
Università degli Studi di Padova
Dipartimento di Scienze Statistiche

Corso di laurea triennale in Statistica per l’Economia e l’Impresa

Tesi di Laurea Triennale

Non–Negative Constrained Penalised
Matching Quantiles Estimation

Relatore: Prof. Mauro Bernardi
Dipartimento di Scienze Statistiche

Candidato: Nicolas Bianco
Matricola: 1101617

Anno Accademico 2016/2017





Contents





Chapter 1

Introduction

The statistical area that has as main goal to replicate a target distribution, tradi-
tionally uses methods such as quantiles regression or density regression; the fist one
minimizes a function of quantiles Qα and the second one considers all the density
function fy(y). Since both are conditional regressions, developping methods that
match as well as possible a target unconditional distribution function can represent
a new prospective in this research field.
? introduced a method calledMatching Quantiles Estimation (MQE) used to match
a target unconditional distribution using a linear combination of some variables;
since it represents an important innovation we are going to present it in this intro-
duction.
Let Y be a random variable with density described by fY (y, θ) and X(n×p) =
(X1, X2, ..., Xp) a design matrix where Xj for j = 1, .., p is the vector contain-
ing the values of the jth variable.
The goal is to find a vector of coefficients β(p×1) such that the distribution of the
linear combination

Xβ = X1β1 +X2β2 + ...+Xpβp

matches the distribution of Y .
Hence, we define β as the value that minimize the difference between the quantiles
of the two distribution across all levels α ∈ [0, 1]:

β̂ = argminβ

∫ 1

0
[QY (α)−QXβ(α)]2dα (1.1)

Where Qη(α) denotes the αth quantile of the random variable η and we can write
that

P [η ≤ Qη(α)] = α , for α ∈ [0, 1].
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2 CHAPTER 1. INTRODUCTION

Solve the optimization problem defined by the equation (??) is not immediate;
that’s the why we should use MQE method that is easier and performs a better
fitting especially at the tails of the distribution, that are very important in financial
problems.
Let (Y1, Y2, .., Yn) and (X1j, X2j, .., Xnj)T be the samples of Y and Xj, for j =
1, .., p, respectively; and let’s call (Y(1), Y(2), .., Y(n)) and (X(1)j, X(2)j, .., X(n)j)T their
statistic order. Notice that Y(h) is the h

n

th sample quantile of the distribution of Y .
Now we can define our matching quantiles estimator across all levels α ∈ [0, 1] as

β̂ = argminβ
n∑
i=1

(Y(i) − (Xβ)(i))2 (1.2)

where ((Xβ)(1), ..., (Xβ)(n)) is the statistic order of ((Xβ)1, ..., (Xβ)n) and (Xβ)i =
Xiβ, for i = 1, .., n.
Since the equation above does not admit an explicit solution, we have to introduce
an iterative algorithm to compute the values of β. Suppose βk the kth iterated value
of β and Xk

(i) the statistic order of Xi during the kth iteration.
The first step is to set an initial value β0 that can be obtained via OLS estimation

β̂0 = argminβ
n∑
i=1

(Yi − (Xβ)i)2 = (XTX)−1XTY (1.3)

Then let βk be estimated by

β̂k = argminβ
1
n

n∑
i=1

(Y(i) − (Xβ)k−1
(i) )2 (1.4)

for each k ≥ 1.
When |β̂k − β̂k−1| ≤ ε with ε constant fixed and small, we stop the iterations and
β̂ = β̂k.
Hence MQE estimator is obtained by applying OLS estimation repeatedly to the
recursively sorted data.
MQE can be used also if we want to match only a part of the target distribution,
for example between αth1 and αth2 quantiles such that 0 ≤ α1 ≤ α2 ≤ 1; we can write
the MQE estimator at the kth iteration as follows

β̂k = argminβ
1

n2 − n1

n2∑
i=n1+1

(Y(i) − (Xβ)k−1
(i) )2 (1.5)

where ni = [nαi] with i = 1, 2 and [x] is the integer part of x.
Furthermore, ?, combine MQE method with the concept of shrinkage performing a
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penalised regression instead of the classical linear regression (OLS), focusing their
attention exclusively on L1-penalty in order to perform what is called LASSO (?).
As we know, this particular penalisation provides a sparse coefficient matrix and it
does automatic variables selection, but it does not satisfy the oracle property such
that P (β̂ = β) → 1 ( ?, ? ), because L1-penalty usually provides an underfitting,
especially for high values of predictors p.
To dealing with this problem, we propose to combine MQE with the Elastic-Net
(?) for its properties such as the capacity to regularize the estimates variance, pro-
duce sparsity and provide variables selection. The importance of the shrinkage, the
usage of Lq-penalty and the most important penalised regressions are presented in
Chapter ??.
Another important goal of this work is to understand how the introduction of con-
straints in the penalised regression used in MQE can change the performances of
the method; the choice of this study comes from the necessity in some real cases
to obtain coefficients that satisfy particular characteristics in order to be directly
interpretable. In Chapter ?? we present the effects of inequality and equality con-
straints, focusing our attention on the non-negative constraint.
In order to confirm the theory, we support the work with two empirical applications
to index tracking in Chapter ??.
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Chapter 2

Penalised matching quantile
estimation

There are some situations where OLS estimator is not the best choice, for example
when the number of parameters is large or when columns of X are highly correlated,
it can provide high variance in the estimates.
One way of dealing with this problem is to introduce a penalty in the optimization
problem in order to reduce the variance, although introducing bias; hence, instead
of minimizing the mean squared error, we minimize ∑n

i=1 lY (yi;Xiβ) + ψ(λ, q, β)
where lY (y;Xβ) is the log-likelihood for Y and ψ(·) is a penalty function with
parameters λ, that controls the trade-off between bias and variance and found via
cross validation, and q that is the degree of the Lq-penalty we want to use, where

Lq = ||x||q = (
p∑
i=1
|xi|q)1/q, ∀q > 0 (2.1)

In the following parts we consider the model

Y = Xβ + ε , ε ∼ N(0, σ2)

In order to define the notation, coefficients vector β, in a sparse model, can be
written as β = (β1, β2)T where β1 = (β1, .., βk)T contains the non-zeros and β2 =
(0, .., 0)T contains the coefficients that are set to zero. If the non-zeros number is
k, the zeros number is z = p− k.
Y(n×1) is the response vector and X(n×p) is the design matrix that can be written as
X = (X1, X2) according to the partition of β.
The penalised optimization problem consists in find β such that minimizes ∑n

i=1(yi−
Xiβ)2 + ψ(λ, q, β). Notice that combining MQE with a Lq penalisation we obtain
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the estimator at the kth iteration β̂k as

β̂k = argminβ
1
n

n∑
i=1

(Y(i) − (Xβ)k−1
(i) )2 + ψ(λk, q, βk) (2.2)

where λk is the shrinkage parameter at the kth iteration found by cross validation;
infact λ assumes different values at each step: although values in Y , X and their
equivalents sorted are the same, Y(i) remains fixed while X(i) changes according to
Ŷ at each iteration.
? define a penalty function as a good one if it provides estimator with these three
properties:

• Unbiasedness: The estimator β̂ is defined such that E(β̂)→ β.

• Sparsity: The estimator β̂ is a thresholding rule, which sets some coefficients
to zero providing a automatic variables selection.

• Continuity: The estimator β̂ is continuous in data.

Furthermore, they also present the Oracle property that is advisable for a penalty
function in order to dealing with the biasedness problem; before explain briefly
it, let’s define the regularity conditions that guarantee asymptotic normality of
maximum likelihood estimates.

Remark 1. Let Y = (Y1, .., YN) i.i.d. with density fYi
(yi, β); the first and second

logarithmic derivatives of fYi
(yi, β) satisfy:

• Eβ(∂log(fYi
(yi, β))

∂βj
) = 0 for j = 1, .., p

• IFjk
(β) = −Eβ(∂

2log(fYi
(yi, β))

∂βj∂βk
) for j = 1, .., p and k = 1, .., p

• Information matrix conditioned if β̂ = β : IF (β) |β̂=β is finite and definite
positive

• There is a region ω ⊂ Θ, where Θ is the parametric space, that contains

the real value β and such that for almost all Yi exist
∂3log(fYi

(yi, β))
∂βj∂βk∂βh

and

|∂
3log(fYi

(yi, β))
∂βj∂βk∂βh

| ≤ φ(y) for all β ∈ ω.
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Theorem 2. Suppose Y = (Y1, .., YN) i.i.d. with density described by fYi
(yi, β)

and such that satisfies the conditions in Remark ??, assume a penalty function
ψ(λ, q, β): if λ→ 0, n→ +∞ and λ

√
n→ +∞, the estimator β̂ satisfies

1. Sparsity : β̂ = (β̂1, β̂2) such that β̂2 = (0, .., 0)

2. Asymptotic normality :
√
n(β̂1 − β1)→ N(0, I−1

F (β1))

Hence the penalty function ψ(λ, q, β) holds the Oracle property.

2.1 L2-Penalty
If we fix q = 2 in (??) in order to obtain a L2-penalty, we perform the RIDGE
regression that provides an optimization problem such that

β̂ = argminβ(Y −Xβ)2 + λ||x||2 (2.3)

and the solution of (??) is

β̂ = (XTX + λIp)−1XTY (2.4)

Hence we can easily see that when

λ→ 0, β̂RIDGE → β̂OLS
λ→ +∞, β̂RIDGE → 0

Hence, the penalty that has to be added at the kth iteration in (??) while we are
performing MQE is given by

ψ(λk, 2, βk) = λk||βk||2 = λk

p∑
j=1

β2k

j

OLS estimates do not always exist; infact if X is not full rank, XTX is not invertible
and there is no unique solution for β. This problem does not occur with RIDGE
regression because for any design matrix X, the quantity (XTX +λIp) is invertible
and there is always a unique solution for β.
This penalised regression is used in order to reduce the variance of the estimates,
but can not be used to do subset selection; infact, unimportant coefficients may
be shrunken towards zero, but they are not exactly zero, so they are still in the
model. If we want to semplify the interpretation, we need a penalty that shrinks
some coefficients exactly to zero in order to obtain a sparse model.
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Figure 2.1: Parametric space Θ = {βj ∈ Θ |
∑p

j=1 β
2
j ≤ t} for β = (β1, β2) defined by L2

penalisation with t = 2 and p = 2.

2.2 L1-Penalty
If, instead of q = 2, we set q = 1, we include in the regression a L1-penalty and
perform what is called LASSO (?)

β̂ = argminβ(Y −Xβ)2 + λ||x||1 (2.5)

that provides an optimization problem with a convex objective function and can be
solved efficiently for large problems.

Let’s remark what a convex function is and why LASSO objective function is convex.

Theorem 3. A region ∆ is convex if for any x1, x2 ∈ ∆
x = αx1 + (1− α)x2 ∈ ∆, ∀α in (0, 1)

A function f(x) is convex if its domain ∆ is convex and f(x) = f(αx1+(1−α)x2) ≤
αf(x1) + (1− α)f(x2).
Theorem 4. A matrix H(p×p) is positive semidefinite (PSD) if zTHz ≥ 0, ∀ z(p×1)

Theorem 5. Suppose xp×1 vector and f(x) is a function of p variables with con-
tinuous second order derivatives defined on a convex domain ∆.
If its hessian 52f(x) is PSD ∀ x ∈ ∆, then f(·) is convex.
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Theorem 6. If f(x) and g(x) are convex functions defined on a convex domain ∆,
h(x) = f(x) + g(x) is also convex on ∆.

Theorem 7. The LASSO object function in (??) is convex.

Proof. Let h(β) be the LASSO objective function. We can write it as h(β) =
f(β) + g(β) where

f(β) = 1
n

∑n
i=1(Yi −Xβi)2 = ||y −Xβ||22

g(β) = λ
∑p
j=1 |βj| = λ||β||1

Notice that both f(β) and g(β) are defined on Rp that is convex.
52f(β) = XTX and ∀ zp×1 we have zT 52 f(β)z = zTXTXz = ||Xz||22 ≥ 0. Hence
the hessian of f(β) = 52f(β) is PSD. Hence, for the Theorem ??, f(x) is convex.
For any β1,β2 and any α ∈ (0, 1), let β = αβ1 + (1− α)β2. Now we can write g(β)
as

g(β) = λ||αβ1 + (1− α)β2||1
≤ λ||αβ1||1 + λ||(1− α)β2||1
= λα||β1||1 + λ(1− α)||β2||1
= αg(β1) + (1− α)g(β2)

Hence g(β) is convex, by Theorem ??.
Since both f(β) and g(β) are convex and since h(β) = f(β) + g(β), applying the
Theorem ??, h(β), the objective function of LASSO regression, is also convex.

If we introduce a L1-penalty in the kth iterated regression in (??) in order to perform
MQE combined with LASSO, the penalty function is described by

ψ(λk, 1, βk) = λk||βk||1 = λk

p∑
j=1
|βkj |

LASSO regression solves the problem of the interpretability of the model shrinking
some coefficients exactly to zero, but its main problems are that it does not provide a
regularization of variance and it does not possess the oracle property (Theorem ??)
since its resulting estimator is strongly biased, especially for cases in which the
number of regressors p is higher than n because it can select at most n non-zero
coefficients.
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Figure 2.2: Parametric space Θ = {βj ∈ Θ |
∑p

j=1 |βj | ≤ t} for β = (β1, β2) defined by L1
penalisation with t = 2 and p = 2.

2.3 Elastic-Net Penalty
Elastic-Net penalty is given by a combination of L1 and L2 penalties, and that
simultaneously does automatic variable selection, shrinks the coefficients and can
select groups of correlated variables, while LASSO usually tends to select only one
variable from these groups; hence it seems that Elastic-Net performs better than
LASSO in terms of prediction accuracy. All these properties are discussed and
proved with the support of simulation studies in ?.
The optimization problem to solve in this types of regression is

β̂ = argminβ
1
n

n∑
i=1

(Yi −Xβi)2 + λ[α
p∑
j=1
|βj|+ (1− α)

p∑
j=1

β2
j ] (2.6)

where α controls the influence of L1-penalty and L2-penalty and λ is the tuning
parameter. Notice that even in Elastic-Net regression we are working with a convex
objective function.
Moreover, we can write the optimization problem defined in (??) in its dual form
as

β̂ = argminβ
1
n

∑n
i=1(Yi −Xβi)2 subject to α

∑p
j=1 |βj |+ (1− α)

∑p
j=1 β

2
j ≤ t

Hence if α = 1 we perform the LASSO regression, if α = 0 the RIDGE regression
and if α ∈ (0, 1) the Elastic-Net regression. The penalty function ψ(·) in (??) can
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be written as

ψ(λk, 1, βk) = λ1k
||βk||1 + λ2k

||βk||2 = λ1k

p∑
j=1
|βkj |+ λ2k

p∑
j=1

β2k

j
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Figure 2.3: The area under the red curve represents the parametric space Θ = {βj ∈ Θ |∑p
j=1(1 − α)β2

j + α|βj | ≤ t} for β = (β1, β2) defined by Elastic-Net penalisation with α = 0.7,
t = 2 and p = 2. This space is compared to those defined by L2 (under green curve) and L1
(under blue curve) penalties.

2.4 Example on real data
Recalling MQE method, we can combine it with a penalised regression in order to
obtain a sparse model that can be very useful if we are working with large matrices
and we want to consider only the variables that exhibit the strongest effects and
obtain a model easily interpretable.
Let’s see now the results of an application of MQE combined with the penalised
regressions described in the previous parts.
Applying the algorithm on the dataset DJIA30, which contains the historical returns
of the Dow Jones Industrial Average and its constituentes from 20/03/2008 to
10/03/2017, we obtained a vector β that provides a linear combination Xβ such
that FY (y) = FXβ(xβ̂), where Y is the random variable describing the distribution
of the DJIA’s returns.
In order to get the results, ‘glmnet’ library, created by ?, has been used in R, which
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contains cv.glmnet(x,y), function for cross validation, and glmnet(x,y,...), function
for fitting a sparse model.
As λ we used the optimal value found via cross validation, that changes at each
iteration; as α we considered the cases α = 1, 0.7, 0.5, 0.2, 0. Furthermore, we
estimated a model without intercept and considering Y ∼ N(µ, σ2).
Focusing on how Penalised MQE matches a target distribution, we obtained the
following results.

Method Alpha Mean Standard Deviation Min q(0.25) q(0.5) q(0.75) Max RMSE KS p-value
Index DJIA 0.00042 0.00980 -0.05706 -0.00355 0.00034 0.00509 0.06611 - -

MQE-LASSO 1 0.00039 0.00972 -0.05548 -0.00347 0.00023 0.00496 0.06710 0.00154 0.99570
MQE-ElasticNet 0.7 0.00040 0.00977 -0.05590 -0.00346 0.00025 0.00495 0.06741 0.00132 0.99861
MQE-ElasticNet 0.5 0.00040 0.00980 -0.05618 -0.00349 0.00026 0.00502 0.06719 0.00117 0.99747
MQE-ElasticNet 0.2 0.00041 0.00986 -0.05665 -0.00348 0.00026 0.00505 0.06834 0.00086 0.99987

MQE-RIDGE 0 0.00041 0.00990 -0.05693 -0.00351 0.00030 0.00504 0.06859 0.00081 0.99999

Table 2.1: Mean, Standard Deviation, Minimum, Quartiles, Maximum, Root-Mean square error
and p-value of a Kolmogorov-Smirnov two samples test are reported in order to confront several
different penalised matching quantiles estimation for n = 200.

From the Table ?? we can see that each method perform a good replication of
the index. A remark that must be done is that the quantiles matching is almost
perfect across all levels, but especially in the tails of the distribution that play a rel-
evant role in finance because they contain the strongest negative and positive values.
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Figure 2.4: Cumulative sums for MQE combined with LASSO (blue), Elastic-Net α = 0.7 (light
blue), Elastic-Net α = 0.5 (green), Elastic-Net α = 0.2 (red) and RIDGE (violet). The black line
represents the real sum of returns of the Index.
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Considering the Table ?? and Fig. ??, we can see how until a certain point each
method replies almost perfectly the returns of the index, but then all of them per-
form worse than the index, and in a different way between themselves.
RIDGE regression provides the closest cumulative sum, it has the highest mean
(0.41), but also the highest standard deviation (0.0099); at the contrary, MQE
combined with LASSO provides returns with a lower cumulative sum and mean
(0.39), but even a lower standard deviation (0.0097), which means less risk.
Hence, there’s no methods to exclude, because there’s no one that gives us losses,
but neither to accept immediatly, because it depends on the trade off the investor
requires between risk and return.

0

20

40

60

−0.04 0.00 0.04

Index

 

0

20

40

60

−0.04 0.00 0.04

MQE_LASSO

 

0

20

40

60

−0.04 0.00 0.04

MQE_ElasticNet_0.7

 

0

20

40

60

−0.04 0.00 0.04

MQE_ElasticNet_0.5

 

0

20

40

60

−0.04 0.00 0.04

MQE_ElasticNet_0.2

 

0

20

40

60

−0.04 0.00 0.04

MQE_RIDGE

 

Figure 2.5: Densities produced by each method.

Looking at the values in the Table ?? and according to Fig. ?? and Fig. ?? we
can suppose that the historical series of returns come from the same distribution.
Infact, performing the Kolmogorov-Smirnov test on two samples in order to verify
the null hypothesis

H0 : FY (y) = FXβ(xβ̂)

we obtained always p − value > 0.05. Hence, with a level of 95% of confidence,
we accept all the null hypotesis for each case we implemented. For each method
performed we found linear combination Xβ such that matches the distribution of
Y (index returns) using Penalised Matching Quantiles Estimation. Notice that
the best performance we obtain in terms of Kolmogorov-Smirnov test is when we
combineMQE with RIDGE penalty; this might be because with this method there’s
no coefficients set to zero, but we consider all the 30 constituents of the index.
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Figure 2.6: Densities overlapped of the returns given by the application of several different
regressions such as LASSO (blue), Elastic-Net α = 0.7 (light blue), Elastic-Net α = 0.5 (green),
Elastic-Net α = 0.2 (red) and RIDGE (violet). The black line represents the real sum of returns
of the Index.

Anyway the goal would be matching as better as possible the index returns distri-
bution, but using the smallest number of constituents which exhibit the strongest
effects; hence, to define which method has to be choosen as the best one, we need
to set a measure of trade off between the number of coefficients introduced in the
model and how much variance we want to explain, that are values directly pro-
portional. Choosing properly a bound for this measure, we can identify the best
combination MQE-penalty to use in our application.
The reduction of the number of coefficients used become very important when we
are working with large matrices where we have p > n.



Chapter 3

Constrained penalised matching
quantiles estimation

Starting from a generalized penalised regression

β̂ = argminβ
n∑
i=1

(Y −Xβ)2 + ψ(λ, q, β) (3.1)

where ψ(λ, q, β) is a penalty factor depending on q, we can add inequality and
equality constraints on the coefficients β in order to obtain a constrained penalised
regression

β̂ = argminβ
n∑
i=1

(Y −Xβ)2 + ψ(λ, q, β) s.t Aβ = b and Cβ ≥ d (3.2)

Usually this kind of regressions are implemented in algorithms in order to be ap-
plicable to the reality that sometimes requires particular conditions that must be
respected.
Inequality constraints define a area Ω and can modify the parametric space Θ for
β. In particular it can be

Ω if Ω ⊂ Θ
∆ = {β ∈ Rp | β ∈ Ω ∩Θ} if Ω ∩Θ 6= ∅
Θ if Ω ⊃ Θ

15
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Also equality constraints define a region, Φ, in the geometrical space such that Ω
can be modified as follows

Φ if Φ ⊂ Θ
∆ = {β ∈ Rp | β ∈ Φ ∩Θ} if Φ ∩Θ 6= ∅
∅ if Φ ∩Θ = ∅

Another important remark that must be done about the two type of constraints is
that equality constraint is stronger than the inquality one.
Furthermore, we can introduce in the Penalised MQE, presented in the Chapter. ??,
some constraints in order to make the method applicable to real cases that require
some constriction on the parameters.

3.1 Non-negative constraints
One of the most used inequality constraints consists in imposing the positivity of
the coefficients: βj ≥ 0, ∀j = 1, .., p. This constraint can be written in matricial
form as follows 

1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1



β1
β2
...
βp

 ≥


0
0
...
0

 (3.3)

Ip βp×1 ≥ 0p×1

As the parametric space changes, also the optimization problem (??) when we
include a L1-penalty does

β̂ = argminβ(Y −Xβ)2 + λ
p∑
j=1

βj (3.4)

infact
βj ≥ 0 ⇒ |βj| = βj, ∀j = 1, .., p (3.5)

(??) can be also written in its dual form as follows

β̂ = argminβ(Y −Xβ)2 s.t
p∑
j=1

βj ≤ t (3.6)

This regression is a particular case of LASSO, called Non-Negative LASSO for its
parameters properties.
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Figure 3.1: Parametric space Θ in case of L2 (green), L1 (red) and ElasticNet (blue) non
negative costrained penalisation for t = 2, β(2×1) = (β1, β2) and α = 0.7.

Notice that since L2-penalty considers λ||β||22 = λ
∑p
j=1 β

2
j , where each βj is consid-

ered squared, the form of a L2-penalised regression does not change.

3.2 Equality constraints

A penalised regression subject to equality constraints follows the form

β̂ = argminβ
n∑
i=1

(Y −Xβ)2 + ψ(λ, q, β) s.t Aβ = b (3.7)

with A(k×p), k represents the number of costraints and b(k×1).
Suppose f(β) a function continuous and derivable in β to be minimized constrained
to B(β) = b.
Writing the constraint as g(β) = B(β)− b we can define the lagrangian form of the
constrained optimization problem

L(β, µ) = f(β) + µg(β) (3.8)

In order to find the minimum of f(β) subject to B(β) = b we need to solve the
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following system of equations
∂L

∂β
= ∂f(β)

∂β
+ µ

∂g(β)
∂β

= 0
∂L

∂µ
= g(β) = 0

(3.9)

If f(β) is convex (its hessian H is PSD), the solution (β̂, µ̂) represents the minimum
for f(β) constrained to B(β) = b.

In our case we consider a function f(β) = ∑n
i=1(Y −Xβ)2 +ψ(λ, q, β) where accord-

ing to the form of ψ(λ, q, β) we can define the LASSO problem or the Elastic-Net
one. Since these penalised regressions provide a convex objective function, the so-
lution of (??) in these cases represents the unique constrained optimal solution for
the minimization problem in (??).
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Figure 3.2: Parametric space Θ in case of L2 (green), L1 (red) and ElasticNet (blue) costrained
penalisation with equality constraint

∑2
j=1 βj = 1, for t = 2, β(2×1) = (β1, β2) and α = 0.7. Notice

that if t < 1 there would not be any solution for the optimization problems.



Chapter 4

Application to index Tracking

Tracking an index means that we are trying to replicate its growth across the time;
by doing it we want to use just a subset of its constituents, the ones with the
strongest effects, and not all of them.
Instead of what has been proposed by ?, we want to replicate the distribution of the
index returns using a Non-Negative Constrained Penalised MQE including different
penalties in order to compare them. Since financial assets are high correlated be-
tween them, we expect better performances from Elastic-Net because of its capacity
to select entirely groups of correlated variables if they are relevant, property that
LASSO doesn’t have.
First of all, in the financial framework, we are interested in the interpretation of the
coefficients as weights; hence, if we want to read βj as the percentage of our capital
that we want to invest in the jth constituent, we require that the sum of betas is
equal to one.

p∑
j=1

βj = 1 (4.1)

Furthermore, with the constriction in equation (??), we suppose we invest all of our
capital in each period.
Another characteristic we require for our betas is the positivity, so we suppose that
short sales are not allowed.

βj ≥ 0 ∀j = 1, .., p (4.2)

If we want to use MQE to solve an index tracking problem, we need to introduce
the constraints in (??) and (??) in the regression we use to perform the method.
Suppose we want to perform a Penalised MQE in order to shrink some coefficients
to zero and include in our portfolio only the constituents that exhibit the strongest
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effects on index performances; the optimization problem to solve will be

β̂ = argminβ
1
n

n∑
i=1

(Y(i) −Xβ(i))2 + j(β) s.t.
p∑
j=1

βj = 1 and βj ≥ 0 (4.3)

where

j(β) = λ
∑p
j=1 |βj| if MQE-LASSO is performed

and

j(β) = λ1
∑p
j=1 |βj|+ λ2

∑p
j=1 β

2
j if MQE-Elastic-Net is performed

Notice that, introducing the constraints in the optimization problem for the pe-
nalised regression we are fixing a specific form of sparsity by imposing the λ value
that controls the trade off between bias and variance.
Let’s consider the L1 penalised regression in order to understand better what hap-
pens; writing the LASSO constriction using its dual form, we can write the opti-
mization problem as

β̂ = argminβ
1
n

n∑
i=1

(Yi −Xβi)2 s.t.
p∑
j=1
|βj| ≤ t,

p∑
j=1

βj = 1 and βj ≥ 0

(4.4)
Let’s now consider the following system of equations given by

∑p
j=1 |βj| ≤ t∑p
j=1 βj = 1

βj ≥ 0
(4.5)

βj ≥ 0 means that |βj| = βj, ∀j = 1, .., p.
This constriction provides a Non-Negative LASSO regression because of the con-
straint βj ≥ 0 that sets all the coefficients equal or higher than zero.
The objective function for this particular regression is given by (??).
Let’s see what happens to the region in Fig. ?? if we add also the constraint∑p
j=1 βj = 1.

Since the equality constraint is stronger than the inequality one, we can consider
only 

∑p
j=1 βj = 1

βj ≥ 0
(4.6)

as constraints of the optimization problem (??).
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Figure 4.1: Parametric space Parametric space Θ in case of L2 (green), L1 (red) and ElasticNet
(blue)in case of L2 (green), L1 (red) and ElasticNet (blue) non-negative costrained penalisation
with equality constraint

∑2
j=1 βj = 1, for t = 2, β(2×1) = (β1, β2) and α = 0.7.

Hence, when we introduce the positivity of the coefficients and their sum to one, we
are imposing a fixed value t = 1, that corresponds to a fixed value λ, for the penalty
factor and at the same time we define a parametric space Θ that is the same for
each Lq-penalty we decide to introduce in the regression, as we can see in Fig. ??.
Since that, the difference between the different penalisations consists in the first
unconstrained estimation β̂0 required by MQE method in order to set the initial
value for β̂ and the models will be evaluated only for the capacity to select the
real subset of coefficients to set to zero; infact variables selection is very important
mostly in the applications where p > n.
Althought imposing a λ value is statistically incorrect, it represents the solution
when we want to build a model applicable to the reality.

4.1 Dow Jones Industrial Average 30
Let’s see now what happens if we perform the MQE method on a real dataset in
order to describe a realistic case of index tracking. We consider the returns of Dow
Jones Industrial Average 30 from 20/03/2008 to 10/03/2017 and we try to replicate
it using all or a part of its constituents. In this application we use a forecasting
estimation instead of a contemporary one because in the real cases we don’t invest
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day by day, but we would like to invest now for some days ahead; hence, we perform
Constrained Penalised MQE for different lengths of rolling window, n = 50 and
n = 100, and for h = 1 and h = 5 days ahead. Furthermore, we suppose that short
sales are not allowed and in a second moment that we are also using all the capital.

h = 1

n = 20
Method Alpha Mean SD CumSum RMSE Turnover Non-zero
Index 0.00022 0.01201 0.50467

MQE-LASSO 1 0.00004 0.01013 0.09826 0.01606 0.74352 5
MQE-ElasticNet 0.7 0.00009 0.01264 0.20931 0.01823 0.79519 8
MQE-ElasticNet 0.5 0.00008 0.01272 0.19036 0.01827 0.80826 9
MQE-ElasticNet 0.2 0.00013 0.01291 0.30703 0.01842 0.82500 10

n = 50
Method Alpha Mean SD CumSum RMSE Turnover Non-zero
Index 0.00022 0.01205 0.50667

MQE-LASSO 1 0.00031 0.01212 0.71723 0.01772 0.48668 10
MQE-ElasticNet 0.7 0.00029 0.01220 0.65696 0.01777 0.51650 11
MQE-ElasticNet 0.5 0.00032 0.01215 0.72512 0.01773 0.49428 11
MQE-ElasticNet 0.2 0.00031 0.01225 0.69988 0.01784 0.50603 12

n = 100
Method Alpha Mean SD CumSum RMSE Turnover Non-zero
Index 0.00026 0.01202 0.58406

MQE-LASSO 1 0.00013 0.01204 0.29314 0.01768 0.32907 10
MQE-ElasticNet 0.7 0.00012 0.01208 0.26774 0.01766 0.32990 11
MQE-ElasticNet 0.5 0.00012 0.01211 0.26510 0.01772 0.33405 11
MQE-ElasticNet 0.2 0.00013 0.01217 0.29717 0.01776 0.33031 12

h = 5

n = 20
Method Alpha Mean SD CumSum RMSE Turnover Non-zero
Index 0.00021 0.01201 0.49670

MQE-LASSO 1 0.00005 0.01139 0.11471 0.01679 0.78452 4
MQE-ElasticNet 0.7 0.00027 0.01404 0.61488 0.01895 0.88880 7
MQE-ElasticNet 0.5 0.00017 0.01452 0.39560 0.01925 0.90648 8
MQE-ElasticNet 0.2 0.00035 0.01514 0.81272 0.01980 0.92854 9

n = 50
Method Alpha Mean SD CumSum RMSE Turnover Non-zero
Index 0.00023 0.01206 0.51982

MQE-LASSO 1 0.00015 0.01288 0.35180 0.01816 0.51854 10
MQE-ElasticNet 0.7 0.00018 0.01295 0.40465 0.01821 0.48668 10
MQE-ElasticNet 0.5 0.00018 0.01300 0.41906 0.01823 0.52429 11
MQE-ElasticNet 0.2 0.00018 0.01307 0.41264 0.01830 0.52820 11

n = 100
Method Alpha Mean SD CumSum RMSE Turnover Non-zero
Index 0.00026 0.01201 0.58309

MQE-LASSO 1 0.00026 0.01245 0.57214 0.01766 0.31464 10
MQE-ElasticNet 0.7 0.00025 0.01247 0.55121 0.01768 0.31696 11
MQE-ElasticNet 0.5 0.00024 0.01254 0.53919 0.01772 0.32012 12
MQE-ElasticNet 0.2 0.00026 0.01261 0.57354 0.01778 0.32748 13

Table 4.1: Penalised MQE and constrained to the positivity of coefficients.
Mean, Standard Deviation, Cumulative returns, root-Mean Square Error, Turnover and non-zero
coefficients for several models found applying MQE in order to replicate Dow Jones Industrial
Average 30
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h = 1

n = 20
Method Alpha Mean SD CumSum RMSE Turnover Non-zero
Index 0.00022 0.01201 0.50467

MQE-LASSO 1 0.00007 0.01268 0.17353 0.01830 1.18623 10
MQE-ElasticNet 0.7 0.00026 0.01253 0.61464 0.01820 0.45595 16
MQE-ElasticNet 0.5 0.00027 0.01253 0.61721 0.01820 0.45425 16
MQE-ElasticNet 0.2 0.00028 0.01249 0.64275 0.01817 0.45643 16

n = 50
Method Alpha Mean SD CumSum RMSE Turnover Non-zero
Index 0.00022 0.01205 0.50667

MQE-LASSO 1 0.00023 0.01241 0.51907 0.01830 0.80431 15
MQE-ElasticNet 0.7 0.00022 0.01220 0.49651 0.01802 0.11614 27
MQE-ElasticNet 0.5 0.00021 0.01220 0.49242 0.01802 0.11568 27
MQE-ElasticNet 0.2 0.00022 0.01220 0.50817 0.01802 0.11541 27

n = 100
Method Alpha Mean SD CumSum RMSE Turnover Non-zero
Index 0.00026 0.01202 0.58406

MQE-LASSO 1 0.00025 0.01193 0.56306 0.01778 0.53957 16
MQE-ElasticNet 0.7 0.00025 0.01214 0.56933 0.01795 0.04592 28
MQE-ElasticNet 0.5 0.00025 0.01214 0.56542 0.01795 0.04581 28
MQE-ElasticNet 0.2 0.00025 0.01214 0.56202 0.01795 0.04520 28

h = 5

n = 20
Method Alpha Mean SD CumSum RMSE Turnover Non-zero
Index 0.00021 0.01201 0.49670

MQE-LASSO 1 0.00007 0.01346 0.17146 0.01843 1.18290 8
MQE-ElasticNet 0.7 0.00027 0.01254 0.62631 0.01774 0.45566 16
MQE-ElasticNet 0.5 0.00027 0.01254 0.63128 0.01774 0.45420 16
MQE-ElasticNet 0.2 0.00028 0.01250 0.64069 0.01773 0.45739 16

n = 50
Method Alpha Mean SD CumSum RMSE Turnover Non-zero
Index 0.00023 0.01206 0.51982

MQE-LASSO 1 0.00018 0.01245 0.40037 0.01771 0.81509 13
MQE-ElasticNet 0.7 0.00022 0.01221 0.50850 0.01753 0.11634 27
MQE-ElasticNet 0.5 0.00022 0.01220 0.50815 0.01753 0.11549 27
MQE-ElasticNet 0.2 0.00022 0.01218 0.51319 0.01752 0.11602 27

n = 100
Method Alpha Mean SD CumSum RMSE Turnover Non-zero
Index 0.00026 0.01201 0.58309

MQE-LASSO 1 0.00032 0.01218 0.71695 0.01756 0.53942 16
MQE-ElasticNet 0.7 0.00026 0.01215 0.57586 0.01746 0.04617 28
MQE-ElasticNet 0.5 0.00026 0.01212 0.57563 0.01746 0.04632 28
MQE-ElasticNet 0.2 0.00026 0.01211 0.57342 0.01747 0.04526 28

Table 4.2: Penalised MQE and constrained to the positivity of coefficients and their sum equal to
one.
Mean, Standard Deviation, Cumulative returns, root-Mean Square Error, Turnover and non-zero
coefficients for several models found applying MQE in order to replicate Dow Jones Industrial
Average 30

Considering the results of the two penalised regression with different constraints,
we notice that adding the constraint ∑p

j=1 = 1, the number of non-zero coefficients
for each type of regression increases, hence we obtain a matrix less sparse, as we
can see in Fig. ??, and, as a consequence, the value of each βj decreases (Fig. ??).
This happens because we are imposing a t = 1 in the L1-penalty written with its
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dual form, ∑p
j=1 ≤ t, that corresponds to a fixed value for λ in λ||β||1: so we are

fixing a sparsity degree.
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(d) ELASTIC-NET α = 0.2

Figure 4.2: How the number of non-zero changes while we add the equality constraint. Values for
n = 50 and h = 1, where the red line represents the case with only the non negative constraints
and the blue one the case with both the constraints. The dashed line overlapped represents the
mean of non-zero coefficients and it is the value considered in Table ?? and Table ??

The estimates in the models with both constraints provide a better matching for
µ and σ; and another value that changes a lot is the turnover, infact, in Table ??
turnovers are almost the same for each method and on the contrary in Table ??
MQE-LASSO ones are always the highest even if the number of coefficients in
the model is the lowest. Furthermore, LASSO has the minor number of non-zero
coefficients for every n and every h and its estimates are more variables also because
L1-penalty does not provide a regularization of the variance. At the contrary,
Elastic-Net estimates give us always a good matching with the target distribution;
moreover, for n < p we obtain cumulative returns higher than the index for each
value α = 0.2, 0.5, 0.7, 1, where α controls the influence of L1 and L2 penalties in
the Elastic-Net regression.
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(d) ELASTIC-NET α = 0.2

Figure 4.3: How the value of the coefficient linked to NIKE changes while we add the equality
constraint. Values for each type of Penalised MQE for n = 50 and h = 1, where the red line
represents the case with only the non negative constraints and the blue one the case with both
the constraints.

Hence, looking at these results, we can conclude that combine MQE with Elastic-
Net provides sometimes the same goodness of matching than combining it with
LASSO and sometimes a better one, but never a worse one; this happens especially
in the regression with coefficients constrained to be positive and to sum to one, that
represents the more realistic case.

4.2 Standards’ and Poor 500
The second application regards Standards’ and Poor 500 data from 04/01/1984 to
26/04/2016 containing the value of the index and the original constituents present
at each time in the sampling period; hence, working with this dataset means work
in the same conditions as an analist did in the reality. In particular it is composed
by 8147 returns of SP500 and its constituents are in total 1299, but every day they
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are at most 500; so, for each rolling window, we are going to consider as variables
the biggest subset of constituents that are in the index for all the duration of that
period that usually are p ≈ 400.
Furthermore, we perform a Penalised MQE costrained to the positivity of coeffi-
cients and fixing n = 728, 364, 184, which means 2,1 and 1/2 years of daily returns;
the estimation is contemporary, hence h = 0, and the penalised regressions used
are the LASSO and Elastic-Net with α = 0.2, 0.5, 0.7. The tuning parameter λ has
been selected via cross validation as the optimum lambda value.

n = 184
Method Alpha Mean SD CumSum RMSE KS P-value Non-zero
Index 0.00027 0.01146 2.01700

MQE-LASSO 1 0.00023 0.01033 1.70393 0.01411 0.00525 24
MQE-ElasticNet 0.7 0.00023 0.01160 1.70190 0.01494 0.00294 57
MQE-ElasticNet 0.5 0.00023 0.01163 1.70693 0.01494 0.00294 60
MQE-ElasticNet 0.2 0.00028 0.01172 2.11167 0.01500 0.01190 63

n = 364
Method Alpha Mean SD CumSum RMSE KS P-value Non-zero
Index 0.00029 0.01132 2.26889

MQE-LASSO 1 0.00021 0.01030 1.66712 0.01377 0.00095 26
MQE-ElasticNet 0.7 0.00022 0.01131 1.71183 0.01431 0.00224 53
MQE-ElasticNet 0.5 0.00022 0.01133 1.71478 0.01431 0.00336 56
MQE-ElasticNet 0.2 0.00028 0.01156 2.16524 0.01452 0.00446 60

n = 728
Method Alpha Mean SD CumSum RMSE KS P-value Non-zero
Index 0.00030 0.01124 2.41109

MQE-LASSO 1 0.00017 0.01028 1.38682 0.01338 0.00078 23
MQE-ElasticNet 0.7 0.00021 0.01138 1.70674 0.01370 0.08363 51
MQE-ElasticNet 0.5 0.00021 0.01141 1.67775 0.01372 0.09054 54
MQE-ElasticNet 0.2 0.00024 0.01155 1.92492 0.01390 0.12310 59

Table 4.3: Mean, Standard Deviation, Cumulative returns, root-Mean Square Error, p-value of
Kolmogorov-Smirnov two samples test and non-zero coefficients for several models found applying
Non-negative Penalised MQE in order to replicate SP500.

As we can see in Table ?? the penalties we combined with MQE, for different α
values, provide different results; infact, it seems that, althought there’s few cases
in which we accept the null hypothesis of Kolmogorov-Smirnov test, its p-value in-
crease while L2-penalty influence is increasing. Looking at the values for the mean,
the standard deviation and cumulative sum we can easily see how MQE combined
with Elastic Net penalty for α = 0.2 provides the closest values to the index ones,
even if the RMSE is lower for a bigger value of α.
As we know from previous parts, elastic net shrinks less coefficients to zero than
LASSO; that’s probably the why MQE with a combination of L1 and L2 penalties
performs a better distribution matching than the L1-penalty alone can do. For this
reason, in order to have an almost perfect matching, we can think about perform
MQE combined exclusively with a RIDGE regression, but as explained in Chap-
ter ?? it does not shrinks any coefficient exactly to zero, that is a property we
require if we want to have an easier interpretable model and do variables selection;
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hence we can suppose that our best choice is to combine MQE with a elastic net
penalisation for a very small value α. Let’s see more in detail the particularity of
the different models, focusing our attention on the best one and the worst one in
terms of capacity to match a target distribution: MQE-ElasticNet α = 0.2 and
MQE-LASSO, respectively (Fig. ??).
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(c) n = 184

Figure 4.4: Cumulative sums for estimated returns of models found via Non-negative Penalised
MQE compared with SP500 index returns (black line) using a contemporary estimation. The
penalisation used are LASSO (blue), Elastic-Net α = 0.7 (light blue), Elastic-Net α = 0.5 (green),
Elastic-Net α = 0.2 (red).
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In order to conclude our analysis we consider how the number of non-zero coefficients
(Fig. ??) and the adjusted R-squared (Fig. ??) change according to the penalisation
introduced in the regression; we expect to notice a direct relationship between the
two values (Fig. ??).
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(c) n = 184

Figure 4.5: Non-zero coefficients at each rolling window while a contemporary estimation is per-
formed; the dashed line overlapped represents the mean of non-zero coefficients and it is the value
considered in Table ??. The penalisation used are LASSO (blue), Elastic-Net α = 0.7 (light blue),
Elastic-Net α = 0.5 (green), Elastic-Net α = 0.2 (red).
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Figure 4.6: How the number of non-zero (dark red on left y-axe) and the adjusted R-squared (blue
on right y-axe) change at each iteration of MQE. Values for two generic rolling windows T while
MQE combined with Elastic-Net is performed with α = 0.2 and n = 184
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Figure 4.7: How R-squared changes from first estimation (blue) to second one (red) during MQE
iterative algorithm. Values for MQE combined with Elastic-Net α = 0.2 when n = 184
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Chapter 5

Conclusion

Supported by empirical results from the applications, we can affirm that Matching
Quantiles Estimation method performs very well for small datasets where n > p, but
can be improved when the number of regressors p is higher than the observations
n; since the L1-penalty is linked to the problems we presented in Chapter ??,
we combined MQE with the Elastic-Net penalisation in order to exploit the main
features of this penalty. Infact, we noticed that while the influence of the L2-penalty
increases, the results seems to be better; anyway we can not consider exclusively
this penalty in our regression because we require to set some coefficients exactly to
zero.
The introduction of constraints in the regression causes changes in the parametric
space; hence number of non zero coefficients and their value are the most sensitive
measures (Fig. ?? and Fig. ??). Sometimes these constraints are mandatories if we
are working in a particular workspace, even if their introduction is incorrect in a
statistical point of view (as presented in Chapter ?? while we submit the coefficients
to be positive and their sum equal to one) because they might fix a particular model
of sparsity and the choice of the tuning parameter, that is an interesting part in
penalised regressions, become not relevant.
Usually, when we are working with penalties and constraints, obtain a good fitting
in terms of R2 or R2 is very difficult and from the applications we noticed that the
most of the times we can not reach neither 50%; but applying MQE method that
presents an iterative algorithm to find the optimal value for β and that requires
to sort the data at each iteration, the empirical analysis shows that immediatly
after the first sorting and the estimation the R2 and R

2 values increase and the
will continue to do this at each subsequent iteration (Fig. ??). Hence, even if we
consider a constrained penalised regression, MQE allows us to obtain an almost
perfect fitting, we couldn’t ever reach with a classic regression.
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Chapter 6

Appendix A.
R-code for applications

Regression coefficients
Upload dataset

> sp500 = read.table("sp500.txt", header=TRUE)

Upload libraries

> library(glmnet)

Define response vector and design matrix

> mX.full = sp500[,2:1300]
> vY.full = sp500$RENDIMENTI

> h = 1 # h-steps ahead in the estimation
> p = ncol(mX.full) # total number of predictors
> N = length(vY.full) # total number of observations
> n = 250 # dimension of rolling window
> T = N-n+1 # number of rolling windows
> a = 0.7 # alpha value in the penalised regression
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> mRegP = matrix(c(rep(0, T*p)), T, p) # matrix in which
# i’ll save betas
> nzero = rep(NA,T) # number of non-zero coefficients
# vector
> varY = rep(NA,T) # total variances vector
> varRes = rep(NA,T) # residual variances vector
> Rs = rep(NA,T) # R-squared vector
> ARs = rep(NA,T) # Adjusted R-squared vector > lambdas =
rep(NA,T) # lambda values selected

For each rolling window

> for (t in 1:T) {
# define start and end
> start = t
> end = t+n-1
# define design matrix with only the consituentes that are
# in the index during all the duration of the rolling
# window.
# h controls if we perform a contemporary estimation or
# a prevision estimation.
> vIndi=setIndiLen(mX.full,start,end)
> mX = as.matrix(mX.full[start:(end-h),vIndi])
# define response vector
> vY = vY.full[(start+h):end]
# First penalised estimation
# lambda via cross-validation
> l = cv.glmnet(mX,vY)$lambda.min
> fit = glmnet(mX,vY, alpha=a, lambda = l, intercept =
FALSE, lower.limits = 0)
> vRegP = as.vector(fit$beta)
> vY.hat0 = mX %*% vRegP
# sort data as required in MQE
> vY_ = sort(vY)
> mX_ = ordina.mX(vY.hat0, mX)
# define values for the convergence of the algorithm
> dTolX = sqrt(as.vector(vRegP)%*%as.vector(vRegP))
> res0 = resid(vY, vY.hat0, n)
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> dTolFun = res0
> minTolX = 0.05
> minTolFun = 1e-06
> RsLim = 0.5
# main part of MQE-method. Iterative estimates until
# convergence.
> while ((dTolX > minTolX) || (dTolFun > minTolFun) ||
(RsLim > Rs_) {

# lambda via cross-validation
> l = cv.glmnet(mX_,vY_)$lambda.min
> fit_ = glmnet(mX_,vY_, alpha=a, lambda = l, intercept =
FALSE, lower.limits = 0)
> vRegP_ = fit_$beta
> vY.hat = mX_%*%vRegP_
> dTolX = sqrt((as.vector(vRegP_)-as.vector(vRegP))%*%
(as.vector(vRegP_)-as.vector(vRegP)))
> res.new = resid(vY_, vY.hat, n)
> dTolFun = abs(res.new-res0)
> res0 = res.new
> mu = mean(vY_)
> varY_ = sum((vY_ - mu)^2)
> varRes_ = sum((vY_ - vY.hat)^2)
> Rs_ = 1-varRes_ / varY_
# sort design matrix
> mX_ = ordina.mX(vY.hat, mX_)
# update betas vector
> vRegP = vRegP_

}
# save the values defined above for the rolling window
> mu = mean(vY_)
> nzero[t] = length(which(vRegP!=0))
> varY[t] = varY_
> varRes[t] = varRes_
> Rs[t] = Rs_
> ARs[t] = 1 - ((1-Rs[t])*(length(vY_)-1)/(length(vY_)-
nzero[t]-1))
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> lambdas[t] = l
# save betas vector in the matrix defined at the beginning
> mRegP[t,vIndi]=vRegP
}

Save results in a .txt file

> tab = cbind(nzero,varY,varRes,Rs,ARs)
> write.table(tab, file="stats__elnet_h_n.txt", sep=" ",
col.names = FALSE, row.names=FALSE)
> write.table(mRegP.las, file="results_elnet_h_n.txt",
sep=" ", col.names = FALSE, row.names=FALSE)

Estimation
Let’s estimate the predicted values Ŷ , given by Xβ̂

Upload the matrix containing betas for each window

> coeff.full = read.table("results_elnet_h_n.txt")

Set the response vector and the design matrix

> vY = sp500$RENDIMENTI
> mX.full = sp500[,2:1300]

Initialize the predicted values vector

> vY.hat=c(rep(NA, T))
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For each window

> for (i in 1:T) {
> vIndi=setIndiLen(mX.full,i,199+i)
> mX = mX.full[199+i, vIndi]
> coeff = coeff.full[i, vIndi]
> vY.hat[i] = as.matrix(mX)%*%t(as.matrix(coeff))
}

Save the Ŷ vector paired with the response one, Y

> r = cbind(c(vY[(200+h):8147],rep(NA,h)), vY.hat)
> write.table(r, file="rendimenti_elnet_h_n.txt", sep=" ",
col.names = FALSE, row.names=FALSE)

Functions used
Function to select the subset of constituents present in
the index during all the window

> setIndiLen = function(mX.full,start,end) {
# design matrix during the window
> mX=mX.full[start:end,]
> vIndi=c(1:ncol(mX)) # vector with the positions
# if for some column of mX, its length without NA values
# is different from the length with them, we exclude that
# constituent from the set of regressors
> for (i in ncol(mX):1) {
> v.con=mX[,i]
> v.senza=na.omit(v.con)
> if (length(v.senza)!=length(v.con)) {
> vIndi=vIndi[-i]
}
}
> return(vIndi)
}
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Function to sort mX matrix at each step of the algorithm

> ordina.mX = function(vY.hat,mX) {
> Val.Ind = sort(as.vector(vY.hat),index.return=TRUE)
# ordered vector and position of predicted values
> vInd = Val.Ind$ix # vector of position index
> mX.ordinata = mX[vInd,]
}

Function to obtain the new value given by the residuals
for the convergence of the algorithm

> resid = function(vY,vY.hat,n) {
> dFun = (vY - as.vector(vY.hat))%*%(vY -
as.vector(vY.hat))/n
> return(dFun)
}


