we define Dbd as he p-adic completion of
⋃
n≥0 Zp[[T 1/pn ]],

so clearly we have the embedding: Dbd ↪→ D .

Definition 67. Eventually we introduce also the ring D̃ = D/pD i.e. the (t)-adic completion
of
⋃
n≥0 Fp[[t1/p

n
]] where t is the reduction mod p of T .

Theorem 20. (see [2])
Consider the two rings D and Dunif (Qp, k) then the identification given by :

Dunif (Qp, k) −→ D

∆pi 7→ lim
n→∞

Fp

(
T p

i−n
)pn

gives a topological isomorphism.

Observation 25. We are indentifying in this case :

T 7→ lim
n→∞

Ep(∆p−n −∆0)
pn

where Ep(T ) is the Artin-Hasse logarithm i.e. the series such that:

Ep(Fp(T )− 1) = T Fp(Ep(T )) = E(T )

Observation 26. This is the Qp-analog of the classical statement in the case of Zp in which
we have a topological isomorphism between the algebra of measures and Zp[[T ]] given by
∆1 −∆0 7→ T .

Theorem 21. (Functional interpretation [10, Thm. 5.4 ])
Let Dunif (Qp,Zp) and Dbd(Qp,Zp) as above we have the following two strong perfect duality
pairings: The first one: ∫

Qp

: Dbd(Qp,Zp)× C(Qp,Zp)→ Zp

which identifies Dbd(Qp,Zp) ∼= (C(Qp,Zp))′strong. The second one:∫
Qp

: Dunif (Qp,Zp)× Cunif (Qp,Zp)→ Zp
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which identifies (Dunif (Qp,Zp))′strong ∼= Cunif (Qp,Zp) compatible with the canonical inclu-
sion:

Cunif (Qp,Zp) ↪→ C(Qp,Zp)

and the map given functorially:

(−)unif : Dbd(Qp,Zp)→ Dunif (Qp,Zp)

in the sense that: if f ∈ Cunif (Qp,Zp) and µ ∈ Dbd(Qp,Zp) then:∫
Qp

fdµ =

∫
Qp

fdµunif

Observation 27. This theorem is true in a more general situation, instead of Zp one can
take any linearly topologized topological ring k and instead of Qp a so called STS-space. For
STS-space we mean a 0-dimensional locally compact paracompact space.

Example 6. (An extension of the Diamond’s measure)
Let a ∈ Q×p , then a = pvp(a)u where u ∈ Z×p (this follows from the structure of Q×p in fact
we have Q×p ∼= pZ × Z×p ). Consider now an open compact in Q×p on the form a+ pNZp then

we have a = pvp(a)u. From now on we fix c 6= 1 an integer coprime with p and we denote µD
the measure of Diamond µ1,c .

Definition 68. We define the extension of the Diamond’s measure µ1,c as the following:

µ̃1,c(a+ pNZp) =


p−vp(a) · µ1,c(u+ pN−vp(a)Zp) a+ pNZp ⊂ Qp \ pZp

0 a+ pNZp ⊂ pZp
(4.1)

where 0 < u < pN−vp(a) s.t. (u, p) = 1, N ∈ Z.
Consider a + pNZp ⊂ Qp \ pZp where a = pvp(a)u then since pvp(a)u + pNZp ⊂ Qp \ pZp we
have N − vp(a) > 0.

Observation 28. If a + pnZp ⊂ Z×p then vp(a) = 0 (and a satisfies the above properties)
this implies that this measure coincides with the measure of Diamond µ1,c, in fact in Z×p :

µ̃1,c(a+ pnZp) = p−vp(a)µ1,c(a+ pnZp) = µ1,c(a+ pnZp)

Proposition 20. This function µ̃1,c extends to a uniform measure

Proof. Denote by µ := µ̃1,c and by µD := µ1,c, it’s easy to see that it is additive in open
compact sets on the form a+ pnZp, in fact if a = pvp(a)u:

µ(a+ pnZp) = p−vp(a)µD(u+ pn−vp(a)Zp)
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and, using the fact that µD is a measure, we get:

p−vp(a)µD(u+ pn−vp(a)) = p−vp(a)
p−1∑
j=0

µD(u+ pn−vp(a)j + pn+1−vp(a)Zp)

with n + 1 > vp(a) since n > vp(a), moreover |a| > |pnj| this implies |a| = |a + pnj| i.e.
vp(a+ pnj) = vp(a) (0 ≤ j ≤ p− 1).

p−1∑
j=0

p−vp(a)µD(u+ pnj + pn+1−vp(a)Zp) =

p−1∑
j=0

p−vp(a+p
nj)µD(u+ pn−vp(a)j + pn+1−vp(a)Zp)

finally:

µ(a+ pnZp) =

p−1∑
j=0

µ(a+ pnj + pn+1Zp)

Let V ∈ Σunif (Qp) and V =
⋃
i∈I(xi + prZp) with r the smallest integer such that

r − vp(xi) ≥ 0 for every xi 6= 0 and 0 < xi ≤ p, so by definition we set:

µ(V ) =
∑
i∈I

µ(xi + prZp)

and we get a map :
µ : Σunif (Qp) −→ Zp

but now we have to check that this series converges unconditionally for every index set I.
Clearly if I is finite then µ acts like a classical measure. If I is infinite then V is not bounded,
so if we fix a ball pNZp ∈ P (Zp), then up to a finite number of balls xi + prZp ⊂ V we have
vp(x) < −N for arbitrary N . We observe that by definition:

|µ(xi + prZp)| =
∣∣p−vp(xi)∣∣ · |µD(u+ pr−vp(xi)Zp)| ≤ p−N

for vp(xi) ≤ −N because µ is a measure on Zp and so |µ| ≤ 1.
By the argument above we get:

µ(xi + prZp) ∈ pNZp
for almost all i ∈ I. This implies the unconditionally convergence of the above series.

Observation 29. We justify the fact of extending µ by zero in pZp by the fact that, in
general, µD is only a measure in Z×p and since the definition of Mellin transform is given
integrating in Z×p . So extending by 0 this measure does not influences the classical definition.
Outside pZp we defined it as :

µ(a+ pNZp) = p−vp(a) · µD(u+ pN−vp(a)Zp)

Also this does not influences the classical definition of µD because we’re asking that:

µD(pnU) = p−nµD(U)

with U compact/open in Z×p , but pnU is not contained in Z×p so this situation can’t happen.
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4.4 Artin-Hasse isomorphism and formal perfectoid discs

Consider again the Artin-Hasse series:

Fp(T ) = expp

(
∞∑
i=0

T p
i

pi

)
we remark that Fp(T ) ∈ 1+T+T 2Z(p)[[T ]]. The Dieudonné formula (proved in [15]) provides
to the following equation:

∞∏
i=0

Fp(xiT
pi) = expp

(
∞∑
i=0

x(i)T p
i

)
= 1 +

∞∑
i=1

gi(x0, . . . , xblog(i)c)T
pi

with log(i), the real logarithm, and

x(i) =
i∑

n=0

pn−ixp
i−n

n

After the change xi → xi−n and T i → T i/p
n

we get the formula:

∞∏
i=−n

Fp(xiT
pi) = expp

(
∞∑
i=0

x(i)T p
i

)
= 1 +

∞∑
i=1

gi(x−n, . . . , xblog(i/pn)c)T
pi/p

n

We give now a definition wich will be useful from now on:

Definition 69. We define S as the set of indices given by:

S = Z
[

1

p

]
∩ R≥0

we observe that is clearly countable.

So in [2, Sect. 4] is defined a new topological algebra P̂ in which it is possible to compute
the limit n→∞ in the formula above obtaining the following:

∞∏
i=−∞

Fp(xiT
pi) =

∑
q∈S

gq(x)T q

Moreover, again in [2], is given an analytic specialization of the latter. In fact are introduced
other topological algebras in wich it is possible to compute those formulas using the change
xi → Ψ(p−ix). So we obtain the new formula :

∞∏
i=−∞

Fp(Ψ(pix)T p
i

) =
∑
q∈S

Gq(x)T q

where the polynomials Gq(x) are obtained by gq after the change xi = Ψ(p−ix).
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Remark 1. We remark that this definition gives to the polynomials Gq the following pro-
prierties:

Gq(x+ y) =
∑

q1+q2=q

Gq1(x)Gq2(y) Gqp(px) = Gq(x) Gq(Qp) ⊂ Zp

The binomial coefficients
(
x
n

)
has similar proprierties, in fact the polynomials {Gq}q∈S are a

Banach basis for C(Qp,Zp).

The latter algebra is denoted E
p

p−1
,1 in [2] and defined in the following way:

Consider E : the algebra of entire functions in Cp, such that restricted to Qp are uniformly
continuous and if f ∈ E then f(Qp) ⊂ Zp. This algebra is complete under the Fréchet
topology induced by the family of semivaluations {wr}r∈Z given by:

wr(f) = inf
x∈p−rC◦p

vp(f(x))

Example 7. Consider the function Ψ(x), defined also in [2] and briefly introduced Section
1, then by definition Ψ(x) ∈ E .

Then E
p

p−1
,1 is the algebra of series on the form

∑
q∈S aqT

q such that for every C ∈ R:

wr(aq) + `(q) +
p

p− 1
(max(qpr, 1)− 1) > C

form almost all q ∈ S,

Remark 2. More precisely E
p

p−1
,1 is the completion of E [T 1/p∞ ] under the Frechet topology

induced by the semivaluations:

w
p

p−1
,1

r

(∑
q∈S

aqT
q

)
= inf

q∈S
(wr(aq) + `(q) +

p

p− 1
(max(qpr, 1)− 1))

introduced in [2].

Definition 70. (Formal perfectoid disc over Zp) We define the ’formal perfetoid’ open unit
disc over Zp as the adic space D = Spa(D ,D).

Definition 71. (Formal perfectoid disc over Fp) We define the ’formal perfetoid’ open unit

disc over Fp as the adic space DFp = Spa(D̃ , D̃).

So consider now two characters Θ0 and Θ1, the first given by:

Θ0 : (S,+)→ D(Qp,Zp)

q 7→ T q

we remark that (S,+) is only a monoid. The second is:

Θ1 : Qp → D(Qp,Zp)

q 7→ ∆q
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Definition 72. The formal perfectoid open unit disc centered in 0 (resp. 1) over Zp is the
couple (D,Θ0) (resp. (D,Θ1)) and it will be denoted D(0) (resp. D(1)).

Definition 73. The formal perfectoid open unit disc centered in 0 (resp. 1) over Fp is the
couple (DFp ,Θ0) (resp. (DFp ,Θ1)) and it will be denoted DFp(0) (resp. DFp(1)).

Observation 30. So using D is possible to introduce this notion of ’formal perfectoid disc’,
we can compare the situation of the classical analytic discs. Take D(0, rp) and D(1, rp) the
classical exponential gives an insomorphism :

expp : D(0, rp)
∼−→ D(1, rp)

in this more abstract situation the role of the expp is played by Fp i.e. the Artin-Hasse
exponential.

So for any perfectoid extension K/Qp the Artin-Hasse series Fp(T ) give to rise to an
isomoprhism between the two perfectoid formal discs:

Fp : DFp(0)
∼−→ DFp(1)

this because we’ve already remarked that t 7→ Fp(t) gives an isomorphism at the level of
algebras of measures, in fact, t→ limn→∞ Fp(t

p−n
)p

n
= Fp(t) because we are in characteristic

p. Since we have functor given by (R,R+) 7→ Spa(R,R+), the isomorphism carries at level of
adic spaces. As a consequence of the tilting correspondence for adic spaces this isomorphism
lifts also in characteristic 0

F ]
p : DK(0)

∼−→ DK(1)

Here DK is obtained by ’base change’ i.e.:

DK = Spa(D⊗̂ZpK,D⊗̂ZpK)

for more details see [2]. So for any perfectoid extension K of Qp and any choice of pseudo-
uniformizer $ = ($(i))i∈N ∈ (K[)◦◦ we can interpret a point of D(0) as a character χ := χ$
depending on $ which acts in the following way:

T q → χ(q) := lim
j→∞

($(j))qp
j

So in practice it can be considered a character χ : (S \ 0,+)→ (K◦◦, ·).
Again by the Artin-Hasse isomorphism between the two perfectoid discs we have :

F ]
p : DK(0)→ DK(1)

χ 7−→ F ]
χ(x)

Our main interest in this work is now to study the property of convergence in Qp and Cp

the formal equation given by the Dieudonné formula after the last specialization given by
T q → χ(q).

+∞∏
i=−∞

Fp(Ψ(pix)χ(pi)) =
∑
q∈S

χ(q)Gq(x)
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We are mainly interested in prove that the series
∑

q∈S χ(q)Gq(x) converges in some sense
to:

ψ : (Qp,+)→ (1 +K◦◦, ·)

x 7→ Fχ
](x) =

∑
q∈S

χ(q)Gq(x)

which it would be a continuous group homomorphism.

4.5 Extension of characters and convergence proper-

ties

So we need from [6] and [2] the following estimates for Ψ and Gq:

Theorem 22. (Estimates for Gq)
Consider the family of valuations {wr}r∈Z introduced in the last section and let `(q) =
blog(q)c (log is the real logarithm in base p here) , then for Gq(x) we have the following
estimates for any c ∈ R and N ∈ Z:

• r ≤ −`(q)⇒ wr(Gq(x)) ≥ −v(q) + `(q)

• r ≥ −`(q)⇒ wr(Gq(x)) ≥ −v(q) + `(q)− c((pr+`(q))N − 1)
Moreover, these two conditions can be put togheter in the following one:

wr(Gq(x)) ≥ −v(q) + max(`(q),−r)− pp
max(pr+`(q),0) − 1

p− 1

Proof. [2] Remark 5.4 and remark 5.7 .

Theorem 23. (Estimates for Ψ)

For i = 1, 2, . . . and vp(x) ≥ −i (resp. vp(x) > −i) we have vp(Ψ(x)) ≥ −pi−1
p−1 (resp.

vp(Ψ(x)) > −pi−1
p−1 ). If vp(x) > −1 then vp(Ψ(x)) = vp(x).

Proof. [6] Corollary 4.6.

Lemma 4. The valuation v(χ(q)) = qv($(0)) where χ = χ$, in particular we have the
estimates: v(χ(q)) > q.

Proof. We gave explicitely the character χ i.e.

χ(q) = lim
j→∞

($(j))qp
j

and so:
v(χ(q)) = v( lim

j→∞
($(j))qp

j

) = qv( lim
j→∞

($(j))p
j

)
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since $ is an element of the tilt of K◦◦ we have by definition ($(j+1))p = $(j).

v(χ(q)) = qv( lim
j→∞

($(0))) = qv($(0))

and since $(0) ∈ K◦◦ we get v(χ(q)) > q.

Lemma 5. Given the sequence {ai}i∈N in Cp and the infinite product :

∞∏
i=1

(1 + ai)

if ai 6= −1 and ai → 0, then the infinite product converges

Proof. [27] Page 279.

Lemma 6. Consider the infinite product:

∞∏
i=0

Fp(Ψ(pix)χ(p−i))

Then it converges as a product of functions in C(Qp, K
◦) with the topology of uniform con-

vergence on compact subsets

Proof. Using Lemma 1, the infinite product
∏

(1 + an) converges if the sequence an in Cp is
such that: every an 6= −1 and an → 0. So consider the product :

∞∏
i=0

((Fp(Ψ(pix)χ(p−i))− 1) + 1)

then since χ(q) ∈ K◦◦ for every q ∈ S we have |χ(q)| < 1 moreover if x ∈ Qp then clearly
pix ∈ Qp and so Ψ(pix) ∈ Zp, this means that:

|Ψ(pix)χ(p−i))| < 1

Since Fp(x) ∈ 1 + xZ(p)[[x]] we have: |Fp(Ψ(pix)χ(p−i))| = 1 and so it is not 0 in particular
Fp(Ψ(pix)χ(pi))− 1 6= −1.
Now by the properties of the Artin-Hasse exponential :

|Fp(Ψ(pix)χ(p−i))− 1| = |Ψ(pix)χ(p−i)| < |Ψ(pix)|

and now:

|Ψ(pix)| → 0

as i→∞, because Ψ(x) ∈ xZp[[x]].
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Lemma 7. Consider the infinite product:

∞∏
i=0

Fp(Ψ(p−ix)χ(pi))

It converges uniformly as a product of functions in C(Qp, K
◦) with the sup-norm

Proof. The same argument of above works until the fact that:

|Fp(Ψ(p−ix)χ(pi))− 1| = |Ψ(p−ix)χ(pi)|

now we use a different estimate:

|Ψ(p−ix)χ(pi)| ≤ |χ(pi)|

Now since χ is an additive character χ(pi · 1) = χ(1)p
i

then since |χ(1)| < 1 :

|χ(pi)| = |χ(1)|pi → 0

as i→∞.
In fact v(χ(pi)) = pi v($(0)) > pi →∞ as i→∞.

Proposition 21. Consider the infinite product:

∞∏
i=1

Fp(Ψ(pix)χ(p−i))

It converges as a product of functions in An(D (0, p+) , vD(0,p+)).

Proof. Again, we know that |χ(q)| < 1 for every q ∈ S, let x ∈ Cp, we have to check that
|Ψ(pix)χ(p−i)| < 1 for every i ∈ N≥1 in order to have the convergence of the Artin-Hasse
exponential. We have to impose vp(Ψ(pix)) + vp(χ(p−i)) > 0, we know vp(χ(p−i)) > p−i =⇒
vp(χ(p−i)) + vp(Ψ(pix)) > vp(Ψ(pix)) + p−i for i ∈ N≥1. So we need to ask:

vp(Ψ(pix)) ≥ 0

in this case the Artin-Hasse exponential converges for all i ∈ N≥1. By the estimates of Ψ,
for vp(p

ix) ≥ 0, we have vp(Ψ(pix)) = vp(p
ix) ≥ 0

vp(p
ix) ≥ 0⇐⇒ vp(x) ≥ −i

so we need at least vp(x) ≥ −1, at this point we can use the same argument of the lemmas
above because:

|Fp(Ψ(pix)χ(p−i))− 1| = |Ψ(pix)χ(p−i)|
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Proposition 22. Consider the infinite product:

∞∏
i=0

Fp(Ψ(p−ix)χ(pi))

It converges as a product of functions in An(D (0, 1+) , vD(0,1+)).

Proof. Again we need to check the convergence of the Artin-Hasse exponential so we need:

vp(Ψ(p−ix)χ(pi)) > 0

What we know is that for i >> 0:

vp(Ψ(p−ix)χ(pi)) > vp(Ψ(p−ix)) + pi ≥ pi − pi−bvp(x)c − 1

p− 1

if vp(x) ≥ 0 then vp(Ψ(p−ix)χ(pi)) > 0 which implies the convergence of Fp. Again if
vp(x) ≥ 0 =⇒ bvp(x)c ≥ 0 so:

pi − pi−bvp(x)c − 1

p− 1
→∞

as i → ∞ which implies the convergence of the product beacause if vp(Ψ(p−ix)χ(pi)) > 0
then

vp(Fp(Ψ(p−ix)χ(pi))− 1) = vp(Ψ(p−ix)χ(pi))→∞

as i→∞

Theorem 24. The map ψ(x) = F ]
p(χ) given by the untilting of the Artin-Hasse isomorphism:

ψ : (Qp,+)→ (1 +K◦◦, · )

x 7→
∑
q∈S

χ(q)Gq(x)

is a group homomorphism.

Proof. It follows from the additive properties of Gq(x) in fact:

ψ(x)ψ(y) =

(∑
q∈S

χ(q)Gq(x)

)
·

(∑
q∈S

χ(q)Gq(y)

)
=
∑
q∈S

( ∑
q1+q2=q

Gq1(x)Gq1(y)

)
χ(q) =

∑
q∈S

χ(q)Gq(x+ y) = ψ(x+ y)
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These characters are the analogous for the continuous characters on Zp, we recall in fact
that every additive (to multiplicative) character from Zp to C×p is on the form :

ψ : (Zp,+)→ (1 + C◦◦p , · )

s 7→ xs

with |x − 1| < 1. We give now a different interpretation of this fact, we stress that in the
classical case we have the following identification:

D(0, 1−)
1+−→ D(1, 1−)

∼=−→ Homcts(Zp,C×p )

x 7−→ (1 + x) 7−→ (s→ (1 + x)s)

for every s ∈ Zp. It is well known the series expansion in terms of the variable x of this
character, which is:

xs =
∞∑
n=0

(
s

n

)
(x− 1)n

this says that, with respect to x, it is analytic in D(1, 1−).
So we can see two types of characters: we get an additive (to multiplicative) map

φ : (Z>0,+)→ (C◦◦p , ·)

n→ xn

for every x ∈ D(0, 1−), i.e. every such a character is parametrised by x. Now, as already
mentioned, we obtain another character:

ψ : (Zp,+)→ (1 + C◦◦p , · )

s 7→ (1 + x)s

parametrised by (1 + x) ∈ D(1, 1−).
So in the case of Zp, the correspondence given by F ]

p could be seen as :

(φ : n 7→ xn)
F ]
p−→ (F ]

p(φ) : s→ (1 + x)s)

Now, in the case of Qp, we have a point χ in the disc DK(0) i.e.

χ : (S \ {0},+)→ (K◦◦, ·)

q → χ(q)

this time S plays the role of Z. Its image F ]
p(χ) ∈ DK(1) through the Artin-Hasse series is

a group homomorphism
F ]
p(χ) : (Qp,+)→ (1 +K◦◦, ·)

given by the series:

x 7→
∑
q∈S

χ(q)Gq(x)
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