
Master Thesis in Computer Engineering

MicroFlow: A Rust TinyML Compiler for Neural
Network Inference on Embedded Systems

Master Candidate Supervisor

Matteo Carnelos Prof. Nicola Bellotto
Student ID 2006677 University of Padova

Academic Year Graduation Date
2022/2023 03/07/2023

Abstract

MicroFlow is an open-source project that aims to enable the deployment of
Neural Networks on embedded systems. In particular, MicroFlow is a TinyML
compiler written in Rust and specifically designed for efficiency and robust-
ness, making it suitable for deploying applications in critical environments. To
achieve these objectives, MicroFlow employs a compiler-based inference engine
approach, coupled with Rust’s memory guarantees and features. The software
fills the gap left by the majority of the existing solutions, such as TensorFlow
Lite for Microcontrollers, Embedded Learning Library, and ARM-NN, which
are written in C++ and do not provide the same level of portability, efficiency,
and robustness that MicroFlow achieves. MicroFlow demonstrated successful
deployment of Neural Networks on highly resource-constrained devices, in-
cluding bare-metal 8-bit microcontrollers with only 2 kB of RAM. Furthermore,
experimental results showed that MicroFlow has been able to use 30% less Flash
memory and 21% less RAM with respect to TensorFlow Lite for Microcontrollers
when deploying a MobileNet for person detection on an ESP32. MicroFlow has
been able to achieve faster inference compared to other state-of-the-art engines
on medium-sized networks, such as a TinyConv speech command recognizer,
and similar performance on bigger models. Overall, the experimental results
proved the efficiency and suitability of MicroFlow for deployment in highly
critical environments where resources are limited.

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xvii

List of Code Snippets xvii

List of Acronyms xix

1 Introduction 1

2 Related Work 7
2.1 Machine Learning for Embedded Systems 7

2.1.1 Parameters Quantization 8
2.1.2 Model Representation . 9
2.1.3 Inference Engine Approaches 10

2.2 Programming Languages for Embedded Systems 11
2.2.1 Memory Safety . 12
2.2.2 C . 12
2.2.3 C++ . 13
2.2.4 Rust . 14

2.3 Existing TinyML Inference Engines 14
2.3.1 TensorFlow Lite for Microcontrollers 15
2.3.2 Embedded Learning Library 15
2.3.3 ARM-NN . 15
2.3.4 Plumerai . 16
2.3.5 uTensor . 16
2.3.6 Tract . 17

v

CONTENTS

2.4 Summary . 17

3 Design 19
3.1 Principles . 19

3.1.1 Portability . 19
3.1.2 Efficiency . 20
3.1.3 Robustness . 21
3.1.4 Scalability . 21

3.2 Structure . 22
3.3 Usage . 23

4 Implementation 25
4.1 Compiler . 26

4.1.1 Macros . 27
4.1.2 Parsing . 27
4.1.3 Pre-processing . 29

4.2 Runtime . 29
4.2.1 External Libraries . 30
4.2.2 Generics . 31

4.3 Memory Management . 32
4.3.1 Ownership . 33
4.3.2 Paging . 36
4.3.3 Stack Overflow Protection 37

4.4 Operators . 39
4.4.1 FullyConnected . 41
4.4.2 Conv2D . 44
4.4.3 DepthwiseConv2D . 48
4.4.4 AveragePool2D . 51
4.4.5 Activation Functions . 54

5 Evaluation 59
5.1 Experimental Setup . 60

5.1.1 Models . 60
5.1.2 Hardware . 63
5.1.3 Baseline . 65
5.1.4 Experiments . 66

5.2 Results . 67

vi

CONTENTS

5.2.1 Accuracy . 67
5.2.2 Memory Usage . 69
5.2.3 Runtime Performance . 72
5.2.4 Energy Consumption . 76

6 Conclusion 79
6.1 Future Work . 80

A Operator Kernels 81
A.1 FullyConnected . 81
A.2 Conv2D . 83
A.3 DepthwiseConv2D . 86
A.4 AveragePool2D . 88

B View Extraction Algorithm 91

C Runtime Performance Histograms 93

References 97

Acknowledgments 101

vii

List of Figures

2.1 Visualization of a ML model graph. 10

2.2 Types of high-severity security bugs found in Google Chromium
since 2015 (from [16]). 13

2.3 Comparison of supported MCUs across inference engines. 18

3.1 Overview of the software structure. The MicroFlow library has
been split into two components: the compiler and the runtime. . . 23

4.1 Compilation flow of the software. The MicroFlow compiler pro-
duces code that will be compiled by the Rust compiler. 26

4.2 Expansion of the macro. The input tokens are expanded by the
procedural macro according to the model. 27

4.3 Example execution of the parsing phase. The input file is deseri-
alized and parsed to build the internal representation. 29

4.4 Memory diagram of an example borrow. The variable s repre-
sents an immutable borrow pointing at the String struct s1. . . . 34

4.5 Illustration of ownership propagation during the execution of an
operator. The input tensor is transferred to the operator, which
assumes ownership and will release it after execution. 35

4.6 Example of paging in a simplified fully connected layer. The
page, highlighted in red, contains 4 inputs, 4 weights, 1 bias, and
1 output, representing the memory requirements. 37

4.7 Example of stack overflow resulting in an undefined behavior on
ARM Cortex-M architectures. 38

4.8 Example of flipped memory layout. The stack overflow will not
result in undefined behavior but in a hardware exception. 38

xi

LIST OF FIGURES

4.9 Components of an operator. The parser resides in the compiler
and contributes to the generated code, the kernel resides in the
runtime and contributes to the inference. 41

4.10 Diagram showing a typical representation of a FullyConnected
layer. The neurons and connections highlighted in red represent
the input, output, biases, and weights of the layer. 42

4.11 Example of Conv2D operator applied to an input tensor with
valid padding. The resulting output will not preserve the spatial
information of the input. 45

4.12 Visualization of a 4D tensor. The red cells represent the channels,
while the matrix groups represent the batches. 46

4.13 Example of the AveragePool2D applied to an input tensor. The
operator is executed on a per-channel basis, preserving the input
channel dimensions. 52

5.1 Visualization of the sine predictor model. 61
5.2 Visualization of the speech command recognizer model. 62
5.3 Visualization of the person detector model. The central repeated

pattern of layers has been hidden due to its size. 64
5.4 Comparison of TFLM and MicroFlow predictions on the test set. . 68
5.5 Results of the memory usage experiment for the sine predictor

model. 70
5.6 Results of the memory usage experiment for the speech command

recognizer model. 71
5.7 Results of the memory usage experiment for the person detector

model. 72
5.8 Comparison of the runtime performance test results for the sine

predictor model. 73
5.9 Comparison of the runtime performance test results for the speech

command recognizer model. 74
5.10 Comparison of the runtime performance test results for the person

detector model. 75

xii

List of Tables

2.1 Summary of the major features among different TinyML inference
engines. 18

5.1 Summary of the models employed for the system evaluation. . . . 65
5.2 Summary of the MCUs used for the experiments. 65
5.3 Results of the accuracy experiment performed on the sample

models. 68
5.4 Results of the energy consumption experiment conducted on the

sample models. 77

xiii

List of Algorithms

1 View extraction algorithm for the Conv2D operator. 49

xvii

List of Code Snippets

3.1 Example Rust code for utilizing a sine predictor model with Mi-
croFlow. 24

4.1 Example definition of an operator kernel that uses both type and
const generics. The correctness of the data is completely ensured
at compile time without the need for any runtime checks. 33

xix

List of Acronyms

AI Artificial Intelligence

AOSP Android Open Source Project

BNN Binarized Neural Network

CAGR Compound Annual Growth Rate

CNN Convolutional Neural Network

CPU Central Processing Unit

DNN Deep Neural Network

ELL Embedded Learning Library

FFT Fast Fourier Transform

FNN Feedforward Neural Network

FPU Floating-Point Unit

GPU Graphics Processing Unit

I/O Input/Output

IoT Internet of Things

MCU Micro-Controller Unit

ML Machine Learning

MSE Mean Squared Error

MSRC Microsoft Security Response Center

xix

LIST OF CODE SNIPPETS

NN Neural Network

ONNX Open Neural Network eXchange

OS Operating System

RAM Random-Access Memory

RNN Recurrent Neural Network

ReLU Rectified Linear Unit

TFLM TensorFlow Lite for Microcontrollers

TFLite TensorFlow Lite

TF TensorFlow

TPU Tensor Processing Unit

TinyML Tiny Machine Learning

xx

1
Introduction

Tiny Machine Learning (TinyML) is a field of Machine Learning (ML) that
involves the deployment of ML models on small and low-power embedded
devices. The aim of TinyML is to enable these devices to perform intelligent
tasks without relying on cloud-based servers or high-performance computing
systems.

The field has gained popularity in recent times due to the increasing demand
for smart devices capable of performing intelligent real-time tasks without the
need for processing support from the cloud, which is power consuming and
involves data security and privacy risks [1]. The increasing emergence of Internet
of Things (IoT) devices in houses and industries also made a great contribution
to the field, making it possible to achieve even more integrated applications [2].

One of the best-known and most widely used TinyML applications is key-
word spotting, also called hotword or wakeword detection [3]. This involves
training a Neural Network (NN) to identify a specific sound or phrase, such
as "Hey Siri" or "OK Google", that triggers a device to begin listening for user
commands. The trained model is then compressed and deployed to edge de-
vices that will perform always-on inference. By locally performing wakeword
detection on the device, latency and privacy are greatly improved. This type of
application is commonly used in voice assistants and smart speakers developed
by companies such as Amazon, Apple, Google, and others. Wakeword detec-
tion is not the only TinyML application, others include activity recognition [4],
object detection [5], predictive maintenance [6], environmental monitoring [7],
and many more.

1

As of 2022, the global Micro-Controller Unit (MCU) market was valued at
USD 25.48 billion and is expected to expand at a Compound Annual Growth
Rate (CAGR) of 11.2% from 2023 to 2030 [8]. With such a large market, combined
with the rise in popularity of Artificial Intelligence (AI) applications [9], the
potential for TinyML-powered devices is particularly high, with a lot of big
companies investing in this research field [10].

Moreover, one of the significant advantages of TinyML is its ability to operate
on low-power devices, making it ideal for resource-constrained environments.
This feature is particularly important in developing countries [11] where access
to electricity can be a significant issue. With TinyML, devices can operate on
batteries or solar power, enabling access to technology in areas with limited
infrastructure.

Another benefit of TinyML is its low cost. Traditional ML models require
significant computing power and hardware resources, which can be expensive.
In contrast, TinyML models can run on low-cost MCUs, making this technology
even more accessible.

One of the major challenges when it comes to developing applications for
embedded devices is the limited computational power. TinyML applications
often run on MCUs with limited memory and processing capabilities, making
it difficult to deploy complex models. Therefore, both the inference engines
and the models need to be optimized to run on resource-constrained hardware.
Traditional ML models and inference engines may not be suitable for TinyML
applications, as they require a significant amount of processing power and
memory. Furthermore, the lack of standardization in the TinyML ecosystem can
also pose challenges for developers. With the wide range of hardware platforms
available, it can be difficult to ensure compatibility and interoperability between
different components.

Some solutions have already been developed to overcome these challenges.
Some popular TinyML inference engines are: TensorFlow Lite for Microcon-
trollers (TFLM) [12], Embedded Learning Library (ELL), ARM-NN, Plumerai,
uTensor, and Tract. However, although these engines are widely used and well
developed, they share some criticalities. In particular, although they are very
well optimized, most of them (e.g. TFLM) require a significant amount of mem-
ory to run, which can be a challenge on small embedded devices. Moreover, they
are specifically designed for 32-bit MCUs and, in some cases (e.g. ARM-NN),
ARM Cortex-A processors, which can lead to compatibility and interoperability

2

CHAPTER 1. INTRODUCTION

issues. Lastly, they are all written in C and C++. Although these languages
are the standard for embedded software, they are considered memory unsafe.
This can be an issue for TinyML applications deployed in critical environments,
where memory-related bugs and vulnerabilities are not acceptable. In fact, in-
ference engines have to heavily access memory, so it would be preferable to use
memory-safe languages.

To address these challenges and overcome the current limitations, MicroFlow
has been developed. MicroFlow is a lightweight TinyML inference engine writ-
ten in Rust, particularly designed for robustness and efficiency. To achieve these
goals, state-of-the-art approaches combined with new techniques have been
used. In particular, the following are the two major features:

Compiler-based
This approach, used in the currently fastest inference engines (e.g. Plumerai
Inference Engine) [13], makes it possible to achieve highly optimized code
for the specific hardware of the device. This optimization can result in
significant gains in performance and power efficiency, which are critical
factors in the development of TinyML applications. Moreover, a compiler-
based approach makes it possible to optimize the memory footprint of
the engine by using the minimum amount of allocations based on the in-
put model. Memory allocations can be performed statically on the stack
instead of dynamically on the heap, improving both performance and
memory safety.

Written in Rust
Rust is a systems programming language that focuses on safety, speed,
and concurrency. Specifically, Rust top priority is safety. It achieves this by
enforcing strict compile-time checks that prevent common programming
errors like null pointer dereferencing, buffer overflows, and data races.
Moreover, Rust’s performance is comparable to that of C and C++. It
achieves this by eliminating runtime overheads like garbage collection
and runtime type checking. All these features, combined with a rich
ecosystem of libraries and tools for embedded development, make Rust an
ideal language for developing a TinyML inference engine.

The combination of these factors, along with some other optimizations, made
it possible to achieve a robust and memory-efficient TinyML compiler that is able
to perform inference on embedded devices.

3

MicroFlow has been tested on a variety of MCUs. It has been possible to
successfully perform accurate inference of a sample NN on Cortex-M, Cortex-A,
ESP32, and AVR MCUs. Thanks to the lightweight design and the minimal
memory footprint, it has been possible to achieve NN inference also on 8-bit
MCUs, like the AVR ATmega328p, used in the popular Arduino Uno board.

In terms of accuracy, MicroFlow has been able to achieve similar perfor-
mances with respect to other state-of-the-art engines for all the test models. For
instance, it achieved a Mean Squared Error (MSE) of 0.0154 on a sine predictor
model. In comparison, TFLM achieved a MSE of 0.0157. In terms of memory us-
age, MicroFlow out-performed TFLM by utilizing up to 60% less Flash memory
and Random-Access Memory (RAM) on a ESP32 using the sine predictor model.
For bigger models, such as the person detector model, MicroFlow achieved 30%
less Flash usage and 21% less RAM usage on the ESP32. For the performance
evaluation, MicroFlow has been able to achieve faster inference on small and
medium-sized models, such as the sine predictor or the speech command rec-
ognizer, while it achieved similar performances with bigger models, such as the
person detector.

One of the major limitations of MicroFlow is the number of supported op-
erators. Currently, MicroFlow supports only the most common operators, such
as the FullyConnected operator, making it difficult to run a large variety of NN
models. In contrast, TFLM supports over 50 different operators, including math-
ematical operations, activation functions, and data manipulation operations.
This wide range of supported operators makes it possible to deploy a much
broader range of NN models. This limitation is mainly due to the fact that the
project is still in its early stages of development, and thus the focus has been
on developing the engine rather than adding more operators. However, there
are plans to develop support for additional operators in the future, which will
further enhance the engine’s capabilities and make it more versatile.

In the upcoming chapters, a more detailed description of the project will
be provided. In particular, Chapter 2 reviews the current state of the art and
provides background information on the topics covered by the project. It also
identifies the gaps in the literature that this project seeks to address. Chapter 3
delves into the design process involved in the project, including the principles,
choices, and the defined software structure that were followed. Chapter 4 pro-
vides a comprehensive overview of the implementation phase of the project.
It explores the practical aspects of turning the design into a functional sys-

4

CHAPTER 1. INTRODUCTION

tem, discussing the tools, technologies, and methodologies used. Subsequently,
Chapter 5 focuses on the evaluation of the project. It provides a comprehen-
sive analysis of the system’s performance, effectiveness, and efficiency. Finally,
Chapter 6 provides a summary and synthesis of the research findings and out-
comes presented throughout the thesis. The chapter also explores potential
areas for future work and additional study.

5

2
Related Work

This chapter provides a comprehensive review of the existing literature re-
lated to the research topic of this study. The primary objective of this literature
review is to understand the current state of knowledge in the field and identify
gaps or limitations in the existing research. The literature review is structured
as follows: Firstly, an overview of ML techniques for embedded systems is pro-
vided, along with the challenges associated with implementing these techniques
on resource-constrained devices. Subsequently, the review will go through the
current state of the art in TinyML inference engines. Finally, the major existing
solutions will be presented, describing their criticalities and limitations, which
the present research aims to address.

2.1 Machine Learning for Embedded Systems

As introduced in Chapter 1, ML for embedded systems, also known as
TinyML, is a field of ML that involves the deployment of ML models on small
and low-power embedded devices. A ML application typically involves two
main phases: training and inference.

The training phase involves creating a model by training it on a large dataset
of labeled examples. During training, the model learns to identify patterns and
relationships within the data and adjusts its internal parameters to optimize
its performance. Once the model has been trained, it is typically saved as a
file, which can be used for inference on new data. There are different formats
to represent a ML model, some examples are Open Neural Network eXchange

7

2.1. MACHINE LEARNING FOR EMBEDDED SYSTEMS

(ONNX), TensorFlow (TF), TensorFlow Lite (TFLite), Coral, etc.
The inference phase involves using the trained model to make predictions

on new, unseen data. This phase requires an inference engine, which takes in
new data as input and outputs a prediction based on the result of the inference
performed on the model. Inference can be done in real-time, which is essential
for many applications, such as self-driving cars, voice assistants, and image
recognition systems.

Both the training and inference phases of an ML application can be com-
putationally intensive and require significant processing power. Therefore, in
ML for embedded systems, the training phase is typically carried out on a host
system with access to high-performance computing resources, such as Graphics
Processing Units (GPUs) or Tensor Processing Units (TPUs), while the inference
phase is typically carried out by an optimized inference engine that runs on the
MCU.

2.1.1 Parameters Quantization

Performing the inference of a ML model directly on the MCU might not be
enough. The majority of model parameters in ML applications are represented as
32-bit floating point numbers, which demand a considerable amount of memory
for storage and consume a substantial amount of Central Processing Unit (CPU)
cycles for computation. To overcome this issue, a technique called quantization
is widely used to reduce the memory and computation requirements of ML
models, especially for Deep Neural Networks (DNNs). The technique involves
converting the floating-point values of the model parameters to fixed-point val-
ues with lower precision, typically 8-bit integers. This reduction in precision
allows for significant reductions in memory usage and computation time while
maintaining the accuracy of the model within an acceptable range [14].

For example, a simple NN consisting of two layers of 16 nodes each would
require 1 kB of memory just to store the weight of each connection. Instead,
by applying 8-bit quantization to the network, the memory required to store
the weights will be only 256 B. After quantization, each parameter is mapped
according to Equation (2.1).

𝑟 = 𝑆(𝑞 − 𝑍) (2.1)

Where 𝑟 is the floating-point value, 𝑞 is the quantized fixed-point value, and 𝑆

8

CHAPTER 2. RELATED WORK

and 𝑍 are the quantization parameters, namely scale and zero point, respectively.
The quantization process takes place before deploying the model to the device,
either after training (post-training quantization) or during (quantization-aware
training). Quantization parameters are calculated based on a representative
sample of input data and embedded in the model. When performing infer-
ence, the engine has to use the quantized data together with the quantization
parameters to perform efficient operations.

Some of the most popular ML frameworks provide support for quantization.
However, the study will focus on TensorFlow Lite, which is a widely used,
lightweight version of the TensorFlow framework. TensorFlow Lite provides a
set of tools and libraries that enable developers to deploy and run ML models
on mobile and embedded devices. In particular, TensorFlow Lite gives the
possibility to train and quantize a model, saving it in the TFLite format, which is
based on the FlatBuffers serialization and is specifically designed for embedded
applications.

2.1.2 Model Representation

As previously mentioned, a trained model is saved as a file with a specific
format, depending on the training framework. Despite the different file formats,
ML models share the same underlying representation. At their core, ML models
can be seen as a directed graph of operators. Each node in the graph represents
an operation or a layer of the neural network, and the edges between nodes rep-
resent the flow of information through the network. The inputs to the network
are usually represented as nodes at the beginning of the graph and the outputs
as nodes at the end. An example visualization of a ML model graph can be seen
in Figure 2.1. The example shows the graph of a NN composed of three fully
connected layers of 16 nodes each, with one input and one output tensor.

To perform inference on this type of graph, the inference engine starts by
feeding the input data through the first operator in the graph. The output of
this operator is then passed as input to the next operator in the graph, and so
on, until the final output of the model is generated.

At each step in the process, the inference engine applies the relevant math-
ematical operations specified by the operator to the input data, using the quan-
tized parameters learned during the training process. This produces a new
output tensor, which is then passed to the next operator in the graph. Operator

9

2.1. MACHINE LEARNING FOR EMBEDDED SYSTEMS

1×49×40×1 1×25×20×8 1×4 1×4

Reshape_23
DepthwiseConv2D

weights〈1×10×8×8〉
bias〈8〉

FullyConnected

weights〈4×4000〉
bias〈4〉

Softmax labels_softmax5

Figure 2.1: Visualization of a ML model graph.

identifiers and correspondent computations are dependent on the framework
and must be supported by the inference engine. For example, the TensorFlow
inference engine will support the TensorFlow set of operators but not the ONNX
one. However, there are some tools to convert models between different repre-
sentations.

Since TensorFlow Lite has been chosen as the training framework, this study
will focus on its set of operators, which is a specialized subset of the TensorFlow
set designed specifically for deployment on embedded devices.

2.1.3 Inference Engine Approaches

Typically, there are two main methods used to develop inference engines
for embedded systems: the compiler-based approach and the interpreter-based
approach. These two approaches differ in their fundamental operation and their
impact on system performance.

Interpreter-Based Approach

In the interpreter-based approach, the inference engine functions as an in-
terpreter, dynamically parsing and interpreting the model at runtime. This
approach gives better flexibility and shorter compilation times since the model
is not parsed and evaluated at compile time. However, this approach has some
drawbacks. First of all, interpreting the model at runtime can introduce a sig-
nificant performance overhead. The interpreter may need to perform many
additional operations, such as parsing the model, performing type-checking,
and managing memory allocation, each of which can slow down the inference
process and make it less efficient. Moreover, performing dynamic allocations
at runtime can introduce several risks for the system, such as memory leaks,
heap fragmentation, and security vulnerabilities. Having to always load the
interpreter has some impact on the memory footprint of the engine too. The
interpreter itself can take up a significant amount of memory, regardless of the
size of the network, and it cannot be optimized since the network size is not

10

CHAPTER 2. RELATED WORK

known before runtime.

Compiler-Based Approach

On the other hand, the compiler-based approach involves translating the
model into machine code that can be executed directly by the processor. In this
approach, the inference engine parses and evaluates the model at compile time
(on a host system), generating optimized code that can be executed quickly and
efficiently. Memory management is also handled during the compilation stage,
with all the memory allocations done statically. This avoids all the risks related
to dynamic memory management and reduces the memory footprint of the
engine. Moreover, the compiled model size is proportional to the original size of
the model, meaning that inference for small models can be performed on highly
constrained devices. Finally, in the compiler-based approach, parts of the model
that are not required at runtime (such as operator identifiers, names, and version
numbers) can be stripped away, resulting in a smaller binary size. However, the
compilation stage is typically time-consuming and resource-intensive, and any
changes to the model require recompilation, which can be a disadvantage in the
development or tuning phase. This type of inference engine is typically called
TinyML Compiler.

Overall, the choice between the interpreter-based and compiler-based ap-
proaches depends on the specific requirements of the application. The interpreter-
based approach provides flexibility and dynamic behavior but can be compu-
tationally expensive and less memory-efficient, while the compiler-based ap-
proach provides optimized and memory-efficient code but is less dynamic and
more resource-intensive at compile time. MicroFlow has been developed using
a compiler-based approach to offer the best efficiency.

2.2 Programming Languages for Embedded Systems

There are a variety of programming languages that can be used for program-
ming embedded systems. These languages typically offer low-level control over
hardware resources, efficient memory management, and real-time responsive-
ness. Each language offers unique features and benefits that make it suitable
for specific use cases and project requirements. In the upcoming sections, this
review will provide an overview of the major challenges and existing solutions

11

2.2. PROGRAMMING LANGUAGES FOR EMBEDDED SYSTEMS

that are most relevant to the study.

2.2.1 Memory Safety

Memory safety is a concept that refers to the protection of a program’s mem-
ory from errors such as buffer overflows, use-after-free, and dangling pointers.
In recent years, memory safety has become a critical concern in software de-
velopment, particularly in low-level programming languages. The Microsoft
Security Response Center (MSRC) reported in 2019 that 70% of all security vul-
nerabilities were caused by memory safety issues [15]. Similarly, in 2020, a report
from Google reported that 70% of all severe security bugs in Google Chromium
were caused by memory safety problems (see Figure 2.2) [16]. These issues are
particularly severe in bare-metal embedded systems, which lack the protection
and abstractions provided by an Operating System (OS). In such systems, there
is no memory protection or process isolation, making memory safety issues even
more critical.

Programming languages can be divided into two categories: memory-safe
and memory-unsafe languages. Memory-safe languages provide features such
as automatic memory management, safe pointer arithmetic, and bounds check-
ing, which significantly reduce the risk of memory errors. Memory-unsafe
languages require programmers to manually manage memory, leaving the re-
sponsibility of ensuring memory safety entirely to the programmer. With these
languages, programmers must carefully follow memory safety best practices
and use static analysis tools to detect potential memory issues. However, some
memory-safe languages often rely on mechanisms such as garbage collection,
which can introduce additional overhead that can impact performance.

In conclusion, memory-safe languages are a great choice when building
robust and reliable software. However, it is important to consider the trade-off
between safety and performance when choosing a programming language for
embedded systems.

2.2.2 C

C is the most widely used language for embedded systems development due
to its very low-level features. The C language is a good choice for developing
embedded systems, especially those that require high performance and real-
time responsiveness, as it can be used to write code that can interact directly

12

CHAPTER 2. RELATED WORK

Security-related assert
7.1%

Other

23.9%

Other memory unsafety
32.9%

Use-after-free

36.1%

Figure 2.2: Types of high-severity security bugs found in Google Chromium
since 2015 (from [16]).

with the hardware. However, the low-level access to memory without any built-
in safeguards makes C a memory-unsafe language. In addition, C lacks some of
the high-level language features, such as abstraction and encapsulation, which
can make it more challenging to develop complex applications. Without these
features, C programmers must write more low-level code to achieve the same
level of functionality, which can result in code that is harder to read, maintain,
and debug. Moreover, due to its longevity, there are many different versions
and implementations of the language, as well as a wide range of libraries, tools,
compilers, and frameworks available, which can make the C ecosystem quite
messy, especially for embedded systems development.

2.2.3 C++

C++ was developed as an extension to the C programming language. It was
created with the goal of adding high-level features to the C language, while
retaining its efficiency and performance. C++ is also a very popular language
for embedded systems development, with a lot of frameworks, libraries, and
tools available. However, although the C++ ecosystem has seen significant
improvements over the years, it is still lacking in certain areas, such as cross-
compiling and package management. Moreover, C++ is still memory unsafe,
making it not a great choice for memory-critical applications.

13

2.3. EXISTING TINYML INFERENCE ENGINES

2.2.4 Rust

Rust is a general-purpose programming language introduced by Mozilla in
2010. It is designed to provide the efficiency and control of low-level languages
like C and C++, while also prioritizing memory safety and thread safety.

To achieve this, Rust employs an ownership system, which provides a unique
approach to memory management. Instead of relying on garbage collection or
manual memory management, Rust uses a system of ownership and borrowing
to ensure that memory is allocated and deallocated safely and efficiently. In this
way, it is possible to write high-performance code without sacrificing safety or
stability. This mechanism makes Rust a memory-safe programming language.

Rust also provides a number of other high-level features, including pat-
tern matching, closures, macros, and algebraic data types. Moreover, the Rust
toolchain includes a number of tools, including the Rust compiler, the Cargo
package manager, and many more, making the Rust ecosystem more stream-
lined and less fragmented. Additionally, Rust has a central package registry that
hosts a growing number of third-party tools and libraries.

When it comes to embedded systems, Rust offers different benefits. The own-
ership mechanism ensures at compile time that peripherals and Input/Output
(I/O) lines are correctly configured and used in a mutually exclusive way. The
Rust ecosystem makes it possible to easily develop portable libraries.

Overall, Rust has gained popularity in recent years due to its unique features.
It is increasingly being used in a variety of applications, including the Android
Open Source Project (AOSP) [17] and the Linux Kernel [18]. For these reasons,
the MicroFlow project has been written in Rust to offer robustness without
sacrificing efficiency.

2.3 Existing TinyML Inference Engines

There has been a growing interest in TinyML in recent years, with a number
of research efforts and practical applications emerging. In the following sections,
some of the major solutions developed in the field will be presented, along with
their benefits and downsides.

14

CHAPTER 2. RELATED WORK

2.3.1 TensorFlow Lite for Microcontrollers

TFLM1 is a popular inference engine written in C++ and developed by
Google. It is built on top of TensorFlow Lite and is designed to be lightweight
and efficient. TFLM supports a wide variety of ML models since it supports
many of the commonly used operations in ML, such as convolution, pooling,
and fully connected layers. Thanks to its popularity, the framework has in-
spired numerous projects that explore its potential further. One such project is
MicroNets [19], which focuses on optimizing standard NNs to enable efficient
inference using TFLM.

However, TFLM uses an interpreter-based approach, which causes it to re-
quire a significant amount of memory to run and be less efficient. Moreover, the
framework supports a limited number of architectures, and in particular, only
32-bit MCUs.

2.3.2 Embedded Learning Library

ELL2 is a library developed by Microsoft and written in C++ designed for
deploying ML models on resource-constrained devices. Unlike TFLM, ELL
adopted a compiler-based approach, which makes it more efficient and suitable
for small embedded devices.

However, ELL is currently limited to a small number of ML algorithms and
models. While this may be sufficient for some use cases, it may not be suitable
for developers who require more advanced or specialized ML models. As for
TFLM, also ELL does not support a wide variety of devices, making it less
flexible.

2.3.3 ARM-NN

ARM-NN3 is an open-source C++ software library designed for accelerating
ML models on ARM-based devices. One of the key benefits of ARM-NN is its
ability to provide optimized performance for ARM MCUs, which are widely
used in embedded systems. The library is designed to work with a variety of

1https://www.tensorflow.org/lite/microcontrollers
2https://microsoft.github.io/ELL/
3https://www.arm.com/products/silicon-ip-cpu/ethos/arm-nn

15

https://www.tensorflow.org/lite/microcontrollers
https://microsoft.github.io/ELL/
https://www.arm.com/products/silicon-ip-cpu/ethos/arm-nn

2.3. EXISTING TINYML INFERENCE ENGINES

ML frameworks, including TensorFlow, Caffe, and PyTorch, making it a flexible
option. However, one of the main issues is that ARM-NN may not be suitable
for developers who are not using ARM-based devices. Additionally, while it is
designed to work with a variety of ML frameworks, it may not support all the
features or functionality of these frameworks.

2.3.4 Plumerai

Plumerai4 is a startup company that specializes in developing ML tools
and platforms for embedded systems. One of Plumerai’s key products is the
Plumerai inference engine, which combines state-of-the-art techniques, such as
Binarized Neural Networks (BNNs) [20], with a compiler-based approach to
obtain the currently world’s fastest and most efficient inference engine.

However, the Plumerai inference engine is written in C++ and is currently
proprietary (i.e. closed source). This limits the ability to understand how
the software works, make modifications or improvements, or address potential
security vulnerabilities.

2.3.5 uTensor

uTensor5 is an extremely light-weight ML inference framework built on Ten-
sorFlow and optimized for ARM targets. The framework is implemented in
C++ and leverages the ARM Compute Library for optimized matrix operations,
making it well-suited for deployment only on ARM-based microcontrollers.

While the framework has gained popularity in academic and research set-
tings, it may not be as widely adopted in industry as other ML frameworks.
Moreover, it does not offer support for complex ML models or models that re-
quire more advanced optimization techniques. In this case, they may be better
suited for other frameworks that offer more robust support for larger models
and more complex computations.

4https://plumerai.com
5https://github.com/uTensor/uTensor

16

https://plumerai.com
https://github.com/uTensor/uTensor

CHAPTER 2. RELATED WORK

2.3.6 Tract

Tract6 is a self-contained inference engine, written in Rust and developed by
Sonos. Unlike other inference engines available in Rust, Tract is self-contained,
meaning that it does not contain any bindings or dependencies to external non-
Rust components. This makes Tract a memory-safe inference engine. In contrast,
many other inference engines currently available in the Rust package registry
contain bindings to C or C++ inference engines (like TFLM). This binding voids
the guarantees of the Rust language, making this engine memory-unsafe.

One of the main limitations of Tract is that it requires the Rust standard
library to run. However, the Rust standard library is not always available on
bare-metal systems, such as Cortex-M MCUs, which do not have an OS and have
limited processing power and memory. This limitation affects the portability of
Tract, making it only suitable for devices with an OS and sufficient processing
power and memory.

2.4 Summary

This chapter analyzed the major aspects involved in the development of a
TinyML inference engine and presented the most relevant existing solutions for
the study. In Table 2.1, it is possible to see a summary of the major features
presented, along with the proposed one.

After conducting a thorough survey of existing literature and inference en-
gines, it has been decided to develop a new inference engine written in Rust and
featuring a compiler-based approach. This decision has been motivated by the
robustness and safety given by the Rust programming language, combined with
the efficiency and speed of a compiler-based approach. Additionally, the survey
revealed that there is a lack of an existing, widely adopted solution that provides
equivalent capabilities. Lastly, the choice of Rust allows for a wide variety of
supported MCUs, as demonstrated in Figure 2.3, which is also missing in the
literature. In conclusion, the aim of MicroFlow is to fill the current gap in the
literature with a robust and efficient new TinyML inference engine. MicroFlow
has been designed to be lightweight and highly portable, contributing to the
advancement of the field.

6https://github.com/sonos/tract

17

https://github.com/sonos/tract

2.4. SUMMARY

Inference Engine Approach Language Minimum
supported MCUs

TFLM Interpreter-based C++ Bare-metal
32-bit MCUs

ELL Compiler-based C++ Bare-metal
32-bit MCUs

ARM-NN Interpreter-based C++ 32-bit MCUs
with OS

uTensor Compiler-based C++ Bare-metal
32-bit MCUs

Tract Interpreter-based Rust 32-bit MCUs
with OS

MicroFlow Compiler-based Rust Bare-metal
8-bit MCUs

Table 2.1: Summary of the major features among different TinyML inference
engines.

Bare-metal
32-bit MCUs

(e.g. Cortex-M)

32-bit MCUs
with OS (e.g.

Cortex-A)

Bare-metal
8-bit MCUs
(e.g. AVR)

TFLM

ELL

ARM-NN

Plumerai

uTensor

Tract

MicroFlow

Supported MCUs

In
fe

re
nc

e
En

gi
ne

Figure 2.3: Comparison of supported MCUs across inference engines.

18

3
Design

This chapter covers the underlying concepts, theories, and methodologies
that have shaped the design decisions throughout the project. It provides a
comprehensive understanding of the design principles employed, highlighting
their significance and impact on the final outcome. Furthermore, this chapter
will examine how these choices align with established industry standards and
best practices.

Finally, this chapter will outline the project’s defined structure, which re-
flects the design choices made in accordance with the established principles.
The structure of the project serves as a blueprint that guides the development
process, ensuring coherence, organization, and adherence to the established
design principles.

3.1 Principles

After conducting an extensive literature survey, as detailed in Chapter 2, the
following design choices and principles have been followed and implemented.

3.1.1 Portability

The first design choice that has been made is to maximize the portability
of the software. The embedded ecosystem is very fragmented, with a lot of
vendor-specific frameworks and architectures. Therefore, it is very difficult to
provide a single software package that works efficiently and seamlessly with all

19

3.1. PRINCIPLES

the devices available. This usually results in a lot of work and code adaptations
to make the library work on different systems.

When using traditional programming languages, such as C or C++, this
challenge is even more accentuated. In fact, these languages are defined by
standards but implemented by different compilers, each with its own differences
and peculiarities. Therefore, designing portable software using these languages
mostly results in having different implementations and providing a build system
that builds the code for the target architecture.

However, the Rust programming language provides a more convenient way
to build portable software. In fact, the Rust ecosystem is more centralized
and managed by the community, making it more suitable for this scenario.
Moreover, the language is defined by the compiler, making it possible to have
a single, official instance that takes care of building the code for the target
architecture. In addition, Rust comes with a built-in official toolchain manager,
namely rustup 1, and an official package manager, namely cargo2. With these
tools combined, it is possible to build portable software without having to worry
about vendor-specific details.

In Rust, each unit of software is shipped inside a so-called crate. All the crates
are collected and available in the central Rust Crate Registry3. In conclusion, Rust
offers a compelling solution for achieving portability in software development.
By leveraging Rust, it has been possible to write code that is agnostic to the
underlying hardware architecture and framework.

3.1.2 Efficiency

One of the major challenges when it comes to embedded systems program-
ming is the limited amount of available resources. For this reason, this principle
has been followed to provide resource-efficient software that is able to optimize
the memory usage and power consumption of the device.

To achieve this, after the survey conducted and detailed in Chapter 2, it has
been decided to adopt a compiler-based approach for the inference engine. By
doing so, the software benefits from advanced optimization techniques and static
analysis, resulting in improved performance and memory efficiency. Addition-

1https://github.com/rust-lang/rustup
2https://github.com/rust-lang/cargo
3https://crates.io

20

https://github.com/rust-lang/rustup
https://github.com/rust-lang/cargo
https://crates.io

CHAPTER 3. DESIGN

ally, the inherent characteristics of Rust, such as its low-level control, zero-cost
abstractions, and minimal runtime overhead, contribute to the overall efficiency
of the software.

3.1.3 Robustness

This principle led to the design choice of having a strongly typed inference
engine. In fact, running inference on NN is a very memory-intensive task that
requires a lot of matrix manipulation and processing. This can result in a variety
of possible memory-related bugs, such as index out of bounds, segmentation
faults, stack overflows, and so on. For this reason, it has been decided to heavily
rely on generic types offered by Rust to ensure at compile time that all the
operations made by the runtime will be memory-safe.

In addition, the utilization of Rust plays a pivotal role in achieving robustness.
Rust’s design philosophy revolves around the goal of ensuring memory safety,
thread safety, and data race prevention without compromising performance.
These inherent features of Rust significantly contribute to the robustness of the
software.

One key aspect to ensuring maximal robustness is to use external libraries
(i.e. crates), which are in turn fully written in Rust. In this way, the whole pro-
gram execution goes through the strict Rust rules of ownership and borrowing,
ensuring a safe execution. In contrast, a lot of existing inference engines built
in Rust still rely on bindings to memory-unsafe code, making the whole library
memory-unsafe.

In summary, by leveraging Rust’s memory safety, ownership system, strong
type system, and explicit error handling mechanisms, combined with the usage
of libraries fully written in Rust and a strongly typed inference engine, it has
been possible to achieve a higher level of robustness.

3.1.4 Scalability

it is essential for an inference engine to be scalable. As explained earlier, NNs
are represented as computational graphs consisting of a sequence of operators.
The sequence, number, and hierarchy of the operators define the architecture of
the model. Therefore, it is crucial to support as many operators as possible to
be able to perform inference on different model architectures.

21

3.2. STRUCTURE

As ML models evolve and become more complex, there is a constant need to
introduce new operators or custom operations to enhance their capabilities. A
scalable inference engine provides the necessary infrastructure to easily integrate
and implement these new operators. Moreover, the scalability of the engine
enables modularity and reusability, making it possible to focus only on the
specific implementation of new operators rather than dealing with boilerplate
code.

3.2 Structure

After considering the principles described in the previous section, the follow-
ing structure has been defined. The structure served as a fundamental frame-
work that shaped and guided the development process described in Chapter 4.
However, during the implementation phase, various adjustments and correc-
tions were made to enhance the project’s overall quality and performance.

To achieve portability, the MicroFlow project has been shipped in a Rust
crate, letting the Rust tools manage it for all the numerous supported platforms.
The software has been split into two components to maximize efficiency: the
compiler, which resides on the host machine, and the runtime, which resides
on the target MCU. The design goal is to delegate as much as possible to the
compiler, resulting in a very lightweight runtime that computes only the strictly
necessary computations needed at runtime. Moreover, the memory usage has
also been optimized by analyzing the model at compile time and statically
allocating the minimal amount of memory needed by the runtime to perform
inference. An overview of the software structure can be seen in Figure 3.1, while
all the implementation details will be covered in Chapter 4.

Finally, MicroFlow has been designed to offer a high level of scalability, where
each new operator derives from a template consisting of two parts: the parser
and the kernel. The parser runs statically in the compiler and takes care of
preprocessing the model and preparing the weights for the runtime. The kernel
runs on the runtime and takes care of the actual computation of the operator,
propagating the input to the output. Each operator is isolated, having only the
input and output interfaces with the other operators and leaving no memory
trace after the execution.

Although MicroFlow has the infrastructure to support a multitude of opera-
tors, only a few have been developed for the scope of this research. In particular,

22

CHAPTER 3. DESIGN

Target

Host

Neural Network
Model MicroFlow Compiler

Generated Source
Code MicroFlow Runtime

Weights

Figure 3.1: Overview of the software structure. The MicroFlow library has been
split into two components: the compiler and the runtime.

only the most commonly used operators are currently supported, such as:

• FullyConnected

• Conv2D

• DepthwiseConv2D

• Softmax

• AveragePool2D

• Reshape

With these operators, it is possible to support the vast majority of NNs, such
as Feedforward Neural Networks (FNNs) and Convolutional Neural Networks
(CNNs). Moreover, the highly scalable structure of the project makes it possible
to easily develop support for new operators in the future.

3.3 Usage

The MicroFlow crate is available in the Rust Package Registry (crates.io)
and it can be easily added to another crate by simply including it in the manifest
file (Cargo.toml). Once imported, MicroFlow exports the model macro, which
can be used to annotate a struct and bind it to a NN model. The macro takes
as input the path to the model in the TFLite format and generates a predict()
function that, when called, performs inference on the given model.

23

3.3. USAGE

1 use microflow::model;
2

3 #[model("models/sine.tflite")]
4 struct Sine;
5

6 fn main() {
7 let y_predicted = Sine::predict(1.5);
8 println("Predicted sin(1.5): {y_predicted}");
9 }

Code 3.1: Example Rust code for utilizing a sine predictor model with
MicroFlow.

The parsing of the model and the generation of the source code for the
function are entirely computed during compilation. The predict() function is
embedded in the source file by the macro expansion, and it is subject to all the
operations of the compiler, including memory safety checks and optimizations.
An example usage can be seen in Code 3.1.

24

4
Implementation

The implementation chapter focuses on translating the theoretical founda-
tions and design principles outlined in the previous chapters into practical real-
ization. This chapter provides a detailed account of how the proposed system
has been implemented, including the methodologies, tools, and techniques em-
ployed throughout the development process.

In this chapter, a detailed exploration of the software components is con-
ducted, discussing the selected framework, libraries, and patterns. The aim is to
provide comprehensive insights into the technical aspects of the implementation
process. Additionally, any limitations, challenges, or issues encountered dur-
ing development will be addressed. During the implementation of the project,
the main reference has been The Rust Programming Language book [21], which
provided guidance and insights into the language’s features and best practices.
While, for the theory and concepts behind TinyML applications, the TinyML
book [22] served as a valuable reference. The entire project has been versioned
using Git and published as an open-source project on GitHub 1.

To begin, this chapter will provide an in-depth presentation and descrip-
tion of the project’s two primary software components: the compiler and the
runtime. Next, the description will go through the implementation of the sup-
ported operators, exploring their mathematical properties and the necessary
adaptations made to incorporate them into the project. Lastly, this chapter will
detail the validation and testing process employed to ensure the reliability and

1https://github.com/matteocarnelos/microflow-rs

25

https://github.com/matteocarnelos/microflow-rs

4.1. COMPILER

MicroFlow Compiler

Rust Compiler

Target Binary

MicroFlow Runtime User Code

Generated Source
Code

Figure 4.1: Compilation flow of the software. The MicroFlow compiler produces
code that will be compiled by the Rust compiler.

effectiveness of the implemented solution.

4.1 Compiler

As described in Chapter 3, the compiler is one of the two main components of
the system. The compiler takes care of processing the model and generating the
code that does inference on it. The implementation is structured as a sub-crate
of the main microflow crate, specifically named microflow-macros, due to its
extensive use of Rust macros.

The compiler runs on the host system, and therefore it has access to the
standard library. However, the generated code does not have access to the
standard library, but only to the core crate and the MicroFlow runtime. The
compiler runs as the first component of the building stage. The produced code
is then built by the Rust compiler. An overview of the compilation flow can be
seen in Figure 4.1.

In the subsequent sections, the description will examine the two primary
components of the compiler: the utilization of Rust macros for generating the
output code and the parsing process to analyze the model.

26

CHAPTER 4. IMPLEMENTATION

TokenStream#[model("model.tflite")]
struct Model;

TokenStream
Procedural Macro

struct Model;

impl Model {

 pub fn predict(input: ...) {

 ...

 }

}

Figure 4.2: Expansion of the macro. The input tokens are expanded by the
procedural macro according to the model.

4.1.1 Macros

Rust macros play a vital role in the project. They provide a powerful mech-
anism for code generation and metaprogramming, enabling developers to write
code that can dynamically generate and manipulate Rust code itself. In Rust,
there are two types of macros: declarative macros and procedural macros.
Declarative macros, also known as macro_rules macros, allow for pattern match-
ing and substitution within the code. They are defined using the macro_rules!
keyword and are expanded at compile time. Procedural macros, on the other
hand, enable code generation and transformation by implementing custom logic.
They are typically defined as separate crates (in the case of this project, they are
defined in the microflow-macros crate) and are invoked using attributes or
function-like syntax. Procedural macros are expanded at the early stage of
compilation (see Figure 4.1) and are more powerful than declarative macros.

In this project, it has been decided to have an attribute-like procedural macro
named model. The macro receives as input a stream of tokens representing
the macro invocation (along with the macro parameters) and outputs a stream
of tokens representing the generated code. In the case of the model macro, it
receives as input the struct to which the predict() function should be imple-
mented and the path of the NN model as an argument. An example of the code
expansion can be seen in Figure 4.2. Overall, macros are the core component of
the compiler, and they act as the entrypoint for the entire software. They start
the parser and manage the generation of the runtime calls.

4.1.2 Parsing

The parsing phase is in charge of analyzing the input model and generating
the output code and memory structures accordingly. The input of the parser

27

4.1. COMPILER

comes from the macro, and it is the path of the model relative to the root of the
crate.

As decided by design, MicroFlow accepts as input NN models in the TFLite
format. To support other formats, such as ONNX, it is only necessary to expand
the parser, providing support for new formats. Under the hood, the TFLite
format uses the FlatBuffers serialization format. FlatBuffers offers a lightweight
and efficient solution for serializing and deserializing structured data. To pro-
vide this, FlatBuffers relies on a schema definition, which defines the structure
and layout of the data. Therefore, there is not a single parser for FlatBuffers,
instead, it depends on the schema. Fortunately, FlatBuffers includes a powerful
code generation tool called flatc. This compiler takes a FlatBuffers schema
as input and automatically generates a parser that can handle serialization and
deserialization of FlatBuffers files based on that schema.

Therefore, the MicroFlow parser first invokes the FlatBuffers deserializer gen-
erated by compiling the FlatBuffers schema of the TFLite format using flatc.
Once the model has been deserialized, the parser proceeds to extract the oper-
ators that compose the NN, along with all the tensor dimensions, content, and
relations. Subsequently, the parser generates an internal representation of the
model by constructing a series of operators. Each operator is associated with
its respective parameters, such as the input tensor, output tensor, weights, acti-
vation function, and other relevant attributes. Additionally, each operator also
contains the stream of tokens needed by the macro to generate its runtime call.
This is achieved by implementing the method to_tokens() of the ToTokens
trait. For example, the FullyConnected operator in the internal representation
will contain the tokens that, once included in the generated source code, will call
the fully_connected() function in the runtime with all the required arguments.

Overall, the internal representation captures the structure and characteristics
of the model, enabling further processing and manipulation for efficient execu-
tion of the NN inference. An example execution of the parser can be observed
in Figure 4.3. Finally, once the internal representation is built, along with the
sequence of operators involved, the parser proceeds to start the pre-processing
phase.

28

CHAPTER 4. IMPLEMENTATION

model.tflite

FlatBuffers
Deserializer MicroFlow Parser

Internal Representation

FullyConnected

FullyConnected

Conv2D

...

Figure 4.3: Example execution of the parsing phase. The input file is deserialized
and parsed to build the internal representation.

4.1.3 Pre-processing

The pre-processing phase of the MicroFlow compiler plays a crucial role in
reducing the load at runtime by performing calculations and optimizations
on constant values during compile-time. This phase involves invoking the
preprocess() function that is present in each operator of the internal repre-
sentation. By offloading constant calculations to the pre-processing phase, the
runtime performance is improved as it avoids redundant computations and
reduces the computational overhead during inference.

The pre-processable part of each operator is obtained by analyzing the math-
ematical properties of the operator. In fact, all the components of the operator’s
formula that are not dependent directly or indirectly on the input can be dele-
gated to this phase. A detailed walkthrough of the extraction of constant values
from the operator’s transfer functions is carried out in the next sections. Finally,
after the pre-processing phase, the computed pre-processed values are stored
in custom tensors. These custom tensors are then passed as arguments to the
runtime function, ensuring that the pre-computed values are readily available
for efficient execution of the inference process.

4.2 Runtime

The MicroFlow runtime is the second component of the project. As the
name suggests, the runtime contains all the implementation of the operators
and, more generally, everything that is executed on the target MCU. Therefore,
a key difference between the compiler and the runtime is that the latter cannot
rely on the standard library. In fact, on bare-metal MCUs, there is no OS and

29

4.2. RUNTIME

therefore the software has to rely sorely on the core library, which contains the
most essential structures and components to write Rust programs. The core
library is present in every Rust program, and it replaces the standard library
when the #[no_std] attribute is present at the top of the library file, namely
the lib.rs file. The standard library is a superset of the core library. For this
reason, a no_std program can run on std platforms without any change in the
code. This means that the MicroFlow runtime can seamlessly run on platforms
with an OS.

The goal of the runtime is to be as efficient as possible, both in terms of
performance and memory management. The runtime functions are called by the
code generated by the compiler. However, some static checks are also performed
at runtime to ensure reliable execution.

The runtime receives the sequence of operators to execute along with the
tensors to use. Therefore, it is not needed to evaluate the model at runtime,
unlike other inference engines that do. For example, the TFLM inference engine,
which is interpreter-based, consists only of the runtime, represented by the
interpreter. This causes overhead due to the fact that all the operations carried
out by the compiler need to be carried out at runtime by the interpreter instead.

Another responsibility of the runtime is to manage memory allocation. How-
ever, since the model is fully analyzed prior to execution, the memory needed
for performing inference is statically defined. As a result, the runtime has
advance knowledge of the exact amount of memory needed and the specific
locations where tensors should be stored. This enables the runtime to allocate
memory resources with precision, optimizing memory usage and minimizing
overhead. In summary, this section delves into the implementation details of
the MicroFlow runtime, covering various aspects such as the choice and usage
of external libraries and the leverage on generic programming.

4.2.1 External Libraries

The runtime heavily relies on the use of external libraries to perform matrix
operations and manipulations. However, the choice of the library plays a pivotal
role in ensuring memory safety and compatibility with no_std environments.
In fact, the chosen library has to be independent from the standard library and
fully written in Rust to ensure its memory safety. Additionally, the project needs
a library that can be used with static memory allocation and generics.

30

CHAPTER 4. IMPLEMENTATION

While there are various linear algebra Rust crates available, it is worth nothing
that the majority of them prioritize flexibility over raw performance. One such
example is the popular ndarray crate, which offers a versatile multi-dimensional
array representation along with a comprehensive set of linear algebra operations.
However, due to the inherent trade-off between flexibility and performance,
these crates may not always offer the same level of efficiency as specialized linear
algebra libraries. For this scenario, there are alternative Rust crates available that
focus specifically on optimizing linear algebra operations. These crates often
utilize specialized algorithms, data structures, and numerical optimizations to
achieve higher computational efficiency.

After a careful search for the optimal crate, it has been decided to use the
highly specialized nalgebra 2 crate. nalgebra is a powerful linear algebra li-
brary, fully written in Rust (and thus memory-safe), that provides a comprehen-
sive set of tools and structures for mathematical operations involving vectors,
matrices, and other geometric entities. It is designed to be efficient, generic, and
easy to use.

One of the key features of nalgebra is its support for both fixed-size and
dynamically-sized matrices and vectors. This possibility makes the crate usable
for the project, as the fixed-size matrices and vectors can be extensively used.
One additional noteworthy aspect of nalgebra is its strong emphasis on generics,
which plays a significant role in this project. This powerful use of generics
enhances the versatility and adaptability of the runtime, making it suitable for
a wide range of models.

4.2.2 Generics

Generic programming is a fundamental concept in Rust that allows the cre-
ation of highly versatile and reusable code. It enables the definition of functions,
structs, and traits that can work with multiple data types, providing a high level
of flexibility and abstraction.

In the context of the MicroFlow project, generic programming plays a cru-
cial role in achieving the project’s goals. By leveraging generics, the MicroFlow
runtime can provide a generic interface for working with various NN models,
allowing users to seamlessly integrate different model architectures and quan-

2https://nalgebra.org

31

https://nalgebra.org

4.3. MEMORY MANAGEMENT

tization types without sacrificing performance or safety.
Additionally to conventional generics, Rust offers since version 1.51 another

type of generic, const generics. Const generics are generic arguments that range
over constant values rather than types or lifetimes. This allows, for instance,
types or functions to be parameterized by integers. As for the other types of
generics, const generics are also evaluated and expanded at compile time.

The MicroFlow runtime is heavily built on top of generic types and const
generics. The first makes it possible to provide a single definition of the runtime
function that works for different types, while the second allows the runtime to
work for generic sizes of input and output tensors without having to evaluate
the tensor dimensions at runtime. Moreover, the types and the const generics
can be restricted and correlated with each other to ensure correctness at compile
time.

The example reported in Code 4.1 shows how generics are used in the Mi-
croFlow runtime to abstract the kernel from the type and have compile-time
guarantees over the tensors dimensions. In particular, the example shows a
FullyConnected kernel that takes as arguments the input tensor of type T and
dimension𝑚×𝑛, the weights tensor of type T and dimension 𝑛×𝑝, and the biases
tensor of type T and dimension 𝑝 × 1. The kernel returns as output a tensor of
type T and dimension 𝑚 × 𝑝. In addition, the type parameter T is constrained by
the Quantized trait, which ensures that the type is either a signed or unsigned
integer. The implementation of the operator is omitted in the example for the
sake of brevity. However, for a comprehensive view of the operator and other
kernels developed for this project, please refer to Appendix A, where the full
Rust implementation is provided.

In this way, the fully_connected function works with arguments that reflect
the generic parameters. An incorrect data type (as, for example, a floating point
type) or an incorrect size of any of the tensors (as, for example, an input tensor of
size 𝑚 × 𝑛 + 1) will result in a compilation error. All these checks are delegated
to the Rust compiler and do not take any computing resources at runtime.

4.3 Memory Management

This section covers all the aspects related to the management of the program’s
memory. In fact, the management of the memory is a critical aspect of the project,
as it can make a difference between being able to perform inference on a highly

32

CHAPTER 4. IMPLEMENTATION

1 fn fully_connected <
2 T: Quantized ,
3 const M: usize,
4 const N: usize,
5 const P: usize,
6 >(
7 input: Tensor2D <T, M, N>,
8 weights: &Tensor2D <T, N, P>,
9 biases: &Tensor2D <T, P, 1>,

10) -> Tensor2D <T, M, P> {
11 // Implementation...
12 }

Code 4.1: Example definition of an operator kernel that uses both type and
const generics. The correctness of the data is completely ensured at compile
time without the need for any runtime checks.

resource-constrained MCU or not. Not only that, efficient memory utilization
is essential to ensure optimal performance, minimize memory footprint, and
avoid issues like memory leaks and crashes. In this section, the techniques and
strategies employed in the project are explored.

4.3.1 Ownership

To understand how memory is managed in MicroFlow, it is better to first
understand how memory is managed in Rust. The ownership concept is one of
the fundamental pillars of Rust’s memory management system. It provides a
unique approach to managing memory and resource allocation while ensuring
memory safety and preventing common pitfalls such as data races and memory
leaks.

In Rust, every value has a single owner at any given time. Ownership
represents the authority and responsibility for managing the memory used by
a value. When a value is created, its owner is responsible for allocating and
releasing the memory associated with it.

The key aspect associated with ownership is the concept of ownership trans-
fer. When a value is assigned to another variable or passed as an argument to a
function, ownership is transferred from the source to the destination. This en-
sures that there is always a clear and well-defined owner for each value, avoiding
ambiguities or conflicts.

Ownership also enables Rust to enforce the borrowing rules. These rules
prevent data races by ensuring that multiple references to a value can either all

33

4.3. MEMORY MANAGEMENT

s

name value

ptr

s1

name value

ptr

len 5

capacity 5

index value

0 h

1 e

2 l

3 l

4 o

Figure 4.4: Memory diagram of an example borrow. The variable s represents
an immutable borrow pointing at the String struct s1.

be immutable or a single mutable reference exists. This eliminates the possibil-
ity of concurrent modifications or unsynchronized access to data. A diagram
representing the memory structure of a borrowing example can be seen in Fig-
ure 4.4.

When an owner goes out of scope, Rust automatically frees the associated
memory by invoking the value’s destructor. This deterministic and automatic
memory deallocation eliminates the need for manual memory management or
explicit deallocation calls. It helps prevent memory leaks and ensures that
resources are released promptly.

To work with data without transferring ownership, Rust provides borrow-
ing. Borrowing allows temporary and limited access to a value without taking
ownership. Borrowing is controlled through references, which can be either im-
mutable references (&T) or mutable references (&mut T). References enable safe
and controlled sharing of data between different parts of the program.

The ownership model in Rust helps ensure memory safety by statically en-
forcing these ownership and borrowing rules at compile time. The Rust compiler
analyzes the code and ensures that all ownership transfers, borrows, and refer-
ences adhere to the rules. If the rules are violated, the compiler will raise errors,
preventing potentially unsafe operations.

In MicroFlow, these concepts are used to ensure memory efficiency. First of
all, since all the tensor dimensions are known at compile time, the entire execu-
tion of the runtime does not require any dynamic allocation on the heap. This
results in the best possible memory utilization since everything is allocated on
the stack and freed after use. By doing so, problems such as memory fragmen-

34

CHAPTER 4. IMPLEMENTATION

Move
Input

BorrowWeights

BorrowBiases

Move

Drop

Operator

Input Output

Input (Dropped)

Figure 4.5: Illustration of ownership propagation during the execution of an op-
erator. The input tensor is transferred to the operator, which assumes ownership
and will release it after execution.

tation and dangling pointers are avoided. Additionally, the code becomes more
portable and easy to use since the user does not have to provide a global heap
allocator or a memory arena. With MicroFlow, the needed memory is statically
defined and allocated on the stack.

In MicroFlow, the transfer of responsibilities occurs according to the fol-
lowing mechanism. Each operator takes ownership of the input tensor but
immutably borrows the others. The operator then moves the output tensor to
the next operator’s input, which in turn will take ownership of it. This mech-
anism ensures that the lifetime of the input tensor is bound to the operator,
making it drop the tensor once all the values have been propagated to the out-
put. This means that, at any point in time, only the current working operator is
using the minimal amount of memory possible. However, for the other tensors,
such as the weights and the biases, transferring ownership is not needed as they
are constant values and therefore will never be dropped. Instead, since they are
used only for reading values, they can be efficiently accessed by a borrow (i.e.
an immutable reference). An example diagram of this mechanism can be seen
in Figure 4.5.

In terms of code, this mechanism is simply expressed by the signature of
the operator’s function. As it can be seen in Code 4.1, the input argument is
not prefixed by anything, meaning that it will be moved. The other tensors are
instead prefixed by the borrowing operator (&).

35

4.3. MEMORY MANAGEMENT

4.3.2 Paging

With the ownership mechanism described in the previous section, the entire
layer is loaded into RAM during computation. This approach offers a balance
between memory usage and performance, ensuring quick and efficient access
to data when needed. However, certain MCUs have limited RAM size, which
can pose a challenge when attempting to load an entire layer into memory
simultaneously.

For instance, the ATmega328 MCU found in Arduino Uno boards has a
limited flash size of 32 kB and only 2 kB of RAM. When attempting to perform
inference on a NN with a dense layer comprising 32 fully connected neurons
using this MCU, it quickly becomes apparent that there is not enough RAM
available. In fact, the memory required for computing this layer alone amounts
to approximately 5.184 kB. This calculation takes into account factors such as
weights (32 × 32), 32-bit signed integer accumulators (4 × 32 × 32), and vectors
containing biases, input, and output (3 × 32). As a result, although the flash
memory can hold the entire NN, the stack overflows.

To address this issue, a solution has been implemented by loading only parts
of the layer into RAM at a time, referred to as pages. Rather than loading the
entire layer into memory, only the necessary portions are loaded and processed
sequentially. This approach allows for efficient memory utilization and ensures
that the MCU’s limited RAM is not overwhelmed. In Figure 4.6 it is possible to
see the amount of neurons, weights, and biases stored in RAM for an example
layer.

In the example provided, dividing the layer into 32 pages results in a signif-
icantly reduced RAM usage of only 162 B. However, it is important to note that
relaxing the space constraint by loading pages into memory would inevitably
lead to increased execution time. Therefore, the decision to use paging or load
the entire layer into memory depends on the specific context and application
requirements. In situations where memory resources are limited and slower
inference times are acceptable, the paging approach can be a viable solution.
On the other hand, if memory constraints are less stringent and faster inference
times are crucial, loading the entire layer into memory may be the preferred
option.

In summary, this mechanism makes it possible to run inference on highly-
constrained devices. However, it is essential to carefully consider the trade-off

36

CHAPTER 4. IMPLEMENTATION

Figure 4.6: Example of paging in a simplified fully connected layer. The page,
highlighted in red, contains 4 inputs, 4 weights, 1 bias, and 1 output, representing
the memory requirements.

between memory usage and inference speed to determine the most suitable ap-
proach for achieving the desired performance and resource utilization balance.

4.3.3 Stack Overflow Protection

While Rust is widely known for its emphasis on memory safety, it is important
to note that bare-metal Rust programs may not be memory-safe in the presence
of stack overflows. For example, on ARM Cortex-M architectures, the default
memory layout in RAM is structured as shown in Figure 4.7. As it can be noticed,
the function call stack, also known as the stack, grows downwards on function
calls and when local variables are created. If the stack grows too large (as
shown on the right side of Figure 4.7) it collides with the .bss + .data region,
which contains all the program’s static variables. This collision results in the
static variables being overwritten with unrelated data, causing an undefined
behavior.

The solution to this problem is to change the memory layout of the program
and place the stack below the .bss + .data region. With the flipped memory
layout (shown in Figure 4.8) the stack cannot collide with the static variables.
Instead, it will collide with the boundary of the physical RAM memory region.
In the ARM Cortex-M architecture, trying to read or write past the boundaries
of the physical RAM memory region produces a hardware exception, resulting in
a Rust HardFault exception.

As explained earlier, MicroFlow heavily relies on stack usage. Therefore,
this modified memory layout is important to guarantee the best reliability and

37

4.3. MEMORY MANAGEMENT

0x2000_0000

0x2000_5000

.stack

.bss+.data

.stack

.bss+.data

0x2000_1000
?

Figure 4.7: Example of stack overflow resulting in an undefined behavior on
ARM Cortex-M architectures.

0x2000_0000

0x2000_5000

.stack

.bss+.data

.stack

.bss+.data
0x2000_4000

Figure 4.8: Example of flipped memory layout. The stack overflow will not
result in undefined behavior but in a hardware exception.

38

CHAPTER 4. IMPLEMENTATION

robustness. Flipping the memory layout is not a trivial task. The start address
of the stack is not the beginning of the RAM region anymore, and the beginning
of the .bss + .data region is not the end of the RAM. Instead, the size of the
.bss + .data region needs to be calculated during the linking process, and the
start of the stack is set accordingly.

Fortunately, the flip-link 3 crate does exactly this. In particular, flip-link
is a linker that can be used as a replacement for the default Rust linker (rust-lld)
and takes care of flipping the memory layout. Currently, the crate works only
for the Cortex-M architecture, but more platforms are planned to be supported
in the future. Overall, by simply flipping the memory layout of the RAM, it has
been possible to add zero-cost stack overflow protection to the software.

4.4 Operators

This section focuses on exploring the implementation and functionality of the
operators. Operators are mathematical functions that transform input data into
meaningful output. They encompass a wide range of mathematical operations,
activation functions, and data manipulation techniques that are essential for
the successful execution of a NN model. The design principles, algorithms,
and optimizations employed in implementing these operators will be discussed,
highlighting their significance in achieving accurate and efficient inference.

Operators are the building blocks of NNs. Model architectures are often
described as the sequence of operators employed, represented as a computa-
tional graph. There are a multitude of operators available, with new ones being
added to the literature over time. However, for the scope of this project, it has
been decided to focus only on a specific set of operators, and in particular the
set of most used operators for FNNs and CNNs. NN operators possess several
key properties that contribute to their functionality and effectiveness. These
properties include:

• Independence: Each operator functions independently, taking input ten-
sors and producing output tensors. These tensors represent the data
flowing through the network and carry the information for each layer’s
computation.

3https://crates.io/crates/flip-link

39

https://crates.io/crates/flip-link

4.4. OPERATORS

• Learnable Parameters: Operators often have parameters that are learned
during the training process. These parameters, such as weights and biases,
are adjusted through algorithms such as backpropagation.

• Activation Functions: Operators apply activation functions to introduce
non-linearity into the network. Activation functions, such as Rectified
Linear Unit (ReLU) or sigmoid, help in modeling complex relationships
and enable the network to learn and generalize better.

• Forward and Backward Propagation: Operators facilitate both forward
propagation, where data flows through the network from input to output,
and backward propagation, where gradients are computed and used to
update the parameters during training.

• Differentiability: NN operators are typically differentiable, meaning that
their gradients can be computed. This property is crucial for backpropaga-
tion, as it allows the network to learn through gradient-based optimization
algorithms.

• Non-local Operations: Some operators involve non-local operations, such
as convolutional operations, which consider the spatial or temporal rela-
tionships between neighboring data points. These operations help capture
local patterns and structures in the input data.

• Scalability: Operators should be designed to handle varying input sizes
and be scalable to work with larger networks and datasets. This allows for
flexibility and adaptability in training and deploying NNs. This scalable
nature of operators also contributes to the project’s overall scalability.

In addition to these properties, for TinyML applications and models, opera-
tors need to be quantized (as explained in Chapter 2). This means that instead
of leveraging floating point operations, like conventional operators do, quan-
tized operators have to sorely rely on integer operations while still providing
enough accuracy. Therefore, before implementing an operator in the MicroFlow
framework, it has to be quantized, meaning that its transfer function has to be
converted to an integer-only function. To achieve this, a transformation of the
operator’s formula has been carried out for each operator.

Once the operator has been quantized, its implementation in the framework
follows the design described in Chapter 3. The operator is split into two compo-
nents: the parser, which runs on the compiler, and the kernel, which runs on the
runtime. The goal of the parser is to prepare the kernel by preparing the input,
output, and intermediate tensors and pre-processing the constant values. The
goal of the kernel is to propagate the input to the output in the most efficient
way possible. An overview of the operator’s components can be observed in
Figure 4.9.

40

CHAPTER 4. IMPLEMENTATION

MicroFlow Runtime

MicroFlow Compiler

Operator

Parser

Kernel Generated Source
Code

Figure 4.9: Components of an operator. The parser resides in the compiler
and contributes to the generated code, the kernel resides in the runtime and
contributes to the inference.

In the following sections, the analysis will go through the key operators
supported by the system, highlighting the quantization and implementation
procedures. Finally, the implemented activation functions will be explored.

4.4.1 FullyConnected

The FullyConnected operator, also known as the dense or linear operator, is
a key building block in neural networks. It is responsible for mapping inputs
from one layer to outputs in the next layer, connecting every input element to
every output element. In this operator, each input element is multiplied by
a corresponding weight and summed with other weighted inputs and biases.
The resulting sum is then passed through an activation function to introduce
non-linearity, producing the final output values.

The FullyConnected operator is characterized by its weight matrix, which
represents the learned parameters of the network. Each row in the weight
matrix corresponds to the weights associated with a specific output neuron, and
each column corresponds to the weights connecting a specific input neuron to
all the output neurons. This allows the operator to learn complex relationships
between input and output features.

The FullyConnected operator is widely used in various neural network ar-
chitectures, including FNNs, CNNs, and Recurrent Neural Networks (RNNs).
It provides a high level of flexibility and expressive power, enabling the network
to learn and represent complex patterns and dependencies in the data. Fully-

41

4.4. OPERATORS

Figure 4.10: Diagram showing a typical representation of a FullyConnected
layer. The neurons and connections highlighted in red represent the input,
output, biases, and weights of the layer.

Connected layers are typically represented by a set of fully connected neurons,
as shown in Figure 4.10.

In the following sections, the quantized version of the operator will be ob-
tained, along with the pre-processing and implementation overview. The full
implementation code of this and the other operators is reported in Appendix A.

Quantization

To obtain the quantized version of the operator, it is necessary to integrate
the quantization process into its formula. This involves applying quantization
to the input data, weights, and intermediate results within the operator’s com-
putations.

Given 𝑋 ∈ R𝑚×𝑛 , 𝑊 ∈ R𝑛×𝑝 , and 𝑏 ∈ R𝑝 , representing respectively the input,
weights, and biases of the operator, the output 𝑌 ∈ R𝑚×𝑝 is obtained as:

𝑌𝑖 , 𝑗 = 𝑏 𝑗 +
𝑛∑

𝑘=1
𝑋𝑖 ,𝑘𝑊𝑘,𝑗 (4.1)

By applying the dequantization formula reported in Equation (2.1), the fol-

42

CHAPTER 4. IMPLEMENTATION

lowing result is obtained:

𝑌𝑖 , 𝑗

= 𝑠𝑏(𝑏𝑞,𝑗 − 𝑧𝑏) +
𝑛∑

𝑘=1
𝑠𝑋(𝑋𝑞,𝑖,𝑘 − 𝑧𝑋)𝑠𝑊 (𝑊𝑞,𝑘,𝑗 − 𝑧𝑊)

= 𝑠𝑏(𝑏𝑞,𝑗 − 𝑧𝑏) + 𝑠𝑋 𝑠𝑊
𝑛∑

𝑘=1
(𝑋𝑞,𝑖,𝑘 − 𝑧𝑋)(𝑊𝑞,𝑘,𝑗 − 𝑧𝑊)

= 𝑠𝑏(𝑏𝑞,𝑗 − 𝑧𝑏) + 𝑠𝑋 𝑠𝑊

[(𝑛∑
𝑘=1

𝑋𝑞,𝑖,𝑘𝑊𝑞,𝑘,𝑗

)
−
(
𝑧𝑊

𝑛∑
𝑘=1

𝑋𝑞,𝑖,𝑘

)
−
(
𝑧𝑋

𝑛∑
𝑘=1

𝑊𝑞,𝑘,𝑗

)
+ 𝑛𝑧𝑋𝑧𝑊

]
= 𝑠𝑌(𝑌𝑞,𝑖, 𝑗 − 𝑧𝑌)

(4.2)

Where 𝑋𝑞 , 𝑊𝑞 , 𝑏𝑞 , and 𝑌𝑞 are the quantized versions of 𝑋, 𝑊 , 𝑏, and 𝑌,
respectively, 𝑠𝑋 , 𝑠𝑊 , 𝑠𝑏 , and 𝑠𝑌 are the scales for 𝑋, 𝑊 , 𝑏, and 𝑌, respectively,
and 𝑧𝑋 , 𝑧𝑊 , 𝑧𝑏 , and 𝑧𝑌 are the zero points for 𝑋, 𝑊 , 𝑏, and 𝑌, respectively.

Therefore:

𝑌𝑞,𝑖, 𝑗 = 𝑧𝑌 + 𝑠𝑏
𝑠𝑌
(𝑏𝑞,𝑗 − 𝑧𝑏) + 𝑠𝑋 𝑠𝑊

𝑠𝑌

[(𝑛∑
𝑘=1

𝑋𝑞,𝑖,𝑘𝑊𝑞,𝑘,𝑗

)
−
(
𝑧𝑊

𝑛∑
𝑘=1

𝑋𝑞,𝑖,𝑘

)
−
(
𝑧𝑋

𝑛∑
𝑘=1

𝑊𝑞,𝑘,𝑗

)
+ 𝑛𝑧𝑋𝑧𝑊

] (4.3)

In summary, by using Equation (4.3), it is possible to perform an integer-
only quantized version of the FullyConnected operator. The computation of the
operator can be further optimized by pre-computing constant values at compile
time.

Pre-processing

When examining Equation (4.3), it is possible to note that the following terms
are constant during inference and therefore can be pre-computed offline by the
compiler:

• 𝑧𝑌 + 𝑠𝑏
𝑠𝑌
(𝑏𝑞,𝑗 − 𝑧𝑏)

43

4.4. OPERATORS

• 𝑠𝑋 𝑠𝑊
𝑠𝑌

• 𝑧𝑋
∑𝑛

𝑘=1 𝑊𝑞,𝑘,𝑗

• 𝑛𝑧𝑋𝑧𝑊

In conclusion, Equation (4.3) will be implemented in the operator’s kernel,
while the constant terms will be computed in the operator parsing phase. By
doing so, it is possible to achieve better optimizations and less overhead at
runtime.

Implementation

The FullyConnected operator has been implemented as described in the
previous section. The parser of the operator is in charge of pre-computing the
constant terms listed above, while the kernel receives the variable tensors along
with the constants and propagates them to the output tensor.

4.4.2 Conv2D

The Conv2D operator, short for Convolutional 2D operator, is a fundamental
building block in CNNs used for image and signal processing tasks. It performs
a convolution operation on an input tensor using a set of learnable filters or
kernels.

The Conv2D operator applies a sliding window or filter over the input tensor,
performing element-wise multiplications between the filter and the correspond-
ing input region. The results of these multiplications are summed to produce a
single output value, which represents the activation of a specific feature at a cer-
tain spatial location. This process is repeated for all possible locations, resulting
in an output tensor with spatial dimensions reduced based on the filter size and
stride.

Conv2D operators are commonly used for tasks such as image recognition,
object detection, and image segmentation. They capture local patterns and
spatial relationships in the input data, allowing the NN to learn hierarchical
representations and extract meaningful features.

One key aspect of the Conv2D operator is the padding. In this context,
padding refers to the technique of adding extra elements or values to the input
tensor before performing the convolutional operation. It is used to control the
spatial dimensions of the output tensor and preserve important information at

44

CHAPTER 4. IMPLEMENTATION

Input Filter Output

Figure 4.11: Example of Conv2D operator applied to an input tensor with valid
padding. The resulting output will not preserve the spatial information of the
input.

the borders of the input. There are two commonly used types of padding in
Conv2D:

• Valid Padding: In valid padding, no padding is added to the input tensor.
The convolution operation is applied only to the valid positions where the
filter completely overlaps with the input.

• Same Padding: Same padding is the technique of adding padding to the
input tensor so that the output tensor has the same spatial dimensions
as the input. This is achieved by adding an equal number of padding
elements or values on all sides of the input. Same padding ensures that the
output size matches the input size, which can be beneficial for preserving
the spatial information and allowing better alignment between the input
and output.

An example of Conv2D operations done on an input tensor with valid
padding can be seen in Figure 4.11. In the example, the input consists of a
3 × 3 matrix that gets convoluted with a 3 × 3 filter. By using the valid padding
and assuming the strides to be equal to one, the filter will slide only one po-
sition for each dimension, otherwise the view would fall outside of the input
matrix, which is not allowed by the valid padding. As a result, the output of
the convolution does not preserve the input dimensions. Instead, the resulting
dimensions are 2 × 2. On the other hand, if the same padding had been used
for the example, the view would have been allowed to include values outside
of the input matrix (i.e. zero values). Therefore, the resulting output of the
convolutional operation would have retained the same input dimensions.

It is important to note that, in practical terms, the Conv2D operator uses
4-dimensional tensors. These tensors are composed by a set of matrices (called
batches), containing multiple values (called channels) for each position. The

45

4.4. OPERATORS

Batches

Channels

Figure 4.12: Visualization of a 4D tensor. The red cells represent the channels,
while the matrix groups represent the batches.

convolutional filters are represented by the batches, while the channels are
merged together with a dot product during convolution. The output tensor
contains only one batch containing a matrix with, for each channel, the result
of the convolution applied at that position in the input matrix. A visualization
example of a 4D tensor composed by three batches of 3 × 3 matrices with 3
channels each can be observed in Figure 4.12.

Quantization

The quantization process of the Conv2D operator focuses on a single convo-
lutional operation rather than the entire operator’s execution. In this way, the
quantization of the entire operator is obtained by applying the single quantized
convolutional operation to all the input regions and kernels. The mathematical
properties of each execution of the convolutional operation remain the same.
The quantization process is carried out as follows.

Given 𝑋 ∈ R𝑚×𝑛×𝑐 , 𝐹 ∈ R𝑚×𝑛×𝑐 , and 𝑏 ∈ R, representing respectively an
input region, a filter, and the bias, the output value 𝑦 ∈ R for a given channel is
obtained as:

𝑦 = 𝑏 +
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑐∑
𝑘=1

𝑋𝑖, 𝑗 ,𝑘𝐹𝑖 , 𝑗 ,𝑘 (4.4)

46

CHAPTER 4. IMPLEMENTATION

By applying the dequantization formula, the following result is obtained:

𝑦

= 𝑠𝑏(𝑏𝑞 − 𝑧𝑏) +
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑐∑
𝑘=1

𝑠𝑋(𝑋𝑞,𝑖, 𝑗 ,𝑘 − 𝑧𝑋)𝑠𝐹(𝐹𝑞,𝑖, 𝑗 ,𝑘 − 𝑧𝐹)

= 𝑠𝑏(𝑏𝑞 − 𝑧𝑏) + 𝑠𝑋 𝑠𝐹
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑐∑
𝑘=1
(𝑋𝑞,𝑖, 𝑗 ,𝑘 − 𝑧𝑋)(𝐹𝑞,𝑖, 𝑗 ,𝑘 − 𝑧𝐹)

= 𝑠𝑏(𝑏𝑞 − 𝑧𝑏) + 𝑠𝑋 𝑠𝐹

[(𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑐∑
𝑘=1

𝑋𝑞,𝑖, 𝑗 ,𝑘𝐹𝑞,𝑖, 𝑗 ,𝑘

)
−
(
𝑧𝐹

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑐∑
𝑘=1

𝑋𝑞,𝑖, 𝑗 ,𝑘

)
−
(
𝑧𝑋

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑐∑
𝑘=1

𝐹𝑞,𝑖, 𝑗 ,𝑘

)
+ 𝑚𝑛𝑐𝑧𝑋𝑧𝐹

]
= 𝑠𝑦(𝑦𝑞 − 𝑧𝑦)

(4.5)

Where 𝑋𝑞 , 𝐹𝑞 , 𝑏𝑞 , and 𝑦𝑞 are the quantized versions of 𝑋, 𝐹, 𝑏, and 𝑦,
respectively, 𝑠𝑋 , 𝑠𝐹, 𝑠𝑏 , and 𝑠𝑦 are the scales for 𝑋, 𝐹, 𝑏, and 𝑦, respectively, and
𝑧𝑋 , 𝑧𝐹, 𝑧𝑏 , and 𝑧𝑦 are the zero points for 𝑋, 𝐹, 𝑏, and 𝑦, respectively.

Therefore:

𝑦𝑞 = 𝑧𝑦 + 𝑠𝑏
𝑠𝑌
(𝑏𝑞 − 𝑧𝑏) + 𝑠𝑋 𝑠𝐹

𝑠𝑦

[(𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑐∑
𝑘=1

𝑋𝑞,𝑖, 𝑗 ,𝑘𝐹𝑞,𝑖, 𝑗 ,𝑘

)
−
(
𝑧𝐹

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑐∑
𝑘=1

𝑋𝑞,𝑖, 𝑗 ,𝑘

)
−
(
𝑧𝑋

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑐∑
𝑘=1

𝐹𝑞,𝑖, 𝑗 ,𝑘

)
+ 𝑚𝑛𝑐𝑧𝑋𝑧𝐹

] (4.6)

In conclusion, the result in Equation (4.6) is the quantized version of a single
convolutional operation for a given filter and input region.

Pre-processing

As for the FullyConnected operator, it is possible to identify the constant
terms for this operator too. In fact, by observing Equation (4.6), the following
terms can be pre-processed by the compiler:

• 𝑧𝑦 + 𝑠𝑏
𝑠𝑦
(𝑏𝑞 − 𝑧𝑏)

47

4.4. OPERATORS

• 𝑠𝑋 𝑠𝐹
𝑠𝑦

• 𝑧𝑋
∑𝑚

𝑖=1
∑𝑛

𝑗=1
∑𝑐

𝑘=1 𝐹𝑞,𝑖, 𝑗 ,𝑘

• 𝑚𝑛𝑐𝑧𝑋𝑧𝐹

Implementation

The development of the Conv2D operator required the implementation of
an algorithm within the kernel to extract the input region. This algorithm
is responsible for selecting the appropriate input elements to be used in each
convolutional operation. The algorithm has to take into account the padding and
strides of the convolution. The view extractor algorithm has been implemented
as shown in Algorithm 1.

The algorithm takes as arguments the input tensor, the view dimensions, the
padding, and the strides. For each position in the input, the algorithm calculates
the neighboring components to include in the view. If the components fall out
of the input matrix and the padding is same, the algorithm returns 0. The full
implementation of the algorithm is reported in Appendix B.

4.4.3 DepthwiseConv2D

The DepthwiseConv2D operator is a specific type of Conv2D operator. Un-
like the standard Conv2D operator, which applies a set of filters to the entire
input tensor, the DepthwiseConv2D operator applies a separate filter to each
input channel. This means that the operator performs depthwise convolutions,
where each channel is convolved independently. The DepthwiseConv2D opera-
tor shares a lot of properties with the conventional Conv2D operator, including
strides, paddings, and data structures.

However, the quantization process differs between the two since the convo-
lutional operation is applied differently. In particular, there is a key distinction:
instead of merging the channels together with a dot product, the channels are
kept separate and convolved individually with the corresponding channels of
the filter. This ensures that channel-wise interactions are maintained, capturing
the spatial features within each channel independently. The result is a set of
output channels that retain the channel-wise information from the input.

48

CHAPTER 4. IMPLEMENTATION

Algorithm 1 View extraction algorithm for the Conv2D operator.
Require: 𝑋 ∈ R𝑚×𝑛
Require: 𝑉 ∈ R𝑝×𝑞
Require: padding ∈ {Same,Valid}
Require: strideℎ , stride𝑤 ∈ N

shiftℎ ← ⌊ 𝑝−1
2 ⌋

shift𝑤 ← ⌊ 𝑞−1
2 ⌋

for 𝑖 ∈ [0, 𝑚), 𝑗 ∈ [0, 𝑛), 𝑘 ∈ [0, 𝑝), 𝑙 ∈ [0, 𝑞) do
indexℎ ← strideℎ ∗ 𝑖 + 𝑘
index𝑤 ← stride𝑤 ∗ 𝑗 + 𝑙
if padding = Same then

indexℎ ← indexℎ − shiftℎ
index𝑤 ← index𝑤 − shift𝑤
if indexℎ ∈ [0, 𝑚) and index𝑤 ∈ [0, 𝑛) then
𝑉𝑘,𝑙 ← 𝑋indexℎ ,index𝑤

else
𝑉𝑘,𝑙 ← 0

end if
else if padding = Valid then
𝑉𝑘,𝑙 ← 𝑋indexℎ ,index𝑤

end if
end for
return 𝑉

49

4.4. OPERATORS

Quantization

The quantization process for the DepthwiseConv2D operator closely resem-
bles that of the Conv2D operator. However, unlike having batches of 2D filters,
the DepthwiseConv2D operator operates on a single batch consisting of a 3D
weight matrix. In this 3D weight matrix, the third dimension represents the
weights associated with each channel. Therefore, the process of quantizing the
DepthwiseConv2D operator can be approached in the following manner.

Given 𝑋 ∈ R𝑚×𝑛 , 𝑊 ∈ R𝑚×𝑛 , and 𝑏 ∈ R, representing respectively an input
region and a weights matrix for a given channel, and the bias, the output value
𝑦 ∈ R is obtained as:

𝑦 = 𝑏 +
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑋𝑖 , 𝑗𝑊𝑖 , 𝑗 (4.7)

By applying the dequantization formula:

𝑦

= 𝑠𝑏(𝑏𝑞 − 𝑧𝑏) +
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑠𝑋(𝑋𝑞,𝑖, 𝑗 − 𝑧𝑋)𝑠𝑊 (𝑊𝑞,𝑖, 𝑗 − 𝑧𝑊)

= 𝑠𝑏(𝑏𝑞 − 𝑧𝑏) + 𝑠𝑋 𝑠𝑊
𝑚∑
𝑖=1

𝑛∑
𝑗=1
(𝑋𝑞,𝑖, 𝑗 − 𝑧𝑋)(𝑊𝑞,𝑖, 𝑗 − 𝑧𝑊)

= 𝑠𝑏(𝑏𝑞 − 𝑧𝑏) + 𝑠𝑋 𝑠𝑊

[(𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑋𝑞,𝑖, 𝑗𝑊𝑞,𝑖, 𝑗

)
−
(
𝑧𝑊

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑋𝑞,𝑖, 𝑗

)
−
(
𝑧𝑋

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑊𝑞,𝑖, 𝑗

)
+ 𝑚𝑛𝑧𝑋𝑧𝑊

]
= 𝑠𝑦(𝑦𝑞 − 𝑧𝑦)

(4.8)

Where 𝑋𝑞 , 𝑊𝑞 , 𝑏𝑞 , and 𝑦𝑞 are the quantized versions of 𝑋, 𝑊 , 𝑏, and 𝑦,
respectively, 𝑠𝑋 , 𝑠𝑊 , 𝑠𝑏 , and 𝑠𝑦 are the scales for 𝑋, 𝑊 , 𝑏, and 𝑦, respectively, and
𝑧𝑋 , 𝑧𝑊 , 𝑧𝑏 , and 𝑧𝑦 are the zero points for 𝑋, 𝑊 , 𝑏, and 𝑦, respectively.

50

CHAPTER 4. IMPLEMENTATION

Therefore:

𝑦𝑞 = 𝑧𝑦 + 𝑠𝑏
𝑠𝑦
(𝑏𝑞 − 𝑧𝑏) + 𝑠𝑋 𝑠𝑊

𝑠𝑦

[(𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑋𝑞,𝑖, 𝑗𝑊𝑞,𝑖, 𝑗

)
−
(
𝑧𝑊

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑋𝑞,𝑖, 𝑗

)
−
(
𝑧𝑋

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑊𝑞,𝑖, 𝑗

)
+ 𝑚𝑛𝑧𝑋𝑧𝑊

] (4.9)

Equation (4.9) shows the final result for the quantization process of the
DepthwiseConv2D operator.

Pre-processing

Similarly to Conv2D, the following terms of Equation (4.9) are constant dur-
ing inference:

• 𝑧𝑦 + 𝑠𝑏
𝑠𝑦
(𝑏𝑞 − 𝑧𝑏)

• 𝑠𝑋 𝑠𝑊
𝑠𝑦

• 𝑧𝑋
∑𝑚

𝑖=1
∑𝑛

𝑗=1 𝑊𝑞,𝑖, 𝑗

• 𝑚𝑛𝑧𝑋𝑧𝑊

Implementation

The view extraction routine, as described in Algorithm 1, is utilized for both
the Conv2D and DepthwiseConv2D operators. By sharing the same view ex-
traction task, the implementation remains consistent between the two operators,
streamlining the development process.

4.4.4 AveragePool2D

The AveragePool2D operator is a fundamental component in NN architec-
tures that involves spatial pooling. It is typically used to downsample the input
data by partitioning it into non-overlapping regions and computing the average
value within each region. This operator helps in reducing the spatial dimensions
of the input while preserving important features.

51

4.4. OPERATORS

Input Output

Figure 4.13: Example of the AveragePool2D applied to an input tensor. The
operator is executed on a per-channel basis, preserving the input channel di-
mensions.

During the operation of the AveragePool2D operator, a window or kernel
slides over the input data, and at each position, it calculates the average of the
values within the window. The size of the window and the stride determine the
extent of pooling and the resulting output size. By specifying different window
sizes and strides, one can control the amount of downsampling applied to the
input.

As for other operators, AveragePool2D works on 4D tensors with a single
batch of matrices. The AveragePool2D operator performs average pooling on a
per-channel basis, which means that the input channels are preserved through-
out the pooling operation until the output is generated. An example of average
pooling can be observed in Figure 4.13.

Quantization

The operator quantization has been carried out as follows.

Given𝑋 ∈ R𝑚×𝑛 , representing an input region for a given channel, the output
value 𝑦 ∈ R for a given channel is computed as:

𝑦 =
1
𝑚𝑛

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑋𝑖, 𝑗 (4.10)

52

CHAPTER 4. IMPLEMENTATION

By applying the dequantization formula in Equation (2.1):

𝑦

=
𝑠𝑋
𝑚𝑛

𝑚∑
𝑖=1

𝑛∑
𝑗=1
(𝑋𝑞,𝑖, 𝑗 − 𝑧𝑋)

=
𝑠𝑋
𝑚𝑛

[(𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑋𝑞,𝑖, 𝑗

)
− 𝑚𝑛𝑧𝑋

]
= 𝑠𝑋

[(
1
𝑚𝑛

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑋𝑞,𝑖, 𝑗

)
− 𝑧𝑋

]
= 𝑠𝑦(𝑦𝑞 − 𝑧𝑦)

(4.11)

Where 𝑋𝑞 and 𝑦𝑞 are the quantized versions of 𝑋 and 𝑦, respectively, 𝑠𝑋 and
𝑠𝑦 are the scales for 𝑋 and 𝑦, respectively, and 𝑧𝑋 and 𝑧𝑦 are the zero points for
𝑋 and 𝑦, respectively.

Therefore:

𝑦𝑞 = 𝑧𝑦 + 𝑠𝑋
𝑠𝑦

[(
1
𝑚𝑛

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑋𝑞,𝑖, 𝑗

)
− 𝑧𝑋

]
(4.12)

In summary, Equation (4.12) shows the quantized version of the Average-
Pool2D operator.

Pre-processing

The constant terms of Equation (4.12) that can be pre-computed by the com-
piler are:

• 𝑠𝑋
𝑠𝑦

• 1
𝑚𝑛

Implementation

The implementation of the AveragePool2D operator also utilizes the view
extraction algorithm described in Algorithm 1, as the pooling operation is per-
formed on an input region. The main distinction is that, similar to the Depth-

53

4.4. OPERATORS

wiseConv2D operator, the channels of the input region in AveragePool2D are
not merged together. Instead, the channel dimension is preserved.

4.4.5 Activation Functions

Activation functions are the last component of the processing flow. They
are applied to the outputs of individual neurons, transforming them to enable
complex and expressive mappings between inputs and outputs. Activation
functions can be either applied as a separate operation after a specific layer or
combined with an operator, taking the name of fused activation functions. All
the operators described so far support the addition of a fused activation function
at the end of each iteration. Alternatively, MicroFlow supports operators that
only perform the activation function, such as the Softmax operator.

In terms of implementation, the kernel of an activation function remains the
same regardless of its application. What can differ is how the activation function
is applied in the context of the NN. However, as for operators, activation
functions also have to be quantized, translating the functions from floating-
point operations to integer-only operations. Moreover, the activation functions
presented in this section are not subject to pre-processing as they contain little
to no constant terms.

This section will go through the supported activation functions, describing
how the formula has been modified to support quantization. The quantized
activation functions currently supported by MicroFlow are:

• ReLU

• ReLU6

• Softmax

ReLU

The ReLU function is a very commonly used activation function. Given an
input 𝑥 ∈ R and an output 𝑦 ∈ R its function is defined as follows:

𝑦 =

0 if 𝑥 < 0

𝑥 if 𝑥 ≥ 0
(4.13)

54

CHAPTER 4. IMPLEMENTATION

In other words, the ReLU function returns the input value if it is positive or
zero, and it returns zero for any negative input. The key characteristic of the
ReLU function is its ability to introduce sparsity and promote sparse activations
in a NN.

By applying the dequantization formula, the following is obtained:

𝑦

=

0 if 𝑠𝑥(𝑥𝑞 − 𝑧𝑥) < 0

𝑠𝑥(𝑥𝑞 − 𝑧𝑥) if 𝑠𝑥(𝑥𝑞 − 𝑧𝑥) ≥ 0

=

0 if 𝑥𝑞 < 𝑧𝑥

𝑠𝑥(𝑥𝑞 − 𝑧𝑥) if 𝑥𝑞 ≥ 𝑧𝑥

= 𝑠𝑦(𝑦𝑞 − 𝑧𝑦)

(4.14)

Where 𝑥𝑞 and 𝑦𝑞 are the quantized versions of 𝑥 and 𝑦, respectively, 𝑠𝑥 and
𝑠𝑦 are the scales for 𝑥 and 𝑦, respectively, and 𝑧𝑥 and 𝑧𝑦 are the zero points for
𝑥 and 𝑦, respectively.

Therefore:

𝑦𝑞 =

𝑧𝑦 if 𝑥𝑞 < 𝑧𝑥

𝑧𝑦 + 𝑠𝑥
𝑠𝑦
(𝑥𝑞 − 𝑧𝑥) if 𝑥𝑞 ≥ 𝑧𝑥

(4.15)

It is important to note that, if ReLU is used as a fused activation function,
and therefore 𝑠𝑥 = 𝑠𝑦 = 𝑠 and 𝑧𝑥 = 𝑧𝑦 = 𝑧, the formula in Equation (4.15) simply
results in:

𝑦𝑞 = max(𝑥𝑞 , 𝑧) (4.16)

Therefore, with this procedure, it has been possible to derive the quantized
ReLU.

ReLU6

The ReLU6 activation function is a variant of the standard ReLU function
that adds an upper bound constraint. It is commonly used in applications
where output values need to be limited to a specific range.

55

4.4. OPERATORS

Due to its similarity to the ReLU function, the quantized version of the ReLU6
activation function can be immediately derived as follows:

𝑦𝑞 =

ReLU(𝑥𝑞 , 𝑠𝑥 , 𝑠𝑦 , 𝑧𝑥 , 𝑧𝑦) if 𝑥𝑞 < 𝑧𝑥 + 6

𝑠𝑥

𝑧𝑦 + 6
𝑠𝑦

if 𝑥𝑞 ≥ 𝑧𝑥 + 6
𝑠𝑥

(4.17)

Where 𝑥𝑞 and 𝑦𝑞 are the quantized versions of the input 𝑥 ∈ R and the output
𝑦 ∈ R, respectively, 𝑠𝑥 and 𝑠𝑦 are the scales for 𝑥 and 𝑦, respectively, and 𝑧𝑥 and
𝑧𝑦 are the zero points for 𝑥 and 𝑦, respectively.

Similarly to the ReLU function, if ReLU6 is used as a fused activation function,
and therefore 𝑠𝑥 = 𝑠𝑦 = 𝑠 and 𝑧𝑥 = 𝑧𝑦 = 𝑧, the Equation (4.17) results in:

𝑦𝑞 = min(max(𝑥𝑞 , 𝑧), 𝑧 + 6
𝑠
) (4.18)

Softmax

The last activation function is Softmax. Softmax is commonly used in deep
learning for multi-class classification problems. It takes a vector of real-valued
scores as input and transforms them into a probability distribution over mul-
tiple classes. The resulting probabilities represent the model’s confidence or
likelihood for each class.

Mathematically, the Softmax function takes an input vector 𝑥 ∈ R𝑛 and
produces an output vector 𝑦 ∈ R𝑛 as follows:

𝑦𝑖 =
𝑒𝑥𝑖∑𝑛
𝑗=1 𝑒

𝑥 𝑗
(4.19)

By combining it with the dequantization formula, it is possible to obtain the
quantized Softmax as follows:

𝑦

=
𝑒 𝑠𝑥(𝑥𝑞,𝑖−𝑧𝑥)∑𝑛
𝑗=1 𝑒

𝑠𝑥(𝑥𝑞,𝑗−𝑧𝑥)

=
𝑒 𝑠𝑥𝑥𝑞,𝑖∑𝑛
𝑗=1 𝑒

𝑠𝑥𝑥𝑞,𝑗

= 𝑠𝑦(𝑦𝑞,𝑖 − 𝑧𝑦)

(4.20)

56

CHAPTER 4. IMPLEMENTATION

Where 𝑥𝑞 and 𝑦𝑞 are the quantized versions of 𝑥 and 𝑦, respectively, 𝑠𝑥 and
𝑠𝑦 are the scales for 𝑥 and 𝑦, respectively, and 𝑧𝑥 and 𝑧𝑦 are the zero points for
𝑥 and 𝑦, respectively.

Therefore:

𝑦𝑞,𝑖 = 𝑧𝑦 + 𝑒 𝑠𝑥𝑥𝑞,𝑖

𝑠𝑦
∑𝑛

𝑗=1 𝑒
𝑠𝑥𝑥𝑞,𝑗

(4.21)

In conclusion, Equation (4.21) shows the quantized version of the Softmax
activation function.

57

5
Evaluation

This chapter provides an in-depth analysis and evaluation of the imple-
mented system in terms of its performance, efficiency, and overall effectiveness.
This chapter aims to assess the system’s capabilities and measure its performance
against specific criteria and benchmarks. By conducting rigorous evaluations
and tests, this chapter offers insights into the system’s strengths, weaknesses,
and potential areas for improvement. The findings presented in this chapter
serve as valuable insights for assessing the system’s overall success and identi-
fying potential future enhancements.

This evaluation phase aims to demonstrate the project’s applicability and
effectiveness in such resource-constrained environments. By conducting tar-
geted evaluations and tests, this chapter aims to highlight the project’s ability to
operate efficiently and deliver accurate results under severe resource limitations.

The chapter is structured as follows: it begins by discussing the experimen-
tal setup, providing an in-depth explanation of the tools, methodologies, and
resources employed during the evaluation process. This section outlines the
specific configurations, hardware platforms, and models utilized to conduct the
experiments effectively.

Subsequently, the chapter presents and analyzes the results obtained from
the evaluation phase. The findings are presented in a clear and concise manner,
accompanied by relevant metrics, graphs, and statistical analyses. Each result
is carefully examined and discussed, highlighting the project’s performance,
efficiency, and effectiveness in resource-constrained embedded systems.

59

5.1. EXPERIMENTAL SETUP

5.1 Experimental Setup

In this section, the specific hardware platforms, NN models, and config-
urations employed in the experiments will be presented. Furthermore, this
section outlines the experimental procedures followed to ensure accurate and
consistent results. It covers aspects such as data collection, parameter settings,
benchmarking, and any other relevant considerations.

First, this section focuses on the models selected for the evaluation, providing
an exploration of their structures and sizes. Subsequently, this section presents
the hardware platforms used for conducting the tests, providing detailed infor-
mation about their technical specifications and notable features.

5.1.1 Models

The chosen NN models play a crucial role in assessing the performance
and capabilities of the project. Ideally, the selected models should encompass
various aspects that are important for evaluation, allowing for a comprehensive
analysis of different performance and effectiveness metrics.

For these reasons, it has been decided to use three distinct models, each
varying in size and complexity. All the models have been quantized to 8-bit
signed integers. The chosen models for this experimentation are as follows:

• A sine predictor

• A speech command recognizer

• A person detector

The subsequent sections will provide a detailed description of each model,
accompanied by their respective specifications. Finally, an overview of the
models is presented in Table 5.1.

Sine Predictor

The sine predictor represents the simplest and smallest model in the evalu-
ation. Its simplicity allows for a focused analysis of fundamental aspects and
provides insights into the performance of the systems under minimal computa-
tional and memory requirements.

As its name suggests, the sine predictor model is designed to predict the
values of the sine function. In other words, given an input 𝑥 ∈ R, the sine

60

CHAPTER 5. EVALUATION

1×1

1×16

1×16

1×1

serving_default_dense_2_input:00

FullyConnected

weights〈16×1〉
bias〈16〉

Relu

FullyConnected

weights〈16×16〉
bias〈16〉

Relu

FullyConnected

weights〈1×16〉
bias〈1〉

StatefulPartitionedCall:09

Figure 5.1: Visualization of the sine predictor model.

model returns an output 𝑦 = sin(𝑥). The model has been trained on a dataset
generated using the sin() function combined with random noise. The model is
composed of three FullyConnected layers of 16 neurons each, with the first two
having ReLU as the fused activation function. The entire size of the model is
approximately 3 kB. A visualization of the model can be seen in Figure 5.1.

Training the sine predictor model on a deterministic function, such as the
sin() function, provides a valuable advantage for evaluating the precision of the
inference engine. By having access to ground-truth values, which are known in
this case due to the deterministic nature of the sine function, it becomes possible
to compare the predicted values with the expected values. In summary, this
model is mainly used as a benchmark for evaluating accuracy and deployment
on resource-constrained MCUs.

Speech Command Recognizer

The speech command recognizer is the intermediate-size model used for
evaluation. The goal of the model is to recognize two spoken words: yes and no.

To do so, the model introduces the concept of convolutional operations ap-

61

5.1. EXPERIMENTAL SETUP

1×1960

1×49×40×1

1×25×20×8

1×4

1×4

Reshape_13

Reshape

shape〈4〉

DepthwiseConv2D

weights〈1×10×8×8〉
bias〈8〉

Relu

FullyConnected

weights〈4×4000〉
bias〈4〉

Softmax

labels_softmax9

Figure 5.2: Visualization of the speech command recognizer model.

plied to an input signal, specifically the Fast Fourier Transform (FFT) represen-
tation of an input audio sample. As output, the model returns the likelihood
for the input sample to be in one of these categories: the yes word, the no word,
silence, or unknown speech.

The model follows the TinyConv architecture, employing one DepthwiseC-
onv2D layer followed by a FullyConnected layer. The output scores are then
converted to probabilities by a Softmax activation layer. Since the speech com-
mand recognizer works with convolutional layers, the tensors in this model are
4-dimensional. Therefore, the overall size of the model increases significantly to
approximately 19 kB. The structure of the model can be observed in Figure 5.2.
The training of the model has been performed on the Speech Commands Dataset
version 2 [23].

In summary, this model is a trade-off between complexity, size, and real-
world applications. In fact, while the sine predictor model does not make sense
to be used in a real-world scenario due to its deterministic nature, the speech
command recognizer model resembles the wake-word detection task, which is

62

CHAPTER 5. EVALUATION

a significant use case in many applications. Moreover, this model incorporates
both convolutional operations and dense layers, providing a good balance for
evaluation purposes.

Person Detector

The person detector is the most complex and largest model of the evaluation.
The goal of the model is to detect the presence of a person, given an input
frame. In particular, the model takes as input a grayscale image of dimensions
96 px × 96 px and provides as output the probabilities of the two classes person
and not-person.

The model follows the MobileNet architecture version 1 [24], employing a
series of DepthwiseConv2D operators followed by Conv2D operators. The end
of the chain consists of an AveragePool2D layer, followed by a Conv2D operator,
and a final Softmax activation function layer. A simplified visualization of the
model is represented in Figure 5.3. The model has been trained on the Visual
Wake Words Dataset [25].

Due to the type and quantity of the operators employed, which require the
usage of 4D tensors, the size of the model reaches 301 kB. For this reason, the per-
son detector model has been specifically deployed on MCUs that have sufficient
resources, including an adequate flash size, to accommodate its requirements.

In summary, the evaluation of the person detector model played an impor-
tant role in assessing the real-world applicability of the inference engine, as
it represents one of the most relevant and useful applications in the field of
TinyML.

5.1.2 Hardware

Although MicroFlow can run on a variety of different systems, the analysis
has been focused on bare-metal embedded devices. In this way, it is possible to
best outline the performance of the inference engine in real-world scenarios. The
evaluation has been done using the following MCUs and test boards, arranged
in descending order based on their performance and resource constraints:

• ESP32 (Adafruit HUZZAH32)

• ATSAMV71 (SAM V71 Xplained Ultra)

• nRF52840 (Arduino Nano 33 BLE Sense

63

5.1. EXPERIMENTAL SETUP

1×96×96×1

1×48×48×8

1×48×48×8

1×48×48×16

1×3×3×256

1×1×1×256

1×1×1×2

1×2

1×2

input88

DepthwiseConv2D

weights〈1×3×3×8〉
bias〈8〉

Relu6

DepthwiseConv2D

weights〈1×3×3×8〉
bias〈8〉

Relu6

Conv2D

filter〈16×1×1×8〉
bias〈16〉

Relu6

AveragePool2D

Conv2D

filter〈2×1×1×256〉
bias〈2〉

Reshape

shape〈2〉

Softmax

Reshape_187

...

Figure 5.3: Visualization of the person detector model. The central repeated
pattern of layers has been hidden due to its size.

64

CHAPTER 5. EVALUATION

Model Architecture Operators Layers Size

Sine predictor Custom FullyConnected
ReLU

3 3 kB

Speech command recognizer TinyConv DepthwiseConv2D
FullyConnected
Softmax

4 19 kB

Person detector MobileNet DepthwiseConv2D
Conv2d
AveragePool2D
Softmax

30 301 kB

Table 5.1: Summary of the models employed for the system evaluation.

MCU CPU Architecture Flash Size RAM Size CPU Clock

ESP32 32-bit Xtensa 4 MB 328 kB 240 MHz

ATSAMV71 32-bit Cortex-M7F 2 MB 384 kB 300 MHz

nRF52840 32-bit Cortex-M4F 1 MB 256 kB 64 MHz

LM3S6965 32-bit Cortex-M3 256 kB 64 kB 50 MHz

ATmega328 8-bit AVR 32 kB 2 kB 20 MHz

Table 5.2: Summary of the MCUs used for the experiments.

• LM3S6965 (emulated using QEMU)

• ATmega328 (Arduino Uno)

The chosen MCUs cover a wide range of possible memory sizes, architec-
tures, and peripherals. From the high-performance 32-bit ESP32 with 4 MB of
Flash and 328 kB of RAM, to the 8-bit ATmega328, with only 32 kB of Flash and
2 kB of RAM. The details and settings of each MCU are reported in Table 5.2.

5.1.3 Baseline

The MicroFlow project shares some similarities with the TFLM framework, as
it originated as an enhanced version of it. Therefore, to evaluate the effectiveness
of MicroFlow, TFLM has been selected as the baseline for comparison. As
concluded after the survey described in Chapter 2, TFLM can be considered

65

5.1. EXPERIMENTAL SETUP

the current state-of-the-art work, being also the most used inference engine for
TinyML applications.

All experiments have been conducted on both platforms, allowing for a com-
prehensive analysis and comparison of the results. However, to ensure fair and
consistent experiments, both the MicroFlow and TFLM engines have been con-
figured under the same test conditions. This approach aimed to eliminate any
potential bias coming from the different underlying structures and implemen-
tation details of the projects.

5.1.4 Experiments

The experiments conducted for the system evaluation have been carefully
selected to cover the most significant metrics relevant to TinyML applications.
The objective was to obtain a comprehensive understanding of the following
metrics under various test scenarios:

• Accuracy

• Memory usage

• Runtime Performance
• Energy Consumption

The accuracy test serves as a critical evaluation to determine whether the
inference engine correctly performs inference on the model. The experiment
has been carried out using test sets to calculate the relevant metrics for the
compared inference engines. These metrics include the precision, recall, and
𝐹1 score for the classifier models and the MSE for the sine model. For the
speech command recognizer model with four output classes, the metrics have
been averaged to provide an overall measure of accuracy across all classes. The
resulting metrics are then compared between inference engines to assess their
performance.

The second experiment focuses on the usage of the MCU memory, specif-
ically the Flash and RAM. This test is crucial to assessing the portability of
the inference engine across different MCUs and architectures. The experiment
has been carried out by loading a minimal firmware that executes inference
on a given model and analyzing the compiled binary. The use of a minimal
firmware was necessary to remove other platform-dependent factors that might
compromise the test results. For example, the test firmware does not include

66

CHAPTER 5. EVALUATION

any printing statements, because the implementation of formatting and printing
varies between platforms and architectures and therefore might bias the results.

Subsequently, the runtime performance experiment has been employed to
compare TFLM and MicroFlow in terms of execution times of the experimental
models. The experiment consists of performing inference of the test models
on different MCUs using both inference engines. The execution is repeated a
statistically significant number of times, and the execution times are measured
using the MCU timers. Finally, the median point is calculated to have a reliable
measurement of the execution time for an inference operation.

The last test aims to analyze an important metric for embedded systems,
which is energy consumption. By having accurate execution times and mea-
suring the average power usage of the MCU it has been possible to obtain the
average energy consumption for the inference operation of the engine. In the
following sections, the analysis will go through the results of these experiments.

5.2 Results

This section presents the outcomes and findings obtained from the experi-
mental evaluation of the MicroFlow and TFLM inference engines. In this section,
the focus is on analyzing and interpreting the experiments and their results. The
following sections contain the results of the experiments previously described.

5.2.1 Accuracy

The accuracy test has been conducted as described in the previous sections
and produced the results shown in Table 5.3. For the sine model, the test set
employed for the experiment has been randomly generated, and the MSE has
been calculated against the actual values of the sine function. In Figure 5.4 is
possible to see a comparison between the TFLM and MicroFlow predictions on
the test set. For the other models, the test sets used were the ones provided by
the training datasets, namely the Speech Commands and Visual Wake Words
datasets.

The experiment shows that the two inference engines resulted in very similar
characteristics, with all the metrics almost equal between the two. This means
that MicroFlow can accurately predict as well as TFLM, meaning that the op-
erators have been correctly implemented and the mathematical theory behind

67

5.2. RESULTS

Sine Predictor

TFLM MicroFlow

MSE 0.0157 0.0154

Test samples 1000 1000

Speech Command Recognizer

TFLM MicroFlow

Precision 91.737% 91.638%

Recall 88.611% 88.972%

𝐹1 Score 90.147% 90.285%

Test samples 1236 1236

Person Detector

TFLM MicroFlow

Precision 71.843% 72.003%

Recall 85.382% 85.401%

𝐹1 Score 78.030% 78.132%

Test samples 406 406

Table 5.3: Results of the accuracy experiment performed on the sample models.

0 1 2 3 4 5 6

1.0

0.5

0.0

0.5

1.0

Test values
TFLM predictions
MicroFlow predictions

Figure 5.4: Comparison of TFLM and MicroFlow predictions on the test set.

68

CHAPTER 5. EVALUATION

them has been correctly applied.
However, although similar, the results are not identical, meaning that at some

point in the computation, some operators gave different results. By analyzing
the intermediate quantized outputs of the NNs, it has been possible to notice
that in some cases the output of the operators was different. In particular, it has
been noticed that some components of the output tensors were different by one
integer unit. Sometimes TFLM was one unit above, sometimes one unit below.
However, the difference in output has always been one unit.

Hence, it is highly probable that these variations in behavior can be attributed
to internal differences in the implementation or representation of floating-point
operations. As a consequence, these slight differences lead to rounding dis-
crepancies, resulting in two distinct integer values that differ at maximum by
only one unit. Additionally, TFLM and MicroFlow are based on two different
programming languages that leverage two different compilers. Therefore, a
discrepancy in the implementation or representation of the compiler’s built-in
operations is plausible.

5.2.2 Memory Usage

This second set of experiments plays a fundamental role in assessing the
memory footprint of the code. One of the main goals of the project was to build
a highly memory-efficient engine. Therefore, this test is crucial to understanding
if this goal has been reached.

For the sine model, the results of the experiment can be observed in Fig-
ure 5.5. The chart shows the memory usage, both in terms of Flash and RAM
of the compiled binary, for the test MCUs. The RAM usage values refer to the
maximum amount of RAM used throughout the program’s execution.

The results show a big difference in terms of memory usage between the
inference engines. For example, on the ESP32, MicroFlow uses more than 60%
less Flash memory than TFLM, and on the nRF52840, MicroFlow uses only
5.296 kB of RAM, against 45.728 kB required by TFLM.

The very low memory usage of MicroFlow made it possible to successfully
build and run the sine model on all the test MCUs. In particular, it has been
possible to successfully perform inference even on the 8-bit AVR ATmega328,
with a Flash usage of 13.619 kB and a RAM usage of 1.706 kB. On the other hand,
it has not been possible to build TFLM for the majority of the MCUs. In fact, it

69

5.2. RESULTS

ESP32 nRF52840 ATSAMV71 LM3S6965 ATmega328
0

100

200

300

Us
ag

e
(k

B)

Flash
TFLM
MicroFlow

ESP32 nRF52840 ATSAMV71 LM3S6965 ATmega328
0

10

20

30

40

Us
ag

e
(k

B)

RAM
TFLM
MicroFlow

Figure 5.5: Results of the memory usage experiment for the sine predictor model.

has only been possible to run TFLM on the ESP32 and the nRF52840, requiring
a significant amount of memory.

The reason for these results can be attributed to the fact that TFLM is an
interpreter-based engine, and therefore the interpreter needs to be loaded on
the MCU regardless of the size of the model since it is not known at compile
time. Moreover, since the operators in the model are not known at compile time,
the interpreter with all the operator kernels must be loaded, taking up memory
space. These factors, combined with the utilization of a user-defined tensor
arena, contribute to the suboptimal memory allocation of TFLM.

On the other hand, with MicroFlow, only the necessary weights and operator
kernels are stored in memory, leaving out the parts of the model that are not
needed at runtime (e.g. operator versions, tensor names, sizes, options, etc.).
For example, instead of having to store all the kernel versions of an operator
and decide at runtime which one to use based on the model, MicroFlow reads
the operator version at compile time and stores in the target memory only the
correct version of it.

Additionally, everything in MicroFlow is allocated on the stack. By doing
so, due to the nature of the stack, the memory used by an operator will be
freed automatically after the operator has been executed. Therefore, the peak

70

CHAPTER 5. EVALUATION

ESP32 nRF52840 ATSAMV71 LM3S6965
0

100

200

300
Us

ag
e

(k
B)

Flash
TFLM
MicroFlow

ESP32 nRF52840 ATSAMV71 LM3S6965
0

20

40

60

Us
ag

e
(k

B)

RAM
TFLM
MicroFlow

Figure 5.6: Results of the memory usage experiment for the speech command
recognizer model.

of memory usage will only occur when the most memory-intensive operator is
being executed. After that, its memory is freed, and the next operator allocates
it based on its requirements. Consequently, once the entire inference operation
has been concluded, the memory used by the last operator is freed, and the
memory allocated by the engine is therefore null.

In contrast, TFLM allocates the tensor arena throughout the entire execution
of inference. The memory arena must be sized to accommodate the memory
requirements of the most memory-intensive operator. Therefore, the memory
used is constant during execution, and it is not freed after each operator. More-
over, in TFLM, the user is responsible for manually allocating and deallocating
memory, as well as determining the appropriate amount of memory to be used.
This can result in suboptimal memory allocations and potential runtime errors
if the user allocates either too little or too much memory.

The experiment proceeded to evaluate the other models, and the results
obtained were consistent with the previous findings. In particular, the results
for the speech command recognizer and person detector models can be seen in
Figure 5.6 and Figure 5.7, respectively.

For these models, only the most performing MCUs have been used for eval-
uation. This is due to the fact that the smaller ones could not physically fit the

71

5.2. RESULTS

ESP32 nRF52840 ATSAMV71
0

200

400

600

Us
ag

e
(k

B)

Flash
TFLM
MicroFlow

ESP32 nRF52840 ATSAMV71
0

50

100

150

Us
ag

e
(k

B)

RAM
TFLM
MicroFlow

Figure 5.7: Results of the memory usage experiment for the person detector
model.

model’s weights in memory, making it impossible to perform inference.
Overall, the considerations made for the results of the sine model can be ap-

plied to these cases too. However, as the size of the model increases, the memory
gap between MicroFlow and TFLM becomes smaller. This can be attributed to
the fact that the model’s weights, which cannot be optimized, occupy the major-
ity of the allocated memory. As a result, the impact of the interpreter overhead
becomes relatively less significant in comparison. However, MicroFlow still
has 15% less memory usage with respect to TFLM on the nRF52840 with the
person detector model. In conclusion, the experiment highlights the efficiency
and resource optimization achieved by MicroFlow in memory-constrained en-
vironments. Therefore, the initial design goal regarding this aspect has been
successfully reached.

5.2.3 Runtime Performance

This last series of experiments aims to assess the performance of the com-
pared inference engines in terms of execution times. The experiment has been
carried out as described in the previous sections. In particular, to provide a
meaningful comparison, the test has been performed only on the MCUs sup-

72

CHAPTER 5. EVALUATION

0 500 1000 1500 2000 2500
Execution Time (µs)

ESP32

nRF52840

TFLM
MicroFlow

Figure 5.8: Comparison of the runtime performance test results for the sine
predictor model.

ported by TFLM, namely the ESP32 and the nRF52840.
The firmware used for the experiments consists of a minimal program that

cyclically executes inference on the given model for a statistically significant
number of times, measuring the execution time for each cycle using the MCU
timers. The measurements are then exported and used to plot a histogram, high-
lighting the median value of the measurements, to obtain an accurate estimate of
the true execution time. The full set of resulting histograms for each experiment
can be seen in Appendix C. The following sections will present a comprehensive
overview of the findings. The measurement estimates are compared between
inference engines by using bar plots. These plots include the distribution’s 95%
percentile interval, effectively visualizing the data point dispersion.

Sine Predictor

The results for the sine predictor model on the ESP32 and the nRF52840 can
be observed in Figure 5.8. As it is possible to note from the plots, MicroFlow
has a significant performance gain over TFLM. In the case of the sine model,
the execution time of MicroFlow on both the ESP32 and nRF52840 is over 10
times lower compared to TFLM. This significant reduction in execution time
highlights the efficiency and optimization achieved by the MicroFlow inference
engine, especially for small models.

The observed outcome can be primarily attributed to two factors: the interpreter-
based nature of TFLM and the optimizations implemented in MicroFlow using
the Rust programming language. The interpreter-based approach of TFLM in-

73

5.2. RESULTS

0 25 50 75 100 125 150 175 200
Execution Time (ms)

ESP32

nRF52840
TFLM
MicroFlow

Figure 5.9: Comparison of the runtime performance test results for the speech
command recognizer model.

troduces additional overhead during the execution of the inference process. This
overhead includes interpretation of the model’s operations, dynamic memory
management, and other interpreter-related tasks. As a result, the total execution
time increases, affecting the overall performance of TFLM. This is even more
pronounced when the model is small, as the inference execution time is com-
parable to the interpreter overhead. On the other hand, MicroFlow leverages
the Rust programming language and a heavy pre-processing phase. This leads
to effective static analysis and optimizations from the compiler, which result in
reduced CPU operations and consequently reduced execution times.

However, it is expected that the performance gap between MicroFlow and
TFLM will narrow as the size and complexity of the models increase. This is
because the actual inference operations become more dominant in determining
the overall performance, while the relative impact of the interpreter overhead
diminishes.

Speech Command Recognizer

The results of the experiment for the speech command recognizer model
can be observed in Figure 5.9. As expected, the performance gap between the
two inference engines narrows significantly. However, MicroFlow still records a
performance gain over TFLM of approximately 9% on the ESP32 and 15% on the
nRF52840. As introduced earlier, the gap in performance narrows due to the fact
that the overhead introduced by the TFLM interpreter becomes less significant
compared to the actual inference operation. However, MicroFlow optimizations

74

CHAPTER 5. EVALUATION

0 1000 2000 3000 4000 5000
Execution Time (ms)

ESP32

nRF52840
TFLM
MicroFlow

Figure 5.10: Comparison of the runtime performance test results for the person
detector model.

and efficient operators result in faster inference.
One more thing to note is that the performances between the ESP32 and the

nRF52840 are starting to diverge significantly, with the nRF52840 being more
than three times faster than the ESP32. This outcome is counterintuitive since
the ESP32 has a CPU clock significantly higher than the nRF52840, and therefore
it should theoretically be faster. However, the ESP32 is known for its inefficient
Floating-Point Unit (FPU), which can impact the performance of the inference
engine since it heavily relies on it. Therefore, this inefficiency is most likely the
cause of these poor performances, and they are expected to degrade even more
for bigger and more complex models.

Person Detector

The results of the final performance experiment on the most complex model
on the ESP32 and nRF52840 can be seen in Figure 5.10. The outcome for the
person detector model is different from the results of the other models. In this
configuration, TFLM performed slightly better than MicroFlow. However, the
gap is minimal and approximately equal to 6.5%.

The observed result can be attributed to the nature of the MobileNet model,
which primarily consists of convolutional operations. As the model size in-
creases, the execution time becomes dominated by these computationally inten-
sive operations. Consequently, the overall execution time reaches a saturation
point that is primarily determined by the hardware constraints of the MCU, such
as the CPU clock speed and the number of cores. Given these limitations, there

75

5.2. RESULTS

are limited software optimizations available to improve performance. Instead,
enhancing the hardware capabilities of the MCU can lead to performance im-
provements in such scenarios. For example, these hardware enhancements can
include increasing the clock speed, parallelizing computation by using multiple
cores, or employing specialized hardware to speed up tensor operations, such
as a GPUs or TPUs.

However, the slightly faster performance of TFLM can be attributed to the fact
that TFLM uses specialized kernels for specific MCUs instead of the reference
ones. This is the case for the nRF52840, where TFLM uses a specific set of
kernels provided by the MCU manufacturer. These kernels are contained in the
CMSIS-NN software library, by ARM. On the other hand, MicroFlow does not
do any MCU-specific optimization for the sake of this research. However, this
can be a future improvement for the project. Another thing to note is that, as
in the previous experiment, the ESP32 performed significantly worse than the
nRF52840. Once again, this can be attributed to the poor performance of the
ESP32’s FPU.

In conclusion, MicroFlow demonstrated that it performed better or as well
as TFLM for the majority of the experiments. In particular, MicroFlow proved
to be faster than TFLM for small models. However, as the size and complexity
increase, both MicroFlow and TFLM approach the limitations imposed by the
underlying hardware.

5.2.4 Energy Consumption

The energy consumption experiment has been conducted as the final step,
utilizing the results from the performance experiments to provide precise mea-
surements. The results of the experiment are summarized in Table 5.4. As can
be seen, the consumption values are proportional to the execution times. In fact,
from the experiment, it has been determined that the average power usage of
TFLM and MicroFlow was substantially equal. Therefore, the overall energy
consumption depended mainly on the execution time.

This behavior can be attributed to the fact that the types of operations that the
MCU has to perform are essentially equal between the two compared inference
engines. Therefore, the power usage is similar. Moreover, the peripherals of the
MCU used by the inference engines are identical, resulting in limited possibilities
for power usage optimizations. In conclusion, the energy consumption of the

76

CHAPTER 5. EVALUATION

Sine Predictor

TFLM MicroFlow

ESP32 149 nW h 11 nW h

nRF52840 216 nW h 16 nW h

Speech Command Recognizer

TFLM MicroFlow

ESP32 23.05 mW h 21.04 mW h

nRF52840 6.58 mW h 5.62 mW h

Person Detector

TFLM MicroFlow

ESP32 691.11 mW h 694.44 mW h

nRF52840 116.58 mW h 124.44 mW h

Table 5.4: Results of the energy consumption experiment conducted on the
sample models.

inference engines is directly proportional to their execution times.

77

6
Conclusion

In this thesis, MicroFlow, a lightweight ML inference engine designed specif-
ically for resource-constrained MCUs, has been presented. Throughout the re-
search and evaluation process, MicroFlow has demonstrated promising results
and showcased its effectiveness in terms of performance, memory usage, and
energy consumption compared to the TFLM framework.

Overall, the goals set at the beginning of the project have been successfully
achieved. The project has demonstrated efficiency in terms of both performance
and memory usage. The decision to utilize the Rust programming language
has proven to be beneficial, providing the project with memory guarantees
and powerful tools for developing a robust inference engine. Additionally, the
decision to follow a compiler-based approach turned out to be correct. The eval-
uation and experimentation conducted throughout the project have validated
the effectiveness of this strategy, especially for small models.

However, it is important to note that the performance of MicroFlow degrades
when handling large models, eventually reaching a saturation point. This unex-
pected result highlights an area for further research and potential improvements
in future iterations of the project. In summary, the project has reached a stage
where it can be tested in real-world applications for further evaluation and
provides a solid foundation for future enhancements and feature additions.

79

6.1. FUTURE WORK

6.1 Future Work

The modular nature of the project makes it highly adaptable and open to
future additions and optimizations. One of the key areas for potential improve-
ments is the addition of new operators and the optimization of existing ones for
specific MCU families. By expanding the library of operators, MicroFlow can
support a wider range of operations and NN architectures.

Furthermore, MicroFlow can be used for developing applications in collab-
oration with the company that has been involved in this project. These applica-
tions include the optimization of the charging process for electric vehicles. In
fact, by leveraging MicroFlow, it is possible to safely and efficiently include ML
models and techniques in the existing embedded solutions to provide a more
efficient charging process. Finally, the open-source nature of the project makes
it possible to expand its functionalities according to the needs of the community.

80

A
Operator Kernels

This appendix chapter presents the code developed for the major operator
kernels used in the research. Each kernel is represented by a Rust function that
takes one or more tensors as input and produces a tensor as its output.

A.1 FullyConnected

1 /// Performs the FullyConnected operation.

2 /// Returns a 2-dimensional output tensor containing the result of

the operation.

3 ///

4 /// # Arguments

5 /// * ‘input‘ - The 2-dimensional input tensor

6 /// * ‘weights‘ - The 2-dimensional tensor representing the weights

of the operator

7 /// * ‘output_scale ‘ - The scale of the resulting output tensor

8 /// * ‘output_zero_point ‘ - The zero point of the resulting output

tensor

9 /// * ‘options‘ - Operator ’s options as an [‘FullyConnectedOptions ‘]

struct

10 /// * ‘constants ‘ - Constant values coming from the pre-processing

phase

11 ///

12 pub fn fully_connected <

13 T: Quantized ,

14 const INPUT_ROWS: usize,

15 const INPUT_COLS: usize,

81

A.1. FULLYCONNECTED

16 const WEIGHTS_COLS: usize,

17 >(

18 input: Tensor2D <T, INPUT_ROWS , INPUT_COLS , 1>,

19 weights: &Tensor2D<T, INPUT_COLS , WEIGHTS_COLS , 1>,

20 output_scale: [f32; 1],

21 output_zero_point: [T; 1],

22 options: FullyConnectedOptions ,

23 constants: (

24 Buffer2D<f32, WEIGHTS_COLS , 1>,

25 f32,

26 Buffer2D<i32, 1, WEIGHTS_COLS >,

27 i32,

28),

29) -> Tensor2D <T, INPUT_ROWS , WEIGHTS_COLS , 1> {

30 let x: (

31 Buffer2D<i32, INPUT_ROWS , WEIGHTS_COLS >,

32 Buffer2D<i32, INPUT_ROWS , 1>,

33) = (

34 // Perform the dot product between the input and the weights

35 Buffer2D::from_fn(|i, j| {

36 input

37 .buffer

38 .row(i)

39 .iter()

40 .zip(weights.buffer.column(j).iter())

41 .fold(0i32, |acc, (i, w)| {

42 acc + i32::from_subset(i) * i32::from_subset(w)

43 })

44 }),

45 // Perform the row-sum of the weights

46 Buffer2D::from_fn(|i, _| {

47 input

48 .buffer

49 .row(i)

50 .fold(0i32, |acc, e| acc + i32::from_subset(&e))

51 * i32::from_subset(&weights.zero_point[0])

52 }),

53);

54 // Combine the constant values and the variants to obtain the

output

55 let output = Buffer2D::from_fn(|i, j| {

56 let y = T::from_superset_unchecked(&roundf(

57 f32::from_subset(&output_zero_point[0])

82

APPENDIX A. OPERATOR KERNELS

58 + constants.0[j]

59 + constants.1

60 * f32::from_subset(&(x.0[(i, j)] - x.1[i] - constants.2[j]

+ constants.3)),

61));

62 // Apply the fused activation function (if any)

63 match options.fused_activation {

64 FusedActivation::None => y,

65 FusedActivation::Relu => relu(y, output_zero_point[0]),

66 FusedActivation::Relu6 => relu6(y, output_scale[0],

output_zero_point[0]),

67 }

68 });

69 Tensor2D::new(output, output_scale , output_zero_point)

70 }

A.2 Conv2D

1 /// Performs the Conv2D operation.

2 /// Returns a 4-dimensional output tensor containing the result of

the operation.

3 ///

4 /// # Arguments

5 /// * ‘input‘ - The 4-dimensional input tensor

6 /// * ‘filters‘ - The 4-dimensional tensor representing the filters

of the operator

7 /// * ‘output_scale ‘ - The scale of the resulting output tensor

8 /// * ‘output_zero_point ‘ - The zero point of the resulting output

tensor

9 /// * ‘options‘ - Operator ’s options as an [‘Conv2DOptions ‘] struct

10 /// * ‘constants ‘ - Constant values coming from the pre-processing

phase

11 ///

12 pub fn conv_2d<

13 T: Quantized ,

14 const INPUT_ROWS: usize,

15 const INPUT_COLS: usize,

16 const INPUT_CHANS: usize,

17 const FILTERS_BATCHES: usize,

18 const FILTERS_ROWS: usize,

19 const FILTERS_COLS: usize,

83

A.2. CONV2D

20 const FILTERS_QUANTS: usize,

21 const OUTPUT_ROWS: usize,

22 const OUTPUT_COLS: usize,

23 >(

24 input: Tensor4D <T, 1, INPUT_ROWS , INPUT_COLS , INPUT_CHANS , 1>,

25 filters: &Tensor4D<T, FILTERS_BATCHES , FILTERS_ROWS , FILTERS_COLS ,

INPUT_CHANS , FILTERS_QUANTS >,

26 output_scale: [f32; 1],

27 output_zero_point: [T; 1],

28 options: Conv2DOptions ,

29 constants: (

30 Buffer2D<f32, FILTERS_BATCHES , 1>,

31 Buffer2D<f32, FILTERS_QUANTS , 1>,

32),

33) -> Tensor4D <T, 1, OUTPUT_ROWS , OUTPUT_COLS , FILTERS_BATCHES , 1> {

34 let output = [Buffer2D::from_fn(|i, j| {

35 // Extract the view using the view extraction algorithm

36 let view: View<T, FILTERS_ROWS , FILTERS_COLS , INPUT_CHANS > =

37 input.view((i, j), 0, options.view_padding , options.strides);

38 // Perform the convolution for each filter batch

39 array::from_fn(|b| {

40 let input_zero_point = i32::from_subset(&input.zero_point[0]);

41 let filters_zero_point = i32::from_subset(

42 &filters

43 .zero_point

44 .get(b)

45 .copied()

46 .unwrap_or(filters.zero_point[0]),

47);

48 let x = (

49 // Perform the dot product between the input region and the

filter

50 view.buffer.zip_fold(&filters.buffer[b], 0i32, |acc, v, f| {

51 acc + v

52 .iter()

53 .zip(f.iter())

54 .map(|(e1, e2)| i32::from_subset(e1) * i32::from_subset(

e2))

55 .sum::<i32>()

56 }),

57 // Perform the 3-dimensional component -sum of the view

58 view.buffer.fold(0i32, |acc, a| {

59 acc + a.iter().fold(0i32, |acc, e| acc + i32::from_subset(e

84

APPENDIX A. OPERATOR KERNELS

))

60 }) * filters_zero_point ,

61);

62 // Elaborate the constants

63 let constants = (

64 constants.0,

65 constants.1,

66 input_zero_point

67 * filters.buffer[b].zip_fold(&view.mask, 0i32, |acc, f, m|

{

68 if m {

69 acc + f.iter().fold(0i32, |acc, e| acc + i32::

from_subset(e))

70 } else {

71 acc

72 }

73 }),

74 view.len as i32 * INPUT_CHANS as i32 * input_zero_point *

filters_zero_point ,

75);

76 // Combine the constant values and the variants to obtain the

output

77 let y = T::from_superset_unchecked(&roundf(

78 f32::from_subset(&output_zero_point[0])

79 + constants.0[b]

80 + constants.1.get(b).copied().unwrap_or(constants.1[0])

81 * f32::from_subset(&(x.0 - x.1 - constants.2 + constants

.3)),

82));

83 // Apply the fused activation function (if any)

84 match options.fused_activation {

85 FusedActivation::None => y,

86 FusedActivation::Relu => relu(y, output_zero_point[0]),

87 FusedActivation::Relu6 => relu6(y, output_scale[0],

output_zero_point[0]),

88 }

89 })

90 })];

91 Tensor4D::new(output, output_scale , output_zero_point)

92 }

85

A.3. DEPTHWISECONV2D

A.3 DepthwiseConv2D

1 /// Performs the DepthwiseConv2D operation.

2 /// Returns a 4-dimensional output tensor containing the result of

the operation.

3 ///

4 /// # Arguments

5 /// * ‘input‘ - The 4-dimensional input tensor

6 /// * ‘weights‘ - The 4-dimensional tensor representing the weights

of the operator

7 /// * ‘output_scale ‘ - The scale of the resulting output tensor

8 /// * ‘output_zero_point ‘ - The zero point of the resulting output

tensor

9 /// * ‘options‘ - Operator ’s options as an [‘DepthwiseConv2DOptions ‘]

struct

10 /// * ‘constants ‘ - Constant values coming from the pre-processing

phase

11 ///

12 pub fn depthwise_conv_2d <

13 T: Quantized ,

14 const INPUT_ROWS: usize,

15 const INPUT_COLS: usize,

16 const INPUT_CHANS: usize,

17 const WEIGHTS_ROWS: usize,

18 const WEIGHTS_COLS: usize,

19 const WEIGHTS_CHANS: usize,

20 const WEIGHTS_QUANTS: usize,

21 const OUTPUT_ROWS: usize,

22 const OUTPUT_COLS: usize,

23 >(

24 input: Tensor4D <T, 1, INPUT_ROWS , INPUT_COLS , INPUT_CHANS , 1>,

25 weights: &Tensor4D<T, 1, WEIGHTS_ROWS , WEIGHTS_COLS , WEIGHTS_CHANS ,

WEIGHTS_QUANTS >,

26 output_scale: [f32; 1],

27 output_zero_point: [T; 1],

28 options: DepthwiseConv2DOptions ,

29 constants: (

30 Buffer2D<f32, WEIGHTS_CHANS , 1>,

31 Buffer2D<f32, WEIGHTS_QUANTS , 1>,

32),

33) -> Tensor4D <T, 1, OUTPUT_ROWS , OUTPUT_COLS , WEIGHTS_CHANS , 1> {

34 let output = [Buffer2D::from_fn(|i, j| {

86

APPENDIX A. OPERATOR KERNELS

35 // Extract the view using the view extraction algorithm

36 let view: View<T, WEIGHTS_ROWS , WEIGHTS_COLS , INPUT_CHANS > =

37 input.view((i, j), 0, options.view_padding , options.strides);

38 // Perform the convolution for each input channel

39 array::from_fn(|c| {

40 let input_zero_point = i32::from_subset(&input.zero_point[0]);

41 let weights_zero_point = i32::from_subset(

42 &weights

43 .zero_point

44 .get(c)

45 .copied()

46 .unwrap_or(weights.zero_point[0]),

47);

48 let x = (

49 // Perform the dot product between the input region and the

weights

50 view.buffer.zip_fold(&weights.buffer[0], 0i32, |acc, v, w| {

51 acc + i32::from_subset(&v.get(c).copied().unwrap_or(v[0]))

52 * i32::from_subset(&w[c])

53 }),

54 // Perform the 2-dimensional component -sum of the view for

the given channel

55 view.buffer.fold(0i32, |acc, a| {

56 acc + i32::from_subset(&a.get(c).copied().unwrap_or(a[0]))

57 }) * weights_zero_point ,

58);

59 // Elaborate the constants

60 let constants = (

61 constants.0,

62 constants.1,

63 input_zero_point

64 * weights.buffer[0].zip_fold(&view.mask, 0i32, |acc, w, m|

{

65 if m {

66 acc + i32::from_subset(&w[c])

67 } else {

68 acc

69 }

70 }),

71 view.len as i32 * input_zero_point * weights_zero_point ,

72);

73 // Combine the constant values and the variants to obtain the

output

87

A.4. AVERAGEPOOL2D

74 let y = T::from_superset_unchecked(&roundf(

75 f32::from_subset(&output_zero_point[0])

76 + constants.0[c]

77 + constants.1.get(c).copied().unwrap_or(constants.1[0])

78 * f32::from_subset(&(x.0 - x.1 - constants.2 + constants

.3)),

79));

80 // Apply the fused activation function (if any)

81 match options.fused_activation {

82 FusedActivation::None => y,

83 FusedActivation::Relu => relu(y, output_zero_point[0]),

84 FusedActivation::Relu6 => relu6(y, output_scale[0],

output_zero_point[0]),

85 }

86 })

87 })];

88 Tensor4D::new(output, output_scale , output_zero_point)

89 }

A.4 AveragePool2D

1 /// Performs the AveragePool2D operation.

2 /// Returns a 4-dimensional output tensor containing the result of

the operation.

3 ///

4 /// # Arguments

5 /// * ‘input‘ - The 4-dimensional input tensor

6 /// * ‘_filter_shape ‘ - The phantom shape of the filter

7 /// * ‘output_scale ‘ - The scale of the resulting output tensor

8 /// * ‘output_zero_point ‘ - The zero point of the resulting output

tensor

9 /// * ‘options‘ - Operator ’s options as an [‘AveragePool2DOptions ‘]

struct

10 /// * ‘constants ‘ - Constant values coming from the pre-processing

phase

11 ///

12 pub fn average_pool_2d <

13 T: Quantized ,

14 const INPUT_ROWS: usize,

15 const INPUT_COLS: usize,

16 const INPUT_CHANS: usize,

88

APPENDIX A. OPERATOR KERNELS

17 const FILTER_ROWS: usize,

18 const FILTER_COLS: usize,

19 const OUTPUT_ROWS: usize,

20 const OUTPUT_COLS: usize,

21 >(

22 input: Tensor4D <T, 1, INPUT_ROWS , INPUT_COLS , INPUT_CHANS , 1>,

23 _filter_shape: (Const<FILTER_ROWS >, Const<FILTER_COLS >),

24 output_scale: [f32; 1],

25 output_zero_point: [T; 1],

26 options: AveragePool2DOptions ,

27 constants: (f32, f32),

28) -> Tensor4D <T, 1, OUTPUT_ROWS , OUTPUT_COLS , INPUT_CHANS , 1> {

29 let output = [Buffer2D::from_fn(|i, j| {

30 // Extract the view using the view extraction algorithm

31 let view: View<T, FILTER_ROWS , FILTER_COLS , INPUT_CHANS > =

32 input.view((i, j), 0, options.view_padding , options.strides);

33 // Compute the average pooling for each channel

34 array::from_fn(|c| {

35 let x = 1. / view.len as f32

36 * view

37 .buffer

38 .fold(0i32, |acc, a| acc + i32::from_subset(&a[c])) as f32;

39 let y = T::from_superset_unchecked(&roundf(constants.0 * x +

constants.1));

40 // Apply the fused activation function (if any)

41 match options.fused_activation {

42 FusedActivation::None => y,

43 FusedActivation::Relu => relu(y, output_zero_point[0]),

44 FusedActivation::Relu6 => relu6(y, output_scale[0],

output_zero_point[0]),

45 }

46 })

47 })];

48 Tensor4D::new(output, output_scale , output_zero_point)

49 }

89

B
View Extraction Algorithm

This appendix chapter presents the implementation of the view extraction
algorithm presented in Algorithm 1. The algorithm has been implemented as a
method of the Tensor4D struct.

1 /// Extracts a view from the tensor.

2 /// Returns the 4-dimensional tensor view as a [‘TensorView ‘] struct.

3 ///

4 /// # Arguments

5 /// * ‘focus‘ - The focus point of the view, i.e., the pseudo-center

of the view

6 /// * ‘batch‘ - The tensor batch from which to extract the view

7 /// * ‘padding‘ - The view padding as a [‘TensorViewPadding ‘] enum

8 /// * ‘strides‘ - The view strides on the width and height of the

tensor, repectively

9 ///

10 pub fn view<const VIEW_ROWS: usize, const VIEW_COLS: usize>(

11 &self,

12 focus: (usize, usize),

13 batch: usize,

14 padding: TensorViewPadding ,

15 strides: (usize, usize),

16) -> TensorView <T, VIEW_ROWS , VIEW_COLS , CHANS> {

17 let mut len = VIEW_ROWS * VIEW_COLS;

18 let mut mask = Buffer2D::from_element(true);

19 TensorView {

20 buffer: Buffer2D::from_fn(|m, n| match padding {

21 TensorViewPadding::Same => {

22 // Compute the index shift based on the view dimensions

91

23 let shift = ((VIEW_ROWS - 1) / 2, (VIEW_COLS - 1) / 2);

24 let index = (

25 // If the calculated index falls within the tensor bounds,

keep it

26 if let Some(x) = (strides.0 * focus.0 + m).checked_sub(

shift.0) {

27 x

28 // Otherwise , return zero (as per "same" padding)

29 } else {

30 len -= 1;

31 mask[(m, n)] = false;

32 return [T::from_superset_unchecked(&0); CHANS];

33 },

34 // Same for the other index value

35 if let Some(x) = (strides.1 * focus.1 + n).checked_sub(

shift.1) {

36 x

37 } else {

38 len -= 1;

39 mask[(m, n)] = false;

40 return [T::from_superset_unchecked(&0); CHANS];

41 },

42);

43 // Extract the view for the computed index

44 self.buffer[batch].get(index).copied().unwrap_or_else(|| {

45 len -= 1;

46 mask[(m, n)] = false;

47 [T::from_superset_unchecked(&0); CHANS]

48 })

49 }

50 TensorViewPadding::Valid => {

51 // For "valid" paddings , directly extract the view for valid

indexes only

52 self.buffer[batch][(strides.0 * focus.0 + m, strides.1 *

focus.1 + n)]

53 }

54 }),

55 mask,

56 len,

57 }

58 }

92

C
Runtime Performance Histograms

This appendix chapter presents the full set of histograms resulting from the
runtime performance experiment. The plots have the minimum, median, and
maximum values of the measured execution times on the x-axis and the number
of executions falling within each histogram bin on the y-axis.

1727.0 1786.5 1903.0
Execution Time (µs)

0

5

10

15

20

25

30

Co
un

t

TFLM
Median

76.8 138.0 278.1
Execution Time (µs)

0

5

10

15

20

25

30

Co
un

t

MicroFlow
Median

Sine Predictor Model on the ESP32

93

2579.55 2596.00 2643.45
Execution Time (µs)

0
10
20
30
40
50
60
70

Co
un

t
TFLM

Median

168.55 188.50 222.45
Execution Time (µs)

0
10
20
30
40
50
60
70

Co
un

t

MicroFlow
Median

Sine Predictor Model on the nRF52840

207.36 207.43 207.63
Execution Time (ms)

0

5

10

15

20

25

30

Co
un

t

TFLM
Median

188.96 189.34 191.01
Execution Time (ms)

0

5

10

15

20

25

30

Co
un

t

MicroFlow
Median

Speech Command Recognizer Model on the ESP32

59.17 59.25 59.33
Execution Time (ms)

0

5

10

15

20

25

30

Co
un

t

TFLM
Median

50.58 50.60 50.64
Execution Time (ms)

0

5

10

15

20

25

30

Co
un

t

MicroFlow
Median

Speech Command Recognizer Model on the nRF52840

94

APPENDIX C. RUNTIME PERFORMANCE HISTOGRAMS

4951.89 4976.46 4998.61
Execution Time (ms)

0
5

10
15
20
25
30
35

Co
un

t

TFLM
Median

5111.98 5131.68 5181.70
Execution Time (ms)

0
5

10
15
20
25
30
35

Co
un

t

MicroFlow
Median

Person Detector Model on the ESP32

837.68 839.38 840.08
Execution Time (ms)

0

5

10

15

20

25

30

Co
un

t

TFLM
Median

893.17 896.19 899.31
Execution Time (ms)

0

5

10

15

20

25

30

Co
un

t

MicroFlow
Median

Person Detector Model on the nRF52840

95

References

[1] Ramon Sanchez-Iborra and Antonio F. Skarmeta. “TinyML-Enabled Fru-
gal Smart Objects: Challenges and Opportunities”. In: IEEE Circuits and
Systems Magazine 20.3 (2020), pp. 4–18. doi: 10.1109/MCAS.2020.3005467.

[2] Lachit Dutta and Swapna Bharali. “TinyML Meets IoT: A Comprehensive
Survey”. In: Internet of Things 16 (2021), p. 100461. doi: https://doi.org/
10.1016/j.iot.2021.100461.

[3] Guoguo Chen, Carolina Parada, and Georg Heigold. “Small-footprint
keyword spotting using deep neural networks”. In: 2014 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). 2014,
pp. 4087–4091. doi: 10.1109/ICASSP.2014.6854370.

[4] Miguel A Labrador and Oscar D Lara Yejas. Human activity recognition:
Using wearable sensors and smartphones. CRC Press, 2013.

[5] Alexander Wong et al. “YOLO Nano: a Highly Compact You Only Look
Once Convolutional Neural Network for Object Detection”. In: 2019 Fifth
Workshop on Energy Efficient Machine Learning and Cognitive Computing
- NeurIPS Edition (EMC2-NIPS). 2019, pp. 22–25. doi: 10.1109/EMC2-
NIPS53020.2019.00013.

[6] Anargyros Gkogkidis et al. “A TinyML-based system for gas leakage detec-
tion”. In: 2022 11th International Conference on Modern Circuits and Systems
Technologies (MOCAST). 2022, pp. 1–5. doi: 10.1109/MOCAST54814.2022.
9837510.

[7] Maria Francesca Alati et al. “Time series analysis for temperature fore-
casting using TinyML”. In: 2022 IEEE 19th Annual Consumer Communica-
tions & Networking Conference (CCNC). 2022, pp. 691–694. doi: 10.1109/
CCNC49033.2022.9700573.

97

https://doi.org/10.1109/MCAS.2020.3005467
https://doi.org/https://doi.org/10.1016/j.iot.2021.100461
https://doi.org/https://doi.org/10.1016/j.iot.2021.100461
https://doi.org/10.1109/ICASSP.2014.6854370
https://doi.org/10.1109/EMC2-NIPS53020.2019.00013
https://doi.org/10.1109/EMC2-NIPS53020.2019.00013
https://doi.org/10.1109/MOCAST54814.2022.9837510
https://doi.org/10.1109/MOCAST54814.2022.9837510
https://doi.org/10.1109/CCNC49033.2022.9700573
https://doi.org/10.1109/CCNC49033.2022.9700573

REFERENCES

[8] Microcontroller Market Size, Share & Trends Analysis Report By Product (8-bit,
16-bit, 32-bit), By Application (Consumer Electronics & Telecom, Automotive,
Industrial, Medical Devices, Aerospace & Defense), By Region, And Segment
Forecasts, 2023 - 2030. Tech. rep. 978-1-68038-141-2. Grand View Research,
2023. url: https://www.grandviewresearch.com/industry-analysis/
microcontroller-market.

[9] Daniel Zhang et al. The AI Index 2022 Annual Report. Tech. rep. AI Index
Steering Committee, Stanford Institute for Human-Centered AI, Stanford
University, Mar. 2022. url: https://aiindex.stanford.edu/report.

[10] Sally Ward-Foxton. TinyML Comes to Embedded World 2023. 2023. url:
https://www.eetimes.com/tinyml-comes-to-embedded-world-2023.

[11] Samson Otieno Ooko et al. “TinyML in Africa: Opportunities and Chal-
lenges”. In: 2021 IEEE Globecom Workshops (GC Wkshps). 2021, pp. 1–6. doi:
10.1109/GCWkshps52748.2021.9682107.

[12] Robert David et al. “TensorFlow Lite Micro: Embedded Machine Learning
for TinyML Systems”. In: Proceedings of Machine Learning and Systems. Ed.
by A. Smola, A. Dimakis, and I. Stoica. Vol. 3. 2021, pp. 800–811. url:
https://proceedings.mlsys.org/paper_files/paper/2021/file/

d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf.

[13] MLPerf v1.0 Results Inference Tiny. ML Commons Association, Nov. 2022.
url: https://mlcommons.org/en/inference-tiny-10.

[14] Benoit Jacob et al. “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference”. In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2018, pp. 2704–2713. doi: 10.
1109/CVPR.2018.00286.

[15] Matt Miller. Trends, challenges, and strategic shifts in the software vulnera-
bility mitigation landscape. Microsoft Security Response Center (MSRC),
Feb. 2019. url: https : / / github . com / microsoft / MSRC - Security -
Research/blob/master/presentations/2019_02_BlueHatIL/2019_

01 % 20 - %20BlueHatIL % 20 - %20Trends % 2C % 20challenge % 2C % 20and %

20shifts%20in%20software%20vulnerability%20mitigation.pdf.

[16] Memory Safety. The Chromium Projects, 2020. url:https://www.chromium.
org/Home/chromium-security/memory-safety.

98

https://www.grandviewresearch.com/industry-analysis/microcontroller-market
https://www.grandviewresearch.com/industry-analysis/microcontroller-market
https://aiindex.stanford.edu/report
https://www.eetimes.com/tinyml-comes-to-embedded-world-2023
https://doi.org/10.1109/GCWkshps52748.2021.9682107
https://proceedings.mlsys.org/paper_files/paper/2021/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://mlcommons.org/en/inference-tiny-10
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety

REFERENCES

[17] Jeff Vander Stoep and Stephen Hines. Rust in the Android platform. Android
Security, Apr. 2021. url: https://security.googleblog.com/2021/04/
rust-in-android-platform.html.

[18] Linus Torvalds. Linux 6.1. Dec. 2022. url: https://lkml.org/lkml/2022/
12/11/206.

[19] Colby Banbury et al. “MicroNets: Neural Network Architectures for De-
ploying TinyML Applications on Commodity Microcontrollers”. In: Pro-
ceedings of Machine Learning and Systems. Ed. by A. Smola, A. Dimakis, and
I. Stoica. Vol. 3. 2021, pp. 517–532. url: https://proceedings.mlsys.org/
paper_files/paper/2021/file/c4d41d9619462c534b7b61d1f772385e-

Paper.pdf.

[20] Matthieu Courbariaux et al. Binarized Neural Networks: Training Deep Neural
Networks with Weights and Activations Constrained to +1 or -1. 2016. arXiv:
1602.02830 [cs.LG].

[21] Steve Klabnik and Carol Nichols. The Rust Programming Language. url:
https://doc.rust-lang.org/book/.

[22] Pete Warden and Daniel Situnayake. TinyML. O’Reilly Media, Inc., Dec.
2019. isbn: 9781492051992. url: https://tinymlbook.com.

[23] Pete Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition. 2018. arXiv: 1804.03209 [cs.CL].

[24] Andrew G. Howard et al. MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications. 2017. arXiv: 1704.04861 [cs.CV].

[25] Aakanksha Chowdhery et al. Visual Wake Words Dataset. 2019. arXiv: 1906.
05721 [cs.CV].

99

https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://lkml.org/lkml/2022/12/11/206
https://lkml.org/lkml/2022/12/11/206
https://proceedings.mlsys.org/paper_files/paper/2021/file/c4d41d9619462c534b7b61d1f772385e-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/c4d41d9619462c534b7b61d1f772385e-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/c4d41d9619462c534b7b61d1f772385e-Paper.pdf
https://arxiv.org/abs/1602.02830
https://doc.rust-lang.org/book/
https://tinymlbook.com
https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1906.05721
https://arxiv.org/abs/1906.05721

Acknowledgments

This project would not have been possible without the support and help of
all the people who followed this journey. First of all, I would like to express
my gratitude to my family and all the people who have been close to me for
their support and understanding throughout this project. Their encouragement
and belief in me have been a constant source of motivation. I would also like
to extend my appreciation to my supervisor and mentor for their guidance and
expertise. Their valuable insights and constructive feedback have shaped the
development of this project and enriched my learning experience.

Lastly, I want to express my gratitude to the Grepit company and its employ-
ees for believing in and supporting the project from its inception. The tools,
knowledge, and spaces provided by the company have been essential to the
successful development and execution of this thesis. Thank you all for being an
integral part of this journey and for making it a truly remarkable experience.

101

	List of Figures
	List of Tables
	List of Algorithms
	List of Code Snippets
	List of Acronyms
	Introduction
	Related Work
	Machine Learning for Embedded Systems
	Parameters Quantization
	Model Representation
	Inference Engine Approaches

	Programming Languages for Embedded Systems
	Memory Safety
	C
	C++
	Rust

	Existing TinyML Inference Engines
	TensorFlow Lite for Microcontrollers
	Embedded Learning Library
	ARM-NN
	Plumerai
	uTensor
	Tract

	Summary

	Design
	Principles
	Portability
	Efficiency
	Robustness
	Scalability

	Structure
	Usage

	Implementation
	Compiler
	Macros
	Parsing
	Pre-processing

	Runtime
	External Libraries
	Generics

	Memory Management
	Ownership
	Paging
	Stack Overflow Protection

	Operators
	FullyConnected
	Conv2D
	DepthwiseConv2D
	AveragePool2D
	Activation Functions

	Evaluation
	Experimental Setup
	Models
	Hardware
	Baseline
	Experiments

	Results
	Accuracy
	Memory Usage
	Runtime Performance
	Energy Consumption

	Conclusion
	Future Work

	Operator Kernels
	FullyConnected
	Conv2D
	DepthwiseConv2D
	AveragePool2D

	View Extraction Algorithm
	Runtime Performance Histograms
	References
	Acknowledgments

