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Introduction

The idea that physics evolves dynamically is one of crucial importance. Indeed, the continuous
endeavor of theory construction is characterized by a dynamic process. As an essential element
in constructing theory, scientists rely upon models. Theoretical models constitute a major tool
in many aspects of scientific activity. Their purpose is not only to organize or explain data but
also, in some cases, to provide useful insight into physical systems or problems that are too
complex to be addressed with full details. It is feasible to provide a comprehensive description
of a real system by including the maximum number of parameters that can be adjusted. The
advantage is that a detailed description is closer to the actual system. However, usually the
complexity that characterizes these models makes it impossible to find an analytical solution
in certain cases, which is the major drawback. One possible solution is to introduce a simpler
model that meets few essential properties of the real system (such as its symmetries) in order to
reproduce its main characteristics. It is more likely that the models will be solved analytically
by doing so.

With the terms Electrohydrostatics (EHS) Electrohydrodynamics (EHD) we refer to the study
of those phenomena regarding, respectively, the statics and the dynamics of electrically charged
fluids. Electrohydrostatic (EHS) and Electrohydrodynamic (EHD) can be nowadays considered
as theories, but they both were born as models. Even though there are different possibilities
of formulation of problems, electrohydrodynamics concerns for all the interaction between the
flow of fluid and the electric field. Early interest in the subject arose from the deformation
and rupture of raindrops during storms (Macky, [1]), and the effect of aerosol deformation on
optical studies of dispersed systems [2].

Taylor was actually the first to try to expand already-existing, not satisfactory studies in
electrohydrostatics in his paper that dates back to 1966, a proposal for a novel model – that will
go down in history as the leaky-dielectric model [3] – taking into account some new elements.
Despite more than fifty years on, the interaction of weakly conducting fluids with electric fields
is still a source of intriguing phenomena and is employed in a variety of fields.

Even if EHD was born as a specific model that aimed to fill in the gaps of the lacking
theories, over the years electrohydrodynamic is emerged as a theory on its own. In fact, its
governing laws can be presented in a general way and in its most basic formulation, the differ-
ential equations describing EHS or EHD come from Stokes equations coupled with Maxwell’s
equations. In principle, there is no need to refer to a specific, experimental setup addressing a
particular problem.
The starting point is generally the formulation of the problem, for which it is necessary to
specify the appropriate coordinate system (Cartesian, spherical, cylindrical, ellipsoidal) that
will be adopted. This decision will affect the whole derivation of the eventual analytic solution,
since equations will be then written in these specific coordinates from the very early beginning.
Obviously, such a choice depends on the shape of the drop and has to be suitable to describe the
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problem. In most cases is accompanied by some further assumptions (geometrical symmetries,
discard of nonlinear effects, limited range for certain parameters), whose goal is to simplify
even more the equations in order to increase the possibility of finding analytical solutions.

As far as more complex situations are involved – and that is actually the case of almost
all real systems – just a few (if any) attempts have been done to extend or at least examine
the limitations of EHS/EHD theories to describe such problems. This can be better justified
if one considers that normally these situations are solved by means of numerical simulations.
The issue is that numerical simulations rely on theory, too: therefore, systems can be simulated
only under certain specific conditions, which are not always satisfied by all real devices. For
example, the majority of the simulations taking into account external confinement of the outer
fluid (a situation that is very frequent in microfluidic devices) considers for simplicity small
drops placed at the center of the confinement system. Despite being insightful, this is quite
distant from reality, where drops are instead large entities occupying a big portion of the cross
section of the channel.

An example of real droplet [4]. An example of a droplet in a computational sim-
ulation [5].

In the right picture, ρ, µ, σ, ϵ and γ represents, respectively, the density, the viscosity, the
electric conductivity, the electric permittivity and the surface tension.

There is therefore a need to extend existing theoretical models or at least to analyze their
strengths, limitations and weaknesses in order to pave the way for the development of more
complicated analytical models, on the basis of which essential features of more complex phe-
nomena can be captured and new numerical simulations can be performed. This thesis aims
primarily at addressing this issue: this is obtained by the comparison with data coming from
measurements of the response of water droplets to a time-varying, spatially nonuniform electric
field. The research is based on a wide-ranging scientific project taking place at UNIPD that
has already developed several new methods of real-time detection and monitoring of micro and
submicrometric objects dispersed in fluid media.

Microfluidics holds great promise as it can perform typical laboratory applications using a
fraction of the volume of fluids and allows for investigation of unexpected effects due to the
different surface-to-volume ratio that are not detectable in the macro-scale1. On-chip droplet
enhanced fluorescence emission for low concentration of fluorescent constituents has been re-
cently demonstrated thanks to the light confinement by total internal reflection as well as the

1In fact, micron-sized liquid droplets exhibit unique optical properties, including lower threshold energies for
non-linear optical processes than those observed in the bulk liquid phase
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excitation of Whispering Gallery Modes (WGMs), i.e electromagnetic waves guided by total
internal reflection around a circumference close to the surface of the resonator [6].
These pioneering works have paved the way to the exploitation of liquid droplet resonators
with great interest for applications in biological, chemicals detection and measurements [7]. It
is however known that in microfluidics, droplets suffer from size’s distribution, a critical aspect
when matching conditions to get WGMs are quite restrictive in terms of size requirements.
Droplets should have the correct size to support WGMs and actually this requirement still
represents the most limiting and hindering factor. The UNIPD Opto-microfluidic group has
therefore started a pioneering project to verify whether this limiting factor can be bypassed by
finely tune the droplet size on demand.

The basic idea relies on the experimental observation that light induced phenomena such as
the photovoltaic effect can generate local electric fields. The last, if intense enough and suit-
ably oriented, can move isolated droplets and shape changes have been detected. No data are
instead available on droplets immersed and moving in another liquid phase as in the case of
droplets microfluidics. The project aimed to test whether photoinduced local electric fields
can be strong enough to change a droplet size when it moves immersed in another phase (said
continuous phase) inside a microfluidic channel. Although screening effects could have been
claimed as hindering factors, the experimental data showed photovoltaic local electric field
if properly generated are responsible for droplets elongation of 3-4 %, enough to match the
WGMs conditions. Real measurements for this elongation – whose physical origin has yet to be
understood in detail – are used to compare the analytical results of already-existing theoretical
models presented in the first place.

In this thesis, three chapters are presented:

• Chapter 1 contains the main theoretical elements to deal with elecrohydrostatic and
elecrohydrodynamic, namely the.

• In Chapter 2, some particular cases of analytically solvable EHD problems are presented.
For some of them, a detailed solution is shown. A significant number of them is devoted
to spherical droplets, which are the most studied in literature due to their geometrical
simplicity. The cases of a cylinder with circular and an elliptic cross section are also
analyzed and the former is solved in detail.

• The last one, Chapter 3, contains an insightful comparison with real data coming from
measurements of the response of microfluidic water droplets to a time-varying, spatially
nonuniform electric field of a particular system; in the perspective of the necessity to
revise some already-existing theoretical models to expand their validity, some novel im-
provements are presented.
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Chapter 1

A theoretical overview

The attempt to analytically model the response of water droplets in an electric field is not only
about theoretical considerations on the field and the drop: it includes the estimation of the
intensity and field distribution in time and space as well as its effects on the droplet and its
response.
Theoretical treatment is therefore required for each of these three aspects.

1.1 The electric field and the shape of the drop

As far as the electric field is concerned, two main characteristics emerge among several ones:

• the time variation of the field; with “time variation” we mean that the intensity of the
external imposed field is not constant but rather depends on time: E∞(t) is a generic
function of time (a periodic or non periodic one).

• The space dependence of the field. Even if spatial nonuniformity of the field is always
present in real situations and is mainly due to fringing effects, generally electric fields are
treated as it were uniform in the region of application by choosing appropriate approxi-
mations. Consequently, the space dependence of the field is employed when attempting
to provide a more faithful description of a physical situation at the cost of dealing with a
more complicated treatment, both from a conceptual and a mathematical perspective.

In this way, the electric field may be written as a generic function of space r = (x, y, z) and
time t, E(r, t). A simplifying hypothesis may be then:

E(r, t) = f(r)E(t) = f(x, y, z)E(t) (1.1)

i.e. by separation of variables; r and t are thus independent. Such approximation must be
justified on the basis of the physical situation one considers.
If one wants to treat analytically the problem of the interaction between a drop of fluid an
the electric field, an expression for its space dependency has to be given in order to solve the
Laplace’s equation,

∇2V = 0

with pertinent boundary conditions (in this regard, see section 1.4).

9
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The first attempt to provide a general theoretical treatment for nonuniform fields has been
presented by Feng [8], who proposed an analytic form for the external electric potential suitable
for the case of spatial nonuniformity:

V (r, θ) = −E∞[rP1(cos θ) + Λr2P2(cos θ)], (1.2)

where the expression is given in a spherical coordinate system assuming axisymmetric behavior
with respect to ϕ, Λ is a measure of the relative magnitude of the field nonuniformity (trivially,
if Λ = 0 one regains the uniform case) and Pl(cos θ) are the Legendre polynomials1.
The applied electric field is therefore seen as a linear combination of uniform and quadrupole
components, which results in a nonuniform but axisymmetric electric field. Of many possibili-
ties, the combination of P1(cos θ) and P2(cos θ) can actually be considered as the simplest one.
As we will see in the following, the latter may not be the only possibility for the analytic ex-
pression for a nonuniform field.

The shape of droplets is usually modeled as a very complicated three-dimensional figure that
can not be described by theoretical shapes. If one is interested in the possibility of solving the
equations analytically, there are some standard shapes to be considered:

• a sphere, the easiest shape for the drop since it is symmetrical in all directions;

• a cylinder, which is usually employed to describe liquid jets/columns or long drops;

• a spheroid, a geometric shape that resembles a sphere in three dimensions, but has a slight
flattening at the poles or bulging at the equator. All points on the surface of the spheroid
are equidistant from a central point, but not necessarily from the center, as defined by
its semi-major and semi-minor axes;

• an ellipsoid, that is in turn defined by semi-axes, which are in general three and are not
necessarily equal. Unlike a spheroid, an ellipsoid can be elongated or squashed in any
direction, not just at the poles or equator. The center of an ellipsoid may not always be
the center of symmetry.

Figure 1.1: On the left, a sphere. In the middle, an ellipsoid and on the right a spheroid.
Taken from [9].

However, as far as an analytical solution is concerned, the sphere and the cylinder are the
most common shapes adopted to mime dynamics of the fluid-field interaction due to their sim-
plicity with respect to the spheroid and the ellipsoid (e.g. the Laplacian operator expressed in
spherical/cylindrical coordinates is much easier than the one used in the elliptic case).

1In this work we will only need two of them, specifically: P1(cos θ) = cos θ and P2(cos θ) = (3 cos2 θ − 1)/2.
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We conclude this section with the definition of a parameter that is important for this type of
problems, DT . It is called Taylor’s deformation, since it was Taylor the one who first introduced
it. For two-dimensional systems, it is defined as:

DT =
r∥ − r⊥
r∥ + r⊥

(1.3)

where r∥ and r⊥ are the droplet axes parallel and perpendicular to the direction of the field.
Note that, to simplify the notation the subscript T may be omitted when doing mathematical
computations.

The choice of defining D as a theoretical parameter stems from the need to identify a common
parameter for the shape that is adopted to model the interface of the drop. In fact, EHD theory
has been “built” in such a way that D can be determined by properly solving the equations,
being therefore a standard, non dimensional quantity expressing a degree of deformation.
In this perspective, since D refers to two-dimensional drops of circular shape deforming into a
two-dimensional ellipsoid, it follows that: in the case of a three-dimensional droplet, D can be
employed carefully bearing in mind its geometrical meaning (it quantifies the deformation of
circular cross sections and not of the whole shape). Again, in the case of a three-dimensional
drop, D may not be an appropriate parameter to model the deformation of the droplet (each
problem has to be treated carefully).

1.2 Interfaces and surface tension: essential elements

Interfaces are another key element of the problem. On this regard, one needs to develop
a suitable treatment for analytically handling those forces, e. g. surface tension, that are
typically ignored at the macroscopic level but have a significant impact on the understanding
of the dynamics of the interaction between drops of fluid and electric fields.
In mathematical terms, in our context an interface is the geometrical surface that separates two
fluid domains. The definition implies that an interface is neither thick nor smooth (i.e., has no
roughness). Reality is more complicated, since separating two immiscible fluids is a result of
both molecular interactions between the molecules of each fluid and Brownian diffusion (that
is, thermal agitation) [10].
In figure 1.2 a schematic view of an interface at the molecular size is provided. On the right,
in figure 1.3, its macroscopic counterpart for the interface of a drop [10] is represented.

Figure 1.2: Microscopic interface.
Source: [10].

Figure 1.3: Macroscopic interface.
Source: [10]

Let us start by describing the concept of curvature.
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Figure 1.4: Schematic representation for
the curvature.

For a planar curve, the curvature is
defined as:

κ :=
1

r
(1.4)

where r is the radius of the osculat-
ing circle that is closest to the curve
at the contact point P . It also re-
ferred as radius of curvature and is a
signed quantity, meaning that it can
assume positive or negative value (so
also the curvature does, depending on
the curve being concave or convex).

It has been demonstrated that [10]:

• for a parametric curve, c(t) = (x(t), y(t) it results that:

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
; (1.5)

• for plane curve given in an implicit form, f(x, y) = 0 it is the divergence of the direction
of the gradient of the function f then:

κ = ∇ · ∇f
||∇f ||

; (1.6)

• plane curve given in an explicit form:

κ =
d2y/dx2

[1 + (dy/dx)2]3/2
; (1.7)

• surface:

κ =
1

2

1

R1

+
1

R2

(1.8)

where R1,2 are, respectively, the two principal radii of curvature of the specific, chosen
surface [10].

Note that for simplicity of notation, in all the equations (1.5) - (1.8) the dot over a quantity
is used ad the time differentiation.

Now it is possible to state (details for derivation can be found, for example, in [10]) that a
simple mathematical equation describing the capillary pressure difference ∆P that is maintained
across the interface between two static fluids due to surface tension holds:

∆P = γ
1

R1

+
1

R2

(1.9)

which is the Laplace and Young’s law, one of essential importance when addressing interfaces
because it links the pressure inside a droplet to its curvature.
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1.3 Droplet response

With the terms Electrohydrostatics (EHS) Electrohydrodynamics (EHD) we refer to the study
of those phenomena regarding, respectively, the statics and the dynamics of electrically charged
fluids.
If an electric field is established in a region where two immiscible fluids are separated by an
interface, one observes a jump in it. This is caused by the difference in the physical (dielectric)
properties from one medium to the other one. Among all the various consequences of such a
field discontinuity, we can emphasize the emerging of an electric stress on the fluid-fluid in-
terface. The curvature of the interface of a droplet suspended in an uniform electric field, for
example, produces surface gradients of the electric that are likely to establish a deformation of
the droplet or even break it.

1.3.1 The birth of EHD

As far as we know, it was William Gilbert that first reported on electrohydrodynamics: in his
seventeenth century treatise de Magnete one can read about the formation of a conical shape
upon bringing a charged rod above a sessile drop [11].
Some work was later done by Rayleigh in the nineteenth century: he addressed droplet dy-
namics in terms of surface tension offsets due to interfacial charges. All subsequent studies
concentrated mainly either on perfect conductor fluids (such as water or mercury) or on perfect
apolar liquids (so perfect dielectrics like benzene).

Considering the two fluids as ideally insulating dielectrics – or if the drop and the ambient
fluid can be regarded as a perfect conductor-insulator system – in the absence of free charge,
electrostatic theory is used to make predictions on such a system. In fact, in the easiest case,
the surface tension might balance it and the system may reach a steady state. Consequently,
one refers to electrohydrostatics to indicate such steady states, which are characterized by the
fact that both phases are at rest.
In this static case, theory predicts that the interfacial stress (that actually is an electric pres-
sure) will be perpendicular to the surface and oriented such that it will be directed from the
fluid of higher permittivity/resistivity to the lower one. Lastly, according to EHS, in this case
the drop will always deform into a prolate ellipsoid [11].

Figure 1.5: A simple, schematic representation of a prolate and an oblate shape for an
ellipsoid, source: [12].

Despite its simplicity, the above description is not that attainable, since both fluids need
to be considered as slightly conducting to mach reality. The two liquids need to be given a
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finite value of permittivity and conductivity. In this case, there will be an accumulation of free
charge at the interface and the electric field will act on those.
A tangential interfacial stress on the interface has to be added to the already-existing electric
pressure. The imbalance in the electrical shear stresses2 is compensated by hydrodynamic shear
ones at equilibrium. In an attempt to account for this effect, one comes to the simple but crucial
conclusion. The new electric stress has to be balanced by “something different” and it is also
possible that it leads to new types of deformation.

This reasoning encodes the essence of what is known as electrohydrodynamics, which can
be dated back to the appearance of a seminal work by Taylor in 1966. The latter actually
contained the so-called leaky-dielectric model and followed 1962 experimental studies on poorly
conducting liquids by Allan and Mason, who reported some anomalous behavior of fluid defor-
mation. As already mentioned, EHS was predicting that a drop would have always deformed
into a prolate ellipsoid. On the contrary, Allan and Mason observed some drops of certain
fluids becoming oblate – meaning that their major axes was perpendicular to the direction of
the field – thus violating theoretical expectations. Taylor was actually the first to address that
“something different” we mentioned earlier to balance the tangential electric stress and justify
Allan and Mason findings. He identified it as fluid motion inside and outside the drop.

Both the stability and the deformation of a drop as a consequence of the interaction with an
electric field have been extensively treated in literature and research is still being conducted.
The following table, that is by no means exhaustive, summarizes the most relevant results [14],
[15]:

Experimental work: Allan and Mason (1962); Torza et al. (1971);
Vizika and Saville (1992).

EHS
Theoretical modelling: Allan and Mason (1962); Taylor (1964).

Theoretical modelling: Taylor (1966); Torza et al. (1971); Ajayi (1978);
Baygents et al. (1989).

EHD Numerical simulation: Feng and Scott (1996;) Feng (1999).

Reviews: Melcher and Taylor (1969); Saville (1997).

If Taylor can be considered without a doubt the father of the leaky-dielectric model, Melcher
is the one who employed it extensively to develop EHD. A crucial paper is in fact the review
by both Taylor and Melcher that dates back to 1969 and actually defines the field of electrohy-
drodynamics. In 1971 some experiments by Torza et al. pointed out new mismatches between
theory and experiments. The model was extended and improved both by Ajayi3 and Baygents
et al4. New experiments were than performed in 1992 by Vizika and Saville and they reported
good agreement with updated theoretical models.

2Shear stress is a coplanar element of stress with a cross-section of a material. It derives from the shear
force, which is the component of the force vector parallel to the transverse section of the material. [13].

3He worked and succeeded in including higher order terms into Taylor’s linearized theory.
4They analyzed a specific issue highlighted by Torza et al. by replacing the leaky-dielectric model by an

elecrokinetic.
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1.4 Fundamental equations ruling the theory

In its most basic formulation, the differential equations describing electrohydrodynamics come
from equations describing the conservation of mass and momentum for the fluid (Stokes equa-
tions), coupled with Maxwell’s equations. Even if there are different possibilities for problem
formulation for all of them (as one can see from the diagram below), electrohydrodynamic con-
cerns the interplay between fluid flow and electric field: as a consequence, the laws governing
EHD can be presented in a general way.

The coupling between electric and mechanical phenomena occurs at fluid-fluid interface. As
noted earlier, if one considers perfect conductors or dielectrics, only the component of the elec-
tric stress perpendicular to the interface is nonzero; the latter is balanced by both modifications
of the shape of the interface and interfacial tension changes. On the contrary, leaky dielectrics
fluids are characterized by the accumulation of an amount of free charge and this alters the
field. Moreover, a viscous flow arises to balance the action of the tangential components of the
field, which now are nonzero, too [11].

1.4.1 Notation and scale analysis

The electrohydrodynamic theory analyzes systems of drops of one particular fluid – normally
the droplet – immersed in another one. Generally, fluids are assumed to be Newtonian5 and the
properties of major interest are their density, ρ and viscosity µ. γ labels the surface tension at
the interface of the two fluids. As Feng reports in [8], Newtonian fluids of constant viscosities
may be considered as a simple yet adequate first approximation for the EHD theory6. Obvi-
ously, including of nonlinearities may provide more accurate results than a linearized asymptotic
analysis. Nonetheless, physical insights into the primary electrohydrodynamic effects can be
gained by analytical solutions of the linearized problem and provide invaluable guidance for
more comprehensive numerical computations.

As for the electrical properties, the two relevant ones are usually the electric conductivity
σ and the electric permittivity ϵ, which are assumed to be constant for the two fluids.
Several notations (for example, barred/unbarred characters or specific subscripts) are employed
to indicate the characteristics of the two fluids. In this work, we adopt hereafter the following
notation: a subscript i will indicate the “inner” fluid – that of which the drop is made of, also
named “dispersed phase” – whereas o will be used for the “outer” one – namely the external
fluid containing the drop, also named “continuous phase”.

Capital letters are used to denote specific ratios of these physical properties:

R =
σi
σo

and S =
ϵi
ϵo

λ =
ρi
ρo

and η =
µi

µo

.

5A fluid is said to be Newtonian if the viscous stresses that arises due to its flow is linearly correlated to the
local strain rate – which is the rate of change of the fluid deformation with respect to time – at every point of
the fluid [13].

6Feng in [8] writes “Even for Newtonian fluids, nonlinearities may appear in general governing equations
because of the fluid inertia and the capillarity of deformable fluid interfaces. [...] Nonlinearities may also arise
from the charge convection by fluid flow at the interface, which have not been rigorously investigated in existing
theoretical work ”.



Chapter 1. A theoretical overview 16

For example, if η → 0 a bubble is being considered, whereas if η → ∞ the drop becomes a
rigid particle. In many cases, the drop is considered to be neutrally buoyant, meaning that the
effect of gravity on it can be neglected. With respect to what we have stated above, this can
be achieved theoretically by setting λ = 1 [11], [14], [16].

Fluids can be classified in terms of electric conductivity σ and the dielectric constant ϵr = ϵ/ϵ0
as

• conductor: σ ≫ 1, ϵr = 1;

• dielectric (insulator): σ ≪ 1, ϵr ≥ 1.

Moreover, one can distinguish between:

• perfect dielectrics fluids, meaning that the fluids are either perfect conductor or on perfect
apolar liquids;

• leaky dielectrics fluids, where both fluids are considered to be slightly conducting.

Lastly, note that [[X]] is the notation employed to indicate the variation of a generic quantity
X – [[X]] = Xi −Xo across the interface of the drop.

When dealing with EHD problems it is possible to perform a so called scale analysis, based
on the following considerations:

• the electric field is scaled by the intensity of the external applied field, E∞;

• the natural scale for lengths depends on the conditions of the external fluid:

– unbounded situation, in which the natural length scale is given by the initial char-
acteristic length of the drop (e. g. the initial radius r0 in case of a sphere);

– bounded situation; in this case, the typical length can not be established a priori,
since the length scale has to be determined specifically for the problem depending on
the type of confinement to which the physical system is subjected. Unfortunately,
no comprehensive analytical model exists for bounded situations, which have been
mainly addressed by means of numerical simulations and are currently being studied.

• the natural scale for velocities depends on the conditions of flow:

– if the drop is suspended (that is, it does not move), there is no natural velocity, so

one can be defined as 7 as us =
ϵ(E∞)2r0

µ
;

– if there is a background flow, the velocity is scaled by means of the characteristic
velocity uc of the imposed field.

Physical properties and dimensional analysis let us define four dynamical parameters:

Cael =
µous
γ

, Reel =
usϵo
σor0

, Refl =
ρor0us
µo

and M =
r0ϵoE

2
∞

µeuc
(1.10)

7Anticipating what we will see in the next section, the presented formula can be obtained by simple rearrange-
ment of the balance of two stresses, the electric and the hydrodynamic shear stress, respectively τerθ = ϵ(E∞)2

and τhrθ = µus/r0.
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which are obtained by specific ratios and thus have an interesting physical interpretation. Cael,
the capillary number, is the ratio between the viscous force and the surface tension, signifying
then the relative strength of the viscous stress in deforming the the interface of the drop with
respect to the resistance to deformation due to surface tension.
Reel, the so-called electric Reynolds number, comes from the ratio of two time scales: the one
of charge relaxation from the fluid bulk to the interface, ϵ/σ and the time-scale of charge con-
vection by the flow, r0/us. Refl is the flow Reynolds number, representing the ratio of inertia
force to the viscous force. Lastly, the Mason number M quantifies the relative importance of
the electrical stress as compared with the viscous one.

Scaling yields five dimensionless groups [14]. Three of them are provided by R, S and η.
The remaining two can be chosen as Cael and M , for example.
Refl, Reel and Cael play a crucial role, since electrohydrodynamics equations can be analytically
solved only if [16]:

Cael ≪ 1 Reel ≪ 1 Refl ≪ 1 (1.11)

meaning respectively that the deformation of the surface of the drop is small, that the time
scale of charge relaxation is much less than the time-scale of charge convection and that inertial
forces can be safely ignored.

1.4.2 Flows of fluids

As far as flows are concerned, one has to consider the following equations:

∇ · u = 0 (1.12)

and
−∇p+ µ∇2u+ Fe = 0 (1.13)

expressing, respectively, conservation of mass and momentum. Note that u is the fluid
velocity, p indicates the pressure and Fe corresponds to the electric force per unit area (equiva-
lently, per unit volume if the system under study is a three-dimensional one). ∇2 stands for the
Laplacian operator, which can be expressed in different coordinate systems (Cartesian, polar,
cylindrical) according to one’s needs.

In order to solve the momentum and continuity equation, is also possible to write an equation
for the so-called streamfunction, ψ. The streamfunction formulation makes it possible to reduce
the number of equation to be solved. Nevertheless, the consequence is to solve a higher-order
differential equation. This is done by taking the curl of (1.19) and considering that:

• the curl of a gradient is zero;

• the curl of the velocity is the vorticity, ω.

so that one has
∇4ω = 0 (1.14)

where ∇4 is the biarmonic operator [16]. The latter satisfies both the continuity and the
momentum equation and can be solved specifically according to the chosen coordinate system
by assigning boundary conditions that are specific for an electrohydrodynamic problem.
For further details on the streamfunction-vorticity formulation, see Appendix A.
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1.4.3 The electric force and field

The fundamentals of electricity and magnetism are stated in Maxwell’s equations in a way
that is both elegant and concise: the majority of the field’s working relationships can be devel-
oped through them. Electric and magnetic phenomena are independent under static conditions
because their fields are uncoupled [11]. Electrostatic equations provide an accurate approxima-
tion because the characteristic time of electrostatic processes is larger than that of magnetic
phenomena. So, in the absence of external magnetic fields, magnetic effects can be completely
ignored.

The latter can be easily demonstrated as follows [11]. One can start from three characteristic
times, τC for electric phenomena

τC :=
ϵϵ0
σ
, (1.15)

τM for magnetic ones,
τM := µµ0σl

2 (1.16)

where l2 is the square of a characteristic length, and τP for the time-scale of transport process8.

A process is said to be slow if τP ≥ τC ≫ τM . Rearrangement of the second inequality can
be shown [11] to be equal to:

(ϵ/µ)1/2 ≫ l(µ0ϵ0)
1/2 (1.17)

and since (µ0ϵ0)
−1/2 = c, being c the speed of light, the factor l(µ0ϵ0)

1/2 is very small for the
systems that are taken into consideration. Thus, the electrostatic approximation is valid on a
millimeter-scale, if the electrical relaxation time τC must be longer than 1012 s. The inequality
is satisfied easily because the conductivity is seldom larger than 1 µS per meter for liquids of
the sort under study in EHD [11].

Accordingly to all that has been said, the electric body force on a fluid is made of three
components, the Coulomb force – known as electrophoretic one – the dielectrophoretic one and
the electrostriction force. They correspond to the three terms9 in the following equation [16]:

Fe = qvE− 1

2
E · E∇ϵ+∇ ρ

∂ϵ

∂ρ T

E · E (1.18)

The latter suggests that, generally, there is a mismatch of the value of the electric force
across the interface.

Equation (1.13) becomes then:

−∇p+ µ∇2u+ qvE− 1

2
E · E∇ϵ+∇ ρ

∂ϵ

∂ρ T

E · E = 0

which is rather complex do deal with. However, one may note that if the fluids under study
are characterized by constant electric properties, both the electro- and dielectrophoretic con-
tributions in (1.18) go to zero in the fluid bulk:

8For example, such processes can stem from viscous relaxation, diffusion, oscillation of an imposed field, or
moving of a boundary.

9The Coulomb term is due to the action of the electric field E on the free charges in the fluid bulk qv, the
dielectrophoretic force accounts either for the fact that either the electric permittivity or the electric field may
be nonuniform and the electrostriction expression depends on the variation of the electric permittivity with
respect to the fluid density, ρ.
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−∇p+ µ∇2u+∇ ρ
∂ϵ

∂ρ T

E · E = 0

which, in the case of incompressible flows, can be further rewritten by incorporating the

electrostriction term10 inside a “modified pressure”, P := p− ρ
∂ϵ

∂ρ T

E · E yielding thus:

−∇P + µ∇2u = 0. (1.19)

As far as the electric field laws, one has to start from Maxwell’s equations: the electric and
magnetic field are coupled together. However, in the absence of an external magnetic field,
and for very small dynamic electrical currents, it is possible to ignore the degree of magnetic
induction and to decouple the electric and magnetic field.

∇× E = 0 (1.20)

∇ · (σE) = 0 (1.21)

and
∇ · (ϵE) = qv. (1.22)

Equation (1.20) is also known as the fact that the electric field is irrotational, since
∂B

∂t
+∇×E =

0 but with B = 0. (1.21) can be obtained by the conservation of electric charge
D

Dt
(qv)+∇·J = 0

where
D

Dt
indicates the material derivative and J is the free electric current density11. More-

over, qv = 0 for both fluids, since for leaky-dielectric fluids the electric free charge migrates
instantaneously to the interface. Finally, equation (1.22) is Gauss’s law relating the electric
displacement D = ϵE to the free charge. Equations [(1.20)-(1.22)] need to be consider together
with jump conditions established ad hoc at the interface of the drop.

From (1.20), it is possible to define the following:

E = −∇V. (1.23)

Substitution of (1.21) inside (1.20) results in ∇2V = 0 since, as noted before, the fluid has
constant electric properties. Equation (1.23) must be solved for the electric field with specific
boundary and jump conditions inside and outside the droplet. To conclude, we note that the
electric field laws are decoupled from the momentum equation: this means that the expression
of E can be determined without needing the momentum equation. The latter is instead coupled
to the electric field equations in the fluid bulk and at the interface.

1.4.4 The electric free charge at the interface

When a fluid is exposed to an external electric field, it is polarized. In the case of perfect
conductors, the polarization leads to formation of free charges in the bulk of the fluids and
since the electric field in a perfect conductor should be zero according to Ohm’s law, the free
charges will immediately migrate to the fluid boundary.
Perfect dielectrics, on the other hand, do not have free electrons in their outermost atomic

10According to Stratton [16], this term is simpler for non-polar fluids, since it can be written by means of the

Clausius-Mossotti factor: ρ
∂ϵ

∂ρ T

=
(ϵ− ϵ0)(ϵ+ 2ϵ0)

3ϵ0
.

11J is connected to E by the Ohm’s law, J = σE.
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shells. For these fluids, the polarization leads to dipole moments which align themselves in the
direction of the electric field. The surface charge per unit length qs (area in three dimensions)
can be calculated by integration of (1.22) over a two-dimensional pillbox spanning a portion of
the boundary and application of Gauss theorem [16]:

ˆ
A

∇ · (ϵE) =
ˆ
A

qvdA. (1.24)

This results in qs = ϵ0En0 − ϵiEni
, where qs = limA→0

´
A
qvdA and n is the outward unit

vector normal to the interface. Since σ0En0 − σiEni
at the interface, one can rearrange the

result into the following:

qs = ϵ0En0 1− S

R
(1.25)

1.4.5 The electrohydrodynamic stresses

To derive the momentum jump condition needed in solving the momentum equation, it is
necessary to find the stresses associated with the electric force. This is done by treating the
electric force as divergence of the electric stress tensor: Fe = ∇ · τ e, where τ e is the Maxwell
stress tensor. If one applies, respectively, equations (1.18), (1.20) and (1.22) obtains:

τe = ϵEE− 1

2
E · EϵI+ 1

2
ρ

∂ϵ

∂ρ T

E · EI (1.26)

where I is the identity tensor. Using instead (1.19), the Maxwell stress tensor has a simple
formula:

τe = ϵEE− 1

2
E · EϵI. (1.27)

The key parameters that affect the sense of deformation and fluid circulation are the net
normal and tangential electric traction forces at the interface:

[[f e
sn]] = f e

sn0
− f e

sni
(1.28)

and
[[f e

st]] = f e
st0

− f e
sti

(1.29)

where fsn and fst are, respectively, the normal and tangential components of the electric force
at the interface. The traction force s fe at a general surface are related to the surface stresses
τ es through fe = τ es · n.

In a t− n coordinate system one has that f e
sn = τ enn and f e

st = τ ett and therefore:

[[f e
sn]] = [[τ enn]]

and
[[f e

st]] = [[τ ent]].

It is easy to demonstrate that:

[[τ enn]] =
1

2
ϵ0(E

2
n0

− E2
t0
)− 1

2
ϵi(E

2
ni
− E2

ti
) (1.30)

[[τ ent]] = ϵ0En0Et0 − ϵiEni
Eti (1.31)

that, together with the fact that Eti = Et0 ≡ Et and σ0En0 = σiEni
bring us to:
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[[f e
sn]] = [[τ enn]] =

ϵ0
2

1− S

R2
E2

n0
+ (S − 1)E2

t (1.32)

[[f e
st]] = [[τ ent]] = ϵ0En0Et 1− S

R
= qsEt. (1.33)

Some interesting observations can be made from (1.32) and (1.33).

1. For perfect dielectric fluids where R = S, the equation (1.32) suggests that the sign of
[[f e

sn]] depends on the value of S. For S > 1, [[f e
sn]] > 0 and the opposite is true for

[[f e
sn]] < 0. This implies that in both cases the net normal stresses are directed from the

fluid of higher electric permittivity toward the one with lower permittivity, in agreement
with the experiments.
On the other hand, for a perfect conductor in a perfect dielectric, where R → ∞, and
therefore, [[f e

sn]] > 0, again suggesting that the force is from the fluid of higher electric
conductivity toward the one with lower conductivity. Under the above circumstances, the
interface will always be prolate, whereas, for leaky dielectric fluids, however, the sense of
deformation depends on the relative magnitude of R and S [16], [15].

2. Similarly, equation (1.33) suggests that for perfect dielectric fluids where R = S, the
jump in tangential electric stresses is zero (as there is no free charge according to (1.25).
For a perfect conducting fluid in a perfect dielectric liquid where R → ∞, on the other
hand, the electric free charge is not zero. However, the jump in tangential stresses is
still zero since Et = 0. The net result is that the perfect dielectric/conductor model
precludes the fluid flow as it precludes the imbalance in the tangential electrical forces at
the interface. For leaky dielectric fluids, the circulation is not zero and depends on the
relative magnitude of R and S, [16], [15].

1.4.6 The interface deformation

The analysis so far was based on the assumption that the interface remains circular. However,
the interface is likely to deform as a result of the electric and hydrodynamic stresses. For small
deformation, it is possible to calculate the distortion from circular shape using normal stress
balance at the interface accounting for the restoring force of surface tension:

−(P0 − Pi) + (τ err0 − τ erri) + (τhrr0 − τhrri) = γκ (1.34)

where κ is the local curvature of the interface and γ is the surface tension.
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1.5 Possibilities for formulating EHD problems

SHAPE OF
THE DROP

Leaky
dielectric

Moving

Nonuniform
E, [20]

Uniform
E, [19]

Suspended

Nonuniform
E [8]

Uniform E
[3], [16], [18]

Perfect
dielectric

Moving

Nonuniform
E; no

literature

Uniform E;
no literature

Suspended

Nonuniform
E; no

literature

Uniform
E [17]

This simple scheme summarizes the various possibilities of formulation of the electrohydrody-
namic problem.



Chapter 2

Analytical study of some particular cases

Among all the possible situations referring to the so-called unbounded situation1 we will present
some analytically solved cases by appropriately choosing the shape of the drop and by solving
the associated EHS/EHD problem.

2.1 Spherical, perfect dielectric drop in uniform E

Let us consider a spherical, neutrally buoyant droplet of fluid immersed and suspended in an-
other fluid of infinite extent and subjected to an electric field. We aim to obtain an analytical
expression for the Taylor deformation D of the drop as a function of time t, that is, D(t), by
using EHS. In the previous chapter we have addresses the importance of the this parameter.

The gradual deformation of the droplet from a sphere to and ellipsoid implies a balance
between three forces: the electric stress, the stress due to the interfacial free energy and the
hydrodynamic one. We start by analyzing each of those forces separately and then impose the
balance equation.
Let us then define the following quantities, which are specific for this case of the sphere:

• r0, the radius of the spherical drop before the deformation process;

• a and b, respectively, the values of the major and minor semi axes of the final ellipsoid;

• E∞, the value of the uniform electric field;

2.1.1 Electric stress

First of all, we calculate the electric force acting on the droplet in the absence of space net
charges and in the low field limit, as in 1.4.3.
We solve Laplace’s equation (1.23) for both the internal and external potential as a function of
r; the boundary conditions defined are:

1. Vi = Vo at r = r0;

2. Vi is bounded at r = 0;
1In which, as already mentioned in 1.4, the outer fluid containing the drop is of infinite extent.

23
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Figure 2.1: A sphere of initial radius r0 deforming into an ellipsoid.

3. Vo = −E∞ cos θ as r → ∞;

4. ϵ0ϵo
∂Vo
∂r

= ϵ0ϵi
∂Vi
∂r

at r = r0.

The solution is then obtained as:

Vi(r, θ) = −3
ϵo

ϵo + ϵi
E∞r cos θ (2.1)

Vo(r, θ) =
ϵi − ϵo

(ϵi + 2ϵo)

r0
r

3

− 1 E∞r cos θ. (2.2)

It is straightforward to calculate the radial (apex r) and tangential (apex θ) components of the
electric force from the electric field; the latter can in turn be obtained by exploiting equations
and using the well-known relation E = −∇V .
The complete expressions for the components of field (both inside and outside the drop) are
presented below:

Er
int(r, θ) = 3

ϵo
ϵi + ϵo

E∞ cos θ (2.3)

Eθ
int(r, θ) = −3

ϵo
ϵi + ϵo

E∞r sin θ (2.4)

Er
ext(r, θ) = 2

ϵi − ϵo
(ϵi + 2ϵo)

r0
r

3

+ 1 E∞ cos θ (2.5)

Eθ
ext(r, θ) =

ϵi − ϵo
(ϵi + 2ϵo)

r30
r2

− r E∞ cos θ (2.6)

from which we obtain the two components of the electric force:

F r
el =

9

2
ϵ0
ϵo(ϵi − ϵi) [ϵo + (ϵi − ϵi) cos

2 θ]

(ϵi + 2ϵo)2
E2

∞ (2.7)

F θ
el = 0 (2.8)
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2.1.2 Interfacial stress

By writing Fγ we denote the interfacial stress, meaning the stress across the curved interface
between the droplet and the medium due to the interfacial free energy.
In this case, we can derive it from the law of Laplace and Young2 for the variation of the
pressure by considering an unitary area:

Fγ −
2γ

r0
= γ

1

R1

+
1

R2

(2.9)

with R1,2 we indicate the principal radii of the curvature at a generic point (r, θ) of the ellipsoidal

drop. For our purposes, it is more useful to rewrite the geometrical factor
1

R1

+
1

R2

in terms

of the deformation D [21]:

1

R1

+
1

R2

=
−2 + 4D(1 + cos2 θ)

r0(1− 2D/3)(1− 4D cos2 θ)3/2
(2.10)

so that by substitution:

Fγ =
2γ

r0
+ γ

−2 + 4D(1 + cos2 θ)

r0(1− 2D/3)(1− 4D cos2 θ)3/2
(2.11)

2.1.3 Hydrodynamic stress

In this section, we treat the viscous drags on the surface of a deforming droplet due to the
velocity fields inside and outside it.
The radial component of the hydrodynamic stress is given by the following formula [17]:

σrr = 2η [(∇u)rr − (∇u)θθ] (2.12)

which holds both for the internal and external medium, respectively.

The case under study is characterized by axisymmetric flow, the analytical expression of
the radial and tangential velocities can be determined by Stokes’s streamfunction method as:

ur(r, θ,Ψ) =
1

r2 sin θ

∂Ψ

∂θ
(2.13)

uθ(r, θ,Ψ) = − 1

r sin θ

∂Ψ

∂θ
(2.14)

with specific boundary conditions [17]:

1. uo = 0 as r → ∞;

2. uri = uro at r = r0;

3. uθi = uθo at r = r0.

The simplest case is found by choosing to approximate the internal flow (uri , uθi ) of a deforming
droplet by a simple elongation [17]. This results specifically in the following form :

uri (r, θ, λ) =
r

2
(3 cos2 θ − 1)

dλ

dt
(2.15)

2Also known as the capillary equation, see section 1.2.
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uθi (r, θ, λ) = −3r

2
(sin θ cos θ)

dλ

dt
(2.16)

where λ is the elongation ratio. The latter is defined in terms of a and r0:

λ(t) =
a(t)

2r0
(2.17)

but can also be expressed in terms of the deformation [17]:

dλ

dt
=

4

3

dD
dt

(2.18)

so that:
uri (r, θ, λ) =

2r

3
(3 cos2 θ − 1)

dD
dt

(2.19)

uθi (r, θ, λ) = −2r(sin θ cos θ)
dD
dt
. (2.20)

Equations (2.15) and (2.16) provide the form for the stream function Ψ:

Ψ = sin2 θ cos θ α1
r40
r2

+ α2r
2
0 + α3

r3

r0
+ α4

r5

r30
(2.21)

with α1,2,3,4 are coefficients. The latter is used to get the external velocity field together with
boundary conditions:

uro(r, θ, λ) =
(3 cos2 θ − 1)

4

5r30
r2

− 3r50
r4

dλ

dt
(2.22)

uθo(r, θ, λ) = −3

2

r50
r4
(sin θ cos θ)

dλ

dt
(2.23)

that we express again by means of D:

uro(r, θ, λ) =
(3 cos2 θ − 1)

3

5r30
r2

− 3r50
r4

dD
dt

(2.24)

uθo(r, θ, λ) = −2
r50
r4

(sin θ cos θ)
dD
dt
. (2.25)

Finally, equations (2.13) and (2.14) combined with boundary conditions (1-3) result in the
expression for the hydrodynamic stresses, respectively inside and outside the drop:

σint,rr = µi(8 cos
2 θ − 4)

dD
dt

(2.26)

σext,rr = µo(8 cos
2 θ − 4)

dD
dt

(2.27)

2.1.4 Balance equation and deformation rate

The balance equation can be written as:

F r
el + Fγ = σint,rr + σint,rr + F0 (2.28)

where F0 is the hydrostatic force deriving from the hydrostatic pressure inside the drop. We
aim at deriving an equation in D, which we expect to come out after proper substitution of the
expression of the forces, namely equations (2.7), (2.11), (2.26) and (2.27).
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2.1.5 Complete expression

A direct substitution would lead to a rather complicated equation in terms of D. In fact, the
left member would be the sum of the electric stress and the interfacial one:

9

2
ϵ0
ϵo(ϵi − ϵi) [ϵo + (ϵi − ϵi) cos

2 θ]

(ϵi + 2ϵo)2
E2

∞ +
2γ

r0
+ γ

−2 + 4D(1 + cos2 θ)

r0(1− 2D/3)(1− 4D cos2 θ)3/2
. (2.29)

from which it is not possible to go on.

2.1.6 Simplified expression

However, one can notice that the latter can be simplified if two conditions are verified: the
first is ϵi ≫ ϵo and reduces the electric force to:

F r
el =

9

2
ϵ0ϵoE

2
∞ cos2 θ. (2.30)

The second is D ≪ 1, used in this case for the interfacial stress: it permits to taylor-expand3

and let us all terms of the form Dn, with n > 1.

To rearrange the expression:

−2 + 4D(1 + cos2 θ)

r0(1− 2D/3)(1− 4D cos2 θ)3/2
=

−2 + 4D(1 + cos2 θ)

r0

1

(1− 2D/3)(1− 4D cos2 θ)3/2

we can start from the second term, applying the following steps to its denominator:

* (1− 4D cos2 θ)3/2 ∼ 1 +
3

2
(−4D cos2 θ) = 1− 6D cos2 θ

* (1− 2D/3)(1− 4D cos2 θ)3/2 ∼ (1− 2D/3)(1− 6D cos2 θ) ∼ 1− 2D
3

+ 6D cos2 θ .

Defining x :=
2D
3

+ 6D cos2 θ , then:

1

(1− 2D/3)(1− 4D cos2 θ)3/2
∼ (1− x)−1

and we can Taylor expand : (1 − x)−1 ∼ (1 + x) = 1 +
2D
3

+ 6D cos2 θ. The latter is well
defined since if D ≪ 1, then x≪ 1.

Finally:

−2 + 4D(1 + cos2 θ)

r0
1 +

2D
3

+ 6D cos2 θ ∼ 1

r0
−2 +

8D
3

− 8D cos2 θ .

Consequently, Fγ results in a simpler expression:

Fγ =
2γ

r0
+ γ

1

r0
−2 +

8D
3

− 8D cos2 θ =
γ

r0

8D
3
(1− 3 cos2 θ) (2.31)

3We use the weel-known expansion for (1± x)α = 1∓ x; in our case it is sufficient to stop at the first order
in x.
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Therefore, it is possible to obtain the desired equation for D starting from the balance one:

9

2
ϵ0ϵoE

2
∞ cos2 θ +

γ

r0

8D
3
(1− 3 cos2 θ) = (µi + µo)(8 cos

2 θ − 4)
dD
dt

+ F0 (2.32)

which can be rearranged as:

cos2 θ
9

2
ϵ0ϵoE

2
∞ +

γ

r0
8D +

γ

r0

8D
3

= cos2 θ 8(µi + µo)
dD
dt

− 4(µi + µo)
dD
dt

+ F0

since the latter should hold for any point of the surface of the drop, we have to impose that:

γ

r0

8D
3

= −4(µi + µo)
dD
dt

+ F0 (2.33)

so that θ−independent terms fade out and:

9

2
ϵ0ϵoE

2
∞ +

γ

r0
8D = 8(µi + µo)

dD
dt
. (2.34)

This is a first-order differential equation that can be solved by separation of variables:

D(t) = D∞(1− e−t/τ ) (2.35)

where
D∞ =

9

16

ϵoϵo
γ
r0E∞ (2.36)

and
τ = (µi + µo)

r0
γ

(2.37)

2.2 Spherical, leaky dielectric drop in uniform E

As suggested by Taylor [3], spherical coordinates are adopted (r, θ, ϕ) in the simplest case, that
is, an axisymmetric system, for which ∂/∂ϕ = 0. The droplet is also in this case suspended.

First, the flow of fluids can be considered and the equation (1.14) is solved [3]. The general
solution for ψ has to look like ψ = rn sin2 θ cos θ, whereas the ones for the internal and external
streamfunction have the following form:

ψi = (CT r
−1
0 r3 +DT r

−3
0 r5) sin θ2 cos θ (2.38)

ψo = (AT r
4
0r

−2 +BT r
2
0) sin θ

2 cos θ (2.39)

which, by means of appropriate boundary conditions [3], yields:

AT = −BT = CT = −DT (2.40)

AT =
9r0ϵ0E

2
∞

µo(1 + η)

S −R

10(2 +R)2
. (2.41)

Details regarding velocities can be found both in [3] and [16] but are not reported here since
they are not relevant.
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Viscous stresses at the interface lead to the expression of jumps in hydrodynamic stresses,
[[σh

rr]] and [[τhrθ]]:

τhrθ =
9E2

∞ϵo
2(R + 2)2

(R− S) sin 2θ (2.42)

σh
rr = − 9E2

∞ϵo
10(R + 2)2

(R− S)
2 + 3η

1 + η
(1− 3 cos θ2). (2.43)

As we have seen in section 1.4, for the electric components one starts by solving Laplace’s
equation, (1.23), and consequently derives the expression for the electric field and the con-
sequent stresses. The Laplacian operator is expressed in spherical coordinates imposing that
∂/∂ϕ = 0, resulting then in the following:

1

r2
∂

∂r
r2
∂

∂r
+

1

r2 sin2 θ

∂

∂θ
sin θ

∂

∂θ
Φ = 0 (2.44)

which is solved according to the boundary conditions expressed in 1.4. This results in:

Φi =
3E∞

2 +R
r cos θ (2.45)

Φo = E∞r cos θ +
1−R

1 +R
E∞

r30
r2

cos θ (2.46)

Ei = − 3E∞

2 +R
cos θer +

3E∞

2 +R
sin θeθ (2.47)

Eo = −E∞ 1 +
2(R− 1)

R + 2

r30
r3

cos θ er + E∞ 1− R− 1

R + 2

r30
r3

sin θ eθ. (2.48)

The free charge per unit area at the interface 1.4 can be calculated:

qs =
3E∞ϵ0(S −R)

2 +R
cos θ. (2.49)

The electric stresses can also be obtained, resulting in four expressions:

τ erro =
ϵoE

2
∞

2
− 1 +

(R− 1)2

(r + 2)2
r60
r6

− 2(R− 1)

R + 2

r30
r3

+ [2 +
5(R− 1)2

(r + 2)2
r60
r6

+
2(R− 1)

R + 2

r30
r3
] cos θ2

(2.50)

τ erθo = −ϵoE
2
∞

2
1 +

(R− 1)2

(r + 2)2
r60
r6

− 2(R− 1)

R + 2

r30
r3

(2.51)

τ erri =
9E2

∞ϵi
2(R + 2)2

cos 2θ (2.52)

τ erθi = − 9E2
∞ϵi

2(R + 2)2
sin 2θ (2.53)

note that the latter is actually (2.98) with opposite sign.

Equations (2.50), (2.51), (2.52) and (2.53) are used to find jumps in the traction forces at
the interface:
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[[f e
sn]] = [[τ err]] =

9E2
∞ϵo

2(R + 2)2
[S − 1 + (R2 + 1− 2S) cos2 θ] (2.54)

[[f e
st]] = [[τ erθ]] =

9E2
∞ϵo

2(R + 2)2
(S −R) sin 2θ. (2.55)

The balance equation, that is equation (1.34), together with r = r0[1+(2DT/3)(3 cos θ
2−1)]

[3] leads to the equation for the steady state deformation of the interface of the drop:

DT =
9Cael
16

ΦT

(2 +R)2
, (2.56)

ΦT = R2 + 1− 2S +
3

5
(R− S)

2 + 3η

1 + η
(2.57)

that is the generalization of what we obtained in (2.36).

2.3 Spherical, leaky dielectric drop in nonuniform E

It is possible to generalize the result in the case of a nonuniform electric field as proposed by
Feng [8], obtaining4:

Vi(r, θ) = −E∞
3

2 +R
r cos θ + Λ

5

3 + 2R
r2P2(cos θ) (2.58)

Vo(r, θ) = −E∞ r +
1−R

2 +R

r30
r2

cos θ + Λ r2 + 2
1−R

3 + 2R

r50
r3

P2(cos θ) (2.59)

qs = ϵ0(ϵoR− ϵi)E∞
3

2 +R
r cos θ + 2Λr0

5

3 + 2R
r2P2(cos θ) (2.60)

ψi(r, θ) =
(ϵoR− ϵi)ϵ0E

2
∞

µi + µo

5X
l=2

βl
rl+2 − r20r

l

rl−1
0

Gl(cos θ) (2.61)

ψo(r, θ) =
(ϵoR− ϵi)ϵ0E

2
∞

µi + µo

5X
l=2

βl
1

rl−3
− r20
rl−1

Gl(cos θ) (2.62)

with r = r0[1 + F (θ)]

F (θ) =
4X

l=2

αlPl(cos θ). (2.63)

where from the balance equation (1.34) one can derive coefficients α2, α3 and α4:

α2 =
ϵiϵ0r0E

2
∞

4γ

"
3

2 +R

2
(SR2 + S − 2)

3
+

5Λr0
3 + 2R

2
(4SR2 − 3S − 1)

7

#

=
ϵiϵ0r0E

2
∞

4γ

(
(SR− 1)(2η + 3)

5(η)

"
3

2 +R

2

+
6

7

5Λr0
3 + 2R

2
#)

(2.64)

4We report here only the main results without detailed derivations, that can anyway be found in [8].
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α3 =
ϵiϵ0r0E

2
∞

50γ

3

2 +R

5Λr0
3 + 2R

6(SR2 + S − 2) +
12(SR− 1)(3η + 4)

7(η + 1)
(2.65)

α4 =
ϵiϵ0r0E

2
∞

105γ

5Λr0
3 + 2R

2

6(SR2 + S − 2) +
(SR− 1)(4η + 5)

η + 1
(2.66)

2.4 Spherical drop moving in uniform and non uniform E

This section is devoted to summarize the results obtained by analytical studies on the effects
of both a uniform and a nonuniform electric field on the electrohydrodynamic motion of a sus-
pended spherical drop in the presence of an unbounded Poiseuille flow5 [19], [20].
Both articles, [19] and [20], rely on a double asymptotic expansion in terms of Reel and Cael as-
suming small charge convection and small shape deformation. For an uniform field, the droplet
is assumed as a Newtonian, leaky dielectric one whereas in the case of the nonuniform field
some cases pertaining to perfect dielectrics are also presented.

2.4.1 Uniform Field

The problem formulation is identical to the one that has been proposed in 1.4, with two main
specifications, the expression of the field and the one for the imposed background flow:

uc = uc(k0 + k1x+ k2x
2)ez (2.67)

where
k0 =

4

H
1− 2xd

H

k1 =
4

H
1− 2xd

H

and
k2 = − 4

H
.

In the latter, xd represents the transverse position of the drop centroid, H is the length in
the transverse direction separating the two infinite parallel plates. One can note that (2.70)
expresses a pressure-driven flow between two parallel plates that are of infinite extension in y
and z planes.

The electric field is chosen as:
E∞ = E∞(Exex + Ezez) (2.68)

imposing 1 = E2
x +E2

z . Thus, it is possible to modify the its direction by opportunely specify-
ing the components along z and x. Lastly, a spherical coordinate system (r, θ, ϕ) placed in the
center of the drop (and therefore moving with it) is employed. For better clarity, a graphical
representation of the situation is reported below.

5Poiseuille flow is a flow that occurs due to pressure in a long duct, typically a pipe. The assumption is that
a constant positive pressure difference causes a laminar flow of an incompressible Newtonian fluid. The term
pipe refers to a circular cylindrical duct that is right-handed and has a circular cross section that is normal to
its axis or generator [13].
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Figure 2.2: Taken from [19].

In the framework of the leaky dielectric model, a double asymptotic expansion choosing
the electric Reynolds number and capillary number as parameters is performed. The main
result of this expansion is the influence of both charge convection (parameter Reel) and shape
deformation (parameter Ca) on ud, the velocity of the drop, that is unknown a priori. The
result is:

ud = (uzd)ez + (uxd)ex (2.69)

where (uzd and uxd are functions of expansion parameters. The fact that the result has velocity
components in both the axial direction (z) and the cross-stream direction (x) implies a trans-
verse motion, during which the droplet encounters a spatially varying background flow. This
latter variation results in a continuous variation of both the internal and external flow field and
electric potential. There is thus a constant adjustment of internal and external velocity and
surface charge distribution.

The combined effect of charge convention and shape deformation, depending on the magni-
tude of the controlling parameters, can result in:

1. increase or decrease the drop velocity;

2. lead to cross-stream motion of the drop.

2.4.2 Nonuniform field

In this case, the problem setup is the same as 2.4.1, but with different expression both for the
flow and the field:

uc = uc

 
1− r

r0

2
!
ez (2.70)

E∞ = −[EurP1 cos θ + Eqr
2P2 cos θ] (2.71)
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Figure 2.3: Taken from [19]. notice that the field is not necessarily transverse to the motion
of the droplet.

where Eu and Eq are he relative strength of the uniform and quadrupole fields: note that (2.71)
is nothing but a rewrite of (1.2).
The governing equations are the same as presented before, that is Laplace’s equation for the

electric field and Stokes and continuity equation for the velocity field with specific boundary
conditions (for more details, refer to [20]). The method used for the solution is the same as
presented in section 2.4.1 (small-deformation perturbation analysis, asymptotic expansion).

Also in this case the main focus is on determining the unknown drop velocity under the action
of both an imposed external flow and a nonuniform electric field.
The latter is achieved by imposing a force-free condition, meaning by balancing the hydrody-
namic and the dielectrophoretic forces:

Fh +MFel = 0 (2.72)

where M is the Masson number and

Fh = 2π

ˆ π

θ=0

(τho · n)[rs(θ)]2 sin θdθ (2.73)

Fel = 2π

ˆ π

θ=0

(τ elo · n)[rs(θ)]2 sin θdθ (2.74)

are the expression of the forces. rs(θ) = 1 + f(θ) is the radial location of the deformed drop
surface [20].

Several cases are analyzed: three for the type of dielectrics and for the type of field.
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1. both fluids are perfect dielectrics;

2. the inner fluid is a perfect dielectric and
the outer is not;

3. both the inner and the outer fluids are
leaky dielectrics.

1. the field has only the linear or only
the quadrupolar component;

2. the field has both components;

3. the field is converging or diverging
one (respectively, Eu = Eq = 1 and
Eu = −Eq = −1).

The most relevant final result of the work for this thesis is the fact that, in the combined
presence of a uniform/quadrupole electric field and Poiseuille flow, a drop always moves in
the direction of the Poiseuille flow irrespective of the value of electrohydrodynamic
parameters.

2.5 Cylindrical, leaky dielectric drop in uniform E

This section regards a drop that is chosen to be a cylinder with circular cross section of radius
r0. This shape is chosen to extend the model to long drops that can not assumed to have a
spherical shape.

The cylinder is of infinite length, immersed and suspended in another ambient liquid of
infinite extent. It is subjected to an external, uniform, transverse electric field, E∞.

Figure 2.4: Simple scheme showing the circular cross-section of a cylindrical drop [16].

The problem is about to be solved in the framework of the EHD theory, assuming the
validity of the leaky dielectric model, both for its steady states and for the transient evolution6.

2.5.1 Steady states

This part is made up of three main calculations: the solution of Laplace’s equation, the solution
of the stream function equation and the computations for the deformation of the interface.

Laplace’s equation

We adopt cylindrical coordinates (r, θ, z) to solve equation (1.23) by separation of variables.
The geometry of the system allows us to assume cylindrical symmetry, that is ∂/∂z = 0. The

6That is, we are going to derive the equivalent of equation (2.36) in the case of a different shape.
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boundary conditions are:

(i) The electric potential should remain finite inside the cylinder: Vi(0, θ) has to be bounded;

(ii) The electric potential across the interface should be continuous7: Vi(r0, θ) = Vo(r0, θ);

(iii) The normal component of electric current density should be continuous across the inter-

face8: σi
∂Vi(r0, θ)

∂r
= σo

∂Vo(r0, θ)

∂r

(iv) The electric potential far away from the cylinder9 behaves as: Vo(r, θ) = E∞r cos θ.

The obtained solutions are:
Vi(r, θ) =

2E∞

1 +R
r cos θ (2.75)

Vo(r, θ) = E∞r cos θ − E∞
1−R

1 +R

r20
r
cos θ (2.76)

Ei = − 2E∞

1 +R
cos θer +

2E∞

1 +R
sin θeθ (2.77)

Eo = −E∞ 1 +
1−R

1 +R

r20
r2

cos θer +−E∞ 1− 1−R

1 +R

r20
r2

sin θeθ. (2.78)

For the problem under study, the strength and distribution of the electrical free charges
at the interface have profound effect on the sense of deformation of the interface and fluid
circulations in the cylinder and in the ambient fluid. The latter results in:

qs =
2E∞ϵo(S −R)

R + 1
cos θ (2.79)

suggesting that the distribution of the free charge on the interface depends on the strength
and direction of the electric field and the relative magnitude of R and S. Furthermore, the
total free charge is zero.

Figure 2.5: This figure shows schematically
the distribution of the free charge on the inter-
face for two cases, R < S (the left frame) and
R > S (the right frame), along with the direc-
tions of the net electrical stresses acting on the
interface [16].

For R < S, the upper half of the
cylinder is induced with positive
charges, the same in sign to the
electrode that it faces, while the
lower half is covered by negative
charges. The opposite is true for
R > S. If the direction of the
electric field is reversed, the dis-
tribution of the charges will also
be reversed. R = S represents
a perfect dielectric fluid in a per-
fect dielectric fluid: as we have al-
ready seen, for this type of prob-
lem qs = 0.

7This can be proved using a two-dimensional pillbox system spanning a portion of the interface and applying
Stoke’s theorem on eq. (1.20).

8This can be proved using again a two-dimensional pillbox system spanning a portion of the interface and
applying Gauss’ theorem on eq. (1.21).

9This boundary condition can be better understood by looking at the figure: far away from the drop, the
radial and angular components of the electric field result in Er = −E∞ cos θ and Eθ = E∞ sin θ.



Chapter 2. Analytical study of some particular cases 36

As for the electric stresses, it is sufficient to substitute equations (2.77) and (2.78) in (1.30)
and (1.31) to get:

τ erro =
1

2
ϵoE

2
∞

"
1−R

1 +R

2
r0
r

4

− 1

#
sin 2θ (2.80)

τ erθo =
1

2
ϵoE

2
∞

(
2

"
1 +

1−R

1 +R

2
r0
r

4
#
cos θ2 −

"
1 +

1−R

1 +R

2
r0
r

4

− 2
1−R

1 +R

r0
r

2
#)

(2.81)

τ erri =
2ϵiE

2
∞

(R + 1)2
(2 cos θ2 − 1) (2.82)

τ erθo = − 2ϵiE
2
∞

(R + 1)2
sin 2θ (2.83)

Electric stresses, namely equations (2.80)-(2.83), are independent of the electric field polar-
ity; inner stresses do not depend on the radial coordinate. The introduction of the cylinder in
the ambient fluid results in a perturbation in the radial and tangential electric stresses that
are proportional to 1/r2 and 1/r4, respectively. To get the stresses associated with the electric
field, it is again sufficient to substitute equations (2.77) and (2.78) in (1.32) and (1.33) to get:

[[f e
sn]] = [[τ enn]] =

2ϵoE
2
∞

(1 +R)2
[S − 1 + (R2 − 2S + 1) cos θ2] (2.84)

[[f e
st]] = [[τ ent]] =

2ϵoE
2
∞

(1 +R)2
(S −R) sin 2θ]. (2.85)

Solution of the stream function equation

For the solution of the biharmonic equation (1.14) boundary conditions need to be specified,
too. The following ones have been applied:

(i) The velocity field should remain finite inside the cylinder, that is uri(0, θ) and uθi(0, θ)
should be bounded;

(ii) uθo = uθi at r = r0, the no-slip boundary condition;

(iii) uro(r0, θ) = uri(r0, θ) = 0, the no-through flow boundary condition;

(iv) at the phase boundary, there has to be no tangential stress, so its balance should be
imposed: (τhrθo − τhrθi) + (τ erθo − τ erθi) = 0

(v) no velocity field should exist in the far field, uro → 0 and uθo → 0 for r → ∞

where (i), (iii) and (v) provide two conditions each, giving the three apparently missing bound-
ary conditions. Both equation (1.14) and the boundary conditions are homogeneous: hence,
separation of variables can be used for the solution. The internal and external stream function
are found to be:

ψo = (A+ Cr−2) sin 2θ (2.86)

ψi = (Fr2 +Hr4) sin 2θ (2.87)

where
A = r20ϵoE

2
∞(S −R)/[µo(1 + η)][2(1 +R)]2, (2.88)
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and
C = −Ar20, (2.89)

F = −A/r20, (2.90)

H = A/r40. (2.91)

Lastly, one can calculate the jump in the hydrodynamic traction forces across the interfaces
are:

[[fh
sn]] = [[τhrt]] =

2ϵoE
2
∞(R− S)(η − 1)

(R + 1)2(η + 1)
cos 2θ (2.92)

[[fh
st]] = [[τhrθ]] =

2ϵoE
2
∞(R− S)

(R + 1)2
sin 2θ (2.93)

The deformation of the interface

The balance equation(1.34) is valid for small deformations and can be used to compute the
distortion of the circular cross section, that is likely to deform into an ellipsoid, turning the
circular cylinder into an elliptic one.

Let us start from the balance equation:

−(P0 − Pi) + (τ err0 − τ erri) + (τhrr0 − τhrri) = γκ (2.94)

for which we miss the pressure jump across the surface of the drop, [[P ]]. The latter can be
computed simply by specifying the components of equation (1.19):

∂P

∂r
= µ

∂

∂r

1

r

∂(rur)

∂r
+

1

r2
∂2ur
∂θ2

− 2

r2
∂uθ
∂θ

(2.95)

1

r

∂P

∂θ
= µ

∂

∂r

1

r

∂(ruθ)

∂r
+

1

r2
∂2uθ
∂θ2

− 2

r2
∂ur
∂θ

(2.96)

note that P is the modified pressure. By combining equations (2.95), (2.96) with the results
expressed in the footnote 9 and equations (2.78), (2.77) one can find the pressure jump varying
across the interface (retaining only θ-dependent terms):

[[P ]] =
2(3µi − µo)

r0
cos 2θ

2A

r0
(2.97)

with A given by equation (2.88).
The latter is grouped with the (τhrr0 − τhrri) into σh

rr, defined as:

[[σh
rr]] = [[τhrr]]− [[P ]] =

ϵoE
2
∞(R− S)

(R + 1)2
cos 2θ. (2.98)

The following equation for the evolution of the radius of the cross section10 is suggested by
equations (2.84) and (2.98):

ζ(r) = r0(1 +D cos 2θ) (2.99)

10Notice that, since the interface deformation is assumed to be very small, the interfacial jump conditions
have been imposed at r = r0 instead of ζ(r).
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that is, a linear variation with respect to cos 2θ. In a similar way of the calculations presented
in 2.1.6, one can also find the curvature:

κ =
1 + 6D cos 2θ

[r0(1 + 2D cos 2θ)3/2]
∼ 1

r0
(1 + 3D cos 2θ). (2.100)

Substitution and comparison of the θ-terms yields:

D =
Cael
3

Ψ

(1 +R)2
(2.101)

where Ψ = R2+R+1− 3S is the characteristic function that determines the sense of interface
deformation. Notice that, since (1.34) should be valid at any point at the interface, the constant
terms on both sides of the equation are balanced and do not influence equation (2.101).

2.5.2 Transient evolution

Whereas the equilibrium dynamic of a drop of liquid surrounded by another fluid in a transver-
sal electrical field is reasonably well understood for spherical and cylindrical droplets, there is
little information on the evolution of fluid flow towards the steady state and the deformation
time history of a cylinder.

Also in this case the solution of Laplace’s equation and the solution of the stream function
equation have to be calculated. The first has already been solved in section 2.5.1. As for the
second, nine boundary conditions are now needed[18]:

(i) The velocity field should remain finite inside the cylinder, that is uri(0, θ) and uθi(0, θ)
should be bounded;

(ii) uθo = uθi at r = r0, the no-slip boundary condition;

(iii) uro = uri = dζ/dt at r = r0, where ζ(r) = r0(1 +D cos 2θ);

(iv) at the phase boundary, there has to be no tangential stress, so its balance should be
imposed: (τhrθo − τhrθi) + (τ erθo − τ erθi) = 0

(v) no velocity field should exist in the far field, uro → 0 and uθo → 0 for r → ∞

(vi) −[[P ]] + [[τhrr]] + [[τhrr]] = γκ, the balance equation.

where (i), (iii) and (v) provide two conditions each, giving the three apparently missing bound-
ary conditions. Following the same steps that have been presented in sections 2.5 and 2.1 and
using boundary conditions one obtains:

D(t) = D∞(1− e−t/τ ) (2.102)

where
D∞ =

Cael
3

Ψ

(1 +R)2
(2.103)

and
τ = (µi + µo)

r0
γ

(2.104)

that are consistent with the findings of the previous section.
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2.6 Ellipsoidal jet

Actually, in order to model the shape of the drop, an ellipsoidal form for the cross section of
the drop has also been proposed [22], [23].

According to Vlahovska [22], if the shape of the drop is chosen to be an axisymmetric
ellipsoid parameterized by:

rs = r0(1 + s(t)P2(cos θ)) (2.105)

where the temporal evolution of the s parameter is connected to the one of Taylor’s deformation,
DT through11:

D =
3

4
s. (2.106)

Since s(t) evolves as:

∂s

∂t
=

40(1 + η)

(3 + 2η)(16 + 9η)

3

4
F (R, S, η, t)− s(t)

Ca
(2.107)

where

F (R, S, η, t) =
(16 + 19η)

45(1 + η)
1− S − (1 + 2S)P +

13 + 7η

(16 + 19η)
− S P2 (2.108)

with P being a function of time:

P(t) =
1−R

2 +R
(1− e−t).

In the case of instantaneous polarization relaxation12, the steady state is monotonically ap-
proached [22]:

D(t) = D∞(1− e−t/τ ) (2.109)

where

D∞ =
9

16
CaF ⋆(R, S, η), (2.110)

F ⋆(R, S, η) =
1

(2 +R)2
R2 + 1− 2S + 3(R− S)

2 + 3η

5(1 + η)
(2.111)

and

τ =
µor0
γ

(3 + 2η)(16 + 19η)

40(1 + η)
. (2.112)

11Note that a direct comparison shows that (2.106) is the same as the one we saw for the elongation ratio,
(2.18).

12On the contrary, if the dipole evolves on a time scale comparable to the flow time scale the approach to
steady state may be nonmonotonic [22].
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The case of an ellipsoid has been also treated
in a different way[23]. The stability of a two-
dimensional liquid jet subject to a transverse
electric field in the framework of EHS (so,
perfect dielectrics) can be analyzed by mod-
eling the jet as an ellipse. The figure below
shows the geometric setup depicting the equi-
librium shape of the suspended jet, which is
surrounded by another dielectric liquid.
The goal is to relate in some way the aspect
ratio, α = a/b to the parameters S and Cael.
ξ = ξ0 corresponds to the jet profile. Figure 2.6: Equilibrium shape of the

jet [23].

Figure 2.7: Taken from [23].

The elliptic coordinate system ξ, ν showed
in the next figure to the left is an orthogo-
nal one. It is characterized by the fact that
coordinate lines are confocal ellipses and
hyperbolae, respectively ξ = C, ν = C.
Note that ξ > 0 and ν ∈ [0, 2π]. The foci
of the cross section of the jet are assumed
to correspond to the ones of the coordinate
lines. Specifically, by referring to figure 2.6
one has:

x = c cosh ξ cos ν (2.113)
y = c sinh ξ sin ν (2.114)

where c is the distance from any of the foci
to the center.

It is trivial to get the aspect ratio as a function of new coordinates: α = a/b = coth ξ0.
Laplace’s equation (1.23) in elliptic coordinates13 is then solved by imposing appropriate bound-
ary conditions:

(i) the inner electric potential does not depend on ξ at ξ = 0,
∂Vi(0, ν)

∂ξ
= 0;

(ii) the electric potential across the interface should be continuous: Vi(ξ0, ν) = Vo(ξ0, ν);

(iii) the normal component of electric current density should be continuous across the interface:

ϵi
∂Vi(ξ0, θ)

∂r
= ϵo

∂Vo(ξ0, ν)

∂r
;

(iv) the electric potential in the far field, ν → ∞ behaves as: Vo(ξ, ν) = −E∞x = −E∞c cosh ξ cos ν.

Boundary conditions (i) and (iv) impose that not only ξ = 0 is the axis of symmetry, but also
that the system is symmetric with respect to ν.
After having found the electric potential and the electric field, the desired relation is found by
two different methods:

13The Laplacian operator in this current case reads: ∇2 = ∂2/∂ξ2 + ∂2/∂ν2
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• imposing the balance condition, [[τ elnn]]− [[p]] = κγ, at the poles and at the equator. Note
that the latter is nothing but equation (1.34) with only normal stresses inside14.
This method is referred as two-point method [23].
This leads to the following result:

Cael =
2(α + S)2(α3 − 1)

α3/2(S − 1)2(α + 1)2
(2.115)

• After having assumed that the equilibrium shape of the jet under the electric field re-
sults as an ellipse, one calculates the difference between total energy of the outer fluid
pool without and with the jet. This difference is then minimized with respect to alpha.
Mathematically speaking, this is equal to:

∂∆Utot

∂α
= 0 (2.116)

where ∆Utot = ∆Uel + ∆Ust is the total difference in energy including the potential
electrostatic energy and the surface tension energy [23]. The result is then:

Cael = (Λ1 + Λ2)
S + α

S − 1
(2.117)

Λ1 = α−3/2(α− 1) 1 +
3(α− 1)2

(α + 1)2(10 + δ)
(2.118)

Λ1 =
12(α− 1)[5 + 20δ + 5α2(1 + 4δ) + α(22 + 40δ)]

δα1/2(α + 1)4(10 + δ)2
(2.119)

δ =

s
1 + 14α + α2

(1 + α)2
. (2.120)

This result of the energy minimization method is in close agreement with those of (??)
and (??), who did not assume the jet profile a priori but actually solved for it. Thus,
the energy minimization can be considered as a more reliable technique in examining the
equilibrium shape of the jet.

Both (2.115) and (2.116) are found to be implicit relations, but the results show evident
difference. This depends on a specific error that affects mainly the two-point method for jets.
In fact, the two-point method can be then employed for the drops with a great level of accuracy
but that is not true for the jets15.

14This is consistent with considerations that have been made in section 1.3.1.
15“This is because the error in calculation of the curvature due to approximating the actual shape of a drop

as an ellipsoid is smaller than the corresponding error due to approximating a jet” [23]. The curvature of an
axisymmetric drop results in the sum of both the azimuthal (curvature of a circle) and the profile curvatures
(ellipse): the latter is approximated, but the former is exact.
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2.7 Summary
This page summarizes the main results of the problems treated in the chapter.

COMMON PARAMETERS

µ viscosity — γ surface tension — σ electric conductivity — ϵ electric permittivity —
E∞ intensity of the external applied field — r0 initial characteristic length of the drop
(unbounded case)

R =
σi
σo

, S =
ϵi
ϵo

, η =
µi

µo

, Ca =
ϵoE

2
∞r0
γ

and DT =
r∥ − r⊥
r∥ + r⊥

.

Spherical droplet
Initial radius r0

• Perfect dielectric, suspended, uniform E :

DT (t) = D∞(1− e−t/τD),

DT,∞ =
9

16

ϵ0ϵo
γ
r0E∞,

τD = (µi + µo)
r0
γ
.

• Leaky dielectric, suspended, uniform E :

DT =
9Cael
16

ΦT

(2 +R)2
(2.121)

ΦT = R2 + 1− 2S +
3

5
(R− S)

2 + 3η

1 + η
(2.122)

Cylinder, circular cross section

The steady state is approached as:

D(t) = D∞(1− e−t/τD).

The steady state value deformation is:

DT,∞ =
Cael
3

Ψ

(1 +R)2
,

where Ψ = R2 +R + 1− 3S and

τD = (µi + µo)r0/γ

Ellipsoidal cross section

D(t) = D∞(1− e−t/τD).

The steady state value deformation is:

D∞ =
9

16
CaelF

⋆(R, S, η),

and

τD =
µor0
γ

(3 + 2η)(16 + 19η)

40(1 + η)

with F ⋆(R, S, η) given by equation (2.108).



Chapter 3

Model implementation from a real case

As we have extensively seen in the theoretical parts, the establishment of an electric field in
a region where two immiscible fluids (a drop and an ambient liquid) are separated by an in-
terface, causes discontinuities in some specific physical quantities that are likely to establish a
deformation of the droplet.
Experimental evidence of this can be seen by exploiting, for example, an opto-microfluidic plat-
form. In this case, droplets are usually moving due to pressure flow passing through a region
where an electric field is imposed. In particular, such platforms permit to investigate electric
field effects on liquid droplets in other fluid systems by measuring their lengths in different
conditions (that is with and without the field).

However, there is a mismatch between theory and experiments: EHS/EHD models remain
simple and limited to some specific assumptions, whereas measured data are a result of the
complexity of the real system.
Aiming at extending existing theoretical models (or at least to analyze their strengths, limita-
tions and weaknesses), this chapter compares the results of two of them – actually among those
derived in Chapter 2 – with real data from a specific experiment, that is with measurements of
the response of microfluidic water droplets to a time-varying, spatially nonuniform electric field.

Before the comparison, the following aspects are treated in what comes:

1. Lithium niobate (LN), by analyzing its crucial properties, given that the platform is
realized on a fully integrated lithium niobate substrate;

2. exposition of the theory on the generation of the electric field, which is a photoinduced
one;

3. main theoretical elements for the generation of microdroplets;

4. details on the type of platform that makes it possible to combine points (2) and (3)
together;

5. the real configuration, that is, the description of the real field and the actual drop for the
system.

43
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3.1 Lithium niobate main properties

At room temperature, Lithium niobate (LiNbO3) is an artificial ferroelectric crystal that ap-
pears solid and does not exhibit solubility in water or organic solvents. Zachariasen synthesized
it for the first time in 1928 and studied it extensively at Bell laboratories 20 years later [24].
This material belongs to pseudo-binary compound class Li2O-Nb2O5 and bulk growth using
the Czochralski technique is the most commonly used method to produce it1. Especially in
the congruent composition, the solid and liquid phases have the same Li:Nb ratio, allowing
controlled and reproducible growth: the ratio between lithium and niobium has a significant
impact on the properties of lithium niobate, such as phase transition temperature and UV band
absorption edge [26].

Figure 3.1: Phase diagram of pseudo-binary Li2O-Nb2O5 system [27].

In the ferroelectric phase, for temperatures below LiNbO3 Curie temperature TC ≈ 1160°C, a
lithium niobate crystal exhibits mirror symmetry about three planes that are 60 °apart, with
three-fold rotational symmetry around the axis given by the intersection of these three planes,
as shown in figure 3.2. These two symmetry properties classify LiNbO3 as a member of the R3c
space group, with point group 3m [24], [25]. There are three possible cells which can be used
to describe the structure of the LiNbO3 crystal: rhombohedric, hexagonal and orthohexagonal.
The most common in literature is the last one (figure 3.2), with the z-axis, which is also usually
referred to as c-axis, along the axis of three-fold rotation symmetry, y-axis laying on a mirror
plane and x-axis perpendicular to the others2.
Lithium niobate’s ferroelectricity has a direct impact on its atomic structure, as can be seen in
figure 3.3. In a slightly distorted hexagonal close-packed configuration, the structure consists
of oxygens distributed in planar sheets. Lithium, niobium, and vacancies along the c axis
regularly fill the oxygen-filled octahedral. In the paraelectric phase, for T ≥ TC , the oxygen
planar sheets are where lithium ions are aligned, while niobium ions are placed in the middle

1A uniform growth by this technique is only achievable in the congruent composition (Li:Nb =48.5:51.5)
which corresponds to a lithium deficiency compared to the stoichiometric composition, as can be seen in figure
3.1.[25]

2Directions of these axis are choosen by using the piezoelectricity of the material: +z-axis points toward the
z face that becomes negatively charged under uniaxial compression [25].



45 3.1. Lithium niobate main properties

Figure 3.2: Orthohexagonal cell of LiNbO3 and symmetry planes [24].

Figure 3.3: Structure of LiNbO3 in the two phases. The horizontal purple lines on the right
represent the oxygen planes. Image is taken from [28].

of the previous mentioned octahedras: in this case, the material does not show polarity. In the
ferroelectric phase (T < TC), a spontaneous polarization arises due to a 44 pm shift of lithium
ions from the oxygens planes in the positive direction of the c-axis; in this case, niobium ions
are displaced of 27 pm from the center of octahedras in the same direction.

3.1.1 Physical properties

Lithium niobate is a material that is widely used in integrated optics because of its unique
electro-optical, non-linear optical, piezoelectric and photorefractive properties that can be uti-
lized in microfluidic devices. Specifically, the combination of birefringence and electro-optical
properties as well as the development of integrated wave guide made this material to become
really attractive for modulator application since the beginning of ’70, especially in the telecom
spectrum. [29].

Optical properties

Lithium niobate is a transparent crystal with high optical transmittivity in the range of 350−
3500 per nm. The birefringence of the permittivity tensor is highlighted by the anisotropy of
the permittivity tensor in the othohexagonal cell reference framework:
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ϵ̄ =

ϵ11 0 0
0 ϵ11 0
0 0 ϵ33

 (3.1)

and starting from ϵ11 and ϵ33 it is possible to define no =
q

ϵ11
ϵ0

and ne =
q

ϵ33
ϵ0

which are,
respectively, the ordinary refraction index seen by light polarized in any direction perpendicular
to the c-axis, and the extraordinary refraction index, seen by light polarized in the direction
parallel to the c-axis [25]. The presence of extrinsic impurities and wavelength are the two
factors that determine these indices. The Sellmayer equation provides an approximation of the
dispersion relation [30]:

n2
i =

50 + CLi

100

A0,i

(λ0,i + µ0,iF )−2 − λ−2)

+
50− CLi

100

A1,i

(λ1,i + µ1,iF )−2 − λ−2)
+ AUV + AIR,iλ

2

(3.2)

F = f(T )− f(T0)

f(T ) = (T + 273)2 + 4.0238 · 105 coth
261.6

T + 273
− 1

where the index i refers to the two possible refractive indices, CLi denotes the lithium
content of the crystal, expressed in mol%, λ is the wavelength expressed in nanometers and
T0 = 24.5 °C. Coefficients A0,i are related the contribution given by Nb on Nb sites, while A1,i

of Nb on Li sites. AUV and AIR account for, respectively, far UV contribution due to plasmons
and IR region contributions given by phonons. Table 3.1 shows an example for the parameters
in equation 3.2.

Ordinary Extraordinary

A0 4.5312 ·10−5 3.9466 ·10−5

A1 2.7322 ·10−5 8.3140 ·10−5

λ0 223.219 218.203
λ1 260.26 250.847
µ0 2.1203 ·10−6 7.5187 ·10−6

µ1 -1.8275 ·10−4 -3.8043 ·10−5

AUV 2.6613 2.6613
AIR 3.6340 ·10−8 3.0998 ·10−8

n 2.2866 2.2028

Table 3.1: Fitted parameters for the Sellmayer equation 3.2 [30]; µ0 and µ1 are coefficients for
the temperature dependence. The refractive indices values are obtained for room temperature
and a wavelength λ = 632.8 nm.

Electro-optic effect

The applied electric field affects the refractive index of a solid, which is the result of this electro-
optic effect. The second order tensor variation can be used to describe the relationship between
the refractive index variation and the electric field ∆ 1

n2 ij
:
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∆
1

n2
ij

=
X
k

rijkEk +
X
k,l

sijklEkEl + ... (3.3)

where the latter contains only linear and quadratic terms in the electric field. The expression
of the two tensors rijk and sijkl is based on the structure of the material; moreover, they relate
respectively to the linear electro-optical effect – also known as the Pockels’ effect – and to
the quadratic effect – generally known as the Kerr effect. The Kerr effect is not negligible for
electric fields with a modulus higher than 65 kV mm−1 [31], whereas the Pockels’ effect is the
dominant effect in lithium niobate. Finally, The Pockels’ tensor can be simplified because of
its symmetric structure in the following matrix shape:

r̄ =


0 −r22 r13
0 r22 r13
0 0 r33
0 r42 0
r42 0 0
−r22 0 0

 (3.4)

where:

r13 r22 r33 r42
8.6 ·10−12 3.4 ·10−12 30.8 ·10−12 28.0 ·10−12

Table 3.2: Coefficients of the Pockels’ tensor 3.7 expressed in m V−1 [32].

Pyroelectric effect

The polarization of a pyroelectric solid changes spontaneously, which is present in the ferro-
electric phase for T < TC , as a function of temperature: the movement of lithium and niobium
ions with respect to the oxygen sheets is responsible for this effect in lithium niobate. The
relationship between the polarization vector change, ∆Pi and the temperature variation ∆T
may be expressed as follows can be expressed as:

∆Pi = ρi∆T (3.5)

with ρx = ρy = 0 and ρz = −4 · 10−5 C m−2 K−1, Li and Nb ions are only able to move in
the direction that is parallel to the c-axis.

Piezoelectric effect

In response to mechanical stress, lithium niobate exhibits piezoelectricity, which is the ap-
pearance of induced polarization in a solid. Therefore, the latter can affect the spontaneous
polarization of the crystal. In the orthogonal cell system, this can be described in tensor
component form:

Pi =
X
j,k

dijkσjk (3.6)

where σjk stands for the applied stress and dijk is the piezoelectric tensor. The piezoelectric
tensor in lithium niobate only has 4 independent components due to its crystal symmetry:
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d̄ =

 0 0 0 0 d15 −2d22
d22 d22 0 d15 0 0
d31 d31 d33 0 0 0

 (3.7)

with two subscripts jk properly mapped in one index [24]. This tensor also describes the
inverse piezoelectric effect, i.e., the deformation (strain) induced on the material by an applied
electrical field. If Sij is the second-rank tensor describing the strain on the material, it can be
shown that [25]:

Sjk =
X
i

dijkEi (3.8)

Bulk Photovoltaic effect

This effect generally occurs in crystals with a non-centro-geometric structure [33; 26] and is
related to photoexcitation and re-combination phenomena: the absorbing centers in the mate-
rial generate a current through the excited electrons by means of optical interactions and their
movement to the neighbouring ions is directed in a preferential manner. The bulk photovoltaic
current can be observed even under uniform illumination, contrary to the usual photovoltaic
current which requires a heterogeneity of the medium or non-uniformity of the light beam af-
fecting the material. In the case of LiNbO3 the first observation and explanation of this effect
occurred in 1974[34], reporting a stationary current in the crystal after it has been illuminated
by a homogeneous light. The photovoltaic current can be expressed as:

jphv,i = βijkeje
∗
kI = αkG,ijkeje

∗
kI (3.9)

where βijk = β∗
ikj is the complex photovoltaic tensor, ej and ek are unit vectors describing

the polarization of light, while I is the light intensity. If the light absorption coefficient α of the
material (assumed to be isotropic) is considered, one can define the so-called Glass constant
kG,ijk = βijk/α: it describes the photovoltaic activity of a given impurity in the specific lattice.
Actually the real and imaginary parts of βijk tensor are, respectively, symmetric and anti-
symmetric in the indices k and j; for a linearly polarised light, only the real part is taken
into account [26]. In the case of symmetry, the photovoltaic tensor has the same structure as
the piezoelectric tensor, dijk: therefore LiNbO3 photovoltaic tensor has only four independent
components: β311 = β322, β333, β222 = −β112 = −β121 = −β211, β113 = β223. The generated
photovoltaic current is mainly directed along the z-axis (c-axis), since kG,333 = 2.7 · 10−9 cm
V−1 and kG,322 = 3.3 · 10−9 cm V−1, while, for example, the generated current along the y-axis
is one order of magnitude lower, with kG,222 = 0.3 · 10−9 cm V−1 [25] [35].

Photorefractive effect

The combination of electro-optic and photovoltaic effects is what generates the photorefractive
effect, which is consequently not a single effect: it consists of the variation of the index of
refraction of a material when it is exposed to light illumination. The process is a two-step one:
charge migration is followed by electro-optic effect [24]. In general, charge migration can be
caused by both photovoltaic effects and diffusion and drift phenomena. In a photorefractive
material, such as lithium niobate, the light energizes the electrons at the donor level, which
change state and move through the conduction band. Electrons will move to unilluminated
regions until acceptors’ centers are reached if the light pattern illuminating the crystal is not
uniform, causing a non-uniform charge distribution that leads to an internal space-charge elec-
tric field. This generated field modulates the material’s refractive index through electro-optical
effect.
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Photorefractivity cannot be achieved without the presence of intrinsic or extrinsic impurities
with two valence states: in lithium niobate, niobium antisite plays both a donor and acceptor
role, since Nb4+ acts as a donor state while Nb5+ as an acceptor state. Doping the material
with specific impurities in two valence states can enhance the photovoltaic and photorefractive
effect: one of the most common choice for doping is iron, which grants the two states Fe2+,
acting as a donor, and Fe3+, acting as an acceptor [25], [36].

3.2 The photoinduced electric field
The one-center model, which is well-known in literature, is presented in this section at first; we
provide thus a detailed theoretical derivation of the field’s time-dependence.

Photoinduced fields are usually used in order to realize a particular configuration, known
as “virtual3 microelectrodes”: in fact, the creation of localized, space-tailored electric fields can
be achieved by using lithium niobate’s photovoltaic effect.

3.2.1 Photo-induced charge transport

As already mentioned, the charge transport of photoinduced carriers has three main compo-
nents: drift, bulk photovoltaic effect and diffusion [26; 36; 37]. It is possible to write the total
current inside the material as

j⃗ = j⃗drift + j⃗phv + j⃗diff (3.10)

which has to satisfy Poisson and continuity equations:

∇(ϵ̄E⃗) =
ρ

ϵ0

∇ · j⃗ + ∂ρ

∂t
= 0

(3.11)

The drift current, also known as the ohmic current, occurs because of the presence of an
electric field. The sum of contributions from both external and internal fields is typically
used to determine the latter. Examples of the latter are the space-charge field generated by
separation of trapped carriers and, in case of high intensity illumination, the pyroelectric field
promoted by local heating of the crystal due to illumination itself [25]. However, pyroelectric
contributions can be neglected for intensities lower than 105 Wm−2 [38]. Drift current can be
written as

j⃗drift = σ̄ E⃗

σ̄ = qµ̄N
(3.12)

where σ̄ is the conductivity tensor, µ̄ and N are, respectively, mobility tensor and density
of either holes or electrons, depending on the carrier type considered [25].
The asymmetric charge movement from the absorbing center to the nearest neighboring ions
during optical excitation is what causes the bulk photovoltaic current. Charge carriers are
excited with a preferred momentum, which is a typical mechanism for non-centrosymmetric
crystals; they lose their directional properties only after thermalization, which is responsible
for drift and diffusion currents, but not for photovoltaic ones, which has been described in
section 3.1.1. The latter is characterized by the photovoltaic tensor βijk: in lithium niobate,
the greatest current density is observed along the c-axis and is often expressed as scalar:

jphv,c
I

= αkG = µτphvEphv,c
α

hν
(3.13)

3The term virtual refers to the fact that there is no requirement for metal electrodes to generate an electric
field on the material.
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where kG is the Glass constant, accounting for the anisotropy of the charge transport, and
α is the absorbing coefficient [25]. kG can be rewritten as kG = µτphvEphv,c/hν, in which µ is
the mobility of the carriers, τphv is the time within which carriers contribute to the photovoltaic
current, hν is the energy of the photon and Ephv is the phenomenological field moving the
carriers.
The diffusion current is a result of spatial fluctuations in the concentration of charge carriers,
N :

j⃗diff = −qD̄∇N

D̄ = µ̄
kBT

q

(3.14)

with N , q and µ̄ depending on the type of carriers, electrons or holes.

Figure 3.4: Sketch of the working principle of one-center model, taken from [26]. One incident
photon excites one electron from the donor state Fe2+ to the valence band. Excited electron can
then move in the conduction band by means of diffusion, drift and photovoltaic phenomenon
until it is trapped by an acceptor state Fe3+.

3.2.2 One-center model

Vinetskii and Kukhtarev’s one-center charge-transport model is the first model that was de-
veloped to explain photorefractive effect [39]. In this model, only one photorefractive center is
considered, iron in the case of Fe:LiNbO3: as shown in figure 3.4, Fe2+ acts as a donor state,
while Fe3+ is the acceptor one. The following equations give a description of the time evolution
of carriers’ density and their current.

∂Ni

∂t
= (sI + βT )NFe2+ − γiNiNFe3+ − ∇ · j⃗

q
(3.15)

∂NFe2+

∂t
= −∂NFe3+

∂t
= −(sI + βT )NFe2+ + γiNiNFe3+ (3.16)

j⃗ = µiNiE⃗ − qDi∇Ni + sNFe2+kGIĵ (3.17)

where Ni, γi, µi and Di are respectively the density, recombination, mobility and diffusion
constant of the carriers considered (either electrons or holes, i = e, h), s is the photoionization
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cross section, I is the intensity illumination, βT is the thermal generation rate, NFe2+ and NFe3+

are respectively the density of donors and acceptors, while E⃗ is the total applied field (sum of
an eventual external one and a space-charge field) [25]. The current j̄ accounts for all the three
types of charge transportation discussed in 3.2.1.
The space-charge electric field E⃗sc has to obey to the Poisson equation

∇(ϵ̄ϵ0E⃗sc) = ρ = q(Ni +∆NFe2+) (3.18)

with ∆NFe2+ Showing the difference in donor density when there is no illumination.

Equation 3.18 can be simplified, since Ni (standard value 1014 m−1) is usually much smaller
than ∆NFe2+ (standard value 1024 m−1) and can therefore be neglected [25]. In addition, also
the previous set of equations 3.15, 3.16 and 3.17 can be further simplified: under illumination,
Ni reaches a nearly instantaneous equilibrium state, according to the adiabatic approximation.
Therefore, after this short time it is possible to assume ∂Ni

∂t
= 0, implying that carriers are

always in a quasi-equilibrium state with trap distributions at any given moment. In LiNbO3

this is a good approximation for long illumination time, since the initial rise time of Ni is of the
order of picoseconds [37]. Moreover, within adiabatic approximation, also ∂NFe2+

∂t
= 0 holds,

which does not mean that NFe2+ has reached a steady state, since it is present a small and slow
contribution due to charge transports [25]. This approximation allows to get an estimate of Ni

at any time and any place; this can bee seen from equation 3.16:

Ni =
(sI + βT )

γi

NFe2+

NFe3+
. (3.19)

By inserting the latter equation in equation 3.12, one has

σi = qµi
sI

γi

NFe2+

NFe3+
+ qµi

βT
γi

NFe2+

NFe3+
=

= σphv,i + σdark,i

(3.20)

it is clear that conductivity σi is made up of two contributions: the first, σphv,i is the so-called
photoconductivity (different from zero only if the material is illuminated) σdark,i is the second
contribution, called dark conductivity, which is a result of the thermal excitation of charge car-
riers and does not depend on illumination. Both σphv,i and σphv,i display the same dependence
on the so-called reduction degree NFe2+

NFe3+
, as confirmed by several experiments on Fe:LiNbO3

[40]. However, for intensity I > 1 Wcm−2, thermal excitation is negligible and hence σphv,i is
the dominant contribution [25].

Dark conductivity is a significant characteristic of photorefractive materials. Even though in
the presence of illumination σdark,i is often negligible compared to the photoconductivity, it
becomes the dominant contributor influencing the temporal evolution of the spatial charge field
when the lighting is turned off. In dark conditions, this field decays due to dark conductivity,
which may be an obstacle for applications that require the electric field to persist over time or
that need a quick vanishing of photo-induced field.
Storage time in dark conditions of space-charge field up to 1 year have been measured in low-
doped Fe:LiNbO3 [41], with dark conductivity of the order of 10−16 − 10−18 Ω−1cm−1 (room
temperature). In high-doped crystals, decay process is faster and typical storage time is around
hours, minutes or seconds [25], [42].
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Non-homogeneous illumination solution

An analytical solution for the set of equations 3.15, 3.16 and 3.17 can be obtained if two plane
waves create a sinusoidal interference pattern. Therefore, for simplicity, a one-dimensional
light pattern produced by the interference of two plane wave-vectors k⃗1 and k⃗2 along z-axis is
considered in the following:

I(z) = I0(1 +msin(k⃗ · ẑ)) (3.21)

where I = I1+I2
2

is the average intensity, m = Imax−Imin

Imax+Imin
is the pattern visibility and k⃗ = k⃗1−

k⃗2 [25]. The solution was first obtained by Kukhtarev et al. [39] by developing in Fourier series
all the involved quantities in equations 3.15, 3.16 and 3.17 that depend on spatial coordinate ẑ.
If modulation is small, i.e. m≪ 1, then only zero- and first-order terms can be considered, since
any other k-th Fourier term is quickly decreasing with mk. Each quantity X(t) depending on ẑ
coordinate can thus be rewritten as X(t) = X(0) +X(1) eik⃗·ẑ, with X(t) = E⃗, NFe2+ , NFe3+ , N .
The following illustrates how the three equations can be simplified (for convenience, E(0) = E0):

Esc ≈ E(1) = − E0 + Ephv + iED

1 + ED/Eq − iE0/Eq − iEphv/Eq′

Ephv =
jphv
σphv

=
kGγi
qµi

NFe3+

ED =
kBT

q
K

Eq =
q

ϵϵ0K

1

NFe2+
+

1

NFe3+

−1

Eq′ =
q

ϵϵ0K
NFe2+

(3.22)

where ED is the diffusion field, Esc is the space-charge generated field, Eq and Eq′ are,
respectively, the space-charge limiting fields, and K = k⃗ · ẑ [25]. The maximum amplitude of
the space-charge field generated by electrons transport inside the material is referred to as Eq

when the light frequency and light pattern are fixed. The one-center model is able to provide
also the time evolution of space charge field, which turns out to be described by an exponential
law with time constant

τsc =
1 + (ED − iE0)/EM

1 + ED/Eq − iE0/Eq − iEphv/Eq′
τM (3.23)

EM =
γiNFe3+

µi

1

K
(3.24)

τM =
ϵϵ0

σphv,i + σdark,i
(3.25)

From equation 3.25 it is clear that if σphv,i ≫ σdark,i, then τ ∝ σ−1
phv,i. On the other hand, it

is also evident that a significant dark conductivity, when compared to the photoconductivity,
leads to a decreasing of τM [25].

Simplified first approximation solution

To significantly simplify one-center model equations, some assumptions can be made [25]:

• E0 = 0, i.e. no external field was applied to the lithium niobate sample.
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• i = e, since in the case of iron-doped lithium niobate [38] and visible light, electrons
dominate over holes in transport mechanisms. Equations listed above are the same for
both holes and electrons, therefore if electrons provide the most important contributions,
i = e holds.

• Eq ≫ ED, Eq′ ≫ Ephv, which means that no space-charge limiting effects are present: in
the material enough donors and acceptors are available to support the building up of the
space-charge electric field.

• Ephv ≫ ED; in Fe:LiNbO3 this relation holds for light modulation larger than 1µm [36].
In this work, this condition is verified.

The above assumptions imply also that EM ≫ ED and accordingly τM ≈ τsc. By insert-
ing equations 3.21 and 3.22 in one-center model rate equations 3.15-3.17 and by using previous
assumptions, the time evolution of the space-charge electric field during its establishment (equa-
tion 3.26) and its fading out (equation 3.27) can be obtained:

Esc(t) = −Ephv(1− e−t/τsc) (3.26)

Esc(t) = Esc,0 e
−t/τ ′sc (3.27)

where the saturation value of the space-charge field Esc for t ≫ τsc is given by the bulk
photovoltaic field, and where Esc,0 is the value of the space-charge field at the beginning of the
fading out process, when illumination has been switched off [25].
Considering that in Fe:LiNbO3 σphv,i ≫ σdark,i for illumination intensities I > 1 Wcm−2, some
useful dependencies can be obtained from the previous analysis:

jphv ∝ I NFe2+ (3.28)

τ ∝ σ−1
phv ∝

1

I

NFe3+

NFe2+
(3.29)

Ephv ∝ NFe3+ (3.30)

All of these three dependencies have been experimentally verified [25; 37; 43].
Assuming that the density profile of the accumulated space charge in correspondence with the
focus of the laser beam is Gaussian, it is possible to show that the electrical saturation field
that arises in a 0.01 % mol iron-doped lithium niobate z-cut crystal is of the order of 105 − 106

V/m [44].

A first crucial consideration concerns the real electric field: while EHD envisages the
possibility to have spatial-dependent fields, it does not address generic time-varying ones4.
With respect to what has been previously stated in section 1.1, equation (3.26) shows that
the electric field we deal with in this real situation is a time-dependent one. It is reasonable
to assume that after an interval of 4τ the field will be constant over time, with its value
corresponding to the “saturation” one since:

Esc(4τ) = −Ephv(1− e−1/4) ∼ −Ephv. (3.31)

All measurements on the response of the droplet are performed way after switching on the elec-
tric field: this means that equation (3.31) is valid and that, unless negligible fluctuations of the
value of the external imposed field, we work with a DC one. Therefore, all electrohydrodynamic
laws can be employed.

4Except for periodic ones, but it is not our case.
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3.3 Microdroplets
Analyzing the main elements of microfluidics and droplet generation is necessary in relation to
the real water droplet.

3.3.1 Microfluidics

Microfluidics is the science of systems which handle or process small quantities of fluids, ranging
from µL to pL and employing channels with dimensions between 10 and 500 µm [45]. Microflu-
idic devices are able to sample small volumes, while also allowing for low cost and fast analysis,
with high resolution [46].
Microfluidics is characterized by values of Reynolds number Re such that

Re =
ρdv

µ
< 100 (3.32)

where ρ is the density of the fluid, v is the average velocity, d is the characteristic linear
dimension of the flow and µ is fluid’s viscosity. Laminar flows and no mixing between different
phases are characteristic of microfluidic channels due to low values of Re, making microfluidics
compatible with the production of controlled emulsions of two or more immiscible fluids.
The production and subsequent high-precision manipulation of very small volumes of fluids has
led to an increase in interest in droplet microfluidics in recent years: this feature makes it a
promising candidate for chemistry, biological and medical applications [47; 48]. By utilizing
specific geometries, it is possible to produce droplets of a phase, commonly known as dispersed
phase, into another one, the continuous phase. Among the most used we can find the T-
junction (or the cross-junction)5. In the most general case, a micro-fluidic droplet circuit
is composed of different microchannels with droplets of typical size. Upon production, the
droplets from the dispersed phase are transported inside the continuous phase through the
main microfluidic channel. Their movement within the channel is akin to rolling against the
channel’s walls compared to pure translation [49]. The formation of a thin lubrication film
composed of continuous phase between the droplet’s surface and the channel walls is what
distinguishes single droplet transit.
High precision fabrication processes are required for microfluidic channel sizes. Microchannel
circuits can be achieved with a high level of precision on polymeric substrates like PDMS and
PMMA thanks to photolitography techniques [50; 51]. Despite this, these materials are not
always suitable for a high level of integration. In addition, solvents can cause damage or swell
with oil-based fluids in many instances. Only recently [35; 36; 47; 52], a valid alternative to
polymeric materials for microfluidic and Lab-On-a-Chip applications has been proposed by
lithium niobate.

3.3.2 Droplet generation: T-junction configuration

In literature, many kinds of droplets generators have been studied [53]. To guarantee high
reproducibility, a droplet generator must have low dispersion in volume of droplets and a high
range of droplets frequency. External pumps are necessary to inject both continuous and
dispersed phases into the microchannels. Depending on the typology of external devices used
in droplet production, droplet generators can be divided into two categories: active and passive
generators. External energy sources other than pumps are involved in the former, such as
external electric fields or mechanical valves, while the latter includes all the others generators
relying mainly on pumps and on geometry of the microchannels [25].

5This junction will be further discussed in the following subsection.
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In this work, a cross-junction droplet generator in T-junction configuration is used. Cross-
and T-junction droplet generators are passive generators, both of them relying on a particular
geometry of the junction between the main microchannel, in which continuous phase is made
flowing, and the microchannel in which dispersed phases is injected [25]. A crosswise junction
is formed when two microfluidic channels cross each other orthogonally in the cross-junction
case, while in T-junction the two channels are crossed forming a T-shape junction, as the name
itself suggests [47]. Both configurations are similar: a cross-junction with one extremity closed
works as a T-junction, which is the configuration employed in this work. For this reason, in
the following only T-junctions theory is discussed [25].

In a T-junction different working regimes can be achieved varying important parameters char-
acterizing the system, such as injected fluxes Qc, Qd (respectively, continuous and dispersed
phase flux), physical properties of employed fluids, such as density ρc, ρd, viscosity µc, µd, sur-
face tension and/or wettability properties e.g. contact angle [25]. Depending on the mentioned
parameters, three different well-defined working regimes can be identified [25], [35]:

• Co-flow : this is the case of fluids with similar viscosity, flowing in the channels with small
velocities and with high wettability with channels surface. In this regime, the two phases
flow parallel to each other and no droplets are produced.

• Dripping : opposing to the previous regime, in the dripping one droplets are produced at
the T-junction. In this case, droplets can occupy completely the channel (except for a
thin continuous phase film) or not. The first possibility is called squeezing regime and
thanks to its stability, it is preferred in most of the cases and the one adopted in this
work.

• Jetting : this is an intermediate regime, since droplets are generated after a small portion
of the main channel, in which the two phases are co-flowing. This working condition is
characterized by high frequency.

Figure 3.5: Sketch of the three typical working regimes in a T-junction. Image taken from
[35].

Independently of the working conditions, droplets are produced thanks to the forces exerted by
continuous phase on the dispersed phase entering the main channel at the fluid-fluid interface,
causing the shearing off. These forces are due to capillary, drag and pressure contributions.
Droplets production in this work is obtained within squeezing regime. Both squeezing and
dripping regime are characterized by the size of the droplet during the break up at the junction.
In squeezing, droplets completely obstruct the main channel before the break up and pressure
term is the dominating one in this process. In dripping regime, droplets produced at the junction
do not fill completely the main channel and in this case shear stress is the main contribution in
the detachment. Garstecki et al. [54] proposed a model which takes into account the opposition
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of the continuous phase flowing in the main channel to the dispersed phase tip growing at the
fluid-fluid interface. The same work was also the first proposing to use capillary number Ca,
i.e.

Ca =
µv

γ
(3.33)

where γ is the surface tension, as a discriminating value between dripping and squeezing
regimes. This parameter expresses the comparison between viscous stress and capillary pressure,
that are the the dominating forces in the small geometries considered [25]. The final equation
proposed for droplets length in squeezing regime is

L

wc

= 1 + α
Qd

Qc

(3.34)

where L
wc

is the length of the droplet normalized to the width of the channel and α should
in principle be wd/wc (see figure 3.6) but it is left as a fitting parameter. This relation has
been experimentally verified by the same authors. Equation 3.34 drawback is that it provides
a good agreement with experimental values only in squeezing regime, in a small range of Ca
values. An improvement to the description of the dripping regime have been carried out by
Christopher et al. [55]. Their model is described in detail in the following, since their resulting
expression for droplets length can be traced back to equation 3.34.

Figure 3.6: Sketch of the emerging droplet right before the break up instant as considered in
Christopher et al. model. The image is taken from [55; 36].

The break up instant is considered as the instant when the three main forces acting are balanced:

Fσ + Fτ + FP = 0 (3.35)

These three forces are:

• Capillary force:

Fσ ∼ −σ 2

b
+

2

h
+ σ

1

b
+

2

h
bh = −σh (3.36)

that is given by the difference between Laplace pressure upstream, σ 1
b
+ 2

h
, and down-

stream, −σ 2
b
+ 2

h
, with respect to the droplet (curvatures are approximated), multiplied

by the area of the interface bh (h is the depth of the channel).
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• Drag force:

Fτ ∼ µc
vc

wc − b
bh ∼ µc

Qc

(wc − b)2
b (3.37)

that is the force due to the viscous shear stress applied from the continuous phase flowing
in the main channel on the emerging dispersed phase droplet. Shear rate is approximated
by taking the ratio of the continuous phase velocity vc in the gap between emerging
droplet and channel’s walls divided by the gap width (wc − b).

• Squeezing pressure force:

FP ∼ ∆pcbh ∼ µc
vc

wc − b

b

wc − b
bh ∼ µc

Qcb
2

(wc − b)3
(3.38)

which is obtained, as the authors specify, from a lubrication analysis [56] for the pressure
during flow in a thin gap with aspect ratio (wc − b)/b.

By substituting the three previous equations 3.36, 3.37 and 3.38 in equation 3.35, it is possible
to obtain the length of the droplet during the shrinking of the neck, namely the dispersed
phase volume connecting the emerging droplet within continuous phase and the dispersed phase
completely within the side microchannel [25]. The contribution to the droplet length after the
shrinking is approximated by vgrowth · tsqueeze, where vgrowth = Qd/bh is the growth velocity
and tsqueeze ≈ wd/vc ≈ wdwch/Qc is the time between the neck shrinking and the break up.
Combining the two contributions, the obtained length law is:

L

wc

= b̄+
Λ

b̄

Qd

Qc

(3.39)

where b̄ = b/wc and Λ = wd/wc. The Λ parameter is the same α parameter in Garstecki
et al. model (equation 3.34) and in fact in squeezing regime, with b̄ → 1 since b during
detachment is close to the continuous channel width, equation 3.39 yields equation 3.34. With
similar arguments, semi-empirical droplets frequency production trend for constant values of
ϕ = Qd

Qc
is derived as:

f̄ = f tcap = f
µcwc

σ
∝ Caαf (3.40)

where αf is a parameter experimentally determined to be 1.31± 0.03.
Other theoretical models have been proposed, but the majority of them added further param-
eters to better reproduce experimental data trend without adding new physical considerations
(see for example [57]). Both equations 3.39 and 3.40 have been experimentally verified [36]
within LiNbO3 group at University of Padua by exploiting an optofluidic platform integrated
in lithium niobate.

3.4 The optomicrofluidic platform
Droplets are generated by exploiting an optofluidic chip [52]: a cross-junction is engraved on
a Lithium Niobate (LN) substrate such that the main channel is perpendicular to an array
of Ti-indiffused waveguides in a Mach-Zehnder interferometer (MZI) configuration coupled to
laser light, allowing the detection of droplets flowing within the main channel (width wc = 200
µm, height hc = 100 µm) and the measurement of length and velocity of each single droplet.
The substrate is sealed with a glass cover (thickness of around 1 mm). A detailed description
of this optofluidic chip, including design and fabrication, has been provided by our group in [58].
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An additional iron-doped lithium niobate (Fe:LN) cover (z-cut, 0.1 % Fe concentration) is
integrated on top of glass cover in order to exploit Fe:LN bulk photovoltaic effect [26]. It is
well-known [59; 60; 44] that by illuminating this material with suitably not-spatially homoge-
neous light (green, i.e. 532 nm) photoexcited electrons move in a preferential direction giving
rise to a photocurrent (see section 3.2). The latter originates in turn a charge density which
results in a local space-charge electric field. The shape of the crystal region in which the field
is produced depends on the shape of the illuminated spot.
In this work a z-cut Fe:LN crystal is chosen since the photoexcited electrons move along the
z-axis (c-axis) toward its positive direction. Hence the +z face is placed as close as possible to
the glass cover, in order to maximize the field’s lines entering the microchannel. The scheme of
the chip is reported in Figure 3.7. The light illumination of the cover is provided by a solid
state laser (λ = 532 nm) with a power of 65.0 mW. The bulk photovoltaic effect is obtained by
illuminating the Fe:LN cover at the level of the microfluidic channel with the spot aligned with
the MZI waveguide, coupled in turn with a continuous diode laser with power of 7.35 mW and
a wavelength λ = 532 nm, enabling the detection of the flowing droplets and the measurement
of length and velocity of each single droplet [58].

MilliQ® water is used as dispersed phase (flow rate Qd) while Hexadecane (Sigma-Aldrich)
with 3 % w/w concentration of SPAN® 80 surfactant (Sigma-Aldrich) as continuous phase
(flow rate Qc), hence producing water droplets dispersed in the latter. The surface tension
between water and hexadecane with that surfactant concentration employed in this work was
measured by pendant drop method obtaining γ0 = 4.27 ± 0.04 mN/m. The flow rates are
controlled by a pressure pump OB1 MK3 (Elveflow, Paris, France) in feedback with flowmeters
BFS Coriolis (Bronkhorst, AK Ruurlo, Holland). Liquids are injected in the chip through
microfluidic inlets. A scheme of the opto-microfluidic setup is reported in Figure 3.9.

Figure 3.7: Scheme of the opto-microfluidic chip employed in this work. In the figure, wc = 200
µm, hc = 100 µm and 2W = 40 µm. A detailed description of its design and fabrication and
the opto-microfluidic setup employed to generate droplets has been previously provided in [58].

In order to evaluate the effects of the space-charge electric field, lengths and velocities of
each generated train of droplets are measured before switching on the PhV-laser (corresponding
to t = 0 minutes) and after its switching on. Each acquisition has a time duration ∆ti such
that at least 100 droplets are detected for any chosen combination of flow rates.
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Figure 3.8: This is a simplified three-dimensional version (note that no glass cover is drawn)
of the chip [36].

Figure 3.9: Scheme of the whole opto-microfluidic setup [25].
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Figure 3.10: Schematic representation of the followed protocol to obtain data sets of at least
100 droplets [25].

The experimental conditions have been chosen so that one single droplet experiences the
effect of the space-charge field. This is achieved by generating droplet with such a length that
a single droplet can travel completely across the illuminated zone of the channel for a certain
time interval.

With regard to single-drop motion, some considerations can be made. The transit in the
illuminated zone of the channel can be substantially divided into steps, described in figure
3.11. Figure 3.11a shows the drop before entering the illuminated spot. Then the first one,
(3.11b), shows the droplet entering the illuminated zone (coming from the non-illuminated
part, 3.11a). From figure 3.11c to 3.11d each droplet travels through the illuminated zone of
the microchannel.

(a) (b)

(c) (d)

Figure 3.11: This figure is a schematic representation of droplet motion inside the microchan-
nel (in yellow). Laser illumination is represented by the two green arrows, and the two dotted
lines represent the limit of the beam spot produced on the iron-doped sample. Taken from [25].
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3.5 The employed configuration

3.5.1 The real electric field

The real field distribution is quite complex to be modeled. The figure 3.12 below provides a
schematic representation of the beam spot as seen from above the optofluidic platform, high-
lighting the dependence of saturation Esc on x coordinate due to the shape of the spot. The
figure is not to scale.

Figure 3.12: The beam spot is depicted in a schematic manner from a top view, demonstrating
the dependence of saturation Esc on the x coordinate due to the spot’s shape. The figure is
not to scale. Source [25].

In an attempt to provide an analytical description of this field, it is possible to divide the
whole illuminated spot can into two parts by means of a circular crown. The outer part (in
light green) is the one containing the curved field lines, whereas the inner circle is the uniform
part of the field. As a first approximation, the curved part can be considered as a quadrupole
field, and the uniform part as a linear one. This approach is one of extreme importance, as
it emphasizes the role of the two components – linear and quadrupolar – and their relative
strength.
There are two possibilities for the length of the nonuniform part, as can be seen from figures
3.14 and 3.13. It is assumed that the difference between the outer and inner radii of the circular
crown is small with respect to the dimension of the drop.

Figure 3.13: The discarded configuration for uniform and nonuniform parts. The figure is to
scale.
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Figure 3.14: The chosen configuration. The figure is to scale.

Figure 3.15: Magnification of the region of space where the drop enters/leaves the spot. The
figure is not to scale.

Let us now consider the two following figures:

Figure 3.16: Front view of the chip where field lines are drawn. The figure is not to scale.
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Figure 3.17: Lateral view of the chip where field lines are drawn. The figure is not to scale.

Since we assumed that the the difference between the outer and inner radii of the circular
crown is small with respect to the dimension of the drop, the main contribution of the field to
the deformation comes from the uniform part in which the deformation can be quantified as
r⊥; in fact, in our system r∥ is fixed by channel confinement.

3.5.2 The real drop

Droplets that are subjected to measurements are therefore undergoing confinement due to the
microchannel: this has clearly an influence on their three-dimensional shape. Actually, the
drop is squashed between two parallel plates both from a top-bottom perspective and from a
left-right one (see figure 3.21). The aforementioned parallel plates are actually planes of the
microchannel.
Confinement is mainly due to the channel: for large and long drops that actually occupy a big
portion of the channel, confinement acts directly on the shape of the drop, modifying it both
from a top-bottom perspective and a left-right one. Moreover, the advancing and rear profiles
of the drop (consequently contact angles, too) are not equal for the drops under study, as can
be seen from the figure below:

Figure 3.18: Top view of a drop flowing in the channel.
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Figure 3.19: Sketch of the possible shapes
assumed by a drop between two horizontal
plates [10].

An analytical treatment for the shape
of confined droplets has actually been
proposed in a simpler situation of a
top-bottom confinement in a symmet-
ric case [10]. However, not only the
adopted description – that is the case
labeled by (A) – is distant from our
real situation (this is in any case a
problem we might have overcome by
means of appropriate assumptions and
approximations): as we will see in a
moment, this model focuses mainly on
calculating the volume of the drop,
which will turn out to be an unneces-
sarily complex mathematical function
itself.

Let us consider the cross-section of a droplet constrained by two parallel plates and having
the same contact angle with both planes. This can be represented as:

Figure 3.20: Diagram showing the geometry of a droplet that is confined to two parallel
planes [10].

The volume, Vol, can be expressed as a function of the triple (R, δ, θ) or the triple (a, δ, θ),
resulting in:

Vol(R, δ, θ) = 2π

(
δ

2
(R2 − 2rR + 2r2)

1

3

δ

2

3

+ (R− r)r2 θ − π

2
+

sin 2θ − π

2

)
(3.41)

Vol(a, δ, θ) = πa2δ + 2π
δ

2 cos θ

2

af1(θ) +
δ

2
f2(θ) (3.42)

f1(θ) = θ − π

2
+

sin (2θ − π)

2
+ 2 sin θ cos θ (3.43)

f2(θ) = tan θ θ − π

2
+

sin (2θ − π)

2
+ 2 cos θ − cos θ2

3
+ (1− sin θ)2 (3.44)

As equations (3.41) and (3.42) suggest, this description brings to complicated expressions to
solve analytically6. Indeed, the development of complete and general theoretical model for a
faithful description of these real drops has not been fully developed in literature yet. Droplets

6For example, one may use the conservation of the volume, Vol(Rinitial, δ, θ) = Vol(Rfinal, δ, θ) to get an
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Figure 3.21: A real drop flowing in the rectangular microchannel. Adapted from [61].

base length is almost constant for fixed ϕ7: in the case ϕ = 0.8, it varies between (561 ± 4) µm
and (566 ± 7) µm, for ϕ = 0.6 it is included between (467 ± 3) µm and (488 ± 4) µm while
with ϕ = 1.0 it ranges between (638 ± 4) µm and (641 ± 4) µm.

explicit expression for Rfinal. The final length of the droplet would be then Lf = 2Rfinal. Given the clear
complexity of (3.41), this is indeed too difficult from a mathematical point of view.

7The drop velocity can be assumed to be constant, too.
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3.6 Comparison: theory versus experiment

By comparing experimental evidence with the results of the models we have presented, we
aim at verifying mainly if, and if yes to what extent, these analytical models are suitable to
describe real systems that are characterized by a significantly greater level of complexity. A a
spontaneous consequence of the comparison process is the enhancement of limits or criticalities
of the models, provided that there are no errors in the experimental results, which is assumed
hereafter. The approach aims to pave the way for the development of more complicated,
possibly analytical models and is therefore based on phenomenology.

The theoretical model

The starting point under study is the shape of the drop. In chapter 2 a lot of cases have
been treated; shapes have be assumed to be spherical (most cases), cylindrical (one case) or
ellipsoidal (two cases). Spherical models can be immediately rejected, since it is obvious that
a sphere is as far as it can go from the shape of the real droplets flowing in the channel and
interacting with the photoinduced field. The cylinder and the first case for an ellipsoidal cross
section are then considered, since they seem more appropriate. We summarize here again their
main analytical results (see section 2.7):

NOTATION AND PARAMETERS

• µ, viscosity;

• γ, surface tension at the interface of the two fluids;

• σ, electric conductivity

• ϵ, electric permittivity

• E∞, intensity of the external applied field;

• r0, initial characteristic length of the drop (unbounded case);

• parameters (subscript i for “inner” fluid, whereas o for the “outer” one):

R =
σi
σo

, S =
ϵi
ϵo

, η =
µi

µo

and Cael =
ϵoE

2
∞r0
γ

.

Cylinder, circular cross section

The steady state is approached as:

D(t) = D∞(1− e−t/τD).

The steady state value deformation is:

DT,∞ =
Cael
3

Ψ

(1 +R)2
,

where Ψ = R2 +R + 1− 3S and

τD = (µi + µo)r0/γ

Ellipsoidal cross section

D(t) = D∞(1− e−t/τD).

The steady state value deformation is:

D∞ =
9

16
CaelF

⋆(R, S, η),

and

τD =
µor0
γ

(3 + 2η)(16 + 19η)

40(1 + η)
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with F ⋆(R, S, η) given by equation (2.108).

It is interesting to observe that:

• For both the circular and the ellipsoidal cross sections, D∞ depends on Cael;

• the parameter η can be found in the elliptical cross section case, affecting both D∞ and
τD through a structural parameter F ⋆(R, S, η);

• in the case of the circular cross section, η enters can be emphasized in the expression for
τD but not in the one of D∞, that does not contain it.

To provide a numerical estimate for the physical quantities under study, namely D and τD,
we need to specify the numerical values of the parameters.

• the viscosity8: µi = 0.89 cP and muo = 3.04 cP;

• the surface tension at the interface of the two fluids: γ0 = 4.27± 0.04 mN/m;

• the electric conductivity: σi = 0.055 µS/ cm and σo = 1 · 104 pS/ cm

• the electric permittivity (relative values): ϵi = 80 and ϵo = 2.05.

As for both E∞, the intensity of the external applied field and r0, the initial characteristic
length of the drop (in the unbounded case), we do not have a ready to use value. In fact, the
first would be the estimate of the external imposed field inside the microchannel that is felt by
the drop. In the case of pure LN, the space-charge field can span from 0 to 104 − 105 V/m,
while it is significantly increased in Fe:LN crystals, with values up to 10 · 106 V/m (with 0.1 %
Fe concentration) [44]. We have performed a simulation to get an estimate of ∼ 8.3 · 10−4 V/m
at more or less 200 µm from the glass cover, which is then used as a rough estimate of E∞.

Figure 3.22: Value of the field plotted with respect to the top of the Fe:LN crystal.

8The viscosity is expressed here in centipoise, 1 cP = 1 mPa · s.
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The value of r0, the initial characteristic length of the cross section of the drop, is assumed9

to be 50µm, since it is the maximum possible value for a circle that can be inscribed in the
rectangular channel. We provide a numerical estimate of D∞ and τ for both models:

Cylinder

The steady state value deformation is:

D ∼ 10−6 (3.45)

τ ∼ 0.065ms (3.46)

Ellipsoid

The steady state value deformation is:

D∞ ∼ 2 · 10−6, (3.47)

τ ∼ 0.046ms (3.48)

D, as defined in chapter 1, is a dimensionless parameter telling us that for both models the
deformation is small:

(r∥ − r⊥) ∼(r∥ + r⊥) · 10−6 (3.49)
(r∥ − r⊥) ∼2 · (r∥ + r⊥) · 10−6. (3.50)

Parameter τ is the characteristic time for the deformation of the cross section. It is reason-
able to expect that the drop will deform simultaneously both with respect to the cross section
and the axial length, therefore τ can also be assumed to provide a timescale for axial defor-
mation (in our case an elongation). In both estimates, the value of τ is consistent with the
assumption that deformation has to be established before the drop is detected10.

Real measurements

The majority of the existing of theoretical models does not assume or impose the conservation
of volume, namely Volinitial = Volfinal; the latter is however a crucial assumption, turning the
model from a mathematical one to a physical one. Let us analyze the consequences of the
conservation of volume in much detail.

• Cylinder, circular cross section11:

Volinitial = πr20L0, (3.51)

Volfinal = πabLf ; (3.52)
conservation of volume reads:

r20L0 = abLf . (3.53)
It is straightforward to obtain therefore

r0 =

r
Lf

L0

ab (3.54)

• For a cylinder with elliptic cross section12: the same reasoning leads to:

ainbinL0 = afinbfinLf (3.55)

Note that if the shape would be a three-dimensional ellipsoid, the standard formula for

its volume,
4

3
πabc, where cin =

L0

2
and cfin =

Lf

2
in the conservation equation would

lead to the exact same result of the cylinder with elliptic cross section.
9In fact, our real drop is not a cylinder.

10This sets an upper boundary for the value of the characteristic time, 4τ < 0.16s.
11The circular cross section deforms into an ellipsoid with semiaxes (a, b). See figure 2.1.
12That is, the already-ellipsoidal cross section deforms into another ellipsoid with new semiaxes.
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Some remarkable comments can already be made from this reasoning. In fact, if the volume
is conserved and if Lf is different from L0 (in our case, drop elongates so Lf > L0), then also
the cross section has to modify during the process.

Last but certainly not least, we have assumed generally that γ, the surface tension at the
interface of the two fluids is constant. This might be not true, as we observed in our real
system.
In Figure 3.23, as an example, the average behavior over time of final lengths is reported for
the case Qc = 10 µL

min and Qd = 8 µL
min (ϕ = 0.8). Each point is the average of the final lengths

of at least 100 detected droplets. The fit is performed with the following equation:

Lf (t) = L0 +∆L 1− e−t/τ (3.56)

where L0 is the fixed base length obtained when no laser beam is impinging on the iron-doped
sample while ∆L and τ are the fitting parameters, respectively the observed elongation due to
illumination and the typical time in which that elongation is established.

Figure 3.23: Average lengths over time with flow rates Qc = 10 µL
min and Qd = 8 µL

min (ϕ = 0.8).
In this case, a Fe:LN sample with NFe3+ = 15.6 · 1018 atoms/cm3 is employed.

As already mentioned, the induced elongation of the droplet is due to the Photo-Voltaic
effect by way of the interaction of the space-charge field generated in Fe:LN. Our experimental
apparatus actually measures the two steady states for each drop. If all the drops were always
under the same experimental conditions, we would be dealing with repeated measurements of
the same phenomenon. In this perspective, we would expect that, for fixed flow rate ϕ := Qd/Qc:

1. droplets base length L0 is almost constant, which is true;

2. the values recorded for subsequent final lengths Lf of the droplets are all settling around
the same value. It is clear from Figure 3.23 that this is not true: as time passes, drops
elongate more, reaching higher values of Lf .
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The fact that the average final lengths are increasing over time reaching a saturation value is
witnessing a novel kind of interaction yet to be properly understood.
Not accounting for this change in a theoretical model may be an additional, possible source of
discrepancy.

Results of the comparison

All in all, we can conclude that conservation of volume leads to the possibility of expanding
theoretical treatment to include the possibility of deformation in the axial direction.
In fact, evidence is that theoretical models work on cross sections, providing insights on their
dynamical evolution and estimates of both their deformation rates and characteristic times.
This is possible under some specific assumptions of geometric symmetry (e. g. for a cylinder
symmetry in the direction of its axis is assumed) and generally reduces the problem to a
two-dimensional one as we have previously seen. This is an approximation as it ignores the
possibility of growth of random perturbations in the axial direction (which exist in an actual
setting). The latter is confirmed also from another fact that has been neglected until this point:
field nonuniformity.
Both models suppose the application of a uniform field, that justifies the further assumption of
symmetry with respect to the axis of the cylinder, allowing therefore the equations to become
two-dimensional. But it is clear that, if the field is nonuniform, this is in general not true and
some changes need to be introduced in order to account for this aspect. We will deal with the
latter in the next section, providing a novel proposal for the case of the cylinder.
Finally, it is in general not possible to consider γ as a constant.

3.7 Model improvements

In light of the limitations emerged as a result of the theory-experiment comparison, we present
here three elements that, if included in the model, may be crucial for its improvement: the
confinement, the field nonuniformity and the temporal variation of the surface tension value.
It is reasonably to expect that the more of these three points would be included in an extension
of an electrohydrodynamic model, the better the improvement (an ideal condition would be
their contemporaneous presence).

Confinement

The first one, that is the confinement of the outer fluid in which droplets are suspended has
already been addressed by several numerical studies. However, an analytical development of
EHD theory taking into account the presence of walls is yet to be performed in detail. This
is reasonable, since its addition might bring a non-negligible contribution of complexity to the
problem up to a point where it could be directly considered as guilty in case of an eventual
failure of analytical solution.
In this regard, trying to overcome the latter two new ideas can be carried on:

1. since, as said, the effect of the confinement on large drops results in modifications of
the three-dimensional shape of the surface of the drop, one may choose to perform some
target modifications to already-existing shapes accounting for the “constrained” deforma-
tions and providing thus a shape that is closer to reality. The aim would be to stick to
these shapes that can bring to analytical solutions (cylinder or ellipsoid) by opportunely
combining them together or by adding some specific analytical conditions to include con-
finement.
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From a simpler viewpoint, it may be possible to start simply by improving the shape of
the drop, from a cylinder to an ellipsoid, which is surely closer to the shape of large drop
flowing in channels and has jet not been extensively treated in literature.

2. by exploiting the conservation of the volume, one may think to invert one among equa-
tions (3.41) and (3.42) to get an expression for R or a in terms of the volume and the
contact angles. Measurements of the values of contact angles both with and without
electric field may then lead to relevant results in terms of elongation and electrohydro-
dynamic response. Note that exact results presented in subsection 3.5.2 are derived in a
simpler case which may be enlarged to the one of non-symmetric contact angles and both
confinements. Again, this proposal is valid only in the case of large drops.

Extension of the model for a leaky cylinder in nonuniform E

As we have seen, the application of a uniform field justifies the further assumption of sym-
metry with respect to the axis of the cylinder, allowing therefore the equations to become
two-dimensional. But it is clear that if the field is not uniform, this is generally not true and a
few changes need to be made to take this into account.

The general solution for the Laplace’s equation (1.23) in cylindrical coordinates assuming
cylindrical symmetry is:

V (r, θ) = A0 ln r +B0 +
∞X
k=1

rk[Ak cos kθ +Bk sin kθ] + r−k[Ck cos kθ +Dk sin kθ] (3.57)

that can be expanded according to one’s need. It is actually simple to verify (see Appendix
A) that for the first order with boundary conditions expressed in section 2.5, one regains results
of equations (2.75) and (2.76).

To impose a condition for a nonuniform potential, it may be sufficient to expand the potential
up to the second order:

V (2)(r, θ) = A0 ln r +B0 + r[A1 cos θ +B1 sin θ] +
[C1 cos θ +D1 sin θ]

r
+

+r2[A2 cos 2θ +B2 sin 2θ] +
[C2 cos 2θ +D2 sin 2θ]

r2
.

Now we have to go on by imposing boundary conditions, that are taken as:

(i) Vi = Vo at r = r0;

(ii) Vi is bounded at r = 0;

(iii) ϵ0ϵo
∂Vo
∂r

= ϵ0ϵi
∂Vi
∂r

at r = r0;

(iv) Vo = E∞[rP1(cos θ) + Λr2P2(cos θ)] as r → ∞.

The latter is due to the fact that we have to take into account the field nonuniformity, and
Feng’s potential is one of the few – if not the only one – proposals to treat such cases.

Boundary conditions (i)− (iii) are the same that have been imposed in all this thesis work, so
the main point is imposing (iv), which has crucial consequences that we analyze in detail in
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the following.
Let us start from:

Vo = E∞[rP1(cos θ) + Λr2P2(cos θ)] = −E∞ r cos θ + Λr2
(3 cos2 θ − 1)

2
(3.58)

since 1 = cos2 θ + sin2 θ the latter results in:

Vo = E∞ r cos θ + Λr2 cos2 θ − sin2 θ

2
. (3.59)

Now let us address the complete expression for the potential: since no sin θ appear in the b.c.,
we can safely set13 B1 = B2 = D1 = D2 = 0, giving then:

V (2)(r, θ) = A0 ln r +B0 + rA1 cos θ +
C1 cos θ

r
+ r2A2 cos 2θ +

C2 cos 2θ

r2
. (3.60)

in which we substitute cos 2θ = (cos2 θ − sin2 θ) and rearrange:

V (2)(r, θ) = A0 ln r+B0+rA1 cos θ+
C1 cos θ

r
+r2A2(cos

2 θ−sin2 θ)+
C2

r2
(cos2 θ−sin2 θ). (3.61)

Application of b.c. (iv) to (3.61) yields:

• Ao
0 = 0, since there is no explicit logarithmic dependence;

• Bo
0 = 0, since there is no constant term in the far field;

• Ao
1 = E∞;

• Co
1 and Co

1 need to be constant to ensure that ∼ 1/r and ∼ 1/r2 terms go safely to zero
in the far field.

We are then left with
r2Ao

2(cos
2 θ − sin2 θ)

that we have to put equal to

r2E∞Λ cos2 θ − sin2 θ

2
.

This leads to an absurd, since it would imply that:

Ao
2 = E∞Λ =

E∞Λ

2
. (3.62)

Even relaxing the (iv) boundary condition, i.e. requiring that:

Vo ∼ E∞[r cos θ + Λr2 cos2 θ] (3.63)
13Since sin 2θ = 2 sin θ cos θ, terms containing sin 2θ have to go to zero, too.
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as r → ∞, leads to an inconsistent result: it would require to put terms with sin2 θ to zero in
the far field. However, the latter is possible only if Ao

2 = 0, putting to zero also the cos2 θ that,
on the contrary, is necessary to impose the relaxed condition (3.63).

To solve this inconsistency, another possibility would be to impose “manually” the missing
terms to get the b.c. by searching for a correction, C:

r2Ao
2(cos

2 θ − sin2 θ) + C = r2E∞Λ cos2 θ − sin2 θ

2
. (3.64)

That leads to:
C = cos2 θ(1− Ao

2)− sin2 θ
1

2
− Ao

2 (3.65)

in which Ao
2 is undetermined (to go on, one would have to impose a value for it: this is no sense

since we are actually searching for it).
The inconsistency comes from both the fact that we are assuming cylindrical symmetry (∂/∂z =
0), true only for an uniform field and that we are imposing a nonuniform far field condition
that is valid for a spherical coordinate system.

It is then necessary to solve the Laplace’s equation in cylindrical coordinates in the generic
case and hopefully to propose a novel far field condition for the outer potential in terms of the
generalized solution. According to this new idea, the general solution of Laplace’s equation in
cylindrical coordinates has to be considered to go on.

The general Laplace’s equation is
∇2V = 0 (3.66)

that in cylindrical coordinates reads:

∂2V

∂r2
+

1

r2
∂2V

∂θ2
+
∂2V

∂z2
= 0 (3.67)

where V is the electric potential that now is a function of r, θ and z. By postulating that the
solution can be expressed using separation of variables, that is:

V (r, θ, z) = R(r)T (θ)Z(z) (3.68)

an intermediate result can be found (omitting dependencies to facilitate notation):

TZ
d2R

dr2
+
TZ

r

dR
dr

+
RZ

r2
d2T

dθ2
+RT

d2Z

dz2
= 0. (3.69)

Equation (1.2) can be divided by RTZ and rearranged to get:

1

R

d2R

dr2
+

1

rR

dR
dr

+
1

r2T

d2T

dθ2
= − 1

Z

d2Z

dz2
(3.70)

which has the advantage of having the (r, θ) dependence separated from the z one.

Standard methods have been developed to solve (3.67) on the basis of (1.2) and (3.70) [62]:

V (r, θ, z) =
X
λ,m

{Jm(λr),Nm(λr)}{sin (mθ), cos (mθ)}{sinh (mz), cosh (mz)}+

+
X
(λ,m)

{Im(λr),Km(λr)}{sin (mθ), cos (mθ)}{sin (mz), cos (mz)}.
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where Jm, Nm, Im and Km are, respectively Bessel and Neumann functions of order m and
the modified Bessel functions [62]. Moreover, {[...],[...]} denotes the linear combination of the
therms inside the brackets.

The obtained result is complex, and a new proposal for a field has to be carefully chosen in
order to be consistent not only with mathematics14 but mainly with the physical aspects of the
problem.

Surface tension: phenomenology of a new interaction

A reasonable assumption to justify the observed increasing trend of final lengths may be a
temporal variation (actually, a decrease) of the water-hexadecane surface tension γ: for the
electric field it is easier to elongate a drop with a lower surface tension. In the following, we
try to explain this unexpected phenomena.

From table 3.3 data it clearly emerges a droplet elongation of 2-3 %, which suggests
doubtlessly the impact of photovoltaic induced effects since the deformation follows eq. 3.56.

R NFe3+ (atoms
cm3 ) ∆L/L0 (%) τ (minutes)

0.100 ± 0.006 (17.0± 0.3) · 1018 3.2 ± 0.2 11 ± 3
0.205 ± 0.007 (15.6± 0.2) · 1018 3.4 ± 0.2 8 ± 2
0.270 ± 0.007 (14.8± 0.2) · 1018 2.3 ± 0.7 20 ± 13

Table 3.3: Fit parameters of eq. 3.56 with flow rates Qc = 10 µL
min and Qd = 8 µL

min (ϕ = 0.8)
and density of acceptors of the three employed Fe:LN samples.

If the droplets elongation were due to the photo-induced field, we would expect that ∆L/L0

values would follow an increasing trend (Equation 3.30). The data in table 3.3 displays indeed
an increasing trend with 0.100 ≤ R ≤ 0.270.
Some hypothesis have been formulated to explain this experimental evidence:

1) NFe3+ investigated range is not wide enough, hence our system has not enough resolution
to measure a trend;

2) it may be sufficient that Esc ≥ Ethreshold ("threshold effect") for an elongation to take
place. In this specific case, the above inequality would be verified for each of the three
Fe:LN samples;

3) the elongation may be due to a "gradient effect". It is reasonable to assume that droplets’
elongation is directly caused by the dielectrophoretic force Fdep, in turn due to the spatial
variation of the photo-induced electric field:

Fdep ∝ ∇|E(t)|2

Since the single droplet is elongating only in the illuminated zone of the channel and
returning to its "standard" dimension (L0) after traveling through the field lines, it is
expected to display a sort of spring-like behavior, with

Fdep ≈ k∆L(t) ≈ γ∆L(t) (3.71)
14For example, one may exploit the properties of Bessel and Neumann functions. In fact, since Km and

Nm diverge at r = 0 they should be excluded from problems where the region of interest includes the origin;
similarly, both Jm and Im diverge as r → ∞ and will therefore be excluded from any exterior solution.
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because of dimensional arguments.

In this work it is clear that, for all the employed samples, Esc ≥ Ethreshold holds and hypothesis
1) does not exclude 3).

Let us discuss the time scale of the phenomenon we are investigating, starting from hy-
pothesis 3. The latter implies that the typical time τ of the observed elongation must be the
same of the photo-induced field, namely τ = τsc, assuming that the time dependencies appear
exclusively in E(t) and L(t). On the other hand, τsc depends only on the characteristics of the
Fe:LN sample and on the illumination intensity (eq. 3.29): considering R = 0.205, τsc ≈ 17
seconds since I ≈ 2.2 · 104 W / m2 while ε = ε11 = ε22 = 84 [26] because the chosen geometry
is such that light impinging on the sample is polarized on the xy plane.
As shown in table 3.3, the experimental τ values are one order of magnitude bigger than τsc
which means that the observed phenomenon is much slower than the building up of the photo-
induced field. When t = 4τ it must be E(t) ≈ Ephv and therefore all the L(ti) values for ti > 0
in figure 3.23 (and in this work) are obtained when the field has already reached its saturation
value Ephv.

As a further consequence, in eq. 3.71, Fdep has no more temporal dependence and the same
must hold for the right-hand side, γ∆L(t). If L(t) follows the experimentally observed trend
L(t) ∝ (1 − e−t/τ ) then the only way to cancel out the time dependence would be to have γ
decreasing over time as γ(t) ∝ (1− e−t/τ )−1.

In this thesis we propose a way to obtain the time variation of γ over time accounting also
the effect of droplets velocity.

In a T-junction, the dimensions of droplets are predicted by equation 3.72, where the capil-
lary number Ca contains viscosity of continuous phase µo and surface tension between the two
phases, γ.

L = (ε+ ωϕ) Ca−m (3.72)

where Ca = µo u/γ is the capillary number, µc is the viscosity of the continuous phase, v
is droplets velocity, γ the surface tension between the two phases, ε, ω, m are (in principle)
geometry-dependent parameters and ϕ = Qd/Qc. Therefore, once the two phases have been
chosen, it is possible to vary droplets length (and velocity) by properly changing the flow rates.
All the chosen flow rates’ combination are reported in table 3.4. Non-polar liquids viscosity
is not subjected to appreciable variation in presence of electric fields up to 105 V/m [63; 64],
hence µc can be considered constant during the PhV illumination. This in turn further suggests
that γ plays a crucial role in this kind of dynamics.

In particular, by rewriting eq. 3.72 as

L = A(ϕ)Ca−m = A(ϕ)
µ v

γ

−m

(3.73)

since γ and µc are known when no electric field is applied, it is possible to estimate A(ϕ) and
m at zero electric field by fixing ϕ and fitting L0 as a function of Ca with A(ϕ) and m as free
parameters by using eq. 3.72.
We obtain A(ϕ) = 520±20 µm and m = m0 = 0.015±0.007 (figure 3.24). Assuming that these
values holds also when Ephv ̸= 0, we fitted L(ti) as a function of v with eq. 3.73 for each set of
acquisitions at different times, namely with ti = 5, 10, 15, 20, 25, 30, 35, 40 minutes. However,
the optimal parameter fits fails in appropriately describe the trend of L(ti) as shown in figure
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ϕ = Qd/Qc Qc ( µL
min) Qd ( µL

min) L0 (µm) v0 (µm /ms)

0.8 10 8 566 ± 7 6.29 ± 0.03
11 8.8 566 ± 6 6.97 ± 0.04

12.5 10 561 ± 4 8.03 ± 0.02
15 12 563 ± 5 9.49 ± 0.07

16.25 13 562 ± 6 10.44 ± 0.03
17.5 14 561 ± 4 11.29 ± 0.05
20 16 569 ± 4 13.59 ± 0.06

0.6 12 7.2 488 ± 4 7.02 ± 0.02
16.5 9.9 476 ± 3 9.56 ± 0.03
23.5 14.1 467 ± 7 13.65 ± 0.06

1.0 9 9 639 ± 6 6.31 ± 0.03
13.4 13.4 638 ± 4 9.47 ± 0.04
19 19 641 ± 4 13.6 ± 0.04

Table 3.4: List of all the flow rates’ combinations in this work. The standard deviation σQ
associated to each flow rate value is σQ = 0.2 µL

min . Base lengths L0 and velocities v0 are obtained
from the acquisition at time t = 0 min. before switching on the PhV illumination averaging
over more than 100 droplets.

3.25.

Therefore, to relax the hypothesis on the parameters A(ϕ) and m, we fitted again L(ti)
as a function of v letting the exponent m to be a fitting parameter together with γ. The
fits at ti = 10, 20, 30 minutes are reported as an example in figure 3.26 and in this case the
experimental data trend is well reproduced. Each performed fit at t = ti yields the values γ(ti)
and m(ti). The time behavior of γ(t) and exponent m(t) are reported in figures 3.27 and 3.28
respectively. Surface tension displays a decreasing trend over time as expected while exponent
m is instead increasing with a behavior similar to the L(t) time-dynamics. It is possible to fit
γ(ti) values with the following function:

γ(t) =
α

1
γ0

+ β(1− e−t/τγ )
=

αγ0
1 + βγ0(1− e−t/τγ )

(3.74)

obtaining α = 1.000±0.006, β = (6.4±0.6) ·103 m/N, τγ = 10±2 minutes and it is immediate
to notice that τγ and τ are of the same order of magnitude.

It is also evident, despite the matching of the time scales, how in eq. 3.71 the canceling
out of the time dependence is not achieved. This however can suggest to revise (3.74) or to
consider the contribution due to the electric field connected to the droplets motion through the
field lines, that we are not taking into account here.

Nevertheless, another argument can be used to support the decreasing trend of the surface
tension. In the spring-like behavior hypothesis (hypothesis 3), if we assume pure elastic behavior
of the interface Hexadecane-Water we can introduce an effective Young modulus E∗ and we
can write:

γ ≈ k =
E∗ · S
L

where S is the droplet section. It is clear that is L = L(t), then:
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γ =
E∗ · S
L(t)

=
E∗ · S

L0 +∆L (1− e−t/τ )

which allows to recover the shape of equation 3.74.

Figure 3.24

Figure 3.25

In 3.24, fit of experimental data with equation 3.73. The free parameters are A(ϕ) and
m. The red point on the left, corresponding to the combination of flow rates Qc = 20 µL

min ,
Qd = 16 µL

min , has been excluded from the fitting procedure. In 3.25, three examples of fits of
L(ti) as a function of v with eq. 3.73 with ti = 10, 20, 30 minutes, by employing A(ϕ) and
m parameters obtained from the fit with eq. 3.73. Optimal parameters fits fail in properly
describing the trend of L(ti).
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Figure 3.26

Figure 3.27

Figure 3.28
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In fig. 3.27 surface tension values obtained from all the fits. The point at t = 0 min. is an
experimental value obtained with the pendant drop method: γ0 = 4.27 ± 0.04 mN/m. In fig.
3.28 the correspondent m values.
In figure 3.26 three examples of fits of L(ti) as a function of v with eq. 3.73 with ti =
10, 20, 30 minutes, by employing A(ϕ) parameter obtained from the fit with eq. 3.73 with
0.004 ≤ Ca ≤ 0.009, with γ and m as fit parameters.

The modification over time of γ(t), a property connected to the interface between the two
phases, may be due to the presence of the electric field and its action on SPAN® 80 surfactant
dispersed in the continuous phase.
These promising results pave the way for studies on interfacial rehology of these interfaces and
future improvement of EHD. In fact:

• These theoretical considerations enter the paradigm of electrically stressed water drops,
a field that has yet to be explored in detail. As said, in this perspective the droplet may
be displaying a sort of spring-like behavior that has not been reported yet:

FDEP ≈ k∆L(t) ≈ γ∆L(t)

because of dimensional arguments. Assuming pure elastic behavior of the interface, we
have introduced a sort of effective Young modulus E⋆:

γ ≈ k =
E⋆S

L

with S being the droplet section. Consequently, γ would be inversely proportional to L.

• this has a great impact on the modifications that need to be done to the theoretical
model. In fact, EHD predicts that τD depends on γ; therefore a time dependence in γ
would induces a time dependence in the characteristic time of the deformation of the
droplet, τD(t).



Conclusions

The aim of this thesis was to study the modeling of the response of water droplets in a generic
time- and space-dependent electric field. Thus, Electrohydrostatics and electrohydrodynamic
modeling are the broad context in which this this thesis work can be framed.

Theoretical modeling represent an important tool in many areas of scientific activity: both
EHD and EHS modeling concern the interaction between the flow of fluid and the electric field.
Their governing laws can be presented in a general way, since the differential equations into
play come from Stokes equations coupled with Maxwell’s equations. In principle, there is no
need to refer to a specific, experimental setup addressing a particular problem. The starting
point is generally the formulation of the problem, for which it is necessary to specify the ap-
propriate coordinate system (Cartesian, spherical, cylindrical, ellipsoidal) that will be adopted.
This decision will affect the whole derivation of the eventual analytic solution, since equations
will be then written in these specific coordinates from the very early beginning. Obviously,
such a choice depends on the shape of the drop and has to be suitable to describe the problem.
In most cases is accompanied by some further assumptions (geometrical symmetries, discard
of nonlinear effects, limited range for certain parameters), whose goal is to simplify even more
the equations in order to increase the possibility of finding analytical solutions.

As a consequence, in the first place a general revise of the already-existing EHS and EHD
works on droplets in an electric field was necessary: in a summary outline we presented the
different, possible formulations of the problem, emphasizing that not all of them have been
treated in literature. Indeed, the majority of the works focuses on spherical (circular if two-
dimensional) drops, with just a few cases for a cylindrical shape and no extensive treatment
has been for an ellipsoid yet15.

As far as more complex situations are involved – and that is actually the case of almost
all real systems – just a few (if any) attempts have been done to extend or at least examine
the limitations of EHS/EHD theories to describe such problems. Therefore, we went on by
proposing a novel comparison between these models and real data coming from measurements
of the response of microfluidic water droplets to a time-varying, spatially nonuniform electric
field of a particular system16. The comparison highlighted the need to extend existing theoret-
ical models in order to pave the way for the development of new analytical models.

We have been able to identify some of the aspects that can be considered as sources of this
inconsistency between theory and real data. In particular, choosing the EHD cylindrical case
to mimic the shape of real droplets, we have witnessed that the model has some criticalities:

15Concerning the latter, two papers have dealt with two-dimensional elliptical shapes.
16The latter is based on a wide-ranging scientific project that has already developed several new methods of

real-time detection and monitoring of micro and submicrometric objects dispersed in fluid media.
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• the drop is considered as suspended (not moving) and immersed in an unbounded domain,
which is never the case for a real system;

• the conservation of the volume is generally not imposed in the theory, making the model
a mathematical but not a physical one;

• theoretical treatment works on cross-sections (2D) by assuming specific symmetries (since,
for example, the electric field is taken as uniform); this is a problem especially when
dealing with real fields, that are rarely uniform;

• the majority of the literature assumes that fluids have constant electric and physical
properties; however, this may not be the case, as we have witnessed by observing an
anomalous trend for the deformation of droplets: this suggested that γ, the surface tension
between the two fluids may be varying during the process.

In this perspective, we also proposed some novel, phenomenological-based theoretical mod-
eling to explain some of those incongruities:

• we proposed to treat the consequences of the confinement by means of the real volume
of the droplet itself. By writing the volume as an analytical function of the “shape”
parameters (e.g. the radii of curvature) of the real drop and imposing its conservation,
one may invert the formula to get direct insight on the desired quantities;

• we showed for the first time that the only case of nonuniform potential, the one proposed
by Feng [8], is valid only for the case of spherical drop. If the shape on the drop – and
consequently the coordinate system – is not a sphere (or a 2D circular cross section),
Laplace’s equation has to be solved from scratch without assuming specific symmetries:
this implies that also, a new external potential has to be imposed accordingly;

• as long as the surface tension is concerned, it was observed that the final length of sub-
sequent drops grows over time. This enters the paradigm of electrically stressed water
drops, a field that has yet to be explored in detail. A reasonable assumption to justify
this increasing trend of final lengths was identified to be a temporal variation (actually,
a decrease) of the water-hexadecane surface tension γ: for the electric field it is easier to
elongate a drop with a lower surface tension. This partially shifts the problem to interfa-
cial rheology: a model for this time-variation of the surface tension has being investigated
and an equation for the temporal evolution of γ has been found. In this perspective, the
droplet may be displaying a sort of spring-like behavior that has not been reported yet:

FDEP ≈ k∆L(t) ≈ γ∆L(t)

because of dimensional arguments. Assuming pure elastic behavior of the interface, we
may introduce a sort of effective Young modulus E⋆:

γ ≈ k =
E⋆S

L

with S being the droplet section.
Consequently, γ would be inversely proportional to L.

Therefore, the thesis has paved the way for new features in the droplet response, presenting
the first attempt in the literature to explain such a mixture of complicated phenomena.



Appendix A

The streamfunction formulation

Navier-Stokes equations for two-dimensional incompressible flows can be recast by using the
streamfunction-vorticity formulation, that can be considered ad one of the first unsteady, in-
compressible Navier-Stokes algorithms.
Such formulation provides an alternative, simpler form for them in terms of two dependent
variables, the streamfunction and the vorticity. In many cases, this formulation offers a deeper
understanding of the physical mechanisms that drive the flow.

The streamfunction is defined as:

ψA(P ) =

ˆ P

A

u · nds (3.75)

where A is an arbitrary but fixed point and n is the unit normal vector on the A-to-P line.
ψA(P ) is a function of the location of the P point.

Figure 3.29

• From the image 3.29, it is clear that ψA(P ) represents the volume flux per unit depth in
the z−direction through the line that goes from A to P ;

• ψA(P ) does not depend on a specific path, that is its value only depends on the locations
of points A and P ;

• Commonly, the explicit dependence on point A is not indicated: ψA(P ) = ψ(P ) = ψ(x, y),
since a change in the position of A only modifies ψA(P ) by a constant value and such
changes are irrelevant with respect to all applications;
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• The name streamlines indicates those lines that are everywhere parallel and constant17

to the velocity field, i.e. u · n = 0;

ψ is connected to the Cartesian velocity components u and v through the following18:

u =
∂ψ

∂y
and v = −∂ψ

∂x
. (3.76)

If a specific flow is given via the streamfunction, it satisfies automatically the continuity equa-
tion:

∂u

∂x
+
∂v

∂y
=

∂

∂x

∂ψ

∂y
+

∂

∂y
−∂ψ
∂x

= 0. (3.77)

Lastly, one can define the vorticity vector ω := ∇ × u; for two-dimensional velocity fields
the z−component of the latter is nonzero, ω = (0ex, 0ey, ωez). In the latter

ω =
∂v

∂x
− ∂u

∂y
(3.78)

and by substituting equations of (3.76) it is straightforward to see that:

ω = −∇2ψ (3.79)

being ∇2 the Laplacian operator in two dimensions.

As far as the Navier-Stokes equations are involved, one can show that the three-dimensional
momentum equation can be written in terms of the vorticity becoming the vorticity transport
equation:

Dω

Dt
= (ω · ∇)u+ ν∇2ω (3.80)

whereD/Dt is the material derivative and ν is the kinematic viscosity. Equation (3.80) becomes
simpler in the two-dim. case, since (ω · ∇) = 0 and therefore:

Dω

Dt
= ν∇2ω. (3.81)

Equations (3.81) and (3.79), together with (3.76) provide the streamfunction-vorticity formu-
lation of the Navier-Stokes equations: it is made of only two partial differential equations for
scalars ω and ψ.

Lastly, if the Re ∼ 0 limit is valid, then it is sufficient to solve19 only one fourth-order partial
differential equation, ∇4ψ = 0, where

∇4 =
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4

the latter is generally solved by specifying appropriate boundary conditions and exploiting
separation of variables.

17Since the condition u · n = 0 holds on stationary impermeable boundaries, ψ is also constant along those
boundaries.

18This can be shown by invoking that integral incomprehensibility constraint for an infinitesimally small
triangle.

19This can be proved by taking the curl of the Stokes equations.
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Cylinder from first order expansion
The general solution for the Laplace’s equation (1.23) in cylindrical coordinates assuming cylin-
drical symmetry is:

V (r, θ) = A0 ln r +B0 +
∞X
k=1

rk[Ak cos kθ +Bk sin kθ] + r−k[Ck cos kθ +Dk sin kθ] . (3.82)

In the case of an uniform potential, to solve Laplace’s equation it is sufficient to expand the
potential up to the first order:

V (1)(r, θ) = A0 ln r +B0 + r[A1 cos θ +B1 sin θ] +
[C1 cos θ +D1 sin θ]

r
. (3.83)

The problem assumes cylindrical symmetry, so it is a two-dimensional one (we work on the
cross section) in polar coordinates. Boundary conditions are as presented before:

(i) The electric potential should remain finite inside the cylinder: Vi(0, θ) has to be bounded;

(ii) The electric potential across the interface should be continuous: Vi(r0, θ) = Vo(r0, θ);

(iii) The normal component of electric current density should be continuous across the inter-

face: σi
∂Vi(r0, θ)

∂r
= σo

∂Vo(r0, θ)

∂r

(iv) The electric potential far away from the cylinder behaves as: Vo(r, θ) = E∞r cos θ.

It then follows that:

• sin θ do not appear in the boundary conditions, so B1 = D1 = 0 and consequently:

V (1)(r, θ) = A0 ln r +B0 + rA1 cos θ +
C1 cos θ

r
; (3.84)

• since the internal potential should be bounded – boundary condition (i) – it must be
Ai

0 = Ci
1 = 0 to avoid divergences at r = 0;

• application of boundary condition (iv) implies that Ao
0 = 0 (in fact there is no logarithmic

dependence), Ao
1 = E∞ and Co

1 ̸= 0 (to ensure that Vi and Vo are different);

• boundary condition (iii) yields a condition for Co
1 = r20[E∞ −RAi

1];

• from the remaining (ii), two relations emerge:

Bi
0 = Bo

0

that can be put to zero for convenience; collecting all cos θ terms one gains:

Co
1 = r20[A

i
1 − E∞]

that combined with the other expression gives:

Ai
1 =

2E∞

1 +R

and
Co

1 = r20E∞
1−R

1 +R
.

Inserting the expressions for the coefficients in the V (1) expansion for Vi and Vo gives back
equations (2.75) and (2.76).



Appendix B

This part presents a more detailed description of the setup of the platform. It has been adapted
from [25].

Experimental setup

The experimental setup employed can be divided in two parts, reported in figures 3.30 and
3.31. The first one (figure 3.30) is related to the optofluidic coupling, i.e. the control of the
flows inside the optofluidic platform described in the previous sections and the coupling of
the waveguides, while the second one (figure 3.31) is devoted to the illumination of the Fe:LN
sample integrated in the aforementioned platform (the chip is the same reported in figure 3.30).
The pump setup employed to inject the fluids in the microchannels is the OB1 MK3 pressure
driver pump equipped with 3 channels with a range 0-8 bar (Elveflow, Paris, France). The
flows control was achieved by a feedback system provided by the coupling of three flowmeters
BFS Coriolis10 (Bronkhorst, AK Ruurlo, Holland) to the main pressure driver (figure 3.30, on
the left).
The coupling of the waveguides with laser light was achieved by employing a near field system
(see figure 3.32). A continuous diode laser with power of 7.35 mW and a wavelength λ = 532
nm was coupled to the single waveguide. An half plate and a polarizer were added, so that
both the TE and TM mode of the waveguide can be excited. The optofluidic device is mounted
on a platform with 6 degrees of freedom, which allows translation and rotation of the sample.
Laser light is collected by a 20X Objective, is focused on and coupled to the single waveguide
by properly setting the platform, and it is then recollected by a long working distance 50X
Objective. The output light was coupled to a silicon photodiode and amplified by means of a
transimpedance amplifier, whose signal was then collected by the acquisition fast card Ni 6023.
Several techniques to couple laser light inside a waveguide have been developed, for example
prism couplers [65] and permanent pigtailing [66]. The latter, in particular, offers the optimal
features for an optofluidic application, since it is permanent, stable and portable. However, it
does not represent the best solution for this work, since it does not ensure flexibility during the
test phase. The direct coupling exploited in this thesis, achieved by means of Objectives, is a
reliable alternative. The main drawback is the fact that the coupling is not permanent, thus
requiring recoupling procedures after a measurement.
The experimental apparatus showed in figure 3.31 is straightforward: a solid state laser, with
a nominal power of 100 mW, is employed to illuminate the iron-doped lithium niobate sample
integrated in the optofluidic platform. It has to be noted however that the real power provided
during the acquisitions, measured with a semiconductor power sensor connected to FieldMaxII-
TO Power Meter (Coeherent Inc., Santa Clara, CA, USA) ranges from 43.0 mW up to 65.0
mW.
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Figure 3.30: Experimental setup to achieve the control of the flows inside the microchannels
and the coupling of the waveguides.

Figure 3.31: Scheme of the optical apparatus devoted to the illumination of the Fe:LN sample.
M0, M1, M2 and M3 are mirrors.

Figure 3.32: Scheme of the near field system for coupling the waveguides to the laser light
and collecting the output.
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(a) (b)

Figure 3.33: Examples of acquired signals during the transit of a droplet in front of a straight
waveguide (3.33a) and a Mach-Zehnder one (3.33b). Both graphs are taken from [36].

Optical trigger

The optofluidic setup presented in the previous section and reported in figure 3.31 acts as an
optical trigger for detecting flowing objects in the microchannels such as, as in the case of this
work, droplets. The study can be carried out by measuring droplets lengths and velocities in
different moments before, during and after the illumination. Therefore, a reliable and versatile
optofluidic configuration is needed. In fact, the reason behind the choice of MZI configuration
for the integrated waveguides is connected to its versatility and independence from any type
of previous calibration with additional imaging setups or other integrated stages. To provide
an example, it is possible to compare straight waveguides and Mach-Zehnder ones in terms of
measurement of droplets’ lengths and velocities. Figure 3.33 shows two examples corresponding
to the two different acquired signals, with a straight waveguide (3.33a) and a Mach-Zehnder
one (3.33b), when droplets of MilliQ dispersed in hexadecane are produced [36].
In the first case (3.33a), the time passage ∆t (td) that can be obtained from the signal is an
effective indirect measurement of the droplet velocity v, being v = L/∆t, where L is droplet’s
length. In this case, the measurement of the velocity is always correlated to the length and it is
therefore required a preliminary calibration, for example, as mentioned before, with an imaging
system.
The waveguide in MZI configuration is a way to avoid this inconvenient and make the device
more versatile. In this case, actually, the crucial upgrade consists in employing two different
points at a known distance, indicated as 2W , as reference, which are the two straight sections
of the Mach-Zehnder waveguide. As can be seen in figure 3.33b, taking into account also
figure 3.34a for a better visualization, when a droplet with length L > 2W transit in front of an
illuminated optical MZI waveguide, the trigger times are four: t11 corresponds to the interaction
between the front droplet’s meniscus with the first MZI arm, t12 represents the interaction
between the front meniscus with the second arm, t21 is the instant of time corresponding to
the transit of the rear meniscus in front of the first arm and at t22 the rear meniscus is exiting
from the second MZI arm. As it can be noticed, t11 and t12 are connected to a drop of the
transmitted signal, since the presence of the droplet scatters the transmitted light and it has a
refractive index lower than hexadecane’s one, respectively 1.33 < 1.43. The opposite holds for
t21 and t22. Once determined the four trigger times, both velocities of front and rear meniscus
can be obtained as:
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(a) (b)

(c) (d)

(e) (f)

Figure 3.34: On the left, sketches of three different regimes in terms of acquired signal
behaviour, depending on the ratio R = L/2W and the distance between consecutive droplets.
In particular, 3.34a corresponds to R > 1, while 3.34c and 3.34e to R < 1. On the right, the
three graphs report the respective signals. The yellow highlighted plateaus represent the case
in which both arms are transmitting through oil inside the channel, the red one when a droplet
covers both arms, the green and blue when only one of the two arms is covered by a droplet.
The images are taken from [36].

vfront =
2W

t12 − t11

vrear =
2W

t22 − t21

(3.85)

and the estimation of the single droplet’s velocity v is obtained performing the average
between these two values. Similarly, from vfront and vrear, two lengths can be calculated as:

L1 = vfront (t21 − t11)

L2 = vrear (t22 − t12)
(3.86)

and the average droplet’s length Lcan be obtained by averaging L1 and L2.
In this work, 2W = 40 µm and all the droplets produced are such that their length is L > 2W .
However, this is not the only working regime that can be achieved in terms of signal [36]. As can
be seen in figure 3.34, the differences between the three presented regimes are the ratio L/2W ,
where L is the droplet’s length, and the distance between two consecutive droplets. However, as
previously stated, the only working condition considered here is the one such that L/2W > 1,
which is also the only regime with univocal matching between droplets in the microchannel and
acquired signal.
An optofluidic device with MZI waveguides integrated in lithium niobate has been character-
ized and successfully validated in [36; 67], where the main application was the employment of
such platform as a droplets velocimeter. The aforementioned LiNbO3 platform was demon-
strated to be a reliable integrated device for velocities measurements of flowing objects inside
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a microchannel, with precision up to three times higher than the one guaranteed by a standard
video camera microscope setup.
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