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Abstract

Let X be a smooth projective geometrically connected variety over a number
field k. If X has adelic points but no k-rational points, then it is said to have
failed the Hasse principle. Most of the time this failure can be accounted for
by the Brauer-Manin obstruction, that comes in the form of the Brauer set,
which sits in the middle of the inclusions

X(k) ⊂ X(Ak)Br• ⊂ X(Ak)•.

In this paper, we apply the theory of descent to investigate another form
of obstruction to the Hasse principle. This involves studying the category
Ab(X) of X-torsors under finite abelian étale group schemes defined over k.
Let X(Ak)f-ab• denote the set cut out by restrictions coming from the finite
abelian étale coverings of X, we informally view them as the set of points of
X(Ak)• that ‘survives’ all X-torsors in Ab(X). Our main result will be to
show that when X = C is a curve, this set coincides with the Brauer set. In
other words, C(Ak)f-ab• = C(Ak)Br• .
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Introduction
In 1900, Hilbert’s tenth problem asked, “given a polynomial Diophantine equa-

tion f(x1, ..., xn) = 0 with integer coefficients, does there exist an algorithm which
can determine if f has a solution in Z?” This problem can of course be extended to
the case where we consider a system f1, ..., fm of Diophantine equations, and ask if
we are able to determine if there is a common integral solution to these equations.
Such a system defines a variety over Q, and therefore we can reformulate the prob-
lem as

Question 0.1 (Hilbert’s 10th Problem over Q).1 Does there exist an algorithm
for deciding whether a variety over Q has a rational point?

This problem generated further interest in the existence of rational points on a
variety. A few years later, after the creation of the p-adic numbers by Hensel, there
was suspicion by Hasse that considering the p-adic numbers for all prime numbers p
could play an important role in number theory. To put it roughly, Hasse promotes
the view that we can study a problem over Q by studying it in R and in all the local
fields Qp. This is known as the local-global principle, or, as we now call it, the Hasse
principle.

What led Hasse towards such a perspective? Well, despite the unclear foun-
dations of the p-adic numbers at that time, it was Minkowski’s work on quadratic
forms that provided the motivation. Simply putting, to determine if a quadratic
form has a solution in Q, we only have to determine if it has a solution in R (this
is usually obvious), and a solution in Qp for every p, which can be done by analytic
tools such as Hensel’s lemma. This gives us the famous result

Theorem 0.2 (Hasse-Minkowski). Let Q(x1, ..., xn) be a quadratic form with
rational coefficients. Then

(1) for c ∈ Q×, the equation Q(x1, ..., xn) = c has a solution in Q if and only if it
has a solution in R and every Qp.

(2) the equation Q(x1, ..., xn) = 0 has a solution in Q besides (0, ..., 0) if and only if
it has a solution in R and every Qp besides (0, ..., 0).

With such a powerful tool in hand, it would be natural to try to extend it to
higher order forms. Unfortunately, this principle cannot hold in general, even in the
immediate case of cubic forms. In the famous example of Selmer [Sel51], the cubic
equation

3x3 + 4y3 + 5z3 = 0

has a solution other than (0, 0, 0) in R and every Qp, but its only solution in Q is
(0, 0, 0). We will see a quartic counterexample later on, at the end of Chapter 1.

1Refer to [Poo01] for a survey about this problem. For the original Hilbert’s 10th problem, such
an algorithm cannot exist [Mat70].
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Nonetheless this new obstacle did not hold mathematicians back, because the
focus has now shifted to a new question:

Question 0.3. What accounts for the failure of the Hasse principle?

This innocuous-looking problem gave rise to a novel approach to the study of rational
points: obstructions. To explain the meaning of this term, we first note that when
a smooth projective variety X over Q to have a point in R and every Qp, we obtain
a point in ∏

p

X(Qp)×X(R).

The properness of X ensures we have an equality between this product and the
adelic points of X, i.e.,

X(AQ) =
∏
p

X(Qp)×X(R).

Trivially, we have an embedding of X(Q) into X(AQ) via a 7−→ (a, a, ...). An
obstruction of rational points is a set S such that

X(Q) ⊂ S ⊂ X(AQ).

And if X fails the Hasse principle and S = ∅, we say that S accounts for this failure.

The earliest known obstruction was discovered in the 1970s by Manin [Man70],
and it is called the Brauer-Manin obstruction. The set S in this case is called the
Brauer set, containing adelic points that vanish under the Brauer-Manin pairing
with all points of the Brauer group Br(X) of X, see Chapter 1.4.

For a long time, the Brauer-Manin obstruction accounted for all failures of the
Hasse principle. It wasn’t until the late 1990s when Skorobogatov [Sko99] con-
structed an example of a surface with no rational points, even though there was
no Brauer-Manin obstruction. This provides us with a glimpse of the difficulty of
working with varieties of dimensions greater than 1, since many aspects of their
behaviours are not so well-understood. That being said, the main goal of this paper
is to show that the Brauer-Manin obstruction accounts for all failures of the Hasse
principle when the variety under consideration is a smooth projective geometrically
connected curve C over a number field.

Our approach is as follows: we apply techniques developed by Colliot-Thélène
and Sansuc on descent theory to define new obstruction sets (Definition 3.5). The
idea revolves around the twists of torsors under certain finite group schemes. The
resulting obstructions are called finite descent obstructions. We will prove that in
the case of C, these obstruction sets coincide with the Brauer set (Theorem 3.20),
and therefore the Brauer-Manin obstruction accounts for the obstruction against
rational points on C.
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1 The Brauer-Manin Obstruction

The Hasse principle (in the case of points in Q) is the statement that for a smooth
and projective variety X, the set X(Q) is nonempty if and only if for every prime
p ≤ ∞, X(Qp) is also nonempty. Certain classes of varieties are known to satisfy the
Hasse principle, for example, the degree 2 hypersurfaces in Pn [Poo01]. The goal of
this chapter is to outline one of the possible reasons the Hasse principle might be
false in the case of smooth projective geometrically connected curves over a number
field. Such a failure is due to the Brauer-Manin obstruction, discovered by Manin
[Man70], and it is named so because it arises from the Brauer group of the curve.

1.1 Finer Topologies

The issue of a topological space having too few open sets to accurately compute the
cohomology groups of certain coherent sheaves was the reason Grothendieck and
Artin developed the theory of étale cohomology. It required the relaxation of the
requirement that a covering set of a space consists of only its subsets.

Let E be one of the following classes of morphisms: (Zar), (ét) and (fl); which
denote, respectively, the class of all open immersions, étale morphisms of finite type,
and flat morphisms locally of finite type. Elements of E will be called E-morphisms.
Fix a base scheme X and a class E. Let C/X be a full subcategory of the category
of schemes over X, Sch/X, such that

(i) C/X is closed under fiber products;

(ii) for any Y −→ X in C/X and any E-morphism U −→ Y , the composite
U −→ X is in C/X.

Definition 1.1. An E-covering of an object Y of C/X is a family of E-morphisms
(gi : Ui −→ Y )i∈I such that Y =

⋃
gi(Ui). The class of all such coverings of all such

objects is the E-topology on C/X. The category C/X together with the E-topology
is the E-site over X, denoted by (C/X)E, or simply, XE. The small E-site on X is
(E/X)E, where E/X is the full subcategory of Sch/X whose objects are schemes
Y over X such that the structure morphism Y −→ X is an E-morphism. And in
the case where all E-morphisms are locally of finite type, the big E-site on X is
(LFT/X)E, where LFT/X is the full subcategory of Sch/X of X-schemes whose
structure morphism is an E-morphism that is locally of finite type.

One easily checks that C/X, together with the family of E-coverings, is a
Grothendieck topology, where the usual notion of an open set is replaced with an
E-morphism. The theory of presheaves and sheaves extend naturally into this new
situation. We note the following two presheaves:

Example 1.2. For any U −→ X in C/X, the presheaf Ga associates to U the
additive abelian group Γ(U,OU) while the presheaf Gm associates to U the multi-
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plicative abelian group Γ(U,OU)×, both with obvious restriction maps.

Remarks 1.3. (a) We can view the (Zar)-topology on a scheme as the Zariski topol-
ogy in the usual sense, up to identification of any open immersion with its image.
Hence we refer to the (Zar)-topology simply as the Zariski topology. Respectively,
the étale and flat topology refer to the (ét)- and (fl)-topology.
(b) Since every open immersion is étale and flat, we see that the étale and flat
topologies are finer than the Zariski topology.
(c) By the same reasoning, the flat topology is finer than the étale topology.

By the Zariski site XZar on X we always mean the small (Zar)-site ((Zar)/X)Zar;
by the étale site Xét we always mean the small (ét)-site ((ét)/X)ét, and by the flat
site Xfl, we always mean the big (fl)-site (LFT/X)fl.

Another distinction between the Zariski sites and the étale and flat sites is given
by the following result (see [Mil80], II.1.5), which makes it easier to check if a
presheaf is a sheaf.

Proposition 1.4. Let P be a presheaf of abelian groups on the étale or flat site on
X. Then P is a sheaf if and only if it satisfies the following two conditions:

(a) for any U in C/X, the restriction of P to the usual Zariski topology on U is a
sheaf;

(b) for any covering (U ′ −→ U) with U,U ′ both affine, P (U) −→ P (U ′) ⇒ P (U ′×U
U ′) is exact.

We denote by S(XE) the category of sheaves on the site (C/X)E and remark
that this is an abelian category with enough injectives (see [Mil80], III.1). Therefore
we are able to define the right derived functors of any left exact functor from S(XE)
into an abelian category.

Definition 1.5. The functor Γ(X,−) : S(XE) −→ Ab, with Γ(X,F ) = F (X), is
left exact and its right derived functors are written

RiΓ(X,−) = H i(X,−) = H i(XE,−).

The group H i(XE, F ) is called the ith-cohomology group of XE with values (or co-
efficients) in F . For instance, étale cohomology involves taking XE as the étale site
and flat cohomology when XE is the flat site.

The two presheaves mentioned in Example 1.2 are actually sheaves on the Zariski,
étale and flat sites. The reason is that both these presheaves are defined by com-
mutative group schemes, i.e., as functors from Sch/X to Sets, they factor through
the category Ab (see [Mil80], II.1.7). The sheaf Gm is of particular importance to
us, which we will see in the next section. For now, we finish off with the following
important result, which tells us that the étale topology is sufficiently (see Remark
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1.3(c)) fine to compute interesting cohomology groups of a smooth group scheme,
i.e., for the rest of this paper, we can work equally well with either étale or flat
cohomology.

Theorem 1.6. If G is a smooth, quasi-projective, commutative group scheme over
a scheme X, then the canonical maps

H i(Xét, G) −→ H i(Xfl, G)

are isomorphisms.

Proof. See [Mil80], III.3.9. �

1.2 The Brauer Group

We review the classical construction of the Brauer group, following the content in
[Mil13], IV.2. Let k be a field, a k-algebra A is said to be central if its center Z(A)
is k. If A is both central and simple then we call it a central simple algebra. We
note that every simple k-algebra is central simple over a finite extension of k. Let
A and B be central simple algebras over k. We say that A and B are similar, and
denote it by A ∼ B, if

A⊗k Mn(k) ∼= B ⊗k Mm(k)

for some positive integers m,n. By [Mil13], IV.2.2, this is an equivalence relation.
Let the set of similarity classes of central simple algebras over k be denoted by
Br(k), and write [A] for the similarity class of A. We define an operation between
two classes [A] and [B] by

[A][B] = [A⊗k B].

It is easy to verify that this operation is well-defined, and the associativity and
commutativity of this operation follows from that of the tensor product. For each
n, [Mn(k)] would be an identity element since we have that [A][Mn(k)] = [A ⊗k
Mn(k)] = [A] and by [Mil13], IV.2.9 we also have that [A][Aopp] = [A ⊗k Aopp] =
[Mn(k)], where Aopp is the opposite algebra, i.e., multiplication of the underlying
ring is performed in the reverse order. Trivially, all the Mn(k) belong to the same
class. Hence Br(k) is an abelian group, called the Brauer group of k.

We describe an alternative way to define Br(k). Let [A], [A′] be similarity classes
in Br(X) and let L be an extension of k, not necessarily finite. By the following
observations,

Mn(k)⊗ L ∼= Mn(L),

(A⊗k L)⊗L (A′ ⊗k L) = (A⊗k A′)⊗k L,

we see that the map A 7−→ A ⊗k L defines a homomorphism Br(k) −→ Br(L).
Let Br(L/k) denote the kernel of this map, which consists of the similarity classes
represented by central simple algebras A such that the L-algebra A⊗k L is a matrix
algebra. For such an A, we say that it is a split central simple algebra. By [Mil13],



1.2 The Brauer Group 4

IV.2.17, we see that Br(k) =
⋃

Br(K/k) where K runs over all the finite extensions
of k contained in some fixed k̄.

Given any finite Galois extension L of k, [Mil13], IV.3.14 tells us that we have
an isomorphism of abelian groups Br(L/k) ∼= H2(Gal(L/k), L×). More importantly,
we have, for a separable algebraic closure k̄ of k, the canonical isomorphism

Br(k) ∼= H2(Gal(k̄/k), k̄×).

We use the above definitions of the Brauer group to compute Br(k) for some
fields k.

Proposition 1.7. If k is algebraically closed, then Br(k) = 0.

Proof. This follows from the fact that there are no nonsplit central simple algebra
over k, hence the Brauer group is trivial. �

Proposition 1.8. The Brauer group of R is isomorphic to Z/2Z.

Proof. By Proposition 1.7 we know that Br(C/R) ∼= Br(R). Hence

Br(R) ∼= (C×)Gal(C/R)/NmC/R(C×) ∼= R×/R>0
∼= Z/2Z

by [Wei97], VI.6.2. �

In the case of local fields, by this we mean the finite extensions of Qp or Fp((t)),
we have a nicer result which takes some machinery to construct. We provide a
sketch. For a local field K and a finite unramified extension L/K, let G denote the
Galois group, which is isomorphic to the Galois group of the corresponding residue
field extension, hence G is cyclic. Let UL denote the group of units of the ring of
integers of L and we begin with the exact sequence

0 −→ UL −→ L× −→ Z −→ 0,

where the latter map is the normalized valuation of L. By [Mil13], III.1.1, we have
that H2(G,UL) = 0 = H3(G,UL). This gives us an isomorphism H2(G,L×) ∼=
H2(G,Z). The cohomology of Z follows from the exact sequence of G-modules

0 −→ Z −→ Q −→ Q/Z −→ 0.

The groups Hr(G,Q) are torsion for r > 0 by [Mil13], II.4.3 and uniquely divisible,
hence zero. Thus we have an isomorphism H1(G,Q/Z) ∼= H2(G,Z). The group
H1(G,Q/Z) can also be interpreted as Hom(G,Q/Z) and since G is cyclic, let σ be
its generator we have the following homomorphism

Hom(G,Q/Z) −→ Q/Z, f 7−→ f(σ).
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Definition 1.9. The composite

H2(Gal(L/K), L×)
∼−−→ H2(G,Z)

∼←−− H1(G,Q/Z) ∼= Hom(G,Q/Z)→ Q/Z

is called the local invariant map

invL/K : H2(Gal(L/K), L×) −→ Q/Z.

We omit the proof of the following important result concerning the Brauer group
of a local field:

Theorem 1.10. Let k be a local field, then invk̄/k is an isomorphism, i.e.,

H2(Gal(k̄/k), k̄×) ∼= Q/Z.

Of the three descriptions of the Brauer group Br(k) we have so far, the third
one is probably the most appealing. This is also known as the cohomological Brauer
group of the field k, and it is a natural question to ask if they can be generalized
to schemes. In fact, in place of using central simple algebras as in the first two
definitions, the case of schemes uses the so-called Azumaya algebra, which, loosely
speaking, is a generalization of central simple algebras to be defined over R, a
commutative ring which need not be a field. The bad news is that these definitions
in general may not be equivalent. For a scheme X, we have the canonical injective
homomorphism (see [Mil80], IV.2.5)

Br(X) −→ H2(Xét,Gm),

where the Brauer group of X on the left is defined using similarity classes of Azu-
maya algebras in the same way as before. It would be interesting2 to know when
such a map is also surjective, but fortunately for the purposes of this paper, the
schemes we consider would always have the above map as an isomorphism, so both
definitions coincide.

Definition 1.11. Let X be a smooth projective geometrically connected k-variety,
then

Br(X) := H2(Xét,Gm)

is called the (cohomological) Brauer group of X. As previously mentioned, Gm is
the abelian sheaf on Xét, sending U to the multiplicative abelian group Γ(U,OU)×.

1.3 The Cohomological Group of Torsors

Aside from the Brauer group there are several other groups that play a central role
in class field theory. In this section we develop some of them that will be of greater
use in the latter chapters. In this section, unless otherwise stated, we shall assume

2For the interested reader, this happens when X is a regular and quasi-projective variety over
a field, see [Poo17], 6.6.19.
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that K is a number field, and X is a smooth projective geometrically connected
curve defined over K.

Recall that the Picard group PicX of X is the quotient of the group of divisors of
X by the subgroup of principal divisors. Since the degree of a divisor depends only
on its linear equivalence class ([Har77], II.6.10), we have a surjective homomorphism
PicX −→ Z. Let Pic0

X denote the kernel of this map.

Definition 1.12. The group Pic0
X is isomorphic to the group of closed points of an

abelian variety associated to X called the Jacobian variety, or simply the Jacobian,
JX of X.

If one has the feeling that this seems more like a result than a definition, this
is because the actual construction of the Jacobian variety of a curve carries heavier
content than what’s being shown, see [C-S86], VII.1-4. In fact, Pic0

X can be inter-
preted as the group H1(X,O×X) of isomorphism classes of invertible sheaves on X,
and the Jacobian variety is being represented as a particular functor from schemes
over K to the abelian groups. Nonetheless, we note the following useful result:

Theorem 1.13. The tangent space to JX at 0 is canonically isomorphic toH1(X,OX);
therefore, the dimension of JX is equal to the genus of X.

For a group G and a G-module M , we let Z1(G,M) denote the abelian group of
1-cocycles G −→ M . Note that if the action of G on M is trivial, then this group,
and indeed H1(G,M), is simply Hom(G,M).

Definition 1.14. Let H ≤ G be a subgroup. The map

Z1(G,M) −→ Z1(H,M), f 7−→ f |H

descends to a homomorphism

res : H1(G,M) −→ H1(H,M)

called the restriction homomorphism.

We shift our attention slightly to another group-theoretic concept. Given a group
G, we recall that a homogeneous space Y for G is a nonempty manifold or topolog-
ical space on which G acts transitively.

Definition 1.15. The homogeneous space Y is a G-principal homogeneous space,
or a G-torsor, if Y is nonempty and it is equipped with a map Y × G −→ Y such
that for all y ∈ Y and g, h ∈ G, we have

(i) y · 1 = y;

(ii) y · (gh) = (y · g) · h;
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(iii) the map Y × G −→ Y × Y given by (y, g) 7−→ (y, y · g) is an isomorphism in
the appropriate category.

To suit this idea according to our needs, we fix a base scheme S and consider the
flat site on S. Y is now defined as an S-scheme, and let G be a group scheme (not
necessarily commutative) that is also defined over S. We say that Y is an S-torsor
under G (or a G-torsor over S), equipped with a morphism Y ×SG −→ Y satisfying
the above three conditions. We note that G itself is an S-torsor under G, called the
trivial torsor.

Proposition 1.16. Y is trivial if and only if Y (S) is nonempty.

Proof. If y0 ∈ Y is an S-rational point, then

G −→ Y, g 7−→ y0 · g

is an isomorphism. Conversely, if Y is trivial and f : G −→ Y is the corresponding
isomorphism, we first note that since G is a group scheme, G(S) contains at least
the identity section g0. Then f(g0) is an S-rational point of Y . �

In this section we have so far introduced three seemingly unrelated concepts:
the Jacobian variety, restriction homomorphisms, and torsors. Now we put them
together.

Again, K is a number field and let JX be defined over K. The base scheme we
are considering is Spec K, so Galois cohomology coincides with étale cohomology
([Mil80, II.1.7]), and therefore with flat cohomology by Theorem 1.6. For con-
venience, the flat cohomology groups H i(Gal(K/K)fl, JX(K)) will be denoted by
H i(K, JX). Given a finite place v of K, we have the embedding K ↪−→ Kv. Since the
action of Gal(Kv/Kv) on Kv restricts to an action on K, we have the embedding
Gal(Kv/Kv) ↪−→ Gal(K/K), which induces the restricted homomorphism

resv : H1(K, JX) −→ H1(Kv, JX).

A K-torsor under JX would now be a smooth variety on which JX acts freely and
transitively by morphisms over K. Two K-torsors Y and Y ′ under JX are equivalent
if there exists a K-isomorphism Φ : Y −→ Y ′ such that the diagram

Y ×K JX Y

Y ′ ×K JX Y ′

Φ

commutes. This leads us to the following theorem, which puts in place all we have
defined so far together (refer to Chapter 2, Theorem 2.13 for a proof):
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Theorem 1.17. The groupH1(K, JX) can be identified with the equivalence classes
of K-torsors under JX .

It follows that the map resv is a homomorphism of torsors, sending a K-torsor
Y under JX to the base extension Y ×K Kv. The group H1(K, JX) is called the
Weil-Châtelet group, denoted by WC(JX(K)).

We say that a K-torsor Y under JX fails the Hasse principle if it has a rational
point over each completion Kv but no K-rational point. By Proposition 1.16, the
presence of a K-rational point on Y is equivalent to being the trivial element in
H1(K, JX). Therefore, if Y is not isomorphic to JX , then it fails the Hasse principle
if and only if it belongs to ker(resv) for every v, i.e., Y has points everywhere locally.
We capture this information nicely in the following definition:

Definition 1.18. The Tate-Shafarevich group of the abelian variety JX is defined
to be

X(JX(K)) :=
⋂
v

ker(H1(K, JX) −→ H1(Kv, JX)).

Hence, the non-trivial elements of X(JX(K)) correspond to K-torsors under JX
that fail the Hasse principle.

Conjecture 1.19 (Tate-Shafarevich). For every abelian variety A over a global
field k, the group X(A(k)) is finite.

Even for the case of an elliptic curve E over Q, this conjecture remains open,
and it remains so even if we assume E to have complex multiplication. In fact, even
in this special case, it is not known if the `-primary torsion subgroup of X(E(Q)) is
finite for almost all primes `. For a general genus 1 curve X over Q, it is a torsor of
its Jacobian E, which in this case is an elliptic curve. It is known that if X(E(Q))
is finite, then there is an algorithm for determing whether X(Q) is empty. A famous
result by Cassels also showed that, for a global field k, if X(E(k)) is finite, then its
order is a square.

We now introduce another important class of groups in the theory of abelian
varieties, which also arises from the idea of the Weil-Châtelet groups.

For an abelian group G and an integer n ≥ 2, let G[n] denote the kernel of
the multiplication-by-n map from G to itself. Now we consider the situation where
G is taken to be the Jacobian variety JX defined over a number field K and the
multiplication-by-n map is the isogeny [n].

Definition 1.20. The n-Selmer group Seln(JX(K)) of JX over K is defined to be⋂
v

ker(H1(K, JX [n]) −→ H1(Kv, JX)[n]).
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We will revisit the Tate-Shafarevich group and the Selmer group at the end of
the paper.

1.4 Sketch of the Obstruction

To finish off this chapter we will explain what the Brauer-Manin obstruction is in
the case of curves, by first constructing its Brauer set. We mainly follow the notes
on rational points by Poonen [Poo17].

Let K be a number field and AK be its adèle ring, i.e., the restricted product∏′
v(Kv,Ov) over all places v, where Kv = Ov if v is infinite. Let

F : (Sch/K)opp −→ Sets

be a functor. For each K-algebra L, write F (L) in place of F (Spec L) and fix a
K-variety Y .

Suppose P ∈ F (Y ). For each K-algebra L, define the map evP : Y (L) −→ F (L)
as follows: given y ∈ Y (L), the corresponding morphism Spec L −→ Y induces a
map F (Y ) −→ F (L), sending P to evP (y). Therefore the diagram

Y (K) Y (AK)

F (K) F (AK)

evP evP

ϕ

commutes. Define the set

Y (AK)P := {y ∈ Y (AK) : evP (y) ∈ Im(ϕ)} ⊂ Y (AK).

Then the commutativity of the above diagram tells us that Y (K) ⊂ Y (AK)P . In
other words, the element P puts constraints on the locus in Y (AK) where the K-
points can lie. By imposing all such constraints we have the subset

Y (AK)F :=
⋂

P∈F (Y )

Y (AK)P

which still contains Y (K).

Definition 1.21. The Brauer set of the nice curve X is defined to be X(AK)Br.

Now for P ∈ Br(X), given a K-algebra L and a point x ∈ X(L), the corre-
sponding map Spec L −→ X induces a morphism Br(X) −→ Br(L), mapping P to
evP (x), which we shall now write as P (x) for simplicity.
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Proposition 1.22. If (xv) ∈ X(AK) and P ∈ Br(X), then P (xv) = 0 for almost
all v.

Sketch of proof. By [Poo17], 6.6.11 we know that there exists a finite set S of places
of K such that we have an OS-model X for X and a P in Br(X ) that maps to P
under the map Br(X ) −→ Br(X) induced by the inclusion of X ∼= XK into X . By
choosing S such that xv ∈ X (Ov) for all v /∈ S, we see that P (xv) comes from an
element P(xv) ∈ Br(Ov). But [Poo17], 6.9.3 tells us that Br(Ov) = 0. �

Corollary 1.23 (Brauer-Manin pairing). We have a well-defined pairing

Br(X)×X(AK) −→ Q/Z, (P, (xv)) 7−→
∑
v

invv(P (xv)),

where invv : Br(Kv) −→ Q/Z is the local invariant map (cf. Definition 1.9).

Proof. From the construction given at the start of the section, set Y = X, L =
Kv, and F = Br. This implies that P (xv) lies in Br(Kv) and so the image of
Br(X)×X(AK) lies in Q/Z. The finiteness of the sum is a consequence of Propo-
sition 1.22. �

Therefore we see that for a fixed P ∈ Br(X), we have a map

X(AK) −→ Q/Z, (xv) 7−→ (P, xv) :=
∑
v

invv(P (xv)).

Proposition 1.24. For x ∈ X(K) ⊂ X(AK), via the diagonal embedding, we have
(P, x) = 0.

Proof. It follows from the commutativity of

X(K) X(AK)

0 Br(K)
⊕

v Br(Kv) Q/Z 0

evP ∑
v invv

where the bottom row is the fundamental exact sequence ([Tat67], VII.9.6). �

We now define the set

X(AK)P := {(xv) ∈ X(AK) : (P, (xv)) = 0},

which is naturally followed by

X(AK)Br =
⋂

P∈Br(X)

X(AK)P .
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This gives us an explicit description of the Brauer set (cf. Definition 1.21 and
compare it with the construction at the start of the section), and the above propo-
sition tells us that X(K) ⊂ X(AK)Br. Also, for any subset S ⊂ Br(X), we set
X(AK)S :=

⋂
P∈S X(AK)P , which gives us the following inclusions:

X(K) ⊂ X(AK)Br ⊂ X(AK)S ⊂ X(AK).

Definition 1.25. We say that there is a Brauer-Manin obstruction to the Hasse
principle for X if X(AK) 6= ∅ but X(AK)Br = ∅. Such an obstruction is said to be
the only one if the implication

X(K) = ∅ =⇒ X(AK)Br = ∅

holds.

For elliptic curves, by definition, they always have a rational point over Q. How-
ever, a general genus 1 curve need not. One such example is the well-known projec-
tive curve

2Y 2Z2 = Z4 − 17X4

discovered by Lind [Lin40] and Reichardt [Rei42] independently, which fails the
Hasse principle. One of the main problems of the theory of rational points is whether
the Brauer-Manin obstruction is the only one for a particular class of curves of in-
terest. An example of a variety whose failure of the Hasse principle cannot be
accounted for by the Brauer-Manin obstruction can be found in [Sko99]. In the
work of Scharaschkin [Sch99], he proved that given a nice curve over a number field,
if both its Jacobian and the associated Tate-Shafarevich group are finite, then the
Brauer-Manin obstruction fully explains the failure of the Hasse principle. In fact,
some major results related to obstructions require the Tate-Shafarevich group to be
finite, which, as we have already seen (cf. Conjecture 1.19), is itself a wildly open
problem.

Conjecture 1.26 (Colliot-Thélène). Let X be a smooth projective geometrically
connected variety over a number field K. Suppose that X is rationally connected3.
Then the Brauer-Manin obstruction to the Hasse principle is the only obstruction.

See [P-V04] for the history of this conjecture as well as sources for evidence mo-
tivating the statement. We emphasise that the notion of a variety being smooth,
projective, and geometrically connected has many interesting and convenient prop-
erties which we will continue to see throughout this paper, particularly in the case of
curves. To this end, it would make sense to introduce an adjective for such varieties.

Definition 1.27. We say that a variety X over a number field K is nice if it is
smooth, projective, and geometrically connected.

3Every two points of X are connected by a rational curve contained in X.
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2 Descent Theory

The idea of descent can be summarised as follows: given a base field k, one can
attempt to construct a variety X over k by first constructing its analogue X ′ over
some field extension k′ of k. Then the problem now is to decide if X ′ is the base
extension of some variety over k. In this chapter, we introduce standard descent
theory with focus on the general fpqc descent. We then look at a special case by
considering descent over schemes that are the spectrum of a field. This concept has
an important relationship with the application of torsors, which was introduced in
the last chapter and will be treated with greater detail here.

2.1 Galois Descent

Let S be a topological space and {Si} be an open cover of S. The usual gluing
problem on sheaves can be restated by introducing the disjoint union S ′ :=

∐
Si.

Let π : S ′ −→ S be an ‘open covering morphism’ (cf. Definition 1.1) such that on
each Si, the map Si −→ S is the inclusion map. To give a sheaf Fi on each Si is
the same as giving a single sheaf F ′ on S ′. The problem of gluing now asks if there
exists a sheaf F on S such that the sheaf π−1F on S ′ is isomorphic to the given F ′.
Alternatively, we can view this problem as an attempt to ‘descend’ the sheaf F ′ on
S ′ to the appropriate sheaf F on S.

Let S ′′ denote the fiber product S ′ ×S S ′, which equals the disjoint union
∐
Sij

over all i, j, where Sij := Si ∩ Sj = Si ×S Sj. Let p1, p2 denote projections from S
′′

to the first and second coordinates respectively. The sheaf p−1
1 F ′ on S

′′ restricted to
the piece Sij corresponds to the sheaf Fi|Sij

. Therefore, to ask for an isomorphism

φij : Fi|Sij
−→ Fj|Sij

is equivalent to asking if we have an isomorphism

φ : p−1
1 F ′ −→ p−1

2 F ′

of sheaves on S ′. Let S ′′′
:= S ′×S S ′×S S ′, and let pij : S

′′′ −→ S
′′ be the projection

to the ith and jth coordinates, where 1 ≤ i < j ≤ 3. Then p−1
13 φ is an isomorphism

of sheaves on S ′′, satisfying the cocycle condition

p−1
13 φ = p−1

23 φ ◦ p−1
12 φ.

The idea of descent usually begins with the case of quasi-coherent sheaves (see
[Poo17], 4.2), but in our situation, we are concerned with the problem of descend-
ing schemes. This is Grothendieck’s theory of faithfully flat descent. Here we let
p : S ′ −→ S be the more general fpqc morphism of schemes in place of the Zariski
open covering morphism and let X ′ be an S ′-scheme. The problem is as follows:
under what conditions is X ′ isomorphic to an S ′-scheme of the form p∗X for some
S-scheme X (here p∗X := p−1X = X ×S S ′)?
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Definition 2.1. A descent datum on an S ′-scheme X ′ is an S ′′-isomorphism

φ : p∗1X
′ −→ p∗2X

′

satisfying the cocycle condition. The pair (X ′, φ) is an object of the category of
schemes with descent data. If X is an S-scheme, then p∗X has a canonical descent
datum φX . We say that φ is effective if (X ′, φ) ∼= (X,φX).

Definition 2.2. Let X ′ be an S ′-scheme, and let φ : p∗1X
′ −→ p∗2X

′ be a descent
datum. An open subscheme U ′ ⊂ X ′ is called stable under φ if φ induces a descent
datum on U ′, i.e., if φ restricts to an isomorphism p∗1U

′ −→ p∗2U
′ of S ′′-schemes.

We recall that a scheme is quasi-affine if it is an open subscheme of an affine
scheme and it is quasi-compact. A morphism f : X −→ S is quasi-affine if f−1(S0)
is quasi-affine for each affine open subscheme S0 of S. The following result is the
descent theorem for schemes, refer to [Gro95], B1, Theorem 2, for a proof in the
case of quasi-coherent sheaves:

Theorem 2.3. Let p : S ′ −→ S be an fpqc morphism of schemes.

(i) The functor X 7−→ p∗X from S-schemes to S ′-schemes with descent data is
fully faithful.

(ii) The functor X 7−→ p∗X from quasi-affine S-schemes to quasi-affine S ′-schemes
with descent data is an equivalence of categories.

(iii) Suppose that S and S ′ are affine. Then a descent datum φ on an S ′-scheme
X ′ is effective if and only if X ′ can be covered by quasi-affine open subschemes
which are stable under φ.

Before moving on, we say a few words about base extensions. IfX is an S-scheme
and S ′ −→ S is a morphism, then the base extension XS′ is the S ′-scheme X ×S S ′.
For a field k, let X be a k-scheme, and let σ ∈ Aut(k). The base extension of X by
the morphism σ∗ : Spec k −→ Spec k induced by σ is a new k-scheme σX. Since σ∗
is an isomorphism of schemes, X and σX are isomorphic as abstract schemes, but
in general not isomorphic as k-schemes.

Now we look at the case where S = Spec k. Let k′/k be a finite Galois extension
and denote let S ′ = Spec k′. Since S ′ −→ S is fpqc, we can use part (iii) of the
above theorem to say something about descending k′-schemes to k-schemes. This is
known as Galois descent, which was developed by Weil.

Let G = Gal(k′/k). The left action of G on k′ induces a right action of G on S ′,
so each σ ∈ G induces an automorphism σ∗ of S ′. We give the following results (see
[Poo17], 4.4. and [BLR90], 6.2B for proof and details):

Proposition 2.4. Let X ′ be a k′-scheme. Giving a descent datum on X ′ is equiv-
alent to the following two data:
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(i) Giving a collection of k′-isomorphisms fσ : σX ′ −→ X ′ for σ ∈ G satisfying
the ‘cocycle condition’ fστ = fσ · σ(fτ ) for all σ, τ ∈ G.

(ii) Giving a right action of G on X ′ compatible with the right action of G on S ′,
i.e., to give a collection of isomorphisms σ̃ : X ′ −→ X ′ for σ ∈ G such that

X ′ X ′

S ′ S ′

σ̃

σ∗

commutes for each σ ∈ G and σ̃τ = τ̃ σ̃ for all σ, τ ∈ G.

Corollary 2.5. Let k′/k be a finite Galois extension of fields. Let X ′ be a quasi-
projective k′-scheme. Suppose that we are given k′-isomorphisms fσ : σX ′ −→ X ′

for σ ∈ G satisfying fστ = fσ·σ(fτ ) for all σ, τ ∈ G. ThenX ′ = Xk′ for a k-schemeX.

The above corollary gives us a sufficient condition for descending a quasi-projective
variety over a Galois extension k′/k. Note that in the case where the scheme X ′ to
be descended to k is defined over the separable closure ks instead of a finite Galois
extension of k, assuming X ′ is finitely presented, we use the fact that ks is the direct
limit of its finite Galois subextension of k. This means that we reduce X ′ to the
case where it is the base extension of a scheme over a finite Galois extension of k
before applying Galois descent.

Using the characterization of k′-schemes with descent data mentioned in Propo-
sition 2.4(i), we have:

Proposition 2.6. Let X ′ with (fσ)σ∈G and Y ′ with (gσ)σ∈G be k′-schemes with
descent data. An isomorphism between X ′ and Y ′ is a map

h : X ′ −→ Y ′

such that fσ = h−1gσ
σh for all σ ∈ G.

Remark 2.7. The fact that k′/k is Galois gives us an isomorphism

k′ ⊗k k′
∼−−→

∏
σ∈G

k′, a⊗ b 7−→ (a · σb)σ∈G.

This induces an isomorphism

S
′′ ∼=

∐
σ∈G

k′ =: S ′ ×G.

A finite and faithfully flat morphism of schemes p : S ′ −→ S equipped with a finite
group G of automorphisms of S ′ as an S-scheme, with action of G on the right, is
called a Galois covering with Galois group G if the morphism

S ′ ×G −→ S
′′
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is an isomorphism of schemes described as follows: rewrite the left side as

S ′ ×G =
∐
σ∈G

S × {σ}

and on every piece S × {σ}, we have the map (s, σ) 7−→ (s, s · σ) for all s ∈ S.

2.2 Torsors and Twists

Here we introduce the notion of twists with two main goals: to classify all the
G-torsors up to k-isomorphism, and to apply it to torsors, obtaining the so-called
twisted torsor. Most of the content in this section are from the book by Skoroboga-
tov [Sko01].

Let X be a quasi-projective k-variety, and let k′/k be a Galois extension of fields.
Again, we denote by G the Galois group Gal(k′/k).

Definition 2.8. A k′/k-twist of X is a k-variety Y such that there exists an isomor-
phism φ : Xk′ −→ Yk′ . A twist of X is a ks/k-twist of X, where ks is the separable
closure of k. Two k′/k-twists Y, Y ′ of X are isomorphic if Y ∼= Y ′ as k-varieties.

The set of k-isomorphism classes of k′/k-twists of X then forms a pointed set,
with the class of X being the obvious neutral element. The action of G on k′ induces
a map from G to the automorphism group Aut(Xk′).

Theorem 2.9. There is a natural bijection of pointed sets

{k′/k-twists of X}
k-isomorphism

−→ H1(G,Aut(Xk′)).

Proof. We may reduce to the case where k′/k is a finite Galois extension, and take
direct limits on both sides if necessary. This allows us to apply Galois descent. For
each σ ∈ G, we identify σXk′ with Xk′ . To give a k′/k-twist of X is to descend
Xk′ to a k-variety. Using the fact that X is quasi-projective and applying Theorem
2.3(ii), this is the same as giving a descent datum on Xk′ , which, by Theorem 2.4(i),
is the same as giving a 1-cocycle ϕ : G −→ Aut(Xk′) given by ϕ(σ) = fσ and so

fστ = ϕ(στ) = ϕ(σ) · σ(ϕ(τ)) = fσ · σ(fτ )

as required. By Theorem 2.3(i), two such twists are k-isomorphic if and only if
the descent data are isomorphic, which by Proposition 2.6 holds if and only if the
1-cocycles are cohomologous. �

Remark 2.10. Explicitly, the 1-cocycle associated to the k′/k-twist Y is con-
structed as follows: choose a k′-isomorphism φ : Xk′ −→ Yk′ , and define

fσ := φ−1(σφ) ∈ Aut(Xk′).
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However, given a 1-cocycle and the associated isomorphism class of k′/k-twist, there
is no natural way to select a twist from that class. Therefore it makes no sense to
speak of ‘the twist associated to a cohomology class’.

In Chapter 1.3 we spoke briefly about torsors, mainly in the case of the K-torsors
under the abelian variety JX , where K is a number field. Our aim now is to pro-
vide a proof of Theorem 1.17 by involving the concept of twists which we have just
developed. We do so in a more general setting, by considering k-torsors under an
algebraic group, for an arbitrary field k.

Recall that an algebraic group G over a field k is a group scheme of finite type
over k, and it is affine if it embeds in GLn for some n ≥ 0. We shall always assume
that G is smooth. Denote by G the trivial G-torsor over k, which in this case refers
to the underlying variety of G equipped with the right action of G by translation.
We have the following definition of a G-torsor (this is slightly different from the one
given previously, cf. Definition 1.15):

Definition 2.11. A G-torsor over k (or a k-torsor under G) is a k-variety X
equipped with a right action of G such that Xks equipped with its right Gks-action
is isomorphic to Gks . If X,X ′ are G-torsors, the map ϕ : X −→ X ′ is a morphism
of G-torsors if it is a G-equivariant morphism of k-schemes, i.e., ϕ(x) · g = ϕ(x · g)
for all x ∈ X, g ∈ G.

From the definition we see that up to isomorphism, a G-torsorX can be identified
with a twist of G, and vice versa. Hence the isomorphism classes of G-torsors over
k are in one-to-one correspondence with the isomorphism classes of twists of G.
Furthermore, if we have a G-equivariant automorphism ϕ : G −→ G, then for
g ∈ G,

ϕ(g) = ϕ(e · g) = ϕ(e) · g.

This implies that ϕ(e) ∈ G = G(k). Therefore, we conclude that we have 1-1 corre-
spondence between the groups G(k) and Aut(G) (in fact, this is an isomorphism),
by identifying an element in G(k) with the image of e under ϕ.

We can also consider fpqc descent involving algebraic groups via the following
result due to Chow [Cho57]:

Theorem 2.12. Every algebraic group over a field k is quasi-projective.

We now have everything we need to prove the next result, which is the general-
ized form of Theorem 1.17.

Theorem 2.13. We have a bijection

{G-torsors over k}
k-isomorphism

−→ H1(k,G) := H1(k,G(ks)).
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Proof. We know that the set on the left can be identified with isomorphism classes
of the twists of G. Theorem 2.12 allows us to perform Galois descent (see the para-
graph after Corollary 2.5) and hence we can invoke Theorem 2.9 to further identify
the set with the cohomology group H1(k,Aut(Gks)). Since we have another 1-1
correspondence between Aut(Gks) with G(ks), we are done. �

The above bijection is a special case of a technique known as ‘twisting by Galois
descent’, see [Sko01], I.2.1. Roughly speaking, for any quasi-projective k-variety F
endowed with an action of G, we define a continuous 1-cocycle

σ : Gal(ks/k) −→ G(ks).

The ‘twist’ of F by σ, denoted by Fσ, is defined as the quotient of Fks by the
twisted (left) action ρ of Gal(ks/k) on Fks given by (g, s) 7−→ σg · gs. This action is
well-defined, indeed, we have

ρ(g1g2, s) = σg1g2 · g1g2s = (σg1 · g1σg2) · g1g2s = σg1 · g1ρ(g2, s) = ρ(g1, ρ(g2, s)),

for g1, g2 ∈ Gal(ks/k) and s ∈ Fks . In the case where F = G where G acts on itself
by conjugations we have the notion of the inner twist Gσ of G. This is an algebraic
group over k which is a twist of G as an algebraic group.

The following construction is important for the application of torsors, this is
otherwise known as twisting by fppf descent (see [Sko01], I.2.3 for more details). We
consider everything over a base scheme X, which is a generalization of the case in
[Poo17], 5.12 where the base scheme is taken to be Spec k.

Lemma 2.14. Let P be a right X-torsor under an X-group scheme G, and F
be an affine X-scheme equipped with a left action of G that is compatible with
the projection to X. Then the quotient of P ×X F by the action of G given by
(p, f) 7−→ (pg−1, gf) exists as an affine X-scheme, i.e., there exists a morphism of
X-schemes P ×X F −→ Y whose fibres are orbits of G.

The quotient described above is called the contracted product of P and F with
respect to G, and it is denoted by P ×G F . This is a fiber product taken over X. It
is also called the twist of F by P, denoted by PF . Note that P has the structure of
a left X-torsor under PG, so that PG acts on PF on the left.

Example 2.15 (Inverse torsor). In the case where F is a left X-torsor under
G, we first consider the inverse torsor F ′ of F : which is isomorphic to F as an
X-scheme, and it is a right torsor under G with respect to the action f ′ · g := g−1f ′,
for f ′ ∈ F ′, g ∈ G. Likewise, F ′ is also a left X-torsor under F ′G. Therefore, F is
equipped with the structure of a right X-torsor under F ′G with respect to the action
f · g′ := g′−1f which gives us

Gy F x F ′G, F ′Gy F ′ x G.
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Then the contracted product P ×G F is a right X-torsor under F ′G, and a left X-
torsor under PG. If P = F ′, then F ′ ×G F is given by the quotient of F ′ ×X F by
the group action

(f1, f2) 7−→ (f1 · g−1, g · f2) = (gf1, gf2)

for g ∈ G, f1, f2 ∈ F . By the transitive action of G on F , it follows that by fixing
some f ∈ F , the set {(f, f ′) : f ′ ∈ F} are the equivalence classes of F ′×G F . Hence
F ′ ×G F ∼= G.

Example 2.16 (Twisted torsor). Let k be a field, S a k-scheme, and G an affine
algebraic group over k. Then GS is an fppf group scheme over S that is affine over
S. Suppose that f : Z −→ S is a right GS-torsor and T −→ Spec k is a right
G-torsor. Define

Zτ := TZ = Z ×GS
S TS = Z ×Gk T

where τ ∈ H1(k,G) is the cohomology class of T , and let fτ : Zτ −→ S be its
structure morphism. Then Zτ is a right TG-torsor (or a Gτ -torsor) over S, called a
twisted torsor.

As seen in the example above, it is sometimes more natural to consider G-torsors
as a morphism into the base scheme rather than as an object on which G acts.
Indeed, this is useful in situations where we are considering different bases. If G is
defined over a field k but we are considering a torsor as an S-scheme under G, then
we are really considering it as a GS-torsor. Throughout the rest of the paper, we
will stick to speaking about a G-torsor, despite the abuse of language.

2.3 Fundamental Descent Theorems

We conclude this chapter with two theorems that will play a role in the next chapter,
which will be the main part of this paper.

We begin with the usual setup: let k be a field, X a k-variety, and G a smooth
algebraic group over k. Let f : Z −→ X be a G-torsor over X and ζ ∈ H1(X,G) be
its cohomology class (cf. Theorem 2.13). For x ∈ X(k), the fiber Zx −→ {x} will
be a G-torsor over k, and we let ζ(x) denote its class in H1(k,G). This is equivalent
to saying that x determines a morphism

H1(X,G) −→ H1(k,G), ζ 7−→ ζ(x)

induced by the map Spec k −→ X. Therefore the torsor Z −→ X gives rise to an
evaluation map

X(k) −→ H1(k,G), x 7−→ ζ(x).

In other words, Z −→ X can be thought of as a family of torsors parameterized by
X, and ζ(x) gives the class of the fiber above x.

Remark 2.17. The evaluation map X(k) −→ H1(k,G) can also be described as
the pull-back of the torsor Z −→ X through the map Spec k −→ X corresponding
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to a point in X(k).

The above construction enables us to partition X(k) according to the class of
the fiber above each point x:

X(k) =
∐

τ∈H1(k,G)

{x ∈ X(k) : ζ(x) = τ}.

And the right-hand side is reinterpreted by the first main result of this section:

Theorem 2.18. Let G be a smooth affine algebraic group over k. Let f : Z −→ X
be a G-torsor with cohomology class ζ ∈ H1(X,G). For each τ ∈ H1(k,G), let
fτ : Zτ −→ X be the twisted torsor of f constructed in Example 2.16. Then

X(k) =
∐

τ∈H1(k,G)

fτ (Zτ (k)).

Proof. From the previous construction, this is the same as showing

{x ∈ X(k) : ζ(x) = τ} = fτ (Zτ (k)).

For each x ∈ fτ (Zτ (k)), the fiber Zτ x is a G′τ -torsor (where G′τ := T ′G, see Ex-
ample 2.15) over k with a k-rational point. By Proposition 1.16, we know that
(Zτ )x = Zx ×G T ′ belongs to the same class as the trivial G′τ -torsor over k. By
taking the contracted product with T on the right side we get Zx ∼= T , this follows
from the fact that T ′×G T is the trivial G′τ -torsor (again, see Example 2.15). Hence
ζ(x) = τ as required. �

We mention a result of the evaluation map over a local field.

Proposition 2.19. Let k be a local field and X a proper k-variety. Let G be a
finite étale algebraic group over k, and f : Z −→ X a G-torsor over X. Then the
image of X(k) −→ H1(k,G) is finite.

The proof can be found in [Poo17], 8.4.3. Furthermore, if char k = 0, a theorem
of Borel and Serre [B-S64], Theorem 6.1, tells us that H1(k,G) is finite.

Now we assume that k is a global field, and for each place v of k, Chapter 1.3
gives us the restriction map between flat cohomology groups

H1(k,G) −→ H1(kv, G).

For τ ∈ H1(k,G), let τv ∈ H1(kv, G) be its image.

Definition 2.20. The (Z,G)-Selmer set4 is the following subset of H1(k,G):

SelZ,X(k,G) := {τ ∈ H1(k,G) : τv ∈ Im(X(kv) −→ H1(kv, G)) for all places v},
4In the case where f : Z −→ X is an isogeny between abelian varieties viewed as a torsor under

ker(f), this terminology is compatible with the notion of the Selmer group given in Definition 1.20,
refer to [Sil92], V.4 for more details.
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which we will denote by SelZ(k,G) if it is clear that we are considering X-torsors.

By applying Theorem 2.18 over each kv, we know that τv is in the image of the
evaluation map if and only if the cohomology class ζ of Z is mapped to ζ(x) = τ if
and only if Z ∼= T as G-torsors over kv if and only if Zτ is the trivial Gτ -torsor over
kv if and only if Zτ (kv) 6= ∅. Hence

SelZ(k,G) = {τ ∈ H1(k,G) : Zτ (kv) 6= ∅ for all places v}

⊃ {τ ∈ H1(k,G) : Zτ (k) 6= ∅},

where the extra inclusion is obvious. In particular, we have

X(k) =
∐

τ∈SelZ(k,G)

fτ (Zτ (k)).

We now arrive at the second fundamental result of standard descent theory:

Theorem 2.21. If X is a proper variety over a global field k, then SelZ(k,G) is
finite.

Sketch of proof. Let F be the component group of G, then G being affine implies
that F is a finite group scheme. For a suitable finite nonempty subset S ⊂ Ωk

containing the infinite places, [Poo17], 3.2 allows to spread out G to a smooth finite
type separated group scheme G over Ok,S, spread out X to a proper scheme X over
Ok,S and spread out Z to a G-torsor over X . Let τ ∈ H1(k,G). For v /∈ S, we have
the commutative diagram

H1(k,G) H1(kv, G) H1(Ov,G)

X(kv) X (Ov)

ϕ

τ 7→ τv

where the equality is by the valuative criterion for properness, and it shows that if
τv comes from X(kv), then τv also comes from H1(Ov,G), so SelZ(k,G) is contained
in the set of unramified torsors outside S (see [Poo17], 6.5). By Proposition 2.19,
the image of ϕ is finite, so the image of SelZ(k,G) in

∏
v∈S H

1(kv, F ) is finite. From
[Poo17], 6.5.13, we conclude that SelZ(k,G) is finite. �
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3 Descent Obstructions

For a smooth projective geometrically connected (or nice, cf. Definition 1.27) variety
X over a number field k, we introduce new constraints on the location of k-rational
points among the adelic points. This will result in the following chain of inclusions
of obstructions on X

X(Ak)
Br
• ⊂ X(Ak)

Br1
• ⊂ X(Ak)

f-ab
• ⊂ X(Ak)

Alb
• ⊂ X(Ak)

Br1/2
• .

We see that the Brauer-Manin obstruction is generally the strongest of the lot, but
when X = C is a curve, we will prove that the sets above are all equal to one
another. In particular, we have

C(Ak)
Br
• = C(Ak)

f-ab
• ,

that is, all results that we will deduce about finite abelian descent obstructions
on curves also apply to the Brauer-Manin obstruction. Most of the content in this
chapter, as well as the next, will follow closely the work on finite descent obstructions
by Stoll [Sto07].

3.1 Torsors under Finite Étale Group Schemes

Utilising the content on torsors and twists which we have developed from the previ-
ous sections, we now study X-torsors under finite étale group schemes. The purpose
is to understand the images of the rational adelic points in the product

∏
vH

1(kv, G),
where k is a number field; this will be the case from now on.

Let X be a nice variety over k. We define the category Cov(X). Its objects are
quadruples (Y,G, µ, π), with the following descriptions:

(i) Y is an X-torsor under a finite étale (smooth) group scheme G;

(ii) µ : Y ×G −→ Y is a k-morphism describing a right action of G on Y ;

(iii) π : Y −→ X is a finite étale k-morphism such that the diagram

Y ×G Y

Y X

pr1

µ

π

π

is cartesian (i.e., identifies Y ×G with the fiber product Y ×X Y ).

For brevity, we will write (Y,G) in place of an object (Y,G, µ, π), with the maps µ
and π being understood. For (Y,G), (Y ′, G′) ∈ Cov(X), a morphism

α ∈ HomCov(X)((Y
′, G′), (Y,G))
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is given by a pair of k-morphisms of schemes

φ : Y ′ −→ Y, γ : G′ −→ G

such that the following diagram commutes

Y ′ ×G′ Y ′ X

Y ×G Y X

φ

π′

π

µ′

α := φ× γ

µ

Remarks 3.1. (a) The “Cov” in Cov(X) is an abbreviation for “cover”, since we can
view the étale morphism π as a cover of X.
(b) One easily observes that the map γ is uniquely determined by φ, since if y′ ∈ Y ′
and g′ ∈ G′, there is a unique g ∈ G such that φ(y′) · g = φ(y′ · g′). Hence we must
have that γ(g′) = g.

We will denote by Ab(X) the full subcategory of Cov(X), whose objects are
the torsors (Y,G) such that G is abelian. Note that if X ′ −→ X is a k-morphism
of smooth projective varieties, then we can pull back X-torsors under G to ob-
tain X ′-torsors under G. This define covariant functors Cov(X) −→ Cov(X ′) and
Ab(X) −→ Ab(X ′).

The following three constructions related to twists are described for Cov(X), but
they are also valid for Ab(X):

• If (Y,G) ∈ Cov(X) is an X-torsor and ξ is a cohomology class in H1(k,G), then
we can construct the twist (Yξ, Gξ) of (Y,G) by ξ, where Gξ is the inner twist of
G. The structure maps are denoted by µξ and πξ.

• Twists are transitive in the following sense: if (Y,G) ∈ Cov(X) is an X-torsor and
ξ ∈ H1(k,G), η ∈ H1(k,Gξ), then there exists a ζ ∈ H1(k,G) such that

((Yξ)η, (Gξ)η) ∼= (Yζ , Gζ).

Conversely, if ξ and ζ are given, then there exists an η ∈ H1(k,Gξ) such that the
relation above holds.

• If (φ, γ) : (Y ′, G′) −→ (Y,G) is a morphism and ξ ∈ H1(k,G′), then we get
an induced morphism (Y ′ξ , G

′
ξ) −→ (Yγ∗ξ, Gγ∗ξ), where γ∗ is the induced map

H1(k,G′) −→ H1(k,G).

Before proceeding further, we note a particular subtlety concerning the v-adic
components of X(Ak) at the infinite places. Since X is projective, we know that

X(Ak) =
∏
v

X(kv).
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However, if we attempt to study the constraints on where the k-rational points
can lie inside of X(Ak), the information we get only tells us on which connected
component a point can lie at the infinite places [Sto07]. For this reason, we make
a slight modification by replacing the v-adic component of X(Ak) with its set of
connected components, for infinite v,

X(Ak)• :=
∏
v finite

X(kv)×
∏

v infinite

π0(X(kv)).

This gives us a canonical surjection from X(Ak) onto X(Ak)•, which is an isomor-
phism (in fact, an equality) if X is a reduced finite scheme. For a finite extension
K/k, we shall assume that the canonical map X(Ak)• −→ X(AK)• is an inclusion,
even though in general this is not true at the infinite places. For example, let X = E
be an elliptic curve, and k = Q, K/Q be a finite extension. Then the number of
connected components of E(Q∞) = E(R) could possibly be 2, but an elliptic curve
over C is a torus and so

|π0(E(R))| ≥ |π0(E(C))| = 1,

proving that we may not have an inclusion of connected components at the infinite
places.

We are now set to explore what we are mainly interested in: the information we
can obtain from the various torsors regarding the image of X(k) in X(Ak)•.

Definition 3.2. Let (Y,G) ∈ Cov(X) be an X-torsor. We say that a point
P ∈ X(Ak)• survives (Y,G), if it lifts to a point in Yξ(Ak)• for some twist (Yξ, Gξ)
of (Y,G).

To understand the intuition behind the definition, we can adopt a cohomological
approach. An X-torsor Y is an element of H1(Xét, G). Recall (cf. Remark 2.17)
that the pull-back of Y −→ X through the map Spec k −→ X corresponding to a
point in X(k) induces the evaluation map

X(k) −→ H1(k,G).

Therefore we get a similar map on adelic points:

X(Ak)• −→
∏
v

H1(kv, G).

Together with the canonical restriction map

H1(k,G) −→
∏
v

H1(kv, G),
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we get the commutative diagram

X(k) H1(k,G)

X(Ak)•
∏

vH
1(kv, G)

A point P ∈ X(Ak)• survives (Y,G) if and only if its image in
∏

vH
1(kv, G) is in

the image of the restriction map. To see this, suppose P = (xv) lifts to a point
Pξ ∈ Yξ(Ak)•. We know that the image of ξ ∈ H1(k,G) in

∏
vH

1(kv, G) is (ξ(xv)),
and that the image of P in

∏
vH

1(kv, G) is precisely the image of Pξ in the composite

Yξ(Ak)• −→ X(Ak)• −→
∏
v

H1(kv, G).

Consider the v-adic component Pξv of Pξ. We have

Pξv 7−→ xv 7−→ ξ(xv)

which proves that the image of Pξ in
∏

vH
1(kv, G) is (ξ(xv)) as required. The con-

verse is clear from this argument.

Remark 3.3. One easily observes that the preimage in H1(k,G) of the image of
X(Ak)• is precisely the (Y,G)-Selmer set.

We end this section with the following results are some basic properties of the
survivability of a point:

Lemma 3.4.

(a) If (φ, γ) : (Y ′, G′) −→ (Y,G) is a morphism in Cov(X), and if P ∈ X(Ak)•
survives (Y ′, G′), then P also survives (Y,G).

(b) If (Y ′, G) ∈ Cov(X) is the pull-back of (Y,G) ∈ Cov(X) under a morphism
ψ : X ′ −→ X, then P ∈ X ′(Ak)• survives (Y ′, G) if and only if ψ(P ) survives
(Y,G).

(c) If (Y,G) ∈ Cov(X) and ξ ∈ H1(k,G), then P ∈ X(Ak)• survives (Y,G) if and
only if P survives (Yξ, Gξ).

Proof.

(a) Since P survives (Y ′, G′), there exist a ξ ∈ H1(k,G′), a Q ∈ Y ′ξ (Ak)• and a
morphism

π′ξ : Y ′ξ (Ak)• −→ X(Ak)•

such that π′ξ(Q) = P . We also have an induced morphism

φξ : Y ′ξ −→ Yγ∗ξ

defined over X. Hence πγ∗ξ(φξ(Q)) = π′ξ(Q) = P , where πγ∗ξ : Yγ∗ξ −→ X.
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(b) Assume that P survives (Y ′, G), then there exist ξ ∈ H1(k,G), Q ∈ Y ′ξ (Ak)•
such that π′ξ(Q) = P . There is a morphism Ψξ : Y ′ξ −→ Yξ over ψ, hence we
have that πξ(Ψξ(Q)) = ψ(P ), so ψ(P ) survives (Y,G). Conversely, assume that
ψ(P ) survives (Y,G), then there exist ξ ∈ H1(k,G) and Q ∈ Yξ(Ak)• such that
πξ(Q) = ψ(P ). The twist (Y ′ξ , Gξ) is the pull-back of (Yξ, Gξ) under ψ, as seen
in the commutative diagram

Y ′ξ := Yξ ×X X ′ X ′

Yξ X

Ψξ

π′ξ

ψ

πξ

and so there exists Q′ ∈ Y ′ξ (Ak)• mapping to Q in Yξ and mapping to P in X ′.
Hence P survives (Y ′, G).

(c) This is clear since every twist of (Y,G) is also a twist of (Yξ, Gξ) and vice versa.

�

3.2 Finite Descent Obstructions

Our goal here is to introduce a new form of obstruction arising from adelic points
surviving a particular class of torsors. Such an obstruction is known as finite descent
obstruction, named so because such points are descended from the adelic points of
twisted torsors under a finite étale group scheme. We will also say a few words
regarding the geometrical connectedness of the variety X.

What can be said about the survivability of the k-rational points of X (via the
embedding into X(Ak)•)? By Chapter 2.3, the first fundamental descent theorem
(Theorem 2.18) tells us that every point P ∈ X(k) can be lifted to a point in Yξ(k)
for any X-torsor Y and some ξ ∈ H1(k,G) and by the commutative diagram

Yξ(k) Yξ(Ak)•

X(k) X(Ak)•

it is clear that the image of P in X(Ak)• survives (Y,G). So P survives every X-
torsor. However, the other fundamental theorem (Theorem 2.21) forces SelY (k,G)
to be finite, hence there are only finitely many twists (Yξ, Gξ) such that Yξ has points
everywhere locally. Our task of locating k-rational points within the adelic points
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has therefore been shifted to that of studying the set of adelic points that survive
every torsor in a suitable subclass of torsors.

The above discussion motivates the following definitions:

Definition 3.5. Let X be a nice k-variety. We set

(1) X(Ak)
f-cov
• := {P ∈ X(Ak)• : P survives all (Y,G) ∈ Cov(X)};

(2) X(Ak)
f-ab
• := {P ∈ X(Ak)• : P survives all (Y,G) ∈ Ab(X)},

where the “f” in the superscript stands for “finite”, since we are dealing with torsors
under finite group schemes only.

Note that for a given X-torsor Y , the set of points in X(Ak)• surviving Y is
given as the union of the images of the maps

πξ : Yξ(Ak)• −→ X(Ak)•,

where ξ runs over all cohomology classes in H1(k,G). By Theorem 2.21, we know
that this union is finite. Since Yξ −→ X is proper, one can easily show (see [Poo17],
2.6 and Exercise 8.7) that Yξ(kv) −→ X(kv) is a proper map of topological spaces
(i.e., the inverse image of any compact subset of X(kv) is compact) for each v and
thus Yξ(kv) is compact. It follows that πξ(Yξ(Ak)•) is closed in X(Ak)•. Hence⋃

ξ∈H1(k,G)

πξ(Yξ(Ak)•)

is closed in X(Ak)•.

The sets given in Definition 3.5 are therefore closed in X(Ak)• and this gives us
the following chain of inclusions

X(k) ⊂ X(k) ⊂ X(Ak)
f-cov
• ⊂ X(Ak)

f-ab
• ⊂ X(Ak)•,

where X(k) is the topological closure of X(k) in X(Ak)•.

Much like how the Brauer-Manin obstruction discussed in Chapter 1.4 comes
in the form of the Brauer set X(Ak)

Br (which from now on should be written as
X(Ak)

Br
• , and we also have X(k) ⊂ X(Ak)

Br
• ), one would expect that the finite

descent obstructions come in the form of the sets X(Ak)
f-cov
• and X(Ak)

f-ab
• . This

motivates us to provide an interpretation of them similar to that of X(Ak)
Br
• .

Fix a finite étale group scheme G over k and choose a point P = (xv) ∈ X(Ak)•,
so we have xv ∈ X(kv). If ξ is the cohomology class of Y in H1(Xét, G), we denote
by ξ(xv) the class of the kv-torsor Yxv −→ {xv} in H1(kv, G). Thus P determines
the morphism which we shall loosely call the “evaluation map”

evP,G : H1(Xét, G) −→
∏
v

H1(kv, G).
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Together with the usual restriction map

resG : H1(k,G) −→
∏
v

H1(kv, G),

we have
X(Ak)

f-cov
• =

⋂
G

{P ∈ X(Ak)• : Im(evP,G) ⊂ Im(resG)},

where G runs through all finite étale group schemes over k. We obtain X(Ak)
f-ab
• by

restricting G to abelian group schemes. Therefore these sets are cut out by restric-
tions coming from the various finite coverings of X.

Definition 3.6. We say that there is a finite descent obstruction to the Hasse prin-
ciple for X if X(Ak)• 6= ∅ but X(Ak)

f-cov
• = ∅. In the case of X(Ak)

f-ab
• , we call it

finite abelian descent obstruction.

In the reformulation of X(Ak)
f-cov
• above, we can restrict to (Y,G) with Y con-

nected over k if X is connected. The reason is that if Y is not connected, we can
replace Y with one of its connected component Y0, and let G0 ⊂ G be the stabilizer
of this component. Then (Y0, G0) is again a torsor of the same kind as (Y,G), which
gives us a morphism (Y0, G0) −→ (Y,G). By Lemma 3.4(a), if P ∈ X(Ak)• survives
(Y0, G0), then it also survives (Y,G).

Remarks 3.7. (a) However, we cannot restrict to geometrically connected torsors
whenX is geometrically connected. This is because there can be obstructions coming
from the fact that a suitable geometrically connected torsor does not exist.
(b) Suppose that X is geometrically connected. If there is a torsor (Y,G) ∈ Cov(X)
such that Y and all twists Yξ are k-connected, but not geometrically connected, then
X(Ak)• = ∅. The analogous statement holds for the abelian version.
(c) Let X = X ×k k̄. Then X being geometrically connected yields the following
results concerning its geometric (étale) fundamental group π1(X) over k̄:

(i) If π1(X) is trivial, then X(Ak)
f-cov
• = X(Ak)•.

(ii) If the abelianization π1(X)ab is trivial, then X(Ak)
f-ab
• = X(Ak)•.

(iii) If π1(X) is abelian, then X(Ak)
f-cov
• = X(Ak)

f-ab
• .

The latter two remarks are respectively Lemma 5.5 and Lemma 5.8 of [Sto07].

We have already seen the natural inclusion X(Ak)
f-cov
• ⊂ X(Ak)

f-ab
• by Definition

3.5, and so this tells us that finite descent obstruction is stronger than finite abelian
descent obstruction. Since the main focus of this paper is on the latter obstruction,
at the end of this chapter, we will explore how the strength of this obstruction com-
pares to that of the obstruction arising from the Brauer set. Therefore, it would help
by noting some elementary properties of the set X(Ak)

f-ab
• , which hold similarly for

X(Ak)
f-cov
• . With the exception of the immediate proposition, the other statements
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are given without proof, see [Sto07], Chapter 5.

Proposition 3.8. If ψ : X ′ −→ X is a morphism, then ψ(X ′(Ak)
f-ab
• ) ⊂ X(Ak)

f-ab
• .

Proof. Let P ∈ X ′(Ak)
f-ab
• , and let (Y,G) ∈ Ab(X) be an X-torsor. This implies

that P survives the pull-back (Y ′, G) of (Y,G) under ψ and so by Lemma 3.4(b),
ψ(P ) survives (Y,G). Since (Y,G) was arbitrary, ψ(P ) ∈ X(Ak)

f-ab
• . �

Proposition 3.9. If X = X1

∐
X2 · · ·Xn is a disjoint union, then

X(Ak)
f-ab
• =

n∐
j=1

Xj(Ak)
f-ab
• .

Proposition 3.10. We have

(X × Y )(Ak)
f-ab
• = X(Ak)

f-ab
• × Y (Ak)

f-ab
• .

Proposition 3.11. If K/k is a finite extension, then

X(Ak)
f-ab
• ⊂ X(Ak)• ∩X(AK)f-ab• .

The intersection is viewed as the pull-back of X(AK)f-ab• under the canonical map
X(Ak)• −→ X(AK)•, which may not be injective at the infinite places, as we have
already seen.

3.3 The Albanese Variety

Let V be a k-variety. We can associate to V an abelian variety that gives rise to
another form of obstruction. Our goal here is to compare this obstruction to that
coming from finite abelian descent.

Let f : V −→ A be a rational map5 from V into an abelian variety A. We say
that A is generated by (V, f) if A is the group generated by f(V ). After a suitable
translation, we may assume that the image of V in A goes through the origin, and
in this case one sees that (V, f) generates A if and only if the smallest abelian sub-
variety of A that contains f(V ) is equal to A.

Definition 3.12. An Albanese variety of V is a pair (Alb0
V , f) consisting of an

abelian variety Alb0
V and a rational map f : V −→ Alb0

V , called the Albanese
morphism, such that:

(i) (V, f) generates Alb0
V ;

(ii) for every rational map g : V −→ B of V into an abelian variety B, there exists
a homomorphism g∗ : Alb0

V −→ B and a constant c ∈ B such that g = g∗f + c.
5This arrow is not the usual way to denote a rational map but in the case where V is smooth,

f will extend to a morphism defined on all of V , which will be what we want it to be.
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For convenience we usually refer directly to Alb0
V as the Albanese variety of V .

Observe that the homomorphism g∗ is uniquely determined by g. Suppose we
have g = g′f + c′, for another homomorphism g′. Let u be a generic point of Alb0

V

and p1, ..., pn be independent generic points of V such that u =
∑n

i=1 f(pi). We have
g(pi) = g∗f(pi) + c = g′f(pi) + c′. By the linearity of g∗ (and of g′), taking the sum
gives us

g∗(u) = g′(u) + c0

for some c0 ∈ B. Then both g∗ and g′ sends 0B to 0A and so c0 = 0. Hence g∗ = g′,
and we say that g∗ is the homomorphism induced by g.

In the following result we note the existence and uniqueness of the Albanese
variety, see [Lan59].

Theorem 3.13. Let V be a variety. Then there exists an Albanese variety Alb0
V of

V , uniquely determined up to a birational isomorphism, and the canonical map f
is determined up to a translation.

Remarks 3.14. (a) The notation Alb0
V of the Albanese variety of V comes from

the fact that this is the dual of the Picard variety Pic0
V , which was introduced in

Chapter 1.3 as being isomorphic to JV .
(b) The Albanese variety can be viewed as the generalization of the Jacobian variety
of a curve to higher dimensions. In other words, if V is a curve, then Alb0

V
∼= JV .

This is a consequence of the Abel-Jacobi theorem.

To avoid the technicalities of the dual abelian variety, we emphasise the fact that
the following theorem is only concerned with the case of curves, but we state the
rest of it in full generality. It is a deep result, and we provide at best an outline of
the proof.

Theorem 3.15. Let C be a nice (cf. Definition 1.27) curve over k. Let A = Alb0
C

be its Albanese variety, and let V = Alb1
C be the torsor under A that parametrizes

the divisor classes of degree 1 on C. Then there is a canonical map φ : C −→ V ,
and we have

C(Ak)
f-ab
• = φ−1(V (Ak)

f-ab
• ).

Sketch of proof. Since C is a curve, by Remark 3.14(b), we have Alb0
C
∼= JC ∼= Pic0

C .
The existence of φ is a result of Serre [Ser60] stating that there is a universal object
among morphisms from a nice variety X to torsors under (semi-) abelian varieties:
the Albanese torsor Alb1

X . In fact, φ sends a point P ∈ X to its divisor class. Now,
observe that the inclusion

φ(C(Ak)
f-ab
• ) ⊂ V (Ak)

f-ab
•

is given by Proposition 3.8. So it suffices to prove the other inclusion. By [Ser88],
VI.2, all connected finite abelian unramified coverings of C = C ×k k̄ are obtained
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through pull-backs from isogenies into V ∼= Ā. Then after some work (using spectral
sequences) in [Sto07], Theorem 6.4, we have that the induced homomorphism

φ∗ : H1(Vét, G) −→ H1(Cét, G)

is an isomorphism. Let P ∈ C(Ak)• such that φ(P ) ∈ V (Ak)
f-ab
• , and let (Y,G) ∈

Ab(C). By the isomorphism φ∗, there exists a (W,G) ∈ Ab(V ) such that Y is the
pull-back of W under φ. By assumption, φ(P ) survives (W,G). Since G is abelian,
it is equal to all its inner twists, and so we can assume further that the lift of
φ(P ) is in (W,G). Hence the lift of P is in (Y,G) and since (Y,G) was arbitrary,
P ∈ C(Ak)

f-ab
• . �

Remarks 3.16. (a) In fact, we do not need X to be nice in order for the canonical
map into the Albanese torsor to exist, it just has to be smooth and geometrically
connected. This is a consequence of Galois descent. However, if we further include
the condition that X is proper, then the Albanese variety is really an abelian variety,
not just a semi-abelian one, see [Wit80].
(b) The result in the preceding theorem will hold for a general nice variety X instead
of curves if all finite étale abelian covering of X can be obtained as pull-backs of
isogenies into the Albanese variety of X. For this, it is necessary and sufficient that
the Néron-Severi group NSX := PicX/Pic0

X of X is torsion-free, see [Ser88], VI.20.

For arbitrary varieties X, let A be its Albanese variety and let V be a k-torsor
under A such that we get the map φ : X −→ V as in Theorem 3.15. We can define
a set X(Ak)

Alb
• , which we call the Albanese set, consisting of the adelic points on

X surviving all torsors that are pull-backs of V -torsors. For (W,A) ∈ Ab(V ), let
(Y,A) be its pull-back under φ. Applying Lemma 3.4(b), we have

P ∈ V (Ak)
f-ab
• ⇐⇒ φ−1(P ) ∈ X(Ak)

Alb
•

and so
X(Ak)

Alb
• = φ−1(V (Ak)

f-ab
• ).

By Proposition 3.8 we have the obvious inclusion X(Ak)
f-ab
• ⊂ X(Ak)

Alb
• . There-

fore we can say that finite abelian descent obstruction is at least as strong as the
obstruction arising from adelic points surviving the pull-backs of torsors under the
Albanese variety. We shall refer to the latter obstruction as the Albanese obstruction.
Theorem 3.15 tells us that both obstructions are equal in the case of curves.

3.4 Comparing Obstructions

In this section we will prove the main result of this paper: for a nice curve over k, the
obstructions coming from the Brauer set and finite abelian descent are equivalent.

Let X be a nice k-variety, let A be its Albanese variety, and denote by V the
Albanese torsor such that there is a canonical map φ : X −→ V . If V (k) 6= ∅,
then V is the trivial torsor, and so there is an n-covering Wn −→ V of V , i.e., a
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V -torsor under the torsion group A[n] (see [Sko01], III, for a proper treatment on
n-coverings). So the non-existence of any such Wn is an obstruction against rational
points on V and therefore on X.

If an n-covering of V exists, we can pull it back to a torsor (Yn, A[n]) ∈ Ab(X),
and we say that a point P ∈ X(Ak)• survives the n-covering of X if it survives
(Yn, A[n]). If for some n no n-covering exist, then by definition no point in X(Ak)•
survives the n-covering of X. If we denote the set of adelic points surviving the
n-covering of X by X(Ak)

n-ab
• , then we have

X(Ak)
Alb
• =

⋂
n≥1

X(Ak)
n-ab
• ,

where the intersection is taken over all n such that an n-covering exists. In particular,
for a curve C, Theorem 3.15 tells us that

C(Ak)
f-ab
• =

⋂
n≥1

C(Ak)
n-ab
• .

The new interpretation of X(Ak)
Alb
• would enable us to establish deeper connections

between finite abelian descent obstructions and other obstructions related to the
Brauer group of X.

Recall (cf. Chapter 1.4) that the Brauer set X(Ak)
Br
• of X is defined to be the

intersection of the sets

X(Ak)
P
• = {(xv) ∈ X(Ak)• : (P, (xv)) = 0}

across all points P ∈ Br(X). We define the algebraic part of Br(X):

Br1(X) := ker(Br(X) −→ Br(X ×k k̄)) ⊂ Br(X)

and set X(Ak)
Br1
• = X(Ak)

Br1(X)
• .

The work on descent theory by Colliot-Thélène and Sansuc [CoS87] and extended
by Skorobogatov states that X(Ak)

Br1
• is equal to the set obtained from finite descent

obstructions with respect to torsors under k-groups G of multiplicative type, which
includes all finite abelian k-groups. Therefore, we have the following result:

Theorem 3.17. Let X be a smooth projective geometrically connected variety,
then

X(Ak)
Br
• ⊂ X(Ak)

Br1
• ⊂ X(Ak)

f-ab
• .

Proof. See, for example, [Sko01], Theorem 6.1.1. �

Also, we have:
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Proposition 3.18. Let X be a proper and geometrically integral variety over k.
Then there is an exact sequence

Br(k)
α−−→ Br1(X)

φ−−→ H1(k,PicX) −→ H3(k, k̄×).

Proof. See [Poo17], Corollary 6.7.8. �

Note that we can invoke this result as X is both smooth and geometrically con-
nected (since it is nice), hence geometrically integral ([Poo17], Proposition 3.5.67).
Furthermore, [Poo17], Remark 6.7.10 tells us that for a local or global field k, the
last term in the exact sequence is 0. Thus φ is surjective. If we set Br0(X) = Im(α)
(just to be consistent with the notation in [Sto07]), we have

Br1(X)/Br0(X) ∼= H1(k,PicX).

Now let ϕ : H1(k,Pic0
X) −→ H1(k,PicX) be the canonical map and for each n ≥ 1,

we define the restriction

ϕn : H1(k,Pic0
X)[n] −→ H1(k,PicX).

Using the fact that both φ and ϕ are group homomorphisms, we denote by Br1/2(X)
the subgroup of Br1(X) that maps into the image of ϕ and by Br1/2,n(X) the sub-
group of Br1(X) that maps into the image of ϕn. It is then clear that

Br1/2(X) =
⋃
n≥1

Br1/2,n(X).

And so
X(Ak)

Br1/2
• =

⋂
n≥1

X(Ak)
Br1/2,n
• .

For a fixed n ≥ 1, the next theorem ([Sto07], Theorem 7.2) establishes a rela-
tion between the obstruction coming from an n-covering and that coming from the
subgroup of the algebraic part of the Brauer group mapping into Im(ϕn). This in
turn induces a relation between the Albanese set and the set defined above.

Theorem 3.19. Let X be a smooth projective geometrically connected variety, and
let n ≥ 1. Then

X(Ak)
n-ab
• ⊂ X(Ak)

Br1/2,n
• .

In particular,
X(Ak)

f-ab
• ⊂ X(Ak)

Alb
• ⊂ X(Ak)

Br1/2
• .

Proof. Let P ∈ X(Ak)
n-ab
• and b ∈ Br1/2,n(X). We want to show that under the

Brauer-Manin pairing between X(Ak)• and Br(X), we have (P, b) = 0. From the
sequence of maps

Br1/2,n(X) ⊂ Br1(X) −→ Br1(X)

Br0(X)
∼= H1(k,PicX)←− H1(k,Pic0

X)[n],
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let b′ denote the image of b in H1(k,PicX), and let b′′ ∈ H1(k,Pic0
X)[n] be an element

mapping to b′, which exists by the definition of Br1/2,n(X).

Now, as before, let A be the Albanese variety of X, and let V be the Albanese
torsor with a canonical map φ : X −→ V . Since V is a torsor under A, we have
that Alb0

V
∼= Alb0

A = A = Alb0
X . Therefore, taking their duals we get

Pic0
X
∼= Pic0

A
∼= Pic0

V .

Since P ∈ X(Ak)
n-ab
•

φ−→ V (Ak)
n-ab
• , we know that the latter set contains φ(P ) and

hence it is nonempty. By the definition of V (Ak)
n-ab
• , it follows that V admits a

torsor of the form (Wn, A[n]). This implies that there is some twist of (Wn, A[n])
such that φ(P ) lifts to it. We can assume that (Wn, A[n]) is already this twist, so
there is some Q ∈ Wn(Ak)• such that γ(Q) = φ(P ), where γ : Wn −→ V is the
covering map associated to (Wn, A[n]).

Let (Yn, A[n]) ∈ Ab(X) be the pull-back of (Wn, A[n]) to X. By Lemma 3.4(b), the
diagram

Yn X

Wn V

π

φ

γ

tells us that there is some R ∈ Yn(Ak)• such that π(R) = P . Using the fact that
the Picard functor is contravariant, we have the induced commutative diagram

PicYn Pic0
Yn Pic0

Wn
Pic0

A

PicX Pic0
X Pic0

V Pic0
A

π∗ γ∗

∼= ∼=

∼=

π∗ ·n

where the map on the rightmost column is multiplication-by-n. Applying H1(k,−)
to the diagram, we start from b′′ ∈ H1(k,Pic0

X), whose image corresponds to a
1-cocycle

f : Gal(k̄/k) −→ n · Pic0
X

in H1(k,Pic0
Wn

). Since Wn is an A[n]-torsor, we see that f must be the trivial
homomorphism. Hence π∗(b′) = 0 ∈ H1(k,PicYn) ∼= Br1(Yn)/Br0(Yn). Treating b′
as an element in Br(X), we can identify it with b. Therefore,

(P, b) = (π(R), b′) = (π∗(b′), R) = 0

as desired. The second statement easily follows from the first. �
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Combining the preceding theorem with Theorem 3.17, we obtain the chain of
inclusions

X(Ak)
Br
• ⊂ X(Ak)

Br1
• ⊂ X(Ak)

f-ab
• ⊂ X(Ak)

Alb
• ⊂ X(Ak)

Br1/2
• .

However, again by the descent theory of Colliot-Thélène and Sansuc, the last inclu-
sion is in fact an equality, since we actually have X(Ak)

n-ab
• = X(Ak)

Br1/2,n
• . Indeed,

let M = Pic0
X [n], and let λ : M −→ PicX be the inclusion, and note that its dual is

Alb0
X [n]. Then the n-coverings of X are exactly the torsors of type λ, see [Sko01].

We have Brλ = Br1/2,n, and the result follows from Theorem 6.1.2(a) of [Sko01].

It is therefore natural to ask if there are any other equalities amongst the re-
maining inclusions. For the case of curves, we arrive at the main result of this paper
([Sto07], Corollary 7.3):

Theorem 3.20. Let C be a smooth projective geometrically connected curve over
k. Then

C(Ak)
Br
• = C(Ak)

Br1/2
• .

In particular,
C(Ak)

Br
• = C(Ak)

f-ab
• .

Proof. Note that the curve C = C ×k k̄ has trivial Brauer group. This is a conse-
quence of Tsen’s theorem (see, for example, [Bri18], Chapter III). Hence Br1(C) =
Br(C). Also, we have the short exact sequence

0 −→ Pic0
C −→ PicC −→ NSC −→ 0.

Since C is a curve, we have NSC = Z. Taking H1(k,−) throughout, we get an exact
sequence

H1(k,Pic0
C) −→ H1(k,PicC) −→ H1(k,Z).

Now, Gal(k̄/k) acts trivially on Z, so H1(k,Z) = Hom(Gal(k̄/k),Z). The absolute
Galois group is the inverse limit of finite Galois extensions of K of k, and since Z is
torsion-free,

Hom(Gal(K/k),Z) = 0.

Thus H1(k,Z) = 0 and we have that H1(k,Pic0
C) −→ H1(k,PicC) is a surjection.

It follows that Br1/2(C) = Br1(C). �

Remark 3.21. For an arbitrary nice k-variety X, if we impose the condition that
H1(k,Pic0

X) −→ H1(k,PicX) is a surjection, then

X(Ak)
Br1
• = X(Ak)

f-ab
• = X(Ak)

Alb
• .

In general it is not true that X(Ak)
Br1
• = X(Ak)

f-ab
• . For example, a smooth cubic

surface X in P3 has trivial geometric fundamental group and thus X(Ak)
f-cov
• =

X(Ak)• by Remark 3.7(c)(i). It may have points everywhere locally but no rationl
points since X(Ak)

Br1
• = ∅ (see [CKS87]).
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4 Obstructions on Curves

Having established Theorem 3.20 (which was the main result that we wanted to
prove) in the previous chapter, we get a glance of the interesting aspects of curves
that we can look into. Our goal of this chapter is to use this theorem to show that,
under suitable conditions, the absence of rational points on a curve is explainable
by the Brauer-Manin obstruction.

4.1 Properties of Curves by Genus

We introduce some notions about nice (cf. Definition 1.27) varieties related to the
finite descent obstructions described in the previous chapter. With particular inter-
est in the case of curves, we establish basic properties connecting these notions with
their genera.

Let X = A be an abelian variety over k, then∏
v finite

{0} ×
∏

v infinite

A(kv)
0 = A(Ak)div

is the divisible subgroup of A(Ak). Hence we have

A(Ak)•/nA(Ak)• = A(Ak)/nA(Ak).

Taking inverse limits, we obtain A(Ak)• = Â(Ak), where the latter is the profinite
completion of A(Ak).

Let Â(k) be the profinite completion of the Mordell-Weil group A(k). By [Ser71],
Theorem 3, the natural map Â(k) −→ Â(Ak) = A(Ak)• is an injection and therefore
induces an isomorphism with the topological closure A(k) of A(k) in A(Ak)•. We
have an exact sequence

0 −→ A(k)/nA(k) −→ Seln(A(k)) −→X(A(k))[n] −→ 0.

involving the n-Selmer group and the Tate-Shafarevich group (cf. Chapter 1.3). If
n|m, we have canonical maps

A(k)/mA(k) −→ A(k)/nA(k),

Selm(A(k)) −→ Seln(A(k)),

X(A(k))[m] −→X(A(k))[n].

Forming the projective limit Ŝel(A(k)) := lim←− Seln(A(k)) and the Tate module
TX(A(k)), we again have an exact sequence

0 −→ Â(k) −→ Ŝel(A(k)) −→ TX(A(k)) −→ 0.
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Remark 4.1. If X(A(k)) is finite (cf. Conjecture 1.19), or, more generally, if
the divisible subgroup X(A(k))div is trivial, then the Tate module vanishes. This
implies that Â(k) ∼= Ŝel(A(k)).

Now, for a nice variety X, recall that we have the following chain of inclusions

X(k) ⊂ X(k) ⊂ X(Ak)
f-cov
• ⊂ X(Ak)

f-ab
• ⊂ X(Ak)•.

We are interested in when certain equalities hold when X is a curve, which motivates
the following definitions:

Definition 4.2. Let X be a nice k-variety. We say that X is

(1) good if X(k) = X(Ak)
f-cov
• ,

(2) very good if X(k) = X(Ak)
f-ab
• ,

(3) excellent with respect to all coverings if X(k) = X(Ak)
f-cov
• ,

(4) excellent with respect to abelian coverings if X(k) = X(Ak)
f-ab
• .

Remark 4.3. These definitions certainly tell us something more. We have the
implication (3) =⇒ (1) which further implies

X(k) = ∅ ⇐⇒ X(Ak)
f-cov
• = ∅.

This is a very weak statement, whereby any variety fulfilling any of the statements in
the above definition would certainly satisfy this, and so would any variety for which
the Hasse principle holds. Nonetheless, if the statement holds for X and if X(k) is
nonempty, then Theorem 5.17 of [Sto07] ensures that there is a feasible procedure
in determining the k-rational points on X.

Let X = C be a curve. When C has genus 0, it follows from the Riemann-Roch
theorem that there is an embedding of X as a degree 2 curve in P2, which is known
to satisfy the Hasse principle. Therefore we have

C(k) = ∅ =⇒ C(Ak)• = ∅

and so all intermediate sets are also empty. On the other hand, if C(k) 6= ∅, then
we can identify C with P1 as follows: let P ∈ C(k), and visualize P1 as the set of
lines in P2 passing through P . Map the line L in P2 to the point Q = L ∩ C not
equal to P . The existence of Q is due to Bézout’s theorem, which ensures that L
intersects C at exactly 2 points. If L is the tangent line to C at P , choose Q = P .
We now obtain a parametrization of C(k). By the Strong Approximation theorem
([Poo17], Theorem 5.10.6), C(k) is dense in C(Ak)•, so

C(k) = C(Ak)•
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and thus curves of genus 0 are very good.

If C is of genus strictly greater than 1, by Falting’s theorem we know that C(k)
is finite and so C(k) = C(k). Therefore C is good (resp. very good) if and only if
it is excellent with respect to all coverings (resp. excellent with respect to abelian
coverings).

Finally, when C has genus 1, refer to the discussion at the end of Chapter 1 for
the case where C has no rational points. We are interested in the situation where
C = A is an elliptic curve. Then π1(Ā) is abelian and so by Lemma 3.7(c)(iii), we
have

A(Ak)
f-cov
• = A(Ak)

f-ab
• .

Moreover, we can restrict the abelian coverings to the multiplication-by-n endomor-
phisms of A, which gives us

A(Ak)
f-ab
• = Ŝel(A(k)).

Since the cokernel of the canonical map

A(k) ∼= Â(k) −→ Ŝel(A(k))

is TX(A(k)), we have the following results (cf. Remark 4.1):

Theorem 4.4. Let A be an elliptic curve, then

A is very good ⇐⇒ X(A(k))div = 0,

A is excellent w.r.t. abelian coverings ⇐⇒ A(k) is finite and X(A(k))div = 0.

4.2 Further Results

In this section, we explore sufficient conditions for nice curves over k with positive
genus to be excellent with respect to coverings. The results we pick up along the
way will motivate a conjecture which we will talk about towards the end.

One of the important results we have gathered on curves so far is Theorem 3.15,
so we begin with its immediate consequences.

Corollary 4.5. Let C be a nice curve over k. Let A be its Albanese variety and V
be its Albanese torsor (which are respectively JC and Pic1

C).

(1) If C(Ak)• = ∅, then C(Ak)
f-ab
• = C(k) = ∅.

(2) If C(Ak)• 6= ∅ and V (k) 6= ∅ (i.e., C has a k-rational divisor class of degree 1),
then there is a k-defined embedding ι : C ↪→ A, and we have

C(Ak)
f-ab
• = ι−1(Ŝel(A(k))).

If X(A(k))div = 0, we have

C(Ak)
f-ab
• = ι−1(A(k)).
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(3) If C(Ak)• 6= ∅ and V (k) = ∅, then via the canonical map φ : C −→ V , we have

C(Ak)
f-ab
• = φ−1(V (Ak)

f-ab
• ).

Let ξ ∈ X(A(k)) be the element corresponding to V . By assumption, ξ 6= 0.
Then if ξ /∈X(A(k))div, we have C(k) = C(Ak)

f-ab
• = ∅.

Similar statements also hold true for a general nice variety X, by replacing C(Ak)
f-ab
•

with X(Ak)
Alb
• . Indeed, we have already seen (cf. the paragraph after Remarks 3.16)

that
X(Ak)

Alb
• = φ−1(V (Ak)

f-ab
• ).

In the following, for a nice k-curve C, we let ι denote an embedding of C into
its Jacobian (if it exists). We say that the absence of rational points is explained by
the Brauer-Manin obstruction if C(Ak)

Br
• = ∅. By Theorem 3.20, we conclude that

this absence is explained by the Brauer-Manin obstruction when C is excellent with
respect to abelian coverings and C(k) = ∅.

Corollary 4.6. Let C be a curve of genus at least 1. Assume that X(JC(k))div = 0
and that JC(k) is finite. Then C is excellent with respect to abelian coverings.
Furthermore if C(k) = ∅, the absence of rational points in explained by the Brauer-
Manin obstruction.

Proof. By Corollary 4.5(2), we have

C(Ak)
f-ab
• = ι−1(JC(k)) = ι−1(JC(k)) = C(k).

as desired. �

In fact, the statement that C(Ak)
f-ab
• = C(k) holds even for finite subschemes Z

of C.

Theorem 4.7. Let C be a curve of genus at least 1, and let Z ⊂ C be a finite
subscheme. Then the image of Z(Ak)• in C(Ak)• meets C(Ak)

f-ab
• in Z(k). More

generally, if P ∈ C(Ak)
f-ab
• is such that Pv ∈ Z(kv) for a set of places v of k of density

1, then P ∈ Z(k).

We refer the reader to [Sto07], Theorem 8.2 for a proof. The next two results are
direct applications of this theorem which reflect the well-behaved nature of a curve
being excellent with respect to coverings.

Proposition 4.8. Let K/k be a finite extension, and let C be a k-curve of genus
at least 1. If CK is excellent with respect to all coverings or abelian coverings, then
so is C.

Proof. By Proposition 3.11 and the canonical identification CK(K) = C(K), we
have

C(k) ⊂ C(Ak)
f-cov
• ⊂ C(Ak)• ∩ C(AK)f-cov• = C(Ak)• ∩ C(K).
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Since C(K) has to be finite in order to equal C(AK)f-cov• , the above inclusion implies
that C(k) is also finite. Let Z = C(k) be the finite subscheme as in Theorem 4.7.
Then we have P ∈ C(Ak)

f-ab
• such that Pv ∈ C(kv) for all finite places of k and by

Theorem 4.7, we conclude that P ∈ C(k). �

Proposition 4.9. Let φ : C −→ X be a non-constant morphism over k from the
curve C of genus at least 1 into a variety X. If X is excellent with respect to all
coverings or abelian coverings, then so is C. In particular, if X(Ak)

f-ab
• = X(k) and

C(k) = ∅, then the absence of rational points on C is explained by the Brauer-Manin
obstruction.

Proof. Let P ∈ C(Ak)
f-cov
• . By Proposition 3.8, φ(P ) ∈ X(Ak)

f-cov
• = X(k). Let

Z ⊂ C be the preimage of φ(P ) in C, this is a subscheme of C and it is finite since
φ is non-constant. We easily see that P is in the image of Z(Ak)• in C(Ak)•, and
by Theorem 4.7,

P ∈ C(Ak)
f-ab
• ∩ Z(Ak)• = Z(k) ⊂ C(k).

The same proof works for C(Ak)
f-ab
• . �

In light of the preceding statement (and Theorem 4.4), the following essential
result is naturally implied:

Theorem 4.10. Let C −→ A be a non-constant morphism over k of a curve C into
an abelian variety A. Assume that X(A(k))div = 0 and that A(k) is finite. Then C
is excellent with respect to abelian coverings. In particular, if C(k) = ∅, then the
absence of rational points on C is explained by the Brauer-Manin obstruction.

This enables us to produce many examples of curves C defined overQ that are ex-
cellent with respect to abelian coverings, see [Sto07], Example 8.7. At the same time,
Corollary 8.8 of the same paper tells us that the modular curvesX0(N), X1(N), X(N)
of positive genus are also excellent with respect to abelian coverings.

Most of the results we have seen so far in this section provides us with curves C
of positive genera such that

C(k) = C(Ak)
Br1/2
• ⊂ C(Ak)•.

The amount of sufficient conditions for such curves to be excellent with respect to
abelian coverings seems to indicate to us that perhaps a condition slightly weaker
would hold in general for all nice curves, even those of genus 0. With what we
have discussed in the previous section, it would not be absurd to make the following
claim, after which we will discuss the consequences of it validity:

Conjecture 4.11. If C is a nice curve over a number field k, then C is very good.

By Theorem 4.4, the conjecture implies that for an elliptic curve E, we have
X(E(k))div = 0. We have already seen from Conjecture 1.19 that X(A(k)) for an
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abelian variety A is most probably finite, and therefore it would have trivial divisible
subgroup. Furthermore, for curves of higher genera, it is equivalent to saying that
they are excellent with respect to abelian coverings.

Another important implication of the conjecture is related to the discussion in
Remark 4.3, where a curve C being very good would imply that

C(k) = ∅ ⇐⇒ C(Ak)
f-cov
• = ∅.

As already mentioned, this weaker variant of the Hasse principle would allow us
to algorithmically determine whether a given nice curve over a number field k has
rational points or not.

But perhaps the most striking consequence of Conjecture 4.11 is one that is
related to the Brauer-Manin obstruction. By Theorem 3.20, we know that

C(Ak)
Br
• = C(Ak)

f-ab
• = C(Ak)

Br1/2
• .

Since C is very good, we have the stronger equality C(k) = C(Ak)
f-ab
• , and so we

have the inclusions

C(k) ⊂ C(k) = C(Ak)
Br
• = C(Ak)

f-ab
• = C(Ak)

Br1/2
• ⊂ C(Ak)•,

which therefore implies that the Brauer-Manin obstruction is the only obstruction
against rational points on nice curves over number fields, i.e.,

C(k) = ∅ ⇐⇒ C(Ak)
Br
• = ∅.
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