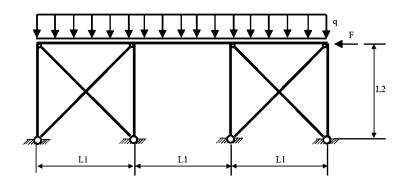
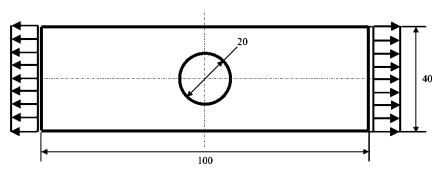


Università degli Studi di Padova – Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Meccanica

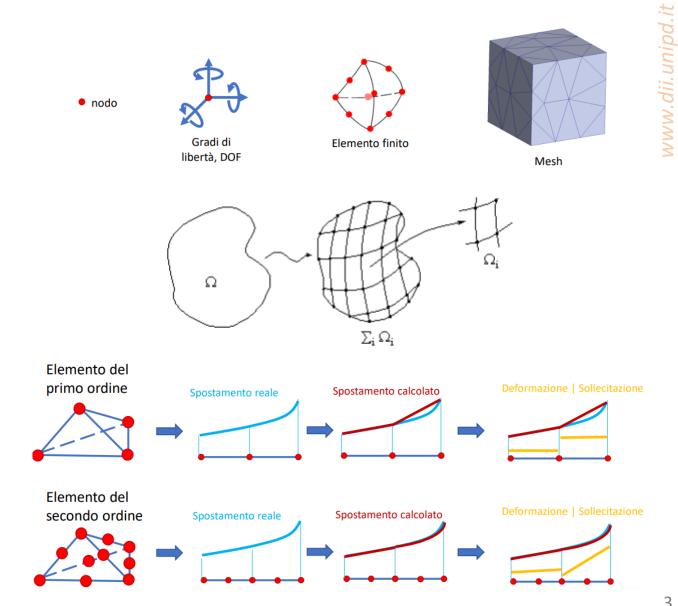
Relazione per la prova finale RIDUTTORE BISTADIO: ANALISI FEM STRUTTURALI MEDIANTE SOLIDWORKS SIMULATION

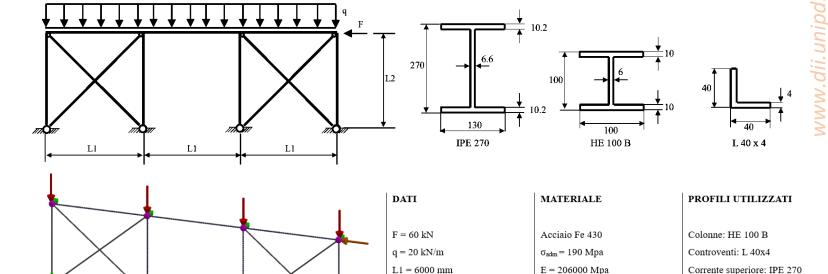

Tutor universitario: Prof. Alberto Campagnolo


Laureando: Giacometti Nicola

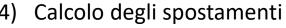
Padova, 17/11/2023

- Introduzione al metodo FEM
- Addestramento a Solidworks Simulation
- Calcolo del Kt e confronto con i valori teorici per l'albero di un riduttore bistadio
- Analisi di deformabilità dell'albero e confronto con i risultati analitici

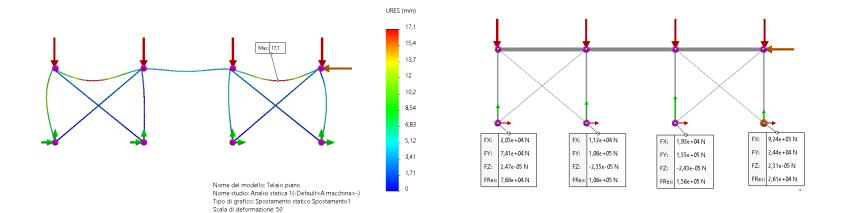



- Definizioni
- Concetto di discretizzazione
- Fasi di analisi
 - Applicazione delle condizioni al contorno
 - Calcolo degli spostamenti
 - Calcolo delle deformazioni
 - Calcolo delle tensioni
- Ipotesi dell'analisi statica lineare
 - Piccoli spostamenti
 - Carichi costanti
 - Risposta lineare del materiale

ANALISI DI UN TELAIO PIANO



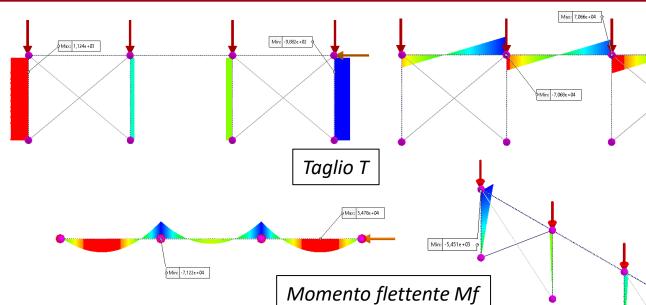
- Costruzione geometrica del telaio
- Modellizzazione trave
- Applicazione dei vincoli e dei carichi



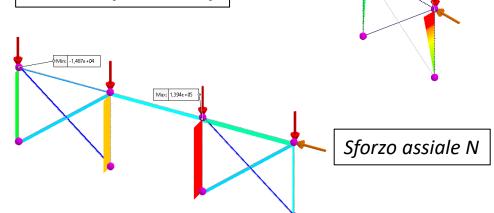
L2 = 5000 mm

v = 0.3

Calcolo delle reazioni vincolari

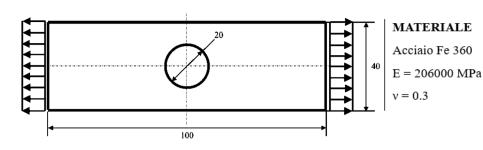

ANALISI DI UN TELAIO PIANO

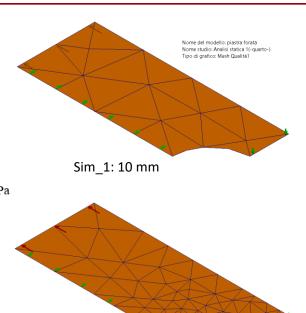
Max: 4,792e+03

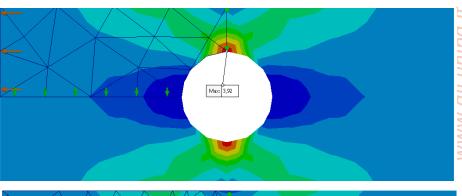

www.dii.unipd.ii

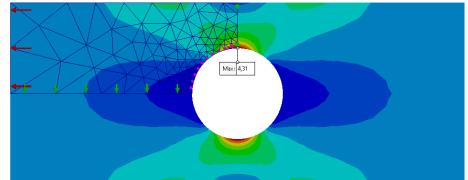
6) Diagrammi delle sollecitazioni

7) Verifica strutturale (metodo delle tensioni ammissibili)

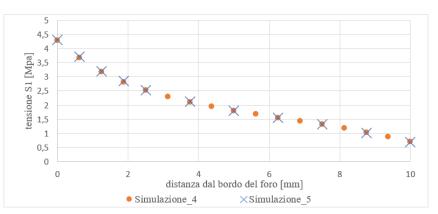

5


ANALISI DI UNA PIASTRA FORATA




- 1) Costruzione geometrica
- 2) Creazione del modello

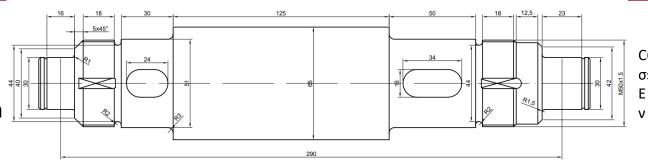
- 3) Calcolo del Ktg della piastra
- 4) Analisi di sensibilità della mesh e confronto con Ktg_teorico



Simulazione	Numero di elementi	Ktg	Scostamento dal Ktg teorico	Ktg_teorico
1	2	3,92	9,4 %	
2	3	4,05	6,4 %	
3	5	4,25	1,78 %	4,327
4	11	4,30	0,62 %	
5	11	4,31	0,39 %	

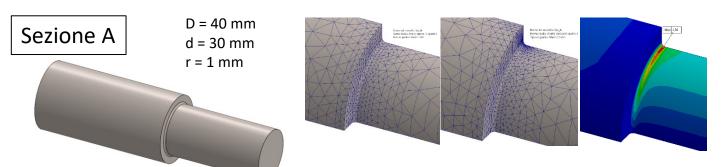
Sim_5: 1,25 mm

Corso di Laurea in Ingegneria Meccanica

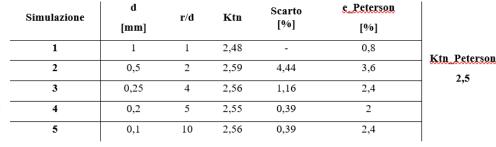

Albero intermedio del riduttore: calcolo del Kt

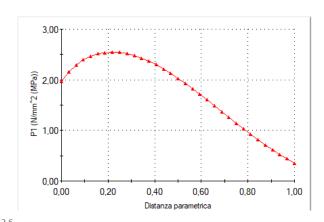
Calcolo del Kt nelle sezioni:

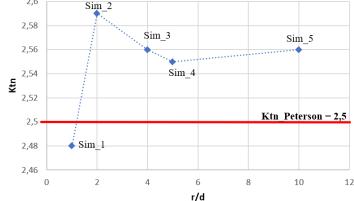
- A. Spallamento del cuscinetto sinistro
- Gola di scarico per la filettatura sinistra
- Spallamento della ruota dentata sinistra



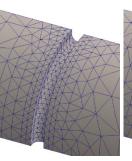
2,5

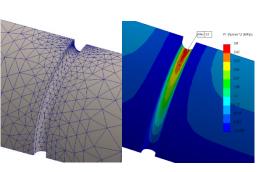

C60 bonificato $\sigma s = 450 \text{ Mpa}$ E = 206000 Mpav = 0.3

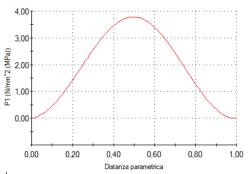

Fasi:

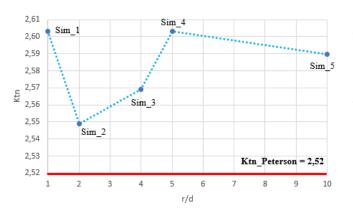

- Costruzione geometrica
- Applicazione dei carici e dei vincoli
- Calcolo del Kt e analisi di sensibilità della mesh

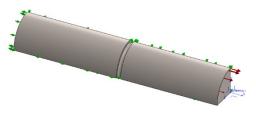
Atheno di coordinate I

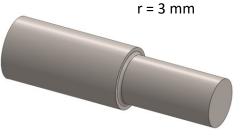


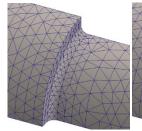

Albero intermedio del riduttore: calcolo del Kt

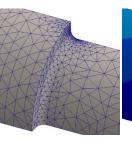


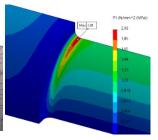




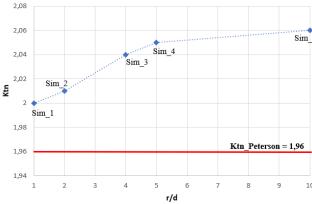



Simulazione	d [mm]	r/d	Ktg	Ktn	Scarto [%]	e_Peterson [%]
1	2	1	3,82	2,60	-	3,3
2	1	2	3,74	2,55	2,09	1,14
3	0,5	4	3,77	2,57	0,80	1,95
4	0,4	5	3,82	2,60	1,33	3,3
- 5	0.2	10	3.8	2.59	0.52	2.76


Ktn_Peterson 2,52

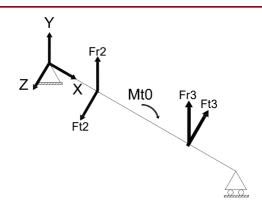

Sezione D

D = 51 mm d = 65 mm

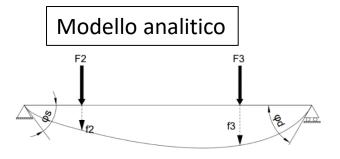


	2.50 _T ·····	· · · · · · · · · · · · · · · · · · ·				
Pa))	2,00					
^2 (M	1,50			\	· · · · · · · · · · · · · · · · · · ·	
P1 (N/mm^2 (MPa))	1,00	<u>.</u>		3	<u> </u>	
	0.50					
	0.00					***
	0.00	0.20	0.40	0,60	0,80	
			Distanza p	arametrica		

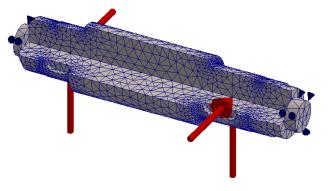
Simulazione	d [mm]	r/d	Ktn	Scarto [%]	e_Peterson [%]
1	3	1	2	-	2,04
2	1,5	2	2,01	0,5	2,55
3	0,75	4	2,04	1,49	4,08
4	0,6	5	2,05	0,49	4,59
5	0,3	10	2,06	0,49	5,1

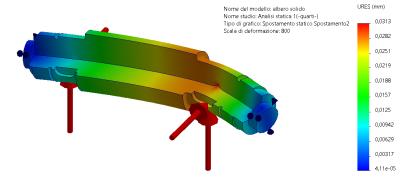

Ktn_Peterson

1,96


Albero intermedio del riduttore: analisi di deformabilità

- Calcolo delle frecce e delle rotazioni dell'albero con i metodi:
 - **Analitico**
 - FEM su modello tridimensionale
 - FEM su modello monodimensionale
- Confronto dei risultati nelle sezioni di maggior interesse:
 - Spostamenti della sede delle ruote
 - Rotazioni delle sedi dei cuscinetti

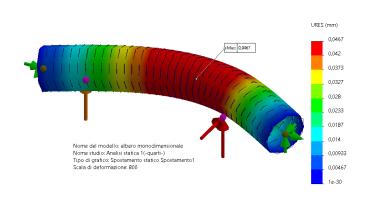


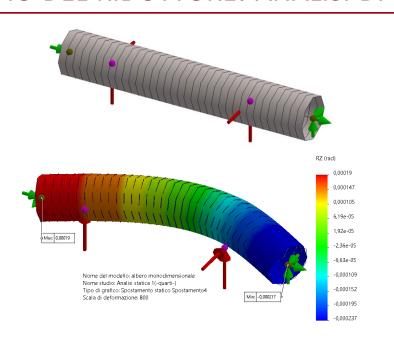

Ft_2	1778 N
Ft_3	8575 N
Fr_2	647 N
Fr_3	3121 N

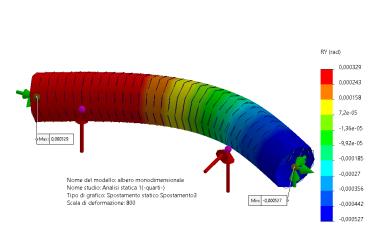
		Valore limite	Quota x [mm]
φ:	3,71· 10 ⁻⁴ rad	2,91 · 10 ⁻³ rad	0
f ₂	0,019	0,127 mm	50
f ₃	0,037	0,127 mm	215
φ¢	5,76 · 10 ⁻⁴ rad	8,73 · 10 ⁻⁴ rad	290

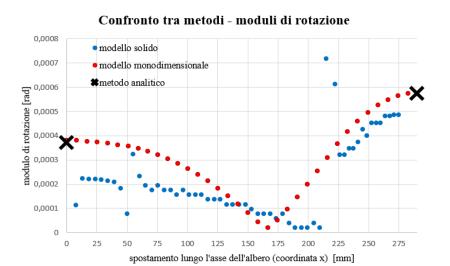
Modello tridimensionale

Rotazioni ricavate da foglio di calcolo

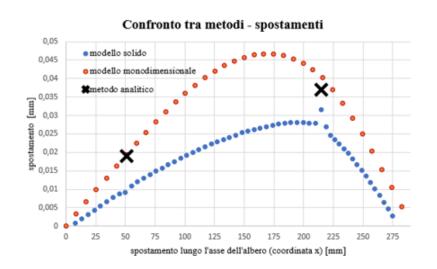


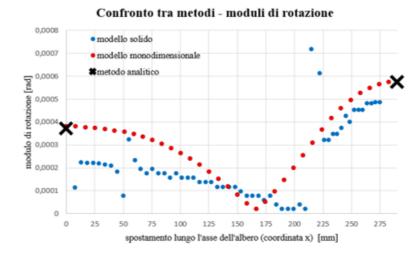

Albero intermedio del riduttore: analisi di deformabilità




Modello monodimensionale

Confronto tra metodi - spostamenti 0,05 modello solido 0,045 o modello monodimensionale 0,04 metodo analitico 0,035 **월** 0,025 0,02 0,01 0,005 125 150 175 spostamento lungo l'asse dell'albero (coordinata x) [mm]


Calcolo del Kt


	Ktn	Ktn_teorico	Scostamento %
SEZIONE A	2,56	2,5	2,4
SEZIONE B	2,59	2,52	2,76
SEZIONE D	2,06	1,96	5,1

- Convergenza della mesh
- Scostamento dal fattore teorico
 - Difficoltà di rilevamento grafico
 - Approssimazioni numeriche in entrata dei diagrammi

Verifica di deformabilità

		Valore limite	Quota x [mm]
φs	3,71· 10 ⁻⁴ rad	2,91 · 10 ⁻³ rad	0
\mathbf{f}_2	0,019	0,127 mm	50
f ₃	0,037	0,127 mm	215
φd	5,76 · 10 ⁻⁴ rad	8,73 · 10 ⁻⁴ rad	290

- Compatibilità tra metodo analitico e monodimensionale (entrambi basati sul modello trave)
- Risultati del modello monodimensionale maggiori del modello tridimensionale
 - Semplicità e velocità di analisi
 - Favore di sicurezza