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Abstract

Hand pose estimation and gesture recognition is one of the most challenging
problems in the field of Computer Vision. This is mainly due to the large
variability in hand shape and finger position, which can be often complicated
by the presence of various types of occlusions. In addition, stringent time re-
quirements have to be met in order to make any proposed scheme feasible for
real time applications. Up to now, many approaches have been explored in
order to address the problem, but a general solution that fits well in all cases
is still to be found. This thesis introduces a novel approach to tackle the
problem of estimating the pose of an hand from a single depth frame. The
entire process never uses color information, nor it relies on the knowledge of
previous frames in order to improve its estimates. We will come up with a
scheme for finger and palm regions extraction, followed by a Mixed Integer
Programming formulation to complete the process of finger segmentation. A
key idea is a novel method which is able to rearrange the hand point cloud,
through a simple transformation, in a way that better fits for recognizing its
structure. A certain generality is preserved throughout all steps, leaving the
basic framework of the approach quite independent from specific characteris-
tics of the hand shape. This last aspect gives room for further improvements
as well as for possible applications to different scenarios.
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Chapter 1

Introduction

Automated gesture recognition is a fundamental step toward a new concept of
human-machine interaction. Gesture-based communication is likely to gain
more and more relevance in the near future, possibly overcoming some of
today most popular input methods, from keyboard and mouse to later touch
technologies. One of the main advantages over more traditional interfaces is
in that no physical contact is required between the user and the machine, thus
widening significantly the scope of applicability of gesture-based systems.
Gesture recognition technologies experienced a great boost only in the very
recent years, pushed by the enthusiastic acceptance they received since the
beginning in the video-game and entertainment industry 1. A consequent
rapid development of low cost 3D data acquisition technologies has given an
easy access to depth information, thus allowing a representation of captured
objects much more close to reality. Nowadays, improvements in this field are
all but slowing down, and the recent evolution of consumer TOF sensors is
making available an even more accurate and efficient way to retrieve depth
information. Nevertheless, some of traditionally difficult problems in the
domain of Computer Vision, such as the one treated in this thesis, are still
challenging researchers.

The problem of hand pose estimation and gesture recognition is one of
the harder to be faced, due to the large variability in hand shape and finger
position, which can be often complicated by the presence of various types of
occlusions. Up to now, many approaches have been considered in order to
address the problem, giving birth in most of cases to a plethora of byzantine
solutions, which behave well under very restrictive conditions but lacks in
generality. Various attempts has also been made in order to circumvent the
problem, by focusing much more on the final objective, i.e. hand gesture

1One of the most notably examples of this success was Microsoft Kinect sensor for
Xbox 360, with up to 24 millions units sold since its launching in 2010.
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2 CHAPTER 1. INTRODUCTION

recognition, and trying to achieve the goal by using general tools such as
machine learning techniques. Most of the time, the quality of the solution
provided by these approaches heavily relies on the goodness of features that
are taken into account. Clearly, the more information we can collect about
the hand and fingers position, the better we can extract features that can be
successfully used.

In this thesis a new way is presented to handle the problem of static
hand pose estimation. The approach is kept as much general as possible so
that further developments may be easily designed and tested. To this end,
some hints are given in Chapter 9. The entire process can be structured
as a multi-staged pipeline. In the first stage raw data is collected from the
depth sensor, and stored as a point cloud of the captured scene. Points in
the scene that are not part of the hand are discarded. Retained points are
then passed to the second stage where they are filtered using a Statistical
Outlier Removal Filter and a Bilateral Filter, to remove noise and to perform
a light smoothing respectively. In the third stage Normal Guided Contraction
method presented in 4 is applied to the point cloud so that a new cloud is
produced. In the next stage the original cloud and the transformed one are
compared, and a label is assigned to each point classifying it as a finger or a
palm point. A refinement of the labels is also required in order to in order to
increase the confidence of their prediction. The last two stages together are
devoted to finger classification. In the fifth stage finger points are clustered
to obtain an over-segmentation of the finger region. In the last stage, a Mixed
Integer Programming model is solved in order to group the clusters into five
super-clusters, each one corresponding to a finger.

Data 
Acquisition

Pre-
processing

Normal
Guided

Contraction

Palm-Finger
Detection

Fingers
Class.

DBSCAN

Fingers
Class.
MILP

Figure 1.1: Pipeline of the proposed approach

1.1 Related Works

Hand pose estimation is a long-lived problem in the field of Computer Vision,
and it has been intensely studied during the past two decades. A lot of
approaches have been proposed throughout the years, starting from single
source video-based solutions, up to the most recent methods which exploits
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multiple-view systems and depth information coming from range sensors.
One of the earliest relevant works is [1], where the pose of an hand is recovered
from two camera gray-scale image sequences. A three dimensional 27 DOF2

kinematik system is used to model the hand, and a set of features is chosen
so that their values are tightly linked with the pose of the hand. Then an
estimate of the state of the hand is computed by inverting the model so that
it best fits the set of observed features. Indeed, this is the basic mechanism
that guide model-based approaches, where the hand pose is recovered by
matching the projection of a 3D model against a set of measured image
features. An extensive review of most substantial works that appear up to
the recent past is given in [2].

The approach used in [3], where full body skeleton is estimated from a
single depth frame, is also adopted by [4]. A 3D hand model is considered,
made of 21 different parts. A per pixel classification based on Randomized
Decision Forests is performed to assign each pixel of the depth frame to a
hand part in the model. The labelled pixels are then exploited to compute
joints locations for the hand model. Hough forests and particle swarm op-
timization are instead used in [5] and in [6] respectively. In [6], both RGB
and depth channels are also exploited in order to improve performances and
robustness. The approach illustrated in [7] takes advantage of temporal co-
herence constraints to perform dynamic hand pose estimation. Here a hand
is modelled using a number of spheres, and the problem is formulated as a
minimization problem. Gradient based and stochastic optimization methods
are employed to achieve fast convergence and good accuracy.

The problem of hand gesture recognition is strictly tied to hand pose es-
timation, since solvers often use information on the pose of the hand in order
to perform gesture recognition. Nevertheless, there are also many situations
in which gesture recognition is achieved by directly exploiting low level fea-
tures. Some approaches based on Support Vector Machines classification are
presented in [8, 9, 10]. Another recent work is [11], where a special feature is
used in order to discriminate extremal zones at various scales. Fingertip lo-
calization is performed using this feature and the output is fed to a k-Nearest
Neighbors classifier for gesture recognition.

Commercial systems already exist for hand pose estimation and gesture
recognition. Leapmotion [12] is one of the latest, and it is designed for close-
range hand pose estimation.

2DOF, Degrees Of Freedom
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1.2 Thesis Outline

The present thesis is organized following roughly the sequence of steps that
form the entire processing pipeline.

The first stage, where raw data are collected from the range sensor, is
illustrated in Chapter 2. Preprocessing filtering actions are described in
Chapter 3, where Statistical Outlier Removal and the Bilateral filters are
presented. Also Radius Removal filter is included here, even if it is applied
only in later stages. In Chapter 4 the novel method of Normal Guided Con-
traction (NGC) is presented, after a brief description on how surface normals
can be estimated for a point cloud. Direct applications of NGC will be con-
sidered in the subsequent two chapters. In Chapter 5 a method is described to
extract palm and fingers points from the hand point cloud, thus performing
a first-level palm-finger segmentation. First results for hand pose estimation
will be achieved here. Finally, chapters 6 and 7 account for a second-level
segmentation. Chapter 6 will illustrate how to get a finer segmentation than
the simple palm-fingers partitioning calculated in Chapter 5. The cluster-
ing algorithm DBSCAN will be applied in order to group together points
belonging to the same finger. No general configuration of DBSCAN param-
eters will be found to correctly perform this goal, and two possible ways
to achieve approximate finger segmentation will be proposed. In Chapter 7
a Mixed Integer Linear Programming model will be introduced in order to
come up with a correct labelling of finger points, using the partial results
obtained in the previous chapter.

Chapter 8 will expose testing results, while in Chapter 9 a general re-
view of the thesis will be discussed, as well as some hints for possible future
continuations.



Chapter 2

Depth Data Acquisition

I begin here my discussion by considering how raw data are collected. Of
course, this can be regarded as the first stage of the whole process pipeline,
and can be treated separately from the subsequent analysis and evaluation
steps, which will be examined in the next chapters. As I chose to base all my
computations and results on depth data, how color information is acquired
will not taken into account, nor it will bother how color should be properly
aligned with depth samples. Of course, there is a plenty of works showing
how to take advantage of RGB data in order to obtain better results. As an
example, it is worth mentioning [13], where a robust denoising algorithm is
presented for outlier detection and smoothing of coloured depth data. This
kind of results can be particular useful to enhance the quality of local features
such as surface normals, which in turn can positively affect the performances
of some of the methods that will be used in this work, like Normal Guided
Contraction presented in Chapter 4. However, it is beyond the scope of this
thesis to evaluate the many improvements and clever solutions that can be
applied at this stage of the process by considering visual data.

In section 2.1 I will briefly introduce the physical mechanisms that un-
derneath the functioning of TOF sensors, which represent a large segment of
today consumer range cameras, such as Intel Creative Senz3D, the camera
that has been used during the experimentations. In section 2.2 will then
be presented the equipment that has been used to collect depth information
while section 2.3 will be devoted the dataset that has been created to evaluate
all solutions.

5



6 CHAPTER 2. DEPTH DATA ACQUISITION

2.1 TOF Cameras

I briefly illustrate here the fundamental working principle of Time-of-Flight
3D technology, which is the same technology used by SoftKinetic DS325 to
retrieve depth data. Incidentally, DS325 is also the depth sensor which is
embedded in the Intel Creative Senz3D [14], the camera that has been used
for the tests. Beside TOF, there also exists other types of technologies which
are inherently different, yet are successfully adopted by a large segment of
range cameras. Structured Light is one of them: it basically consists in
projecting a well known and structured pattern of light over the observed
objects, and then compute the distances starting from the way the pattern
is distorted. As an example, a grid of infrared spots is used by the first
generation Microsoft Kinect [15] sensors.

Time-of-flight cameras, shortly referred to as TOF cameras, is a specific
type of range camera which tries to estimate distances by measuring the
round trip time spent by a light pulse to ”flight” - hence the name TOF
- from the camera to a point of the image, and to be reflected back. A
modulated light source such as a laser or LED is used in order to distinguish
the pulse from the light generated by other sources. The reflected back light
is received by the camera and detected by an array of pixels.

The phase delay ϕp between the original signal and the signal detected
by pixel p, which corresponds to the signal sent back by some real world
point xp, is then computed through a series of processing steps. Finally,
the distance from the camera to xp, which is proportional to ϕp, is easily
recovered.

More in detail, let s(t) = sin(2πfmt) be the transmitted light signal,
where fm is the modulation frequency, and let rp(t) = Rp sin(2πfm−ϕp)+ Ip
be the signal received by pixel p after demodulation, where Ip is an offset
accounting for background illumination. The phase shift ϕp can be recovered
by considering four samples s0r, s

1
r, s

2
r, s

3
r taken from rp(t) at four π/2 phase

intervals, and then using the following relation:

ϕ = arctan(
s3r − s1r
s0r − s2r

) (2.1)

Finally, let c be the speed of light, the distance dp from the camera to the
point xp can be unambiguously calculated, under the assumption dp <

1
2

c
fm

,
as follows:

dp =
1

2
· ϕp

2π
· c
fm

=
c

4πfm
ϕp (2.2)

Moreover, the values of Rp and Ip are also computed, in order to get an esti-
mate of SNR and a measure of distance uncertainty. Rp and Ip are obtained
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from the four samples using the following formulas:

Rp =

√
(s2r − s0r)2 + (s3r − s1r)2

2
(2.3)

Ip =
s0r + s1r + s2r + s3r

4
(2.4)

2.2 Intel Creative Senz3D

Intel Creative Senz3D [14] is the camera that has been used to acquire depth
data and perform all experimentations. Other two alternatives, first genera-
tion Microsoft Kinect [15] and Leap Motion Controller [12] were considered.
Even if Kinect sensor has a depth resolution comparable to the one of Senz3D
and a wider operational range, I finally opted for the Senz3D which seemed
to return better and much less noisy measures in the close range. I excluded
also the use of Leap Motion Controller, since no SDK for it was available
at the time. Intel Creative Senz3D, which was sold starting from the third
quarter of 2013, uses the TOF depth sensor DS325 from SoftKinetic [16]. Its
best depth resolution is QVGA 320 × 240, while its suggested depth range
goes from 0.15 meters up to 1 meter, which can be considered optimal for
the kind of acquisitions we wanted to carry out. In order to get access to the
raw data from the depth stream, function utilities were used as supplied by
the Intel Perceptual Computing SDK 2013 [17]. The depth frames captured
by the sensor revealed to be quite accurate, and at the camera showed to be
one of the best suited for my purposes.

2.3 The Dataset

In order to evaluate the quality of results, a small dataset has been set up by
collecting depth frames of various gestures, each one performed for a certain
number of repetitions, changing for each repetition both the hand in-plane
orientation and hand plane inclination with respect to the camera. The
dataset comprises an overall of 22 gestures, 8 repetitions each, from a single
subject. It is far from being considered exhaustive, yet it demonstrated to be
quite effective in showing all the limits of some bad choices that were taken
during the research, guiding the work towards increasing improvements.

All gestures were captured in standard environment conditions, at a dis-
tance of about 0.4 to 0.5 meters from the camera. A wall was used as an
invariant background for all captured scenes, always keeping a fixed distance
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of no more than 1 meter between the wall and the sensor. This also par-
tially diminished the number of outliers which usually comes out when the
background is positioned outside the TOF sensor range. In these cases, a
number of border points belonging to objects inside the range may also be
affected, since their depth values are averaged with the wrong depth values
estimated for background points that lay behind. Anyway, an appropriate
filter such as the Statistical Outlier Removal filter discussed in section 3.2,
would be able to address the problem and quite easily remove most part of
noisy points. Single depth frames were recorded and stored, one for each
gesture repetition, at a resolution of 320×240, along with the corresponding
RGB frames from the color stream. The latter were saved for visualization
purposes only, since, as I have already mentioned, all presented procedures
never use color information. For each frame, a point cloud belonging to the
hand is extracted, and stored to be used as a basic input for all successive
steps.

The extraction of hand points was performed following a process similar
to the one used in [18]. More sophisticated methods for hand tracking can
be exploited, such as the one proposed [19]. Another approach is suggested
in [11], where the Oriental Radial Distribution descriptor is used at hand
scale in order to discriminate hand region from other parts of the body.
Nevertheless, I will not enter now a more detailed explanation of how this
task was achieved, being marginal with respect to the whole discussion. In the
following chapters, it should never be considered an issue how hand points are
taken from the scene, and all methods will always deal with clouds containing
hand points only.

Aside from the very basic set of hand samples collected for this thesis,
it has also been evaluated the possibility to test results on much larger and
comprehensive datasets, such as the MSRA Hand Tracking Database pre-
sented in [7], which uses Intel Creative Senz3D. It certainly happens to be
one of the most richer and well documented datasets publicly available at
this moment, collecting a great variety of challenging poses along with their
corresponding ground truth. However, as it is mainly conceived as a test-bed
for dynamic hand tracking, a considerable fraction of poses included in it
can hardly be estimated by static approaches as the one presented in this
thesis and. On the contrary, they should be evaluated by taking advantage
of the high correlation existing between poses in temporal neighbour frames.
Moreover, all the clouds in the dataset are given after being passed through
some form of preprocessing, which is likely not the most appropriate for this
thesis methods to run properly.

Another rich and well organized dataset is ColorTip Dataset, used in
[11] and created by employing a first generation Microsoft Kinect sensor.
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Figure 2.1: Captured scenes: hand points shown in green
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Figure 2.2: Sample images and depth maps for each of the gestures in the
database.
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However, I dropped the possibility to perform tests on this dataset since
frames in it are taken at a full body scale and clouds associated to the hands
are not as much dense and accurate to be successfully fed as input to our
procedures.



Chapter 3

Pre-processing

Some essential filtering and refinement procedures are included in this chap-
ter. They are applied to raw data in order to end up with a cleaner and
accurate description of the observed reality. The ultimate goal of this stage
is to produce a three dimensional PCD approximating, possibly with a good
accuracy, the hand surface as it is captured by means of the range sensor.

Once raw data have been acquired, a series of filtering transformations
are needed before proceeding with further and more sophisticated manip-
ulations. Indeed, the effectiveness of a large number of well known local
descriptors is highly influenced by the grade of accuracy shown by the PCD
in approximating the hand surface at a fine-grained level. The estimation of
surface normals for each point of the PCD, which underneath much of the
methods proposed in the following chapters, follows this rule: the better the
depth samples are able to approximate the neighbourhood of a given point,
the better would result the evaluation of the surface normal at that point. A
good quality PCD is particularly desirable in order to avoid to come up with
poor solutions when applying the NGC method in Chapter 4. On the other
side, as we will see, using these filtering tools with improperly tuned pa-
rameters could result both in an excessive point removal and in an excessive
flattening of all surfaces, thus rapidly worsening the performances of NGC.
In particular, when using the Bilateral Filter in section 3.3, it should pay
attention to preserve the relevant curvatures of the cloud, especially finger
curvature and their tubular shape.

In section 3.1 a simple filter will be presented which aims to remove
isolated points from the cloud. The Statistical Outlier Removal Filter in
section 3.2 has nearly the same function, but it is able to somehow account
for the specific distribution of the points in the cloud, and consequently adapt
its inner removal parameters. Finally, the Bilateral Filter is illustrated in the
last section.

12
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The Point Cloud Library To perform the filtering stage, as well as to
compute the surface normals in section 4.1, a set of appropriate functions
from the open-source Point Cloud Library (PCL) [20] have been used. For the
purpose of this work, only a few of them, taken from the filtering and feature
extraction sections of the library, were sufficient. However, many other set
of functions are included in PCL, accounting for efficient solutions about
key-points extraction, PCD segmentation, surface reconstruction as well as
for many other crucial tasks in 3D processing. The PCL project started
its development in 2010, and it counts, at these days, a significant number
of implementations of state-of-the-art algorithms in the field of point cloud
processing. The code is freely downloadable from http://pointclouds.

org/.

3.1 Radius Outlier Removal Filter

Radius Outlier Removal, as implemented in PCL, is a quite simple filter. For
each point p in the cloud P , a radius-based neighborhood Nr(p) is consid-
ered, containing all and only those point in the cloud whose distance from p
is not greater than a given value r, that is:

Nr(p) = {p′ ∈ P | ‖p− p′‖2 ≤ r} (3.1)

The filter removes all points p such that Nr(p) < nmin, where nmin is a
parameter accounting for the minimum number of neighbors that a point
should have to be not considered an outlier. The output filtered cloud is
then:

Pror = {p ∈ P | Nr(p) ≥ nmin} (3.2)

Having to specify both parameters r and nmin is a major drawback, however,
since the filter do not account itself for changes in the average density of
the input clouds. Clearly, a point p for which Nr(p) < nmin should not be
considered an isolated point if for all other points in the cloud holds the same
too. The filter presented described in the nex section is able to fix this issue.

3.2 Statistical Outlier Removal Filter

The Statistical Outlier Removal filter, as it is presented in [21], relies on the
assumption that outlier points are those points whose number of neighbors
deviate for a certain amount from the average number of neighbors charac-
terizing points in the cloud. The Statistical Outlier Removal differs from
more traditional approaches in that it does not require to explicitly specify
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the radius of the neighborhood, nor a minimum number of neighbors for a
point to stay in the cloud.

More in detail, let p be a point in a cloud P , and let Nk(p) be its k-
neighborhood, that is the set of the k points in P closest to p. The filter
scheme works as follows: first the mean distance d̄k(p) from p to its k neigh-
bors in Nk(p) is computed for each point p. Then a distribution on the
values in the set of all mean distance values {d̄k(p) | p ∈ P} is calculated,
together with an estimate of its mean and standard deviation, respectively
µk and σk. The set of points in P which are retained is defined as:

Psor = {p ∈ P | µk − α · σk ≤ d̄k(p) ≤ µk + α · σk} (3.3)

where α is a positive real parameter that determines how much strong the
removal action of the filter would be. The set of outliers is thus defined as
Po = P \ Psor.

The filter proved to be both effective and robust to variations in the
average density of the hand PCDs that have been tested. This should not
surprise since the filter ability to implicitly change its definition of outlier
point together with changes in the statistical mean density characterizing the
cloud. The filter has been applied to the raw PCDs as they were returned
by the acquisition stage1. Many different values have been assigned to the
input parameters k and α and then tested. The best results were achieved by
setting k = 100 and α = 1.0. It has to be stressed that, given the adaptive
nature of the filter, the tuning of the two input parameters is quite easy, and
it is rather unlikely to come up with unexpected results due to a bad setting.
By comparison, as it will be evident in Chapter 6, one of the weaker points
of DBSCAN algorithm is an intrinsic difficulty in selecting an appropriate
set of values for its input parameters.

3.3 Bilateral Filter

In order to smooth the surface of each PCD, as a preprocessing step before
computing the surface normals in section 4.1, a Bilateral Filter [22] is applied
to the cloud returned as output by the Statistical Outlier Removal Filter
described in the previous section.

The Bilateral Filter was originally conceived for smoothing 2D images
while preserving edges. For simplicity, the discussion will be limited to 2D
greyscale images. The idea is to consider two types of closeness for pixels

1Remember that it is always assumed that a mask has been applied to each PCD before
it leaves the acquisition stage, so that only points belonging to the hand are retained
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Figure 3.1: Statistical Outlier Removal Filter applied to G1: outliers in red

in the image, the usual space closeness for which two pixels are close one
another if they are located in nearby positions, and an intensity closeness,
for which two pixels are close as long as their grey levels are similar. The
filter aims to perform a domain averaging, the way traditional smoothing
filters do, with weights that depends both on space and intensity closeness.
Basically, the gray level of each pixel x in the filtered image is computed as
a weighted average of the gray levels of nearby pixels in the original image,
with weights decaying so that pixels which are far from x both in range or
intensity weight less than closer pixels. Denoting with t(x) the gray level
value of pixel x in the original image, then its corresponding gray level t′(x)
in the filtered image is computed as:

t′(x) =

∫ +∞

−∞

∫ +∞

−∞
c(ξ, x)s(t(ξ), t(x))dξ (3.4)

where c is a function measuring the spatial closeness between x and a nearby
point ξ, while s is a function that measures the similarity between the in-
tensity levels t(x) and t(ξ) of pixels x and ξ respectively. In particular,
for a Gaussian Bilateral Filter c and s are defined as two Gaussian window
functions. More precisely we have:

c(ξ, x) = e−
1
2
(
d(ξ,x)
σs

)2 (3.5)

where d(ξ, x) is the Euclidean distance between ξ and x, and:

s(t(ξ), t(x)) = e−
1
2
(
δ(t(ξ),t(x))

σr
)2 (3.6)
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where δ(t(ξ), t(x)) is a function accounting for the distance between intensity
values t(ξ) and t(x).

As pointed out in [22], the filter can be easily applied once we are able
to define a range distance and an intensity distance between pixels in the
image. It is then straightforward to extend its use to color images. The same
way, it can be used on 3D points clouds.

An implementation is available for 3D point clouds in the PCL library.
To be used, it requires an intensity level to be specified for each point in the
cloud.

can be applied once an intensity level for each point is specified.
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Figure 3.2: Bilateral Filter applied to G1.



Chapter 4

Normal Guided Contraction

Introduction

As discussed at the beginning, this thesis originated from the interest in
exploring new ways to achieve hand pose estimation through a mathematical
programming approach. In particular, it will be considered the problem
of fitting a skeleton model of the hand to the real hand points captured
by the camera, focusing on the possibility of reducing this problem to some
generalized form of the well known Assignment Problem (AP). As we will see
later in Chapter 7, the aim is that of assigning each joint of the skeleton model
to a real point, provided that some additional constraints are met. One of the
many obstacles that prevent this solution to be even barely acceptable is the
excessive time required to perform computations. In spite of this, various
tricks have been experimented in order slightly change the initial problem
formulation and fasten its resolution. No matter how these little adjustments
can be cleverly applied, the two factors which have, by far, the greatest
impact on the time needed to find a solution are the number of variables
present in the formulation and, partly, the number of constraints. To have
an idea of the dimension this problem can take, consider the following. In an
average practical case there are about from 1k to 5k real points or possible
target, while the number of joints in the model to be assigned is usually set to
21. If no countermeasure is taken, whatever AP-like formulation we choose,
the total number of variables in the model shall be comprised, more or less,
from 20k up to 100k. This can be a big deal if we intend, as it is the case,
to perform all computations in a fraction of a second.

To tackle this problem, tests were run only after heavily reducing the
number of target points, by operating a random decimation or by dividing
the space in a grid and taking the centroid of the points inside each square.

17
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This trivial approach was able to resize down the problem by a factor of
ten, however still not sufficient to achieve an adequate timing. On the other
side, pushing forward the decimation ratio or by widening the grid squares
resulted most of the time in poor quality results. Given this scenario, it
is evident the necessity to perform a more intelligent selection of the target
points. Of course, the ideal case is where the set of target points is reduced to
exactly those points that an optimal algorithm would have chosen as the best
targets for the joints of the skeleton model. An improvement in this sense
can be achieved by keeping only a few target points for each finger, possibly
choosing them so that they are equally spaced located along an hypothetical
line running from the finger base to the finer tip.

It is clear that a key issue in order to implement this kind of reduction is to
have access to some form of finger recognition, or even better segmentation.
In particular, it happens to be of fundamental importance to be able not only
to recognize those points belonging to the fingers from those ones belonging
to the palm of the hand, but also to be able to differentiate points belonging
to different fingers. With this purpose, a series of attempts have been carried
out, finally leading to Normal Guide Contraction (NGC) method, which will
be introduced in this chapter. Direct applications of NGC will instead be
presented in Chapter 5, which can be seen as a natural prosecution of the
present chapter.

4.1 Surface Normals Estimation

NGC makes direct use the surface normals that are associated to each point
in the cloud. Moreover, its performances heavily relies on how well these
normals are estimated. In general, surface normals are a crucial feature
for many tasks in Computer Vision and Computer Graphics. They carry
important information in that they locally describe the geometry of an object
surface. Following [23], il will be shown here a simple way to compute them,
which is based on Principal Component Analysis (PCA). This approach is
also implemented by the PCL functions that have been used to estimate the
surface normals of the hand PCD.

The problem of computing the surface normal of a point p placed on
some object, can be restated as the problem of computing the unitary vector
that describes the orientation of a plane tangent to the surface of the object
in correspondence to p. Let Nr(p) be the set of points in P whose distance
from p is less than or equal to r, that is:

Nr(p) = {p′ ∈ P | ‖p− p′‖2 ≤ r} (4.1)
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The plane tangent to the surface of P in p can be intuitively regarded as the
plane that best fits the points inside Nr(p). A fast solution to this problem
can be achieved by using PCA on the coordinates of the neighbor points
in Nr(p), and looking for the component which accounts for the minimum
variance. To do this, the centroid p̄ of the neighborhood Nr(p) is computed
and then subtracted to each point pk ∈ Nr(p) . A covariance matrix C ∈
R3×3 is then computed on the re-centred points, so that:

C =
1

|Nr(p)|
∑
i

(pk − p̄) · (pk − p̄)T (4.2)

Let vj for j = 1, 2, 3 be the eigenvectors of C, and let λj for j = 1, 2, 3 be their
corresponding eigenvalues. Observe that, since C is symmetric and positive
semi-definite, then its eigenvalues are real numbers. If 0 ≤ λ1 ≤ λ2 ≤ λ3,
then v1/‖v1‖ is a solution to our problem, that is v1/‖v1‖ is orthogonal to
the plane tangent to the surface of P in p.

4.2 Normals Orientation

In the previous section the surface normal at a given point p in P has been
computed by looking for a unitary length vector orthogonal to the plane
tangent to the surface of P at p. There is an intrinsic ambiguity in how
a surface normal is defined since if a vector n is a unitary-length vector
orthogonal to a plane, then also is −n. Indeed, no guarantee exists about
how the vector computed using Principal Component Analysis is oriented.
Nevertheless, it is necessary for our purposes to point all surface normals
toward the outside of the hand. It follows that it has to be found a way to
flip in the right direction all normals that do not meet this requirement. In
general this is not an easy task to perform. Luckily, this is not the case,
since a single depth sensor is used. Given two possible choices ni and −ni

to represent the surface normal at a point pi ∈ P , the one which pointing
toward the camera point-of-view w will be taken. It will then be sufficient
to check if ni satisfies the following equation:

ni · (w − pi) > 0 (4.3)

If this condition holds then we are done, otherwise −ni will be taken as the
surface normal at p.
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4.3 Points Contraction

The idea, which is quite simple, is to move each point in the PCD toward
the direction pointed by its surface normal, by a step whose magnitude has
to be scaled depending on the target. Clearly, this makes sense if a pointing
direction has been previously defined for each normal. As suggested in the
previous section, all normals can be oriented so that they are all flipped
toward the outside of the hand. In that case, if we look at the points enclosed
in a neighborhood of a certain size, moving them along their normals would
result in the points becoming closer and closer or more separated one another,
depending on the surface curvature characterizing the neighborhood. In an
hypothetical case where all points are samples of a sphere of a given radius
r, and their normals are perfectly estimated and directed towards the inside
of the sphere, choosing a step of magnitude r would come up with all points
concentrated in the center of the sphere, as if a contraction of the original
spherical structure takes place. On the contrary, if the normals were directed
towards the outside, a sort of expansion would occur.

More formally, let P ⊂ R3 be a PCD, such that each point is given as
a vector whose components are its (x, y, z) coordinate values with respect
to some reference system. Also, let np ∈ R3 be the oriented surface normal
associated to each point p ∈ P , calculated following sections 4.1 and 4.2.
The transformation moves each point p into a new point p′ such that:

p′ = p + t · np (4.4)

where t is a scalar parameter that determines the magnitude of the move. We
let t to take negative values also, which accounts for a move in the opposite
direction with respect to that one indicated by the normal.

Figure 4.1: NGC: contraction using t < 0, in red high-density region.

NGC has its major impact for those points which are located on surfaces
roughly approximating portions of a sphere of radius |t|, while it does not
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affect the relative position of points displaced on planar surfaces. By correctly
choosing the sign of the step parameter t, the transformation would mainly
contract structures within the PCD whose curvature radius nearly equals |t|,
while leaving almost unchanged structures with a much greater curvature.
Observe that, for points located in a neighborhood having a curvature r < |t|,
a maximum in contraction is likely to be reached after moving the points at
a distance of |s| from their initial positions, while a new expansion would
occur when for distance values in (r, |t|]. So, the overall effect would be a
weaker contraction than for points in regions where the curvature is near |t|.
By correctly choosing the sign of the step parameter t, the transformation
would mainly contract structures within the PCD whose curvature is, more
or less, equal to |t|.

Intuitively, this method gives us a way to transform the original cloud
P in a new cloud P ′

so that neighborhoods with a given curvature can be
easily detected by looking for regions in P ′

with higher density. Indeed,
these regions approximatively correspond to parts of the cloud where the
contraction was more effective.

before NGC after NGC

Figure 4.2: NGC applied to hand PCD: t ' finger radius



Chapter 5

Palm and Fingers Extraction

In this chapter NGC is applied in order to operate a first low-level segmen-
tation of the hand, partitioning the hand cloud P into two subsets Pf and
Pp, corresponding to the points belonging to the fingers and those belong-
ing to the palm, respectively. The next chapter will handle the problem of
separating points belonging to different fingers, to achieve an higher level
segmentation. A simple palm-fingers segmentation can be still useful for a
number of applications. Various methods can directly take advantage of this
kind of information to achieve better results. Palm-fingers segmentation can
be employed to enhance performances of methods implementing hand plane
estimation through RANSAC-like fitting algorithms. In this case, a plane fit-
ting could be carried out considering only points in Pp, rather than the whole
cloud. In turn, schemes such the one presented in [5] can potentially benefit
of a better hand plane estimation when calculating the in-plane orientation
of the hand. An affordable hand plane estimation can be an advantage also
for palm-finger segmentation itself, since an higher quality partition can be
attained by adding to Pf , among other points, all points that are located
at a distance from the plane greater of some threshold. In the following
section a method will be presented to perform a first palm-finger labelling,
by inspecting the transformed cloud obtained through NGC transformation.
The second section will describe how to refine this labelling to get a more
accurate partitioning.

5.1 A NGC-based partitioning

Here is presented a method to extract Pf , the set of finger points, from P , the
point cloud of the hand. The palm points Pp will be simply defined as the set
of points in P that are not labelled as finger points, that is Pp = P \Pf . The

22
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method relies on NGC transformation, and in particular searches for finger
points by locally comparing the original point cloud P with its transformed
counterpart Pc.

As it has already mentioned in 4, the main contribution of NGC is that
regions in P whose underneath structure has a curvature radius similar to
the magnitude step of contraction are likely to be contracted in smaller areas
than other regions do. The key observation is that fingers all share a similar
tubular shape and an almost constant curvature radius, while the palm region
is characterized by having a planar structure, or at least by having a local
curvature way larger than the mean radius of a finger. In spite of this, a good
choice for the NGC step parameter is to set its magnitude equals the average
radius of a finger. As a consequence of NGC transformation, finger points
will mostly appear in Pc inside areas of highest density, while remaining
points, located in areas whose density is nearly left unchanged with respect
to the original cloud, will roughly correspond to palm points. To be clear,
we refer to the density of an area as the number of points that appear in
that area. A way to estimate whether a given point p is part of a high or low
density region is to count the number of points in the cloud whose distance
from p is not greater than a certain value. Another possibility would be that
of computing the mean distance from p to each point in its k-neighborhood.
In this case, the smaller is the mean distance, the higher is the density of the
cloud in the neighborhood of p.

Let fngc be the transformation as defined in section 4.3, that is:

fngc : R3 −→ R3

p 7−→ p + t · np
(5.1)

The first and most obvious way to extract finger points would be then to

look at Pc = fngc(P) and then to partition the cloud in two subsets Pc
H

and Pc
L, including respectively points in high-density areas, and points in the

remaining low-density areas. We then set:

Pf = {p ∈ P | fngc(p) ∈ Pc
H} (5.2)

Pp = {p ∈ P | fngc(p) ∈ Pc
L} (5.3)

A critical step in this process is how to conveniently set the density threshold
that discriminates between higher density values from lower ones. One way is
to associate to each point p in Pc a density value computed as the number of
neighbors inside a fixed range from p. The average density is then computed
for all points. Finally, all those points whose associated density is greater
than the average are put in Pc

H . During tests, this trivial approach was found
to achieve better results than performing a 2-means on density values.
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A second approach is illustrated here to extract finger points, which was
found to behave better than the previous one in almost all situations. It can
be observed that in certain cases, small strings of highly packed points arise
in the transformed cloud even inside the palm region. This is particularly
evident when the palm is arching, and folds appears on the palm surface.
This unexpected behaviour is explained by the fact, that in correspondence
to these folds, the local curvature of the cloud decreases and become more
similar to the curvature of fingers. Moreover, since there are usually more
points on the surface of the palm than on fingers, it would suffice a larger
curvature to reach, after the contraction, the same point densities as those of
fingers. To address this problem, a solution is to partition P by considering
how the density values associated to the points in the cloud change before
and after the contraction. In particular, for each point we compute the ratio
between the density associated to the point in P and its density in Pc. Also,
we calculate the first density with respect to a larger neighborhood than the
one used for the second density. Finally, finger points are extracted by taking
points with a ratio higher than the average.

5.2 Refinements

Even if the method illustrated in the previous section gives a good estimate
for Pf and Pp, there may still be small spots of points labelled as finger points
inside the palm region and, vice versa, there may be points labelled as palm
points which actually belong to a finger. In order to refine the partitioning
and remove these kind of mistakes, we operate a majority-voting re-labelling.
We take each point p in the cloud P and look at its neighborhood Nr(p).
If the Nr(p) contains more finger points than palm points, then we put p
in Pf . Conversely, if the opposite holds, we put p in Pp. The effect of this
relabelling can be mitigated by moving a point from Pf to Pp only if half
of hits neighbors, plus a slack, are in Pp. The same can be done for the
symmetric case. For most situations this refinement is able to adjust all
wrong assignments.

Plane-based refinement Another refinement can be applied, consisting
in moving in Pf all points whose distance from the hand plane is greater
than a certain value. This approach can be particularly effective granted
that a good quality estimation of the hand plane is available. The latter
can be computed by running a RANSAC-like fitting algorithm on the set Pp.
Tests showed that for the critical cases the hand plane estimated this way is
significantly more accurate than the one estimated using the same algorithm
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Figure 5.1: Palm-finger detection: in red points labelled as finger.

on P .



Chapter 6

Finger Segmentation

6.1 Introduction

The previous chapter described how to achieve a first basic segmentation
of the hand, by partitioning the point cloud into two subsets, Pf and Pp,
respectively the palm points and the finger points. In this chapter, this
segmentation process is brought further, by trying to partition the set of
finger points Pf into five subsets 1, each subset containing all and only those
points belonging to a certain finger. More precisely, we want to partition the
cloud so that if two points are both part of the same finger, then they included
in the same partition and, vice versa if two points belongs to two different
fingers, then they are included into different partitions. Unfortunately, as we
will see, it will not be possible to achieve this goal, since the high variability
in the hand cloud shape prevent the finding of an appropriate set of input
parameters, for the clustering algorithm, that fits well for all situations. For
the same reason, it is not a trivial task to elaborate some strategy that is
able to automatically tune these parameters in order to get, each time, the
desired solution.

The goal is to take points in Pf and separate them into five different
subsets, each corresponding to a finger. In order to do so, the idea is to
take again advantage of NGC transformation by attempting to separate the
various fingers directly on the contracted finger point cloud. Indeed, another
valuable property exhibited by NGC during tests was its ability to increase
the separation between fingers, even if they are very close one another. The
approach is to use a suitable clustering technique so that to end up with five
clusters, one for each finger. Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) [24] was chosen to this purpose. This algorithm

1It is assumed that no finger is completely occluded.

26
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has several advantages over other classical data clustering algorithms when
applied to this kind scenarios, since it does not require to specify the number
of clusters to search for, and it is able to discover noise and outliers. Fur-
thermore, it is able to properly handle arbitrary shaped clusters. DBSCAN
requires two parameters: the radius ε of the sphere to be used to check if
neighbors are reachable, and the minimum number of points nmin that have
to be in the ε-neighborhood to consider the point in the cluster. Since the
high variability in shape and density of the clouds it has to deal, no values for
these two parameters were found during tests that fits well for all situations.
In particular, for any given values, there are cases when DBSCAN is able
to discover exactly the five clusters corresponding to the five fingers, as well
as cases when two or more fingers are clustered together or, conversely, the
same finger is split into a number of smaller clusters. No automatic tuning
strategy was found during the research in order to come up with this prob-
lem. Also, Ordering Points to Identify the Clustering Structure (OPTICS)
[25, 26, 27] was considered, to use it as a tool for selecting the pair of values
for (ε, nmin) which are more likely to lead DBSCAN in finding five clusters.
However, results were not satisfactory. In the following two possible strate-
gies are briefly illustrated, in which an approximate solution is allowed in
exchange for a more predictable behaviour in the returned solutions.

6.2 Under Segmentation

This strategy accounts for solutions with less than five clusters. This means
that at least one cluster contains points belonging to different fingers. Clearly,
admitting this kind of solution requires a far less accuracy in the tuning of
DBSCAN parameters than it would be if only solutions with (exactly) five
clusters has to be produced. Moreover, results are more predictable, and it
may be not hard to set (ε, nmin) so that, for most of cases, no finger is split
in two different clusters. Having this guarantee, one possible approach is to
under-segment Pf and then use some algorithm to split the clusters so that
to properly come up with five finger clusters.

6.3 Over Segmentation

This strategy works in the opposite sense with respect to the strategy pre-
sented in the previous section. In particular, DBSCAN parameters are split
so that more than five clusters are discovered, and at least one finger has been
split into two or more small clusters. On the other side, it is true with high
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Figure 6.1: Under-segmentation using DBSCAN.

probability that no cluster is formed by merging points belonging to different
fingers. This is the strategy implemented by the approach presented in this
thesis. In particular, in the next chapter, a Linear Mixed Integer Program
will be formulated in order to tackle this problem and appropriately group
together clusters produced by a DBSCAN onver-segmentation.
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Figure 6.2: Over-segmentation using DBSCAN.



Chapter 7

A Linear MIP Formulation

In the previous chapter two strategies have been illustrated in order to come
up with more predictable results when performing DBSCAN clustering, at
the expense of a low-quality solution. In particular, this chapter concen-
trates on how to take advantage of an over-segmentation in order to achieve
a correct classification of finger points. The approach is based on the math-
ematical programming paradigm, and passes through the formulation of a
Mixed Integer Linear Program. This gives it the potential to be further im-
proved, besides the present simple implementation, by enhancing the MIP
formulation with new constraints and objectives, and by fully take advantage
of the most efficient tools and strategies of mathematical optimization theory.
At the same time, there are cases in which the generality of this approach
can shows as a defect, especially if its performances are compared with other
ad-hoc methods, and if no particular countermeasure is taken to better adapt
its action to the specific case. The right way to use the MIP is in tandem
with other procedures, or after some kind of data preprocessing to limit as
much as possible its search space. Indeed, this is also the rationale followed
here, since much of its potential strictly depends on the over-segmentation
attained by DBSCAN.

Several other possibilities were considered, like using a mean-shift clus-
tering [28] on a distance matrix computed by measuring the level of spatial
alignment between each pair of clusters. The alignment was calculated by
considering all the lines passing through two points, the first in one cluster
and the second in the other cluster, and finding the line having the largest
number of points at a small distance from it using a RANSAC approach.
The ratio between the number of close points and the total number of points
in the two clusters was taken as their alignment.

The idea is to take advantage of the over-segmentation returned by DB-
SCAN to constrain the projection of a hand skeleton model to the real hand
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cloud. In the present implementation a 21 joints model will be used, as the
one depicted in the figure 7.1.

q
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little

index
middle

ring

thumb

Figure 7.1: Hand skeleton model with 21 joints.

Let P = {p1, . . . , pn} be the hand PCD and let Q = {q1, . . . , qm} be
the set of joints in the model. Moreover let F = {1, 2, 3, 4, 5} be a set
of five labels, each one corresponding to a specific finger. Finally, let C =
{c1, . . . , cr}. The method aims in finding a good projection of the model onto
the real hand point cloud. This is formulated as the problem of computing
an assignment function a:

a : Q −→ P

with a series of additional constraints to be met in order for the assignment
map to be feasible. As it will be clear in the next section, two sets of auxiliary
variables, the slack variables and the cluster variables, will be necessary to
add particular sets of constraints while maintaining linearity.

7.1 A Linear MIP Formulation

The program follows an Assignment Problem-like formulation, with addi-
tional constraints and variables.
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Assignment variables

xi,j =

{
1 if a(qi) = pj

0 otherwise
∀1 ≤ i ≤ n,∀1 ≤ j ≤ m

that is the variable xi,j is set to one if the joint qi in the skeleton model is
assigned to the point pj in the point cloud P ; otherwise, the variable is set
to zero.

Cluster variables

yf,k =

{
1 if f 7→ ck

0 otherwise
∀1 ≤ f ≤ 5,∀1 ≤ k ≤ r

that is the variable yf,k is set to one if cluster ck is labelled with label f ,
otherwise it is set to zero.

Slack variables

si1,i2 ∈ R≥0 ∀i1, i2 s.t. qi1 , qi2 adjacent joints

They are continuous variables, and they are introduced in order to take
into account for a dilation of convex polytopes forming the relative position
constraints.

Assignment constraints∑
1≤i≤m

xi,j ≤ 1 ∀1 ≤ j ≤ n (7.1)

∑
1≤i≤n

xi,j = 1 ∀1 ≤ j ≤ m (7.2)

that is, each point in P is the target of at most one joint in Q, while at the
same time each joint in Q is assigned to some real point in P .

Clustering constraints∑
1≤f≤5

yf,k ≤ 1 ∀1 ≤ k ≤ r (7.3)

∑
i,j∈ck

xi,j − |ck| · yf,k ≤ 0 ∀1 ≤ f ≤ 5,∀1 ≤ c ≤ r (7.4)
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where the summation is taken with i varying among all joints belonging to
the finger with assigned label f . These constraints are quite cumbersome, yet
their action is simple: prevent that two joints belonging to different fingers of
the model are assigned to points in P that are part of the same cluster. These
constraints are a direct application of the over-segmentation strategy: points
in the contracted cloud Pc

H are clustered so that each cluster is completely
included in a same finger, i.e. the cluster does not contain points from
different fingers.

Relative position constraints Let qi1 and qi2 be two adjacent joints in
the skeleton model. The following constraints basically constrain the relative
position of the images of the two joints to be belong to some 3D convex
polytope Ri1,i2 . By definition, Ri1,i2 can be specified as the intersection of
a finite numbers of half-spaces in R3. Let b1x + b2y + b3z + b4 ≤ 0 be the
inequality defining one of these half-spaces. Then, the following constraint
must hold in order for the solution to be feasible:

b1

(
a(qi1)x−a(qi2)x

)
+ b2

(
a(qi1)y−a(qi2)y

)
+ b3

(
a(qi1)z−a(qi2)z

)
+ b4−si1,i2 ≤ 0

(7.5)

where a(qi)x, a(qi)y, a(qi)z are the x, y, z-coordinate of a(qi) ∈ R3 respec-
tively. As it can be seen, the slack variable si1,i2 ≥ 0 accounts for a dilation
of the polytope.

Objective

min
∑
i1,i2

si1,i2 (7.6)
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Results

In order to evaluate the performance of the proposed approach, we acquired a
dataset of gestures using a Creative SENZ3D depth camera. The dataset has
been acquired in our laboratory and contains 20 different gestures repeated
6 times for a total of 120 different acquisitions. Color data has also been
acquired but notice that it is not used in the proposed approach. A sample
image and depth map for each of the gestures is shown in Fig. 8.1. We
used Meshlab in order to get access to a direct and friendly visualization of
all intermediate and final results at each step of our work. We store each
PCD we deal with in the Stanford PLY format, which gives the possibility
to specify 3D points, edges and facets in a relatively simple way, as a list
where each row corresponds to a single occurrence of one of these three
types of objects. Moreover, it also give the possibility to indicate, for each
object, the RGB color in which it should be displayed. This feature revealed
particularly suitable to visually represent the labels assigned to the points in
the PCD by the clustering algorithms we used, as well as to easily evaluate
the quality of finger and palm points extraction and various other types
of partitioning. The latest version we used, Meshlab 1.3.3, can be directly
downloaded from http://meshlab.sourceforge.net. Finally, to solve the
Linear MIP presented in Chapter 7 we used IBM Ilog Cplex [29].

Fig. 8.2 shows some sample depth maps and the corresponding outputs
of the proposed algorithm, i.e. palm detection and fingers classification. As
expected, the proposed algorithm correctly handles the simplest situations,
e.g., the open hand shown in the first column. The second and third columns
show how fingers bent over the palm are correctly identified, a quite critical
scenario for several approaches, specially if based on silhouette or shape
analysis. Note how the complex configurations of the last two columns are
also handled correctly by our approach, fingers are very close to each other
and there are significantly occluded regions. In all these examples then, the
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G1 G2 G3 G4 G5

Figure 8.1: Sample images and depth maps for each of the gestures in the
database.

palm region is well detected as can be noticed from the second row of Fig.
8.2.

Figure 8.2: Output of the proposed approach on some sample gestures: (first
row) Input data; (second row) Palm and fingers regions; (third row) Fingers
classification. (Best viewed in colors).

The scheme for palm detection is very accurate, the correctness has been
evaluated by means of visual inspection and in 97% of the gestures the palm
region was entirely correctly assigned. In the few remaining gestures, some
isolated spots have been assigned to fingers in the region of the palm. Table
8.1 shows in the first column the average accuracy of the proposed approach
for fingers classification on the considered dataset. As expected, simpler
gestures are very well identified (e.g., gestures G1, G2 and G6), and even
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gestures where fingers are very close to each other (e.g., G15, G16 and G19)
of bent over the palm (e.g., G3, G8, G9) result in a very good accuracy.
The dataset contains a limited but challenging number of gestures, therefore
a little variation in the correctness of the recognition process leads to large
variation in the results. However, differently from other datasets, that con-
tain a continuous acquisition producing many frames, we collected a set of
gestures very different from each other.

The other three columns report the kind of error that leads to the wrong
identification. On average, only in the 1.7% of the acquisitions the algorithm
is not able to detect all the 5 fingers, while 20% of the times the fingers
classification step collapse more than one finger together. This is seldom due
to a bad classification after the linear assignment problem, indeed, only 7.5%
of the time it classifies one finger into two separate clusters, most of the time
instead, there are some residual spots around a finger cluster that lead to
ill-conditioning the problem. The worst classified gestures are G4 and G17,
in the first there are too many occlusions, while in the second, the acquired
depth map does not present sufficient surface details to discriminate fingers
from a planar region. In almost all the failure cases however, two adjacent
fingers are collapsed together, and the overall fingers classification without
considering this region can be retained correct.



37

Gesture Correctly recognized Missing Fingers Joined Finger Splitted Fingers
G1 100% 0% 0 % 0%
G2 100% 0% 0 % 0%
G3 83.3% 0% 16.7 % 16.7%
G4 16.7% 0% 83.3 % 0%
G5 100% 0% 0 % 0%
G6 100% 0% 0 % 0%
G7 66.7% 16.7% 16.7 % 0%
G8 100% 0% 0 % 0%
G9 100% 0% 0 % 0%
G10 83.3% 0% 16.7 % 0%
G11 66.7% 16.7% 16.7 % 0%
G12 83.3% 0% 16.7 % 0%
G13 66.7% 0% 33.3 % 0%
G14 50% 0% 50 % 50%
G15 100% 0% 0 % 0%
G16 83.3% 0% 16.7 % 0%
G17 33.3% 0% 66.7 % 33.3%
G18 66.7% 0% 16.7 % 33.3%
G19 83.3% 0% 16.7 % 0%
G20 50% 0% 50 % 16.7%

AVERAGE 76.7% 1.7% 20.8 % 7.5%

Table 8.1: Accuracy of the proposed approach on our database. The first
column shows the accuracy of the proposed approach (i.e., the percentage of
correctly assignments). In case of wrong recognition the other three columns
show the type of error made by the algorithm, i.e., if a finger is not detected
or is splitted in two or more parts and if multiple fingers are joined together.
Notice that since multiple errors can be made on the same acquisition in
some cases the sum can be greater than 100%.
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Conclusions

In this thesis an efficient approach was proposed for the recognition of the
palm and fingers from a single depth map without exploiting temporal con-
straints. The palm and fingers regions are discriminated by contracting the
3D point cloud along the normal directions and analyzing the point density in
the output of this process. This allows to recognize also fingers bent over the
palm, a quite critical issue for many silhouette and shape-based approaches.
Density-based clustering is then used to perform an over-segmentation of the
fingers regions and finally the segments are associated to the various fingers
by an integer linear programming approach. Experimental results demon-
strate the effectiveness of the approach on challenging datasets containing
complex gestures with inter-occlusions and fingers bent over the palm and
over other fingers. Notice how after recognizing the various fingers it is much
simpler to recognize the hand pose by associating the fingers depth samples
to the hand skeleton, further research will be devoted to the exploitation of
the proposed approach for hand pose estimation.
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Appendix A

Principal Component Analysis

Principal Component Analysis, shortly referred to as PCA, is a powerful yet
easy-to-implement method which is able to decorrelate a set of two or more
variables through the application of a particular linear map. More precisely,
it allows the mapping of a set of possibly correlated variables into a new set
of uncorrelated variables, sorted in order of decreasing variance, the first of
them taking into account for the most variation present in the original set.
These new variables are also called Principal Components.

PCA is one of the simplest and most used tools of multivariate analysis,
and it finds direct application in many fields such as computer vision, where
its geometrical interpretation is exploited in order to find best-fitting planes
and lines, or data compression [30], where it is used as a basic step to perform
transform coding. PCA approach was introduced for the first time by K.
Pearson in 1901 [31], although a precise formalization was provided by H.
Hotelling in 1933[32].

In order to illustrate the machinery behind PCA - with no claim of be-
ing exhaustive - we briefly discuss how the first principal component can be
derived, following the statistical approach presented in [33]. We start con-
sidering a set of n real variables x = [x1, ..., xn]T , whose covariance matrix Σ
is:

Σ = E[(x− µ)(x− µ)T ] =


σ1 σ1,2 · · · σ1,n
σ2,1 σ2 · · · σ2,n

...
... · · · ...

σn,1 σn,2 · · · σn

 (A.1)

where µ = E[x] is the mean expectation of x, σi,j = E[(xi − µi)(xj − µj)]
is the covariance associated to each pair of variables (xi, xj)i 6=j, while σi =
E(xi − µi)(xi − µi)

T ] is the variance of each variable xi. Note that, in the
practical case, we have no access to the covariance matrix: however, we can
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compute a sample covariance matrix starting from a set of observations or
samples of our variables, and successfully apply the method without major
changes. Let M be the m × n sample matrix collecting m observations of
the n variables, and let c ∈ Rn be the centroid of the samples, then we can
build the right covariance matrix as S = (M − c)T (M − c). In order not to
burden our notation, in what follows we shall assume x having zero mean,
so that its covariance matrix can be simply written as Σ = E[xxT ]. In the
real case, where we consider the sample covariance matrix, we shall perform
all computations after having recentred all samples toward their centroid.

Our goal is to create a new variable z1 which is a linear combination of
the original set of variables and whose variance is the maximum among the
variances of all variables that can be built out of a linear combination of x.
That is, we search for a coefficient vector a1 ∈ Rn such that z1 = aT1 x has
maximum variance var[z1] = maxa∈Rn{var[z] : z = aTx}. In order to avoid
trivial solutions, we also constrain a1 to have unit length, that is aT1 a1 = 1.
The new variable z1 will be referred to as the first principal component.

The problem, which is a maximization problem with one single constraint,
can be concisely stated as follows:

a1 = arg max aTΣa
s.t. aTa = 1

a ∈ Rn

(A.2)

where we have used the fact that var[aTx] = aTxxTa = aTΣa, which in turn
follows from our assumption on x having zero mean. We can then compute
the first principal component as z1 = aT1 x. The problem can be solved using
the Lagrangian relaxation, by removing the constraint cit and by including
it in the objective function, weighted by some multiplier λ ∈ R. In this way,
we obtain the following relaxed problem:

ar, λr = arg max aTΣa− λ(aTa− 1)
a ∈ Rn, λ ∈ R (A.3)

Differentiating the Lagrange function L(a, λ) = aTΣa − λ(aTa − 1) with
respect to a gives:

Σa− λa = 0 (A.4)

which says that if (ar, λr) is an optimal solution to the relaxed problem, then
λr is an eigenvalue of Σ and ar is the corresponding eigenvector. Moreover,
it can be proved that all eigenvectors of Σ are orthonormal vectors, since Σ
is a positive semi-definite matrix. This implies that aTr ar = 1, so that an
optimal solution to the relaxed problem is also an optimal solution to the
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original problem. Finally, observe that:

L(ar, λr) = aTr Σar − λr(aTr a− 1) = aTr Σar = aTr λrar = λra
T
r ar = λr (A.5)

Thus, an optimal solution is given by taking λr as the maximum eigenvalue
of Σ and ar as its corresponding eigenvector. Going back to the original
problem, we have that the first principal component for a set of variables
x can be computed as z1 = aT1 x choosing a1 as the eigenvector of Σ with
largest eigenvalue. In cit the approach to derive the first principal component
is rather similar, except that it focus on minimizing the distances from the
samples to a best-fitting hyperplane. We shall not show how to derive the
2-nd up to the n-th principal components: however, it can be proved in a
similar manner that the k-th principal component is zk = aTk x, where ak is
the eigenvector of Σ with the k-th largest eigenvalue.
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