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Abstract

This work deals with a 24-Slot and 16-Pole Fractional Slot (FS) Winding Synchronous Reluc-
tance motor, Assisted by Permanent Magnets (PMASynRel), with non-overlapped coils.
Moving from distributed to concentrated windings, a general decrease of performance occurs.
In the 24/16 configuration, then, this loss is extremely heavy, especially in terms of torque ripple.

The following study has two purposes. On one hand, to look for practical design strategies able
to reduce torque ripple, without modifying the average torque (or, better, increasing it). On
the other hand, studies have been carried out in order to understand the reasons of the poor
performance.
The thesis is split into 4 parts. After a brief recall of SynRel machines, some FS configurations
are developed, starting from the distributed motor. The 24/16 motor, therefore, is analysed
from the torque behaviour point of view. The second and the third parts gather a set of
design strategies which act on the stator and on the rotor, respectively. They are called: Slot-
Deformation, Tooth Cut, Stator Shifting, Optimization and Skewing. The last part, finally,
consists on a deep analysis of the 24/16 motor. An analytical model of the machine and a
possible explanation about the high torque ripple are developed.

The implemented strategies permit to reach very low values of ripple (Tripple < 10%), also if a
reduction of the average torque can not be neglected.
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Chapter 1

Background on PMARel Machines

The purpose of this chapter is to present the electrical model of Synchronous Reluctance Ma-
chines (SynRels), and -more generally- the model of SynRel motors assisted by inner magnets
(PMASynRels).

A basic two-pole machine is considered and it is studied starting from a real abc reference
frame. However, the most convenient manner of analyzing sinusoidal machines, as it is well
known, uses instantaneous current, voltage and flux linkage phasors in a synchronous-rotating
reference frame locked to the rotor. Therefore, the abc→ αβγ transformation -firstly- and the
αβγ → dqγ transformation -then- are applied to the model, in order to obtain the voltage and
torque equations for the machine in the reference frame illustrated in Fig. 1.1.

This frame is drawn with the following rules: d axis identifies the minimum reluctance magnetic
path, while the q axis is fixed at 90 el deg ahead the first one. In addition, the magnet (if present)
is aligned with the −q axis direction.
These set of conventions is known as Reluctance Reference and it will be used throughout the
rest of this thesis.

N

S a

b

c

d
q

θm
e

ξ

Figure 1.1: Reference frame
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In the generic real abc reference frame, voltages can be written as:
ua

ub

uc

 = [R]abc ·


ia

ib

ic

+
d

dt
·


λa

λb

λc

 = [R]abc ·


ia

ib

ic

+
d

dt
·


λa,i + λa,PM

λb,i + λb,PM

λc,i + λc,PM

 (1.1)

where winding resistance is the same for all the coils, while flux linkages due to the stator
currents and magnets are supposed to be sinusoidally-distributed:

Ra 0 0

0 Rb 0

0 0 Rc

 = R ·


1 0 0

0 1 0

0 0 1

 ⇒ [R]abc = R · [I] (1.2)


λa,i

λb,i

λc,i

 =


la(θ

e
m) mab(θ

e
m) mac(θ

e
m)

mba(θ
e
m) lb(θ

e
m) mbc(θ

e
m)

mca(θ
e
m) mcb(θ

e
m) lc(θ

e
m)

 ·

ia

ib

ic

 ⇒ [λi]abc = [L]abc · [i]abc (1.3)


λa,PM

λb,PM

λc,PM

 =


ΛPM · cos

(
θem −

π

2

)
ΛPM · cos

(
θem −

π

2
− 2

3
π

)
ΛPM · cos

(
θem −

π

2
+

2

3
π

)
 ⇒ [λPM ]abc = ΛPM · e

j

(
θem−

π

2

)
(1.4)

with self and mutual inductances which are supposed to vary sinusoidally: [L]abc =

=



L1 + L2 · cos (2θem) −L1

2
+ L2 · cos

[
2
(
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π

3

)]
−L1

2
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[
2
(
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2
(
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π

3
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[
2

(
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3

)]
−L1

2
+ L2 · cos (2θem)

−L1

2
+ L2 · cos

[
2
(
θem +

π

3

)]
−L1

2
+ L2 · cos (2θem) L1 + L2 · cos

[
2

(
θem +

2π

3
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A non-orthogonal abc→ αβγ transformation is now applied. In (1.5) and (1.6) the transforma-
tion rules and the conversion matrix are reported. Then, the transformed inductances matrix,
[L]αβγ , and the PM-fluxes array, [λPM ]αβγ , are calculated in (1.7). Finally, the transformed
voltages are derived in (1.9):



[u]αβγ =

[
T abc
αβγ

]−1
· [u]abc

[i]αβγ =

[
T abc
αβγ

]−1
· [i]abc

[Z]αβγ =

[
T abc
αβγ

]−1
· [Z]abc ·

[
T abc
αβγ

]
[λ]αβγ =

[
T abc
αβγ

]−1
· [λ]abc



[u]abc =

[
T abc
αβγ

]
· [u]αβγ

[i]abc =

[
T abc
αβγ

]
· [i]αβγ

[Z]abc =

[
T abc
αβγ

]
· [Z]αβγ ·

[
T abc
αβγ

]−1
[λ]abc =

[
T abc
αβγ

]
· [λ]αβγ

(1.5)
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[
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αβγ

]
=


1 0 1
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2

√
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2
1
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−
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3

2
1
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2
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2
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2
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−
√
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 (1.6)

[L]αβγ =


lα(θem) mαβ(θem) 0

mβα(θem) lβ(θem) 0

0 0 lγ(θem)

 [λPM ]αβγ = ΛPM ·


sin(θem)

−cos(θem)

0

 (1.7)

where: [L]αβγ =

=
3

2
·


[
L1 + L2 · cos(2θem)

]
L2 · sin(2θem) 0

L2 · sin(2θem)
[
L1 − L2 · cos(2θem)

]
0

0 0 0

 (1.8)

[u]αβγ =

[
T abc
αβγ

]−1
· [u]abc = [R]αβγ · [i]αβγ +

d

dt

(
[λ]αβγ

)
=

= [R]αβγ · [i]αβγ +
d

dt

(
[L]αβγ · [i]αβγ + [λPM ]αβγ

)
=

= [R]αβγ · [i]αβγ + [L]αβγ ·
d

dt

(
[i]αβγ

)
+
dθem
dt
· d

dθem

(
[L]αβγ

)
· [i]αβγ+

+
dθem
dt
· d

dθem

(
[λPM ]αβγ

)
=

= [R]αβγ · [i]αβγ + [L]αβγ ·
d

dt

(
[i]αβγ

)
+ ω · [F ]αβγ · [i]αβγ + ω · d

dθem

(
[λPM ]αβγ

)
(1.9)

The purpose, now, is to lock the α and β axes’ rotation and, thus, to take the windings placed
along normal axes independent each others (i.e. mαβ = mβα = 0). In order to do this, an
orthogonal αβγ → dqγ transformation 1 is implemented, with the following conversion matrix:

1The condition of orthogonality is verified when

[
T̄αβγ
dqγ

]−1

=

[
T̄ ∗αβγ
dqγ

]T
, where the symbol T̄ means that it is

considered a generic complex matrix and the symbol ∗ means “complex conjugate”.
In this case, the connection laws can be written also as:

[u]dqγ =

[
Tαβγ
dqγ

]T
· [u]αβγ

[i]dqγ =

[
Tαβγ
dqγ

]T
· [i]αβγ

[Z]dqγ =

[
Tαβγ
dqγ

]T
· [Z]αβγ ·

[
Tαβγ
dqγ

]
[λ]dqγ =

[
Tαβγ
dqγ

]T
· [λ]αβγ



[u]αβγ =

[
Tαβγ
dqγ

]
· [u]dqγ

[i]αβγ =

[
Tαβγ
dqγ

]
· [i]dqγ

[Z]αβγ =

[
Tαβγ
dqγ

]
· [Z]dqγ ·

[
Tαβγ
dqγ

]T
[λ]αβγ =

[
Tαβγ
dqγ

]
· [λ]dqγ

3



[
Tαβγ
dqγ

]
=


cos(θem) −sin(θem) 0

sin(θem) cos(θem) 0

0 0 1

 (1.10)

and the voltages equation (1.9) becomes:

[u]dqγ =

[
Tαβγ
dqγ

]T
· [u]αβγ = [R]dqγ · [i]dqγ +

d

dt

(
[λdqγ ]

)
+ ω · [J ]dqγ · [λdqγ ] (1.11)

It is worth of noting that the αβγ → dqγ transformation introduces a new term, ω ·[J ]dqγ ·[λ]dqγ ,
where:

[J ]dqγ =


0 −1 0

1 0 0

0 0 0


This fact occurs because the conversion matrix,

[
Tαβγ
dqγ

]
, is itself a function of variable θem.

Therefore:

[u]dqγ =

[
Tαβγ
dqγ

]T
· [u]αβγ = . . .+

[
Tαβγ
dqγ

]T
· d
dt

(
[λ]αβγ

)
= . . .+

[
Tαβγ
dqγ

]T
· d
dt

([
Tαβγ
dqγ

]
· [λ]dqγ

)

= . . .+
�
�
�
��

[
Tαβγ
dqγ

]T
·
�
�
�
�

[
Tαβγ
dqγ

]
· d
dt

(
[λ]dqγ

)
+

[
Tαβγ
dqγ

]T
· d
dt

[
Tαβγ
dqγ

]
· [λ]dqγ

= . . .+
d

dt

(
[λ]dqγ

)
+ ω · [J ]dqγ · [λ]dqγ

(1.12)

Being [λ]dqγ =

(
[L]dqγ · [i]dqγ + [λPM ]dqγ

)
, and recognizing that the αβγ → dqγ transformation

leads the matrix [L]dqγ and [λPM ]dqγ to take only real and constant coefficients,

[L]dqγ =


Ld 0 0

0 Lq 0

0 0 Lγ

 =
3

2
·


L1 + L2 0 0

0 L1 − L2 0

0 0 0

 [λPM ]dqγ = ΛPM ·


0

1

0



then, the following voltages equations system, is immediately obtained:

ud = Rid + Ld ·
did
dt
− ωLqiq + ωΛPM

uq = Riq + Lq ·
diq
dt

+ ωLdid

uγ = Riγ

(1.13)
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In Fig. 1.2 a graphical representation of the electric circuits of d−axis and q−axis is reported.

R

Ld
ω∙Lqiq

ud

id

ω∙Ldid
uq

iq

ω∙ΛPM
ΛPM

Lq

R

Lq

Figure 1.2: Equivalent circuit in the dq−reference frame

From (1.13) it is possible to calculate the electromagnetic torque, Tdq, by defining the instanta-
neous electric power absorbed by the machine. If the adopted transformations had been been
all orthogonals, the electric power has been simply calculated as:

pist = uaia + ubib + ucic = uαiα + uβiβ + uγiγ = udid + uqiq + uγiγ (1.14)

Having used non-orthogonal transformations with not invariant power, (1.14) becomes:

pist = uaia + ubib + ucic =
3

2
·
(
uαiα + uβiβ + uγiγ

)
=

3

2
·
(
udid + uqiq + uγiγ

)
(1.15)

Therefore:

pist =
3

2
·
(
udid + uqiq + uγiγ

)
=

=
3

2
·
(
Ri2d + Ldid ·

did
dt
− ωLqidiq + ωΛPM id

)
+

+
3

2

(
Ri2q + Lqiq ·

diq
dt

+ ωLdidiq

)
+

3

2
·
(
Ri2γ

)
=

=
3

2
R ·
(
i2d + i2q + i2γ

)
︸ ︷︷ ︸

PJoule

+
3

2
·
(
Ldid ·

did
dt

+ Lqiq ·
diq
dt

)
︸ ︷︷ ︸

PStorage

+
3

2
ω ·
(
Ld − Lq

)
· idiq +

3

2
ωΛPM id︸ ︷︷ ︸

Pem

(1.16)

From (1.16), three different terms can be identified: the losses, PJoule, a term of power associated
to the stored magnetic energy into the air-gap, Pstorage, and the converted power from electrical
to mechanical nature, Pem.
Pem is equal to the product between the torque and the mechanical angular speed. Thus:

Tdq =
Pem
ωm

= p · Pem
ω

=

[
3

2
· p · (Ld − Lq) · id · iq

]
︸ ︷︷ ︸

TREL

+

[
3

2
· p · ΛPM · id

]
︸ ︷︷ ︸

TPM

(1.17)

1.1 Reluctance component

In (1.17), two different torque components can be identified: a cylindrical torque, TPM , due to
the magnets, and a reluctance component, TREL, associated to the presence of an anisotropy of

5



the rotor.

Let’s consider a simple two-poles SynRel machine (i.e. with no PMs): the purpose of this Section
is to fast summarize the design of reluctance component and, in particular, to understand the
reason of the quite complex geometry of Fig. 1.3(a), rather than the simpler and more known
geometry with saliencies of Fig. 1.3(b). The question to be answered is:

Why the machine anisotropy is not obtained through saliencies, as in Fig. 1.3(b)?

d

q

ξ

(a) SynRel Machine

d

q

ξ

β

(b) Machine with saliencies

Figure 1.3: Possible synchronous anisotropic machines

Answer is immediately found by referring to the torque expression of (1.17): torque is propor-
tional to the difference between the inductances of direct and quadrature axes. Therefore, the
aim is to act simultaneously in order to:

1- increase the direct axis inductance, Ld;

2- reduce, as much as possible, the quadrature axis inductance, Lq.

1.1.1 Saliency rotor

Firstly, a classical solution with saliencies, as in Fig. 1.3(b), is taken into account. Magnetic
linearity is assumed and the hypothesis is made (for simplicity of the analysis) that there is
no flux at the air-gap except over the pole-shoe. In order to evaluate the maximum reluctance
torque, it is necessary to express the Ld and Lq inductances as functions of the angular variable,
β. It is the value which identifies the pitch of pole-shoes. For the following analysis, superposi-
tion principle is used and the axes d and q are considered separately.

D-AXIS. A unit D−axis magnetomotive force, mmfd ∝ cos(ξ), is applied. In general, it is:

B(ξ) = µ0 ·
Us(ξ)− Ur(ξ)

g(ξ)
(1.18)
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where: B is the flux density, µ0 is the vacuum magnetic permeability, (Us−Ur) is the magnetic
voltage drop at the gap (strictly speaking, it is a scalar magnetic potential difference between
stator and rotor), and g is the gap length.

Being the gap, g, constant as ξ changes, and (Us −Ur) ∝ cos(ξ), then also the flux density will
be: Bd(ξ) ∝ cos(ξ). This is true only over the shoe, while it will be zero elsewhere, for the
hypotheses done:

β
2

β
2


2


2

mmfd

Bd

d

ξ

Figure 1.4: d−axis mmf and flux density

mmfd ∝ cos(ξ)

Bd ∝


cos(ξ)

[
−β

2
;
β

2

]

0 elsewhere

Defined c a constant which depends on the geometry, the direct-axis inductance is:

Ld = c ·
∫ 2π

0
mmfd ·Bd · dξ = 2c ·

∫ +β/2

−β/2
cos2(ξ) · dξ = 2c ·

(
β

2
+

1

2
sin(β)

)
= c ·

(
β + sin(β)

)
Q-AXIS. The same considerations are now repeated when a Q−axis magnetomotive force,
mmfq ∝ sin(ξ), is applied. By referring to the same reference frame, as previously, magnetomotive-
force, mmfq, and flux density, Bq, will be as in Fig. 1.5. Then, the computation of Lq inductance
will be derived below:

β
2

β
2

0 
2

mmfq

Bq

q

ξ
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Figure 1.5: q−axis mmf and flux density

mmfq ∝ sin(ξ)

Bq ∝



sin(ξ)

[
0;
β

2

]

0

[
β

2
;
π

2

]

symmetric elsewhere

Lq = c ·
∫ 2π

0
mmfq ·Bq · dξ = 4c ·

∫ β/2

0
sin2(ξ) · dξ = 4c ·

(
β

4
− 1

4
sin(β)

)
= c ·

(
β − sin(β)

)
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The developed torque will be a function of the angle β, and its maximum value will be reached
when sin(β) = 1:

Tdq,REL(β) =
3

2
p ·
(
Ld − Lq

)
· idiq =

3

2
p · c ·

(
��β + sin(β)− ��β + sin(β)

)
· idiq =

=
3

2
p · c′ · sin(β) · idiq

Ultimately, in order to obtain the maximum torque from the reluctance motor with saliencies,

a pole-shoe with a span of β =
π

2
, that is an half of the pole pitch, is necessary. With this value

of β, however, a very low saliency ratio of
Ld
Lq

= 4.5 is obtained2.

This fact implies some consequences: on one hand, power factor, cos(ϕ), is very low and, so,
an oversizing design of the inverter is necessary; on the other one, torque, too, is influenced
because -also if the difference (Ld − Lq) is optimal- the direct axis inductance remains low.

From this considerations, two design goals, which must be verified simultaneously, are fixed:

- to maximize Ld (up to values as close as possible to the induction motor ones);

- to minimize Lq (up to values as low as possible).

1.1.2 SynRel rotor

These two conditions are pretty well verified by the SynRel machine, which has a rotor geometry
as in Fig. 1.3(a). A detailed theory of the multiple-barrier SynRel rotors can be found in [1,2].
Only an introduction of this theory is reported here.

Let’s consider a SynRel two-poles and single-barrier motor. The procedure is similar to the
previous one: a slotless machine is considered and the real windings are substituted by a mmf
distribution at the gap. The problem is split in two parts and the superposition principle is used.

D-AXIS. The first step is to fed the motor with a D−axis magnetomotive force, mmfd ∝
cos(ξ). A convenient way to understand what happens is the d−axis equivalent magnetic cir-
cuit, which is reported in Fig. 1.6. Here, a cross section of the rotor is illustrated, while the
dashed line defines the inner diameter of the stator. Obviously, the air-gap is not in scale,
because there was the necessity of space to put the gap reluctances, Rg. With circles the mmfd
generators are indicated, while arrows identify the fluxes paths. The symbol of “earth” corre-
sponds to the reference zero potential, and the symbol of “resistance” means “reluctance”.

The figure shows the same behaviour for all the three portions of the rotor: the magnetic cir-
cuits are characterized only by the gap reluctance, Rg, which doesn’t change along the gap.
Assuming there are no magnetic drops into the iron, all the rotor is at the same magnetic scalar
potential, with respect to the stator: Ur = 0A everywhere.

2This number, in any case, is an optimistic appraisal, valid only for an ideal motor with all the hypotheses
mentioned above. For the applications to whom this motor is intended, possible reference values of the saliency

ratio could be:
Ld
Lq

≈ 20.
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q

ξ

Figure 1.6: d−axis equivalent magnetic circuit

Fluxes follow trajectories as in figure and they are limited only by the gap reluctances. This
implies that the D−axis inductance remains high: Ld|SynRel → Ld|IND.

Analytically, it is the same of what has been done for the saliency rotor: because of g is constant
and Ur = 0A everywhere, the flux density has a sinusoidal behaviour, for (1.18). Then:

Ld = c ·
∫ 2π

0
mmfd ·Bd · dξ = c ·

∫ 2π

0
cos2(ξ) · dξ = c · π

Q-AXIS. When, instead, a Q−axis magnetomotive force, mmfq ∝ sin(ξ), is applied, the motor
behaves as in Fig. 1.7, while the equivalent magnetic circuit becomes as in Fig. 1.8:

d

q

a

b

(a) 2-poles 1-barrier SynRel rotor

0

fmmq

r (ξ)

q

ξ

d

a b

f (ξ)

(b) Q−axis mmf and reaction function

Figure 1.7: Possible synchronous anisotropic machines
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Rb

d

q

ξ

Figure 1.8: q−axis equivalent magnetic circuit

If the motor is analysed as ξ changes from 0 to π, referring to the meaning of letters a and b as
in Fig. 1.7(a), it is:

- for ξ = [0; a[, the rotor portion over this angles is the central one. Here, the circuit is
characterized by two mmf generators (on the right of Fig. 1.8) which drive the flux in the
same anticlockwise direction. Therefore, the only magnetic voltage drops are related to
the gap reluctance, Rg (which is constant over the interval) and the rotor magnetic scalar
potential remains null. If the values of Ur are considered as a function of the variable ξ, a
new function, r(ξ), called reaction, can be defined. It is highlighted with a thick and red
line in Fig. 1.7(b) and, since here Ur is always zero, also r(ξ) = 0 for ξ = [0; a[;

- for ξ =]a; b[, the rotor portion interested is the upper “island”. Here, the mmf generators
are set so that the fluxe can’t close itself directly: the only possibility is to pass through
the air barriers, as illustrated.
Doing it, the scalar magnetic potential will be zero when the flux passes through the
central rotor portion, while it must be positive in the upper island and negative in the
lower island. This implies that, for ξ =]a; b[ it is: r(ξ) = +Ur;

- for ξ =]b;π], the same situation of the first point is obtained.

Now, the computation of Lq is simplified if the inductance is seen as the sum of two contribution:
an inductance due to the circulating fluxes around the ribs (not considered here) and a second
inductance linked to the flux which flows through the barriers. The flux density due to this
latter component can be written as:

Bf,q(ξ) = f(ξ)− r(ξ) (1.19)

where: Bf,q means “Flowing through the barriers” flux density, f(ξ) is a function3, set up by
the average values of sin(ξ) over each angular interval cited above, while r(ξ) is the reaction.

3The function f(ξ) is highlighted in Fig. 1.7 with a dashed green line.
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The inductance, then, can be approximated as:

Lq = c ·
∫ 2π

0
mmfq ·Bq · dξ ≈ c ·

∫ 2π

0
mmfq ·Bf,q · dξ = c ·

∫ 2π

0
sin(ξ) · [f(ξ)− r(ξ)] · dξ

The difference [f(ξ)− r(ξ)] is very low (especially for ξ =]a; b[) and, thus, Lq will be low, too.

Definitively: thanks to the magnetic insulation of the rotor pieces, due to the rotor barriers,
two different values of L are obtained: an high Ld, because the fluxes flow only into the iron
(except for the gap), where there are negligible magnetic drops, and a low Lq, because flux is
forced to flow through the air barriers, increasing a lot the total reluctance of the circuit.
A reference value of the saliency ratio, in this case, could be: Ld/Lq ≈ 15. This is greater than
the saliency ratio found for the saliency rotor, and this is the confirmation of the better quality
of SynRel motors, respect to the saliency ones.

1.2 SynRel or PMASynRel?

In general, the cylindrical torque contribution, TPM , is rather scarce. It is due to the fact that,
in this kind of machines, magnets of poor quality (ferrites) are generally employed. At this
point, a spontaneous question should be suggested:

Why the presence of (however expensive) magnets into the machine, if they don’t imply
sensible advantages to the torque?

In PMASynRel motors, magnets have not the main purpose of giving a contribution in terms of
torque: they are used to increase the quality of the machine’s performances, especially in terms
of power factor, cos(ϕ), which is generally low in reluctance machines.

Magnet can be simply seen as a current generator. The flux produced by the magnet, ΛPM ,
closes itself through the rotor ribs, saturating them. Thus, it is no more necessary to draw upon
the magnetizing stator current: by reducing this current, also the inductance Lq decreases and
-thus- the absorption of reactive power, too, is limited.

Another way to explain the presence of the magnets is the graphical one. Let’s consider the
working points A and B reported in Fig. 1.9:

Iq

Id

A
B

MTPAMTPV

Flux
weakening

Figure 1.9: Working points

d

q

i λ
AB

A

B

v

φ

Figure 1.10: Vector diagram with no PMs
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The first one identify the MTPA working point of the machine, from the zero-speed condi-
tion up to the achievement of the base speed. Beyond the latter, the motor can still work,
but only in flux-weakening conditions, which are highlighted in blue (from A to B). Once the
flux-weakening reaches the voltage limit, the machine is forced to reduce the magnitude of the
current vector, and -thus- the MTPV trajectory is traveled.

Let’s focus, now, on the MTPA working point, A.
As it can be seen in Fig. 1.10, a SynRel machine with no magnets is characterized by a flux
vector, λ̄, rather far from the direct axis. Since that, for the Faraday-Newmann law, it is:

v̄ =
dλ̄

dt
= jωλ̄ (1.20)

the voltage phasor must be at 90 el deg ahead the flux one, at a distance ϕ from the current. This
angle (the phase shift between v̄ and ī) is wide and, therefore, a low power factor is obtained.
Other remark: as it is highlighted by dotted grey curves in Fig. 1.10, the flux and current
vectors move themselves while the machine works in flux-weakening conditions. In particular,
the flux phasor follows an elliptical trajectory up to the intersection of the plane bisector, while
the current rotates, from the bisector until a position ∈ ]45; 90[ deg.
From these considerations, it follows that the B point must be exist and -consequently- the
flux-weakening range is limited.

If, now, the magnets are added into the rotor barriers, with the Reluctance Reference conditions
(i.e. λ̄PM along −q direction), the working points and the phasor diagram of Fig. 1.9 and Fig.
1.10, change as follow:

AB

MTPA

Flux
weakeningIq

Id

Figure 1.11: Working points

d

q

λ

λPM

λTOT

v

φ

A

B

A
B

i

Figure 1.12: Vector diagram with PMs

The flux due to the magnet, λ̄PM , combines itself with the stator one, λ̄. The result of these
vector sum is the total flux, λ̄TOT .
The effect of this clockwise rotation, in terms of power factor, is immediately clear if the voltage
phasor is observed, instead of talking about the flux vector. The rotation of these two quantities
is the same because they are strictly linked each others. Thus, also the voltage phasor rotates
itself in clockwise direction and the angle ϕ reduces itself. The power factor, therefore, increases.
In addition, from the point of view of flux-weakening behaviour of the machine, it is worth noting
that, with an appropriate design of the magnets, it is possible to create a vector, λ̄TOT , with
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an elliptical trajectory located totally in the +d/ − q plane. In this case, the ellipse crashes
with the bisector only in the origin, (0;0). In other words: with the supplement of magnets, the
working points’ chart changes, too, because they extend the flux-weakening operation of the
machine so much that the MTPV trajectory disappears.

1.3 Summary and conclusions

A PMASynRel motor is an electric machine which uses both, reluctance and magnets, in order
to produce torque. This latter is derived in (1.17) and reported here:

Tdq = p · Pem
ω

=

[
3

2
· p · (Ld − Lq) · id · iq

]
+

[
3

2
· p · ΛPM · id

]

The presence of magnets is not particularly important from the point of view of torque devel-
opment, but their presence into the rotor barriers implies:

- an improvement of the power factor, cos(ϕ);

- an extension of the flux-weakening working range;

- a shift of the short circuit current value (i.e. the center of voltage limit curve) toward the
q−axis;

- a consequent convergence of the MTPV trajectory into a point.

It is important to note, finally, that the dq-torque, Tdq, written above is the answer to a very
simplified problem: strong hypotheses have been done, as the magnetic linearity and perfectly
sinusoidal fields and distributions at the air-gap. These restrictions lead to correct appraisals
of the average torque, but the same cannot be said for the torque ripple.
This is the reason why, henceforth, developed torque will be calculated through the finite
element analysis and, in particular, via Maxwell Stress Tensor’s method, rather than through
the analytical expression, Tdq.
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Chapter 2

Work introduction

This thesis is inserted into the research activity of University of Padua’s Electrical Drives Lab-
oratory and, in particular, it is the continuation of a study commissioned by ABB Italia S.p.a.
- Discrete Automation and Motion Division.
The company’s request consists on the sizing and the design of PMASynRel motors intended
to lift applications. The aim is to understand if better results are possible, with respect on the
current technology (SPM with rare earths), in terms of performances or -alternately- in terms
of cheapness, with no excessive lost of performances.

At the beginning of this work, some designs had already been done and the best found solution
consisted on a 72-slot 16-pole PMASynRel with distributed windings. This solution will be
called Motor #1 into this report, for simplicity.

From it, the nature of winding has been changed and fractional-slot motors with non-overlapped
coils (i.e. yq = 1) have been studied. The advantages of fractional-slot machines are beyond
the scope of this research and [3] can be used as a considerable reference.
To begin with, all the possible combinations of slots and poles have been defined. They are
reported in Tab. 2.1:

Q 2p q yq t

18 16 0.3750 1 2
21 16 0.4375 1 1
24 16 0.5000 1 8
27 16 0.5625 1 1
30 16 0.6250 1 2

Table 2.1: Possible fractional-slot motors

Between them, only the first three have been taken into account, here. Following, a fast expo-
sition of the analysed motors is presented.

2.1 Motor #1

Motor #1 is a 72/16 PMASynRel motor with distributed windings. It is made up with a Terni
lamination and Ferrite magnets. Its geometrical data are reported in Tab. 2.2, while in Fig.
2.1 these data are illustrated:
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Figure 2.1: Motor #1 Cross Section

Stator Rotor
De 650 mm External diameter Dr 498.6 mm Rotor diameter
Di 500 mm Stator inner diameter Df 200 mm Rotor inner diameter
Qs 72 [−] Slot number b 3 [−] Number of barriers

Sslot 621 mm2 Slot cross section area Other
wt 11 mm Tooth width 2p 16 [−] Pole number
wso 3 mm Slot opening width Lstk 235 mm Stack length
hs 50 mm Slot height g 0.7 mm Air-gap thickness
hbi 25 mm Stator yoke height m 3 [−] Phase number

Table 2.2: Motor #1 data

This motor has been simulated by means of the freeware FE software FEMMr, in order to
obtain an appraisal of torque behaviour. To do this, the same following procedure is applied
for all the motors of this work:

1. firstly, the designed machine is simulated in off-load conditions and with the change of
mechanical rotor position, θm. This operation is called rotor alignment and it has got the
aim:

• to know where the d− and q− axes are with respect to the abc steady state reference
frame;

• to ensure that the fluxes produced by the currents and the magnets are properly
oriented (according to Reluctance Reference).

2. secondly, the MTPA working point is researched. The current vector angle, αie, is varied
while the rotor mechanical angle is kept fixed (machine is always simulated in position
θm = 0deg). The result consists on a graph where the torque trend is plotted with respect
to the αie angle. The value of the latter, for which the maximum torque is obtained
(hereafter called αie,opt), identifies the MTPA working point;
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3. finally, machine is simulated as the mechanical rotor position changes, in conditions under
load, i.e. while the current vector has an amplitude different from zero and it is rotated
locked to the rotor at the fixed shift angle, αie,opt. Obviously, it is not necessary to rotate
the rotor completely: simulations are characterized by a rotation of 180 or 360 electrical
degrees, that correspond to:

θm =
θme
p

=
θme
8

⇒ 180 el deg = 22.5 deg

360 el deg = 45 deg

Results in Fig. 2.2 and Fig. 2.3 are referred to Motor #1, fed by a current phasor of amplitude
|Ī| = 1200A:
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Figure 2.2: MTPA working point research

The maximum torque is de-
veloped at a current angle of
αie,opt = 58 el deg. Therefore it is
the value with whom simulations
will be implemented.
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Figure 2.3: Motor #1 torque ripple at αie = 58 el deg

Fig. 2.3 shows the torque ripple developed by the motor. Here it is possible to note how the
machine presents an high value of average torque and a relatively low ripple. In particular:

- Average Torque developed: Tavg = 1696Nm

- Torque Ripple: Tripple = 18.45%
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2.2 Fractional-slot motors

2.2.1 18-Slot 16-Pole configuration

18-Slot 16-Pole PMASynRel motor has the same geometric characteristics of Motor #1: for a
better comparison, in fact, only the slots number -and consequently their cross section area- are
adapted, while all the other parameters remain unchanged. Slot currents are modified in order
to maintain the same electric loading. Therefore, if kw,i is the winding factor of the i-th motor,
it is:

|Ī|18/16 = |Ī|72/16 ·
QS, 72/16

QS, 18/16
·
kw, 72/16

kw, 18/16
= 1200 · 72

18
·
��

��
�0.945214

0.945214
= 4800A

Following, a motor cross section is illustrated in Fig. 2.4, while in Tab. 2.3 its geometrical data
are reported. Data which change with respect on Motor #1 are highlighted in bold and red:

Figure 2.4: 18/16 Cross section

Stator
De 650 mm External diameter
Di 500 mm Stator inner diameter
Qs 18 [−] Slot number
Sslot 2454 mm2 Slot cross section area
wt 44 mm Tooth width
wso 3 mm Slot opening width
hs 50 mm Slot height
hbi 25 mm Stator yoke height

Rotor
Dr 498.6 mm Rotor diameter
Df 200 mm Rotor inner diameter
b 3 [−] Number of barriers

Other
2p 16 [−] Pole number
Lstk 235 mm Stack length
g 0.7 mm Air-gap thickness
m 3 [−] Phase number

Table 2.3: 18/16 data
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Figure 2.5: 18/16 torque ripple at αie = 40 el deg
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It is immediately clear how the passage from distributed windings to concentrated ones implies
a sensible reduction of the average torque, while ripple seems to keep low values. As a mat-
ter of fact, average torque is now Tavg ≈ 1049Nm, while ripple increases a few: Tripple = 22.37%.

An explanation of these high torque decrease is possible, by observing how the motor behaves
over each pole. If torque is derived through a linear integral of the Maxwell Stress Tensor, where
the way consists on an arc (at the air-gap) of length 360/18 = 20 deg (that is the pole pitch), it
is possible to split the total average torque into its contributions due to each pole. Since 18/16
PMASynRel motor has periodicity 2, the split has been led only for an half of the machine.
Results are highlighted in Fig. 2.6 for αie = 40 el deg and θm = 1 deg:
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-44 Nm
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Figure 2.6: 18/16 torque contribution over each pole

NOTE: The analysis has been carried out for all the rotor mechanical positions, θm. The
situation of figure is similar for all the angles, and this is the reason why only one θm is here
taken into account. Fig. 2.6, in other words, can be considered as a description of the problem
of torque for all the simulated rotor positions.

The reduction of slot number leaves a lot of space with teeth, and -thus- flux lines close them-
selves wrongly. The consequence is that each pole of the machine pushes or pulls rotor in a
different way. It would expect that every pole tends to rotate the rotor in the same direction
and, possibly, also with the same power. In this case, instead, there are some poles which pull
the rotor in the correct direction (anti-clockwise rotation, signed with a +, in figure) and there
are others which pull in the opposite way (signed -).
The sum of these contributions is still positive (in the sense of anti-clockwise rotation), but
obviously the average value of torque is reduced.

2.2.2 21-Slot 16-Pole configuration

The same analysis has been developed for a 21-Slot 16-Pole PMASynRel motor and the consid-
erations done for the previous motor are still effective. In this case, the magnitude of current
vector is:

|Ī|21/16 = |Ī|72/16 ·
QS, 72/16

QS, 21/16
·
kw, 72/16

kw, 21/16
= 1200 · 72

21
· 0.945214

0.889748
≈ 4370A
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Following, the same informations shown for the 18/16 motor are reported and updated:

Figure 2.7: 21/16 Cross section

Stator Rotor
De 650 mm External diameter Dr 498.6 mm Rotor diameter
Di 500 mm Stator inner diameter Df 200 mm Rotor inner diameter
Qs 21 [−] Slot number b 3 [−] Number of barriers

Sslot 2084 mm2 Slot cross section area Other
wt 38 mm Tooth width 2p 16 [−] Pole number
wso 3 mm Slot opening width Lstk 235 mm Stack length
hs 50 mm Slot height g 0.7 mm Air-gap thickness
hbi 25 mm Stator yoke height m 3 [−] Phase number

Table 2.4: 21/16 data
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Figure 2.8: 21/16 torque ripple at αie = 39 el deg

Here, too, there are reductions of the average torque and a low ripple: Tavg ≈ 1093Nm and
Tripple ≈ 12.40%, respectively.
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The situation is very similar to the previous one and this leads to think that the same results
will be found from the total average torque split. In this case, however, machine periodicity is
equal to unity (i.e. t = 1). Therefore, the overall machine must be analysed:
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Figure 2.9: 21/16 torque contribution over each pole (θm = 2 deg)

As expected, here too, there is a motor’s behaviour where some poles work forward and others
backward, getting the rotor to rotate clockwise.

2.2.3 24-Slot 16-Pole configuration

Last designed machine is a 24/16 PMASynRel motor. It distinguishes itself from the previous
ones for its high periodicity (t = 8). This particular, as it will be possible to note further, leads
to different considerations and different results, which are the opposite respect to what has been
seen until now. In particular, machine has an average torque rather high: its decrease is around
-25% of the Motor #1 ’s one (in the previous motors, torque reduction reached -40%). Vicev-
ersa, 24/16 motor shows a ripple extremely high, so that this machine becomes unacceptable
for any real application.

For these reasons, this 24/16 motor is the configuration which will be examined in depth into
this thesis, and it will be called, hereafter, Reference motor: the aim of the work is to act
on the machine geometry in order to reduce the torque ripple as much as possible, without
modifying the average torque value (or, better, increasing it).

In Figs. 2.10 - 2.13 and Tab. 2.5: a section of the motor, a scheme of the winding, the geomet-
rical data, the research of αie,opt and the torque behaviour:
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Figure 2.10: 24/16 Cross Section
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Phase C
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e B

Figure 2.11: 24/16 Winding

Stator
De 650 mm
Di 500 mm
Qs 24 [−]
Sslot 1866 mm2

wt 33 mm
wso 3 mm
hs 50 mm
hbi 25 mm

Rotor
Dr 498.6 mm
Df 200 mm
b 3 [−]

Other
2p 16 [−]
Lstk 235 mm
g 0.7 mm
m 3 [−]

Table 2.5: 24/16 data
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Figure 2.12: MTPA working point research

The research of MTPA working point fixes the phase of current vector to the value: αie,opt =
46 el deg. Its amplitude, instead, is calculated with the same rules seen before:

|Ī|24/16 = |Ī|72/16 ·
QS, 72/16

QS, 24/16
·
kw, 72/16

kw, 24/16
= 1200 · 72

24
· 0.945214

0.866025
≈ 3930A
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Figure 2.13: 24/16 torque ripple at αie = 46 el deg

From Fig. 2.13, the torque behaviour is very different from the previous ones: the average
torque remains rather high (Tavg ≈ 1306Nm), while ripple increases a lot: from values around
Tripple ≈ 15% to Tripple = 97.36%.
This reference motor peculiarity encourages to additional deeper studies and, so, for an analysis
of the just presented results, see next chapter.

2.3 Conclusions

In this chapter, a summary of what has been done at the beginning is present. Some fractional-
slot PMASynRel motors have been analysed with different configurations of Slots/Poles: 18/16,
21/16, 24/16. All these motors have the same main geometrical data, for a better comparison
between them and with the first designed motor, which is called Motor #1.

The passage from distributed winding to concentrated one leads to a collective decrease of
average torque and to an increase of torque ripple. In Tab. 2.6 a summary of the obtained
results is reported:

Motor #1 Reference

Qs [-] 72 18 21 24
2p [-] 16 16 16 16
Ī Apeak 1200 4800 4370 3930
αie [el deg] 58 40 39 46
Tavg [Nm] 1696 1049 1093 1306

[%] 100 61.85 64.15 77.01
Tripple [%] 18.45 22.37 12.40 97.36

Table 2.6: Comparison between the motors

Particularly interesting is the solution PMASynRel 24/16: with respect to the other two config-
urations, it exhibits opposite characteristics, both in terms of average torque (rather high) and
ripple (extremely high). This is the reason why the aim of this work, hereafter, will be focused
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only on this last motor. For convenience, it will be called Reference Motor. The purposes,
now, are twofold:

1. to look for an explanation on why the machine has got a so strange behaviour, respect to
the other ones;

2. to try some advanced design strategies in order to improve the machine performance.

This thesis is organized as follow:

CHAPTER 3. An introduction on the 24/16 PMASynRel is presented. In particular some
magnetic considerations are present. In addition, a numerical tool, which will be fundamental
for deeper analyses, is explained.

CHAPTERS 4-5. Three different design strategies are reported. They act on the stator and
are called Slot Deformation, Tooth Cut and Stator Shifting, respectively.

CHAPTER 6. A multi-objective evolutionary optimization algorithm is used to define the
best shape for the rotors barriers, in terms of increase of average torque and reduction of ripple,
at the same time. The algorithm was developed by Alotto et al. [4], and it has been adapted
for this work.

CHAPTER 7. The well-known skewing technique is here exhibited and a new algorithm is
developed to study the best combination of rotor skewed parts. The chapter, together with the
previous one, defines the design strategies which act on the rotor.

CHAPTER 8. Deeper studies is finally conducted on the motor. In particular, from what has
been discovered during the previous chapters, the machine analytical model is reconstructed
and the main cause of the high ripple is found.
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Chapter 3

The 24/16 Reference motor

3.1 Magnetic behaviour

Let’s consider the 24/16 motor, fed by a current of magnitude |Î| = 3930A and with a phase
angle of αei = 46 el deg. Fig. 3.1 shows the Maxwell torque behaviour for a rotation of 360 el deg:
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Figure 3.1: Maxwell Torque Ripple for PMASynRel 24/16 configuration

Figure shows that the torque remains high most of the time, while holes appear every 7.5 deg =
60 el deg, in particular at θm = 5 deg, θm = 12.5 deg, θm = 20 deg, and so on. In other words:
the motor is characterized by an important contribution of the 6− th torque harmonic.

From a magnetic point of view, the motor has a periodicity t = 8. It means that the magnetic
behaviour of the machine can be studied only for a portion of 3 slots and 2 poles, because it
repeats itself in the same way in the remaining part. Hereafter, hence, only a two-pole pitch
(2-PP) is considered.
If we now consider a geometrical configuration, both when torque is high (e.g. at θm = 1.5 deg,
called Good position G ) and when it is low (e.g. at θm = 5 deg, called Bad position B ), two
different magnetic situations will be worth noting:

- when θm = 1.5 deg (good condition G ), two different magnetic circuits are recognizable
over the two-pole pitch. The first one, on the right of Fig. 3.2(a), links two neighbouring
slots and it is associated to an equivalent negative current: I− = −2886− 119 = −3005A.
The second one, on the left of the same figure, sorrounds only one slot, where a positive
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current I+ = 3005A is present. In Fig. 3.2(a), the two different magnetic circuits are
highlighted in thin red and thick green, respectively.
In this situation, the pole associated with the shorter magnetic circuits (the thick one, on
the left), develops an high torque value of T ′ ≈ 143.4Nm each, while the other (associ-
ated with the longer magnetic circuits on the right), develops a lower but with the same
direction torque of T ′′ ≈ 55.3Nm. Consequently, the torque, T2−PP , developed over a
two-pole pitch is:

T2−PP (θm = 1.5 deg) = T ′ + T ′′ ≈ 143.4 + 55.3 ≈ 198.7Nm

NOTE: To derive the torque values just reported, the Maxwell Stess Tensor method has
been used. In particular, with FEMMr software, an arc covering each magnetic circuit
has been defined and, then, the line integral has been used to calculate the torque from
Maxwell Stress Tensor.

55.3 Nm
55.3 Nm

143.4 Nm143.4 Nm

+3005 A
-2886 A

-119 A

(a) Machine at θm = 1.5 deg

78.1 Nm
78.1 Nm

12.6 Nm12.6 Nm

+1903 A
-3395 A

+1492 A

(b) Machine at θm = 5 deg

Figure 3.2: Magnetic circuits

- when θm = 5 deg (bad condition B ), the two different magnetic circuits are still recogniz-
able and they involve the same slots as the previous position. Unfortunately, as illustrated
in Fig. 3.2(b), the flux lines change and, in particular, they change in a negative way.
The shorter magnetic circuit (the thick green one) presents an opposite misalignment
respect to the previous situation, as highlighted in Fig. 3.3:

(a) Machine at θm = 1.5 deg (b) Machine at θm = 5 deg

Figure 3.3: Misalignment of the short magnetic circuit
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In Fig. 3.3(b), some flux lines tend to reduce the reluctance of the magnetic circuit, by
aligning the pole with the slot. Thus, the overall magnetic force which arises will push
the rotor from left to right and the contribution -in terms of torque- will be a negative
value. In other words: the torque associated to the thick green circuit will get the rotor
to rotate clockwise, rather than anticlockwise.

Furthermore, the other magnetic circuit (the thin red one) doesn’t balance out this neg-
ative torque, adequately. The reason is clear if we consider the Hopkinson’s Law:

N · i =

∮
∂S
H · dl ≈ φB ·

∮
∂S

dl

µS
= <H · φB (3.1)

where: N · i is the Magnetomotive Force, <H is the Magnetic Reluctance of the circuit,
and φB is the Magnetic Flux.

Due to the excessive alignment between the pole and the tooth, the overall reluctance
of the circuit increases, because the length of the latter, ∂S, is greater. If this is not
enough, a part of the flux lines links two neighbouring slots with opposite currents: the
direct consequence is that also the Magnetomotive Force, N · i will decrease. All these
peculiarities get the flux, φB, to be lower and -thus- the magnetic force, too.

The torque developed over a two-pole pitch is now:

T2−PP (θm = 5 deg) = T ′ + T ′′ ≈ 78.1− 12.6 ≈ 65.5Nm

3.2 Poles pursuit

Until now, only two significant rotor positions has been considered (θm = 1.5 deg and θm = 5 deg).
This section has, instead, the purpose to understand how the motor magnetically behaves, in
a rotation equal to an entire electric period (θm = 45 deg). The torque developed by each
magnetic circuit should be considered as the rotor position changes. This operation, however,
is long and difficult to realize, because we don’t know -a priori- how the magnetic circuits are
made. Anyway:

- The machine has an high periodicity. Therefore it is not necessary to consider the whole
machine: considering the magnetic circuit relative only on one periodicity is enough;

- Fig. 3.2 shows that the magnetic circuits develop themselves over each pole. Therefore,
a good approximation consists on taking into account the pole, rather than the single
magnetic circuit.

In other words: following, the two poles which define a single periodicity of the machine will
be observed. As the rotor position changes, the torque contribution due to each pole will be
derived in the same way explained above. Finally, the behaviour of this “pole pursuit” will be
graphed.

In Fig. 3.4 the torque contributions (TPP ) due to the two poles into a periodicity are reported.
Each pole, during its rotation, alternates resting times, where the pole can be considered “un-
loaded”, and peak times, where it actively contributes in torque development. This behaviour
is identical for the two poles. The result consists on two curves equally spaced (∆θm = 7.5 deg),
as in figure:
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Figure 3.4: Pole pursuit in a single periodicity of Reference motor

The torque drops arise at the mechanical angles: θm = 5 + (7.5) · k deg, where k ∈ N. The
figure above shows that these angles correspond to that ones where a change from the Pole 1
(the thick blue line with point markers) to Pole 2 (the thin curve with star markers) occurs.
In particular, referring to Fig. 3.4:

• There are 6 transitions between the two curves. This is the reason of a 6 − th harmonic
of torque;

• The rising and falling edges are rather sharp. Then, the intersections between the two
behaviours occur when:

– the falling edge of the first curve has already reached low values of torque;

– the rising edge of the second curve has just begin to increase (has yet to reach high
values).

This is the reason why the torque drops are so deep.

3.2.1 Generalization

From what has just been said, two general rules can be derived. Let’s consider a generic frac-
tional slots (FS) SynRel motor with X slots and Y poles. Called t the periodicity of the machine,
it is possible to observe the latter only into a single portion (associated to one periodicity) in
order to understand the magnetic behaviour of the whole motor. This portion is characterized
by NX slots-per-periodicity and NY poles-per-periodicity.

Then, there will be NY equispaced curves. By assuming that the shape of these curves remains
rather similar for any configuration X/Y , then, the less NY is, the greater the torque drops will
be deep:

Prop 1. Let’s consider a generic FS SynRel machine with p pole-pairs and periodicity t. Then,
the less the ratio NY = 2p/t is, the greater is the torque ripple of the machine.

Secondly, it is possible to know -a priori- the torque harmonic value due to the presence of the
phenomena just explained.
The torque drop occurs when a pole has to “hook” the following tooth: the “magnetic jump”
from a tooth to an another one is the passage from a curve to the next one (by referring to the
figure above). Therefore, the number of torque drops will be equal to the poles-per-periodicity
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multiplied by the number of “magnetic jumps” (i.e. the number of slots-per-pole) that each
pole must carry out.

Definitively:

Prop 2. Let’s consider a generic FS SynRel machine with Qs stator slots, p pole-pairs and a
periodicity of t. Then, it will certainly show a torque harmonic order, ν, defined as:

ν = NX ·NY =
Qs

�p
· 2�p

t
=

2Qs
t

(3.2)

The correctness of these generalization has been verified on different motor configurations. In
particular, the following machines1 has been taken into account:

Qs [−] 9 12 12 15 18 21 24
2p [−] 8 8 10 10 16 16 16
t [−] 1 4 2 5 2 1 8
NY = 2p/t [−] 8 2 5 2 8 16 2

TRipple [%] 16.29 59.02 23.73 63.48 22.37 12.40 97.36
ν = 2Qs/t [−] 18 6 12 6 18 42 6
Presence of Tν? [y/n] YES YES YES YES YES YES YES

Table 3.1: Validation of the generalization

3.3 Fields contribution to torque development

The study doesn’t stop only to the analysis of the field maps and, in general, on graphical
qualitative evaluations: the machine has been studied also through an harmonic analysis of the
magnetic forces which characterize the motor.
Spargo et al. [6] presented a seminumerical approach that, from data which are directly recov-
erable from a common FE software, allows to associate to each spacial harmonic of flux density
at the air-gap, the relative torque contribution produced by that harmonic.

From the FE analysis at the desired operating points, θm, it’s possible to extract the flux density
air-gap field, defined by an arc in the center of the air gap. As the air gap is small, the assump-
tion is made that the variation in the radial dimension is negligible. The achieved air-gap (radial
and tangential) flux densities, Bn and Bt, are not continuous functions: they are discretized in
a number of points specified by the user (2048 points have been taken into account).

Defined ξ = nT , the descrete angular coordinate along the air-gap, the flux density, B(ξ, θm),
can be decomposed using a discrete Fourier series:

Bυ(θm) =
1

N
·
N−1∑
n=0

B(ξ, θm) · e−iυn
2π
N (3.3)

where: υ is a generic harmonic order, N is the sampling rate (N = 2048), T is the sampling
interval (T = 2π

N ) and i the imaginary unit.

1These motors has been all simulated. A part of them directly into this thesis. The others have been analysed
by Marzarotto in [5]
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The Maxwell stress tensor, expressed in cylindrical coordinates and neglecting any z-axis com-
ponent field, defines a resultant shear rotor stress, written as:

σ(ξ, θm) =
Bn(ξ, θm) ·Bt(ξ, θm)

µ0
(3.4)

By considering that torque is derived simply by a double integration of σ(ξ, θm) over ξ and
z-axis, and remembering the radial and tangential fields can be harmonically decomposed and
reassembled as a sum of cosinusoidal functions (according to the inverse discrete Fourier trans-
form), the harmonic torque components, Tυ, at a specific position of the rotor, θm, can be
written as:

Tυ(θm) =
4πlstkr

2

µ0
· |Bn,υ(θm)| · |Bt,υ(θm)| · cos(αυ) (3.5)

where: lstk is the stack length of the rotor, r is the radius of the machine (at the air-gap) and
αυ is the phase angle between the υ − th harmonic of the radial and tangential fields.

Repeating the computation for each θm, Fig. 3.5 is drawn:
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Figure 3.5: Harmonic Analysis of simmetrical PMARel 24/16

The graph on the left is a comparison between the torque behaviour of the machine, computed
both through the FE software and the seminumerical approach just presented.
The second graph (on the right) is the output of the algorithm. The medium violet line (on the
top) is the torque contribution due to the synchronous flux density field. Obviously, the main
characteristic of this field is the presence of a constant torque, also if a low ripple is however
visible. With a thick red line the main contribution to the torque ripple is highlighted: it is
due to the presence of a second harmonic of flux density, which produces a 6− th harmonic of
torque. Finally, with a thin and cyan line a second important ripple contribution is due to the
presence of a 11− th field harmonic, which produces a 12− th torque harmonic.

This approach is a valid tool which will be used during this thesis to verify if some design
strategies are able to reduce specifically the second and/or eleventh order field contributions.
In addition, results just obtained will be useful to reconstruct the motor analytical model,
reported in Chap. 8.
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Chapter 4

Slot Deformation and Tooth Cut

Sect. 3.1 highlighted how the reference PMASynRel motor exhibits a problem in some partic-
ular rotor positions. This fact has been explained graphically and, by referring -in particular-
to Fig. 3.2, an abnormal behaviour of flux lines is noted for one of the two magnetic circuits
over a two-pole pitch. Flux lines, in fact, do not follow an advantageous way for the torque
development (advantageous in an anti-clockwise rotation direction), and it implies a drop in the
torque behaviour. A first idea, then, is to act on the stator geometry through little variations,
with the aim to force flux lines to change their trajectory.

This chapter is composed of a first and rapid summary on the Reluctance principle. Then, two
ideas are presented: they are called, respectively, Slot Deformation and Tooth Cut.

4.1 Skills: Reluctance Torque

The first problem which arises is to understand what does “right” or “wrong” way means. In
other words: it is written that flux lines, at particular rotor positions, follow wrong trajectories.
What does it means? Why these ways are wrong? What should be the correct paths?
An answer to these questions, actually, has already given in Sect. 3.1. Here, a more analytical
and exhaustive explanation is reported.

Let’s consider a simple two-pole electro-mechanical converter with saliencies both on rotor and
stator. θ is the angle between the rotor axis and the stator one: it identifies the misalignment de-
gree between the rotor tooth and the stator pole. A current, i, flows through the stator winding.

The winding is characterized by a coefficient of self-induction, l(θ): assuming the magnetic
circuit is linear, and considering only the fundamental component of the field distribution,
produced by the winding at the gap, it is:

l(θ) = L1 + L2 · cos(2θ) (4.1)

where L1 and L2 are well-defined coefficients. Therefore:

1- inductance reaches its maximum value (the minimum value of reluctance, <H) when the
two axes are aligned, that is when θ = 0 deg. It corresponds to “straight” flux lines, as
reported in Fig. 4.1(a);

2- inductance decreases (reluctance increases) with the increment of the misalignment be-
tween the two axes, that is when θ 6= 0 deg. It corresponds to “crooked” flux lines, as
reported in Fig. 4.1(b).
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θ = 0deg

(a) Machine at θ = 0 deg

θ ≠ 0deg

(b) Machine at θ = 10 deg

Figure 4.1: Flux lines of a reluctance magnetic circuit

The reluctance torque can be defined as:

T (θ, i) =

∣∣∣∣∂Wec(θ, i)

∂θ

∣∣∣∣
i=const

(4.2)

where ∂Wec(θ, i) is the converted energy from electrical to mechanical type. Under linearity
conditions, it is:

Wec(θ, i) =
1

2
· l(θ)i2 (4.3)

Therefore:

T (θ, i) =
1

2
· ∂l(θ)
∂θ

i2 = −L2i
2sin(2θ) (4.4)

T is called “Reluctance Torque” because it is linked to the presence of different values of
reluctance, <H , with the change of rotor position, θ: this torque, hence, will arise with the aim
to get the rotor to its natural low-reluctance position, θ = 0 deg.

4.2 Slot Deformation

The first idea is called Slot Deformation and consists on:

• a local change of stator slots shape, where the developed torque exhibits the opposite
direction of the average torque, that is where flux lines have an opposite direction with
respect to the machine’s rotation wise, θ < 0. The aim is to look for decreasing the
torque local contribution, by relaxing the “crooked” lines and -therefore- by getting them
straighter.

• a local change of stator slots shape, where flux lines already have the same direction with
respect to rotation wise (developed torque with the same sign of average torque). Here,
an additional increment of pole-tooth misalignment is implemented and an increase of the
reluctance of the magnetic circuit (and of the developed torque, too) is expected.

In Tab. 4.1 the implemented deformations are reported. They consist on vertical and/or
horizontal translations of the lower slot corners. Every cell indicates the new corner coordinates
(the unit of measurement is: millimeters), with respect to the original position:
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Table 4.1: Implemented deformations

Figure 4.2:

Example 4.2.1. In a 2D Cartesian plane, for instance, a slot is defined by four corners, A, B,
C, D, with coordinates:

A (−17; 250) B (−23; 300) C (23; 300) D (17; 250)

Let’s consider the combination: (0;5)(-10;2). The first parenthesis refers to the South-Eastern
corner (point D), while the second one refers to point A (South-Western corner).
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If now Slot Deformation is applied, four new corners are obtained: the outer ones maintain the
same previous position, B’ ≡ B and C’ ≡ C, while the inner ones are made up by summing
their previous coordinates with the values expressed by the combination:

A′ (−17− 10; 250 + 2) B′ (−23; 300) C ′ (23; 300) D′ (17; 250 + 5)

A′ (−27; 252) B′ (−23; 300) C ′ (23; 300) D′ (17; 255)
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4.3 Slot Deformation - Results

Following, some simulations results are presented. Generally, the idea of Slot Deformation leads
to no improvements of machine performance. On the contrary, the average torque decreases
almost always, while ripple remains high.
Nevertheless, anyway, some configurations show a positive, even if poor, result. These are:
(0; 5)(0; 0), (0; 0)(−5; 0) and (0; 5)(−5; 0).

NOTE 1. In order not to make heavier this reading, only these first three combinations are
shown, while the others are reported in Appendix A.
NOTE 2. For these simulations, only the first θm = 180 el deg = 22.5 deg are simulated.

4.3.1 Sequence (0;5)(0;0)

First sequence analysed is the (0;5)(0;0) one. In Fig. 4.3 torque behaviour of distorted machine
(the dashed blue line) is compared with that one of the reference motor (the continuous orange
line), while in Fig. 4.4 the same torque trend is split into three components, each of which
associated to the specific υ− th spatial harmonic of flux density at the air-gap. Finally, in Fig.
4.5 the harmonic analysis of torque behaviour is made in order to understand what are the
harmonics which characterize the first graph.

0 7.5 15 22.5
300

700

1100

1500

1900

To
rq

ue
 [N

m
]

θ
m

 [deg]

 

 

Reference Distorted

Figure 4.3: (0;5)(0;0) torque ripple
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Figure 4.4: Torque contributions
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Figure 4.5: (0;5)(0;0) torque harmonics
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As it can be seen above, with this Slot Deformation, a minimal change in the analysed quantities
is obtained:

Tavg = 1345Nm Tripple = 84.14%

Referring to Fig. 4.3, the torque behaviour is more flattened in the higher portion and the
torque drop, also if still present, is slightly less deep. This change can be observed from the
torque harmonic content of Fig. 4.5, too: this sequence acts particularly on the 6−th harmonic,
which decreases from 42.4% to 37.2% of the average torque value. This reduction is also noted
in the others harmonic orders, but in a more limited way.

Finally, there are no particular observations on Fig. 4.4: torque ripple, as in the reference
motor, is still due to the presence of a 2 − th spacial harmonic of flux density at the air-gap,
which seems not to be influenced by this action.

4.3.2 Sequence (0;0)(-5;0)

The same graphs have been derived also for the second sequence: (0;0)(-5;0), where only the
south-western corner has been shifted.
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Figure 4.6: (0;0)(-5;0) torque ripple
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Figure 4.7: Torque contributions
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Figure 4.8: (0;0)(-5;0) torque harmonics
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In Fig. 4.6 it is possible to note how this particular distortion influences the shape of the torque
behaviour and, in particular, how torque ripple assumes a more sinusoidal geometry with respect
to the reference motor. It leads to think that, in this case, is not reduced as much the 6 − th
harmonic of torque, but rather an another higher one. This thinking is verified immediately,
if Fig. 4.8 is observed: with the deformation of SW corner the affected harmonic is, now, the
12− th (from 18.42% to 6.68% of the average value), and no more the 6− th. Definitive values
are:

Tavg = 1204Nm Tripple = 83.03%

4.3.3 Sequence (0;5)(-5;0)

As someone could expect, union of the two previous solutions leads to an halfway effect, both
in terms of average torque and ripple. With sequence (0;5)(-5,0), in fact, both the 6 − th and
the 12 − th torque harmonics decrease simultaneously: from 42.4% to 37.2% for the first one,
from 18.42% to 7.64% for the second one.
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Figure 4.9: (0;5)(-5;0) torque ripple
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Figure 4.10: Torque contributions

0 5 10 15 20
0

10

20

30

40

50

M
ag

ni
tu

de
 [%

]

Harmonic Order [−]

 

 

Reference
Distorted

Figure 4.11: (0;5)(-5;0) torque harmonics

Conclusion, in this case, is

Tavg = 1269Nm Tripple = 77.31%

36



4.3.4 Comparison and comments

In Tab. 4.2 the obtained results are reported, for all the executed simulations, both those ones
illustrated above and those ones in the appendix:

*ref.

SE Corner (0;0) (0;5) (5;0) (5;5) (0;0) (0;0) (0;0) (0;5)
SW Corner (0;0) (0;0) (0;0) (0;0) (0;5) (-5;0) (-5;5) (0;5)

Minimum Nm 523 604 416 495 594 674 455 663
Maximum Nm 1795 1735 1810 1714 2049 1674 1747 1997
Average Torque Nm 1306 1345 1208 1251 1287 1204 1191 1293

% 100 102.99 92.50 95.79 98.55 92.19 91.20 99.01
Ripple % 97.36 84.14 115.42 97.40 113.04 83.03 108.45 103.26

SE Corner (0;5) (0;5) (5;0) (5;0) (5;0) (5;5) (5;5) (5;5)
SW Corner (-5;0) (-5;5) (0;5) (-5;0) (-5;5) (0;5) (-5;0) (-5;5)

Minimum Nm 686 572 559 472 392 555 585 382
Maximum Nm 1666 1689 2043 1578 1699 1999 1564 1624
Average Torque Nm 1269 1219 1207 1066 1308 1202 1101 1042

% 97.17 93.34 92.42 81.62 100.15 92.04 84.30 79.79
Ripple % 77.31 91.61 122.98 103.82 125.94 120.11 88.89 119.27

Table 4.2: Slot Deformation - Comparison of results

Now two observations are worth of noting:

1. The first one refers to a big limit of Slot Deformation, in particular when the distortion
is not equal between the two inner corners (SE and SW). When it occurs, in fact, the
machine is no longer symmetrical and -thus- the obtained results can be considered valid
only for the particular rotation wise hypothesized in simulations.
In order to rotate the rotor in clock-wise direction (the contrary of what has been supposed
until now), it is necessary to invert the phases sequence. But it would imply a different
magnetic situation and, probably, the result presented above would not be obtained;

2. The second comment consists on the attempt of understanding what happens into the
machine with Slot Deformation and why the improvements are so limited.
What is sure is that, through Slot Deformation, the way flux lines follow, changes. The
problem, now, is to understand why it occurs. Only two possible explanations are given:

• Either Slot Deformation extends the slot area over the previous flux lines trajectory.
Therefore, flux is forced to change its path because there is no more iron, as before.
In other words: where before there was iron, now there is the slot;

• or, Slot Deformation could cause the saturation of some zones and a de-saturation of
other ones. In this way, the flux lines deviation is not due to physical barriers, but
rather it is present because saturation leads flux lines to prefer other trajectories,
respect the original ones.
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This latter hypothesis is particularly easy to verify and, as it will be seen, it is exactly
what happens. To evaluate if stator saturation is, actually, the reason of the obtained re-
sult, all the viewed motors have been re-simulated, by changing the material, from Terni
to a simple linear iron: an hypothetical material, with a linear B-H curve and relative
permeabilities, µx = 10000 and µy = 10000, has been used.

Fig. 4.12 reports the comparisons between reference motor and the machines with dis-
torted teeth, illustrated above. The comparison has been carried out over a rotation of
θm = 7.5 deg and with a current angle of αie = 46 el deg, that is equal to the reference
motor’s αie,opt.
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(a) Sequence (0;5)(0;0)
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(b) Sequence (0;0)(-5;0)
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(c) Sequence (0;5)(-5;0)

Figure 4.12: Slot Deformations with linear iron

As clear as in all the figures, when stator works in linearity conditions, distorted motors
show the same torque trend of the reference motor’s one. This proves that Slot Defor-
mation acts on stator iron saturation: some areas, by saturating themselves more than
others, thanks to the slot warp, become a sort of “magnetic obstacle” for the flux density
field, whose fluxlines will tend to follow different trajectories, as a consequence. In the
previous illustrated cases, these new trajectories operate on the machine reluctance and
increase -thus- the reluctance torque component.

Slot Deformation, however, doesn’t influence the main cause of torque ripple, which is (as
it will be seen in Chap. 8) the particular and abnormal interaction between stator and
rotor, due to some spacial harmonics of flux density.
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4.4 Tooth Cut

Second idea is called Tooth cut. It is conceptually similar to Slot Deformation, because it al-
ways tries to create obstacles to flux lines in order to drift their path. In this case, however, the
obstacle is obtained by shaping the tooth, and no more the slots.

Let’s consider again Fig. 3.3(b). For simplicity it is brought
back also left here.
As already said, the problem consists on the presence of
same sections (orange-circled area) of the magnetic circuit
where flux lines have a direction ∈ [0; 90] deg, respect to an
horizontal right-oriented reference.

The idea, therefore, is to cut the stator tooth in these area, so
that flux lines can see in front of them a longer air-gap. The
hope is that the magnetic circuit’s reluctance increases and
that the field prefers an alternative way where its flux lines
have a direction ∈ [90; 180] deg, rather than ∈ [0; 90] deg.

The development of this theory is done through six tests, where the cuts are characterized by
two variables. Firstly, a Cut Height, hcut, is fixed and simulations are carried out with the
change of the second variable, called Cut Length, γcut. Then, the viceversa is done.
In Fig. 4.13, the two variables are highlighted, while in Tab. 4.3 a summary of the tests is
reported:

γcut

hcut

Figure 4.13: Tooth Cut - Variables

Test #1 Test #2 Test #3 Test #4 Test #5 Test #6

hcut [mm] 1 1.5 1 1.5 1 1.5
γcut [deg] 4 4 7.5 7.5 10 10

Table 4.3: Tooth Cut - Implemented tests
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4.5 Tooth Cut - Results

Following: the torque behaviour are reported in Fig. 4.14, with respect to the reference motor’s
torque ripple, while, the harmonic content of these torques is highlighted in Fig. 4.15. All the
graphs have been grouped by Cut Length variable, γcut, for a better display:
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(a) Tests #1 and #2 (γcut = 4 deg) torque ripple
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(b) Tests #3 and #4 (γcut = 7.5 deg) torque ripple
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(c) Tests #5 and #6 (γcut = 10 deg) torque ripple

Figure 4.14: Tooth Cut - Torque ripple
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(a) Tests #1 and #2 (γcut = 4 deg)
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(b) Tests #3 and #4 (γcut = 7.5 deg)
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(c) Tests #5 and #6 (γcut = 10 deg)

Figure 4.15: Tooth Cut - Torque harmonics

4.5.1 Comparison and comments

Since no improvements of performances have been obtained from these technique, no other
words want to be further spent to comment the graphs, and simply the numerical results are
here reported in Tab. 4.4:

*ref. Test #1 Test #2 Test #3 Test #4 Test #5 Test #6

hcut [mm] 0 1 1.5 1 1.5 1 1.5
γcut [deg] 0 4 4 7.5 7.5 10 10

Minimum Nm 526 573 543 499 525 500 455
Maximum Nm 1768 1782 1715 1754 1711 1544 1349
Avg Torque Nm 1306 1304 1213 1165 1132 1085 922

% 100 99.85 92.88 89.20 86.68 83.08 70.60
Ripple % 97.37 92.66 96.69 107.82 104.79 96.31 96.90

Table 4.4: Tooth Cut - Comparison of results
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More encouraging results have been obtained by Marzarotto [5] on other configurations of
Slots/Poles. From him simulations, it is possible to observe that:

- The Tooth Cut technique acts as better on ripple reduction as lower is the machine peri-
odicity. As a matter of fact, in [5] a configuration 3-Slots 2-Pole (similar to 24/16 reference
motor) with periodicity 4 is implemented: in these case, too, Tooth Cut shows very lim-
ited results, both in absolute terms and with respect to the other machines analysed by
the author.

- From the average torque point of view, it always decreases (more or less) respect to the
non-cut stator. And it is true for all the configurations of Slots/Poles.

- By watching what happens in terms of torque harmonics, finally, it is possible to observe
that Tooth Cut particularly conditions the so-called Slot Harmonics, that are the torque
harmonics of order:

n = k ·Qs ± p

where: k is an index ∈ N+
0 , Qs is the slot number and p is an half of pole number.

4.6 Conclusions

In the chapter two strategies are implemented in order to reduce the torque ripple of reference
motor: they are called Slot Deformation and Tooth Cut.
Both the techniques arise from the observation of field maps and from the idea that, in corre-
spondence of those rotor positions where a torque drop occurs, flux lines show some sections
with a wrong slope. The direction flux lines undertake (∈ [0 : 90] deg), get the motor to rotate
in the wrong direction (clock-wisely) in the attempt to find a lower reluctance position. For this
reason, both Slot Deformation and Tooth Cut have the purpose of creating a sort of physical
or magnetic “barriers”, which are able to deviate the field natural path and to guarantee the
latter can orient itself toward a direction ∈ [90 : 180] deg.

Results do not show sensible improvements of machine performance: the best reduction of rip-
ple is reached with Slot Deformation. However, not only this decrease is rather limited, but
also it is due to magnetic saturation fenomena into some areas of the stator. It means that
these result are valid only for the hypothesized power supply (current) conditions. In addition,
the applications to whom this motor could be intended are limited, because the asymmetry of
stator slots prevents the motor to rotate in both the direction, with the same performances.

Relatively to Tooth Cut, finally, neither this solution leads to good results. The reason can be
explained by the work of Marzarotto [5], where Tooth cut has been implemented into a com-
parison between several configurations. The strategy works well on motors with low periodicity
and acts mainly on the so-called Slot Harmonics. By not being, in the reference motor, sensible
contributions of these kind of harmonics, it is clear how Tooth Cut is not able to solve the
torque ripple problem of this particular machine.
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Chapter 5

Stator Shifting

Up to now, only techniques which have the aim to force flux lines to follow different paths,
respect to the natural reference motor ones, have been taken into account. Results were rather
unsatisfying and, therefore, a completely new approach is considered hereafter. Still considering
stator, the position of whole groups of slots will be here modified. These latter will be rotated of
different angles, with respect to a fixed and stationary reference axis. The idea is called Stator
Shifting: following, thinking and results are reported.

5.1 The idea of Stator Shifting

A large adopted technique in electrical machine design is the rotor skewing: it consists on a
twisting, which can be continuous (if possible) or discrete (for instance in PM motors), of the
rotor. Skewing will be presented later, in Chap. 7, but it is the basis of Stator Shifting. As a
matter of fact, by thinking to skewing, a question arose:

Is it possible to create a sort of Stator Skewing?

Obviously the answer is no: stator, in fact, can’t be skewed, because it addresses the coils of the
windings. However, a similar result could be obtained if, rather twisting the stator, this latter
is split in m parts, and each of these ones is shifted from its starting position. In other words,
the idea is to rotate groups of stator slots, respect to a fixed reference, of an angle:

k ·∆θsh = k ·
∆θsh,TOT

s
where :

m

s
∈ N+ (5.1)

where: k is an integer index, ∆θsh is the shifting step, ∆θsh,TOT is the total shifting angle and
s is the number of steps.

Since machine has got a so-high periodicity, t, the aim of Stator Shifting is to mix two opposite
magnetic situations, and to reach an intermediate one, consequently. By referring on what has
been said in Sect. 3.1, then, Stator Shifting must act so that:

- when a two-pole pitch is in position G , the others pitches could be in different positions
and produce lower torque contributions;

- when a two-pole pitch is in position B , the others pitches could be in different positions
and produce higher torque contributions.
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The problem, now, is to understand:

• which total shifting angle, ∆θsh,TOT , must be chosen;

• how to set the relative shifting angle, k ·∆θsh, to each part of the cut stator.

A first idea is the following: since machine has a periodicity 8 (i.e. the magnetic situation
repeats itself 8 times in the same way), stator could be cut into m = 8 parts. Furthermore, as it
has been seen previously, the main contribution on torque ripple is due to the 6−th harmonic of
torque. These component repeats itself every 60 el deg = 7.5 deg, and so this will be the chosen
value of ∆θsh,TOT for all the following simulations.

On the other hand, the choice of shifting sequences for the different parts is not univocal. Gen-
erally, the choice was made by considering only that sequences which permit the teeth to have
widths as homogeneous as possible, in order to avoid a machine with too tight teeth.

In Tab. 5.1, the solutions developed are reported:

Parts a b c d e f g h

Two steps (s = 2) 1 0 1 0 1 0 1 0
Four steps (s = 4) 2 1 0 3 2 1 0 3
Four steps (s = 4) 2 0 1 3 2 0 1 3
Eight steps (s = 8) 1 2 4 6 8 7 5 3
Eight steps (s = 8) 1 3 5 7 8 6 4 2

Table 5.1: Stator shifting - Developed sequences (m = 8)

Tab. must be read in this way: the parts are labelled a, b, c, d, e, f, g, h; each of them represents
a group of three neighbouring slots. The numbers into the table indicates the times the relative
part must be shifted (i.e. they are the values of coefficient k, for the different parts). The
rotation wise doesn’t influence the torque behaviour, as it is not important in correspondence
of which tooth the cut is started.

Example 5.1.1. Lets suppose the motor is divided into m = 6 parts. Since machine has
Qs = 24 stator slots, each part will be characterized by Qs/m = 24/6 = 4 slots per part. Lets
consider the generic sequence of s = 6 steps: [1 3 5 6 4 2]. It is:

a = 1 b = 3 c = 5 d = 6 e = 4 f = 2

The total shifting angle is ∆θsh,TOT = 7.5 deg and, so, the shifting step is:

∆θsh =
∆θsh,TOT

s
=

7.5 deg

6
= 1.25 deg

The 6 parts of the stator will be, therefore, rotated of the angles:

ka = 1 ⇒ ka ·∆θsh = 1 · 1.25 = 1.25 deg

kb = 3 ⇒ kb ·∆θsh = 3 · 1.25 = 3.75 deg

kc = 5 ⇒ kc ·∆θsh = 5 · 1.25 = 6.25 deg

kd = 6 ⇒ kd ·∆θsh = 6 · 1.25 = 7.50 deg
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ke = 4 ⇒ ke ·∆θsh = 4 · 1.25 = 5.00 deg

kf = 2 ⇒ kf ·∆θsh = 2 · 1.25 = 2.50 deg

In Fig. 5.1 a sketch of the original motor and of the Shifting operation is illustrated. In this
case an anticlockwise rotation is set and the Part #1 includes the slots: 1, 2, 3 and 4.

b

a

c

d

e

f

3.75

1.25

6.2
5

7.50

5.00

2.5
0

Figure 5.1: Stator Shifting example

5.2 Results

Results of Stator Shifting are here presented. As done in the previous chapter, they show: the
Maxwell torque behaviour, the split of these torque into three components, each linked to a
specific spacial harmonic of flux density at the air-gap, and -finally- the harmonic content of
ripple. Results are grouped by the number of steps which characterize themselves.

5.2.1 8 Parts and 2 Steps
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Figure 5.2: 8x2 torque ripple
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Figure 5.3: Torque contributions
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Figure 5.4: 8x2 torque harmonics

First results are encouraging: Stator Shifting 8x2, in fact, modifies deeply the torque behaviour
(Fig. 5.2). In particular, by referring to Fig. 5.3:

- the torque component associated to the first spacial harmonic of flux density decreases;

- the torque component linked to the second spacial harmonic decreases, too: in the ref-
erence motor it showed a peak beyond the value T̂2 = 500Nm. Here it doesn’t reach
T̂2 = 400Nm.

All these considerations confirm the results:

Tavg = 1087Nm Tripple = 88.87%

Relatively to the harmonic content of ripple, Fig. 5.4 shows an important reduction of the 6−th
harmonic of torque (from 42.40% to 18.82%), while its multiples (12− th and 18− th) remains
unchanged or, however, increase a few.
In addition, it is possible to note an increase of several minor harmonics, ζ, which seem to follow
a law like the following:

ζ = 3 · k ± 1 where : k = 1, 3, 5, 7 (5.2)

5.2.2 8 Parts and 4 Steps

The following test is characterized by a rotation of 4 steps. Since different sequences have been
taken into account for these configuration, graphs have to be read in the following way: in Fig
5.5 a comparison is shown between the reference motor torque behaviour and the two sequences
ones. Fig. 5.6 shows the split of torque into the three components related to the spacial field
harmonics seen above, υ = 1, υ = 2 and υ = 11. For simplicity, only one sequence is considered
in the figure (the second one).
Finally, in Fig. 5.7, the torque harmonic contents are reported for all the three curves of the
first figure. The meaning of styles and colours is maintained between the first and the third
figure.
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Figure 5.5: 8x4 torque ripple
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υ = 1 υ = 2 υ = 11

Figure 5.6: Torque contributions
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Figure 5.7: 8x4 torque harmonics

The more significant result, in this case, is the reduction also of the 12− th torque harmonic, as
well as the 6− th, as Fig. 5.7 shows: from 42.40% to 20% and 19%, and from 18.42% to 4.28%
and 4.94%, respectively. No changes are observed on the 18− th harmonic, instead.

It is difficult to do considerations on the other harmonics, because different results have been
obtained from the two sequences. The reason, probably, is the fact that the two simulated
motors are characterized by different constrictions of the teeth.

To understand it, let’s consider the implemented sequences:

{
Seq.1 : [2 1 0 3 2 1 0 3]

Seq.2 : [2 0 1 3 2 0 1 3]

The change of teeth width is proportional to the difference between two neighbouring coeffi-
cients. For instance, let’s focus on Seq.1: the first coefficient is a = 2, while the second is b = 1.
Then, the tooth between the first part (part 1 → coefficient a) and the second one (part 2 →
coefficient b) will shrink or stretch itself proportionally to the angle:

(a− b) ·∆θsh = (a− b) ·
∆θsh,TOT

s
= (2− 1) · 7.5

4
= 1.875 deg

By applying this procedure to the whole sequences, it is:
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Differences (a− b) (b− c) (c− d) (d− e) (e− f) (f − g) (g − h) (h− a)

Sequence 1 1 1 -3 1 1 1 -3 1
Sequence 2 2 -1 -2 1 2 -1 -2 1

As it can be observed, the constriction (or the lengthen) of teeth is different between the two
sequences: in one case it is proportional to 1 or 3 times the angle ∆θsh, in the other one it is
proportional to 1 or 2 time the same angle.
Hereafter, hence, only homogeneous sequences (i.e. sequences where the differences between
coefficients are the same) must be compared.

5.2.3 8 Parts and 8 Steps

The last Shifting configuration is the 8x8 one. In this case two homogeneous sequences are
taken into account: both the sequences, in fact, are characterized by the same teeth widths
(whose reduction is proportional to 1 or 2 times the skewing step). Theoretically, similar results
are expected, both in terms of torque trend and torque harmonic content.
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Figure 5.8: 8x8 torque ripple
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υ = 1 υ = 2 υ = 11

Figure 5.9: Torque contributions
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Figure 5.10: 8x8 torque harmonics

Graphs confirm what has been supposed. In addition, the best results are here obtained, in
terms of torque ripple reduction:
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Tavg = 1093/1092Nm Tripple = 43.92/44.96%

From the harmonic content point of view, this shifting configuration leads to a general reduction
of all the harmonics components, both the mains (6− th, 12− th and 18− th), and the minors.

5.2.4 Comparison and comments

Results obtained from the simulations are reported in Tab. 5.2:

*ref. First tests

Parts [−] - 8 8 8 8 8
Steps [−] - 2 4 4 8 8
Sequence [−] - - 1 2 1 2

Minimum Nm 523 635 834 802 863 851
Maximum Nm 1795 1601 1378 1382 1343 1342
Average Torque Nm 1306 1087 1086 1078 1093 1092

% 100 83.23 83.15 82.54 83.69 83.61
Ripple % 97.36 88.87 50.09 53.80 43.92 44.96

Table 5.2: Stator shifting - Comparison of results

Table shows how, with the same number of parts, m, the machine ripple, Tripple, always more
decreases as the number of steps, s, increases.
In addition, all the simulations leads the average torque, Tavg, to decrease. However, differently
from the ripple behaviour, there is no variations in Tavg as the step number, s, changes. There is
a fixed reduction of ∆Tavg ≈ −17% with respect to the reference motor, and this value doesn’t
change between the tests.

5.3 Other tests

Until now only the number of steps, s, has been changed. The number of parts, m, instead, has
been maintained fixed. The idea, now, is to understand if something can change when also the
number of parts, m is varied. Since stator must be cut in regular parts with an integer number
of slots, m must be a divisor of Qs = 24. The possibilities taken into account are: m = 6, 12, 24,
and for each of them, only the condition m = s is developed. Therefore:

Parts a b c d e f

Six steps (s = 6) 1 2 4 6 5 3

Table 5.3: Stator shifting - Developed sequences (m = 6)

Parts a b c d e f g h i j k l

Twelve steps (s = 12) 1 2 4 6 8 10 12 11 9 7 5 3
Twelve steps (s = 12) 1 3 5 7 9 11 12 10 8 6 4 2

Table 5.4: Stator shifting - Developed sequences (m = 12)
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Parts
a b c d e f g h i j k l
m n o p q r s t u v w x

Twenty-four
steps (s = 24)

1 3 5 7 9 11 13 15 17 19 21 23
24 22 20 18 16 14 12 10 8 6 4 2

Twenty-four
steps (s = 24)

1 2 4 6 8 10 12 14 16 18 20 22
24 23 21 19 17 15 13 11 9 7 5 3

Table 5.5: Stator shifting - Developed sequences (m = 24)

5.3.1 6 Parts and 6 Steps

Results are here reported. The same graphs of the previous Sections, with the same conventions
of colours and style, are reported.
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Figure 5.11: 6x6 torque ripple
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υ = 1 υ = 2 υ = 11

Figure 5.12: Torque contributions
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Figure 5.13: 6x6 torque harmonics

The main torque harmonics (6−th, 12−th, 18−th) are well reduced, but an important increase
of the minor ones is evident. The performance, hence, are better respect to the reference motor,
but not with respect to the previous 8x8 configuration. Similar considerations can be made also
for the following results: the torque ripple reduction improves always more, but it is difficult to
reach better results respect the best solution found in the previous Section.
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5.3.2 12 Parts and 12 Steps
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Figure 5.14: 12x12 torque ripple
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Figure 5.15: Torque contributions

0 5 10 15 20
0

10

20

30

40

50
M

ag
ni

tu
de

 [%
]

Harmonic Order [−]

 

 

Ref
Seq 1
Seq 2

Figure 5.16: 12x12 torque harmonics

5.3.3 24 Parts and 24 Steps
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Figure 5.17: 24x24 torque ripple
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Figure 5.18: Torque contributions
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Figure 5.19: 24x24 torque harmonics

5.3.4 Comparison

The tests just presented have a similar effect of the first simulations, executed with m = 8, and
no additional improvements of performance are obtained: the average torque decrease is still
fixed around a value ∆Tavg ≈ −16%, while ripple does not decrease beyond the 44%.
In Tab. 5.6, results are reported:

*ref. Other tests

Parts [−] - 6 12 12 24 24
Steps [−] - 6 12 12 24 24
Sequence [−] - - 1 2 1 2

Minimum Nm 523 813 843 809 865 872
Maximum Nm 1795 1449 1381 1407 1346 1358
Average Torque Nm 1306 1091 1096 1095 1098 1097

% 100 83.54 83.92 83.84 84.07 84.00
Ripple % 97.36 58.30 49.09 54.61 43.81 44.30

Table 5.6: Stator shifting - Comparison of results

5.4 Conclusions

In this chapter, a new theory has been proposed: it is called Stator Shifting and can be con-
sidered as an evolution of the well-known Rotor Skewing. It consists on the change of position
for groups of stator slots, which are rotated of some specific angles, with respect to a fixed and
stationary reference axis.

The way stator is cut and the rotation wise are not important because similar results would be
obtained. The main variables are: the total shifting angle, ∆θsh,TOT , and the number of steps,
s. They are linked by the law:

∆θsh,TOT = s ·∆θsh (5.3)
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where ∆θsh is called Shifting Step.

Two groups of simulations has been done: firstly, the number of parts in which the stator is
cut has been fixed at m = 8. In this case, since s must be an integer divisor of m, the possible
steps were: s = 1, 2, 4, 8, where s = 1, obviously, has no sense.
Secondly, the number of parts has been modified, and by considering only the case of m = s,
three other configurations of Shifting has been implemented.

In Tab. 5.7 all the studied Stator Shifting configurations are summarized, with their results.
The units of measure are:

[−] for “Parts”, “Steps”, “Sequences” and “TAvg,%”

[Nm] for the torques: “Tmin”, “Tmax”, “TAvg” and “TRipple”

*ref. First tests Other tests

Parts - 8 8 8 8 8 6 12 12 24 24
Steps - 2 4 4 8 8 6 12 12 24 24
Seq. - - 1 2 1 2 - 1 2 1 2

TMin 523 635 834 802 863 851 813 843 809 865 872
TMax 1795 1601 1378 1382 1343 1342 1449 1381 1407 1346 1358
TAvg 1306 1087 1086 1078 1093 1092 1091 1096 1095 1098 1097
TAvg,% 100 83.23 83.15 82.54 83.69 83.61 83.54 83.92 83.84 84.07 84.00
TRipple 97.36 88.87 50.09 53.80 43.92 44.96 58.30 49.09 54.61 43.81 44.30

Table 5.7: Stator shifting - Comparison of results

As it can be observed in table, the Stator Shifting technique leads to rather important results:
also if the average torque decreases of a value ∆Tavg ≈ −17%, the most evident information is
the sensible reduction of ripple, which decreases beyond the 50% of its original value (reference
motor).

Unfortunately, it is difficult to define a general rule which manages the behaviour of Shifting.
For the moment, it is possible to note what follows:

- The average torque remains almost constant for all the implemented combinations. Since
the only variable which has been maintained fixed for all the simulations is the Total
Shifting Angle, ∆θsh,TOT = 7.5 deg, this could exactly be the variable which influences
the average torque, Tavg. A future development of these technique could investigate and
confirm (or deny) this idea.

- From the torque ripple point of view, it changes sensibly on the basis of which Shifting
configuration is chosen, and -in particular- it tends to decrease with the increase of step
number, s.
But it is not always true: this behaviour is verified only when the values of s are divisors of
the machine periodicity, t. When different values are chosen, the ability of Stator Shifting
to decrease the ripple can anyway occurs (for instance it is the case of Shifting 24x24), but
in any case, better results are not reached, with respect to that solutions with s divisor
of t.
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Chapter 6

Optimization of rotor barrier shape

In this chapter the best geometry for the rotor barriers has been studied. In order to do it, a
multiobjective Differential Evolution optimization, with non-dominant sorting is implemented.
Algorithm and results are reported.

6.1 The algorithm

The design of rotor barriers is a problem with an enormous number of variables. The best so-
lution can’t be reached analytically and, so, a numerical optimization is necessary. In addition,
it should be remembered that there are two different goals to consider: the maximization of
average torque and the reduction of its ripple. Therefore, for our purpose, a multiobjective
optimization is the solution. In particular, Alotto et al. [4] developed an algorithm, based on
a Differential Evolution optimization and with a non-dominant sorting of the individuals, for
other motor’s typologies. The same script has been inherited and adapted for the PMASynRel
motor under analysis.

The operating principle of a generic evolutionary algorithm can be schematised as in Fig. 6.1:

Initialization
(Generation 0)

Mutation Selection
Recombination

(Crossover)
Convergence?

Figure 6.1: Typical evolutionary scheme

The problem starts with the creation of a random Generation 0, composed of N = 10 individ-
uals (motors), which are characterized by the matrix [x] = (x1;x2;x3, ...,x14). The vectors,
xi, are the geometrical parameters of the rotor (see Fig. 6.2), that are: x1 is called Kair and
it is the ratio between the 3 magnets’ radial length and the total radial lenght of the rotor; x2,
x3 and x4 are the barrier angles, θb,i; the variables from x5 to x13 are, respectively, the radii,
rm,i, the widths, wm,i, and the heights, hm,i, of the 3 magnets; x14 is the ribs height (that is
the same for all the barriers), hribs.
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Figure 6.2: Variables which define the chromosome

Now, as it happens into the evolutionist stages, a first generation, G, will produce a second
(daughter) generation, G + 1, and this is true for all the M generations which want to be
considered. In order to engender a new generation, the parent’s “chromosomes”, that are the
values of [x] matrix, must recombine themselves. In additions, throughout the mechanism of
crossover, local mutations could occur: these ones are considered into the mutation mechanism.
After a finite number of generations, the optimization will lead to an adaptation of the species:
the individuals (motors) which are able to better adapt themselves to the environment (to
the optimization’s objectives), will survive; viceversa, individuals which are not able to adapt
themselves as well as the previous ones will be discarded. This last process is called selection.

6.1.1 Mutation mechanism

Mutation is a part of the evolutionary algorithm. Due to the strong aggressiveness whereby a
Differential Evolution tends to converge toward a minimum solution, it’s necessary to force the
evolution in the exploration of the whole R14 available space. Thus, also when the optimization
will be relatively near to the optimum, it will be distanced from the convergence and it will
be driven toward that domain’s areas (not yet explored) where other minimum points could be
present.

From the algorithm point of view, mutation occurs with the insertion of a “mutant” vector,
defined as:

Definition (Mutant Vector). Given a generation, G, for each vector, xi,G, a mutant
vector is defined as the vector:

vi,G+1 = xi,best + F · (xj,G − xk,G) with :
i, j, k = 1, 2, ..., 14
i 6= j 6= k

(6.1)

where: the subscript best specify that only the best xi vector found into the generations up to
the G-th one is considered, while F is a specific coefficient, called mutation factor.

In Fig. 6.3 a logical scheme of mutation mechanism is reported. For simplicity, the vector, xi,G,
is the best one, too.
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Figure 6.3: Mutation mechanism

6.1.2 Crossover mechanism

Crossover is the following step. It consists on a random re-combination of the G-th generation’s
chromosomes, so that a new G+1-th generation can be arise. Crossover occurs when a new [x]
matrix is created, like this:

Definition (Trial Vector). Given a generation, G+1, each xi,G vector of the previous gener-
ation is substituted by a trial vector, ui,G+1, achieved from the random element’s combination
of xi,G and its associated vi,G+1 vector.

In Fig. 6.4 a logical scheme of crossover mechanism is reported:

xi,G vi,G+1

ui,G+1
Figure 6.4: Crossover mechanism

Once the new [x] matrix is created, it will be used in order to define the new N = 10 “sons”
motors. Then, they will be implemented in the FE software, and it will return to the algorithm,
the two objective values (average torque and ripple).

6.1.3 Selection mechanism

The last algorithm step is selection. The question selection wants to reply is: “Is the solution
just found, by using the trial vector, ui,G+1, better (or worse) with respect to the previous
solutions?”

In order to reply, the concept of non-dominance is introduced:
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Definition (Pareto Non-Dominance). Defined the plane with axes (Average torque / Rip-
ple), a point of this plane corresponds to an algorithm’s solution. This point is defined non-
dominated if no other points are better in terms of average torque and torque ripple, at the
same time.
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Figure 6.5: Pareto Non-Dominance criterion

Understood the concept of non-dominance, and remembering that Pareto-front is exactly the
locus of points where the optimum solutions (i.e. all the non-dominated ones) are defined, the
selection process for every generation can be summarized as follow:

1- Non-dominated points are calculated, as on the left side of Fig. 6.5. These points define
the rank #1 Pareto front;

2- The solutions associated to Pareto front of rank #1 are reputedly removed and the crite-
rion of non-dominance is applied to that points which will set up the Pareto front of rank
#2. And so on, for rank #3, #4, etc. This leads to the graph on the right side of Fig.
6.5;

3- Once all the points of the plain are classified, they are ordered and saved into an archive:
at the first positions the rank #1 solutions and then the following ranks up to the complete
filling of the archive size. In the case of iso-rank solutions, the order is such that the more
equispaced points are favourite: the reason of that is the attempt to avoid the Pareto front
could be well set up in the more crowded zones, while it could be simply approximated in
the more scattered areas.

Thus, a set of non-dominated solutions as more equispaced as possible are obtained. The union
of these points defines the real Pareto front.

NOTE: It is important to remember that, from a statistical point of view, the solutions be-
longing to Pareto front must be considered equipollent: a specific motor can’t be defined better
than the other ones. The choice of a more suitable machine must be led on the basis of other
criteria, which have nothing to do with the optimization algorithm. For instance: costs, losses,
simplicity in manufacturing, etc...
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6.2 The optimization

Ranges associated to the different variables, xi, have been initially set rather wide, because
there was no enough sensibility on the problem and on the consequences that a specific variable
could have had on the objectives. They are reported here:

Archive dimension 50 items
Population size 10 individuals

Generations 40 [-]

x1 : from 0.2 to 0.6
x2 : from 2 deg to 3.5 deg

x3 : from 4 deg to 6 deg

x4 : from 7 deg to 10.5 deg

x5 : from 220 mm to 245 mm
x6 : from 8 mm to 16 mm
x7 : from 2 mm to 6 mm
x8 : from 210 mm to 215 mm
x9 : from 12 mm to 25 mm
x10 : from 2 mm to 10 mm
x11 : from 205 mm to 210 mm
x12 : from 20 mm to 50 mm
x13 : from 2 mm to 20 mm
x14 : from 0.4 mm to 0.8 mm

Results have not reached a full convergence, because not all the stored final solutions are points
of Pareto front of rank #1. This doesn’t involve heavy consequences: simply, the conclusion
is that the final Pareto front of rank #1 will not be defined by 50 individuals, as the archive
dimension, but only by 17 points. In Fig. 6.6 scattering of the simulated motors is reported
and, in addition, the final Pareto front is highlighted by orange circles.
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Figure 6.6: Pareto front for the first optimization
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The first clear characteristic shown in the figure is the reduction of the torque ripple: apart
from some scattered solutions on the top of graph, a strong confluence of points is present into
the range of ripple 50% ÷ 70%. From the average torque point of view, instead, the trend is
negative, in the sense of a reduction of the torque: only a single motor overtakes 1100Nm.

Now, the solutions of the front are all characterized by very limited magnets’ dimensions: they
are small, tight or short, while most of the space is occupied by the air barriers.
This leads to think that an another optimization is necessary, with the aim of reviewing vari-
ables limits: the idea is to force the optimizator to design machines with bigger magnets. Here
after the new values are:

Archive dimension 50 items
Population size 10 individuals

Generations 50 [-]

x1 : from 0.2 to 0.6
x2 : from 2 deg to 3.5 deg

x3 : from 4 deg to 6 deg

x4 : from 7 deg to 10.5 deg

x5 : from 220 mm to 245 mm
x6 : from 8 mm to 16 mm
x7 : from 4 mm to 8 mm
x8 : from 209 mm to 215 mm
x9 : from 12 mm to 35 mm
x10 : from 5 mm to 10 mm
x11 : from 200 mm to 208 mm
x12 : from 20 mm to 60 mm
x13 : from 15 mm to 30 mm
x14 : from 0.4 mm to 0.8 mm

NOTE: This forcing could shrink too much the channel height between two neighbouring
barriers and -consequently- it could lead lamination to saturation in those areas. This is the
reason why also the inner rotor diameter has been reduced, from Df = 380mm to Df = 350mm.

In Fig. 6.7, scattering and final Pareto front connected to the second optimization are reported:
the graph effectively shows the trend of new individuals to crowd the south-western corner of
the plane, i.e. they are approaching to the utopia condition: the ripple range decreases from
50%÷ 70% to 45%÷ 60%, while the average torque, which before was rather distributed (scat-
tered), now is concentrated around the value of 1100Nm.

Definitively, the optimization leads to a sensible reduction of the ripple, also if a small but not
negligible reduction of average torque is present.

A limit of the graph of Fig. 6.7 is as follow: in the first optimization, the Pareto front points
were rather spread (equi-spaced) and their union allowed us to draw a regular and clean spline.
This leads to think that the drown spline was a good approximation of the real Pareto front.
Viceversa, in the second optimization, non-dominant points of the 50th generation give the
impression that algorithm does not reached an out-and-out convergence: their union, in fact,
doesn’t draw a regular front, but a rather chopped one. Probably, when the algorithm stopped
(at generation 50), it was finding a new Pareto front, closer to the real one, as highlighted in
Fig. 6.8.

This is the reason why results have been taken into account cautiously: although all the orange
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circled solutions of Fig. 6.7 should be considered -strictly speaking- as equivalents, actually, the
only solutions that will be considered are those ones highlighted in green, in Fig. 6.8:
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Figure 6.7: Pareto front for the second optimization
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Figure 6.8: Second optimization - Highlighted fronts
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Relatively to these green points, the following observations can be done:

- The machine on the bottom right side, also if very interesting because of its low value
of torque ripple, is characterized by a too low average torque. There are other solutions
(stator shifting, skewing, etc...) which allow to further reduce the torque ripple of the
optimized machine. All these solutions ask for a sacrifice in terms of average torque.
Hence, there is no sense in the choice of a machine with an already low average torque,
because -thus- no other strategies could be implemented without an excessive loss of
torque;

- Shifting attention on the central solutions, obviously, the interest will be only for the
machine with lowest ripple. As a matter of fact, the (very limited) average torque increase
relative to the near points of the plane does not be justified because of the simultaneous
increase of the torque ripple;

- The last solution, on the top of the front, shows a high average torque and could be an
another possible solution.

Definitively, the second motor from the bottom is chosen as personal optimum solution. The
characteristics of this motor are the following:

x1 x2 x3 x4 x5 x6 x7 x8

0,45 0,05rad 0,10rad 0,15rad 224 mm 12 mm 8 mm 215 mm

x9 x10 x11 x12 x13 x14 Torque Ripple

33 mm 8 mm 205 mm 57 mm 23 mm 0,4 mm 1106 Nm 46,46 %

Now: the chosen motor, has been simulated (like all the others) at a specific and fixed value
of αie = 46 el deg, that is the value where the reference motor run at MTPA conditions. This,
generally, is not true for the other motors. Therefore it’s necessary to carry out a new simulation
of the chosen motor with the change of αie angle. In Fig. 6.9(a) and in Fig. 6.9(b), a section
of the motor and the average torque behaviour, at different values of αie, are reported:

(a) Section of the choosen motor
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(b) Average Torque at different αie

Figure 6.9: Choosen optimized motor
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As expected, the MTPA condition is no longer where it was fixed during the optimization
algorithm (αie = 46 el deg), but it is αie = 40 el deg. In these conditions, the average torque and
the ripple both increase: from Tavg = 1106Nm to Tavg = 1130Nm and from Tripple = 46.46%
to Tripple = 52.40%. Fig. 6.10 reports the torque ripple of the motor:
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Figure 6.10: Torque ripple for the choosen optimized motor

6.2.1 Barrier refinement

The optimization script includes inside it a set of commands which automatically draw the
rotor barriers that have to be generated. The barriers shape must follow as good as possible the
trajectory flux lines would have in the case of barriers absence (i.e. their spontaneous path).
Unfortunately, this principle applies well only to machines with a low number of poles (up to
4-6 poles). Beyond them, the natural trajectory of flux lines keeps them only on the surface of
the rotor: they wouldn’t go through the rotor deeply, where the barriers are present.
In order to quickly solve the problem, the automatic-drawing script of rotor barriers acts in two
steps:

- Firstly, the code tries to draw a profile of the rotor barrier as similar as possible to the
natural trajectory of free flux lines;

- When this shape is no longer possible and a deviation from the natural path is necessary,
the code stops and the rotor barrier profile complete itself through a specific analytical
trajectory which links the last drown point and the ribs position (fixed by the variables
x2, x3 e x4, that are the barrier angles).

The procedure just explained, unfortunately, leads to a very raw design of the barriers, espe-
cially around the ribs, where the geometry is rather sharp, as illustrated in Fig. 6.11(a). This
profile is not easy to be industrially produced. Therefore, a manual refining procedure is done
around the ribs, as in Fig. 6.11(b).

Refinement has besides the advantage of a performance increasing: average torque reaches the
value of Tavg = 1135Nm, while ripple is Tripple = 51.70%. Fig. 6.12 reports the torque ripple
of the final (smoothed) motor:
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(a) Not refined (b) Refined

Figure 6.11: Rotor barriers’ profiles
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Figure 6.12: Torque ripple for the chosen optimized and refined motor

6.3 Conclusions

Proposed optimization led remarkable achievements in terms of torque ripple reduction. How-
ever, the results have always been accompanied by a sensible reduction of the average torque.
Two trials were done: a first, random (more or less), optimization and a second one, where some
variables have been better calibrated, with respect to the first trial. Due to the better results
of the second attempt, only the latter has been taken into account: from it, the (personally)
optimum motor has been chosen.

On it, torque values are computed, at different situations (αie = 46 el deg, MTPA conditions
and MTPA conditions with finished barriers), which are reported in Tab. 6.1:
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*ref. Not Refined Refined

αie [el deg] 46 46 40 40

Minimum Nm 523 781 757 766
Maximum Nm 1795 1295 1349 1353
Average Torque Nm 1306 1106 1130 1135

% 100 84.69 86.52 86.91
Ripple % 97.36 46.46 52.40 51.70

Table 6.1: Optimization - Comparison of results

Anyway, chosen motor must not be considered the best solution, for several reasons:

1- First of all, because a limit in the number of simulated individuals is set (in the first
optimization 10 individuals and 40 generations, making a total of 400 individuals, while
in the second optimization they increased up to 500). This limit does not allow the
optimization to reach a complete convergence toward the optimum point, also if a good
approximation to it is reached, in any case;

2- Secondly, the optimum αie is only assumed initially, and all the motors are simulated with
this same value. It is theoretically wrong, because each motor has got a proper optimal
value of such angle. Anyway, after all, an algorithm with the capability to discover also
the real optimum αie, would lead to computational costs extremely high and unbearable;

3- Finally, it is important to remember what has been said previously: from a statistical
point of view, the solutions belonging to Pareto front must be considered equipollent and
a specific motor can’t be defined better than the other ones.

Ending, the opportunity is taken to underline a strong limit of the adopted algorithm: as high-
lighted in Sect. 6.1, each simulated motor is characterized by 14 geometrical variables. It means
that the optimization is forced to look for the best solutions in a geometrical R14 space. This
fact implies an exponential increase in iterations number, which are necessary to convergence.
This problem could be reduced by resorting to a preliminary optimization of the variables, called
Design of experiment : it consists on a series of random simulations which have the purpose of
understanding which variables influence the average torque, which others condition the ripple
and -especially- which are those geometrical variables that have no particular weight on these
two objectives. In doing so, it could be possible to reduce the number of variables to only those
ones which are effectively useful to the scopes of a specific optimization algorithm, and -thus- it
could be possible to reduce the computational cost and the simulation time of the optimization.

This chapter ends with the found results, obtained from the developed optimizations. In Tab.
6.2 the Pareto front solutions are reported, with all their specifications. The units of measure
are: [−] for x1; [rad] for x2 ÷ x4; [mm] for x2 ÷ x14; [Nm] for Torque; [%] for Ripple.
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Chapter 7

Skewing

In this chapter an advanced algorithm for rotor skewing has been developed. Theoretical back-
ground, the code and results are illustrated.

7.1 The idea of Skewing

The study of machine is divided in four different phases, as already seen in Sect. 2.1: design,
rotor alignment, search of the optimum αie and under load machine evaluation.
In particular, the rotor alignment -in the used reference frame- has to ensure that the flux
linkage space vector, generated by the stator currents, (for instance of A-phase) and PM flux
linkage space vector are at a 90-degree angle to each other and, even more specifically, the first
one must developed itself along the d axis, while the other one must be along the −q axis. At
this point, a question could be the following:

What happens if the motor is not simulated in rotor-alignment conditions?

Surely, the torque developed by the machine would decrease. But it is not enough: the torque
behaviour would shift horizontally, as shown in Fig. 7.1, where a generic torque ripple has been
taken into account:
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Figure 7.1: Torque ripple trend at different phase conditions

In other words: “to get the machine to work in misalignment conditions” means “to shift the
ripple behaviour”, besides to reduce the torque values.
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7.2 The algoritm

Let’s consider the torque ripple of a generic (already simulated) machine. For example, the
optimized motor of Sect. 6.2.1. The developed torque is brought back here, in Fig. 7.2:
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Figure 7.2: Torque ripple of reference 24-16 PMARel motor

A continuous skewing of the rotor (as it occurs with induction motors) is not possible here,
because of the presence of PMs, which clearly can’t be twisted. It’s necessary, then, a discrete
skewing. In the performed trials, the rotor has been initially cut into m = 9 portions, with
steps of ∆θ = 1deg, making a total of ∆θTOT = 8deg of skewing. In addition, the middle portion
corresponds to the machine in aligned-rotor condition. In Fig. 7.3 an idea of skewed machine
geometrical appearance is reported:
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Figure 7.3: Skewing of the rotor

The first step of the algorithm is to simulate the machine with different rotor-alignment condi-
tions. The output consists on a matrix, OUT (∆θ, θm), where all the torque values developed
by the machines are reported. This is the only computational cost requested to the calculator.

Once the OUT (∆θ, θm) matrix is created, the aim is to look for all the possible linear combi-
nations of the m torque-ripple behaviours and, between those combinations, to find the more
convenient of them. Since the only variable that can be edited in the problem is the length of
each rotor portion, Ki · Lstk, the weighing coefficients correspond to these relative lengths. All
the combinations of these coefficients have been created by imposing that:
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- the relative length of rotor portion must be a multiple of 0,10. A specific portion, therefore,
can be long: the 0%, 10%, 20%, and so on, of the total rotor length, Lstk;

- the sum of all the coefficients must be equal to 1 (i.e. 100% o Lstk).

The overall torque developed in a specific position of the rotor, T (θm), thus, will be:

T (θm) =
1∑

iKi · Lstk
·

+4∑
i=−4

Ki · Lstk · Ti(θm) (7.1)

where:
∑

iKi = 1, that is:
∑

iKi · Lstk = Lstk.

Example 7.2.1. Lets consider the combination: [0, 0 0, 0 0, 0 0, 4 0, 3 0, 0 0, 1 0, 0 0, 2].
The rotor consists of the following portions:

Rotor misaligned of −1deg −→ Length: 40% of Lstk −→ Ki=−1 = 0, 4
Rotor perfectly aligned −→ Length: 30% of Lstk −→ Ki=0 = 0, 3
Rotor misaligned of +2deg −→ Length: 10% of Lstk −→ Ki=+2 = 0, 1
Rotor misaligned of +4deg −→ Length: 20% of Lstk −→ Ki=−1 = 0, 2

The torques developed by each portion of the rotor are shown as dashed lines in Fig. 7.4(a),
while the blue and continuous line represents the sum of all the previous ones: it is the overall
torque developed by the skewed machine. As clear as in Fig. 7.4(b), torque ripple considerably
decreases with respect to the non-skewed machine, by moving itself from Tripple = 51.70% down
to T

′
ripple = 25.27%. From the average torque point of view, since the torque behaviour has

been combined with other lower behaviours, the overall final torque, obviously, will be lower.
As a matter of fact, it decreases from Taverage = 1135Nm down to T

′
average = 1008Nm.
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Figure 7.4: Rotor skewing example
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Skewing can be repeated for any combination of Ki values which respect the criteria described
above. Now, all the possible coefficients combinations could be easily found through a per-
mutation of the values. The perm function of Matlabr is used. Unfortunately, however, for
dimensions of Ki vector greater than 7, the computational weight of perm function is too high
and a huge quantity of RAM should be necessary.
This is the reason why a trivial, but efficient, algorithm has been implemented. It works like
this:

1- A reasonable number, n′, of wanted combinations is set;

2- The calculator creates an array of n′ unique random combinations, each one characterized
by m = 9 values of N+

0 ;

3- All the combinations whose sum is not equal to 10 are discarded;

4- All the remaining n ≤ n′ combinations are divided by 10, in order to take their sum back
to 1.

In the first executed trial (9 portions of ∆θ = 1deg, each), n = 3750 different permutations has
been taken into account.

7.3 Results

Once the analysis illustrated in Ex. 7.2.1 is repeated for all the n known combinations, all the
results are reported into a scattering graph, as in Fig. 7.5. Also if this approach is not properly
a statistical optimization, and so a Pareto Front can’t be properly defined, anyway, the locus
of points on the left-bottom side defines the optimal solutions.
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Figure 7.5: Scattering of Skewing
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Thanks to rotor skewing, very important results can be reached, from the torque ripple point of
view. With respect to the reference 24-16 PMASynRel motor, ripple goes down from Tripple ≈
100% down to values lower than Tripple = 10%. This occurs, unfortunately, at the expense of
the average torque, which -with respect to the reference motor- decreases down to the 65%.
An another comparison can be made with respect to the PMASynRel motor with distributed
winding (Motor #1): the solution with minimum ripple (Tripple ≈ 7%) had never been reached
and it is characterized by a decrease of the average torque around 50%; viceversa, in order
to obtain the same values of torque ripple (Tripple ≈ 19%), the reduction of average torque is
confined to 56%.

7.3.1 Other tests

Results are referred to a specific choice of ∆θ (1deg) and ∆θTOT (8deg, i.e. m = 9). It is
interesting, now, to understand how results could modify themselves, by changing the two
variables.
Firstly, the skewing angle, ∆θ = 1deg, remains unchanged, while the number of portions, m,
(and, so, the total angle ∆θTOT , too) is modified. In Tab. 7.1, a summary of the executed tests
is reported:

done

Portions (m) [−] 5 7 9 11 13
Skew Angle (∆θ) [deg] 1 1 1 1 1
Total Skew Angle (∆θTOT ) [deg] 4 6 8 10 12
Combinations (n) [−] 996 4000 3750 4000 4000

Table 7.1: Other tests - Solutions with different number of portions and the same skew angle

NOTE. The Ki vector of dimension 5 shows all the possible combinations (n = 996), while,
in the other cases, the number of permutations is too high and, thus, it has been limited to
n = 4000.

In Fig. 7.6, the graphs relative to the solutions of Tab. 7.1 are reported, while a comparison is
carried out in Fig. 7.7.
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Figure 7.6: Tests with different Total Skew Angles, ∆θTOT , and the same Skew Angle, ∆θ.
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(c) m = 11
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(d) m = 13 (zoom)

Figure 7.6: Tests with different Total Skew Angles, ∆θTOT , and the same Skew Angle, ∆θ.
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Figure 7.7: Comparison between the different m solutions

From Fig. 7.7 is clear how the implemented skewing, for rotor partitions up to m = 9 portions,
shows considerable advantages in terms of torque ripple reduction. Viceversa, when m further
increases, the trend tends to slow and only a small increase of performances is observed. Hence,
it is possible to conclude that skewing is limited into the choice of the number of rotor portions,
m. Beyond, the increase of performances is probably no longer significant in order to justify
the increase of construction difficulties.

The purpose of the second step is to understand if, having fixed a specific Total Skewing Angle,
∆θTOT , the machine performance can increase, by refining or making rough the phase shift
angle between two neighbouring portions, ∆θ.
In Tab. 7.2, improved tests are reported, while in Fig. 7.8 the corresponding results are present.
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done done

Total Skew Angle (∆θTOT ) [deg] 6 6 6 8 8 8
Skew Angle (∆θ) [deg] 0.5 1 2 0.5 1 2
Portions (m) [−] 13 7 4 17 9 5
Combinations (n) [−] 996 4000 3750 4000 4000 4000

Table 7.2: Other tests - Solutions with different skew angles
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(a) ∆θTOT = 6deg - ∆θ = 0.5deg
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(b) ∆θTOT = 6deg - ∆θ = 2deg
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(c) ∆θTOT = 8deg - ∆θ = 0.5deg
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(d) ∆θTOT = 8deg - ∆θ = 2deg

Figure 7.8: Other tests - Solutions with different skew angles

Finally, Fig. 7.9 shows the comparison between the results, in the case of ∆θTOT = 6deg and
∆θTOT = 8deg, separately. Here it is possible to note how the transition from raw angles of
∆θ = 2deg to angles ∆θ = 1deg involves a significant increase of performance. Viceversa, the
attempt of further refining the Skew Angle, up to ∆θ = 0.5deg, has not been successful, because
the increase of performance is zero or, anyway, very low.
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Figure 7.9: Comparison between solution with different ∆θ

7.4 Remark on the correctness of αie

The various rotor positions considered by the algorithm have to be firstly simulated through
a FE software. All the simulations have been carried out with the same current angle, αie =
αie,opt|0 = 46 el deg. But this is not generally the correct angle for the generic skewed machine,
proposed by the algorithm. This is a limit of the code but, after all, it might not be differently
because it is not possible to simulate all the skewed machines, as the current angle, αie, changes.
Fortunately, the computational mistake does not carry weight on the final results, because the
difference between the optimal angle and the simulated one is, anyway, low.

Let’s consider a permutations of the algorithm. For instance, in the first analysis (∆θTOT =
8 deg, ∆θ = 1 deg, m = 9), there is the combination: [0, 0 0, 2 0, 3 0, 1 0, 0 0, 0 0, 1 0, 0 0, 3].
The optimum current angle related to the generic portion i− th will be:

αie,opt|i = αie,opt|0 − p · i ·∆θ = 46 el deg − 8 · i · 1 deg =

(
46− 8 · i

)
el deg

where: αie,opt|0 = 46 el deg is the current angle used for all the simulations, p = 8 are the
machine pole-pairs and i is the index which identifies the specific rotor portion.

The true optimal current angles linked to the various portions, then, will be:

i -4 -3 -2 -1 0 +1 +2 +3 +4
Ki 0,0 0,2 0,3 0,1 0,0 0,0 0,1 0,0 0,3
αie,opt|i 78 70 62 54 46 38 30 22 14

The optimal current angle for the whole skewed machine is computed as the average of all these
angles, weighed by their relative coefficients, Ki:

αie,opt =
��

��
��1∑+4

i=−4Ki

·
+4∑
i=−4

Ki · αie,opt|i
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Hence:

αie,opt =���0 · 78 + 0, 2 · 70 + 0, 3 · 62 + 0, 1 · 54 +���0 · 46 +���0 · 38 + 0, 1 · 30 +���0 · 22 + 0, 3 · 14

= 45 el deg

As it can be seen, the real αie,opt is anyway very close to the fixed value and similar results are
obtained for any other combination.
In addition, it is highlighted how this error not only is very small, but also in the safety
side. In fact, when the current angle is not the optimal one, the average torque decreases.
Simultaneously, the peak-to-peak value of torque does not change and, thus, the torque ripple
increases. Therefore, results obtained with non-optimal angles will show worse values respect
to those ones obtained in the real skewed motor, with the true αie,opt.

7.5 Conclusions

In this chapter a self-made algorithm for rotor skewing is implemented. It has got the pecu-
liarity that the different portions of rotor are not taken, a priori, all with the same length.
Conversely, each its portion is linked to a weighing coefficient, Ki, which specifies the relative
length of the portion, Ki ·Lstk, with respect to the total length, Lstk. The various torque ripples,
each associated to a specific condition of misalignment, are then linearly combined with their
weighing coefficients. The number of coefficient combinations is high (around 4000 different
permutations) in order to explore the space of possibilities, as better as possible.
The obtained results show important improvements in terms of torque ripple decrease, that
reaches -finally- very low and acceptable values. Unfortunately, this pulling down of the ripple
causes a simultaneous decrease of the average torque.

Since the starting analysis has been carried out with a Total Skew Angle and steps which were
defined only on the basis of author’s awareness, the chapter has been completed with a study
on how the results could change with other values of these two variables.
Firstly, a fixed Skew Angle, ∆θ = 1deg, has been imposed. Then it has been changed, while the
Total Skew Angles, ∆θTOT , has been fixed.

In both cases, this is the conclusion: with respect to the first experiment (∆θTOT = 8deg through
9 misaligned portions, with ∆θ = 1deg), rawer skewings reduce the performances, while more
refined ones do not improve them.
The first experiment, therefore, can be considered a good tradeoff between ripple reduction and
industrial simplicity (and so industrial costs). The problem of low average torque, anyway, still
remains.

As done in Chap. 6.3, this chapter ends with a summary of the best found results. Only the
first skewings of Fig. 7.5 are considered. In addition, amongst all the possible solutions, only
points which define the “Pareto front” are reported.
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Combinations Torque Ripple True αie,opt
[−] [Nm] [%] [el deg]

0,0 0,0 0,0 0,0 0,7 0,3 0,0 0,0 0,0 1125 51,04 44
0,0 0,0 0,0 0,2 0,4 0,4 0,0 0,0 0,0 1113 46,50 44
0,0 0,0 0,0 0,4 0,4 0,2 0,0 0,0 0,0 1110 44,26 48
0,0 0,0 0,0 0,3 0,2 0,4 0,1 0,0 0,0 1095 43,21 44
0,0 0,0 0,1 0,4 0,3 0,2 0,0 0,0 0,0 1093 42,38 49
0,0 0,0 0,0 0,3 0,4 0,2 0,0 0,1 0,0 1087 41,07 44
0,0 0,0 0,2 0,2 0,4 0,2 0,0 0,0 0,0 1085 40,32 49
0,0 0,0 0,2 0,2 0,3 0,3 0,0 0,0 0,0 1082 40,04 48
0,0 0,0 0,1 0,3 0,2 0,2 0,2 0,0 0,0 1072 38,51 45
0,0 0,0 0,0 0,2 0,5 0,1 0,0 0,2 0,0 1067 38,40 42
0,0 0,0 0,0 0,2 0,2 0,5 0,0 0,0 0,1 1064 38,10 40
0,0 0,0 0,0 0,3 0,4 0,1 0,1 0,0 0,1 1059 35,58 43
0,0 0,0 0,1 0,3 0,4 0,1 0,0 0,0 0,1 1055 33,88 46
0,0 0,0 0,3 0,2 0,3 0,1 0,0 0,1 0,0 1044 32,31 49
0,0 0,0 0,1 0,3 0,3 0,0 0,2 0,0 0,1 1032 30,22 44
0,0 0,0 0,3 0,2 0,4 0,0 0,0 0,0 0,1 1029 29,51 49
0,0 0,0 0,3 0,2 0,2 0,2 0,0 0,0 0,1 1022 28,94 48
0,0 0,0 0,0 0,4 0,3 0,0 0,1 0,0 0,2 1012 25,18 41
0,0 0,0 0,1 0,3 0,3 0,0 0,1 0,0 0,2 999 23,17 42
0,0 0,0 0,2 0,2 0,2 0,1 0,1 0,0 0,2 983 22,27 42
0,0 0,0 0,1 0,2 0,2 0,2 0,0 0,0 0,3 964 19,97 38
0,0 0,0 0,2 0,3 0,1 0,0 0,1 0,1 0,2 954 18,16 41
0,0 0,0 0,1 0,3 0,1 0,1 0,1 0,0 0,3 950 17,85 38
0,0 0,0 0,2 0,3 0,0 0,2 0,0 0,0 0,3 942 16,66 40
0,0 0,0 0,1 0,3 0,2 0,0 0,0 0,1 0,3 938 16,00 38
0,0 0,1 0,1 0,2 0,1 0,2 0,0 0,0 0,3 925 14,68 40
0,0 0,1 0,3 0,1 0,1 0,1 0,0 0,0 0,3 899 11,77 44
0,0 0,1 0,1 0,3 0,1 0,0 0,0 0,0 0,4 881 9,35 40
0,0 0,2 0,2 0,2 0,0 0,0 0,0 0,2 0,2 866 7,67 44
0,0 0,2 0,3 0,1 0,0 0,0 0,1 0,0 0,3 850 7,11 45

Table 7.3: Rotor Skewing - Better (Pareto Front) points for ∆θTOT = 8deg, ∆θ = 1deg, m = 9
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Chapter 8

Deep Analysis on 24/16
PMASynRel motor

8.1 Flux density field behaviour

A deeper analysis of the 24/16 PMASynRel motor is carried out in this chapter. Results ob-
tained from the seminumerical approach, developed by Spargo et al. [6] and explained in Sect.
3.3, are the starting point of these analysis.

A particular question rose during all the simulations. It is: “How is it possible to obtain a
sixth harmonic of torque ripple from a second spatial harmonic of flux density?”. To answer
the question, the results and the meaning of Spargo theory have been taken into account. In
the algorithm, torque is defined as:

T (θm) =
r2

µ0
·
∫ lstk

0

∫ 2π

0
Bn(ξ, θm) ·Bt(ξ, θm) · dξ (8.1)

where: r is the radius at the air-gap, µ0 is the vacuum magnetic permeability, while Bn(ξ, θm)
and Bt(ξ, θm) are the radial and tangential components of the flux density distribution at the
gap, along the spatial variable, ξ, and for the specific rotor position θm.

From the simulated motor, the Bn(ξ, θm) and Bt(ξ, θm) values are knows along all the coordinate
ξ and for all the rotor positions, from θm = 0 deg to θm = 45 deg. The product Bn,2(ξ, θm) ·
Bt,2(ξ, θm), as the two variables change, has been reconstructed, consequently.
The behaviour of this product is characterized by the sum of:

• a sinusoidal wave, with a wavelength λ =
360

4
= 90 el deg and an angular speed ω′ = −ω

2
;

• an another unknown wave, which produces a light amplitude modulation of the previous
wave;

• an average value, which oscillates with an angular speed ω′′ = 6ω.

In Fig. 8.1 the function Bn(ξ, θm) · Bt(ξ, θm) is reported, as the spatial coordinate, ξ, changes
and for four different rotor positions (i.e. time instants), while in Fig. 8.2 the maxs and the
mins of the same function are highlighted for all the simulated θm angles:
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8.2 Analytical model of the motor

What has just been seen is a set of theoretical considerations that refer to numerical results,
obtained from the FEM analysis. The purpose, now, is to develop an analytical model of the
motor and to justify, thus, the behaviours seen in the figures above.
The motor model is developed starting from those ones of Liwschitz-Garik et Whipple, presented
in [7], and of Bianchi et al., presented in [8].
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In a stationary reference frame, torque can be defined as:

T =
D2L

4
·
∫ 2π

0
Ks(ξ) ·B(ξ) · dξ (8.2)

where: D and L are the diameter at the air-gap and the stack length, respectively, Ks(ξ) is the
electric loading distribution at the inner diameter of the stator, while B(ξ) is the air-gap flux
density distribution.

By its definition, the electric loading is the sum of its harmonics, ν:

Ks(ξ) =
∑
ν

K̂ν · sin(ωt− νξ) (8.3)

Generally, for distributed windings, it is:

ν = 6 · k ± 1 (8.4)

It is no more true, instead, for fractional slots machines, where the harmonic content is more
irregular [3].

The scalar magnetic potential is derived by the electric loading, as:

Us(ξ) =
D

2
·
∫
Ks(ξ) · dξ =

D

2
·
∑
ν

∫
K̂ν · sin(ωt− νξ) · dξ

=
D

2
·
∑
ν

(
K̂ν

ν
· cos(ωt− νξ)

) (8.5)

The magnetic potential, Us(ξ), then, interacts with the machine reluctance, G(ξ), or -similarly-
with the permeance function, P (ξ). Permeance is strictly linked to the rotor geometry: it is a
function which moves synchronously (i.e. ω′ = ω) with the rotor and shows a double number
of periods (i.e. λ = π el rad). Therefore, it can be written as:

P (ξ) =
∑
ζ

P̂ζ · cos[2ζ · (ωt− ξ)] (8.6)

The relationship which links flux density, magnetic potential and permeance is 1 2

B(ξ) =
Us(ξ)

G(ξ)
= Us(ξ) · P (ξ)

=

[
D

2
·
∑
ν′

K̂ν′

ν ′
· cos(ωt− ν ′ξ)

]
·
[∑

ζ

P̂ζ · cos[2ζ · (ωt− ξ)]
]

=
D

2
·
∑
ν′

∑
ζ

K̂ν′

ν ′
· P̂ζ ·

[
cos(ωt− ν ′ξ) · cos[2ζ · (ωt− ξ)]

]
︸ ︷︷ ︸

A

(8.7)

1If the machine is characterized only by a constant gap, without barriers, the permeance function becomes

simply: P (ξ) =
µ0 ·A
g

, where: A is a cross section area.

2In order to distinguish the harmonic orders of the electric loading into the torque expression and of the
electric loading into the flux density formula, an apex is added in the latter.
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where:

A = cos(ωt− ν ′ξ) · cos[2ζ · (ωt− ξ)]
= cos(ωt− ν ′ξ + 2ζωt− 2ζξ) + cos(ωt− ν ′ξ − 2ζωt+ 2ζξ)

= cos

[
ωt · (1 + 2ζ)− ξ · (ν ′ + 2ζ)

]
+ cos

[
ωt · (1− 2ζ) + ξ · (−ν ′ + 2ζ)

] (8.8)

Hence, (8.2) becomes:

T =
D2L

4
·
∫ 2π

0
Ks(ξ) ·B(ξ) · dξ

=
D3L

8
·
∫ 2π

0

∑
ν

K̂ν · sin(ωt− νξ) ·
∑
ν′

K̂ν′

ν ′
· cos(ωt− ν ′ξ) ·

∑
ζ

P̂ζ · cos[2ζ · (ωt− ξ)]

=
D3L

8
·
∫ 2π

0

∑
ν

∑
ν′

∑
ζ

K̂ν ·
K̂ν′

ν ′
· P̂ζ ·

(
sin(ωt− νξ) · cos(ωt− ν ′ξ) · cos[2ζ · (ωt− ξ)]

)
︸ ︷︷ ︸

B

(8.9)

where:

B = sin(ωt− νξ) · cos(ωt− ν ′ξ) · cos[2ζ · (ωt− ξ)]

=
1

2
·
[
sin(ωt− νξ + ωt− ν ′ξ) + sin(��ωt− νξ −��ωt+ ν ′ξ)

]
· cos[2ζ · (ωt− ξ)]

=
1

2
·
[
sin

(
2ωt− ξ · (ν ′ + ν)

)
+ sin

(
ξ · (ν ′ − ν)

)]
· cos[2ζ · (ωt− ξ)]

=
1

2
·
[
sin

(
2ωt− ξ · (ν ′ + ν)

)
· cos[2ζ(ωt− ξ)]

]
+

1

2
·
[
sin

(
ξ · (ν ′ − ν)

)
· cos[2ζ(ωt− ξ)]

]
=

1

4
·
[
sin

(
2ωt · (1 + ζ)− ξ · (ν ′ + ν + 1)

)
+ sin

(
2ωt · (1− ζ)− ξ · (ν ′ + ν − 1)

)]
+

+
1

4
·
[
sin

(
2ζωt+ ξ · (ν ′ − ν − 1)

)
+ sin

(
− 2ζωt+ ξ · (ν ′ − ν + 1)

)]
(8.10)

Thus:

B =
1

4
·

B1︷ ︸︸ ︷
sin

(
2ωt · (1 + ζ)− ξ · (ν ′ + ν + 1)

)
+

1

4
·

B2︷ ︸︸ ︷
sin

(
2ωt · (1− ζ)− ξ · (ν ′ + ν − 1)

)
+

+
1

4
· sin

(
2ζωt+ ξ · (ν ′ − ν − 1)

)
︸ ︷︷ ︸

B3

+
1

4
· sin

(
− 2ζωt+ ξ · (ν ′ − ν + 1)

)
︸ ︷︷ ︸

B4

(8.11)

A plausible harmonic interaction which can justify a sixth harmonic of torque ripple is those
one between a second spatial harmonic of electric loading, Ks,−2(ξ), the second harmonic of
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magnetic potential, Us,−2, and a second harmonic of permeance function, P2(ξ). Remembering
that the second order field is counter-rotating respect to the fundamental one, it is:

Ks,−2(ξ) = K̂−2 · sin(ωt+ 2ξ)

Us,−2(ξ) =
D

2
· K̂−2
−2
· cos(ωt+ 2ξ)

P2(ξ) = P̂2 · cos[4 · (ωt− ξ)]

(8.12)

Therefore:

Bβ(ξ) =

B̂β︷ ︸︸ ︷
D

2
· K̂−2
−2
· P̂ζ ·

[
cos(ωt+ 2ξ) · cos[4 · (ωt− ξ)]

]
= B̂−2 · cos(5ωt− 2ξ)︸ ︷︷ ︸

B−2(ξ)

+B̂6 · cos(−3ωt+ 6ξ)

(8.13)

where: B̂−2 = B̂6 =
1

2
· B̂β.

The second addend is not important because it does not produce a second harmonic flux density
field (it defines a spatial harmonic of sixth order). Viceversa, the first addend is exactly the
harmonic field we are looking for. Hereafter, then, only this first term is considered.
This one, by interacting again with the second harmonic of electric loading, produces a torque:

Tτ =
D2L

4
·
∫ 2π

0
Ks,−2(ξ) ·B−2(ξ) · dξ

=
D2L

4
·
∫ 2π

0
K̂−2 · B̂−2 ·

(
sin(ωt+ 2ξ) · cos(5ωt− 2ξ)

)
· dξ

= C ·
∫ 2π

0
sin(ωt+ 2ξ) · cos(5ωt− 2ξ) · dξ

=

(
C

2
·
∫ 2π

0
sin(6ωt) · dξ

)
+
((((

(((
((((

(((
(((

C

2
·
∫ 2π

0
sin(−4ωt+ 4ξ) · dξ

)
=
C

2
· sin(6ωt) ·

∫ 2π

0
dξ =

C

�2
· sin(6ωt) · �2π = π · C · sin(6ωt)

(8.14)

In (8.14) two waves are identified:

• sin(−4ωt+ 4ξ). It is a sinusoid of wavelength λ = π/2 el rad, which moves synchronously
(i.e with an angular speed ω′ = ω). This field does not produce any torque contribution.
Anyway it is worth of noticing because is is exactly the wave, cited above and recognizable
in Fig. 8.1, which produces the amplitude modulation of the product Bn,2(ξ) ·Bt,2(ξ);

• sin(6ωt). It is the average oscillating value of Fig. 8.1. Because it is not a function
of variable ξ, its integral is different from zero. This implies that this particular term
produces a torque ripple of sixth harmonic.

Definitively, the analytical model justifies the presence of a sixth harmonic torque ripple in the
machine. It is due to the interaction between the second spatial harmonic of electric loading
(ν and ν ′ = −2) and a second harmonic of permeance function (ζ = 2). This interaction, as
well as explaining the ripple, allows to recognize also the field sin(−4ω+ 4ξ), which was found,
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thanks to the Spargo method, in Fig. 8.1.
In the same figure, however, a third field was visible. It is due to a second interaction, between
the second spatial harmonic of electric loading (ν and ν ′ = −2) and the harmonic zero of
permeance (ζ = 0):

Tτ =
D2L

4
·
∫ 2π

0
Ks,−2(ξ) ·Bβ(ξ) · dξ =

D2L

4
·
∫ 2π

0
Ks,−2(ξ) · Us,−2(ξ) · P0(ξ) · dξ

=
D2L

4
·
∫ 2π

0
K̂−2 · sin(ωt+ 2ξ) · D

2
· K̂−2
−2
· cos(ωt+ 2ξ) ·����cos(0) · dξ

= C ′ · int2π0 sin(ωt+ 2ξ) · cos(ωt+ 2ξ) · dξ

=
C ′

2
·
∫ 2π

0
sin(2ωt+ 4ξ) +����sin(0) · dξ =

C ′

2
·
∫ 2π

0
sin(2ωt+ 4ξ) · dξ = 0

(8.15)

The contribution, in terms of torque, is null. But from the combination ν ′ = −2 , ν = −2
e ζ = 0, a wave which has equation: sin(2ωt + 4ξ), is obtained. This is exactly the third
component of Fig. 8.1.

8.3 Verifications

The analytical model justifies the 6 − th torque ripple the motor shows, by supposing the
presence of:

• a 2− th spatial harmonic of electrical loading, Kν(ξ);

• a 2− th harmonic of permeance, Pζ(ξ)

The model, however, only identifies these harmonics, but does not verifies if they are actually
present. It is necessary, then, to verify what is assumed by the model.

Firstly, the electric loading distribution is evaluated, by means of a FEM software. A linear
24/16 PMASynRel motor has been taken into account and, here, the rotor has been substituted
by a full cylinder of ferromagnetic linear material. In this way, it is:

B(ξ) = µ0 ·
Us(ξ)− Ur(ξ)

g
(8.16)

where: B(ξ) and Us(ξ)−Ur(ξ) are the already cited flux density and magnetic voltage drop at
the gap, while g is the gap length.

By evaluating, therefore, the flux density at the gap, the magnetic voltage drop distribution,
Us(ξ) − Ur(ξ), can be obtained and consequently the electric loading, Ks(ξ), too, for (8.5). In
Fig. 8.3(a) the Us(ξ)−Ur(ξ) distribution is reported along an electrical period3. It is highlighted
with a continuous blue line, while the red dashed path represents the sum of first and second
harmonic of the same distribution. In Fig. 8.3(b), the harmonic content of the first figure is
reported:

3In figure, “MMF” is used instead of “magnetic voltage drop”. This term, also if strictly speaking wrong, has
been chosen to follow the international conventions.
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Figure 8.3: 24/16 PMASynRel Air-Gap MMF

The figures above show that there is a clear second harmonic of the magnetic voltage drop at
the air-gap (and so of the electric loading, too). This fact verifies the analytical model, in part.

Concerning, then, the permeance harmonics, Pζ(ξ), the verification can be summarized as follow:

• a single two-pole pitch of the rotor is taken into account;

• the stator inner diameter is substituted by a segmented line of 100 traits of length ∂l =

D/2 · ∂ξ = 250 · π

4 · 100
≈ 1.96mm, each;

• the materials are fixed: linear iron instead of Terni, saturated iron for the ribs and air
instead of the PMs;

• the following boundary conditions are set:

AZ1 = 0 Tm

AZ2 = 10-4 Tm

Newmann

Newmann

• The magnetic voltage drop is computed along an average path, γ, as highlighted in figure
with a red dashed line:
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By fixing the Newmann condition to each of the upper traits, ∂l, the permeance function can
be graphed. As a matter of facts:

∂P (ξ) =
∂Φ

U

∣∣∣∣
∂l

=
(AZ2 −AZ1) · Lstk∫

γ H · t · dt

∣∣∣∣∣ (8.17)

Fig. 8.4 shows the permeance function, P (ξ), and its harmonic content. Also if rather low, the
second harmonic assumed in the model is actually present. And this fact further corroborates
the analytical model.
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Figure 8.4: 24/16 PMASynRel Permeance function

8.4 Conclusions

In this chapter, a deep analysis of the 24/16 PMASynRel machine is carried out. Starting from
the analyses of the previous chapters, a characteristic peculiarity of this motor has been noted:
the main torque ripple contribution seems to be due to the presence of a second harmonic of
flux density field at the air-gap. Therefore, the product Bn(ξ) ·Bt(ξ) has been graphed, as both
the spatial variable, ξ, and time change. The product, whose integral identifies the torque, is
the sum of three different contributions.
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An analytical model of the motor has been developed, consequently, in order to clarify these
three contributions. These ones can be explained if two particular interactions between the
fields is considered: the second spatial harmonics of electric loading and magnetic potential
with the second harmonic of permeance function, firstly, and the same physical quantities but
with the harmonic zero of the permeance, then. The first combination, in particular, justifies
the 6− th harmonic of torque.

The model, then, is verified. Through a FEM software, the mmf distribution (i.e. the voltage
magnetic drop distribution at the gap) is computed. It is proportional to the electric loading,
and the presence of a second harmonic of mmf confirms the presence of the same harmonic also
of the latter. Secondly, the permeance function has been derived. Here, too, a second harmonic
is present, also if its magnitude is rather limited.

The verification, hence, corroborates the assumptions of the analytical model. It is possible,
then, to confirm that the main torque ripple contribution is due to the particular interaction:

Tτ=6 ∝
∫ 2π

0
Kν=−2(ξ) ·Bβ=−2(ξ) · dξ =

∫ 2π

0
Kν=−2(ξ) ·Kν′=−2(ξ) · Pζ=2(ξ) · dξ
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Chapter 9

Conclusions

This thesis deals with a particular configuration of 24-Slot and 16-Pole Synchronous Reluctance
Motor Assisted by Permanent Magnets (PMASynRel). The work is inserted into the research
activity of University of Padua’s Electrical Drives Laboratory and it is integral part of a research
project commissioned by ABB Italia S.p.a. - Discrete Automation and Motion Division.

At first, a brief recall on Synchronous Reluctance machines is presented, in Chapter 1.
Starting from an already designed PMASynRel motor with distributed windings, some configu-
rations of fractional slots motors with non-overlapped coils have been developed. In particular:
a 18-Slot and 16-Pole, a 21-Slot and 16-Pole, a 24-Slot and 16-Pole. All the motors have been
taken into account without changing the main geometrical data and with the same electric
loading, for a better comparison.
Simulations highlighted how the 24/16 configuration is characterized by rather limited perfor-
mance, in terms of torque ripple. This is the reason why only this latter configuration has been
studied, further.

A first analysis of the motor has been carried out in order to understand the torque behaviour.
By means of a Finite Element analysis, considerations have been done on the field maps which
characterize the machine in some particular magnetic situations.
In addition, torque behaviour has been observed over each pole-pitch, as the rotor position
changes. From it, finally, a general design rule has been proposed. It permits to know -a priori-
the goodness of a specific configuration of slots and poles, in terms of torque ripple.

Some design approaches have been tested to reduce the torque ripple. They are split in two
categories: the geometrical modifications of the stator, and that ones of the rotor. In the first
group there are the so-called: Slot Deformation, Tooth Cut and Stator Shifting.
Slot Deformation and Tooth Cut consist on appropriate changes in slot and tooth shape. They
have the purpose to force flux lines to follow alternate paths in the iron, especially at the partic-
ular negative magnetic conditions. Differently, Stator Shifting consists on a change of position
of groups of slots, which are shifted, respect their starting position, of suitable angles.

On the other hand, two different approaches have been considered for the rotor. The barriers
shape has been firstly optimized by means of a multi-objective Differential Evolution Opti-
mization with Pareto non-dominant sorting of the individuals. Chosen a specific geometry
(considered the best by the author), a parametric Rotor Skewing, based on a self-made algo-
rithm developed during the work, has been implemented.
It is unusual because it not only skews the rotor: the length of each rotor portion becomes
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a variable of the algorithm. By doing it, the best combination between the different relative
lengths is looked for, in terms of torque ripple reduction.

Eventually, the motor has been deeply analysed. Starting from some observations on the previ-
ous simulations, the author tried to answer the question: “Why the motor is characterized by
a so important presence of a 6-th harmonic of torque?”.
An analytical model of the machine has been, therefore, developed and, from it, particular
harmonics combinations have been supposed. A FEM analysis, then, has confirmed and cor-
roborate the assumptions of the analytical model.

The following conclusions can be stated from this work:

On the first analysis of the motor:

- There are some rotor positions where flux lines exhibit an opposite direction with respect
to machine rotation wise. The consequence is a drop in torque behaviour, because the
local torque contribution due to these flux lines is negative;

- By following how torque behaves over the pole-pitches, as the rotor position changes, it is
possible to observe resting times, where the pole can be considered unloaded, alternated
by peaks times, where it actively contributes in torque development. The shift between
these two phases produces the torque ripple;

- It is possible to develop a general design rule: Let’s consider a generic FS SynRel machine
with p pole-pairs and periodicity, t. Then, the less the ratio NY = 2p/t is, the greater is
the torque ripple of the machine.

On the design techniques which act on the stator:

- The design technique where the best results are obtained is Stator Shifting. Torque
ripple decreases down to Tripple ≈ 43% , but the average torque decreases, too: from
Tavg = 1306Nm to Tavg ≈ 1085Nm (i.e. a reduction of 17%);

- In Stator Shifting, while ripple always more decreases as the shifting refines itself, the
average torque tends to decrease to fixed values.

On the design techniques which act on the rotor:

- Proposed Optimization leads to remarkable achievements in terms of torque ripple reduc-
tion. However, results are always accompanied by a sensible reduction of average torque;
the result that can be considered “the best” by the author exhibits: Tavg = 1135Nm and
Tripple = 51.7%;

- Also the Rotor Skewing reaches good performance. The technique, applied to the just
optimized motor, permits to decrease ripple down to Tripple ≈ 7%, but with an high cost
in terms of average torque, Tavg = 850Nm.

On the deep analysis of the motor:

- Torque ripple is mainly caused by the interaction of a second harmonic (ν = ν ′ = −2) of
electric loading, Ks,−2(ξ), and a second harmonic of the permeance function, P2(ξ).
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In Fig. 9.1 all the main results are reported for a comparison:
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Figure 9.1: Comparison of the main results

9.1 Future developments

During this thesis, some limits have been observed. In addition, some results have reached to
develop new ideas. Unfortunately, these ones have not been developed for the time limits of the
work. Following, therefore, a list of the possible future developments are reported:

• Design of experiment. The optimization algorithm needs a huge number of input
variables. This fact implies an exponential increase in the iterations number which are
necessary to converge. This problem could be reduced by resorting to a preliminary
optimization of the variables, called Design of Experiment ;

• Parametric Stator Shifting. Stator Shifting has been studied only for a fixed value
of the Total Shifting Angle, ∆θsh,TOT = 7.5 deg. A possibility could be the deep study
of this technique, by understanding on what the different variables (also those ones not
considered) influence.
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Appendix A

Results: Slot Deformation

In this appendix, all the Slot Deformation simulations are reported. Tab. A.1 summarizes the
results of these tests while, in the following pages, the torque behaviours and their harmonic
contents are graphed.

*ref.

SE Corner (0;0) (0;5) (5;0) (5;5) (0;0) (0;0) (0;0) (0;5)
SW Corner (0;0) (0;0) (0;0) (0;0) (0;5) (-5;0) (-5;5) (0;5)

Minimum Nm 523 604 416 495 594 674 455 663
Maximum Nm 1795 1735 1810 1714 2049 1674 1747 1997
Average Torque Nm 1306 1345 1208 1251 1287 1204 1191 1293

% 100 102.99 92.50 95.79 98.55 92.19 91.20 99.01
Ripple % 97.36 84.14 115.42 97.40 113.04 83.03 108.45 103.26

SE Corner (0;5) (0;5) (5;0) (5;0) (5;0) (5;5) (5;5) (5;5)
SW Corner (-5;0) (-5;5) (0;5) (-5;0) (-5;5) (0;5) (-5;0) (-5;5)

Minimum Nm 686 572 559 472 392 555 585 382
Maximum Nm 1666 1689 2043 1578 1699 1999 1564 1624
Average Torque Nm 1269 1219 1207 1066 1308 1202 1101 1042

% 97.17 93.34 92.42 81.62 100.15 92.04 84.30 79.79
Ripple % 77.31 91.61 122.98 103.82 125.94 120.11 88.89 119.27

Table A.1: Slot Deformation - Comparison of results
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Figure A.1: (0;5)(0;0) torque ripple
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Figure A.2: (5;0)(0;0) torque ripple
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Figure A.3: (5;5)(0;0) torque ripple
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Figure A.4: (0;5)(0;0) harmonic content
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Figure A.5: (5;0)(0;0) harmonic content
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Figure A.6: (5;5)(0;0) harmonic content
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Figure A.7: (0;0)(0;5) torque ripple
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Figure A.8: (0;0)(-5;0) torque ripple
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Figure A.9: (0;0)(-5;5) torque ripple
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Figure A.10: (0;0)(0;5) harmonic content
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Figure A.11: (0;0)(-5;0) harmonic content
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Figure A.12: (0;0)(-5;5) harmonic content
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Figure A.13: (0;5)(0;5) torque ripple
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Figure A.14: (0;5)(-5;0) torque ripple
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Figure A.15: (0;5)(-5;5) torque ripple
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Figure A.16: (0;5)(0;5) harmonic content
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Figure A.17: (0;5)(-5;0) harmonic content
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Figure A.18: (0;5)(-5;5) harmonic content
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Figure A.19: (5;0)(0;5) torque ripple
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Figure A.20: (5;0)(-5;0) torque ripple
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Figure A.21: (5;0)(-5;5) torque ripple
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Figure A.22: (5;0)(0;5) harmonic content
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Figure A.23: (5;0)(-5;0) harmonic content
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Figure A.24: (5;0)(-5;5) harmonic content
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Figure A.25: (5;5)(0;5) torque ripple
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Figure A.26: (5;5)(-5;0) torque ripple
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Figure A.27: (5;5)(-5;5) torque ripple
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Figure A.28: (5;5)(0;5) harmonic content
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Figure A.29: (5;5)(-5;0) harmonic content
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Figure A.30: (5;5)(-5;5) harmonic content
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