
Università degli Studi di Padova
DIPARTIMENTO DI INGEGNERIA INDUSTRIALE

Corso di laurea magistrale in Ingegneria dell’Energia Elettrica

Numerical methods for nonlinear circuit and field
problems in periodic time domain

Relatore: Riccardo Torchio Autore: Alberto Teatini
Correlatore: Piergiorgio Alotto

Anno Accademico 2021/2022

Sommario

In questo lavoro di tesi vengono presentate, sviluppate ed applicate alcune tecniche
numeriche per lo studio di problemi time-domain non lineari. L’obbiettivo principale di
questo lavoro è l’implementazione di un codice che risolva il problema elettromagnetico di
una macchina elettrica rotante, in questo caso un motore sincrono. Per arrivare a studiare un
problema così complesso, sono stati studiati diversi casi. Inizialmente dispositivi statici non
lineari, successivamente a geometrie più complicate è stata aggiunta la rotazione.

Viene descritto il metodo dell’ Harmonic Balance, una tecnica matematica per risolvere
equazioni differenziali non lineari nel dominio del tempo basata sull’analisi di Fourier. Tale
metodo viene discusso e applicato in questa tesi per due differenti casi: un problema circuitale
e un problema campistico. Il metodo degli Elementi Finiti con Harmonic Balance (HBFEM)
viene implementato per casi di studio statici, e ne è stata studiata l’estensione ad oggetti rotanti.

I metodi sono stati implementati in MATLAB e i risultati sono confrontati con i risultati
ottenuti in COMSOL per attestare la validità e l’accuratezza dei codici. In appendice sono
riportati, quasi interamente, i codici MATLAB frutto di questo lavoro.

i

Abstract

In this thesis work some numerical techniques for the study of nonlinear time-domain
problems are presented, developed and applied. The main objective of this work is the
implementation of a code that solves the electromagnetic problem of a rotating electric
machine, in this case a synchronous motor. To get to study such a complex issue, several
cases are examined. Initially, static nonlinear devices are considered, subsequently rotation is
added.

The Harmonic Balance method, a mathematical technique for solving nonlinear
differential equations in the time domain based on Fourier analysis, is described. In this thesis
such method is discussed and applied to two different cases: a circuit problem and a field
problem. The Finite Element Method with Harmonic Balance (HBFEM) is implemented for
static case studies, and its extension to rotating objects is studied.

The methods are implemented in MATLAB and the results are compared with the results
obtained in COMSOL to certify the validity and accuracy of the codes. In the appendix the
MATLAB codes resulting from this work are, almost entirely, reported.

iii

Table of Contents

1 Chapter 1

Harmonic Balance Analysis of Nonlinear Circuits 1
1.1 Circuital HB Method . 1

1.1.1 Linear Subircuit . 2
1.1.2 Nonlinear Subcircuit . 3
1.1.3 Solving the System . 4
1.1.4 The Source Stepping Method . 4

1.2 Example: Half Wave Rectifier . 5

2 Chapter 2

Harmonic Balance Finite Element Method 9
2.1 Physical Problem . 9

2.1.1 Maxwell’s Equations . 9
2.1.2 Material Laws . 10
2.1.3 Eddy Current . 10

2.2 Finite Element Method . 11
2.2.1 Space Discretization . 11
2.2.2 Stiffness Matrix . 12

2.3 The Harmonic Balance Method . 12
2.3.1 Linear Problems . 14
2.3.2 Nonlinear Problems: Fixed Point Method 15

3 Chapter 3

Harmonic Balance FEM: Static Test Case 19
3.1 Eddy Current-free problem: Ferromagnetic Yoke 19
3.2 Eddy Current Problem: Induced Currents . 23
3.3 Permanent Magnet Motor with Locked Rotor 25

4 Chapter 4

Time Domain Solution: Rotating Machines 29
4.1 Theta Method: A Brief Recall of the Algorithm 29
4.2 Spatial Discretization of the Moving Band . 30
4.3 Theta Method: Linear Field Problem . 31
4.4 Time Periodic Solver: Linear Field Problem 33
4.5 Time Periodic Solver: Non-linear Field Problem 36

4.5.1 The Problem of Eddy Currents . 38
4.6 Theta Method: Nonlinear Field Problems . 39

4.6.1 Comparison between the two Time Periodic Solvers 41

v

Table of Contents

5 Chapter 5

Conclusions 43

A Appendix A

Harmonic Balance Code for Nonlinear Circuits 45
A.1 Main Code . 45
A.2 Admittance Matrix . 46
A.3 FFT reconstruction . 47

B Appendix B

Harmonic Balance: Codes for Static Simulation 49
B.1 Import Mesh Data from Comsol . 49
B.2 Main Code . 50
B.3 Other Useful Codes . 53

B.3.1 [M2x,M2y] = M2_creation_bis_NL(P,T) 53
B.3.2 [K] = fun_stiff_matrix(T,P,mu,myNull) 54
B.3.3 [Mass] = fun_mass_matrix(sigma,T,P,myNull) 54

C Appendix C

Theta Method: Codes for Rotating Machines 57
C.1 Mesh of the Moving Band . 57
C.2 Main Code: Theta Method for Linear Problem 58
C.3 Main Code for the Time Periodic Solver . 61
C.4 Codes for non-linear Time Periodic Solver . 62

C.4.1 Main Code . 62
C.4.2 Function: myfun_with_jac . 62

C.5 Theta Method: Non-linear problems . 64
C.5.1 Main Code . 64
C.5.2 myfun_with_jac2 . 65

vi

Chapter 1

Harmonic Balance Analysis of Nonlinear Circuits

The Harmonic Balance (HB) method is a numerical method to determine the steady-
state solution of nonlinear problems. It was firstly introduced to study nonlinear differential
equations. In this field, Cesari [1] and Urabe [2] derived the mathematical framework of the
method. Later, the works of Yamada and Bessho [3] and others [4] extended the method with
Finite Element analysis, giving rise to the so called Harmonic Balance Finite Element method
(HBFEM).

The Harmonic Balance method is a frequency-domain method, which combines time and
frequency representations in order to achieve an advantage compared with the classical time-
consuming transient analysis. In fact, if we are only interested in the solution, the HB method
can determine it directly. On the other hand, a transient solver has to explicitly solve several
time-stepping computations that could become really expensive, in particular with large time
constants, in order to reach the solution.

The purpose of this chapter is to simulate the steady state solution of a simple electrical
circuit, with a strong nonlinear element: a diode. A similar algorithm can be used to simulate
other kinds of circuits, in which nonlinearities come, for example, from microwave or RF
components.

There are two main formulations of the same method, namely the Nodal Harmonic
Balance method and the Piecewise Harmonic Balance method. The first one considers an
entire circuit applying Kirchhoff’s laws in every node, giving rise to a large and, generally,
full nonlinear system. In this case, each variable is represented by a Fourier series expansion,
whose coefficients are the unknowns of the problem. It is a relatively easy approach but, due to
the high number of variables, it is not widely used.

The Piecewise Harmonic Balance method, instead, has emerged as the most convenient
approach, and is analysed in detail hereafter. Nowadays, due to its diffusion, the Piecewise
Harmonic Balance method is simply identified as Harmonic Balance, and so is done in this
work.

1.1 Circuital HB Method

The Harmonic Balance method, applied to circuits, requires to divide into two subsystems
the system that needs to be analysed: a linear and a nonlinear part. The two subsystems are
connected by M ports, as shown in figure 1-1. The number of nonlinear ports has to be reduced
in order to reduce the complexity of the problem.

The aim of the Harmonic Balance algorithm is to find the set of port voltages that satisfy
Kirchhoff’s current law at each port: the "linear" current has to be equal to the "nonlinear" one
in each port.

The port’s voltage can be expressed with the Fourier Series Expansion:

vm = Re

(︄
NH

∑
n=0

V m
n · e jnω0 t

)︄
(1.1)

1

Harmonic Balance Analysis of Nonlinear Circuits

Figure 1-1: General circuit divided into a linear and a nonlinear subsystem and connected by
M ports.

where V m
n are the unknown phasors of the problem. At the same port, Kirchhoff’s current law

has to be verified, so:

imL (t)+ imNL(t) = 0 m = 1, ...,M (1.2)

where imL (t) represents the linear current at the m port, and imNL(t) represents the nonlinear
current at the same port.

All these terms can be rearranged into a vector, in which the dimensions depend on the
number of ports and on the harmonics that are chosen: M(Nh +1).

V =
[︁
V 1

0 V 1
1 ... V 2

0 ...V 2
Nh ... V M

Nh

]︁
(1.3)

Therefore, the previous equations can be rearranged into a vectorial form.
Since the current and voltage signals are real, all the vectors previously defined in frequency

domain present hermitian symmetry. Thus, the negative frequency components are the complex
conjugate of the positive ones. This observation allows to take into account only positive
frequencies plus the DC term, so the dimensions of the problem are reduced to M(Nh

2 +1).
The solution to the problem is found thanks to the combination of the solutions of the

two separated sub-circuits. The linear sub-circuit is analysed in the frequency domain, using
the superposition of effects principle. The nonlinear circuit, instead, is analysed in the time
domain.

1.1.1 Linear Subircuit

By means of the Norton equivalent theorem, as can be seen in figure 1-2, the linear circuit can
be expressed by the relation:

IL = Y ·V+ Ieq (1.4)

Y is the admittance matrix, while Ieq is the vector of the equivalent current, that has the
same construction as the voltage vector in equation 1.3.

2

Harmonic Balance Analysis of Nonlinear Circuits

Figure 1-2: Norton equivalent of the linear sub-circuit.

The admittance matrix Y is a sparse block matrix, where each block is a diagonal matrix
representing the value Y i, j between the ports i and j at each harmonic:

Y =

⎡⎢⎢⎢⎣
Y1,1 Y1,2 . . . Y1,M

Y2,1 Y2,2 . . . Y2,M

...
...

YM,1 YM,2 . . . YM,M

⎤⎥⎥⎥⎦ (1.5)

Each submatrix can be build as following:

Yi, j =

⎡⎢⎢⎢⎣
Y 1,1

0 0 . . . 0
0 Y 2,2

1 (ω0) . . . 0
...

...
0 0 . . . Y M,M

Nh
(Nh ·ω0)

⎤⎥⎥⎥⎦ (1.6)

The self and mutual admittances at each port have to be calculated for each frequency
solving different circuits. For this purpose, methods like Nodal Analysis or Tableau Analysis
can be used.

1.1.2 Nonlinear Subcircuit

The analysis of the nonlinear circuit is carried out in the time domain, so it has to follow a
different approach. As a first step, the vector of the time domain voltage has to be computed
from frequency domain, by means of the inverse Fourier transform:

v(t) = F−1(V) (1.7)

The second step comes directly from the knowledge of the constitutive law of the circuit part
in the nonlinear circuit, therefore iNL = f (v(t)) and the system becomes:

INL = F (f (v(t))) (1.8)

These steps are carried out using the Fast Fourier Transform: the FFT algorithm. Therefore,
the number of samples must satisfy the Shannon’s sampling theorem hypothesis, in order to
avoid aliasing or any other numerical error.

3

Harmonic Balance Analysis of Nonlinear Circuits

A recap of the procedure is reported below:

V F−1
−−−→ v(t)

f (v(t))−−−−→ iNL(t)
F−−→ INL (1.9)

1.1.3 Solving the System

The nonlinear system to solve consists in:

f(V) = IL(V)+ INL(V) = 0 (1.10)

where the unknowns of the problem are the phasors of the truncated Fourier series expansion of
the voltage at the ports of the whole circuit. The residue f(V) is the function that the algorithm
has to minimize and it is called current-error vector.

As previously said, the critical aspect of the Harmonic Balance Method is the great number
of degrees of freedom: a generic circuit with M ports and Nh + 1 harmonics (Nh harmonics +
DC term) gives rise to a nonlinear system with M(Nh+1) variables. If we consider both the real
and imaginary parts, the total number of unknowns grows to 2M(Nh + 1). For the solution of
this problem, a common Newthon-Raphson’s method is chosen, as described by the following
relation:

V(k+1) = V(k)− (J(k))−1 ·F(V(k)) (1.11)

where J is the Jacobian Matrix that has this structure:

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂F0
1

∂V 0
1

∂F0
1

∂V 1
1

. . .
∂F0

1

∂V
Nh
N

∂F1
1

∂V 0
1

∂F1
1

∂V 1
1

. . .
∂F1

1

∂V
Nh
N

...
...

∂F
Nh
1

∂V
Nh
1

∂F0
1

∂V 1
1

. . .
∂F

Nh
1

∂V
Nh
N

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(1.12)

where the subscripts denote the ports, whereas the superscipts indicate the harmonic order.
The Jacobian can also be calculated as:

J = Y+
dINL

dV
(1.13)

The Jacobian matrix can be computed analytically, if the nonlinear function is known in
analytical form, or numerically, by incremental ratio. The analytical derivation, however, has
better numerical properties, and it is advisable when available.

When the vector of the error currents decreases below a toleration limit ε , the algorithm
stops, and the solution is found:

∥f(k)∥< ε (1.14)

1.1.4 The Source Stepping Method

The choice of the first guess is a key point to speed the convergence of the algorithm. For
this reason, the linear solution, obtained for a low-level input, is a good starting point for the
iteration of nonlinear circuits. The level of the input is then gradually incremented by steps (λ)
through the iterations. This is the so called Source Stepping Method.

V(k+1) = V(k)−λ (V(k))(J(k))−1 ·F(Vk) (1.15)

An overview of several other techniques for the analysis of nonlinear circuits can be found
in [5].

4

Harmonic Balance Analysis of Nonlinear Circuits

1.2 Example: Half Wave Rectifier

In order to test the algorithm presented above, a simple nonlinear circuit was studied. The
circuit in figure 1-3 has a strong nonlinearity caused by the diode. The algorithm was
implemented in MATLAB, and in Appendix A some of the main scripts are reported.

Figure 1-3: Half-wave rectifier.

This simple circuit can be easily rearranged in a pattern similar to the one in figure 1-1,
where the linear and nonlinear components are divided, and there is only one port in between
(figure 1-4). Because of the strong nonlinearity introduced by the diode, a Source Stepping
Technique has to be implemented as discussed in the section 1.1.4.

Figure 1-4: Half-wave rectifier rearranged.

The circuit is characterised by a sinusoidal source:

vs =Vmaxsin(ωt) (1.16)

with Vmax = 1 V and ω = 20 kHz. The diode is characterised by this equation:

id = Id(e
v

Vt −1) (1.17)

with reverse current Id = 0.1 nA and threshold voltage Vt = 0.025 V . The value of the resistor
is set to R = 100 Ω while the capacitance is C = 0.1 mF .

The circuit was studied with different numbers of harmonics Nh in order to evaluate the
accuracy of the method. The higher the number of the harmonics is, the higher the accuracy of
the results is, but also the higher computational costs are. A number of harmonics equal to 16
is sufficient to simulate the circuit and to guarantee an optimal quality of the results.

To compute the Fourier Transform and the Inverse Fourier Transform, the MATLAB fft and
ifft algorithms were adopted. The number of harmonics and the behaviour of the fft algorithm

5

Harmonic Balance Analysis of Nonlinear Circuits

have to match. The fft code produces a vector of Nh components that has these characteristics:

V = [Vdc , V1 , V2 , . . . , Vmax−1 , Vmax , con j(Vmax−1) , . . . , con j(V2) , con j(V1)] (1.18)

where the DC and the max term appear only one time, while all the other components appear
also as their complex conjugate.

In figure 1-5 the voltage on the Diode is plotted. It is the direct output of the code for a
simulation with 16 harmonics. This vector of voltage is obtained by the ifft of the voltage vector
in the frequency domain.

Figure 1-5: Load Voltage.

Both the figures 1-6 and 1-7 are rather interesting for different reasons. Both are plots of the
current on the diode, but in figure 1-6 it is clear why the number of harmonics of the simulation
is so important. A low Nh ensures high speed of the computation, but the errors introduced may
be too high (up to 50% in the case of only 4 harmonics).

In figure 1-7 there is a comparison between plotting directly the output of the ifft algorithm,
versus reconstructing the signal from the Fourier coefficients in the frequency domain and
then plot the solution. In appendix A.3 this simple code is reported. However, it has to be
implemented with careful attention to the harmonics coefficients.

6

Harmonic Balance Analysis of Nonlinear Circuits

Figure 1-6: Different number of harmonics comparison.

Figure 1-7: Diode Current.

7

Chapter 2

Harmonic Balance Finite Element Method

The main purpose of this thesis is the study of electromagnetic fields in time domain.
Usually, this kind of problems is studied with a time domain solver in FEM, because the
presence of nonlinearities does not allow the use of a time-harmonic solver. An Harmonic
Balance method can be an interesting solution to this kind of problems if we are interested in
the steady-state solution and not in the transient regime.

In this chapter the Harmonic Balance Finite Element Method is introduced, starting from a
basic recap of the FEM algorithm.

2.1 Physical Problem

In this section the physical laws that manage the electromagnetic field are recalled .

2.1.1 Maxwell’s Equations

Electromagnetic fields are described by Maxwell’s equations:

• Faraday-Neumann-Lenz law:

∇×E =−∂B
∂ t

(2.1)

• Ampère-Maxwell law:

∇×H = J+
∂D
∂ t

(2.2)

• Gauss law for the magnetic induction field:

∇ ·B = 0 (2.3)

• Gauss law for the electric induction field:

∇ ·D = ρ (2.4)

In these equations, "∇×" indicates the curl operator, "∇·" indicates the divergence operator,
E is the electric field, H is the magnetic field, J is the current density,B is the magnetic induction
field, D is the electric induction field and ρ is the charge density.

It is also important to recall the charge conservation equation, that is obtained from the
previous equations:

∇ ·J =−∂ρ

∂ t
(2.5)

In the so called magneto-quasi-static case, Maxwell’s equations can be simplified as follow:

∇×H = J (2.6)

∇ ·J = 0 (2.7)

9

Harmonic Balance Finite Element Method

2.1.2 Material Laws

The material’s laws for linear materials are:⎧⎪⎨⎪⎩
D = εE
J = σE
B = µH

(2.8)

where ε is the permittivity, σ is the conductivity and µ is the magnetic permeability. However,
iron, which is a very common material, is nonlinear and the relation looks like the curve shown
in Fig 2-1 (neglecting hysteresis). For H values larger than a certain threshold (the so-called
knee value) the slope decreases and then leans to µ0. This kind of materials are the sources of
nonlinearities in the HBFEM study.

Figure 2-1: BH relation in a linear and a nonlinear material.

2.1.3 Eddy Current

Starting from the previous equations, the eddy current PDE is derived. From the definition of
magnetic vector potential A:

B = ∇×A (2.9)

we can reformulate the first Maxwell’s equation (2.1) :

∇×E =− ∂

∂ t
(∇×A) (2.10)

and so:

∇×
(︃

E+
∂A
∂ t

)︃
= 0 (2.11)

If the domain is simply connected for lines, the electric scalar potential V can be introduced:

E+
∂A
∂ t

=−∇V (2.12)

10

Harmonic Balance Finite Element Method

Now, adding the constitutive equations, the system results in:{︄
J = σE = σ

(︂
−∇V− ∂A

∂ t

)︂
H = νB

(2.13)

Therefore, substituting the current density in Eq.2.6 and using the magnetic vector potential
definition, we arrive at the final equation that describes eddy current problems:

∇× (ν∇×A)+σ
∂A
∂ t

= J (2.14)

In 2D cases, as for the problems presented in this work, the equation can be simplified to a
scalar equation, considering A = Az(x,y):

−∇ ·ν∇Az +σ
∂Az

∂ t
= Js,z (2.15)

2.2 Finite Element Method

The Finite Element Method (FEM) is a numerical method for solving PDEs. It is a widely
used tool to study problems in engineering and mathematical physics. The formulation of this
method is not part of this work, but some of the main aspects are hereafter recalled.

2.2.1 Space Discretization

The basic idea of FEM is to divide the entire domain in a finite number of elements, that can be
arbitrary polygons (generally triangles in 2D). The domain divided in this way is called mesh
and has a set of rules to run this process of discretization properly.

For every element, like the one in figure 2-2, a set of shape functions can be written, so that
Ue j can be found:

Ue j =

ne j

∑
i=1

Uiϕi (2.16)

where ne j is the number of nodes of the element e j and ϕi are the interpolating functions.

Figure 2-2: Triangular element.

11

Harmonic Balance Finite Element Method

In this case, the shape functions are:⎧⎪⎨⎪⎩
ϕe

i (x,y) = ai +bix+ ciy
ϕe

j (x,y) = ai +b jx+ c jy
ϕe

k (x,y) = ak +bkx+ cky

(2.17)

The value of the function ϕi in the node i is the union of all the contributions of all the
elements that present the node i as a vertex (as shown in figure 2-3).

Figure 2-3: Basis function of the i node.

2.2.2 Stiffness Matrix

The stiffness matrix represents the system of linear equations that must be solved in order to
find an approximate solution to the system of differential equation.

The local stiffness matrix is defined element by element:

Ki j =
∫︂

Ω

∇ϕi ·µ∇ϕ jdΩ (2.18)

The full stiffness matrix is computed by the union of all the local matrices. It is a symmetric
N by N very sparse matrix that depends only by the mesh of the system and by the material
property of every element. Moreover, the final system derive still presents the nonlinearity,
due to the terms containing the reluctivity. This problem is typically solved using Newton-
Raphson; in this case the derivation of the algorithm is not straightforward. In fact, to apply
Newton-Raphson it is necessary to build up the Jacobian matrix, which presents a complicated
structure. Moreover, the linearized system obtained is nonsymmetric and is tipically solved
using GMRES with ILUT preconditioning. Nonetheless, the problem was treated by different
authors. The formal derivation of the Newton-Raphson method applied to the HBFEM can be
found in [4] and [6].

2.3 The Harmonic Balance Method

In order to introduce the methodproperly, some considerations are needed. First of all, we are
dealing with nonlinear eddy current problems. In this case, the nonlinearity is given by the

12

Harmonic Balance Finite Element Method

dependence of the magnetic permeability on the magnetic field. This relation can be seen in
the BH curve in figures 2-4.

In order to apply the HB method, we assume a periodical excitation source but, due to the
nonlinearity, the result will not generally present the same harmonic content of the excitation,
and it will be approximated by a Fourier series expansion.

Starting from the equation 2.14 previously obtained, we can derive an easier formulation
with some hypotheses:

• the field is 2-dimensional

• the problem is quasi-stationary

• the saturated core is isotropic

• the hysteresis is not considered

Because of these statements, the magnetic vector potential results only in z direction:
A = (0,0,Az(x,y)). The equation 2.14 becomes:

−
∫︂

Ω

∇ϕi ·∇AzdΩ+
∫︂

Ω

ϕiσ
∂Az

∂ t
dΩ =

∫︂
Ω

ϕiJdΩ (2.19)

We are looking for the steady-state solution, therefore all variables are approximated as a
Fourier series expansion:

Ai
z(t) =

∞

∑
n=1

Ai
nssin(nωt)+Ai

nccos(nωt) (2.20)

All the other variables of the previous equation can be approximated in the same way as Az
in equation 2.20: J(t), v(t), Bx(t) and By(t).

The solution to this equation gives rise to a complicated assembly and a large, dense system
of nonlinear equations. This happens because all the harmonics of the variables are coupled
together by the explicit Fourier Expansion.

The idea hereby expressed represents the so called strong-coupled approach to the harmonic
Balance. Now we want to formulate a similar method considering each harmonic decoupled
from the other in such a way to study each harmonic independently. The nonlinear term
containing the permeability (or the reluctivity) couples all the unknowns, so that the decoupling
is trivial in the linear case, whereas for nonlinear problems, special techniques are needed.

Starting from the equation obtained from the Maxwell system 2.14:

∇× (ν∇×A)+σ
∂A
∂ t

= J

the system can be rewritten as:

K[ν(x(t))]x(t)+M(σ)
dx(t)

dt
= f(t) (2.21)

This formulation makes use of the definition of the Stiffness Matrix K and the Mass Matrix
M. The Stiffness matrix depends on ν that depends on x which in turn depends on time and is
the nonlinear part of the equation.

13

Harmonic Balance Finite Element Method

Figure 2-4: BH curve of soft iron.

Using a complex Fourier series for the solution, considering N harmonics we obtain this
approximation to the solution:

x(t)≈ xN(t) = Re

(︄
N

∑
k=1

Xke− jkωt

)︄
(2.22)

where Xk is the complex Fourier coefficient of the k-th harmonic at the angular frequency kω

and it can be computed as:

Xk = Fk(x) =
1
T

∫︂
t
x(t)e− jkωtdt (2.23)

By implementing these definitions in the equation 2.21 we obtain a system that belongs to
the frequency domain instead of the time domain:

Fm{K[ν(xN)]xN}+ jmωM(σ)Xm = Fm(f) m = 1, . . . ,N (2.24)

The time derivative that multiplies the Mass Matrix corresponds to a multiplication by
jmω in the frequency domain. The nonlinear term, containing the permeability depending
on the unknown solution, couples all Fourier coefficients to each other. Therefore, due to the
nonlinearity, we cannot solve each harmonic independently.

2.3.1 Linear Problems

In the linear case the permeability and the reluctivity do not depend on the solutions, and in this
case the decoupling is trivial. The Fourier coefficients related to the Stiffness matrix become:

Fm{K(ν)xN}= K(ν)XN (2.25)

The equation 2.24 can be easily determined because each harmonic is decoupled and results in
N independent linear systems:

[K(ν)+ jmωM(σ)]Xm = Fm(f) m = 1, . . . ,N (2.26)

14

Harmonic Balance Finite Element Method

2.3.2 Nonlinear Problems: Fixed Point Method

In nonlinear problems, each harmonic is coupled with harmonics due to the presence of the
permeability. To manage this problem, a fixed point iteration is implemented, as presented in
the Biro works [7] and [8]. As previously shown, the nonlinear behavior of the ferromagnetic
material is given by the BH-curve and the following relation:

B = µH (2.27)

The key idea of the fixed point algorithm is to separate the relation between B and H into a
linear and a nonlinear term:

H(B) =
1

µ f p
B−M f p(B) (2.28)

The term M f p is a magnetization-like quantity which describes the nonlinearity and
therefore depends on the flux density B. The constant factor µ f p of the linear term is called
the fixed-point permeability.

The starting equation 2.14, together with this definition, can be rewritten as follow:

∇× 1
µ f p

(∇×A)−∇×M f p +σ
∂A
∂ t

= J (2.29)

This equation by means of the stiffness and mass matrices becomes:⎧⎪⎨⎪⎩
K f pA+ jmωMmass = bJ +bM

bJ =
∫︁

Ni ·Jsources

bM =−
∫︁

Ni∇×M
(2.30)

In this system, bJ is the right hand side referring to the sources, while bM is referring to
the magnetization as seen in equation 2.28. The minus sign comes from properties of the nabla
operator:

∇× (NiM) = Ni∇×M+∇Ni ×M (2.31)

but in our case of study, the term ∇× (NiM) is null, so the equation becomes:

Ni∇×M =−∇Ni ×M (2.32)

and so the minus sign is explained.
The whole procedure of the fixed point iteration results in:

1. Choose the value for µ f p.

2. Set M to zero for the first iteration.

3. Solve the system 2.30 to find A and so the field B. The field H can be found entering B
in the BH-curve.

4. Find the magnetization M reversing the equation 2.28:

M =
1

µ f p
B−H(B) (2.33)

5. Update the right-hand side of 2.30.

15

Harmonic Balance Finite Element Method

6. Repeat steps 3 and 4 until a certain criterion is fulfilled .

The right choice for µ f p is fundamental: for µ f p < 2 the convergence of the method is
secure but slow, for higher µ f p the method is faster, but the convergence needs to be checked.
The optimal convergence of the fixed-point method is studied in depth in [9]. The following
flowchart shows the steps previously presented in an easier way to understand.

16

Harmonic Balance Finite Element Method

Start
M(0) , µ f p

Compute K f p

Update the right hand side of Eq 2.30

Solve in the frequency domain: X = K f p\RHS

Xs+1
2 → x(s+1)

2 (t)Xs+1
1 → x(s+1)

1 (t) Xs+1
m → x(s+1)

m (t)

Compute the fields B and H(B)

Compute the Magnetization M from Eq 2.33

Evaluate the rhs:
−fft(M(s+1))

Is the variation
of M(s+1)

small enough?
It = It+1

Stop

yes

no

17

Chapter 3

Harmonic Balance FEM: Static Test Case

In this chapter, the Harmonic Balance method is presented, applied to different test cases,
to study the field problem of static devices. Some strings of the code are commented below,
while the whole code is reported in Appendix B.

In all the following test cases, the mesh is built in Comsol and then imported in Matlab. It
is important to set in Comsol linear elements in the mesh. Comsol is then used to validate the
results obtained. A FEM algorithm implemented in Matlab is also used to compare the results
and to confront the computational time of the two methods.

3.1 Eddy Current-free problem: Ferromagnetic Yoke

In this first test case, the ferromagnetic yoke in figure 3-1 is simulated. The core consists in a
non linear Iron (BH curve in fig 3-2) where the conductivity σ of the material is set to zero, in
order to have an eddy currents free problem. In order to achieve a strong saturation condition,
we impose a sinusoidal current density with peak value equal to 1 ·106A/m2. The frequency is
set to 50 Hz.

Figure 3-1: Geometry of the ferromagnetic yoke and mesh.

The principal aim of this test is to study the non linear behaviour of the iron. The equation
2.33 is implemented in the code, as can be seen below in the listing 3.1. The magnetization has
to be evaluated in every time step, therefore a for loop is necessary.

19

Harmonic Balance FEM: Static Test Case

Figure 3-2: BH curve of the ferromagnetic material.

1 for m=1:Nh % For every time instant find the Magnetization
2 xloc=myNull*sol_t(:,m);
3 Bx = M1x*xloc;
4 By = M1y*xloc;
5 normB = sqrt(Bx.^2 + By.^2);
6 [indB] = find(normB < 1E−9); % Approximation of the null numbers
7 normB(indB) = 1e−9;
8 normH=normB/mu0;
9 % Evaluate H from BH only in iron

10 normH(IndIron) = H(normB(IndIron));
11 % H bounded to B from the real relation BH
12 Hx = normH./normB .* Bx;
13 Hy = normH./normB .* By;
14 % H bounded to B by niFP (only in iron)
15 Hx_fp = nimu0*Bx; % air
16 Hy_fp = nimu0*By; % air
17 Hx_fp(IndIron) = nimu0*niFP*Bx(IndIron); % iron
18 Hy_fp(IndIron) = nimu0*niFP*By(IndIron); % iron
19

20 M(:,m) = myNull'*(M2x*(Hx−Hx_fp) + M2y*(Hy−Hy_fp));
21 % The minus sign is inside M2y
22 end

Listing 3.1: Fixed point iteration.

The results obtained from the algorithm were validated with the FEM algorithm and in
Comsol. The most important result is that, compared to the FEM in which Newton-Raphson is
needed to take care of the nonlinearities, HB is much quicker:

• FEM with Newton Raphson algorithm: about 850 seconds as calculation time, 23 NR
iterations.

• HB with fixed point algorithm: about 11 seconds as calculation time, 188 FP iterations.

The choice of the µ f p is critical: if it is below 2, the method always converges but it is slow. In
this test for example, with µ f p = 2 it take 125 seconds as computation time and 4385 iterations.
If instead µ f p = 55 the method is a lot faster, as presented above. With µ f p = 60 the method
does not converge. At the moment, the choice of µ f p is empirical, and needs to be investigated
in future works.

20

Harmonic Balance FEM: Static Test Case

Figure 3-3: B field as result of the HB method.

Figure 3-4: µr in the domain as result of the HB method.

In the two figures above, the field resulted from the first time step is shown. In these two
figures, the behaviour of the non linear material is clear: it can be seen where the material is
saturating and where it is not.

In the two figures below, instead, the real strength of the method is shown: the time domain
solution. Figure 3-5 is particularly interesting because it shows the error that can be committed

21

Harmonic Balance FEM: Static Test Case

if a non-appropriate number of harmonics is used. The solution with 10 harmonics (red line)
has a ripple that the 20-harmonics solution (yellow line) does not have.

Figure 3-5: Time variation of Az in a point of the domain.

22

Harmonic Balance FEM: Static Test Case

Figure 3-6: Time variation of NormB in a point of the domain.

3.2 Eddy Current Problem: Induced Currents

This test case is a simple extension of the previous one. A very simple geometry is considered:
a plate of iron is excited by a coil above it.

Figure 3-7: Geometry of the test case.

Because of the similarity with the eddy currents free problem, I am going to briefly discuss
only the part of the code that implements the induced currents. As previously reported, the

23

Harmonic Balance FEM: Static Test Case

choice of µ f p is a key point: it has to be set to 2 to ensure the convergence. The code takes 5
minutes and 7800 iterations to reach the solution.

1 while check > toll && it < it_max
2 %Frequency domain rhs
3 rhs_f = −fft(M,[],2);
4 rhs_f(:,2) = (rhs_sources + rhs_f(:,2)); % Force the sources
5

6 % Frequency domain solution
7 for r = 1:(Nh/2+1)
8 sol_f(:,r) = (K_fp+1j*vec_harm(r)*omega*Mass)\rhs_f(:,r);
9 % Cycle to multiply omega to the number of harmonics

10 end
11 sol_f = [sol_f(:,(1:Nh/2+1)),fliplr(conj(sol_f(:,(2:Nh/2))))];

% Second half of the vector computed as the conj of the first Nh+1 elements turned L−R
12

13 %Time domain solution
14 sol_t=ifft(sol_f,[],2,'symmetric');
15

16 it=it+1;
17 end

Listing 3.2: Eddy currents code.

To take care of eddy currents, the term of the mass matrix has to be added to the previous
case. The system to solve now is the one in the equation 2.30. The for loop at the 7th row is
needed to calculate the right omega for every different frequency.

The sources are forced into the right hand side at the right frequency. In this case the 50 Hz
sources are set as first harmonic, so they are settled in the second column of the RHS vector
(the first column is the DC term). Again, particular attention is needed while managing the fft
coefficients.

In the following images, the results of the method are plotted for two different instants in
time. The B field and the profile of the eddy currents are coherent with the Comsol results. The
figures are only a pictures of two instants in time, but the method provides the solution in every
time step as output.

Figure 3-8: Norm of Field B in space for two different time instants.

24

Harmonic Balance FEM: Static Test Case

Figure 3-9: Eddy currents in the domain for two different time instants.

3.3 Permanent Magnet Motor with Locked Rotor

The last test case of this section approaches, for the first time, the real key point of this work:
the field problem of a synchronous motor. In this case, we want to use the algorithm proposed
above to study a permanent magnet synchronous motor in a locked rotor situation. In figure
3-10 the geometry and the mesh of the motor are shown.

Figure 3-10: Geometry of the motor and mesh.

Despite the fact that the geometry is more complicated with respect to the previous
problems, the code has to be only slightly adjusted. As first improvement, the permanent
magnets need to be taken into account. In this case, magnets are made of NdFeB, with the
norm of the remanent flux density equal to 1.47 T. The flux has therefore to be set with radial
direction as shown in figure 3-11.

The value of 1.47 T (standard for NdFeB magnet) is a rather high value of induction, that
forces the iron into the nonlinear part of the BH-curve. For this reason, and because of the
higher number of elements, the fixed point method takes more iterations to reach the solution
(figure 3-12) and the µ f p has to be set to a value near 2 to assure convergence.

25

Harmonic Balance FEM: Static Test Case

Figure 3-11: Quiver plot of the remanent flux density.

Figure 3-12: Plot of the convergence of the fixed point.

A second minor change needs to be made to take into account the three phase current. For
sake of simplicity the density of the current J is directly set in the coils. Both currents and
magnets give contributions to the RHS, which is defined in the frequency domain and has this
shape:

RHS =

⎡⎢⎢⎢⎣
bdc

1 b1
1 . . . bmax

1
bdc

2 b1
2 . . . bmax

2
...

...
bdc

n b1
n . . . bmax

n

⎤⎥⎥⎥⎦ (3.1)

In the RHS matrix, each row refers to a node of the mesh and each column refers to a specific
frequency weighed by the coefficients of the fft algorithm.

26

Harmonic Balance FEM: Static Test Case

As in the previous section, the output of the code is the magnetic vector potential Az
evaluated in different time steps. In figure 3-13 field B is plotted for two different instants
in time, while in figure 3-14, the variation of Az over time as assessed in a point of the domain
is directly shown.

Figure 3-13: B field evaluated in two different time steps.

Figure 3-14: Az in a period.

Despite the fact that this way of analysing field problems is very promising, the
implementation of a code to study in the frequency domain a rotating machine is very complex
and little literature can be found on the subject. An extension of these codes applied to rotating
machines, as proposed in [10], might represent an interesting future work.

27

Chapter 4

Time Domain Solution: Rotating Machines

The previous chapter reached the goal of studying the field problem of a synchronous motor
in a locked rotor condition. The aim of this chapter is to add motion to the previous case. The
time domain solution is reached by means of a theta method algorithm, first implemented in
a linear situation, then extended to a nonlinear case of study. A different formulation of the
method is then discussed and compared with the classical one.

4.1 Theta Method: A Brief Recall of the Algorithm

To introduce the theta method, the DAE system in equation 2.21 is recalled.

K[ν(x(t))]x(t)+Mmass(σ)
dx(t)

dt
= f(t)

To solve the DAE system, the initial condition x(0) is necessary. The system can then be
written in the form:

Mmassẋ = s−Kx = fun(x) (4.1)

where s is the RHS of the previous equation and is related to the sources. In this formulation,
the time derivative of x(t) is a function of x(t) itself.

The previous expression can be integrated in a time interval, and considering M and K
constant in the ∆t, it results in: ∫︂ tn+1

tn
Mẋdt = Mmass(xn+1 −xn) (4.2)

while the right-hand side, with the help of the Mean value theorem for definite integrals,
becomes: ∫︂ tn+1

tn
fun(x)dt = ∆t · fun(x∗) (4.3)

The key point of the Theta Method is the assumption that fun(x∗) can be written as the
weighted average of the values that it has at the beginning and at the end of the interval:

fun(x∗)≈ θ funn+1 +(1−θ)funn 0 < θ < 1 (4.4)

Applying these definitions to the first system we obtain:

Mmass(xn+1 −xn) = ∆t(θ(sn+1 −Kxn+1)+(1−θ)(sn −Kxn)) (4.5)

that can be rearranged in the typical form:

(θK+
1
∆t

Mmass)xn+1 = (−(1−θ)K+
1
∆t

Mmass)xn +θsn+1 +(1−θ)sn (4.6)

This formulation is the one that is used in the codes where:

M = (θKn+1 +
1
∆t

Mmass,n+1) (4.7)

29

Time Domain Solution: Rotating Machines

MM =−(1−θ)Kn +
1
∆t

Mmass,n (4.8)

The Theta-Method can be:

• asymptotically conditionally stable if 0 < θ < 1
2 . This means that the method is

asymptotically stable if and only if some conditions on the left hand side are met. Since
such conditions are very difficult to check in general, in practice asymptotic stability is
guaranteed only if ∆t is small enough. Very small time steps may result in unrealistically
long simulation times.

• asymptotically unconditionally stable if 1
2 < θ < 1. This means that the method is

certainly asymptotically stable without any requirements on the LHS. However accuracy
still depends on the time step size, which should be kept small.

For these reasons theta is set equal to 0.51.

4.2 Spatial Discretization of the Moving Band

In order to allow the rotation of the rotor, the procedure to build the mesh needs to change.
Until now, the entire procedure to build the mesh was demanded to Comsol. Now, instead, the
procedure reported below has to be followed:

1. Build in Comsol the mesh in the entire domain except for the moving band, as can be seen
in figure 4-1. On both sides of the moving band, the number of nodes must be defined
and equal. In this case the same number of nodes is imposed in both the two circles, with
equal space imposed between nodes.

Figure 4-1: Particular of the mesh built in Comsol.

2. In Matlab, the mesh of the airgap is built, knowing the indices of the nodes of the two
boundary regions.

30

Time Domain Solution: Rotating Machines

3. When the rotor spins, the triangle of an element of the mesh of the airgap needs to change
his shape to adapt to the rotation (first two plots in figure 4-2).

4. If the angle of rotation is great enough, all the triangles of the moving band have to
change. In figure 4-2 three nodes are crossed to see how the moving of the rotor changes
the mesh.

5. The mesh of the rotor does not change with the rotation because all the nodes of the rotor
spin together.

Figure 4-2: Mesh of the moving band.

In Appendix C.1 the function that build the mesh in the moving band is reported. As input
the function needs the number of nodes to move the mesh. So the routine to find the number of
nodes for the rotation as function of the degrees of rotations is:

1 numb_gap_nod = length(IndInt); % Number of nodes ind the inner circle of the moving band
2 gradi_per_node = 360/numb_gap_nod;
3 rotaz = floor(grad/gradi_per_node);
4 [Tri] = renumerate_node(Pstart,IndInt,IndExt,rotaz);

At line three it is determined at how many nodes the degrees of rotation correspond. The
floor operator assures that the mesh does not change until a right angle is reached.

4.3 Theta Method: Linear Field Problem

The first test case, for the theta method algorithm presented above, is the same synchronous
motor studied with the harmonic balance method in section 3.3. Previously, the motor was

31

Time Domain Solution: Rotating Machines

studied in a locked rotor situation. Now, instead, the algorithm is easily implemented taking
into account the rotation of the rotor.

The problem that needs to be studied is linear and, instead of the iron, there is air with the
conductivity of iron. Despite the fact that, in a real motor, iron is laminated in order to not have
eddy currents, this test considers the iron as a single block, to evaluate the eddy currents into
the entire geometry.

In the code below the iterative cycle implementing the theta method is reported. The
matrices M and MM are the same matrices introduced in the equations 4.7. The loop starts
with the rotation of the rotor and the building of the new mesh. Then, currents and magnets
need to be updated (this part is not reported in this scheme). After building the theta method
matrices, the system is resolved and the solution stored. The complete code can be found in
appendix C.2.

1 for iter = 1:nDt
2 disp(['iteration = ',num2str(iter)])
3 P = Pstart; % Restart from angle=0
4

5 % Rotation
6 angle = steps(iter)*rps; % Angle in radians for the rotor rotation function
7 grad = angle/pi*180; % Angle in degrees that will be divided
8 rotaz = floor(grad/gradi_per_node); % Number of nodes of rotation
9 [Tri] = renumerate_node(P,IndInt,IndExt,rotaz); % Function to mesh the moving band

10 [P] = Rot_Rotation(P,IndRot,angle); % Function to rotate the rotor
11 Ttot = [Told;Tri];
12

13 for i = 1:length(Ttot(:,1)) % Find new center of gravity
14 xyzb(i,1:2) = (P(Ttot(i,1),1:2)+P(Ttot(i,2),1:2)+P(Ttot(i,3),1:2))/3;
15 end
16

17 % Set of the currents
18 [...]
19

20 % Set of the magnets
21 [...]
22

23 [M1] = fun_stiff_matrix(Ttot,P,mu_fp,myNull); % New stiffness matrix
24 [M2] = fun_mass_matrix(sigma,Ttot,P,myNull); % New mass matrix
25 % Theta method
26 M = (theta*M1+(1/Dt)*M2);
27 MM = (−(1−theta)*M1old+(1/Dt)*M2old);
28 rhs = MM*xold+theta*snew+(1−theta)*sold;
29 xnew = M\rhs; % New solution
30 X(:,iter) = xnew; % Store the solution
31 xold = xnew;
32 sold = snew;
33 M1old = M1;
34 M2old = M2;
35 end

Listing 4.1: Theta Method iterative code

As in the harmonic balance chapter, the output of the code is the magnetic vector potential
in different time steps, nDt in this case. The results that can be found below were checked in
Comsol. This code, in case of linear materials, is particularly easy to implement and quick to
run (120 seconds for 60 samples of time in half rotation).

In the figure below, the B field is shown. The permanent magnets have a major impact on
B, but the contribution of the currents can also be seen in the background.

This figure shows the eddy current induced in the machine. The density of current is rather
high in the stator near the airgap, because of the rotating magnetic field induced by the rotation
of the rotor. Again, a lower contribution of the three phases can be seen near the coils.

32

Time Domain Solution: Rotating Machines

Figure 4-3: Norm of the B field.

Figure 4-4: Abs of the eddy currents.

4.4 Time Periodic Solver: Linear Field Problem

The same problem of the previous section is now studied with a different approach, to test it
and compare it with the previous one. The aim of this method is to avoid the solution of the
field problem at every time step, as it was done in the theta method. Instead, we want to build a
big matrix which contains inside all the equations of all the time steps. In this way the solution

33

Time Domain Solution: Rotating Machines

is found only once, saving time of computation. On the other hand, this method requires to
build a very large matrix and to solve an extensive system of equations.

To build the system, we start by recalling the theta method matrices in eq. 4.7 and eq. 4.8.
Note that the second equation has a different sign with respect to the equation 4.8, because now
it is moved to the left hand side.

A = (θKn+1 +
1
∆t

Mmass,n+1) (4.9)

B = (1−θ)Kn −
1
∆t

Mmass,n (4.10)

The system to solve is therefore expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ax2 +Bx1 = θS2 +(1−θ)S1

Ax3 +Bx2 = θS3 +(1−θ)S2
... =

...
AxN +BxN−1 = θSN +(1−θ)SN−1

Ax1 +BxN = θS1 +(1−θ)SN

(4.11)

In matrices formulation, the system becomes Mx = S where the matrices are:

⎡⎢⎢⎢⎢⎢⎢⎣
A B
B A . . .
. . . B A . . .

. . .

. . . B A . . .
. . . B A

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
...

xN−1
xN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

θS1 +(1−θ)SN
θS2 +(1−θ)S1
θS3 +(1−θ)S2

...
θSN−1 +(1−θ)SN−2
θSN +(1−θ)SN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.12)

In Matlab, the system of matrices can be easily solved by:

x = M\S (4.13)

It is important to notice that, for this method to work, the problem needs to be periodical.
Looking at the first row of the matrix, it is clear that the solution to the last time step needs to
be equal to the solution to the first time step, otherwise the problem is no longer periodical and
the system looses the sense.

34

Time Domain Solution: Rotating Machines

1 %% Iter 1:nDt−1
2 disp('−−−')
3 disp(' Building the matrices of the rotation')
4 disp('−−−')
5

6 for iter=1:nDt−1
7 P = Pstart;
8 % Rotation
9 [...]

10 % Set of the currents
11 [...]
12 btot = myNull'*(M2_mat*(newJext));
13 % Set of the magnets
14 [...]
15 snew = myNull.'*(M2x*Hresx + M2y*Hresy) + btot;
16

17 [M1] = fun_stiff_matrix(Ttot,P,mu_fp,myNull); % Stiffness matrix
18 [M2] = fun_mass_matrix(sigma,Ttot,P,myNull); % Mass matrix
19 % Theta method
20 A = (theta*M1+(1/Dt)*M2);
21 B = ((1−theta)*M1−(1/Dt)*M2); % B saved for the next time step
22

23 Matrix(((iter−1)*dim+1):(iter*dim),((iter−1)*dim+1):(iter*dim)) = A;
% Writing A on the complete matrix, step N

24 Matrix((iter*dim+1):((iter+1)*dim),(((iter−1)*dim+1):(iter*dim))) = B;
% Writing B on the next step

25

26 Stot_n2(((iter−1)*dim+1):(iter*dim)) = snew; % Sources of the step k+1
27 Stot_n1((iter*dim+1):((iter+1)*dim)) = snew; % Sources of the step k
28 end
29

30 %% Iter for the last step: nDt
31 P = Pstart;
32 % Rotation
33 [...]
34 % Set of the currents
35 [...]
36 btot = myNull'*(M2_mat*(newJext));
37 % Set of the magnets
38 [...]
39 snew = myNull.'*(M2x*Hresx + M2y*Hresy) + btot;
40

41 [M1] = fun_stiff_matrix(Ttot,P,mu_fp,myNull); % Stiffness matrix
42 [M2] = fun_mass_matrix(sigma,Ttot,P,myNull); % Mass matrix
43 % Theta method
44 A = (theta*M1+(1/Dt)*M2);
45 B = ((1−theta)*M1−(1/Dt)*M2); % B saved for the first time step
46

47 Matrix(((nDt−1)*dim+1):(nDt*dim),((nDt−1)*dim+1):(nDt*dim)) = A;
% Writing A on the complete matrix, step N

48 Matrix((1:dim),(((nDt−1)*dim+1):(nDt*dim))) = B;
% Writing B on the first step

49

50 Stot_n2(((nDt−1)*dim+1):(nDt*dim)) = snew; % Sources of the step k+1
51 Stot_n1(1:dim) = snew; % Sources of the step k
52

53 %% Solutions
54 disp('−−−')
55 disp(' Solving the system')
56 disp('−−−')
57 Stot = theta.* Stot_n2 + (1−theta).*Stot_n1; % Matrix of the sources
58

59 Solution = Matrix\Stot; % Solving the problem
60 toc

Listing 4.2: Building of the matrix of the system

The part of the code shown above is the implementation of the algorithm explained in this
chapter in Matlab. As it can be seen, there is a for loop in order to build the matrices of the LHS
and of the sources. The procedure inside the loop needs to to be repeated one last time outside
the loop in order to set in the right position the matrix B at the first row. The LHS matrix results

35

Time Domain Solution: Rotating Machines

as a large sparse square matrix (fig.4-5), which dimensions are (Nnodes ·NDt)× (Nnodes ·NDt).
In this test case it results a 256740×256740 matrix, but despite the dimensions, the procedure
to build the matrix is rather quick and takes about 100 seconds.

Figure 4-5: Matrix of the system: it is a block sparse matrix.

Although this approach seems very similar to the theta method, the computational time
of the two is very different. This solver in fact employs about 10 minutes to find the
solution because of the big matrices that has to manage. However, it should be noted that
no optimization was performed on the code to improve its speediness.

This algorithm is interesting also for another reason: few changes need to be implemented
to study a non-linear problem, as it can be seen in the next section.

4.5 Time Periodic Solver: Non-linear Field Problem

To introduce nonlinearities in the previous algorithm, the code presented before needs to be
slightly changed. A Newton Raphson iterative method is added to solve the nonlinear system,
but most of the code remains unchanged. Explaining the functioning of the NR code is not
part of this work, only how to apply it to the problem is now explained. The Matlab’s fsolve
algorithm can be used instead of Newton Raphson, obtaining the same results in a slightly
larger time of calculation. The structure of the codes is the same for both solvers and can be
found in Appendix C.

The Newton Raphson code asks as input a handle function that represents the function
to minimize. Inside this function there is the loop with the rotation of the rotor to build the
matrices A and B, and the rows of the code to calculate the magnetic permeability, according
to the BH-curve. To improve the speediness of the code, the system is first resolved in a linear
case, then this solution is used as a starting point for the NR iterative cycle. In the listing below,
the parts of the code where there is the calling to NR, or to the solve algorithm are shown.

36

Time Domain Solution: Rotating Machines

1 %% Solutions of the non−linear system: Newton Raphson
2 disp('−−−')
3 disp(' Solving the system with NR ')
4 disp('−−−')
5

6 fun = @(arr) myfun_with_jac(H,arr,Told,Pstart,Ntri,rps,nDt,Dt,dim,steps,mu0,IndIron,...
7 IndInt,IndExt,IndRot,IndMagN,IndMagS,IndPhasA,IndPhasAn,IndPhasB,IndPhasBn,...
8 IndPhasC,IndPhasCn,normH_resid,dni_dB2,myNull,sigma,Jext,f,M2);
9

10 xx = Matrix\Stot; % first linear solution
11

12 options = optimset('TolX',1e−17); % set TolX
13 [xx, resnorm, f, exitflag, output, jacob,resnormstore,xstore] = newtonraphson_mod(fun, xx, options);
14

15 % options = optimoptions('fsolve','SpecifyObjectiveGradient',true);
16 % xx = fsolve(fun,xx,options); % fsolve as alternative to Newton Raphson
17

18 Solution = xx;

Listing 4.3: The calling to Newton Raphson in the main code.

In the following code, the part of the code that takes into account the saturation is shown.
The update of the saturation is made for every time step by using the field computed in the
previous time step as input of the BH-curve.

1 function [ff,jaco] = myfun_with_jac(H,arr,Told,Pstart,Ntri,rps,nDt,Dt,dim,steps,mu0,IndIron,...
2 IndInt,IndExt,IndRot,IndMagN,IndMagS,IndPhasA,IndPhasAn,IndPhasB,IndPhasBn,...
3 IndPhasC,IndPhasCn,normH_resid,dni_dB2,myNull,sigma,Jext,f,M2)
4 [...]
5 for iter=1:nDt−1
6 [...]
7 % Updating the saturation
8 a = myNull* arr(((iter−1)*dim+1):(iter*dim));
9 Bx = M1x*a;

10 By = M1y*a;
11 normB = sqrt(Bx.^2 + By.^2);
12 normH = normB/mu0;
13 normH(IndIron) = H(normB(IndIron));
14 mu = normB./normH/mu0; % Total magnetic permeabiliti
15

16 % Computing the jacobian
17 dni_dB2_tot = zeros(Ntri,1);
18 dni_dB2_tot(IndIron) = dni_dB2(normB(IndIron).^2);
19 [K2jacTOT] = fun_my_grad_grad_jac3(Ttot,P,a,M1x,M1y,dni_dB2,IndIron,dni_dB2_tot);
20 K2jac = myNull.'*K2jacTOT*myNull;
21 Matrix_Jac(((iter−1)*dim+1):(iter*dim),((iter−1)*dim+1):(iter*dim)) = theta*K2jac;
22 Matrix_Jac((iter*dim+1):((iter+1)*dim),(((iter−1)*dim+1):(iter*dim))) = (1−theta)*K2jac;
23 [...]
24 end

Listing 4.4: Updating saturation and computing the jacobian.

The problem simulated in this section is much closer to a real synchronous motor than the
previous one: the electrical conductivity is set to zero everywhere, except in the magnets. In
the iron’s region in fact, the induced currents are null because of the lamination of the material
and the only region where induced currents can be found are the permanent magnets.

The simulation is carried out in only 24 time steps, that means one every 15 degrees of
rotation of the rotor. This low precision is due to the fact that the NR solver is very slow
to solve such large matrices and it takes about 55 minutes. The computational time grows
exponentially with the growing of the time steps. Despite the problems expressed above, the
solution found in Matlab reflects the solution founded in Comsol as well, as can be seen in
figure 4-6.

37

Time Domain Solution: Rotating Machines

Figure 4-6: Comparison between the solution founded in Matlab (left) and Comsol (right).

4.5.1 The Problem of Eddy Currents

The eddy currents in the machine are plotted in figure 4-8. As expected the only region of
space where there is current is inside the permanent magnets. As known from the theory
of the rotating machine, in the permanent magnets, a current is induced by the rotating
electromagnetic field. This current creates a loop inside the magnet (figure 4-7), because the
magnet itself is isolated from the rest of the motor. The net current, in every time instant, for
every section of the magnet perpendicular to the axis of the motor, must to be zero. In this case,
because the simulation is 2D and not 3D, the condition above mentioned is not automatically
true as can be seen in figure 4-8. A boundary condition has to be imposed in the magnets as
proposed in equation 24 of [11] or in [12] to avoid this problem, but at the moment it is not
performed in this code. Since machine performance is not measured, eddy currents relatively
affect the quality of the code and are currently ignored. These considerations also apply to the
next section on the Theta Method.

Figure 4-7: Loop of induced currents in a permanent magnet.

38

Time Domain Solution: Rotating Machines

Figure 4-8: Induced currents in the permanent magnets.

In conclusion, the algorithm works despite the slowness, and needs some optimization and
improvements but it is rather easy to build also in its extension to nonlinear problems.

4.6 Theta Method: Nonlinear Field Problems

The extension of the Theta Method to nonlinear problems is slightly more problematic than in
the previous case, but the key idea is the same. The nonlinear system is again solved with the
Newton Raphson algorithm. The theta method involves finding the solution at each iteration,
so the NR code is called at the end of every cycle. This time, the rotation of the rotor and
the sets of currents and magnets are performed outside the handle function, so some variables,
like M1, M1old and xold, have to be defined as global variables (see the listing 4.5). The
global variables exist in all the workspaces of Matlab without the need to pass them as inputs
of the functions. The whole code can be found in appendix C.5, while below only the calling
to Newton Raphson is reported.

The handle function for Newton Raphson performs only the calculation of the Jacobian and
the updating of the saturation, then gives as input to NR the function to minimize. To speed
up the calculation, two different option are set to the NR code: for the first iteration a very
low tolerance is set. The first solution found is the most important because all other solutions
depend on the first one. From the second solution to the last, a higher tolerance can be chosen
while still having precise solutions. The speediness of the code is therefore slightly improved.

1 %% Theta Method
2 global M1old
3 global sold
4 global M1
5 [...]
6 for iter=1:nDt
7 P = Pstart;
8 % Rotation
9 [...]

10 % Set of the currents
11 [...]

39

Time Domain Solution: Rotating Machines

12 % Set of the magnets
13 [...]
14

15 % Solutions of the non−linear system: Newton Raphson
16 disp('|−−|')
17 disp([' Solving the system with NR, iter = ',num2str(iter)])
18

19 fun = @(arr) myfun_with_jac2(H,arr,xold,Ntri,Ttot,P,M1x,M1y,mu0,IndIron,dni_dB2,...
20 myNull,snew,theta,Dt,sigma,M2);
21

22 if iter ==1
23 options = optimset('TolX',1e−17);
24 else
25 options = optimset('TolX',1e−8,'MAXITER',15);
26 end
27 [xx, resnorm, f_newt, exitflag, output, jacob,resnormstore,xstore] = newtonraphson(fun, xold, options);
28

29 % Updating the global function
30 xnew = xx;
31 X(:,iter) = xnew;
32 xold = xnew;
33 M1old = M1;
34 sold = snew;
35 end

Listing 4.5: Theta method main code.

The solution found is equal to the solution found in the previous section, but this approach
to the time domain problem has a strong advantage: the calculation time linearly depends on
the number of time steps. In the simulation performed, for example, NR takes one minute and
a half to find the solution for a time step, so in order to have 60 time steps, the code takes 1
hour and a half to complete the calculus. Once the mesh of the problem is given, it is easy to
know the computational time of the solver.

Figure 4-9: Magnetic vector potential in a point of the stator.

40

Time Domain Solution: Rotating Machines

Figure 4-10: Magnetic field in four consecutive time steps.

4.6.1 Comparison between the two Time Periodic Solvers

In the table below, a brief recap comparing the key aspects of the two outlined algorithms is
presented.

Theta Method Time Periodic Solver

Calling to NR Nsteps 1

Matrices Dimensions Nnode ×Nnode (Nnode · Nsteps) × (Nnode ·
Nsteps) = N2

node ×N2
steps

Calculation time for 1 NR calling 1.5 minutes 55 minutes

Times Calculation time linearly
dependent on Nsteps

Calculation time is
exponentially dependent
on Nsteps

Other aspects Storage problems
because of the sizes
of the matrices

41

Chapter 5

Conclusions

In this thesis, a number of algorithms and codes are covered to analyze increasingly
complex problems, starting from electrical circuits, where there is no space distretization,
moving to rotating devices in 2D domain. The promising Harmonic Balance Method is
introduced and implemented for 2D static devices, while its extension to rotating devices might
be an interesting development for future works.

The main subject of the thesis is the study of Rotating electrical machines, carried out with
the Theta Method and a Time Periodical method. The complexities of a changing mesh and
nonlinear materials are overcome, although new improvements may be implemented in the
future, especially regarding the speed of computation. The solutions of the two methods are
compared to find the advantages and the disadvantages of each of the two methods, comparing
them with a commercial software as COMSOL. All the codes are implemented in MATLAB,
trying to make the most of its matrix computing capacity.

This work is meant as a starting point for future developments, with the aim of improving its
efficiency and speediness, in order to make it competitive with other softwares. As previously
reported, the application of harmonic balance to rotating machines is a technique that must be
investigated and which promises interesting results for the steady state solution.

43

Appendix A

Harmonic Balance Code for Nonlinear Circuits

The Matlab code used to study nonlinear circuits with HB is presented in this section. The
theoretical aspects are discussed in Chapter 1, while in this appendix the main code and some
useful tools needed to study the circuit are reported.

A.1 Main Code

1 % Main script for non−linear harmonic balance for a half wave rectifier
2 close all
3 clear all
4 clc
5 tic
6

7 % Open the netlist
8 fid = fopen('netlist.txt');
9 F = textscan(fid,'%f %f %s %f %s'); % cell of the netlist

10 fclose(fid);
11

12 %% Input
13 h = 20; % Number of harminics: It has to be even
14 w_o = 20*10^3*2*pi; % Omega
15

16 %% Exitation
17 Components = char(F{3}); % Components of the netlist
18 gen = find(Components=='V');
19 Vs = F{4}(gen,1); % Sources from the netlist
20 V_s = sparse(h+1,1);
21 V_s(2,1) = Vs;
22

23 % Diode
24 Id = 100*10^−12;
25 vt = 0.025;
26 gmin = 10^−12;
27

28 %% Admittance Matrix
29 [Ys] = BuildYs(F,w_o,h,Vs);
30 [Y12,NL] = buildY12(F,w_o,h);
31

32 %% Solving HB
33

34 v_t = ones(2*h,1);
35 v_f = 1/h.*fft(v_t);
36

37 it_max = 10000;
38 lambda = 0.001;
39 d_lambda = lambda;
40 i_diodo = zeros(2*h,1);
41 H = zeros(2*h,2*h);
42

43 it = 1;
44 norma(it) = 1;
45 while norma(it)>10^−12 && it<it_max
46

47 % Voltage in frequency domain
48 v_f = v_f(1:h+1,1);
49

50 % Current in time domain

45

Appendix A

51 i_diodo = Id.*(exp(v_t./vt)−1)+v_t.*gmin;
52 di_diodo = Id/vt.*(exp(v_t/vt))+gmin;
53 i_t = i_diodo;
54

55 % Current in frequency domain
56 i_f = 1/h.*fft(i_t);
57 i_f = i_f(1:h+1,1);
58

59 % f in frequency domain
60 f = lambda.*Ys*V_s+Y12*v_f+i_f ;
61 norma(it+1) = norm(f);
62

63 % Jacobian in frequency domain
64 H = h.*ifft(1/h.*fft(diag(di_diodo)).').';
65 H = H(1:h+1,1:h+1);
66 J = Ys+H;
67

68 % Update v_f
69 v_f = v_f−(J)\f;
70

71 % From v_f to v_t
72 v_fc = flipud(conj(v_f(2:h,1)));
73 v_f = [v_f ;v_fc]; % Couple of valori real and imag value for Fourier
74 v_t = h.*ifft(v_f);
75 V(:,it) = v_t; % V in time domain
76

77 % New step
78 if lambda≤1
79 lambda = lambda+d_lambda;
80 end
81

82 it = it+1;
83 end

A.2 Admittance Matrix

1 function [Y12,NL] = buildY12(F,w,h)
2 %% Build the admittance matrix between non linear ports
3 % Incident Matrix
4 [x,y] = size(F);
5 N = [F{1,1},F{1,2}]; % Node matrix
6 [l,p] = size(N);
7 n = max(max(N)); % Number of nodes
8

9 %% Shortcircuit exitation
10 Cr1 = char(F{y−2});
11 for i=1:l
12 if Cr1(i,1)=='V'
13 F{y−1}(i,1) = 0;
14 F{y−2}(i,1) = {'R'};
15 end
16 end
17

18 %% Shortcircuit non linearities
19 Cr = char(F{y});
20 k = 1;
21 for i = 1:l
22 if Cr(i,1) == 'N'
23 F{y−1}(i,1) = 0;
24 F{y−2}(i,1) = {'V'};
25 num_NL(k,1) = i;
26 k = k+1;
27 NL = k−1;
28 end
29 end
30

31 %% Build the matrices
32 T1 = zeros(NL*(h+1),NL);

46

Appendix A

33 Y12 = sparse(h+1,h+1);
34 for r = 1:NL
35 F{y−1}(num_NL(r,1),1) = 1;
36

37 [A,R,G,L,C,b,M1,M2,RHS] = funcomponenti(F); % Function of the components for the Tableau analysis
38

39 for k = 0:h
40 M12 = M1+1j*k*w*M2;
41 x = M12\RHS;
42 I = x(1:l,1);
43 V = x(l+1:l+1,1);
44

45 T((k+1),:) = I(num_NL);
46 end
47

48 T1(:,r) = reshape(T,NL*(h+1),1);
49 F{y−1}(num_NL(r,1),1) = 0;
50 end
51

52 %% Build the admittance matrix
53 for g = 1:NL
54 for m = 1:NL
55 for nn = 1:h+1
56 Y12(nn+(m−1)*(h+1),nn+(g−1)*(h+1)) = ...
57 − T1(nn+(g−1)*(h+1),m);
58 end
59 end
60 end
61

62 end

A.3 FFT reconstruction

Hereafter, a useful code to reconstruct a signal from the fft coefficients is presented.

1 function [s,t] = FourierPlot(Y,Tmax,L,M)
2 % L = number of samples in fourier
3 % M = number of sample to recontruct
4 % Y = fft coefficient to reconstruct
5

6 t = linspace(0,Tmax−Tmax/L,L);
7 dt=t(2)−t(1);
8 Fs = 1/dt; % Sampling frequency
9

10 %% FOURIER
11

12 f = linspace(0,Fs/2,L/2+1);
13

14 mag = abs(Y/L);
15 mag(2:end−1) = mag(2:end−1)*2;
16 phas = angle(Y);
17

18 %% Reconstructing
19 t = linspace(0,Tmax−Tmax/M,M);
20 s = zeros(1,size(t,2));
21 for jj=1:L/2+1
22 s=s+mag(jj).*cos(2*pi*f(jj)*t+phas(jj));
23 end
24 end

47

Appendix B

Harmonic Balance: Codes for Static Simulation

In this section, some of the Matlab codes implemented for the Harmonic Balance FEM in
the static case are reported. The code outlined below comes from the test case of the permanent
magnet motor in a locked rotor situation, since it is the most complex and complete test case
studied in this work for this kind of situation.

B.1 Import Mesh Data from Comsol

This script is necessary in order to import the data of the mesh, created in Comsol, into Matlab.
The key idea is to set the areas with the same materials with different named materials, so that
every geometry can be identified by its material.

1 mphopen PM_motor2.mph % Open the comsol file
2 %% mesh
3 info_mesh = mphxmeshinfo(model); % Import the comsol mesh data
4 P = info_mesh.nodes.coords';
5 T = info_mesh.elements.tri.nodes' + 1;
6 Ntri=size(T,1) % Number of triangols
7 Nnode=size(P,1) % Number of nodes
8 xyzb = zeros(length(T(:,1)),3);
9 for i = 1:length(T(:,1)) % center of gravity of the elements

10 xyzb(i,1:2) = (P(T(i,1),1:2)+P(T(i,2),1:2)+P(T(i,3),1:2))/3;
11 end
12 mphgeom(model) % Plot of the geometry
13 %% Find of the elements of the geometry from their material
14 id1=fun_find_tri_from_material_numb(model,1,xyzb);
15 id2=fun_find_tri_from_material_numb(model,2,xyzb);
16 id3=fun_find_tri_from_material_numb(model,3,xyzb);
17 id4=fun_find_tri_from_material_numb(model,4,xyzb);
18 id5=fun_find_tri_from_material_numb(model,5,xyzb);
19 id6=fun_find_tri_from_material_numb(model,6,xyzb);
20 id7=fun_find_tri_from_material_numb(model,7,xyzb);
21 id8=fun_find_tri_from_material_numb(model,8,xyzb);
22 id9=fun_find_tri_from_material_numb(model,9,xyzb);
23 id10=fun_find_tri_from_material_numb(model,10,xyzb);
24

25 %% Plot of the elements with different materials
26 figure
27 hold on
28 patch('Faces',T(id1,1:3),'Vertices',P,'Facecolor','r','FaceAlpha',0.9)
29 patch('Faces',T(id2,1:3),'Vertices',P,'Facecolor','b','FaceAlpha',0.9)
30 patch('Faces',T(id3,1:3),'Vertices',P,'Facecolor','y','FaceAlpha',0.9)
31 patch('Faces',T(id4,1:3),'Vertices',P,'Facecolor','g','FaceAlpha',0.9)
32 patch('Faces',T(id5,1:3),'Vertices',P,'Facecolor',[0.9290 0.6940 0.1250],'FaceAlpha',0.9)
33 patch('Faces',T(id6,1:3),'Vertices',P,'Facecolor',[0.4940 0.1840 0.5560],'FaceAlpha',0.9)
34 patch('Faces',T(id7,1:3),'Vertices',P,'Facecolor',[0.3010 0.7450 0.9330],'FaceAlpha',0.9)
35 patch('Faces',T(id8,1:3),'Vertices',P,'Facecolor',[0.9290 0.6940 0.1250],'FaceAlpha',0.9)
36 patch('Faces',T(id9,1:3),'Vertices',P,'Facecolor',[0.4940 0.1840 0.5560],'FaceAlpha',0.9)
37 patch('Faces',T(id10,1:3),'Vertices',P,'Facecolor',[0.3010 0.7450 0.9330],'FaceAlpha',0.9)
38 axis equal
39 view(2)
40 %%
41 IndAir=id1;
42 IndIron=id2;
43 IndMagN=id3;
44 IndMagS=id4;

49

Appendix B

45 IndCoilaP=id5;
46 IndCoilbP=id6;
47 IndCoilcP=id7;
48 IndCoilaM=id8;
49 IndCoilbM=id9;
50 IndCoilcM=id10;
51 save data_PM_motor_2d.mat P T IndIron IndAir IndMagN IndMagS IndCoilaP IndCoilbP

IndCoilcP IndCoilaM IndCoilbM IndCoilcM
52 %%
53 return

B.2 Main Code

1 %% Script HBFEM permanent magnet motor
2 clc
3 close all
4 clear
5 tic
6 %%
7 cd ..; cd('FEM'); addpath(pwd); cd ..; cd('PM Motor');
8 main_from_comsol_to_matlab; % Script to update mesh data 'data_PM_motor_2d'
9 load('data_PM_motor_2d.mat');

10

11 Nh = 30; % Number of Harmonics: it has to be even
12 %% Find the center of gravity of the triangles
13 xyzb = zeros(length(T(:,1)),3);
14 for i = 1:length(T(:,1))
15 xyzb(i,1:2) = (P(T(i,1),1:2)+P(T(i,2),1:2)+P(T(i,3),1:2))/3;
16 end
17 %% Find the boundary nodes
18 Ntri=size(T,1)
19 Nnode=size(P,1)
20 if 1
21 [g,c]=gcd_tri(double(T.'),Ntri);
22 Nedge=size(g,2);
23 Csp=sparse(1:Ntri,abs(c(1,:)),sign(c(1,:)),Ntri,Nedge);
24 Csp=Csp+sparse(1:Ntri,abs(c(2,:)),sign(c(2,:)),Ntri,Nedge);
25 Csp=Csp+sparse(1:Ntri,abs(c(3,:)),sign(c(3,:)),Ntri,Nedge);
26 ind_boundary_edge=find(full(sum(abs(Csp)))==1);
27 ind_boundary_node=unique([g(1,ind_boundary_edge),g(2,ind_boundary_edge)]);
28 ind_internal_node=setdiff(1:Nnode,ind_boundary_node);
29 Nnode_int=length(ind_internal_node); % Ndofs
30 myNull=sparse(ind_internal_node,1:Nnode_int,...
31 ones(Nnode_int,1),Nnode,Nnode_int);
32 end
33

34 %% Build of the matrices to project quantity from nodes to triangles and vice versa
35 if size(P,2)==2
36 P=[P,zeros(size(P,1),1)];
37 end
38 [M1x,M1y] = M1_creation_bis_xy(P,T);
39 [M2x,M2y] = M2_creation_bis_NL(P,T);
40 [M2] = M2_creation_bis(P,T);
41 [M_Tn] = M2_creation_Tn(P,T);
42

43 %% set of the coil's currents
44 Jext=5E6;
45 newJext=zeros(Ntri,1);
46 newJext(IndCoilaP)=Jext*exp(1j*0);
47 newJext(IndCoilaM)=−Jext*exp(1j*0);
48 newJext(IndCoilbP)=Jext*exp(1j*2/3*pi);
49 newJext(IndCoilbM)=−Jext*exp(1j*2/3*pi);
50 newJext(IndCoilcP)=Jext*exp(1j*4/3*pi);
51 newJext(IndCoilcM)=−Jext*exp(1j*4/3*pi);
52 % plot of the currents
53 figure
54 patch('Faces',T,'Vertices',P,'CData',abs(newJext),'Facecolor','flat','FaceAlpha',1.0)
55 axis equal

50

Appendix B

56 colormap jet
57 colorbar
58 title('Jext')
59 drawnow
60 % from tri to nodes (build rhs)
61 btot = myNull'*(M2*(newJext));
62

63 %% load BH and interpolation
64 load BH_comsol.mat
65 H = fit(BH(:,2),BH(:,1),'linearinterp');
66

67 %% Data for HB
68 f = 50; % Frequency
69 omega = 2*pi*f;
70 IndCond=[IndMagN;IndMagS]; % Indices of conductive materials
71 sigma = zeros(Ntri,1);
72 sigma(IndCond) = 8.41e3;
73

74 mufp = 5; % mufp<2 always converges but it is slow, mufp>2, it is a lot faster.
75 mu_fp = ones(Ntri,1); % Number empirically founded for this specific load conditions
76 mu_fp(IndIron) = mufp; % Set of mu_fp in the iron elements
77 niFP = 1/mufp;
78 mu0 = 4*pi*10^−7;
79 nimu0=1/mu0;
80

81 %% Set the magnets
82 normH_resid = 0.5/mu0; %[T]
83 newH_res = zeros(Ntri,1);
84 Hresx = newH_res;
85 Hresy = Hresx;
86 newH_res(IndMagN) = normH_resid;
87 newH_res(IndMagS) = −normH_resid;
88 % plot of H residual
89 figure
90 patch('Faces',T,'Vertices',P,'CData',newH_res,'Facecolor','flat','FaceAlpha',1.0)
91 axis equal
92 colormap jet
93 colorbar
94 title('normH Residual')
95 drawnow
96

97 %% Set of the vector for the magnet
98 dist_magN = sqrt(xyzb(IndMagN,1).^2+xyzb(IndMagN,2).^2); % Distance of COG from (0,0) for every
99 dist_magS = sqrt(xyzb(IndMagS,1).^2+xyzb(IndMagS,2).^2); % elements of the magnets N e S

100

101 Hresx(IndMagN) = normH_resid*(xyzb(IndMagN,1)./dist_magN);
% Set of the radial direction of the

102 Hresy(IndMagN) = normH_resid*(xyzb(IndMagN,2)./dist_magN);
% magnetic field for every elements

103 Hresx(IndMagS) = −normH_resid*(xyzb(IndMagS,1)./dist_magS);
104 Hresy(IndMagS) = −normH_resid*(xyzb(IndMagS,2)./dist_magS);
105

106

107 mag_res = myNull'*(M2x*Hresx + M2y*Hresy);
108

109 %% Initialization HB
110 Mold = myNull.'*zeros(Nnode,Nh);
111 rhs_t = zeros(length(btot),Nh);
112 rhs_f = zeros(length(btot),Nh);
113 [K_fp] = fun_stiff_matrix(T,P,mu_fp,myNull); % Stiffness Matrix of the fixed point
114 [Mass] = fun_mass_matrix(sigma,T,P,myNull); % ass Matrix
115

116 % Scale the rhs to match the Fourier's coefficients
117 mag_sources = Nh*mag_res; % DC term do not need the /2 !
118 cur_sources = Nh/2*btot;
119

120 rhs_f(:,1) = mag_sources; % DC Component in the RHS
121 rhs_f(:,2) = cur_sources; % First harmonic in the RHS
122 rhs_f(:,end) = conj(rhs_f(:,2)); % Complex conjugate of the first harmonic
123 sol_f = K_fp\rhs_f; % First solution with magnetization = 0
124 sol_t = ifft(sol_f,[],2,'symmetric'); % First solution in time domain
125 vec_harm = (0:Nh/2); % Vector of the number of the harmonics
126

51

Appendix B

127 it = 1;
128 Tmax=20e−3;
129 t = [0:Tmax/Nh:Tmax−Tmax/Nh];
130

131 %% Iterative cycle
132 disp('−−−')
133 disp(' HB Iteration')
134 disp('−−−')
135 disp('Iter Check')
136

137 check = 1;
138 toll = 1E−6;
139 it_max = 10000;
140 convergenza = zeros(it_max,2);
141

142 while check > toll && it < it_max
143 % Compute the magnetization for the solution previously obtained
144 for m=1:Nh % Compute magnetization in every time step
145 %
146 xloc=myNull*sol_t(:,m);
147 Bx = M1x*xloc;
148 By = M1y*xloc;
149 normB = sqrt(Bx.^2 + By.^2);
150 [indB] = find(normB < 1E−9); % Approximation where normB = 0
151 normB(indB) = 1e−9;
152 normH=normB/mu0;
153 % Evaluate H from BH only in iron
154 normH(IndIron) = H(normB(IndIron));
155

156 % H bounded to B from BH, with direction
157 Hx = normH./normB .* Bx;
158 Hy = normH./normB .* By;
159 % H bounded to B from niFP (only for iron)
160 Hx_fp = nimu0*Bx; % air
161 Hy_fp = nimu0*By; % air
162 Hx_fp(IndIron) = nimu0*niFP*Bx(IndIron); % iron
163 Hy_fp(IndIron) = nimu0*niFP*By(IndIron); % iron
164

165 M(:,m) = myNull'*(M2x*(Hx−Hx_fp) + M2y*(Hy−Hy_fp)); % Minus sign is inside M2y
166

167 end
168 check = max(max(sqrt((1/(nimu0*niFP))*full(M−Mold).^2)));
169 convergenza(it,1) = it;
170 convergenza(it,2) = check;
171 Mold = M;
172 disp([num2str(it),': ',num2str(check)])
173

174 % Frequency domain rhs
175 rhs_f = −fft(M,[],2);
176 rhs_f(:,1) = (mag_sources + rhs_f(:,1)); % DC known term
177 rhs_f(:,2) = (cur_sources + rhs_f(:,2)); % First harmonic known term
178 rhs_f(:,end) = conj(cur_sources + rhs_f(:,end)); % First harmonic known term
179

180 % Frequency domain solution
181 for r = 1:(Nh/2+1) % For cycle to multiply omega for the harmonic number
182 sol_f(:,r) = (K_fp+1j*vec_harm(r)*omega*Mass)\rhs_f(:,r);
183 end
184 % The second half of sol_f is the complex conj of the first Nh/2
185 % elements (without the dc term and the max term)
186 sol_f = [sol_f(:,(1:Nh/2+1)),fliplr(conj(sol_f(:,(2:Nh/2))))];
187

188 %Time domain solution
189 sol_t=ifft(sol_f,[],2,'symmetric');
190

191 it=it+1;
192 end
193 convergenza(it:end,:) = [];
194 disp('−−−')
195 disp(' End Iteration')
196 disp('−−−')
197 disp(['Numero di armoniche: ',num2str(Nh)])
198 toc
199

52

Appendix B

200 %% Plot of the convergence
201 figure
202 semilogy(convergenza(:,1),convergenza(:,2));
203 title('Convergence')
204 xlabel('Iteration')
205 grid on
206

207 %% Plot of the fields
208 xloc=myNull*sol_t(:,1);
209 Bx = M1x*xloc;
210 By = M1y*xloc;
211 normB = sqrt(Bx.^2 + By.^2);
212 figure
213 patch('Faces',T,'Vertices',P,'CData',normB,'Facecolor','flat','FaceAlpha',1,'EdgeColor','none')
214 axis equal
215 colormap jet
216 colorbar
217 title('normB HB')
218 drawnow
219

220 %% Plotting solution
221 internal_P = P;
222 internal_P(ind_boundary_node,:)=[]; % Eliminate boundary nodes
223 p = [−0.015 0.009];
224 [ind]=find(abs(internal_P(:,1)−p(1))<1e−5 & abs(internal_P(:,2)−p(2))<1e−5);
225 figure
226 plot(t(1:Nh),sol_t(ind,:));
227 xlabel('t [s]');
228 ylabel('Az [Wb/m]')
229 title('Az in P');
230 grid on
231

232 %% Recontruction of Az in time thanks to the fft
233 [Az_t,temp] = fft_plot(sol_f(ind,:),Tmax);
234 figure
235 hold on
236 plot(temp,Az_t)
237 xlabel('t [s]');
238 ylabel('Az [Wb/m]')
239 title('Az in P');
240 grid on
241

242

243 %% Plot of the point of evaluation in the geometry
244 figure
245 patch('Faces',T,'Vertices',P,'CData',normB./normB,'Facecolor','flat','FaceAlpha',1.0)
246 axis equal
247 colormap jet
248 colorbar
249 hold on
250 plot(internal_P(ind,1),internal_P(ind,2),'rx','markersize',20,'linewidth',2)
251 drawnow
252 title('Point of evaluation')

B.3 Other Useful Codes

B.3.1 [M2x,M2y] = M2_creation_bis_NL(P,T)

Function to project a value of an element on his nodes. The other matrices are built similarly
to these.

1 function [M2x,M2y] = M2_creation_bis_NL(P,T)
2 n_T = length(T(:,1));
3 n_n = length(P(:,1));
4 loc = [1 2 3
5 2 3 1
6 3 1 2];
7 % M2 = sparse(n_n,n_T);

53

Appendix B

8 M2bisx=zeros(3,n_n*15);
9 M2bisy=zeros(3,n_n*15);

10 triang = zeros(3,3);
11 count=1;
12 for i = 1:n_T
13 ind = T(i,:);
14 for j = 1:3
15 triang(1:3,:) = P(T(i,loc(j,:)),:);
16 area = fun_my_area_triang(triang);% fun_my_vol_prisma(tetra); % compute triangle area
17 area = abs(area); % to be shure int(curl(phi)_x)=Area*curl(phi)_x(computed,in the centre of gravity)
18 [valx, valy] = funNonBarnormB(triang);
19 M2bisx(1,count)=ind(j);
20 M2bisx(2,count)=i;
21 M2bisx(3,count)=area*valx;
22 M2bisy(1,count)=ind(j);
23 M2bisy(2,count)=i;
24 M2bisy(3,count)=area*valy;
25 count=count+1;
26 end
27 end
28 M2x = sparse(M2bisx(1,1:count−1),M2bisx(2,1:count−1),M2bisx(3,1:count−1),n_n,n_T);
29 M2y = sparse(M2bisy(1,1:count−1),M2bisy(2,1:count−1),M2bisy(3,1:count−1),n_n,n_T);
30

31 end

B.3.2 [K] = fun_stiff_matrix(T,P,mu,myNull)

Function to compute the the stiffness matrix from the mesh and the materials of the problem.

1 function [K] = fun_stiff_matrix(T,P,mat,myNull)
2 % Attention, mat = vector of mu of the domain
3

4 Ntri = size(T,1);
5 Nnode = size(P,1);
6 ni = 1./(mat*4*pi*1e−7);
7 loc = [1 2 3
8 2 3 1
9 3 1 2];

10 KBIS = zeros(3,Nnode*15);
11 count = 1;
12 for ii = 1:Ntri
13 triang = P(T(ii,:),:);
14 area = fun_my_area_triang(triang);% fun_my_vol_prisma(tetra); % Compute area triangles
15 ind = T(ii,:); %extract node indexes
16 for hh = 1:3
17 [ghh1,ghh2] = funNonBarnormB(P(T(ii,loc(hh,:)),:)); %compute grad. function on centroid
18 for kk = 1:3
19 [gkk1,gkk2] = funNonBarnormB(P(T(ii,loc(kk,:)),:)); %compute grad. function on centroid
20 KBIS(1,count)=ind(hh);
21 KBIS(2,count)=ind(kk);
22 KBIS(3,count)= area*(ghh1*gkk1+ghh2*gkk2)*ni(ii);
23 count = count+1;
24 end
25 end
26 end
27 % K
28 Ktemp = sparse(KBIS(1,1:count−1),KBIS(2,1:count−1),KBIS(3,1:count−1),Nnode,Nnode);
29 K = myNull.'*Ktemp*myNull; % Delete rows and columns of the boundary nodes
30

31 end

B.3.3 [Mass] = fun_mass_matrix(sigma,T,P,myNull)

Function to compute the the mass matrix from the mesh and the materials of the problem.

1 function [Mass] = fun_mass_matrix(sigma,T,P,myNull)

54

Appendix B

2

3 Ntri = size(T,1);
4 Nnode = size(P,1);
5 Mass = sparse(Nnode,Nnode); % initialize the global matrix A
6

7 %% Start the assembly process
8 for kk = 1:Ntri

% loop over all elements
9 sigmae=sigma(kk);

10 triang = P(T(kk,:),:);
11 area = fun_my_area_triang(triang);
12 Me=(area/12)*(sigmae)*[2 1 1;1 2 1;1 1 2];
13 for ii = 1:3 % loop over the local nodes of each element
14 ig = T(kk,ii); % global node corresponding to ii
15 for jj = 1:3 % loop over the local nodes of each element
16 jg = T(kk,jj); % global node corresponding to jj
17 Mass(ig,jg) = Mass(ig,jg) + Me(ii,jj); % fill the global matrix
18 end
19 end
20 end
21 Mass = myNull.'*Mass*myNull; % Deleting boundary rows and columns
22 end

55

Appendix C

Theta Method: Codes for Rotating Machines

In this section, the codes used to study the field problem of a rotating machine in time
domain are reported. All the codes refer to the synchronous motor described in chapter 3 and
4.

C.1 Mesh of the Moving Band

This is the code to mesh the moving band. The input variable "rotaz" is a quantity that indicates
of how many elements the moving band has to rotate. The transformation from degree to
element of rotation is done in the main code and it depends on how many nodes there are in the
boundary of the moving band.

1 function [Tri] = renumerate_node(P,IndInt,IndExt,rotaz)
2 %% Nodes of the inner circle
3 [out_Int,oldind_int] = sort((P(IndInt,1)));
4 index_pos_int = find(P(IndInt(oldind_int),2)≥0);
5 index_neg_int = flipud(find(P(IndInt(oldind_int),2)<0));
6 renum_int = [P(IndInt(oldind_int(index_pos_int)),1),P(IndInt(oldind_int(index_pos_int)),2);...
7 P(IndInt(oldind_int(index_neg_int)),1),P(IndInt(oldind_int(index_neg_int)),2)];
8

9 %% Nodes of the outer circle
10 [out_Ext,oldind_ext] = sort((P(IndExt,1)));
11 index_pos_ext = find(P(IndExt(oldind_ext),2)≥0);
12 index_neg_ext = flipud(find(P(IndExt(oldind_ext),2)<0));
13 renum_ext = [P(IndExt(oldind_ext(index_pos_ext)),1),P(IndExt(oldind_ext(index_pos_ext)),2);...
14 P(IndExt(oldind_ext(index_neg_ext)),1),P(IndExt(oldind_ext(index_neg_ext)),2)];
15

16 %% Meshing the airgap
17 Np = length(renum_int);
18 Nel = 2*Np;
19 Tri = zeros(Nel,3);
20 vec1 = [1+rotaz:Np,1:rotaz];
21 vec2 = Np+1:Nel;
22 vec_par = 2:2:Nel−2;
23 vec_disp = 1:2:Nel−1;
24

25 % column 1
26 Tri(vec_disp,1) = vec1;
27 Tri(vec_par,1) = vec1(2:end);
28 Tri(end,1) = vec1(1);
29

30 % column 3
31 Tri(vec_disp,2) = vec2;
32 Tri(vec_par,2) = vec2(2:end);
33 Tri(end,2) = vec2(1);
34

35 % column 2
36 Tri(vec_disp,3) = [vec1(2:end),vec1(1)];
37 Tri([vec_par,end],3) = vec2;
38

39 %% Local numbering to global numbering
40 IndGlobal = [IndInt(oldind_int(index_pos_int));IndInt(oldind_int(index_neg_int));IndExt(oldind_ext(index_pos_ext));IndExt(oldind_ext(index_neg_ext))];
41 Tri = IndGlobal(Tri);
42

43 end

57

Appendix C

C.2 Main Code: Theta Method for Linear Problem

Despite the fact that this code is for the most part similar to the main code reported in the
previous section, the code is now reported in all of its parts.

1 %% Script Theta Method Linear − permanent magnet motor
2 clc
3 close all
4 clear
5 tic
6 %%
7 cd ..; cd('FEM'); addpath(pwd); cd ..; cd('Sync_rotation');
8 main_from_comsol_to_matlab; % Script to update the file test.mat
9 load('data_test.mat');

10

11 Told = T;
12 Pstart = [P,zeros(size(P,1),1)];
13 numb_gap_nod = length(IndInt);
14 gradi_per_node = 360/numb_gap_nod;
15

16 %% rot check
17 grad = 0;
18 P = Pstart;
19 angle = grad/180*pi;
20 rotaz = floor(grad/gradi_per_node);
21 [Tri] = renumerate_node(Pstart,IndInt,IndExt,rotaz);
22 Ttot = [Told;Tri];
23 [P] = Rot_Rotation(P,IndRot,angle);
24 cc=zeros(size(Ttot,1),1);
25 cc(size(T,1)+1:end)=1;
26 figure
27 patch('Faces',Ttot,'Vertices',P,'Cdata',cc,'Facecolor','flat','FaceAlpha',1.0)
28 hold on
29 plot(P(1434,1),P(1434,2),'rx','markersize',10,'linewidth',2)
30 plot(P(1441,1),P(1441,2),'rx','markersize',10,'linewidth',2)
31 plot(P(168,1),P(168,2),'gx','markersize',10,'linewidth',2)
32 title('Total mesh')
33 axis equal
34

35 %% Check quiver
36

37 L1 = P(T(:,2),:) − P(T(:,1),:);
38 L2 = P(T(:,1),:) − P(T(:,3),:);
39 vz = cross(L1,L2);
40 vz=vz./sqrt(vz(:,1).^2+vz(:,2).^2+vz(:,3).^2);
41 figure
42 quiver3(P(T(:,2),1),P(T(:,2),2),P(T(:,2),3),vz(:,1),vz(:,2),vz(:,3),0,'filled')
43

44 %%
45 T = Ttot;
46 %% Find the center of gravity of the triangles
47 xyzb = zeros(length(T(:,1)),3);
48 for i = 1:length(T(:,1))
49 xyzb(i,1:2) = (P(T(i,1),1:2)+P(T(i,2),1:2)+P(T(i,3),1:2))/3;
50 end
51 %% Find the boundary nodes
52 Ntri=size(T,1)
53 Nnode=size(P,1)
54 if 1 % lento ma funzia
55 [g,c]=gcd_tri(double(T.'),Ntri);
56 Nedge=size(g,2);
57 Csp=sparse(1:Ntri,abs(c(1,:)),sign(c(1,:)),Ntri,Nedge);
58 Csp=Csp+sparse(1:Ntri,abs(c(2,:)),sign(c(2,:)),Ntri,Nedge);
59 Csp=Csp+sparse(1:Ntri,abs(c(3,:)),sign(c(3,:)),Ntri,Nedge);
60 ind_boundary_edge=find(full(sum(abs(Csp)))==1);
61 ind_boundary_node=unique([g(1,ind_boundary_edge),g(2,ind_boundary_edge)]);
62 %
63 ind_boundary_node=setdiff(ind_boundary_node,IndInt);
64 ind_boundary_node=setdiff(ind_boundary_node,IndExt);
65 %

58

Appendix C

66 ind_internal_node=setdiff(1:Nnode,ind_boundary_node);
67 Nnode_int=length(ind_internal_node); % Ndofs
68 myNull=sparse(ind_internal_node,1:Nnode_int,...
69 ones(Nnode_int,1),Nnode,Nnode_int);
70 end
71

72 %% Build of the matrices to project quantity from nodes to triangles and vice versa
73 if size(P,2)==2
74 P=[P,zeros(size(P,1),1)];
75 end
76 [M1x,M1y] = M1_creation_bis_xy(P,T);
77 [M2x,M2y] = M2_creation_bis_NL(P,T);
78 [M2_mat] = M2_creation_bis(P,T);
79 [M_Tn] = M2_creation_Tn(P,T);
80

81

82 %% load BH and interpolation
83 load BH_comsol.mat
84 H = fit(BH(:,2),BH(:,1),'linearinterp');
85

86 %% Data
87 f = 50; % Frequency
88 omega = 2*pi*f;
89 Jext = 5e7;
90 IndIron = [IndIron_stat;IndIron_rot];
91 IndCond = [IndIron;IndMagN;IndMagS]; % Indices of the conductive materials
92 sigma = zeros(Ntri,1);
93 sigma(IndCond) = 57e4;
94

95

96 mu0 = 4*pi*10^−7;
97 nimu0 = 1/mu0;
98 mufp = 1;
99 mu_fp = ones(Ntri,1);

100 mu_fp(IndIron) = mufp;
101 niFP = 1/mufp;
102

103

104 %% Set the magnets
105 normH_resid = 1.47/mu0; %[T]
106 newH_res = zeros(Ntri,1);
107 Hresx = newH_res;
108 Hresy = Hresx;
109 newH_res(IndMagN) = normH_resid;
110 newH_res(IndMagS) = −normH_resid;
111 % plot della magnetizzazione residua
112 figure
113 patch('Faces',T,'Vertices',P,'CData',newH_res,'Facecolor','flat','FaceAlpha',1.0)
114 axis equal
115 colormap jet
116 colorbar
117 title('normH residuo')
118 drawnow
119

120 %% Set of the vector for the magnet
121 dist_magN = sqrt(xyzb(IndMagN,1).^2+xyzb(IndMagN,2).^2); % Distance of COG from (0,0) for every
122 dist_magS = sqrt(xyzb(IndMagS,1).^2+xyzb(IndMagS,2).^2); % elements of the magnets N e S
123

124 Hresx(IndMagN) = normH_resid*(xyzb(IndMagN,1)./dist_magN);
% Set of the radial direction of the

125 Hresy(IndMagN) = normH_resid*(xyzb(IndMagN,2)./dist_magN);
% magnetic field for every elements

126 Hresx(IndMagS) = −normH_resid*(xyzb(IndMagS,1)./dist_magS);
127 Hresy(IndMagS) = −normH_resid*(xyzb(IndMagS,2)./dist_magS);
128

129 mag_res = myNull'*(M2x*Hresx + M2y*Hresy);
130

131 %% Speed
132 p = 5; % Polar couples
133 rps = 2*pi*f/p; % rad per second
134 rpm = 60*f/p; % Round per minute
135 period = 60/rpm;
136 nDt = 60; % Number of time steps

59

Appendix C

137

138 steps = linspace(0,period/2,nDt);
139 Dt = steps(2)−steps(1);
140 %% Theta Method
141 theta = 0.51; X = [];
142

143 [M1] = fun_stiff_matrix(Ttot,P,mu_fp,myNull);
144 [M2old] = fun_mass_matrix(sigma,Ttot,P,myNull);
145 M1old = M1;
146 sold = mag_res;
147 xold = M1\sold;
148

149 % Iterative theta method
150

151 for iter=1:nDt
152 disp(['iteration = ',num2str(iter)])
153 P = Pstart;
154

155 % Rotation
156 angle = steps(iter)*rps; % Angle in radians for the rotor rotation function
157 grad = angle/pi*180; % Angle in degrees that will be divided
158 rotaz = floor(grad/gradi_per_node); % Elements of rotation
159 [Tri] = renumerate_node(P,IndInt,IndExt,rotaz);
160 [P] = Rot_Rotation(P,IndRot,angle);
161 Ttot = [Told;Tri];
162

163 for i = 1:length(Ttot(:,1))
164 xyzb(i,1:2) = (P(Ttot(i,1),1:2)+P(Ttot(i,2),1:2)+P(Ttot(i,3),1:2))/3;
165 end
166

167 % Set of the currents
168 newJext=zeros(length(Ttot(:,1)),1);
169 newJext(IndPhasA)=Jext*sin(2*pi*f*steps(iter));
170 newJext(IndPhasAn)=−Jext*sin(2*pi*f*steps(iter));
171 newJext(IndPhasB)=Jext*sin(2*pi*f*steps(iter)+2/3*pi);
172 newJext(IndPhasBn)=−Jext*sin(2*pi*f*steps(iter)+2/3*pi);
173 newJext(IndPhasC)=Jext*sin(2*pi*f*steps(iter)+4/3*pi);
174 newJext(IndPhasCn)=−Jext*sin(2*pi*f*steps(iter)+4/3*pi);
175

176 % from tri to nodes (build rhs)
177 btot = myNull'*(M2_mat*(newJext));
178

179 % Set of the magnets
180 dist_magN = sqrt(xyzb(IndMagN,1).^2+xyzb(IndMagN,2).^2);

% Distance of COG from (0,0) for every
181 dist_magS = sqrt(xyzb(IndMagS,1).^2+xyzb(IndMagS,2).^2); % elements of the magnets N e S
182 Hresx(IndMagN) = normH_resid*(xyzb(IndMagN,1)./dist_magN);

% Set of the radial direction of the
183 Hresy(IndMagN) = normH_resid*(xyzb(IndMagN,2)./dist_magN);

% magnetic field for every elements
184 Hresx(IndMagS) = −normH_resid*(xyzb(IndMagS,1)./dist_magS);
185 Hresy(IndMagS) = −normH_resid*(xyzb(IndMagS,2)./dist_magS);
186 [M1x,M1y] = M1_creation_bis_xy(P,Ttot);
187 [M2x,M2y] = M2_creation_bis_NL(P,Ttot);
188 snew = myNull.'*(M2x*Hresx + M2y*Hresy)+ btot;
189

190

191

192 [M1] = fun_stiff_matrix(Ttot,P,mu_fp,myNull);
193 [M2] = fun_mass_matrix(sigma,Ttot,P,myNull);
194 % Theta method
195 M = (theta*M1+(1/Dt)*M2);
196 MM = (−(1−theta)*M1old+(1/Dt)*M2old);
197 rhs = MM*xold+theta*snew+(1−theta)*sold;
198 xnew = M\rhs;
199 X(:,iter) = xnew;
200 xold = xnew;
201 sold = snew;
202 M1old = M1;
203 M2old = M2;
204 end

60

Appendix C

C.3 Main Code for the Time Periodic Solver

1 disp('−−−')
2 disp(' Building the matrices of the rotation ')
3 disp('−−−')
4

5 for iter=1:nDt−1
6 P = Pstart;
7

8 % Rotation
9 angle = steps(iter)*rps; % Angle in radians for the rotor rotation function

10 grad = angle/pi*180; % Angle in degrees that will be divided
11 rotaz = floor(grad/gradi_per_node); % Elements of rotation
12 [Tri] = renumerate_node(P,IndInt,IndExt,rotaz);
13 [P] = Rot_Rotation(P,IndRot,angle);
14 Ttot = [Told;Tri];
15

16 for i = 1:length(Ttot(:,1))
17 xyzb(i,1:2) = (P(Ttot(i,1),1:2)+P(Ttot(i,2),1:2)+P(Ttot(i,3),1:2))/3;
18 end
19 % Set of the currents
20 [...]
21 btot = myNull'*(M2_mat*(newJext));
22

23 % Set of the magnets
24 [...]
25 snew = myNull.'*(M2x*Hresx + M2y*Hresy) + btot;
26

27 [M1] = fun_stiff_matrix(Ttot,P,mu_fp,myNull);
28 [M2] = fun_mass_matrix(sigma,Ttot,P,myNull);
29 % Theta method
30 A = (theta*M1+(1/Dt)*M2);
31 B = ((1−theta)*M1−(1/Dt)*M2); % B saved for the next steps
32

33 Matrix(((iter−1)*dim+1):(iter*dim),((iter−1)*dim+1):(iter*dim)) = A;
% Writing A on the complete matrix, step N

34 Matrix((iter*dim+1):((iter+1)*dim),(((iter−1)*dim+1):(iter*dim))) = B;
% Writing B on the next step

35

36 Stot_n2(((iter−1)*dim+1):(iter*dim)) = snew; % S al passo k+1
37 Stot_n1((iter*dim+1):((iter+1)*dim)) = snew; % S al passo k
38 end
39 %% Iter nDt
40 P = Pstart;
41 % Rotation
42 angle = steps(iter)*rps; % Angle in radians for the rotor rotation function
43 grad = angle/pi*180; % Angle in degrees that will be divided
44 rotaz = floor(grad/gradi_per_node); % Elements of rotation
45 [Tri] = renumerate_node(P,IndInt,IndExt,rotaz);
46 [P] = Rot_Rotation(P,IndRot,angle);
47 Ttot = [Told;Tri];
48

49 for i = 1:length(Ttot(:,1))
50 xyzb(i,1:2) = (P(Ttot(i,1),1:2)+P(Ttot(i,2),1:2)+P(Ttot(i,3),1:2))/3;
51 end
52

53 % Set of the currents
54 [...]
55 btot = myNull'*(M2_mat*(newJext));
56

57 % Set of the magnets
58 [...]
59 snew = myNull.'*(M2x*Hresx + M2y*Hresy) + btot;
60

61 [M1] = fun_stiff_matrix(Ttot,P,mu_fp,myNull);
62 [M2] = fun_mass_matrix(sigma,Ttot,P,myNull);
63 % Theta method
64 A = (theta*M1+(1/Dt)*M2);
65 B = ((1−theta)*M1−(1/Dt)*M2); % B saved for the next steps
66

61

Appendix C

67 Matrix(((nDt−1)*dim+1):(nDt*dim),((nDt−1)*dim+1):(nDt*dim)) = A;
% Writing A on the complete matrix, step N

68 Matrix((1:dim),(((nDt−1)*dim+1):(nDt*dim))) = B;
% Writing B on the next step

69

70 Stot_n2(((nDt−1)*dim+1):(nDt*dim)) = snew;
71 Stot_n1(1:dim) = snew;
72

73 %% Solutions
74 disp('−−−')
75 disp(' Solving the system ')
76 disp('−−−')
77 Stot = theta.* Stot_n2 + (1−theta).*Stot_n1;
78

79 Solution = Matrix\Stot;

C.4 Codes for non-linear Time Periodic Solver

In this section only the part of the code that changes to take into account nonlinearities is
reported. Instead of the Newton Raphson algorithm (not shown here) the Matlab’s function
fsolve can be easily used without changing the codes.

C.4.1 Main Code

1 %% Iter 1:nDt−1
2

3 disp('−−−')
4 disp(' First linear solution')
5 disp('−−−')
6

7 [...] % Linear time periodic solver non reported here. It is the same of the previus section
8

9 %% Solutions of the non−linear system: Newton Raphson
10 disp('−−−')
11 disp(' Solving the system with NR ')
12 disp('−−−')
13

14 fun = @(arr) myfun_with_jac(H,arr,Told,Pstart,Ntri,rps,nDt,Dt,dim,steps,mu0,IndIron,...
15 IndInt,IndExt,IndRot,IndMagN,IndMagS,IndPhasA,IndPhasAn,IndPhasB,IndPhasBn,...
16 IndPhasC,IndPhasCn,normH_resid,dni_dB2,myNull,sigma,Jext,f,M2);
17

18 xx = Matrix\Stot;
19

20 options = optimset('TolX',1e−17); % set TolX
21 [xx, resnorm, f, exitflag, output, jacob,resnormstore,xstore] = newtonraphson_mod(fun, xx, options);
22

23 % options = optimoptions('fsolve','SpecifyObjectiveGradient',true);
24 % xx = fsolve(fun,xx,options);
25

26 Solution = xx;

C.4.2 Function: myfun_with_jac

This function is necessary for the functioning of the Newton Raphson algorithm. It has to be
introduced like a handle function in the main code and it is given as input to the NR code. The
set of the currents and of the magnet is not shown because it is the same of the previous codes.

1 function [ff,jaco] = myfun_with_jac(H,arr,Told,Pstart,Ntri,rps,nDt,Dt,dim,steps,mu0,IndIron,...
2 IndInt,IndExt,IndRot,IndMagN,IndMagS,IndPhasA,IndPhasAn,IndPhasB,IndPhasBn,...
3 IndPhasC,IndPhasCn,normH_resid,dni_dB2,myNull,sigma,Jext,f,M2)
4

62

Appendix C

5

6 Matrix = sparse(dim*nDt,dim*nDt);
7 Matrix_Jac = sparse(dim*nDt,dim*nDt);
8 Stot_n2 = zeros(dim*nDt,1);
9 Stot_n1 = Stot_n2;

10 theta = 0.51;
11 %% Iterative cycle to build the big matrix
12 for iter=1:nDt−1
13 P = Pstart;
14

15 % Rotation
16 [...]
17

18 for i = 1:length(Ttot(:,1))
19 xyzb(i,1:2) = (P(Ttot(i,1),1:2)+P(Ttot(i,2),1:2)+P(Ttot(i,3),1:2))/3;
20 end
21

22 % Set of the currents
23 [...]
24 % from tri to nodes (build rhs)
25 btot = myNull'*(M2*(newJext));
26

27 % Set of the magnets
28 [...]
29

30 [M1x,M1y] = M1_creation_bis_xy(P,Ttot);
31 [M2x,M2y] = M2_creation_bis_NL(P,Ttot);
32 snew = myNull.'*(M2x*Hresx + M2y*Hresy) + btot;
33

34 % Updating the saturation
35 a = myNull* arr(((iter−1)*dim+1):(iter*dim));
36 Bx = M1x*a;
37 By = M1y*a;
38 normB = sqrt(Bx.^2 + By.^2);
39 normH = normB/mu0;
40 normH(IndIron) = H(normB(IndIron));
41 mu = normB./normH/mu0; % Total magnetic permeability
42

43 dni_dB2_tot = zeros(Ntri,1);
44 dni_dB2_tot(IndIron) = dni_dB2(normB(IndIron).^2);
45 [K2jacTOT] = fun_my_grad_grad_jac3(Ttot,P,a,M1x,M1y,dni_dB2,IndIron,dni_dB2_tot);
46 K2jac = myNull.'*K2jacTOT*myNull;
47 Matrix_Jac(((iter−1)*dim+1):(iter*dim),((iter−1)*dim+1):(iter*dim)) = theta*K2jac;
48 Matrix_Jac((iter*dim+1):((iter+1)*dim),(((iter−1)*dim+1):(iter*dim))) = (1−theta)*K2jac;
49

50 [M1] = fun_stiff_matrix(Ttot,P,mu,myNull);
51 [M2_t] = fun_mass_matrix(sigma,Ttot,P,myNull);
52 % Theta method
53 A = (theta*M1+(1/Dt)*M2_t);
54 B = ((1−theta)*M1−(1/Dt)*M2_t); % B viene salvato per il passo successivo
55

56 Matrix(((iter−1)*dim+1):(iter*dim),((iter−1)*dim+1):(iter*dim)) = A;
% Writing A on the complete matrix, step N

57 Matrix((iter*dim+1):((iter+1)*dim),(((iter−1)*dim+1):(iter*dim))) = B;
% Writing B on the next step

58

59 Stot_n2(((iter−1)*dim+1):(iter*dim)) = snew; % S al passo k+1
60 Stot_n1((iter*dim+1):((iter+1)*dim)) = snew; % S al passo k
61

62 end
63

64 %% Iter nDt
65 P = Pstart;
66

67 % Rotation
68 [...]
69

70 for i = 1:length(Ttot(:,1))
71 xyzb(i,1:2) = (P(Ttot(i,1),1:2)+P(Ttot(i,2),1:2)+P(Ttot(i,3),1:2))/3;
72 end
73

74 % Set of the currents
75 [...]

63

Appendix C

76 % from tri to nodes (build rhs)
77 btot = myNull'*(M2*(newJext));
78

79 % Set of the magnets
80 [...]
81 snew = myNull.'*(M2x*Hresx + M2y*Hresy) + btot;
82

83 % Updating the saturation
84 a = myNull* arr(((nDt−1)*dim+1):(nDt*dim));
85 Bx = M1x*a;
86 By = M1y*a;
87 normB = sqrt(Bx.^2 + By.^2);
88 normH = normB/mu0;
89 normH(IndIron) = H(normB(IndIron));
90 mu = normB./normH/mu0; % Total magnetic permeability
91

92 dni_dB2_tot = zeros(Ntri,1);
93 dni_dB2_tot(IndIron) = dni_dB2(normB(IndIron).^2);
94 [K2jacTOT] = fun_my_grad_grad_jac3(Ttot,P,a,M1x,M1y,dni_dB2,IndIron,dni_dB2_tot);
95 K2jac = myNull.'*K2jacTOT*myNull;
96 Matrix_Jac(((nDt−1)*dim+1):(nDt*dim),((nDt−1)*dim+1):(nDt*dim)) = theta*K2jac;
97 Matrix_Jac((1:dim),(((nDt−1)*dim+1):(nDt*dim))) = (1−theta)*K2jac;
98

99 [M1] = fun_stiff_matrix(Ttot,P,mu,myNull);
100 [M2_t] = fun_mass_matrix(sigma,Ttot,P,myNull);
101 % Theta method
102 A = (theta*M1+(1/Dt)*M2_t);
103 B = ((1−theta)*M1−(1/Dt)*M2_t);
104

105 Matrix(((nDt−1)*dim+1):(nDt*dim),((nDt−1)*dim+1):(nDt*dim)) = A;
% Writing A on the complete matrix, step N

106 Matrix((1:dim),(((nDt−1)*dim+1):(nDt*dim))) = B;
% Writing B on the next step

107

108 Stot_n2(((nDt−1)*dim+1):(nDt*dim)) = snew;
109 Stot_n1(1:dim) = snew;
110

111 %% jacobian
112 Stot = theta.* Stot_n2 + (1−theta).*Stot_n1;
113 ff = Matrix*arr−Stot;
114 % jacobian assemble
115 jaco = Matrix + Matrix_Jac;
116 end

C.5 Theta Method: Non-linear problems

In this section the complete code for the nonlinear problem, studied with the theta method, is
found.

C.5.1 Main Code

1 %% Theta Method for nonlinear problems
2 theta = 0.51; X = [];
3 global M1old
4 global sold
5 global M1
6 [M1] = fun_stiff_matrix(Ttot,P,mu_fp,myNull);
7 [M2] = fun_mass_matrix(sigma,Ttot,P,myNull);
8 dim = length(M1);
9 M1old = M1;

10 sold = mag_res + btot;
11 xold = M1\sold;
12 % Plot of the linear solution used as starting point for the method
13 xloc = myNull*xold;
14 Bx = M1x*xloc;
15 By = M1y*xloc;

64

Appendix C

16 normB = sqrt(Bx.^2 + By.^2);
17 figure
18 patch('Faces',Ttot,'Vertices',P,'CData',normB,'Facecolor','flat','FaceAlpha',0.9,'EdgeColor','none')
19 axis equal
20 colormap jet
21 colorbar
22 title('normB as starting point for the theta method')
23 drawnow
24

25

26 for iter=1:nDt
27 P = Pstart;
28 % Rotation
29 [...]
30 for i = 1:length(Ttot(:,1))
31 xyzb(i,1:2) = (P(Ttot(i,1),1:2)+P(Ttot(i,2),1:2)+P(Ttot(i,3),1:2))/3;
32 end
33

34 % Set of the currents
35 newJext=zeros(length(Ttot(:,1)),1);
36 newJext(IndPhasA)=Jext*sin(2*pi*f*steps(iter));
37 newJext(IndPhasAn)=−Jext*sin(2*pi*f*steps(iter));
38 newJext(IndPhasB)=Jext*sin(2*pi*f*steps(iter)+2/3*pi);
39 newJext(IndPhasBn)=−Jext*sin(2*pi*f*steps(iter)+2/3*pi);
40 newJext(IndPhasC)=Jext*sin(2*pi*f*steps(iter)+4/3*pi);
41 newJext(IndPhasCn)=−Jext*sin(2*pi*f*steps(iter)+4/3*pi);
42

43 % from tri to nodes (build rhs)
44 btot = myNull'*(M2_mat*(newJext));
45

46 % Set of the magnets
47 dist_magN = sqrt(xyzb(IndMagN,1).^2+xyzb(IndMagN,2).^2);
48 dist_magS = sqrt(xyzb(IndMagS,1).^2+xyzb(IndMagS,2).^2);
49 Hresx(IndMagN) = normH_resid*(xyzb(IndMagN,1)./dist_magN);
50 Hresy(IndMagN) = normH_resid*(xyzb(IndMagN,2)./dist_magN);
51 Hresx(IndMagS) = −normH_resid*(xyzb(IndMagS,1)./dist_magS);
52 Hresy(IndMagS) = −normH_resid*(xyzb(IndMagS,2)./dist_magS);
53 [M1x,M1y] = M1_creation_bis_xy(P,Ttot);
54 [M2x,M2y] = M2_creation_bis_NL(P,Ttot);
55 snew = myNull.'*(M2x*Hresx + M2y*Hresy) + btot;
56

57 % Solutions of the non−linear system: Newton Raphson
58 disp('|−−|')
59 disp([' Solving the system with NR, iter = ',num2str(iter)])
60

61 fun = @(arr) myfun_with_jac2(H,arr,xold,Ntri,Ttot,P,M1x,M1y,mu0,IndIron,dni_dB2,...
62 myNull,snew,theta,Dt,sigma,M2);
63 if iter ==1
64 options = optimset('TolX',1e−17);
65 else
66 options = optimset('TolX',1e−8,'MAXITER',20);
67 end
68 [xx, resnorm, f_newt, exitflag, output, jacob,resnormstore,xstore] = newtonraphson(fun, xold, options);
69

70 xnew = xx;
71 X(:,iter) = xnew;
72 xold = xnew;
73 M1old = M1;
74 sold = snew;
75 end
76 toc

C.5.2 myfun_with_jac2

The handle function for the Newton Raphson script. It is different from the previous one but
the functioning is the same.

1 function [ff,jaco] = myfun_with_jac2(H,arr,arrold,Ntri,T,P,M1x,M1y,mu0,IndIron,dni_dB2,...
2 myNull,snew,theta,Dt,sigma,M2)

65

Appendix C

3 global M1old
4 global sold
5 global M1
6

7 % Update the saturation
8 a = myNull*arr;
9 Bx = M1x*a;

10 By = M1y*a;
11 normB = sqrt(Bx.^2 + By.^2);
12 normH = normB/mu0;
13 normH(IndIron) = H(normB(IndIron));
14 ni=normH./normB;
15 ni(isnan(ni))=1;
16 mu = 1./ni./mu0;
17

18 [M1] = fun_stiff_matrix(T,P,mu,myNull); % Stiffness matrix
19 % Theta method
20 M = (theta*M1+(1/Dt)*M2);
21 MM = (−(1−theta)*M1old+(1/Dt)*M2);
22 % Function to minimize
23 ff = M*arr − MM*arrold − theta*snew − (1−theta)*sold;
24 % Jacobian
25 dni_dB2_tot = zeros(Ntri,1);
26 dni_dB2_tot(IndIron) = dni_dB2(normB(IndIron).^2);
27 [K2jacTOT] = fun_my_grad_grad_jac3(T,P,a,M1x,M1y,dni_dB2,IndIron,dni_dB2_tot);
28 K2jac = myNull.'*K2jacTOT*myNull;
29 jaco = M+K2jac*theta;
30 end

66

Bibliography

[1] L. Cesari, “Functional analysis and periodic solutions of nonlinear differential equations,”
Contributions to differential equations, vol. 1, pp. 149–187, 1963.

[2] M. Urabe, “Galerkin’s procedure for nonlinear periodic systems,” tech. rep.,
WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER, 1964.

[3] S. Yamada and K. Bessho, “Harmonic field calculation by the combination of finite
element analysis and harmonic balance method,” IEEE Transactions on Magnetics,
vol. 24, no. 6, pp. 2588–2590, 1988.

[4] J. Gyselinck, P. Dular, C. Geuzaine, and W. Legros, “Harmonic-balance finite-element
modeling of electromagnetic devices: a novel approach,” IEEE Transactions on
Magnetics, vol. 38, no. 2, pp. 521–524, 2002.

[5] S. A. Maas, Nonlinear microwave and RF circuits. Artech house, 2003.

[6] F. Bachinger, U. Langer, and J. Schöberl, “Efficient solvers for nonlinear time-periodic
eddy current problems,” Computing and Visualization in Science, vol. 9, no. 4, pp. 197–
207, 2006.

[7] O. Bíró, G. Koczka, and K. Preis, “Finite element solution of nonlinear eddy current
problems with periodic excitation and its industrial applications,” Applied Numerical
Mathematics, vol. 79, pp. 3–17, 2014.

[8] S. Außerhofer, O. Biro, and K. Preis, “A strategy to improve the convergence of the fixed-
point method for nonlinear eddy current problems,” IEEE transactions on magnetics,
vol. 44, no. 6, pp. 1282–1285, 2008.

[9] G. Koczka, S. Auberhofer, O. Biro, and K. Preis, “Optimal convergence of the fixed-point
method for nonlinear eddy current problems,” IEEE Transactions on Magnetics, vol. 45,
no. 3, pp. 948–951, 2009.

[10] J. Gyselinck, L. Vandevelde, P. Dular, C. Geuzaine, and W. Legros, “A general method
for the frequency domain fe modeling of rotating electromagnetic devices,” IEEE
Transactions on Magnetics, vol. 39, no. 3, pp. 1147–1150, 2003.

[11] F. Dubas and A. Rahideh, “Two-dimensional analytical permanent-magnet eddy-
current loss calculations in slotless pmsm equipped with surface-inset magnets,” IEEE
Transactions on Magnetics, vol. 50, no. 3, pp. 54–73, 2014.

[12] M. Filippini, “Magnetic gears numerical modelling and optimization,” 2019.

[13] H. De Gersem, S. Vandewalle, and K. Hameyer, “Krylov subspace methods for harmonic
balanced finite element methods,” in Scientific Computing in Electrical Engineering,
pp. 387–396, Springer, 2001.

[14] J. D. García-Saldaña and A. Gasull, “A theoretical basis for the harmonic balance
method,” Journal of Differential Equations, vol. 254, no. 1, pp. 67–80, 2013.

67

Appendix C

[15] N. Bianchi, Calcolo delle Macchine Elettriche col Metodo degli Elementi Finiti. Cleup,
2001.

[16] G. Gambolati and M. Ferronato, Lezioni di Metodi Numerici per l’Ingegneria. Progetto,
2014.

68

	Chapter 1 [2ex] Harmonic Balance Analysis of Nonlinear Circuits
	Circuital HB Method
	Linear Subircuit
	Nonlinear Subcircuit
	Solving the System
	The Source Stepping Method

	Example: Half Wave Rectifier

	Chapter 2 [2ex] Harmonic Balance Finite Element Method
	Physical Problem
	Maxwell's Equations
	Material Laws
	Eddy Current

	Finite Element Method
	Space Discretization
	Stiffness Matrix

	The Harmonic Balance Method
	Linear Problems
	Nonlinear Problems: Fixed Point Method

	Chapter 3 [2ex] Harmonic Balance FEM: Static Test Case
	Eddy Current-free problem: Ferromagnetic Yoke
	Eddy Current Problem: Induced Currents
	Permanent Magnet Motor with Locked Rotor

	Chapter 4 [2ex] Time Domain Solution: Rotating Machines
	Theta Method: A Brief Recall of the Algorithm
	Spatial Discretization of the Moving Band
	Theta Method: Linear Field Problem
	Time Periodic Solver: Linear Field Problem
	Time Periodic Solver: Non-linear Field Problem
	The Problem of Eddy Currents

	Theta Method: Nonlinear Field Problems
	Comparison between the two Time Periodic Solvers

	Chapter 5 [2ex] Conclusions
	Appendix A[2ex] Harmonic Balance Code for Nonlinear Circuits
	Main Code
	Admittance Matrix
	FFT reconstruction

	Appendix B[2ex] Harmonic Balance: Codes for Static Simulation
	Import Mesh Data from Comsol
	Main Code
	Other Useful Codes
	[M2x,M2y] = M2_creation_bis_NL(P,T)
	[K] = fun_stiff_matrix(T,P,mu,myNull)
	[Mass] = fun_mass_matrix(sigma,T,P,myNull)

	Appendix C[2ex] Theta Method: Codes for Rotating Machines
	Mesh of the Moving Band
	Main Code: Theta Method for Linear Problem
	Main Code for the Time Periodic Solver
	Codes for non-linear Time Periodic Solver
	Main Code
	Function: myfun_with_jac

	Theta Method: Non-linear problems
	Main Code
	myfun_with_jac2

