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Riassunto

L’evidenza di materia oscura non lascia spazio a dubbi riguardo la necessità di fisica oltre il Modello
Standard. Un candidato fortemente motivato dalla fisica delle particelle è un nuovo ipotetico grado di
libertà leggero denominato assione. Lo scopo di questa tesi è quello di analizzare come si comportano
le interazioni forti, descritte dalla Cromodinamica Quantistica (QCD), una volta che viene invertita la
freccia del tempo. L’invarianza sotto questa operazione è assicurata solo a patto di porre un parametro
della QCD ad un valore innaturalmente piccolo. L’ipotesi dell’assione risolve questo problema. Nella
seconda parte della tesi, si andrà a studiare come funziona questo meccanismo e come l’assione possa
spiegare l’abbondanza osservata di materia oscura.

i



Introduction

The Standard Model (SM) of particle physics is a quantum field theory developed during the second
half of the 20th century unifying our present understanding of 3 (strong, weak and electromagnetic
interactions) out of the 4 known fundamental forces (the previous 3 interactions and gravity). In the
proceeding we will discuss how adding a new global symmetry to the Standard Model could at once
solve the strong CP problem, see later, and provide a viable dark matter candidate, the axion.
The SM strongly relies on the principle of gauge symmetry. Its Lagrangian is given writing the most
general SU(3)×SU(2)×U(1) gauge invariant (renormalizable) Lagrangian. Therefore we have a total
amount of 12 gauge bosons: 8 generators of the SU(3) group describing strong interactions, and 3+1
gauge bosons relative to the electroweak sector. This gauge fields couple to different kinds of matter
that can be divided into three main categories:

• Quarks: quarks are fermions charged under all factors of the SM gauge group (to be precise only
left-handed quarks are charged under all interactions while right-handed ones do not interact
through the weak charged currents). Quarks are the only particles to be charged under the
SU(3) strong interactions (they are said to carry color charge). There are 6 quark flavours (and
6 corresponding anti-quark flavours) divided into 3 generations of doublets of the SU(2) weak
factor.

• Leptons: leptons are also fermions, but they do not interact through strong interactions (so
they do not present color charge). As for quarks, there are 6 different flavours of leptons again
divided into 3 generations of doublets.

• Higgs: the Higgs field is a scalar which is not charged under the strong interactions. This boson
has the role to give mass to both weak bosons (by means of spontaneous symmetry breaking)
and fermions. Its goldstone bosons are “eaten” from the gauge fields acquiring mass and leaving
just one real scalar field h known as the Higgs boson.

The Standard Model has an outstanding accord with experimental testing, with tensions only where
really complex measurements or calculations have to be carried out. Between its major successes, we
have:

• The prediction of the existence of the gluon and its properties in 1973 (by Fritzsch, Leutwyler
and Gell-Mann), six years before its experimental detection at PETRA (1979).

• The prediction of the existence and properties of weakW± and Z bosons by the Glashow-Salam-
Weinberg electroweak model (around 1968) and then discovered at CERN in 1983.

• The prediction of a third generation of quarks by Kobayashi and Maskawa in 1973, to explain
CP violation in the weak interactions. The bottom quark was detected at Fermilab in 1977 for
the first time but the top quark had to wait until 1995.

• The last piece of the Standard Model to be detected was the Higgs boson (incorporated in the
standard model in 1967) which was found at CERN in 2012.

Besides all the questions the SM answers successfully, it also leaves other questions about its structure
open, such as:

Can we unify the three interactions of the SM?
As we have summarized the SM contains three gauge symmetries and 15 different fermionic representa-
tions. In the final theory, we would like to have just one gauge group that descends to the three groups
of the SM through spontaneous symmetry breaking and just one type of matter. This desire is further
motivated by the fact that the electroweak sector of the gauge group has already been unified. This
idea that there exists a fundamental gauge group goes under the name of grand unification. Although
there is an attractive approach to pursue grand unification that is to regard SU(3)×SU(2)×U(1) as
a subgroup of SO(10) or SU(5), to this day great unification theories (GUT) still present problems
like predicting the proton to decay, which has not yet been observed, and wrong couplings.
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Why does the quark and lepton spectrum have this structure?
In the Standard Model, the masses of the quarks range from about a MeV for the quark up to about
100GeV for the quark top. The model explains how fermions gain mass through their interaction with
the Higgs field but they accomplish this by means of a series of arbitrary couplings that have to be
entered as parameters. Therefore we do not have any insight into why quark or lepton masses vary
over such a large spectrum (5 orders of magnitude for the quarks and 3 for the leptons).

Why do some parameters of the SM assume extremely small values?
We would expect all the parameters of the standard model to assume values of order one (in natural
units), but some of them assume some extremely small/big values, this is referred to as naturalness
problem. The most important naturalness problems of the SM are the Strong CP problem (which we
will cover later) and the SM hierarchy problem (regarding why the weak interactions are 1034 times
stronger than gravitational ones).

There is then a series of questions left unanswered about how the knowledge of particle physics we
have acquired relates to the picture of the universe emerging from cosmology:

Why is the universe full of structure and not homogeneous?
If the universe started out in a homogeneous thermal equilibrium state it would stay uniform during
its evolution and we will not see all the structures we see today: stars, galaxies, galaxy clusters... In
order for these inhomogeneities to be present we must provide a mechanism for them to form and
grow. Clearly gravity could be a mean for structure to grow: slightly denser regions of the universe
could attract other matter and become even denser.
An hypothesis proposed by Alan Guth in 1981 to solve the problem of inhomogeneities in the early uni-
verse and other related problems (such as why the Cosmic Microwave Background is so homogeneous
despite coming from very far regions of the universe that could not have been able to reach thermal
equilibrium) is given by inflation (basically an exponential expansion of the very early universe), but
it would require at least to add new features to the Standard Model.

Why does the universe contain more matter than antimatter?
Why do we live in a world made mainly out of matter and anti-matter is so rare? It appears that
when the temperature of the universe fell behind 1 GeV quark and anti-quark annihilated and it
remained a small excess of quarks (it would be sufficient a leftover quark every 109 photons). We
could assume that the universe started with this little asymmetry, but if we assume inflation to have
happened it would have made the universe expand by roughly 1043 times diluting this asymmetry to
become unnoticeable. The Standard Model provides a way to create a potential asymmetry in matter
and anti-matter violating CP symmetry but it would produce an asymmetry 108 times smaller than
observed.

What is Dark Matter?
There is a bunch of evidence for the so called dark matter : invisible weakly interacting matter that
interacts mainly gravitationally with ordinary matter. This matter makes up 85% of the total mass
of the universe and no particle in the SM constitutes a convincing dark matter candidate.

What is Dark Energy?
In 1988 it was discovered that the universe is not only expanding but that this expansion is accelerated.
This has required adding to the Standard Model of cosmology a new term called the cosmological
constant. This term behaves like a vacuum energy, however it is not known how to compute the SM
contribution to the vacuum energy and rough estimates give a result 120 orders of magnitude too
large.

How does gravity fit together with the Standard Model?
The SM does not contain the fourth fundamental interaction of nature: gravity. To this day it is not
known any completely successful way to incorporate gravity to the other three interactions.
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Chapter 1

Gauge theory

In this chapter, we will introduce the concept of gauge theory searching for a generalization of classical
electrodynamics.

1.1 Gauge theory Lagrangian

Studying electrodynamics we immediately encounter the concept of gauge symmetry: a local contin-
uous transformation of the field that leaves the classical action invariant.

Inspired by this concept we will choose a Lie group and write the most general Lagrangian that is
left invariant under local transformations of the fields belonging to this group. The resulting theory
is called a gauge theory and its Lie group is called gauge group.

We want to construct a theory of interacting fermions, exactly like electrodynamics. We start by
taking the Dirac Lagrangian, which describes the dynamics of a spin-12 free field.

L = ψ̄(x)(iγµ∂µ −m)ψ(x) , (1.1)

where ψ̄ = ψ†γ0 and γµ are the Dirac matrices satisfying {γµ, γν} = 2ηµν .
This Lagrangian is clearly invariant under a gauge transformation that does not depend on x (a so
called global gauge transformation) because for Wigner theorem every symmetry of a quantum theory
has a unitary representation and ψ transforms under this representation of the gauge group as

ψ → Uψ , ψ̄ → ψ̄U † . (1.2)

Both the derivative and the γ matrices do not act on U and therefore the Lagrangian density does not
change under these transformations. But if we allow the transformation U to depend on the 4-space
coordinates U(x) = eiθ

a(x)Ra
(where Ra are the generators of the unitary representation of the Lie

group) the derivative will now act on this transformation and the Lagrangian density will be no longer
invariant.
We want to modify the derivative operator to obtain a sort of generalized derivative Dµ that is
covariant also under local gauge transformations (we will call this operator the covariant derivative),
so we want the gauge transformation to send

Dµψ → UDµψ . (1.3)

We can modify the derivative in various ways introducing different connections. In the proceeding
we will use a spin-1 connection (as we know classical electrodynamics must be a spin-1 theory). We
introduce a gauge field potential Aµ(x) = Aa

µ(x)R
a (with a potential for every generator of the Lie

group) and we let:
Dµ = ∂µ − igAµ . (1.4)
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1.2. DISCRETE SYMMETRIES CHAPTER 1. GAUGE THEORY

Imposing equation (1.3) we get:

U(∂µ − igAµ)ψ = (∂µ − igA′
µ)Uψ

U∂µψ − igUAµψ = U∂µψ + (∂µU)ψ − igA′
µUψ

A′
µ = UAµU

† − i

g
(∂µU)U † . (1.5)

We have obtained how the potential Aµ transformations under gauge transformation to make the
covariant derivative indeed covariant. We can now easily write a Lagrangian density that is invariant
under gauge transformation:

L = ψ̄(iγµDµ −m)ψ .

This Lagrangian naturally presents a coupling between the gauge field Aµ and the fermionic field
(which is no longer free). This is already an impressive result! If for example we take U(1) as gauge
group, to have a theory with just one potential, we can see (calling jµ = gψ†γ0γµψ) that we have
recovered exactly the radiation-matter interaction term of electrodynamics (Lint = Aµj

µ)!
We have basically obtained back a Lagrangian that looks just like a quantum-mechanical generalization
of the classical electrodynamics Lagrangian and all we postulated was a local symmetry and the
covariant derivative to have a relatively simple form.
The last thing to do (just like we did in classical electrodynamics) is to add to the Lagrangian a kinetic
term to give each potential Aa

µ a dynamics of its own. This term has to be gauge invariant, a function
of the potential Aµ only and obviously covariant under Lorentz transformations.
Recalling the transformation law of Dµ from equations (1.3) and (1.2), we can now construct a
manifestly covariant object

[Dµ, Dν ] = −ig(∂µAν − ∂νAµ − ig[Aµ, Aν ]) = −igGµν

Gµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] . (1.6)

The tensor Gµν obviously transforms covariantly under gauge transformation and is called field
strength. A standard way to obtain an invariant object from a covariant one is to take its trace
(thanks to its cyclical properties). Therefore

Lfield = −1

2
tr(GµνG

µν)

is invariant under gauge transformation and covariant under Lorentz transformation. Note that if the
gauge group is U(1) we recover exactly the kinetic term of classical electrodynamics. Finally we have
the complete gauge theory Lagrangian for a Dirac fermion field.

L = ψ̄(iγµDµ −m)ψ − 1

2
tr(GµνG

µν) . (1.7)

Besides the Dirac fermion we can see in this Lagrangian some spin-1 bosonic fields corresponding to
the different gauge bosons.

1.2 Discrete symmetries

The gauge theory Lagrangian we have just written has three important discrete symmetries: parity,
charge conjugation and time reversal. To show these results we will need some preliminary facts.

The Dirac field can be written, choosing the chiral representation for the γ matrices (see [3] p.52-63),
as a sum of plane waves

ψ =

∫︂
d3p

(2π)3
√︁

2Ep

∑︂
s=1,2

(ap⃗,su
s(p)e−ip·x + b†p⃗,sv

s(p)eip·x) , (1.8)

2



1.2. DISCRETE SYMMETRIES CHAPTER 1. GAUGE THEORY

where

us(p) =

(︃√
pµσµζ

s√︁
pµσ̃

µζs

)︃
, vs(p) =

(︃ √
pµσµη

s

−
√︁
pµσ̃

µηs

)︃
, ζ1 = η1 =

(︃
1
0

)︃
, ζ2 = η2 =

(︃
0
1

)︃
(1.9)

and ap⃗,s and b†p⃗,s are respectively the annihilation operator for electrons and the creation operator for
positrons. These operators (as electrons and positrons are fermions) must obey the anti-commutation

relations {ap⃗,s, a†q⃗,r} = {bp⃗,s, b†q⃗,r} = (2π)3δ(3)(p− q)δrs. Furthermore:√︁
2Epa

†
p⃗,s |0⟩ =

⃓⃓
p⃗, s, e−

⟩︁
,

√︁
2Epb

†
p⃗,s |0⟩ =

⃓⃓
p⃗, s, e+

⟩︁
,

{ψa(x⃗, t),ψ
†
b(y⃗, t)} = δ(3)(x⃗− y⃗)δa,b , (1.10)

where |p⃗, s, n⟩ denotes the state of a free particle with momentum p⃗, spin s and eventually other
quantum numbers n.

Parity

Parity is a transformation that acts on the space components of 4-vectors sending

xµ =

(︃
x0

x⃗

)︃
π−→ x′µ =

(︃
x0

−x⃗

)︃
.

Clearly as |p⃗, s⟩ π−→ P |p⃗, s⟩ = η |−p⃗, s⟩ with η arbitrary phase, we must have (assuming the vacuum
state is parity invariant and non-degenerate)

Pap⃗,sP = ηaa−p⃗,s , P bp⃗,sP = ηbb−p⃗,s .

Noting that u(p) = γ0u(p′) and v(p) = −γ0v(p′) and changing the integration variable of equation
(1.8) to −p⃗, we see that if ηa = −η∗b we get:

ψ(x)
π−→ ψ′(x′) = Pψ(x)P = ηaγ0ψ(x

′) .

Then we can compute how fermion bilinears transform under parity

P ψ̄ψP = |ηa|2ψ̄γ0γ0ψ = ψ̄ψ , P ψ̄γµψP = |ηa|2ψ̄γ0γµγ0ψ = η(µ)ψ̄γµψ ,

η(µ) =

{︄
1 if µ = 0

−1 if µ = 1, 2, 3
.

Where in the last line we used the anti-commutation relation {γµ, γν} = 2ηµν . Using that Aµ and ∂µ
transform as vectors it is clear that all the fermionic part of (1.7) is invariant under parity. To extend
parity invariance to the full (1.7) we must look to how Gµν transforms under parity. Using again the
transformation properties of Aµ and ∂µ

G0i
π−→ −G0i , Gij

π−→ Gij ,

from which its invariance follows immediately.

Charge conjugation

Charge conjugation symmetry does not act on space-time, instead it maps a physical system into
another physical system in which each particle is replaced by its antiparticle. This implies

Cap⃗,sC = ηCbp⃗,s , Cbp⃗,sC = ηCap⃗,s .

Now, using us(p) = −iγ2(vs(p))∗, it is easy to see that

CψC = −iηCγ2ψ∗ = (−iηCψ†γ2)T .
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1.2. DISCRETE SYMMETRIES CHAPTER 1. GAUGE THEORY

Therefore charge conjugation acts on fermion bilinears in the following way:

Cψ̄ψC = (−iη∗Cγ0γ2ψ)T(−iηCψ̄γ0γ2)T = −γ0abγ2bcψcψ̄dγ
0
deγ

2
ea = ψ̄dγ

0
deγ

2
daγ

0
abγ

2
bcψc = ψ̄ψ .

Where we have used the fermion anti-commutation relation (1.10). In the same way, noting that in
the chiral representation γ0 and γ2 are symmetric while γ1 and γ3 are antisymmetric

Cψ̄γµψC = −ψ̄γµψ .

After an integration by parts (needed to have the derivative act on ψ, as C exchanges ψ and ψ†) we
can clearly see that the free Dirac Lagrangian is indeed invariant under charge conjugation.

We now want to examine how charge conjugation acts on the gauge fields. The interaction term of
the Lagrangian can be shown, using the previous result, to transform as

Cψ̄γµAa
µR

aψC = (C Aa
µC) · ψ̄γµ(−Ra)Tψ .

To preserve the invariance of the interaction term we have to impose:

C Aa
µC =

{︄
−Aa

µ if Ra is symmetric

Aa
µ if Ra is antisymmetric

.

In the adjoint representation, where all the generators are antisymmetric, the gauge potential Aµ is left
invariant under charge conjugation. This makes sense as the gauge bosons are their own antiparticle.
It immediately follows that also the gauge kinetic term of the Lagrangian is left invariant by charge
conjugation.

Time reversal

Time reversal symmetry is a discrete symmetry that reverses the orientation of the time axis. It is
implemented both in QFT and in QM by an anti-unitary antilinear operator T .

xµ =

(︃
x0

x⃗

)︃
T−→ x′µ = TxµT =

(︃
−x0
x⃗

)︃
.

By analogy with the classical case, we would like the time reversal operator to flip both momentum
and spin of every particle. If we define flipped spinor creation and annihilation operators it can be
shown (see [3] p.67-69) that

Tψ(t, x⃗)T = γ1γ3ψ(−t, x⃗) .
And we have the following actions on fermion bilinears:

T ψ̄(t, x⃗)ψ(t, x⃗)T = −ψ̄(−t, x⃗)γ1γ3γ1γ3ψ(−t, x⃗) = ψ̄(−t, x⃗)ψ(−t, x⃗) ,

T iψ̄(t, x⃗)γµ∂µψ(t, x⃗)T = −iψ†(−t, x⃗)γ1γ3(γµ)∗γ1γ3∂′µψ(−t, x⃗) = iψ̄(−t, x⃗)γµ∂µψ(−t, x⃗) .
As we did before for charge conjugation we examine how the interaction term transforms

T ψ̄γµAa
µR

aψT = (T Aa
µ T ) · ψ̄γµ(η(µ)Ra)∗ψ

which gives

T Aa
µ T =

{︄
η(µ)Aa

µ if Ra is real

−η(µ)Aa
µ if Ra is imaginary

.

In the adjoint representation all the generators are purely imaginary, you can see this by taking the
adjoint of the commutation relation and using that the generators are hermitian for Wigner theorem.
Then under time reversal Aµ transforms as a vector. Recalling that ∂µ also transforms as a vector we
immediately have

Gµν
T−→ η(µ)η(ν)Gµν .

From this follows the invariance of gauge theory Lagrangian under time inversion.
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Chapter 2

QCD and the strong CP problem

Quantum Chromodynamics (QCD) is a spin-1 gauge theory with gauge group SU(3), the Lie group of
unitary 3× 3 matrices with determinant one. The SU(3) Lie algebra has 8 generators, corresponding
to 8 different gauge particles called gluons.

Chosen a representation of SU(3) equation (1.7) gives immediately the Lagrangian of 1-quark QCD.
To add new fermions coupled to the gauge field we just need to add to the Lagrangian another Dirac
Lagrangian with the derivative substituted by the covariant derivative. The most general expression
you can write taking into account weak interactions contains a complex mass matrix, but we will
consider just low energy QCD in which we have only the up, down and strange quarks and a real mass
matrix. The QCD Lagrangian takes the form

L =
∑︂
j

ψ̄j(iγ
µDµ −mj)ψj −

1

2
tr(GµνG

µν) ,

where j ∈ {u, d, s} is the flavour of the quark.
The gluon kinetic part of the Lagrangian can be written in a more explicit way because

tr[AB] = (A,B)

is a scalar product on the gauge Lie algebra. Therefore we can apply a Gram-Schmidt process and
obtain a set of generators with the property

tr
[︂
RaRb

]︂
= C(R)δab .

Where we put R to stress the dependence of this coefficient from the representation.
We will conventionally choose the generators of the fundamental representation in such a way that

tr
[︂
RaRb

]︂
=

1

2
δab .

Then the Lagrangian is

L =
∑︂
j

ψ̄j(iγ
µDµ −mj)ψj −

1

4
Ga

µνG
aµν .

2.1 Color from baryon spectrum

We have just stated that QCD is a SU(3) gauge theory but we did not explain why should Strong
interactions be invariant under local SU(3) transformations and on what space these gauge transfor-
mations act.
In this section we will just sketch how the light baryon spectrum gives a hint of the presence of 3 colors
and a color exchange symmetry (for a full account of the experimental evidence that led to QCD see
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2.2. THE θ TERM CHAPTER 2. QCD AND THE STRONG CP PROBLEM

[10]). Baryons are bound states of 3 quarks, as we will look only at light baryons they can contain just
quarks up, down or strange (the other three quarks have a mass greater than 1GeV). Experimentally
the light baryon spectrum is divided in 8 spin-12 and 10 spin-32 particles.
To build the total baryon state we must take the tensorial product of three of the following quark
states:

|u ↑⟩ , |d ↑⟩ , |s ↑⟩ , |u ↓⟩ , |d ↓⟩ , |s ↓⟩ .
If we take the possible symmetric arrangements of 3 of the 6 states listed above we get by simple
combinatorics 56 possible states. But this is just the total number of light baryons accounting for
possible S3 spin numbers: 4 · 10 + 2 · 8 = 56. While taking an antisymmetric combination of these
states gives a lower number of possible light baryons. Now we have a problem because quarks are
fermions so the quantum baryon states are required to be totally antisymmetric, Han and Nambu
were the first to suggest in 1965 that this problem could be solved by adding a new quantum number
to quarks: color. We can see that in order for states like |s ↑ s ↑ s ↑⟩ to be antisymmetric we
need color quantum number to assume at least 3 different values. Furthermore if there were more
than 3 possible colors or QCD is not invariant under color exchange we would have differently colored
particles which correspond to the same observed particle. For these reasons quarks should possess an
additional quantum number (which can assume 3 values: the three colors red, green and blue) and an
SU(3) symmetry on color space that swaps colors.

2.2 The θ term

There is an additional term we can add to the QCD Lagrangian (2) to get the most general SU(3)
and Lorentz invariant Lagrangian. This additional contribution is called θ term:

Lθ = θ
g2

64π2
ϵµναβGa

µνG
a
αβ = θ

g2

32π2
G̃

aµν
Ga

µν . (2.1)

At the end of this chapter we will discuss why this term has to appear in the Lagrangian with this
coupling constant.

As can be easily deduced by the discussion in the previous chapter, this θ term clearly violates parity
and time reversal symmetry while it is still invariant under charge conjugation. It then violates also
CP symmetry (this is analogous to violating T, as CPT is known to be a symmetry of every Lorentz
covariant theory in QFT).

The θ term can be shown to be the total derivative of Kµ:

Kµ = ϵµαβγAa
α

(︂
Ga

βγ −
g

3
fabcAb

βA
c
γ

)︂
. (2.2)

In fact

∂µK
µ = ∂µϵ

µαβγAa
α

(︂
Ga

βγ −
g

3
fabcAb

βA
c
γ

)︂
=

= ϵµαβγ
[︃
(∂µA

a
α)(∂βA

a
γ − ∂γA

a
β) +

2g

3
fabc

(︂
(∂µA

a
α)A

b
βA

c
γ +Aa

α(∂µA
b
β)A

c
γ +Aa

αA
b
β(∂µA

c
γ)
)︂]︃

=

=
ϵµαβγ

2
(∂µA

a
α − ∂αA

a
µ)

[︂
Ga

βγ + gfabcAb
βA

c
γ

]︂
=
ϵµαβγ

2

(︂
Ga

µα − gfabcAb
µA

c
α

)︂(︂
Ga

βγ + gfadeAd
βA

e
γ

)︂
=

= G̃
aµν

Ga
µν −

ϵµαβγ

2
g2fabcfadeAb

µA
c
αA

d
βA

e
γ = G̃

aµν
Ga

µν .

.

In the last line we have used that, thanks to the Jacobi identity,

ϵµαβγfabcfadeAb
µA

c
αA

d
βA

e
γ = −ϵµαβγ(fadbface+facdfabe)Ab

µA
c
αA

d
βA

e
γ = −2ϵµαβγfabcfadeAb

µA
c
αA

d
βA

e
γ = 0.

Therefore it can seem that the θ term, being a 4-divergence, can be integrated out and does not give
any contribution to the action. This is not true due to the peculiar vacuum structure of QCD.
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2.3. QCD VACUUM STRUCTURE CHAPTER 2. QCD AND THE STRONG CP PROBLEM

2.3 QCD vacuum structure

We want to focus on the vacuum states of QCD, i.e. the field configurations in which we have Gµν = 0.
The requirement to impose to obtain such a condition is not Aµ = 0 but rather Aµ to be a pure gauge
field (i.e. to be obtained from Aµ = 0 through a gauge transformation), from equation (1.5) we have

Aµ = − i

g
(∂µU(x))U †(x) .

Two vacuum states are equivalent if the gauge transformation going from one state to the other is
connected to the identity, as in this case we can effectively go from one field configuration to the other
without undergoing any change in the system observables. This equivalence relation partitions the
gauge group into equivalence classes. We want to emphasize that all equivalence classes correspond
indeed to the same physical state (as this is what we required constructing the theory from gauge
symmetry) but a nontrivial process is needed to go from one vacuum class to the other. The problem
is similar to a particle moving on a circle on which is defined a potential with only a minimum: we
expect this kind of problem to have a tunnelling solution in which the particle returns to the same
physical state after going around the circle.

Choosing the temporal gauge A0 = 0 (as it can be shown that the transformation that fixes this
condition is connected to the identity and hence does not change the vacuum equivalence classes) so
that the residual gauge transformations are now time-independent and

Aj = − i

g
(∂jU(x⃗))U †(x⃗) .

We want to study the transition probability from two vacua belonging to different equivalence classes

⟨vac| e−iHT |vac⟩ .

The two vacuum states can be simultaneously gauge transformed without changing the transition
amplitude, we may then choose without loss of generality |vac⟩ to be in the same equivalence class of
the identity and then to be characterized by the following boundary conditions at spatial infinity

A⃗(x⃗) → 0 U(x⃗) → U0 .

Where U0 is independent of the spatial direction.
From such vacuum, a transition is possible only to other states with the same type of boundary
conditions in fact if

A⃗(x⃗) ̸→ 0 for |x⃗| → +∞
we will have an infinite volume in which F0i = Ai

̇ ̸= 0 entering the path integral and this transition
must have zero amplitude.

Being pure gauge every vacuum is determined by the mapping U(x⃗) from R3 to the gauge group. But
the 3-dimensional space has the point at infinity identified (as they correspond to the same gauge
group element and can be thought of as the same point). With this identification it acquires the same
topological structure of the 3-sphere S3 (this can be seen by means of a stereographic projection).

Choosing a gauge transformation at each point in space is then equivalent to choosing a mapping from
S3 to the gauge group SU(3). These mappings fall into different classes of equivalence (in which two
mappings are identified if they can be obtained one from the other via a continuous transformation,
that is precisely the same equivalence relation as before) that form the third homotopy group of SU(3).
Each class is identified by an integer number (the winding number) that expresses the number of times
that the mapping winds around SU(3). The winding number is given by:

n =
g2

32π2

∫︂
d3x⃗K0 =

ig3

24π2

∫︂
d3x⃗ ϵijk tr(AiAjAk) .
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2.4. INSTANTON CONTRIBUTIONS CHAPTER 2. QCD AND THE STRONG CP PROBLEM

In the last equality we exploited that Aµ is a pure gauge field (Gµν = 0) and the identity fabc =
−2i tr([ta, tb]tc) of the fundamental representation.
The number n can be shown to be integer and invariant under continuous deformations, but we will
not cover this here (to have an idea of the proof see [2] that covers this topic for the instanton winding
number, a slightly different winding number we will later mention, but the proof is exactly the same).
We have therefore infinite classes of inequivalent vacua labelled by an integer winding number n, we

will call a vacuum field configuration characterised by w.n. n as A
(n)
µ and the corresponding vacuum

state as |n⟩.

A 2-dimensional analogue

The concepts introduced in the last section could be a little complicated to grasp at first, in particular
the concept of a winding number of a mapping going from S3 to SU(3) . Let us concentrate on the
simple example of a U(1) gauge theory (QED) in 2 dimensions (a spatial and a temporal dimension).
Repeating the above reasoning the 1-dimensional space is topologically equivalent to the circle S1, and
also the gauge group is now equivalent to S1, therefore the previous mapping becomes a continuous
mapping from a circle to a circle. It is now quite clear what the winding number represents: it is just
the number of times that the mapping goes around the U(1) circle! In such a theory the analogue of
the parity breaking Lθ term will be

L
(2)
θ =

1

2
ϵµνGµν = ∂µ(ϵ

µνAν) = ∂µK
µ ,

with the obvious definition of Kµ. Using again the A0 = 0 gauge we have

n =
ig

2π

∫︂
dxK0 =

ig

2π

∫︂
dxA1 .

If now we take a representation of U(x) = eiα(x) to exploit the equivalence of U(1) to S1 we obtain

n =
1

2π

∫︂
dxα′(x) =

α+∞ − α−∞
2π

,

with the clear significance of a winding number (α+∞ and α−∞ must differ of a multiple of 2π for the
boundary conditions on U(x) to be respected).

2.4 Instanton contributions

Returning back to 4-dimensional QCD we want to compute the contribution to the action given by
the θ term of the so called instanton solutions. Instanton solutions are minimum action solutions
corresponding to non-perturbative tunnelling between two minima 1 such that

Aµ(x⃗, t = +∞) = A(n+)
µ (x⃗) , Aµ(x⃗, t = −∞) = A(n−)

µ (x⃗) .

Computing the action for an instanton configuration

Sθ =

∫︂
d4xLθ = θ

∫︂
d4x

g2

32π2
∂µK

µ = θ
g2

32π2

(︃∫︂
d3x⃗

∫︂
dt ∂0K

0 +

∫︂
dt

∫︂
d3x⃗ ∂iK

i

)︃
=

= θ
g2

32π2

∫︂
d3xK0(x⃗, t)|t→+∞

t→−∞ = (n+ − n−)θ = νθ .

.

The spatial integral vanishes because R3 is equivalent to S3 and therefore has no border. This statement
can be made precise using stereographic mapping and some differential geometry.
The integer number ν is the instanton winding number and can also be seen as the label of a homotopy
group from the S3∞ sphere that is the border of R4 to the gauge group, for further discussion see [2].

1Instantons can be thought of as classical solutions of the Euclidean action i.e. the action in which we make the
substitution t → tE = it. You can easily see that this change of variable makes the Lorentz metric Euclidean.
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Previously we argued that the θ term should appear in the Lagrangian because it can be there as it
respects all the symmetries we have imposed on the theory. Now we want to show that due to the
vacuum structure of QCD, this term needs to be there. The vacuum states we have discussed so far
are not physical in fact if we take a gauge transformation U1 belonging to the equivalence class with
winding number 1, this transformation acts on the vacuum states as

U1 |n⟩ = |n+ 1⟩ .

We seek a physical vacuum |θ⟩ that is an eigenstate of U1, being a unitary matrix we have

U1 |θ⟩ = eiθθ

⇒ |θ⟩ =
+∞∑︂
−∞

einθ |n⟩

up to an arbitrary phase. We must therefore add the theta term to the Lagrangian to account for the
vacuum-vacuum ⟨θ+|θ−⟩ transitions amplitude to the computation of which almost every transition
amplitude can be reduced. In the path integral formalism:

⟨θ+|θ−⟩ =
∑︂
m,n

ei(n−m)θ ⟨m|n⟩ =
∑︂
ν

eiνθ
∑︂
m

⟨m|m+ ν⟩ =

=
∑︂
ν

∫︂
DA ei

∫︁
d4x (L+Lθ)δ

(︃
ν − g2

32π2

∫︂
d4xGa

µνG̃
aµν

)︃
.

2.5 Neutron EDM

We have seen that we must add to the QCD Lagrangian a new term Lθ that gives a non-zero contri-
bution to the action and can therefore violate badly CP symmetry if the coupling θ ∼ 1 2.

An observable that can be used to measure CP violation is the electric dipole moment (EDM) in fact
if a particle possesses an EDM we could watch its projection on spin and this projection changes sign
under a CP transformation. Neutron EDM has been used to measure CP violation in QCD, in fact
[4] theoretical calculations give

dn ∼ 2.4 · 10−16θ e cm .

However the neutron EDM has been bounded experimentally [5] to be less than

|dn| < 2.9 · 10−26 e cm

implying that
|θ| ≲ 10−10 .

The Strong CP problem addresses exactly this issue: why is the θ parameter so small making CP an
almost perfect symmetry of strong interactions?

2In general if, in QCD with Nf flavours, we have a complex mass matrix this gives, through a chiral (anomalous)
transformation of quark fields, an additional θq term. We could group the CP violating terms defining: θ̄ = θ + Nfθq.
In the proceeding we will not make any difference between θ and θ̄
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Chapter 3

The Peccei-Quinn solution

An elegant solution to the strong CP problem was proposed in 1977 by Peccei and Quinn. The
fundamental element of this solution is the introduction of a new global UPQ(1) symmetry that has
to satisfy two conditions:

• The symmetry must be spontaneously broken (in an unknown way) at energies of order fa, a
symmetry of the Lagrangian is said spontaneously broken if it is not a symmetry of the vacuum
state of the theory.

• The symmetry must be anomalous under the strong interactions. I.e. UPQ is a symmetry of the
classical Lagrangian but fails to be a true symmetry of the theory because it is not a symmetry
of the measure of the path integral.

Without further specifying any other feature of the theory we can discuss some low-energy behaviours
of the PQ theory. At energies smaller than fa the PQ symmetry is spontaneously broken and, being a
global symmetry, the Goldstone theorem ensures that a massless boson will emerge, the axion ϕ. Now
the second feature of PQ theory comes into play. The anomaly ensures the axion couples the gluon
in the Lagrangian through a term of the form

Lϕg =
ϕ

fa

g

32π2
Ga

µνG̃
aµν

. (3.1)

This coupling breaks explicitly the UPQ symmetry down to a Z(N) unbroken subgroup (where N
depends on the number of quarks and the precise features of the model), making the axion gain a
mass mϕ, we will soon see these concepts applied to a simple toy model to clarify them.

3.1 Toy model of spontaneous symmetry breaking

We want to stress that spontaneous symmetry breaking (SSB) is a feature only of theories with an
infinite number of degrees of freedom, in fact in such a theory the tunnelling barriers go to infinity
preventing tunnelling to restore the broken symmetry, in theories with a finite number of degrees of
freedom such as non-relativistic quantum mechanics the vacuum state is never degenerate.

Let us consider a real parameter η and a complex scalar field ξ with Lagrangian

L = ∂µξ ∂
µξ† − λ2(|ξ|2 − η2)2 . (3.2)

This Lagrangian clearly enjoys a global U(1) symmetry ξ → eiαξ, but this symmetry is not a sym-
metry of the vacuum solution, the vacuum in fact will be located in a random state between the ξ
configurations with modulo η. Choosing a polar parametrization for ξ (we can do it until we stay
away from the origin where this set of coordinates is degenerate) with the phase ϕ chosen in such a
way that the vacuum state has phase ϕ = 0 and expanding the radial coordinate around the radius of
the vacuum the field can be written

ξ(x) = (η + χ(x))eiϕ(x)

10



3.2. THE AXION POTENTIAL CHAPTER 3. THE PECCEI-QUINN SOLUTION

Figure 3.1: Plot of the spontaneously broken potential V (ξ) before and after the explicit breaking of the U(1)
symmetry.

with χ and ϕ real fields 1. The Lagrangian takes then the form

L = η2∂µϕ∂
µϕ+ ∂µχ∂

µχ− λ2(2ηχ+ χ2)2 + (2ηχ+ χ2)∂µϕ∂
µϕ .

The Lagrangian has been divided into 3 parts: the free-ϕ Lagrangian, the free-χ and an interaction
term. The field χ has a mass term of the form mχ = 2ηλ, but the field ϕ completely lacks a mass
term and corresponds to a massless degree of freedom, the Goldstone boson.

If we want the field ϕ to acquire a mass, we must break explicitly the U(1) global symmetry. To
accomplish this we add a new term with real coupling ω2 (the simplest we can think of) to (3.2)

L = ∂µξ ∂
µξ† − λ2(|ξ|2 − η2)2 + ω2 ξ + ξ†

2
.

This term gets rid of the degeneration of the vacuum state that will now be at a point on the real axis
ξ = ρ0(η, λ, ω). Writing as before ξ(x) = (ρ0 + χ(x))eiϕ(x), we get

L = ρ20 ∂µϕ∂
µϕ+ ω2ρ0 cos(ϕ) + ∂µχ∂

µχ− λ2((ρ0 + χ)2 − η2)2 + (2ρ0χ+ χ2)∂µϕ∂
µϕ+ χω2 cos(ϕ)

the field ϕ has now a mass term mϕ = ω√
2ρ0

and as expected this mass term goes to 0 for ω → 0.

3.2 The axion potential

Analogously to what we have seen above, at low energy, where the UPQ symmetry is broken both
spontaneously and explicitly, we can write an effective Lagrangian that describes the behaviour of the
theory

L = LSM +
1

2
∂µϕ∂

µϕ+

(︃
θ +

ϕ

fa

)︃
g

32π2
Ga

µνG̃
aµν

+ Lint .

The coupling of the axion to QCD generates a potential for the axion. This potential can be calculated
in the zero energy approximation via chiral Lagrangian techniques (a low energy approximation of
the QCD Lagrangian that exploits the high degree of symmetry, SU(3)L × SU(3)R × U(1) of the
Lagrangian in the limit where the masses of the three light quarks go to zero and the masses of the
three heavy quarks go to infinity) obtaining:

V (ϕ) = −m2
πf

2
π

√︄
1− 4mumd

(mu +md)2
sin2

(︃
θ

2
+

ϕ

2fa

)︃
(3.3)

1Notice that the broken symmetry being global is crucial for the emergence of a field ϕ that corresponds to the
Goldstone boson, if for example the symmetry were a local U(1) gauge symmetry we could use the gauge freedom to
eliminate the phase ϕ. After this redefinition, it can be seen that the gauge boson Aµ acquires a mass term and a degree
of freedom (it is said that the gauge boson eats the Goldstone boson), this is the basis of the Higgs mechanism.
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where mπ ≃ 135MeV is the pion mass and fπ ≃ 93MeV is the so called pion decay constant, we have
also used that ms ≫ mu,md.
It is now obvious that this potential has its minimum for θ + ϕ

fa
= 0 hence the QCD potential

dynamically drives the axion towards the state in which the total parity violating term GG̃ in the
Lagrangian is cancelled, solving the strong CP problem! This is the crucial point of the axion solution
to the strong CP problem and is not true just at low energies. The Vafa-Witten theorem in fact assures
that in a vector-like theory like QCD parity is not spontaneously broken, i.e. parity is a symmetry of
the vacuum state 2.

Furthermore from this potential we can compute the zero-temperature mass of the axion

mϕ(0) =
∂2V

∂ϕ2

⃓⃓⃓⃓
ϕ=−θfa

=

√
mumd

(mu +md)

mπfπ
fa

≃ 6µeV ·
(︃
1012GeV

fa

)︃
,

with mu
md

≃ 0.56, fπ ≃ 93 MeV and mπ ≃ 135 MeV.
This result is qualitatively expected as the axion mass is due to equation (3.1) so it has to go to zero
if either the QCD effects (mπfπ) go to zero or fa goes to infinity as in this limit the axion decouples.
The axion mass can be shown through DIGA (dilute instanton gas approximation) to have a strong
dependence on temperature that will later be of great importance

mϕ(T ) =

{︄
mϕ(0) if T < ΛQCD

mϕ(0)
(︂
ΛQCD

T

)︂n
if T > ΛQCD

.

With n is in between 3.4 and 3.5. This behaviour of the axion mass is due to a phase transition at
T = ΛQCD ≃ 200MeV.

3.3 Mean life of the axion

For typical values of the PQ symmetry breaking scale fa ∼ 1011 GeV, we will see later why this is
a typical value, the axion is very light mϕ ∼ 10−4eV. The axion is, therefore, lighter than all the
particles of the Standard Model besides gluons and photons which are massless, therefore these are
the only particles the axion can decay on.
We have previously described the coupling of the axion with gluons due to the anomaly of PQ sym-
metry, furthermore the decay of the axion to gluons is forbidden by confinement. We now want to
describe the possible couplings that allow the axion to decay on photons. The process ϕ → γ is
prohibited by the conservation of 4-momentum, we will therefore look to couplings that allow ϕ→ γγ,
considering rare the axion decay on a greater number of photons.
This term of the Lagrangian must be invariant under UPQ(1) symmetry, invariant under the U(1)
gauge group of QED, Lorentz covariant and quadratic in the fields. The UPQ(1) symmetry acts on
the axion field like ϕ→ ϕ+ kf , therefore the couplings must take the form

Lϕγγ =
Gϕγγ

2
ϕ∂µh(A)

where h(A) is a function to be determined. Equivalently the partial derivative could be applied to ϕ
after integration by parts (QED has a trivial vacuum structure in 4 dimensions so total divergences
do not give contributions to the action). The function h(A) can have only one form in order for the
coupling to respect the previous conditions

Lϕγγ =
Gϕγγ

4
ϕ F̃

µν
Fµν =

Gϕγγ

2
ϕ∂µ(F̃

µν
Aν) .

We can now compute the rate of the process ϕ→ γγ, from Fermi golden rule:

Γϕ→γγ =
|M|2

32πmϕ
=
G2

ϕγγm
3
ϕ

64π
.

2The proof of this theorem is based on the positive definiteness of the measure of the QCD euclidean path integral
once we integrate out the fermion terms.
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Experimentally we have Gϕγγ ≲ 6 · 10−11GeV−1 from helioscopes searching for axions produced in
the Sun. This bound gives:

τϕ→γγ = Γ−1
ϕ→γγ ≳ 1.7 · 1027 ·

(︃
fa

1010GeV

)︃3

yrs .

This number for typical values of fa is orders of magnitude greater than the age of the Universe. The
axion is therefore stable on cosmological time scales.

3.4 The axion in cosmology

In the last sections we showed how the PQ solution fixes the strong CP problem. This solution implies
the presence of a new stable particle, the axion, that will be produced in the Universe.

In this section we will employ basic cosmology concepts and formulas that are introduced in the
appendix to study the evolution of the axion field. If you have no confidence with this topic we
suggest reading the appendix before going further.

Our main goal is to compute the axion field energy density, to do so we must study its evolution in a
non-trivial space-time metric.

Coupling to gravity of the axion field

Using here and below the “+ − −−” signature of the metric, the effective Lagrangian of the axion in
a flat Minkowski space-time is written as

Lϕ =
1

2
ηµν∂µϕ∂νϕ− V (ϕ) .

The action takes then the form

S =

∫︂
d4xLϕ =

∫︂
d4x

(︃
1

2
ηµν∂µϕ∂νϕ− V (ϕ)

)︃
,

this form changes slightly if instead of flat Minkowski space-time we consider a less trivial metric. In
this case (since the laws of physics must be the same in every system of coordinates) we must ensure
that the action is covariant under arbitrary coordinate transformations, hence we must operate the
substitutions:

• ∂ → ∇ where ∇ is the so called covariant derivative. In our case, since the axion is a scalar
field, there will be no difference between these two derivatives.

• ηµν → gµν replacing the Minkowski metric with a more general metric.

• d4x→
√︁
|det(g)|d4x replacing the measure of the integral with an invariant one.

S =

∫︂
d4x

√︁
|det(g)|

(︃
1

2
gµν∂µϕ− V (ϕ)∂νϕ

)︃
. (3.4)

We will now take the metric to be the Friedman-Lemaitre-Robertson-Walker (FLRW) metric from the
cosmological principle and also approximate the metric to be flat (k=0) since Ωk ≃ 7 · 10−4.

Sϕ =

∫︂
d4x a3

(︃
1

2
∂0ϕ∂0ϕ− 1

2a2
∂iϕ∂iϕ− V (ϕ)

)︃
. (3.5)

This expression for the action can be simplified if we again recall that according to the cosmological
principle we expect the field ϕ to be almost homogeneous

ϕ(t, x⃗) = ϕ0(t) + δϕ(t, x⃗) .

We will neglect the fluctuations of the field (corresponding to the Fourier non-zero modes), these fluc-
tuations will eventually help to create structures in the universe but, at least to a first approximation,
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will not contribute to the total axion abundance. This means that spatial derivative in equation (3.5)
can be disregarded. The action is then

Sϕ =

∫︂
d4x a3

(︃
1

2
∂0ϕ∂0ϕ− V (ϕ)

)︃
(3.6)

and the E-L equations of motion

ϕ̈+ 3Hϕ̇+
∂V

∂ϕ
= 0 . (3.7)

This equation represents a damped oscillation in the potential V (ϕ) with a dumping parameter de-
scribed by three times the Hubble parameter!
In a radiation-dominated universe H ≃ 1

2t , therefore during the expansion of the universe we have a
transition between an extremely big and an extremely small Hubble parameter. This transition will
identify three main regimes for the solutions to equation (3.7):

• Field stuck by Hubble friction: In this regime, the Hubble friction dominates on the potential
force so the equations of motion become

ϕ̈ = −3Hϕ̇ .

The field is said to be stuck by Hubble friction because if it starts its evolution at rest it remains
at rest. Even if in the beginning ϕ̇ ̸= 0 solving the equations of motion we find that (taking
fa ∼ 1010GeV ) the speed of the field at the end of this regime is approximately ∼ 10−32 times
its initial value.

• Transition period: In this period the potential force and the dumping parameter are of the
same order of magnitude

H ≃ ∂V

∂ϕ
.

The field overcomes the Hubble friction and starts to run down towards the minimum of the
potential.

• Damped oscillations: This is the regime of our solution when the Hubble friction becomes
much smaller than the potential force. This is the most important regime to describe axion
energy density since, as we have seen, in the last two regimes there is little or no change of the
field value. Also in this regime we cannot completely disregard the Hubble friction as in the long
run also small friction will change significantly the energy density of the field.

Energy Momentum tensor

To compute the axion energy density we must compute the energy-momentum tensor as we know that
it corresponds to the time-time component of this tensor. The definition of the symmetric energy-
momentum tensor is

Tµν =
2√︁

|det(g)|
δ(
√︁

|det(g)|Lϕ)

δgµν
⇒ Tµν = ∂µϕ∂νϕ− gµνL .

Disregarding the spatial variations of ϕ, the energy-momentum tensor takes the form

Tµν = δ0µ δ
0
ν (∂0ϕ∂0ϕ)− gµνL .

We will now work in a locally Lorentz frame in order to compare the properties of the axion with
those of the cosmological perfect fluids discussed in the appendix. In this frame the metric gµν = ηµν
and therefore

T00 =
1

2
ϕ̇
2
+ V (ϕ) , Tij= = δij

(︃
1

2
ϕ̇
2 − V (ϕ)

)︃
, T0i = 0 .
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The derivation we have followed is valid for every scalar field ϕ and every arbitrary potential V (ϕ).
Hence we have just seen that a scalar homogeneous field in a FLRW background naturally has an
isotropic energy-momentum tensor in its locally Lorentz frame. Therefore it behaves like a perfect
fluid with rest energy density ρ and pressure p.

ρ =
1

2
ϕ̇
2
+ V (ϕ) , p =

1

2
ϕ̇
2 − V (ϕ) , wϕ =

p

ρ
=
ϕ̇
2 − 2V (ϕ)

ϕ̇
2
+ 2V (ϕ)

. (3.8)

We can identify 3 main behaviours of the field ϕ, according to the values of the parameter wϕ, calling
K the kinetic energy:

• K ≃ V ⇒ wϕ ≃ 0 the field behaves like non-relativistic (cold) matter.

• K ≫ V ⇒ wϕ ≃ 1
3
the field behaves like relativistic (hot) matter.

• V ≫ K ⇒ wϕ ≃ −1 the field is dominated by vacuum energy density and hence behaves like a
cosmological constant.

Small damped oscillations as cold matter

From now on we will redefine the axion field in such a way that the minimum of its potential occurs at
ϕ = 0. For small oscillation of the field we Taylor-expand the expression of the potential (3.3) around
its minimum. The potential can be written as:

V (ϕ) ≃ 1

2
m2

ϕϕ
2 .

In this expression we disregarded a possible vacuum energy contribution that could be taken into
account by including it in the cosmological constant. With this approximation equations (3.7), (3.14)
take the simple form

ϕ̈+ 3Hϕ̇+m2
ϕϕ = 0

ρ =
1

2
ϕ̇
2
+

1

2
m2

ϕϕ
2

We can now exploit the fact that V (ϕ) ∝ ϕ2 to use the virial theorem. Averaging between two
successive passages through ϕ = 0 we get

0 =
1

T

∫︂ t∗+T

t∗
dt
d

dt
(ϕ ϕ̇) = ⟨ϕ̇2⟩+ ⟨ϕϕ̈⟩ = ⟨ϕ̇2⟩ − ⟨m2

ϕϕ
2⟩ − 3⟨Hϕϕ̇⟩ .

In the damped oscillations regime mϕ ≫ H, therefore the period of one oscillation is T ≃ 2π
mϕ

. At

T ≳ 1eV we have approximately Ḣ ≃ 2H2. We can take the Hubble parameter to be constant over a
period to first order as its variation is ∆H ≃ ḢT ≃ H 4πH

mϕ
≪ H. We thus have

⟨ϕ̇2⟩ − ⟨m2
ϕϕ

2⟩ ≃ 0 .

This equation tells us that on average the kinetic and potential energies are equal. This means that
the axion field while oscillating from a vacuum energy behaviour (at the inversion point) to a hot
matter behaviour (in the minimum of the potential) behaves on average as cold matter! Obviously,
its evolution is dominated by its averaged behaviour.
As equation (3.9) shows ρ̇ ∝ H, repeating the same reasoning as above we may regard ρ as constant
over an oscillation period, obtaining:

ρ ≃ ⟨ρ⟩ =
⟨︃
1

2
ϕ̇
2
+

1

2
m2

ϕϕ
2

⟩︃
≃ ⟨ϕ̇2⟩ ,

where we used the condition obtained from the virial theorem. We are now ready to compute the
energy density evolution in a small damped oscillations regime

dρ

dt
=

d

dt

(︃
1

2
ϕ̇
2
+

1

2
m2

ϕϕ
2

)︃
= ϕ̇(ϕ̈+m2

ϕϕ) = −3Hϕ̇
2
. (3.9)
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In the second equality we used ṁϕ = 0, which means it holds for temperatures T < ΛQCD. Averaging
again we obtain

dρ

dt
= −3Hρ , ρ ∝ a−3 (3.10)

this means that the axion energy density redshifts as cold matter.

Exploiting an adiabatic invariant

Equation (3.10) can be derived in a more elegant and general way using adiabatic invariants from
classical mechanics.

To get rid of the dependence from fa inside V (ϕ), we scale equation (3.7) taking

θ̈ + 3Hθ̇ +
1

f2a

∂V (θ)

∂θ
= 0 with θ =

ϕ

fa
.

The potential V (θ) has now no dependence on fa neither in its explicit expression (3.3) nor in its
domain −π ≤ θ ≤ π.
We can now consider this equation as a classical mechanics equation of motion given by the Lagrangian

L = a3
(︃
1

2
θ̇
2 − 1

f2a
V (θ)

)︃
⇒ pθ = a3θ̇ .

Adiabatic invariance assures that if the Hamiltonian of the system is dependent on a slowly varying
parameter we will have a conserved quantity in its evolution

I =
1

2π

∫︂
pθdθ .

Where the integral is taken over an orbit during which the parameter is held fixed. This procedure
can be done for every form of the potential V (θ) but for the majority of the potentials it implies the
computation of non-elementary integrals. To do an analytical calculation we will approximate again
the potential to a harmonic one

L = a3
(︃
1

2
θ̇
2 − 1

2
m2

ϕθ
2

)︃
.

This Lagrangian (and the corresponding Hamiltonian) depends on the scale factor a and on the mass
of the axion mϕ, thus we must impose these parameters to be slowly varying:

H ≪ mϕ and
mϕ̇

mϕ
≪ mϕ . (3.11)

When a and mϕ are fixed, the energy E is conserved (the Lagrangian has no explicit dependence on
time), hence

pθ =
√︂
a3(2E − a3m2

ϕθ
2) = a3mϕ

√︁
θ2max − θ2

where we used E = 1
2a

3m2
ϕθ

2
max. The adiabatic invariant is therefore

cost = I =
1

π
mϕa

3

∫︂ θmax

−θmax

dθ
√︁
θ2max − θ2 =

a3mϕθ
2
max

2
. (3.12)

Using ρ = 1
2m

2
ϕθ

2
maxf

2 yields the same result as before when T < ΛQCD but is valid also at higher
temperatures as long as conditions (3.11) hold.
Let us check when the adiabatic conditions are valid:

H =
π

3
√
10

√︁
g∗(T )

T 2

MP
,

π

3
√
10

√︁
g∗(T )

T 2

MP
≪ mϕ and n

g∗s(T )

g∗c(T )

π

3
√
10

√︁
g∗(T )

T 2

MP
≪ mϕ .
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Figure 3.2: Tosc as a function of the PQ parameter fa.

We easily note that the two conditions really are the same condition, calling Tosc the temperature for
which 3H(Tosc) = mϕ (that is the temperature for which the two coefficients in the equation of motion
(3.7) are equal) we have a nice form for the adiabatic condition

T ≪ Tosc ,

Tosc
n+2

√︁
g∗(Tosc) =

√
10mumd

π(mu +md)

mπfπ
fa

ΛQCD
nMP . (3.13)

From the above equation we have that Tosc is an implicit function of fa, this function has been
reproduced in 3.2 taking n to be the best fit to lattice data n = 3.42. It can be seen the change in the
behaviour of Tosc at the QCD phase transition as a consequence of the dependence of the axion mass
from the temperature and the dependence of H from g∗.

We now have quite a precise picture of the evolution of the field: at temperature T ≫ Tosc the field
is stuck to a constant value by Hubble friction, at temperature T ≪ Tosc the field undergoes damped
oscillations conserving the adiabatic invariant computed above and for T ∼ Tosc we have a transition
period in which the field begins to move.

Misalignment mechanism and axion relic density

Let us take θi as the initial misalignment angle of the rescaled axion field at T ≫ Tosc. As a first
approximation we can disregard the transition period and take the field to be stuck until the tempera-
ture Tosc and then let immediately start the damped oscillations. We will later address the transition
period with a numerical simulation but for now this approximation allows us to keep our calculations
simple while showing all the basic ideas.
In this approximation equation (3.12) immediately allows us to compute the maximum misalignment
angle today

θ0 =

(︃
aosc
a0

)︃ 3
2
(︃
mϕ(Tosc)

mϕ(T0)

)︃ 1
2

θi =

(︃
g∗s(T0)T

3
0

g∗s(Tosc) Tosc
3

)︃ 1
2
(︃
ΛQCD

Tosc

)︃1.71

θi .

For typical values of fa the misalignment angle is θ0 ≪ 10−10 solving the strong CP problem. This is
not indeed true because the harmonic potential does not take into account that in the real potential
the field could in principle remain stuck for ever if θi = π, but this seems a very unnatural value for
the initial misalignment angle that would require further explanations.
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Analogously we can compute the axion relic density

ρ0 =
1

2

(︃
aosc
a0

)︃3

mϕ(Tosc)mϕ(T0)f
2
aθ

2
i =

=
m2

ϕ(0)

2

g∗s(T0)T
3
0

g∗s(Tosc) Tosc
3

(︃
ΛQCD

Tosc

)︃n

f2aθ
2
i =

=
mumd

(mu +md)2
(mπfπ)

2

2

g∗s(T0)

g∗s(Tosc)
T 3
0Λ

3.42
QCDT

−6.42
osc · θ2i .

Therefore, the relic axion density is determined by θi and Tosc, which is a function of the PQ symmetry
breaking scale fa.

The initial value of the field ϕ is selected randomly when the temperature of the universe drops under
fa at the PQ phase transition, we then expect it to be misaligned with the minimum of the axion
potential. In the early universe the size of the casual horizon was much smaller than today because a
short time had passed since the Big Bang, the casual horizon that we see today was therefore divided
into patches that had not already had time to interact with each other. Therefore at the PQ phase
transition we expect different initial conditions to be selected in all of these patches. We must now
distinguish two different cases:

1. Inflation occurs with temperature TI = HI
2π > fa, where HI is the value of the Hubble parameter

during inflation. In this case, after the PQ phase transition has taken place, inflation homogenizes
the universe on a large scale thus selecting a unique misalignment angle θi. Therefore the
calculation we made before is quite accurate as all the nonzero modes of the field are negligible
and we have:

Ωϕ =
mumd

(mu +md)2
(mπfπ)

2

6H2
0M

2
P

g∗s(T0)

g∗s(Tosc)
T 3
0Λ

3.42
QCDT

−6.42
osc · θ2i .

2. Inflation occurs with temperature TI < fa. In this case the universe starts out non-homogeneous,
with a different value of the misalignment angle in each casual horizon, therefore non-zero modes
of the field and topological defects [1] significantly contribute to the axion relic density.
We can compute the energy contribution of the field zero mode by averaging the previous ex-
pression over all possible misalignment angles −π ≤ θ ≤ π.

⟨θ2⟩ = 1

2π

∫︂ π

−π
dθ θ2 =

π2

3
,

Ωϕ =
π2
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mumd

(mu +md)2
(mπfπ)

2

H2
0M

2
P

g∗s(T0)

g∗s(Tosc)
T 3
0Λ

3.42
QCDT

−6.42
osc . (3.14)

It can be shown [6] that nonzero modes of the field give a contribution of the same order of
magnitude to the energy density.

Axions as cold Dark Matter

In the previous sections we described the cosmological properties of axions:

• they are stable on cosmological scales.

• they have tiny couplings to the SM as we expect all its couplings to be suppressed as ∝ 1
fa
.

• they redshift like cold matter.

• their relic energy density is given by equation (3.14).

Any particle with the first three properties behaves like cold dark matter. Therefore if there is a global
UPQ(1) spontaneously broken and anomalous under the strong interactions. It naturally produces a
Goldstone boson that could constitute at least part of the dark matter observed in the universe.
Furthermore if fa ≃ 4.3 · 1011GeV the post inflationary axion energy density (3.14) reproduces the
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Figure 3.3: Numerical simulation of the transition period for θi =
π
2 and fa = 1011GeV.

Figure 3.4: Numerical simulation of the transition period for θi = 0.9999π and fa = 1011GeV.

same order of magnitude of the dark matter energy density as measured by the cosmic microwave
background

ΩDMh
2 ≃ 0.12 .

To this day the possibility that fa ∼ 1011GeV has not been ruled out by experiment therefore the
possibility remains open for axions to constitute almost all the dark matter in the universe.

Numerical corrections to the axion relic density

In the previous computation of axion energy density we have made two main approximations:

• We neglected the transition period.

• We approximated the axion potential to be harmonic.

We expect in particular the second of these approximations to influence the estimate of axion relic
density by defect. In fact approximating the potential with a parabola does not take into account that
the real potential possesses an unstable equilibrium for θ = π. When the field starts near π it will
be stuck by Hubble friction much longer than it will for a harmonic potential resulting in less energy
being dissipated for these starting values.

We simulate numerically equation (3.7) for θi =
π
2 and θi = 0.9999π and plot the result in 3.3 and 3.4.

From these graphics it can be clearly seen that despite the harmonic approximation being excellent
also for quite large angles (in figure 3.3 the harmonic and anharmonic evolution of the system are
basically indistinguishable), it fails by defect (as expected) to reproduce the behaviour of the field
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Figure 3.5: Comparison of the new adiabatic invariant starting from T = 0.3 · Tosc with the old one starting
from T = Tosc, for θi = 0.9999π and fa = 1011GeV.

Figure 3.6: Graphic of the relation between fa and the initial conditions θi in the pre-inflationary scenario.

when the starting values are near π.
Furthermore we notice that the correction due to the anharmonic potential seems much more important
than disregarding the transition period, in fact also at a very large angle the adiabatic invariant seems
to be in good agreement with the simulation of the harmonic potential.
In order to take into account both effects we numerically simulate the evolution of the field until
T = 0.3 · Tosc and let the adiabatic invariant start from there. In figure 3.5 is shown the comparison
between the old adiabatic invariant and the new one improved by the numerical simulation. With
this numerical computation, the energy density for Case 2 is corrected by a factor ≃ 1.8 resulting in

fa ≃ 3.3 · 1011GeV

to give the correct dark matter relic density. This factor is not so important if we take into account
that we are neglecting other contributions of the same order such as the non-zero modes of the field.

We can also compute numerically the value of fa as a function of the initial misalignment angle θi for
Case 1, the result is reported in 3.6. In this graph we can quite clearly see that theoretically arbitrary
small values of fa are achievable if θi is really near to π, but as we said earlier this seems a very
unnatural solution. The main part of the graphic shows that the dependence of fa from θi is a power
law: θ2i ∝ f−1.185

a (this dependence could be shown analytically with the rough approximation that
g∗(T ) and g∗s(T ) are constant functions). Another interesting feature of the graphic is the slight bend
around at fa ∼ 3 · 1016 corresponding to the QCD phase transition.
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Conclusions

In this work we have shown how the Peccei-Quinn solution to the Strong CP problem provides auto-
matically a viable dark matter candidate.
The PQ solution is based on the introduction of a UPQ(1) global symmetry that is braked at scale
fa and is anomalous under the Strong Interactions. This anomaly automatically provides a coupling
of the Goldstone boson of this symmetry, called the axion, to the CP-violating term in the effective
Lagrangian. This coupling, as guaranteed by the Vafa-Witten theorem, dynamically drives to zero
the coupling of this term.

We then focused on the cosmological consequences of the introduction of this symmetry and in par-
ticular of the axion. Axions are produced in the early universe when T drops under the PQ breaking
scale fa. The axion behaves like a cosmological dumped oscillator

ϕ̈+ 3Hϕ̇+
∂V

∂ϕ
= 0 .

The axion field is stuck in the early universe as the Hubble parameter is big and dominates the other
parameters in this equation. Oscillations start when the temperature of the universe drops below
Tosc ∼ 1GeV. After a short transition period, the Hubble parameter becomes small with respect to
the other parameters and can be considered slowly varying. This enables us to employ an adiabatic
invariant to study the axion energy density evolution

a3mϕθ
2
max = cost .

Furthermore, the axion behaves like cold dark matter as it is long-lived, with tiny couplings to the SM
and redshifts as a−3 at T < ΛQCD. We have therefore computed the value of fa in order for axions to
constitute all DM in the universe. To do this we must distinguish two cases:

• The pre-inflationary case in which a unique initial misalignment angle θ0 is selected by inflation.
In this case the value of fa is given as a function of θ0 by graphic 3.6.

• The post-inflationary case in which the PQ symmetry breaking occurs after the inflation and
then the initial misalignment angle θi is randomly selected in every Hubble casual patch. We
can therefore average the axion relic density on the initial values of θi and obtain

fa ≃ 3.3 · 1011GeV .

In the post-inflationary scenario, the different values assumed by the axion field in every casual
patch give rise to topological defects such as strings and domain walls which introduce some
uncertainty in the determination of the energy density and, therefore, in the parameter fa [1].

As can be seen in figure 3.7 are reported the constraints obtained by experiments on the axion mass
(which is inversely proportional to fa) and on the axion coupling to photons there is still room for
axion mass ma ∼ 60µeV.
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Figure 3.7: Axion parameter space within various hues of red (green) experimental (astrophysical) exclusion
limits (opaque) and projections (transparent), taken from [8].
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Appendix A

The cosmological SM

In this appendix, we will discuss some basic ingredients of the standard cosmological model called, for
reasons that will be clear later, ΛCDM .

A.1 The cosmological principle

The milestone of modern cosmology is the assumption that there is no privileged place in the universe,
that is the universe is homogeneous and isotropic.

This notion seems strange at first being used to all the anisotropic and inhomogeneous structures
around us: clearly the solar system is not homogeneous, and neither is the Milky Way... The cos-
mological principle in fact regards the large scale behaviour of the universe at the typical scales of
∼ 100Mpc ≃ 3 · 1024m, for comparison the visible part of the Milky Way has a radius of ≃ 12.5 kpc.
The cosmological principle then states that if we watch the universe at a large enough scale where
the anisotropies that have formed through gravitational collapse become negligible the universe is
isotropic and homogeneous.

A.2 Hubble’s law and the scale factor

Crucial observational evidence in cosmology is that the universe is expanding. This was first recognised
by the astronomer Edwin Hubble in 1929. Hubble measured the velocities of different galaxies (using
the redshift of their light spectrum), their distance from us (using the so called standard candles) and
realized that this two quantities were linearly proportional. Hubble’s law is then

v⃗ = H0 r⃗

where H0 = 100h km
Mpc s (with h = 0.674± 0.005) is Hubble’s constant. In hindsight, it is easy to show

that this expansion law is the only one compatible with the cosmological principle and hence must
have been valid not only today but at every age of the universe

v⃗ = H(t) r⃗ .

The Hubble’s constant is no more a constant as it can now depend on time and takes the name of
Hubble’s parameter. Above (and throughout the second part of the thesis) we used the convention to
indicate with the subscript “0” the parameters calculated at the present time.
We can now use a more convenient set of coordinates, the comoving coordinates these coordinates are
carried with the expansion in the way that an object in the position x⃗ with respect to such coordinates
at a given instant of time remains at x⃗ in the evolution of the universe. Because the expansion is
uniform we can write the old coordinates as a function of the new ones

r⃗(t) = a(t)x⃗ .

The parameter a(t) is the so called scale factor and is usually chosen to be a0 = 1.
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A.3 Perfect fluids

When watching a bunch of interacting particles we can approximate them with a fluid provided that
the typical temporal and spatial scales we are interested in are much bigger respectively than the mean
time between two collisions and the mean free path of the particles, indeed this is the fundamental
idea of thermodynamics. On cosmological scales these conditions are satisfied and we can approximate
the matter content of the universe with perfect fluids. A perfect fluid is a fluid that is isotropic and
homogeneous in its local rest frame.
We now want to study the structure of the energy-momentum tensor of these fluids as we know that
this tensor determines how space-time is curved through the Einstein equation. The energy-momentum
tensor is defined as

Tµν = {flux of pµ through the surface xν = cost} .
For a fluid composed of N particles we then have in total generality

Tµν =

N∑︂
i=1

pµi p
ν
i

p0i
δ4(x− xi) . (A.1)

Returning now to perfect fluids and exploiting again homogeneity and isotropy, in the local rest frame
the energy-momentum tensor of the fluid does not have shear components and the pressure must be
the same in all directions. Hence

Tµν =

⎛⎜⎜⎝
ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

⎞⎟⎟⎠ .

We can immediately put this tensor in a manifestly covariant form

Tµν = (ρ+ P )uµuν − Pηµν .

We can now discuss two main types of cosmological fluids:

• Cold matter: we take p0i ≃ mi in equation (A.1) . The equation then becomes

ρ ≃
N∑︂
i=1

m , P ≃ 0 , w =
P

ρ
≃ 0 .

• Hot matter or radiation: we take p0i ≫ mi in equation (A.1). The equation then becomes:

ρ =

N∑︂
i=1

p0i , P =

N∑︂
i=1

p2i
p0i

≃ 1

3

N∑︂
i=1

p0i , w =
P

ρ
≃ 1

3
.

A.4 The Friedman equation

The most general metric that respects the cosmological principle is [9]

g = dt⊗ dt− a2(t)

[︃
dr ⊗ dr

1 + kr2
+ r2(dθ ⊗ dθ + sin2θ dϕ⊗ dϕ)

]︃
.

If we now use this metric to compute the Einstein equation

Rµν −
1

2
(R+ Λ)gµν =

Tµν
M2

P

where MP = 1
8πG is the reduced Planck mass, Rµν is the Ricci tensor, R is the scalar curvature and

Λ is the famous cosmological constant. We notice that, if we take the constituents of the universe to
be perfect fluids, the Einstein equation has just two independent components due to isotropy and the
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energy-momentum tensor being diagonal. With some effort, these two components can be rewritten
as

H2 =
ρ

3M2
P

+
Λ

3
− k

a2
, (A.2)

ρ̇ = −3H(ρ+ P ) . (A.3)

These two equations are respectively the Friedman equation and the fluid equation and they describe
the expansion of the universe. These two equations are not sufficient on their own, but once we specify
the relation between pressure and energy density of the constituents of the universe (as we did for the
hot and cold matter), they uniquely determine the universe’s dynamics.

A.5 Dark Energy

We want to discuss a radically different perfect cosmological fluid from the ones we described earlier:
dark energy. If we look at equation (A.2) we can think of the parameter Λ to be given by an energy
density

ρΛ = ΛM2
P .

This energy density is constant, for this reason dark energy is thought to be kind of a vacuum energy.
Using equation (A.3) we get

0 = −3H(ρ+ P ) ⇒ ρ = −P .

We have therefore found that the cosmological constant can be substituted with a new constituent of
the universe, dark energy, that behaves like a perfect fluid with negative pressure.

PΛ = −ΛM2
P .

This is quite a big difference from the perfect matter fluids described above. With dark energy in
mind we can include the cosmological constant in the universe’s energy density. Friedman equation
then takes the simpler form

H2 =
ρtot
3M2

P

− k

a2
(A.4)

with ρtot = ρmat + ρΛ + ρrad.

A.6 Space-time geometry and density parameters

The parameter k in equations (A.2) and (A.4) expresses the curvature of space-time: k > 0 corresponds
to a spherical universe, k = 0 to a flat universe and k < 0 to a hyperbolic universe.
These three geometries correspond to different fates of the universe. The Friedman equation (A.4) in
fact tells that

• If k > 0 then the expansion of the universe will come to an end when ρtot = 3M2
P

k
a2

and then
start shrinking back. This can be seen deriving the Friedman equation with respect to time and
obtaining the so called acceleration equation.

• If k = 0 the universe will never stop expanding but asymptotically as the energy density becomes
smaller ȧ will go to zero.

• If k < 0 the universe will never stop expanding and asymptotically we have ȧ =
√
−k, therefore

the universe will asymptotically approach a constant expansion speed.

Fixed H, there is a special value for the energy density for which the universe has a flat geometry.
This value is called critical density

ρcrit = 3H2M2
P .

With this definition, we can divide both sides the Friedman equations for H2 and obtain a relation
between dimensionless quantities

Ωtot +Ωk = 1 ,
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Ωtot =
ρtot
ρcrit

, Ωk = − k

a2H2
.

The parameters Ω are called density parameters. In 2018 the Planck collaboration obtained Ωk =
0.0007±0.0019. This measure is compatible with a flat universe and tells us that for most applications
we can neglect the curvature of the universe. It is common in the literature to express the density
parameters multiplied by h2 (the factor we introduced early talking about the Hubble constant) to
obtain quantities without errors due to the measurement of the Hubble constant.
From the cosmic microwave background (CMB) we can measure with great precision the density
parameters of the different cosmological fluids [7]

Ωmat,0 = 0.315± 0.007 , ΩΛ,0 = 0.6847± 0.0073 , Ωrad,0 ≃ 5.43 · 10−5 .

A.7 Energy densities evolution

As we have seen above dark energy density is constant. Using equation (A.3) we can obtain also the
energy density evolution for cold matter and for radiation.

ρ̇ = −3Hρ(1 + w) ⇒ ρ ∝ a−3(1+w) .

Hence using w we previously computed

ρcold ∝ a−3 , ρrad ∝ a−4 .

We see that cold matter, as we would expect, dilutes in the universe as its number density. Radiation
instead is redshifted by an additional factor 1

a , this effect takes the name of gravitational redshift.

A.8 Dark Matter

An interesting thing we can measure is the amount of matter that was not interacting with radiation
(called dark matter) when the CMB was formed. Dark matter (DM) is related to the anisotropies of
the CMB: not interacting with light this matter undergoes gravitational collapse before the ordinary
matter and starts structure formation creating brighter regions in the CMB. The current estimate for
the DM density parameter according to the ΛCDM (CDM stands for “Cold Dark Matter”) model is

ΩDM,0 h
2 = 0.1200± 0.0012 .

This means that the amount of ordinary matter interacting with light is approximately 15.6% of the
total matter in the universe.
It is worth noting that the presence of dark matter in the galaxies and galaxy clusters was discovered
before the existence of the CMB was even proposed. The first evidence of DM was recorded by F.
Zwicky in 1933. Studying the coma cluster he observed a significant discrepancy between the mass of
the stars in the cluster and the mass he could infer using the virial theorem.

A.9 Statistical mechanics

Obviously, no real particle field, besides massless ones behaves like the above-mentioned fluids.
Particles in fact are divided between bosons and fermions that obey respectively the Bose-Einstein or
Fermi-Dirac statistics, meaning that their density in phase space is (assuming the chemical potential
µ = 0) given by

f(E, T ) =
1

e
E
T ∓ 1

,

where the (-) sign refers to BE and the (+) to FD statistics.
From the phase space density, we can immediately compute the energy density

ρi = gi

∫︂
d3p

(2π)3
E f(E, T ) =

gi
2π2

∫︂ E=∞

E=mi

dE
E2

√
E2 −m2

e
E
T ∓ 1

.
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Figure A.1: Effective number of degrees of freedom of the Standard Model

This integral can be solved in the limit T ≫ mi, for which we obtain

ρi =
π2

30
giT

4

{︄
1 for bosons
7
8 for fermions

.

We can then define

δg∗|i(T ) =
30

π2T 4

gi
2π2

∫︂ E=∞

E=mi

dE
E2

√
E2 −m2

e
E
T ∓ 1

.

This function counts the weighted number of degrees of freedom of the particle in the cosmic bath.
To have a compact notation for the total energy density we define a function g∗(T ) that counts the
effective number of degrees of freedom of the total bath

g∗(T ) =
∑︂
i=BE

δg∗|i +
7

8

∑︂
i=FD

δg∗|i , ρ =
∑︂
i

ρi =
π2

30
g∗(T )T

4 .

We can do the same thing for the pressure

Pi = gi

∫︂
d3p

(2π)3
f(E, T )

|p⃗|2
3E

, δg∗p|i =
30

π2T 4
gi

∫︂
d3p

(2π)3
f(E, T )

|p⃗|2
3E

,

g∗p(T ) =
∑︂
i=BE

δg∗p|i +
7

8

∑︂
i=FD

δg∗p|i , P =
π2

30
g∗p T

4 .

Recalling now the Euler relation (when the chemical potential is µ = 0) we have

s =
ρ+ P

T
, g∗s(T ) =

3

4
(g∗(T ) + g∗p(T )) ,

s =
π2

30
(g∗(T ) + g∗p(T ))T

3 =
2π2

45
g∗s(T )T

3 .

This relation is very important as (due to isotropy and homogeneity) the expansion of the universe
is adiabatic, otherwise we will have the privileged direction of heat transfer or some privileged points
that are sources of heat. The entropy in a comoving volume element needs then to be invariant

s · a3 = const⇒ g∗s(T )T
3a3 = const .

We have a one-to-one relation between the temperature of the universe and the scale factor. The
expansion of the universe can then be described as a function of its temperature.

Another useful quantity we used to compute Ṫ is

g∗c(T ) =
15

2π2
c(T )

where c(T ) = dρ
dT is the heat capacity per unit volume.
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