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Abstract

Metabolic dysfunction–associated steatotic liver disease (MASLD), previously known as non-
alcoholic fatty liver disease (NAFLD), is a chronic liver disease characterized by excessive fat
accumulation in the hepatocytes, leading to liver steatosis and potential progression to more
severe liver conditions, annually responsible of 1 out of every 25 deaths worldwide. Due to
the lack of pharmacological and targeted treatments, this study aims to build a liver numeri-
cal digital twin, reproducing the kinetic model of hepatic lipid droplet metabolism from [1],
encompassing FFA uptake, TAG esteri昀椀cation, and lipid droplet dynamics, based on experi-
mental in vitro and in vivo 昀椀ndings. By simulating lipid droplets size distributions in hepato-
cytes under varying conditions, one of the goals is to highlights the role of regulatory surface
proteins (RSPs) in cellular lipid accumulation. Additionally, a novel approach is employed by
utilizing sensitivity analysis methods to identify the most signi昀椀cant input parameters. These
parameters are then used as key features in the integration of a neural network, enhancing the
numerical solution of the model’s ordinary di昀昀erential equations (ODEs) and potentially im-
proving both predictive accuracy and computational e昀케ciency in modeling hepatocyte lipid
content.
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1
Introduction

Liver diseases rank among the leading causes ofmortality in patients: they accounts for twomil-
lion deaths annually and are responsible for 4% of all deaths (1 out of every 25 deaths world-
wide); approximately two-thirds of all liver-related deaths occur in men. Deaths are largely
attributable to complications of cirrhosis and hepatocellular carcinoma [2].
This work focuses on the early stage of liver disease progression, known as fatty liver dis-

ease, which is the most prevalent liver disorder in modern times. However, recent years have
shown a notable increase in its prevalence, as the increase of obesity could be an important con-
tributing factor [3]. IndeedNAFLD, the acronym for Non-Alcoholic Fatty Liver Disease, had
prevalence equal to 25.2% in 2022with the alarming forecast of 33.5% by 2030 [4].
Speci昀椀cally, fatty liver disease, also known as hepatic steatosis, is de昀椀ned as a pathological

condition in which fat accumulates within liver cells in the form of lipid droplets. Its nomen-
clature has recently been revised in order to remove the word ”alcoholic” from the acronym
[5]. Formernon-alcoholic fatty liver disease (NAFLD), nowmetabolic dysfunction–associated
steatotic liver disease (MASLD), is a condition in which excess of fat resides in liver cells and at
least one metabolic risk factor is present. The de昀椀nition in literature ([6]) requires:

a) evidence of hepatic steatosis, either by imaging or by histology;

b) no causes for secondary hepatic fat accumulation such as signi昀椀cant alcohol consump-
tion, use of steatogenic medication or hereditary disorders.
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Figure 1.1: The di昀昀erent liver disease progression stages, from steato琀椀c liver to hepatocellular carcinoma (HCC), with the
percentages representa琀椀ve of the propor琀椀on of the sub‐popula琀椀on that will probably present or progress to more advanced
stages. Picture taken from [7].

NAFLD includes a constellation of histological 昀椀ndings that goes from steatosis, to necroin-
昀氀ammation, called NASH and progression to advanced 昀椀brosis and cirrhosis [3, 4].

Fatty liver disease can be caused by several di昀昀erent factors, being them either modi昀椀able or
not. Primary risk factors for this disease are type 2 diabetes, obesity and dietary reasons like a
high fat diet or alcohol and tobacco consumption. Other found modi昀椀able factors are sleep
and high blood pressure. Among the non-modi昀椀able ones are the age, gender, ethnicity, ge-
netic and socio-economic status.
The symptoms of steatosis can vary widely, ranging from no noticeable symptoms to mild fa-
tigue and discomfort, and in more severe cases, more pronounced issues. Common symptoms
include fatigue, abdominal pain or discomfort, and unexplainedweight loss. Inmore advanced
stages, patients may experience jaundice (yellowing of the skin and eyes), swelling in the legs or
abdomen (edema or ascites) and mental confusion.
Based on the triggering behaviour of the disease, fatty liver disease can take di昀昀erent names,

considering whether or notmetabolic and diet reasons are involved in the emergence of the dis-
ease. Other than the alreadymentionedMASLD,we canhaveMetALD(orALD) if depending
on extent of alcohol intake (or other combination aetiology), when the patient doesn’t instead
meet any of the cardiometabolic criteria, the name can be either Cryptogenic SLD or other
speci昀椀c aetiology SLD [5].
The accumulation of fat within hepatocytes can progressively disrupt liver function, lead-

ing to increasingly severe health consequences. As illustrated in 昀椀gs. 1.1 and 1.2, metabolic
dysfunction-associated steatotic liver disease (MASLD)can advance to amore severe statemarked
by presence of hepatic steatosis and in昀氀ammation with hepatocyte injury (ballooning) with or
without 昀椀brosis, known as non-alcoholic steatohepatitis (NASH) [6]. Up to this point, the
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disease progression is generally reversible, particularly before 昀椀brosis develops. Liver 昀椀brosis
occurs when chronic injury or in昀氀ammation triggers the formation of excess connective (scar)
tissue in the liver. Over time, 昀椀brosis can advance to cirrhosis, where the scar tissue signi昀椀cantly
replaces healthy liver tissue, impairing the liver’s structure and function. This stage represents
permanent liver damage, especially when combined with NASH, as the liver loses its ability to
regenerate. In some cases, cirrhosis may further progress to hepatocellular carcinoma (HCC),
a form of liver cancer, which is a leading cause of death, a昀昀ecting 46% of patients in advanced
stages.

The development of steatosis is closely linked to alterations in the metabolic processes of
hepatocytes, which result in increased lipid production. The most widely used molecule for
storingmetabolic energy is triacylglycerol (TAG, or TG), composed by a glycerol head attached
to three fatty acid chains. Elevated concentrations of free fatty acids (FFAs) in the bloodplasma,
due to diet or other reasons, being them eithermodi昀椀able or not, causes an enhanced uptake of
them by the liver, later responsible of their esteri昀椀cation. On the long term this can lead to the
accumulation of TAG into lipid droplets (LDs). Lipid droplets are organelles responsible for
storing energy in many organs, since virtually all cells have the capacity to synthesize and store
TAG in cytosolic lipid droplets (LDs) [8].
Lipid droplet dynamics is further in昀氀uenced by the presence of enzymes that cooperate for
their degradation into smaller droplets, or the regulatory surface proteins (RSPs), which com-
pete to bind to the LD surface, modifying the enzymes activity.
Nevertheless, even though many of the biochemical reactions described remain unclear to the
research community, the authors, drawing on experimental in−vitro and in−vivo 昀椀ndings,
attempt to develop a model that aligns with the data.

The only therapies available at the moment are the reduction of caloric intake through a
healthy diet, physical exercise andmedications to reduce the glucose level in the blood. Goal of
research is thus try to understand the cellular and molecular processes leading to perturbation
of liver lipid metabolism, necessary in order to try to identify novel pharmacological targets
and treatment strategies. In my internship project the goal was to try to implement a numeri-
cal twin for the hepatocyte metabolic network, based on the model 昀椀rst described in the paper
out in 2017 by Wallstab, Berndt et al., explained in detail in Chapter 3, after a brief overview
of the biochemistry elements needed to have a possibly good comprehension of it, presented in
Chapter 2. Its 昀椀rst section, Sec. 2.1, has two paragraphs on lipids in general and lipid droplets,
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followed by some information on enzymes-mediated reaction kinetics and liver cell compart-
ments respectively in Sections 2.2 and 2.3.
In Chapter 3 both the modules of the reproduced model are analyzed in their details, with

attached the equations used for each step leading to the synthesis of TAGs inside the hepato-
cytes endoplasmatic reticulum and then to its e昀昀ect on the lipid droplets 昀椀lling. The model
consists of a set of time-dependent di昀昀erential equations. While the structure is not inherently
complex, the sheer number and scale of the equations, encompassing various processes and sub-
processes, make it highly intricate.
Then, themethods used for the simulations are highlighted in Chapter 4 step by step, followed
by the results obtained in Chapter 5. These regard the two approached adopted to solve the
problem: 昀椀rst the Python script was coded from scratch and used to numerically integrate the
ODE system given the initial conditions, then performing a sensitivity analysis revealing that
variations in the activity of FFA uptake, diacylglycerol acyltransferase (DGAT) 2, and adipose
triglyceride lipase (ATGL) have the strongest in昀氀uence on the cellular TAG level. A neural net-
work is trained over some randomly generated con昀椀gurations of these varying parameters to
predict the stable state outcome of the system.
Concluding remarks are reported in Chapter 6, highlighting the good performances com-

pared to the results in the paper [1] both for rat and human hepatocytes along with some of
the issues encountered and observations that arose during the months of my internship.

Figure 1.2: All the stages of liver disease progression from NAFLD to HCC. The blue and red arrows indicate whether the
transi琀椀on is generally reversible or di昀케cult to reverse. Image from [9].
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2
Elements of Biochemistry

To build a solid understanding of the biochemical reactions andmetabolic pathways discussed
in the next chapter, this section provides a simpli昀椀ed overview of the topic. The goal is to o昀昀er
a general introduction from a non-expert perspective, focusing on the basic concepts to help
grasp the underlying processes without delving into intricate technical details.
The chapter is divided in four sections: in the 昀椀rst one, Section 2.1, the lipidsmacro-category is
brie昀氀y introduced, focusing on the family of storage lipids. Afterwards, Section 2.1.2 resumes
the concept of lipid droplets, specialized organelles, sharing some structural and functional pat-
terns with their progenitors, while Section 2.2 introduces the main chemical reaction scheme
involved in the liver cellmetabolism. Finally the liver cell compartments appearing in themodel
are announced and their role brie昀氀y described in Section 2.3.

2.1 Lipids

Lipids are a diverse and extensive group of organic compounds that play crucial roles in hu-
man physiology. Their biological function can be as diverse as their chemistry: while fats and
oils are primarily responsible for energy storage in many organisms, phospholipids and sterols
are the majors structural elements in membranes. Others play a crucial role as enzymes, cat-
alyzing speci昀椀c reactions and in昀氀uencing various biochemical pathways. The classi昀椀cation of
lipid families, according to Nelson and Cox [10], is presented below, with example structures
illustrated in Fig. 2.1.
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• storage lipids (fats, oils), they are neutral;

• membrane structural lipids (phospholipids, sterols) are polar;

• enzymatic lipids

Generally, the storage and structural functional classes of lipids are major cellular compo-
nents, making most of its part in terms of mass but playing a passive role in the cell. Other
groups of lipids, present in much smaller amounts, have active roles in the metabolic tra昀케c as
metabolites andmessengers. Some serve as signals, as hormones, carried in the blood from one
tissue to another, generated in response to an extracellular signal [10].

2.1.1 Storage lipids

This section delves mostly into the 昀椀rst category presented, the storage lipids, starting with an
exploration of how they are actually made. Essentially, all naturally occurring fats and oils,
independently of their origin, consist of a very high percentage of glycerolipids [11]. They
include monoacylglycerols (MAG), diacylglycerols (DAG), and triacylglycerols (TAG), which
are central to the energy metabolism. MAG, DAG and TAG are composed by an alcohol, glyc-
erol, attached to either one, two or three fatty acid chains. This characteristic structure, with a
”head” attached to multiple ”tails,” gives these molecules their neutral polarity, distinguishing
them from polar membrane lipids. As the polar hydroxyl groups of glycerol and the carboxyl
groups of fatty acids are bound by ester linkages, triacylglycerols become non-polar and thus
hydrophobic, rendering them essentially insoluble in water.
Lipidmetabolism, whichwill be examined step-by-step in Sections 3.1 and 3.2, encompasses

the processes involved in lipid synthesis and degradation within cells, leading to the consump-

Figure 2.1: Some of the most common types of storage lipids (neutral) and membrane lipids (polar), all having either glycerol
or sphingosine as backbone to which are a琀琀ached one or more fa琀琀y acid chains. Original picture from [10].
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(a) Glycerol (top) and Fa琀琀y Acid
(bo琀琀om) skeletal structures. (b) Three categories of neutral lipids. Picture taken from [11]

Figure 2.2: Composi琀椀on and examples of neutral lipid chains. 2.2b illustrates the three types of neutral lipids that can be
formed using glycerol and fa琀琀y acids (2.2a): triacylglycerol, diacylglycerol, and monoacylglycerol, containing three, two, and
one fa琀琀y acid chain, respec琀椀vely.

tion or production of free fatty acids. These processes include fat storage and breakdown for
energy, as well as the synthesis of structural and functional lipids, such as those that form cell
membranes. Key components of lipid metabolism include digestion, absorption, transport,
storage, catabolism, and lipid biosynthesis. Lipid catabolism, in particular, occurs through
beta-oxidation, a crucial process in the mitochondria and peroxisomes that breaks down fatty
acids to generate energy.

2.1.2 Lipid droplets

Lipid droplets are dynamic, lipid-rich organelles present in most eukaryotic cells and serve as
the main storage sites for neutral lipids. While they are most commonly found in adipose tis-
sue, this work focuses on their presence and role in hepatocytes. The relatively recent discovery
of proteins on the lipid droplet surface, which regulate their dynamics and metabolism, has
sparked signi昀椀cant interest in studying these organelles, as they play a crucial role in the regula-
tion of metabolic processes.

Lipid droplet structure is characterised by a neutral lipid core consisting mainly of triacyl-
glycerols (TAGs, but also MAGs and DAGs) and sterol esters (SEs) surrounded by a phospho-
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lipid unilamellar lea昀氀et (monolayer). The alignment of the phospholipids allows to compose a
membrane with inner hydrophobic and outer hydrophilic property, due to their head and tail
classical structure derived from the fatty acids [12, 13, 14].
Disregulated LD homeostasis is closely connected to many pathological conditions and the

development of various diseases. The central function of LDs is to store TAG and CE if syn-
thesis and/or uptake of FFAs and SEs exceeds the cellular demand and to release these lipids
in the opposite case. As saturated FFAs and free SEs are potentially cytotoxic, their conversion
into non- toxic TAG and SE and subsequent deposition in LDs are crucial for themaintenance
of cell integrity. An overweening delivery of FFAs and/or SE is commonly accompanied by an
increase in the synthesis of TAG and SE and thus in the number and size of LDs. Upon energy
demand, these FAs are mobilized by speci昀椀c enzymes, called lipases, which consecutively hy-
drolyze esteri昀椀ed FAs from the glycerol backbone, thereby generating DAG,MAG, and 昀椀nally
free glycerol. FAs can then enter the circulation and are accessible for other tissues, which can
use them for oxidative energy production or lipid synthesis [11, 13, 15].
Among the large array of regulatory surface proteins (RSPs) decorating the LD surface, the

most studied are the thosebelonging to thePerilipins andCIDEfamilies. Perilipins, also known
as lipid droplet-associated proteins (PLINs) are mainly 昀椀ve and they all share a certain PAT
domain [16]. In the kinetic model of Chapter 3, only the 昀椀rst three will be incorporated
into the equations governing lipid droplet surface binding and unbinding. Beside this, also
cell death-Inducing DNA Fragmentation Factor Alpha (DFFA)-like E昀昀ector (CIDE) proteins
have emerged as lipid droplet-associated proteins that regulate fat metabolism. There are three
members in the CIDE protein family: CIDEA, CIDEB, and CIDEC. The last one is the only
one considered here for its crucial role in the LDs fusion, and it is also known as fat-speci昀椀c
protein 27 (FSP-27) [17, 18].

• Perilipins: PLIN1, PLIN2/ADRP, PLIN3/TIP47, (PIN4, PLIN5)

• CIDE proteins: (CIDEA, CIDEB), CIDEC/FSP-27

While in adipocytes LDs can reach diameters up to 100µm and considering that size varies
tremendously, in liver cells they are smaller, in general ranging from few to 3µm. As we’ll see
in Chapter 3 their formation is related to the presence of neutral lipids in the endoplasmatic
reticulum, with de novo genesis of droplets o昀昀 the ER lumen of 昀椀lling of pre-formed droplets
of di昀昀erent sizes. The size of newly generated droplets can then grow or shrink based on the
RSPs reactions happening on their surface [13].
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2.2 Enzyme kinetics

Themodel has an initialmodule, described in 3.1, inwhich each step is described by a biochem-
ical equation, and in particular it is the case of enzymes-catalysed reactions of one substrate and
oneproduct. The simplestway tomodel this typeof reactions is byusing theMichaelis-Menten
equation, the kinetics model named after Leonor Michaelis and Maud Menten. It takes the
form of a di昀昀erential equation describing the reaction rate v, equal to the rate of formation of
the product P (v = d[P ]

dt
) given the concentration of the substrate S as [S].

In this section, following the approach outlined in Chapter 6.3 of Lehninger - Principles of
Biochemistry [10], we will examine the assumptions underlying the derivation of the formu-
las. Subsequently, the reaction rates used by the authors for the metabolic processes will be
derived and discussed. This approach, determining the rate of a reaction and how it changes
in response to changes in experimental parameters, is a discipline known as enzyme kinetics.

We start by considering a reaction between a catalyst, it can be an enzyme a protein or some-
thing else (E), and a single substrate (S). The reaction can be split in three di昀昀erent phases, as we
can see from the reaction scheme 2.1: from enzyme+substrate to enzyme-substrate complex in
a relatively fast reversible step (k1, k−1), and then to enzyme+product , where the transitions
are governed by speci昀椀c rates indicated with k:

E + S
k1−−⇀↽−−
k
−1

ES
k2−−⇀↽−−
k
−2

E + P (2.1)

At any time instants we have the enzyme available both in its free and substrate-bounded
forms: the total enzymeconcentration catalyzing the reactionwill be rewritten then as [Etot] :=

[E] + [ES].
Herewedevelop thebasic logic and the algebraic steps in amodernderivationof theMichaelis-

Menten equation, which includes the assumptions below here:

step 1 we can initially neglect the reaction P → S described by k−2, since [P] is low at early
stages;

step 2 if the concentration of the substrate is in excess in few milliseconds it is concerted to ES
and [ES] is approximately constant over time (steady state kinetics). We have so that the
rate-limiting step of this type of reaction giving a product (P) is the enzyme-substrate
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(a) Ini琀椀al veloci琀椀es of enzyme‐catalyzed reac琀椀ons. (b) E昀昀ect of substrate concentra琀椀on on the velocity of an enzyme‐
catalyzed reac琀椀on.

Figure 2.3: Curves plots for the enzyme‐catalyzed reac琀椀ons.
2.3a A theore琀椀cal enzyme catalyzes the reac琀椀on S⇌P, and is present at a concentra琀椀on su昀케cient to catalyze the reac琀椀on
at a maximum velocity, Vmax , of 1 M/h. The Michaelis constant,Km (explained in the text), is 0.5 mM. Progress curves
are shown for substrate concentra琀椀ons below, at, and above theKm. The rate of an enzyme‐catalyzed reac琀椀on declines
as substrate is converted to product. A tangent to each curve taken at 琀椀me equal to 0 (dashed lines) de昀椀nes the ini琀椀al
velocity of each reac琀椀on. The reac琀椀on velocity reaches a plateau a昀琀er an ini琀椀al pre‐steady state period a昀琀er which [ES] is
approximately constant.
2.3b This graph shows the kine琀椀c parameters that de昀椀ne the limits of the curve at high and low [S], with the substrate
concentra琀椀on at which the velocity is half‐maximal beingKm, the Michaelis constant. At low [S] (Km �[S]) the [S] term
in the denominator of the Michaelis‐Menten equa琀椀on 2.5 becomes insigni昀椀cant, simplifying to v = Vmax/Km and it
exhibits a linear dependence on [S], as observed here. At high [S] ([S]� Km) the Km term in the denominator of the
Michaelis‐Menten equa琀椀on becomes insigni昀椀cant and the equa琀椀on simpli昀椀es to v = Vmax, consistently with the plateau
observed. The concentra琀椀on of enzyme in an experiment such as this is generally so low that [S] » [E] even when [S] is
described as low or rela琀椀vely low.

(ES) complex breakdown (k2), thus the overall rate must be proportional to the concen-
tration of the species that reacts in the second step, that is, ES.

Since [ES] is not easily measurable experimentally we can try to rewrite it. Having neglected
k−2 we can de昀椀ne the ES rates of formation and breakdown, using the variable for the total
enzyme concentration previously de昀椀ned:

vformES = k1[E][S] = k1([Etot]− [ES])[S] (2.2)

vbreakES = k−1[ES]− k2[ES] (2.3)

Now according to the reasoning in step 2 on the stable-state one can equal the two rates 2.2
and 2.3, and after some math it gets to the following expression for the concentration of the

10



enzyme-substrate complex

[ES] =
k1[Etot][S]

k1[S] + k−1 + k2
=

[Etot][S]

Km + [S]
(2.4)

whereKm is the Michaelis constant, de昀椀ned asKm := (k−1 + k2)/k2.
We can now show how the equation describing the rate/velocity of these types of reaction,

commonly known as Michaelis-Menten equation, is determined by the breakdown of ES to
form product, which is determined with [ES] in eq. 2.4:

v = k2[ES] = k2
[Etot][S]

Km + [S]
= Vmax

[S]

Km + [S]
(2.5)

where the maximal reaction velocity is de昀椀ned as Vmax := k2[Etot].
This is 昀椀nally the Michaelis-Menten equation, the rate equation valid for a single-substrate

enzyme-catalyzed reaction, which has the advantage of being easily extendable to describe re-
actions involving multiple substrates. It is useful to de昀椀ne a more general rate constant, the
turnover number kcat, to describe the limiting rate of any enzyme-catalyzed reaction at satu-
ration. When several steps are partially rate-limiting, kcat can become a complex function of
several of the rate constants that de昀椀ne each individual reaction step. It is equivalent to the
number of substrate molecules converted to product in a given unit of time on a single en-
zyme molecule when the enzyme is saturated with substrate. In the Michaelis-Menten equa-
tion, kcat = Vmax/[Etot] and equation 2.5 becomes

v =
kcat[Etot][S]

Km + [S]
. (2.6)

For amore detailed and in-depth analysis of these topics, it is recommended to refer toChap-
ter 6 of Lehninger’s book [10]. This chapter provides additional insights into enzyme mecha-
nisms, including detailed examples of enzyme kinetics.

2.3 Liver cell structure

Hepatocytes, the primary functional cells of the liver, are highly specialized cells constituting
approximately 70-80%of the liver’smass and are responsible for awide array of essential physio-
logical processes. They are typically cuboidal, with dimensions ranging between 20 and 30µm,
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(a) Scanning electron micrograph (SEM) of a rat sec琀椀oned hep‐
atocyte and venule sinusoid, the blood provider. Image from
public domain (Wikipedia).

(b) Labeled and illustrated diagram of the ultrastructure of a
liver cell, highligh琀椀ng the rela琀椀onships among all previously
discussed compartments, along with several addi琀椀onal ones.
Image licensed from (Alamy).

Figure 2.4: Hepatocytes structure with all the internal organelles and its loca琀椀on in liver 琀椀ssue, spearated to the sinusoid
blood provider by the Disse space.

and taking an input of fatty acids from the sinusoid’s blood 昀氀ow. A section is showed in Fig-
ure 2.4a.
They are remarkable for their regenerative capacity, allowing the liver to recover from injury or
disease and they have di昀昀erent compartments, but as not to dwell too much on further side
topics, here only parts of interest for the model are taken into account here:

• cytosol
The intracellular 昀氀uid that houses various organelles and is the site of many metabolic
pathways, including glycolysis, fatty acid synthesis, and the initial steps of protein syn-
thesis, and it also contains lipid droplets;

• endoplasmatic reticulum
A network of membranous tubules involved in protein and lipid synthesis. The rough
ER, studded with ribosomes, synthesizes proteins destined for secretion or membrane
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insertion. The smooth ER is involved in lipid metabolism, detoxi昀椀cation of drugs and
toxins, and calcium storage;

• mitochondria
The powerhouse of the cell, where ATP (energy) is produced through oxidative phos-
phorylation. Mitochondria are also involved in fatty acid oxidation, the urea cycle, and
the regulation of apoptosis (programmed cell death), which is crucial in liver disease pro-
gression;

• nucleus
Hepatocytes have a large, centrally located spherical nucleus that serves as the control
center of the cell, containing DNA that regulates metabolism, growth, and protein syn-
thesis, all of which are essential for liver function;

• plasma membrane
Regulates the exchange of substances between the hepatocyte and its environment, play-
ing a key role in nutrient uptake and waste removal.

In the equations inAppendixA.2, footnotes indicate the compartment inwhich themetabo-
lites are present or through which are being transported.
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3
Wallstab et al.’s mathematical model

This work focuses on the reproduction of theWallstab et al.’s model presented 昀椀rst in their pa-
per out in 2017 [1]. The same model was then reused for studying the behaviour of other hep-
atocyte intracellular pathways, in particular with a focus on hepatocellular carcinoma (HCC)
[19] and then also extended to comprise the vast amount of metabolic liver pathways in some
more complex models, again under the supervision of Nikolaus Berndt [20].

To gain a clearer understanding of the regulatory in昀氀uence of individual processes involved
in cellular TAG turnover, we reproduced a comprehensive kinetic model that integrates the
pathways of fatty acid and triglyceride metabolism, as well as the key molecular mechanisms
governing lipid droplet dynamics.
This chapter is divided in two main sections to clarify the two modules of the LDs formation
and evolution: in the 昀椀rst one, Section 3.1, the metabolic module of the model is described,
containing all the reactions composing the chain leading to the TAGs formation inside the
ER, then the lipid droplets undergo 昀椀lling with TAG and fusion to each other, with proteins
binding to their surfaces causing also lipid degradation and consequently the shrinking of the
droplets. These steps collectively form what is referred to as the lipid module of the model,
presented in Section 3.2.

Themolecular processes included into themodel developed and implemented byWallstab et
al. are depicted in Fig. 3.1 and resumed in Tab. 3.1. In the followings, numbers inside brackets
〈〉 refer to the indexing of processes, showing also their responsible catalysts in the table.
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3.1 The metabolic module

In this 昀椀rst part the free fatty acids uptaken from the external blood 昀氀ow are converted to the
neutral lipids that will 昀椀ll the droplets in the next module. The quantity of free fatty acids
(FFAs) absorbed by the hepatocyte model depends on the glucose level of the blood plasma:
elevated blood glucose levels indicate a fed state, while lower levels suggest the rat is in a fasted
state. The relations linking the uptakes FFAs are explained in Appendix A.1, with also the
insuline and glucagon level computation in attached.

The further processes leading to the LDs formation are considered in all their details, accom-
panied by the reaction rates associated to the transitions, showed in the Appendix A.2 for the
sake of clarity in the main text here.

Figure 3.1: Model originally introduced in [1], represen琀椀ng the main reac琀椀ons of the metabolic and lipid modules, from the
uptake of FFA from the blood to the forma琀椀on and 昀椀nally degrada琀椀on of LDs. The numbered reac琀椀ons in the brackets are
de昀椀ned in Tab 3.1. Picture taken from [19].
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In this module, namely above the horizontal line in Table 3.1, all the necessary steps of the
TAG production are broken down to single biochemical reactions. As foretold, the free fatty
acids are uptaken into the cytoplasm of the hepatocyte 〈1〉 through a combination of di昀昀usive
and active (carrier-mediated, by transport proteinCD36) transport. FFAs are then activated to
acyl-CoA 〈2〉 (in 昀椀gure as ACoA), which is a composition of FFA and CoA obtained through
interaction. The membrane carrier CPT1 is responsible for the acyl-CoA entering the mito-
chondria 〈3〉, using a 3-step reaction where FFA 昀椀rst binds to Carnitine allowing taken up
into mitochondria and then reforming acyl-CoA inside the mitochondria and bringing back
Car outside. The mitochondrial ³-oxidation is responsible for the energy production inside
cells, through the citric acid cycle.
The metabolic pathway leading to the formation of TAG starts with the esteri昀椀cation of acyl-
CoA with G3P by GPAT producing LPA, whose is consequently esteri昀椀cated by AGPAT 〈4〉
newly forming the phosphatidic acid PA inside the endoplasmatic reticulum. NowPAP acts in
order to favour PA dephosphorilation (hydrolysis) to produce DAG. The DAG synthesised in
the ER is responsible for di昀昀erent pathways, our interest focuses on twoof themhere. First, PC
phospholipids synthesis 〈5〉 by CPT, later used for the formation of lenses (nascent droplets)
in the ER membrane. Second, but most importantly, DAG is used to synthesize TAGs inside
the ER through the interaction with the fatty acid of acyl-CoA, having the reactions catalyzed
by two isoforms of the diacylglycerol acyltransferases, DGAT1 and DGAT2 〈6〉. Even though
the pictorical representation in Figure 3.1 shows TAG forming in the cytosol outside the ER,
other sources ([12, 13]) tell us that this is a result achieved in a series of step but whose exact
dynamics is not fully understood yet. For the sake of simplicity and not to add other variables
to themodel, this will be considered as a simpli昀椀edmodel for the actual process which involves
lenses formation and irregular growing of extro昀氀exions on the ERmembrane. At this point we
have two ”storages” of TAG inside the endoplasmatic reticulum: TAGer(i), with i = 1, 2 both
serving as a TAG source for nascent LDs formation, nevertheless TAGer(1) is also used in the
VLDL synthesis, mediated by the presence of ApoB, whose availability is insulin dependent.
VLDLs are later synthesised and expelled back to the blood 〈9〉.

3.2 The Lipid Droplet module

This module comprises central processes to control the dynamics of lipid droplets (LDs) and
the export of the lipoprotein VLDL 〈9〉. All the di昀昀erent physical-biochemical processes in-
volved in the LD modeling from this point on are presented: the level of TAG contained in-
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process involved enzime/protein

〈1〉 FFAs uptake into cytosol passive di昀昀usion, CD36
〈2〉 FFAs activation ACS
〈3〉 FFA-CoAs uptake into mitochondria CPT1
〈4〉 FFA-CoAs esteri昀椀cation GPAT, AGPAT, PAP
〈5〉 PC synthesis CPT
〈6〉 TAG synthesis DGAT1, DGAT2

〈7〉 nLD formation TIP47
〈8〉 LDs 昀椀lling DGAT2
〈9〉 VLDL synthesis and secretion MTP
〈10〉 LDs fusion FSP27
〈11〉 LDs degradation ATGL, HSL, MGL

Table 3.1: Main processes and involved enziymes appearing in the model. All the equa琀椀on rates for these processes, along
with some others, are showed in Appendix A.2.

side each lipid droplets has 昀椀ve di昀昀erent contributes that are the LD genesis 〈7〉 and 昀椀lling
〈8〉, fusion 〈10〉, RSP binding and degradation processes 〈11〉, respectively in paragraphs sec-
tions 3.2.1 to 3.2.4. Finally also the LD dynamic change in number is presented in 3.2.5, ex-
plaining how the number of droplets is computed.
Here is where for the 昀椀rst timemodeling with LDs is encountered. When dealing with LDs,

the approach followed by the authors is to subdivide LDs originally into Nc = 30 discrete
size classes based on the radius of the droplets ranging from 0.1 to 3.0 µm. Taking this into
account, both the concentrations of lipids in the droplets and the fractions of LD covered by
RSPs or enzymes are described by vectors with the dimension equal toNc.

3.2.1 Genesis and filling

The 昀椀rst process contributing to the growth of lipid droplets is related to the genesis of new
droplets. This process can happen both in a de novo scenario, where lipid droplets are newly
generated, or adding TAGs to already existing droplets. We’ll refer to the 昀椀rst case as a de novo
synthesis of LDs 〈7〉, called nascent Lipid Droplet (nLD), while in the latter the process is
known as a 昀椀lling process, where some already existing lipid droplets formed in the cytosol
and binding to the ER, are 昀椀lled with the produced neutral lipids again through the enzyme
DGAT2 〈8〉 and esters.
The equations describing the 昀椀lling of LDs with TAG are responsible for the partition of TAG
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Figure 3.2: The synthesis of nascent Lipid Droplets at the interface of cytosol with ER. Picture taken from [14].

content among ER(2) and LDs: the higher is the number of droplets the higher is the rate
of LDs 昀椀lling with TAG and the lower is the nLD formation (eqs. (A.44) and (A.45)). The
equation A.45 clarify the concept that larger droplets are less likely to associate with ER an be
昀椀lled with TAG [14, 15, 21].

The synthesis of nascent LDs is catalyzed by the protein TIP47 (PLIN3) binding to the ER
and LD interacting surface. Studies show that both DGAT1 and DGAT2-produced TAG is
involved inde novonLDs formation, with neutral lipids coolescence in the lea昀氀et (lenses) forma-
tion in between the ERbilayer, as can be seen in Figure 3.2. This is due to the asymmetry in the
phpspholipid composition, protein recruitment and binding [12, 14]. All the nLDs produced
by de novo synthesis belong to the 昀椀rst lipid droplet class, namely with radius r1 = 0.1µm,
and they are not going to be covered by any regulatory surface protein (RSP).

3.2.2 Fusion

On the top of that, LDs can interact one with the others through a fusion process 〈10〉medi-
ated by the fat-speci昀椀c protein 27, FSP27. The rates of this process are in the Appendix A.2,
having that the larger particle is absorbing the smaller one and the rate of their fusion is depen-
dent on the di昀昀erence in ratio between the two particles. The rate of lipid transfer (eq. 3.1)
depends on the size di昀昀erence between lipid droplets and the presence of FSP27 on the surface
of the fusing droplets [22]. The net e昀昀ect of this term on the total LDs volume is null, it has
only an e昀昀ect on their size distribution, shifting it towards a con昀椀guration with more bigger
droplets in case fusion is favored, e.g. for the high availability of FSP27 [14, 23].
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Figure 3.3: All the steps required in the fusion of two Lipid Droplets mediated by FSP27. Picture taken from [14].

3.2.3 RSPs on LDs surface

The surface of lipid droplets is a place of hectic binding and unbinding for di昀昀erent families of
proteins and enzymes. These have an e昀昀ect on the dynamics of the droplets, a昀昀ecting its shape,
and possibly favouring either their shrinking or their growth [13, 16, 24, 25].
Reversible binding of regulatory surface proteins (RSPs) to LDs is modeled as time-dependent
change in the LD surface fraction,XLD, covered by the proteinX , withX=PLIN1, ADRP,
TIP47 or ATGL. Equation 3.2 here below is responsible for the rates modeling of this binding-
unbinding process, where f free

LD denotes the non occupied free LD surface, while the rates kON

and kOFF are dependent on the cytosolic concentration of the proteinX .

dXLD

dt
= kON([X]cyt)f

free
LD − kOFF ([X]cyt)XLD (3.2)

Di昀昀erent proteins of the PAT family (PLIN1, ADRP, TIP47) have di昀昀erent binding and un-
binding rates depending on some factors de昀椀ned basing on radius, constants and exponent of
the LDs (see Appendix A.2). This is resulting in what can be observed in Fig. 3.4b, showing
how PLINs 1, 2 and 3 are likely to bind respectively on the surface of large, medium and small
LDs, while ATGL has rates which are depending on the number of LDs in each discrete class,
and its steady basal activity is signi昀椀cantly increased due phosphorylation of PLIN1, liberating
CGI58 that then binding to ATGL to activate it [16].
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(a) Binding of various species on the lipid droplet surface,
including regulatory surface proteins (PLIN1, PLIN2, PLIN3,
CGI58) and enzymes (HSL, ATGL). Image from [16].

(b) Distribu琀椀ons of the percentage of lipid droplet surface oc‐
cupied by di昀昀erent RSPs: PLIN1, ADRP, TIP47, and ATGL. In
each class, their presence sums to 1, represen琀椀ng the total
available surface of the droplet.

Figure 3.4: Lipid droplets and their associated binding proteins: the various species (3.4a) and their expected distribu琀椀ons
across di昀昀erent size classes (3.4b) according to the data provided in the Supplementary Informa琀椀on of the reference paper [1].

Since the cytosolic concentration of RSPs has proven to be very di昀케cult to determine and
de昀椀ne in time, lot of simulations have been run using 1 as reference value for these concentra-
tions, varying then the value in simulations for testing the e昀昀ect of over-expression and under-
expression on the 昀椀nal LDs distribution.
PLINs are sort of competitors for binding to the LD unoccupied surface, while CGI58

is treated as a co-regulator and it binds to the LD surface through mediation of PLIN1 and
ADRP. Also enzymes responsible for TAG degradation inside the LDs have to bind to the
droplet surface to start their activity: this is the case for ATGL. A de昀椀ciency in RSPs necessary
for the de novo synthesis of lipid droplets, or the overexpression of RSPs that promote lipid
droplet hydrolysis, can both reduce the number and size of lipid droplets.

3.2.4 Shrinking

LD-associated enzymes (ATGL,HSL,MGL) are responsible for the disruption of LDs content
into simpler molecules, namely free fatty acids. Themain process responsible for the shrinking
of LDs is the removal of fatty acids from TAG, DAG and MAG inside the core of the lipid
dropplets. This is known as the LDs degradation 〈11〉 and is divided in di昀昀erent steps: 昀椀rst
ATGL, andHSL also with a minor role, performs the 昀椀rst step from TAG to DAG, then HSL
breaks down the DAG into MAG and the process in 昀椀nalized by MGL leaving FFA in the
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cytosol out of the MAGs [13, 15].
These degradation steps are catalyzed by enzymes again binding on the surface of the lipid

droplets and thus competing with the RPSs for the available free surface in the game. The
degradation process are enlisted in the Appendix A.2 in eqs. (A.104), (A.107) and (A.114) and
they consist of 3 main steps through which the TAG is freed into free FAs:

1. TAG ATGL
−−−→DAG + FA

2. DAG HSL
−−−→MAG+ FA

3. MAG MGL
−−−→ FA

HSL is also in little percentage responsible for the 昀椀rst step of the degradation, from TAG
to DAG.

3.2.5 LDs content dynamics

Each lipid class, by radius, is represented by the total amount of lipids contained in that class.
To obtain the number the approach followed is to consider the total amount divided by the
droplet volumes. The formula 3.3 was developed in the absence of well-established equations
on the subject in the original paper [1].

LDn =
∑

sp

V olspn/V olLDn
∈ R, where sp = MAG, DAG, TAG (3.3)

On the top of that the number of droplets in each class can vary, and was supposed to be
modeled by a lipid transfer to the closest bigger LDn+1 or smaller LDn−1 classes. About this
changes in the amount and the composition ofLDs, the formula providedby the authors seems
to be ine昀昀ective, see Appendix A.3. Probably some details are missing and it was thus not in-
cluded 昀椀nally in themodel simulated for out purpose. There is some inconsistency in the nota-
tion here as well as the dynamics here represented seems to overwhelm the natural evolution by
providing an either excessive or negligible contribute to the number of LDs that are transferred
from/to each class at each iteration.
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4
Methods

In this chapter, the variousmethods employed to solve the system of ordinary di昀昀erential equa-
tions (ODEs) and conduct further analysis are introduced, detailing the techniques and pack-
ages or libraries used, all of which were coded using Python scripts.
Section 4.1 outlines the packages and the pipeline implemented for the numerical integration
scheme, then Section 4.2 presents the idea of sensitivity analysis, performed to 昀椀nd the key
system parameters. Lastly, Section 4.3 discusses the development of a neural network model
designed to learn the input-output relationship of the ODE system.

4.1 Model simulations

Initially the set of 13 + 12 · Nc coupled ODEs (see Stoichiometric Matrix A.2.3), have been
solved using the scpiy.integrate.solve_ivp package, using as the initial conditions the
values expected to be close to the reference stable state concentrations of the metabolites (see
Supplementary Data S4 [1]). All the values used for the maximal activities as well as the con-
stants are reported here in the 昀椀nal Appendix A.2.
The resulting variable consist thus of a number of arrays equal to the number of variables used
containing 24 values each, given that the stored concentration values are 1 at each hour and
the system is simulated for a duration of 24 h, getting to a stable state. The code have been
organized using classes having as methods the systems that needs to be solved or other further
operations on it and as attributes its constant parameters. Changing parameters are taken as
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an external input. This approach allows for easily attempting simulations bymodifying one or
multiple parameters, while ensuring consistency and 昀氀exibility within class method calls.

Many attempts have been made in order to 昀椀nd the optimal solver going from easier inte-
gration methods to more complicate ones and also trying to provide the Jacobian of the stoi-
chiometric matrix in order to save computational time. Finally backward di昀昀erentiation for-
mula (BDF) proved to be the most e昀케cient method for sti昀昀-problems, meaning that given the
plenitude of variables in the system they can evolve on di昀昀erent time-scales and this adaptive
size-step method, de昀椀ned in order to overcome this kind of possible issues. Beyond this, the
system is also very sensitive to the initial conditions, especially the ones regarding the neutral
lipid concentration and the number of droplets in each class, so a careful and well-considered
initialization is essential to ensure that the simulated dynamics are meaningful and accurate.

Following the reference paper [1], the simulation have been re昀椀ned using the rat cell param-
eters, and then extended to the human hepatocyte to try to reproduce some experiments 昀椀nd-
ings, changing some of the identi昀椀ed crucial parameters and constants in this latter case. For
this reason most of the results will show two plots, one for the rat re昀椀nement simulations, the
other for the human observatory results. In doing this it was decided, after simulating the rat
metabolites evolution using a number of classNc = 30, to reduce it to only 10. This will give
a more coarse-grained solution, but still with a good enough resolution to observe the distribu-
tion shape of the droplets size in the human case, where the total volume of lipids produced is
greater. The number of variables whose associated ODEs are numerically integrated after this
change reduces from 373 to only 133. A further reduction in this number could be attained
by 昀椀xing some of the less impactful variables. However, this approach proved challenging, as
altering a single step in the process could trigger an unexpected cascade e昀昀ect on the remaining
variables.

# eqs variable dim.

13 metabolites 1
3 neutral lipids Nc

8 RSPs Nc

1 number of LDs Nc

tot. 13 + 12 ·Nc

Table 4.1: Number and dimensionality of the ordinary di昀昀eren琀椀al equa琀椀ons in the model.
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4.2 Sensitivity Analysis

Sensitivity analysis is the study of how the uncertainty in the output of a mathematical model
(numerical or otherwise) can be divided and allocated to di昀昀erent sources of uncertainty in
its inputs. A key milestone in the 昀椀eld was the landmark paper by Morris [26], published in
1991. For a detailed timeline of the evolution of sensitivity analysis, refer to the recent work
by Tarantola [27]. For a more in-depth exploration of the subject, the well-regarded book by
Saltelli et al. [28] o昀昀ers a comprehensive overview of various methods, covering both local and
global approaches.
There are di昀昀erent categories of sensitivity analysis methods and di昀昀erent approaches to

use them. In here only twomethods are presented, belonging the 昀椀rst, Morris, to the family of
the screening techniques 4.2.1, while the second, Sobol’, to the variance-based methods 4.2.2.
Derivative-based ones are also quite di昀昀used, aiming in particular at understanding how small
variations in the parameters a昀昀ect the model output. These methods are very useful in inverse
problems and in parameter estimation, but will not be covered here.

The goals of sensitivity analysis are many, some of them are:

• identify the most important parameters (those that contribute the most to output vari-
ability) and insigni昀椀cant parameters (can be eliminated from the model);

• determine if and which parameters interact with each other;

• simplify the model (by 昀椀xing model inputs that have no e昀昀ect on the output);

• test the robustness of a model in the presence of uncertainty;

• detect errors in the model (by encountering unexpected relationships between inputs
and outputs);

• reduce uncertainty through the identi昀椀cation of model inputs that cause signi昀椀cant un-
certainty in the output;

• determine the optimal regionswithin the parameters space (for use in optimisation stud-
ies).

Sensitivity analysis are applied here as a novel approach in order to con昀椀rm, after the paper
test varying some constants by ±10%, which are the most signi昀椀cant parameters among the
huge quantity of the ones retained in the model.
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The 昀椀rst step consists of a global or screening sensitivity analysis, qualitatively inspecting and
selecting some of the most important parameters, followed by a more qualitative one to catch
their real e昀昀ect through the Sobol’indices.

For themathematical formulationofhowthese indiceswork,we start by considering amodel
with K parameters, calling them x⃗ = (x1, ..., xK) ∈ [0, 1]K independently and uniformly
distributed within the unit hypercube. They are mapped onto the univariate output model
variable Y by the model function f , such therefore that f : x⃗ ∈ [0, 1]K 7→ y = f(x⃗) ∈ R.
The code implementation is done using the Sensitivity Analysis library in Python SALib [29].

4.2.1 One-step-At-a-Time (OAT) globalMorris method

The most used design for screening technique is a One-step-At-a-Time (OAT) method, where
each input is varied while 昀椀xing the others, giving thus a new value to only one parameter in
each run. This is also known as the Morris method [26, 30].
It is fast since not many model execution are required, but this comes at the cost of not being
able to di昀昀erentiate non-linearities with interactions. For this reason it is commonly used as
a screening method to qualitatively identify the non-in昀氀uential parameters of a model, which
then could be safely excluded from further detailed analysis, like Sobol’ one, presented in the
next subsection 4.2.2. The quantities and parameters de昀椀ned and utilized for this method are
outlined and explained here to provide a comprehensive overview of the possibilities it o昀昀ers.

First of all, the elementary e昀昀ectEE of the parameter k on the output is de昀椀ned as follows:

EEk =
y(x1, ..., xk +∆, ..., xK)− y(x1, ..., xK)

∆
(4.1)

where ∆ is a grid jump selected in a way such that x⃗ + ∆ is still in the speci昀椀ed domain of
parameter space. ∆ is a value in 1

p−1
, ..., 1− 1

p−1
, where p is the number of levels that partitions

the model parameter space into a uniform grid of points at which the model can be evaluated.
The grid constructs a 昀椀nite distribution of size pK−1[p − ∆(p − 1)] elementary e昀昀ects per
input parameters [26].
The key idea ofMorris method is to evaluate themodel from various randomly sampled points
x⃗ and then gradually advancing one grid jump at a time between each model evaluation (one-
at-a-time), along a di昀昀erent dimension of the parameter space selected randomly.
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At the end of this process let’s say nR elementary e昀昀ects will have been sampled for the k-th
parameter from theEEk 昀椀nite distribution. The arithmetic mean and the standard deviation
of the elementary e昀昀ects sampled from all trajectories de昀椀nes

µk =
1

nR

nR
∑

i=1

EEi
k (4.2)

σk =

√

√

√

√

1

nR

nR
∑

i=1

(EEi
k − µk)2 (4.3)

While 4.2 describes the average elementary e昀昀ect computing the arithmetic mean, 4.3 gives
and indication of the presence of non-linearity and interactions between k-th parameter and
the others. As a change in a parameter value might have a changing sign on the output and
thus result in a cancellation e昀昀ect, Campolongo et al. [31] proposed the use of themean of the
absolute elementary e昀昀ect to circumvent this issue. It is de昀椀ned as

µ∗

k =
1

nR

nR
∑

i=1

|EEi
k| (4.4)

On a large enough number of trajectories nR, Morris states that there are three di昀昀erent types
of categories to which a parameters could 昀椀t into:

• non-in昀氀uential parameter (small µk, or µ∗

k, and small σk) -∆ is null:
the parameter has a negligible overall e昀昀ect on the model output;

• linear in昀氀uencing parameters (large µk, or µ∗

k, and small σk) - ∆ is non-null and con-
stant:
the variation of elementary e昀昀ects is small while the magnitude of the e昀昀ect itself is con-
sistently large for the perturbations in the parameter space

• non-linear in昀氀uencing parameters (large µk, or µ∗

k, and large σk) -∆ varying with k:
indicates that the aggregate e昀昀ect of perturbations is seemingly small while a large value
of σk indicates that the variation of the e昀昀ect is large; the e昀昀ect can be large or negligibly
small depending on the other values of parameters atwhich themodel is evaluated. Such
large variation is a symptom of nonlinear e昀昀ects and/or parameter interaction.

This classi昀椀cation enables parameter importance ranking, allowing for the identi昀椀cation and
screening of non-in昀氀uential parameters.
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4.2.2 Variance-based global Sobol’ method

Variance-based sensitivity analysis methods exploit the variance decomposition in non-linear
and non-monotonic cases. The main tools is the Sobol’ method (or Sobol’ indices, named
after Ilya M. Sobol’), decomposing the variance of a model’s output into portions that can
be attributed to individual inputs or combinations of inputs. The method for using certain
indices to estimate the in昀氀uence of individual variables or groups of variables onmodel output
was 昀椀rst introduced by Sobol’ in [32].

The output y of the model can be decomposed as a linear combination of functions with
increasing dimensionality:

y = f(x⃗) = f0 +
K
∑

i=1

fi(xi) +
K
∑

i<j

fi,j(xi, xj) + ...+ f1,2,...,K(x1, x2, ..., xK) (4.5)

where f0 is a constant and the condition necessary for this decomposition is expressed as

∫ 1

0

fi1,i2,...,is(x1, x2, ..., xs)dxm = 0, for xm = (i1, ..., is) (4.6)

and 1 ≤ i1 < i2 < ... < is ≤ K(s ∈ 1, ..., K) (4.7)

meaning that the functional decomposition is made such a way to have all the terms orthog-
onal, expressing the e昀昀ect of varying xi alone in fi, xi together with xj in fij (second-order
interaction), can be re-expressed through the equation 4.7 as terms of conditional expected
values:

f0 = E(Y ) (4.8)

fi(xi) = E∼i[Y |Xi]− E(Y ) (4.9)

fij(xi, xj) = E∼i,j[Y |Xi, Xj]− E∼i[Y |Xi]− E∼j[Y |Xj]− E(Y ) (4.10)

and so on for the other higher-order terms of the decomposition. In eqs. (4.9) and (4.10),
E∼i[Y |Xi] corresponds to the conditional expectation operator, and the∼ ◦ in the subscript
means that the integration over the parameter space is carried out over all parameters except the
speci昀椀ed parameter in the subscript.
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Applying then the variance operator over Y , assuming that f is square-integrable, we get:

V[Y ] =
K
∑

i=1

V[fi(xi)] +
∑

i<j

V[fi,j(xi, xj)] + ...+ V[f1,2,...,k(x1, x2, ..., xK)] (4.11)

First-order indices A direct variance-based measure of sensitivity Si, called the ”昀椀rst-
order sensitivity index”, or ”Sobol’ main-e昀昀ect sensitivity index” is de昀椀ned as follows:

Si =
V[E∼i[Y |Xi]]

V[Y ]
(4.12)

measuring the contribution to the output variance of the speci昀椀c inputXi, by averaging the
e昀昀ect of the other inputs on the output. Using this de昀椀nition in 4.12 and dividing both sides
of the previous formula 4.11 byV[Y ]we get that

K
∑

i=1

Si +
K
∑

i<j

Sij + ...+ S1,2,...,k = 1 (4.13)

Total-effect index Another measure, proposed by Saltelli [33] is the ”Sobol’ total-e昀昀ect
index”, which measures the contribution to the output variance of xi, including all variance
caused by its interactions, of any order, with any other input variables.

ST i =
E∼i[Vi[Y |X∼i]]

V[Y ]
(4.14)

The index, also a global sensitivity measure, can be interpreted as the amount of variance left
in the output if the values of all input parameters, except xi, can be 昀椀xed.

These two sensitivity measures can be related to the objectives of global sensitivity analysis
for model assessment, having as main advantage the exploration in the space of input and the
e昀케ciency in ”analyst” time (the method only needs Monte Carlo/quasi Monte-Carlo evalua-
tions).
The main-e昀昀ect index is relevant to parameter prioritization in the context of identifying the
most in昀氀uential parameter since 昀椀xing a parameter with the highest index value would, on av-
erage, lead to the greatest reduction in the output variation.
The total-e昀昀ect index, on the other hand, is relevant to parameter 昀椀xing (or screening) in the
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context of identifying the least in昀氀uential set of parameters since 昀椀xing any parameter that has
a very small total-e昀昀ect index value would not lead to signi昀椀cant reduction in the output varia-
tion. Theuse of total-e昀昀ect index to identifywhichparameter canbe 昀椀xedor excluded is similar
to that of the elementary e昀昀ect statistics of theMorris method, albeit more exact but alsomore
computationally expensive to compute. And 昀椀nally, the di昀昀erence between the two indices
of a given parameter (eqs. (4.12) and (4.14)) is used to quantify the amount of all interactions
involving that parameters in the model output.

4.3 Learning the input-output relation

Once themodel is con昀椀rmed to be running smoothly and yielding satisfactory results, the focus
can shift to assessingwhether the performance achievedwith a speci昀椀c parameter con昀椀guration
can be generalized across di昀昀erent dietary regimes, whether in a fed or fasted state. Among the
variety of available possibility one approach that canbe attempted in this case is the implementa-
tionof an arti昀椀cial neural network (ANN,or also simply asNN), able to learn the input-output
relation encoded in the set of di昀昀erential equation that the numerical integration scheme is solv-
ing. While the output we are interested in is the lipid droplet 昀椀nal size distribution, the input
can vary. The idea is to use a set of relevant parameters for the system, previously selected dur-
ing the performed sensitivity analysis tests.
Using then as the loss themean square error between the solver-predicted and theNN-predicted
distribution, our NN will become a black-box method to solve the ODE system, hopefully in
an e昀케cient way.
The neural network is implemented and all the operation performed in this section and in the
next 4.3.1, are performed using the PyTorch library [34].

This approach o昀昀ers the advantage that, once the time-intensive training process is com-
pleted, the model can e昀케ciently and quickly predict the LD output distribution for various
cases and scenarios, requiring only the key parameters involved. On the other hand, one pos-
sible drawback for this approach could be de昀椀nitely the lack of experimental patient data on
which the network could be trained. To overcome this issue many con昀椀gurations of the sig-
ni昀椀cant system parameters have been sampled from a normal distribution using the reference
value as mean and 1/10 of it as variance.
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4.3.1 Inverse problem: fromthedistributiontotheparameters

Gradient tracking methods in PyTorch provide a wide range of operations and optimizations
when training neural networks. This is accomplished by setting to requires_grad=True the
argument of PyTorch’s Tensor, which instructs PyTorch’s automatic di昀昀erentiation engine,
autograd, to track operations performed on the tensor.
An application that is quite straightforward at this point is the implementation of an ap-

proach to solve the inverse problem, aiming to recover the set of parameters responsible for the
generating a particular output LD size distribution, when knowing only this output distribu-
tion.
This inverse analysis, when properly optimized, could be particularly useful in clinical settings
where direct measurements are either too costly or invasive for patients. By measuring only
a single cell’s lipid droplet size distribution, it may be possible to infer other meaningful con-
centrations, since the inputs of the problem we are going to optimize have been pre-identi昀椀ed
through sensitivity analysis as key variables.
In order to do this, the easiest way to adapt the parameters to match the target distribution

ytarget is applying a simple gradient descent (GD) approach, updating at each iteration the set
of parameters x⃗′ minimizing a loss function between the network prediction and the target
measured distribution, where the loss L is computed as the mean square error (MSE):

x⃗′ ← x⃗′ − η · ∇
x⃗′L(x⃗′) (4.15)

L(x⃗′) =
1

2
||NN(x⃗′)− ytarget||

2 (4.16)

withNN(·) representing the neural network prediction function for the output.

This approach encounters challenges when increasing the number of signi昀椀cant input pa-
rameters for the neural network, likely because a larger parameter space may lead to multiple
combinations of input values producing similar output distributions. To address this issue, the
proposed solution is to run the optimization problem multiple times, starting from di昀昀erent
initial points within the parameter space, and then analyze whether the resulting solutions con-
verge.
Another technique used tomaintain positive parameter values is to workwith their logarithms,
and then apply the exponential function at the 昀椀nal stage. This approach ensures that concen-
trations remain non-negative, producing the desired output distribution.
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5
Results

In this chapter, the results of the methods outlined in Chapter 4 are presented and thoroughly
analyzed. Special attention is given to the key decisions made during the simulation process, as
well as any challenges or limitations encountered at various stages of the pipeline. The discus-
sion also highlights the implications of these results and evaluates their impact on the overall
objectives of the study.

Results here analyzed are concerning initially the rat hepatocyte scenario. The studywill also
attempt tomodel human hepatocytes; the parameter adjustments required to alignwith the ex-
perimental 昀椀ndings on human cell cultures will be summarized. In this latter case, a measure
that have been adopted to reduce the computational demand of the single runs, is the decrease
of the number of lipid droplets size classesNc from the initial 30 to 10.
All tests have been performed using a simulation time of 24 hours, after which all the metabo-
lites concentrations are expected to reach a stable state.

This chapter is organized as follows: Section 5.1 presents the dynamics of the simulated sys-
tem, along with the droplet size distribution obtained under di昀昀erent input source and cell
type; Section 5.2 covers the results of the Morris and Sobol’ sensitivity analyses, which inform
the selection of input parameters for the neural network. Finally, Section 5.3 provides an ex-
planation of the neural network setup.
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5.1 Dynamics of the system

The simulation described in 4.1 gives the evolution of the concentrations of all the considered
variables. The following paragraphs of this section simulate various scenarios by altering both
cell parameters (mouse or human) and the input FFA source (blood glucose or FFA challenge).

Rat and human liver cell in fed state The results presented in this section are based
on simulations conducted under a fed-state scenario, with a constant blood glucose concentra-
tion of 7.637mM . Although this glucose level naturally 昀氀uctuates over time, it is treated as a
constantwithin themodel for simplicity. The primary focus of the simulation is to examine the
temporal evolution of metabolite concentrations, starting from an initial fed-state condition.
As expected the concentrations reach in a very good approximation the stable state in昀椀gs. 5.1a

(a) Rat hepatocyte. (b) Human hepatocyte.

Figure 5.1: Evolu琀椀on of the metabolites residing either in cytoplasm or endoplasma琀椀c re琀椀culum. These results have been
simulated using a blood glucose concentra琀椀on equal to7.637mM , corresponding to themice diurnal fed state. Logarithmic
scales are applied to the y‐axis to improve the clarity of the plots.

(a) Rat hepatocyte. (b) Human hepatocyte.

Figure 5.2: Resul琀椀ng size distribu琀椀on for the lipid droplets inside an hepatocyte a昀琀er 24 h, considering as before an ini琀椀al
condi琀椀on of diurnal fed average glucose concentra琀椀on.
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parameter rat human correlation

CD36 1 10 positive
kDGAT2 1 0.5 positive
DGAT1 1 1 negative
DGAT2 1 10 positive
FSP27 1 0.5 positive
ATGL 1 0.005 negative

Table 5.1: Recap of the parameters that are adjusted in the model when transi琀椀oning from rat hepatocytes to human hepato‐
cytes. The value are expressed as fold changes (factors), with measurement units omi琀琀ed. The ”correla琀椀on” column indicates
the long‐term impact of each parameter change on lipid produc琀椀on, where a posi琀椀ve correla琀椀on signi昀椀es an increase in lipid
produc琀椀on, and a nega琀椀ve correla琀椀on indicates a decrease.

and 5.1b. Given the di昀昀erent setting of constants and parameters governing the distributions
ofTAGstored amongERandLDs, the results here shows a signi昀椀cantly larger amount ofTAG
stored in ER(1, 2) in the human hepatocyte. Consequently also the FFA level is higher, since
it is produced at the end by TAG degradation and is also required in the chain cycle to start its
synthesis.
The distributions in Figure 5.2 are in good approximation stable distributions, reached simu-
lating the metabolic system for an entire day duration. This is proved also looking at the rates
of the processes, which are all stable after 24 h. The comparison of the 昀氀uxes (i.e. the reaction
rates) for the rat cell with the authors’ results are reported in A.4, showing a generally good
agreement with the paper in terms of relative error.
As can be seen in 5.2a, the distribution is shifted more to the left compared to 5.2b, indicating
a higher production of smaller lipid droplets in rats. In contrast, the human distribution is
broader, with larger droplets being produced. This signi昀椀cantly impacts the total lipid produc-
tion, as the volume of the droplets, which are considered to be spherical, scales as the cube of
the radius.

Human liver cell in a FFAchallenge From here on, the analysis will focus exclusively
on the scenario using human parameters, with the number of lipid droplet size classes reduced
to 10. The fatty acid input will no longer be sourced from the blood; instead, it will replicate
an in-vitro solution consisting of a 1 : 1 mixture of di昀昀erent fatty acids at a concentration
of 0.5 mM , resulting in a total fatty acid concentration of 1 mM [1]. Based on the model
equations reported in A.2, this FFA challenge is expected to cause a switch from the de novo
synthesis of LDs to enforced lipid loading to already existing LDs, through the 昀椀lling mecha-
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nism, allowing to generate massive lipid quantities.

Figure 5.3: Obtained LDs distribu琀椀on for the human hepatocyte in a FFA challenge a昀琀er 24h (violet) and median values with
errors of the 27 single cell LDs size distribu琀椀on experimentally measured in pa琀椀ents (red), from [1].

Figure 5.3 demonstrates good compatibility between the reproduced model and the exper-
imental results from the original study [1]. The model parameters in the human case were
昀椀ne-tuned based on this distribution, so it is important that themodel qualitatively aligns with
the expected outcomes.

5.2 Sensitivity analysis

At this stage, as previously mentioned, it is time to conduct a sensitivity analysis to identify the
most critical parameters in the model: those that have the greatest in昀氀uence on the quantity of
TAG produced in each class.
It is recommended to begin with a qualitative screeningmethod to identify themost impactful
parameters. Once these key parameters are identi昀椀ed, more precise quantitative indices, such
as Sobol’ indices, can be computed for further analysis.

5.2.1 Morris method

The preliminary qualitative analysis have been conducted using Morris method. It focuses on
the parameters of the system describing the maximal activities of the 24 昀氀uxes of the system,
telling which are the crucial reactions retaining for the major part the system behaviour and
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without them this behaviour would be lost. Values are used as change factors multiplying the
maximal rates Vmax and their associated ranges, necessary for the sampling algorithm, are de-

(a) E昀昀ect on the even classes of the maximal ac琀椀vi琀椀es fold changes. Values on the y‐axis are the average elementary e昀昀ectsµ (4.2), while
errorbars represent the standard devia琀椀on σ (4.3).

(b) E昀昀ect on 8−th TAG class alone of the maximal ac琀椀vi琀椀es changes. The sca琀琀erplot, σ vs. µ∗, allows to iden琀椀fy region of
interest for non‐in昀氀uencing, linearly and non‐linearly in昀氀uencing parameters, as previously explained in Methods 4.2.1.

Figure 5.4: Results of the Morris OAT‐type analysis performed on all the maximal ac琀椀vi琀椀es of the 昀氀uxes, kept in the interval
[0.9, 1.1].
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昀椀ned using fold factors of [0.9, 1.1], thus replicating the original idea of a ±10% variation
applied to the reaction rates.
Figure 5.4 con昀椀rms fold changes applied to the reaction rates that have the major in昀氀uence

on the TAG production, here measured for even classes in 5.4a and for only the 8−th class in
5.4b, are the uptake rate (sum of vCD36 and Vdiff ) and the ones catalyzed by GPAT, DGAT1,
DGAT2 and ATGL, as well as all the other rates regulating the degradation of lipids and RSPs
binding/unbinding to the droplets surface.

5.2.2 Sobol method

After the crucial 昀氀uxes have been selected in 5.2.1 using Morris method, it’s time to conduct
a more quantitative analysis. This analysis will also include the cytosolic concentrations of all
RSPs, which, while sparsely documented in the literature, are known to signi昀椀cantly in昀氀uence
the dynamics of LDs. This impact arises from binding processes on the LD surfaces, which are
directly a昀昀ected by these concentrations.
The sampling procedure here relies on SALib.sample.sobol, using Saltelli’s extension of the

Figure 5.5: The Sobol analysis results are presented as a matrix illustra琀椀ng the e昀昀ects of the 11 selected parameters on the
TAG content across each of the 10 analyzed classes, measured in terms of 昀椀rst‐order index (4.2.2).
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Sobol’ sequence and returning a NumPymatrix containing the model input.
The results showed in Figure 5.5 are obtained setting a number of samples high enough to al-

low the Mote Carlo sampling procedure to converge, without resulting in negative 昀椀rst-order
indices. They suggest that GPAT is a key enzyme involved in TAG production, which may
seem unexpected at 昀椀rst but is logical. If the FA-CoA compounds are not e昀케ciently utilized
in this pathway, they may be diverted for oxidation in the mitochondria. Thus, GPAT activ-
ity can be seen as a bottleneck, limiting the progression of the reaction chain in case it is limited.
The computationperformedalso enables the analysis of parameter correlations through second-
order Sobol’ indices; however, this is not the primary focus of the current work at themoment.

5.3 Learning the input-output relation with a Neu-
ral Network

When designing neural networks for tasks that are not excessively complicated, it is generally
bene昀椀cial to avoid using overly complex architectures, as they can introduce unnecessary com-
putational demands and increase the likelihood of over昀椀tting without o昀昀ering substantial im-
provements in performance. In this case the neural networks only aims to get to the same solu-
tion previously computed by solving the ODEs system. The architecture chosen for this quite
simple task is a shallow 3-layersNN,with a 50-neurons hidden layer and having the accuracy of
setting equal to 11 and 10 the number of neurons in the input and output layers respectively,
equaling the number of selected input parameters and the number of real values for the LDs
clsses occupation. The loss function is the mean squared error, in PyTorch called MSELoss
criterion and using Adam as optimizer, setting the learning rate to 0.001.

Figure 5.6 shows results that, as expected, are very similar to those obtained by numerical
integration of the ODEs. The key advantage of this approach lies in its potentially faster com-
putational time. Although training the neural network is time-consuming, it only needs to be
done once. After training, the model can quickly load the learned weights and make predic-
tions much more e昀케ciently.
In this relatively straightforward scenario, testing the two approaches on a single prediction,
theNN-basedmethod is slightly faster than the traditional one. This advantagemight become
particularly signi昀椀cant when scaling to multicellular problems or when iterating the solution
multiple times, as will be demonstrated in the next application of the model (5.3.1).
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Figure 5.6: The result achieved applying the trainedmodel to a new parameters con昀椀gura琀椀on (blue) compared to the classical
one by ODEs solu琀椀on (violet). The synthe琀椀c dataset used for this purpose has been split into three parts: 70% for training
and 15% each for valida琀椀on and tes琀椀ng.

5.3.1 Inverse problemwith GD

The goal here is to infer the parameters generating a particular LDs output distribution by
adjusting the input values through gradient descent (GD) to minimize the di昀昀erence between
the predicted lipid droplet size distribution from the neural network and the desired LDs size
distribution, which has to be the input of this kind of inverse problem.
The optimized parameters, displayed in Figure 5.7, are promising but still not fully accurate.

There appears to be a systematic deviation in the parameters, particularly in the ones between
PLIN1 andHSL. Further re昀椀nement could be achieved by performingmultiple runswith vary-
ing initial conditions or by reducing the number of parameters.
As it stands, these results should be regarded as preliminary and not yet de昀椀nitive, though
this section underscores the potential of gradient descent-based inverse problem techniques
to bridge the gap between observable clinical phenomena, such as LD distribution, and under-
lying biologicalmechanisms, while also highlighting the need for further validationwith actual
patient datasets.
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Figure 5.7: The original parameters (red) and the inferred ones (blue), obtained minimizing the di昀昀erence between the NN‐
predicted and the target LDs distribu琀椀on.
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6
Conclusion

In this work the goal was to implement a liver cell digital twin for the lipid metabolism, com-
prising a simulation for the lipid droplets genesis, degradation and all the other intermediate
steps, building the model on the mathematical framework introduced in [1].

Even though some di昀케culties have been encountered during the implementation of the
model, the results are in good approximation satisfactory when compared to the ones of the
reference paper. The issues encountered are of di昀昀erent kinds and can be summed up as:

• notation issues, mathematically the notation used in the reference paper’s equations is
often inaccurate or not precise, requiring a careful analysis of the measures and typos in
order to recover the original model with an accuracy as high as possible;

• the equation 3.3 have been introduced to model the content of neutral lipids in each
LD size class. Moreover, it was challenging for an external reader to implement the shift
between neighbouring classes (A.3) that was mentioned in the original paper [1];

• themathematicalmodel is very sensitive to small variationnot only of themetabolites ini-
tial concentrations, but also Michaelis constantsKm, maximal enzymes activities Vmax

and other parameters. The values have been selected with caution, as small variations
in parameters for this kind of sti昀昀 problems can signi昀椀cantly alter the dynamics of the
system;

• starting from scratch with the entire code is a very time demanding process that involves
numerous trial-and-error steps before achieving a smoothly running model simulation.
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There is certainly room for improvement in various aspects of the implementation and
the overall pipeline.

Based on the original mechanistic model for the hepatocyte metabolic network, the model
simulates a good approximation of the stable lipid droplet distribution, providing an estima-
tion of the variability in the abundance of central enzymes and RSPs accounting for the ob-
served inter-cellular heterogeneity of LD size distributions.
For a more accurate simulation of the disease over time, the cytosolic concentration of regu-

latory surface proteins must be properly modeled to re昀氀ect dynamic changes rather than being
treated as 昀椀xed constants. This is particularly important for capturing the evolution of key pa-
rameters that signi昀椀cantly in昀氀uence the model. Currently, the model has only been tested and
applied to relatively short time periods, and its e昀昀ectiveness beyond these duration remains un-
known.

The contributions of this work are signi昀椀cant, especially in terms of potential clinical appli-
cations. The use of neural networks o昀昀ers a novel approach for identifying key parameterswith
precision, while maintaining accuracy. This is particularly relevant given the challenges asso-
ciated with measuring various concentrations, which are often either di昀케cult or prohibitively
expensive to obtain. Moreover, the inverse problem framework allows for the identi昀椀cation
of parameter ranges that can lead to steatosis, o昀昀ering valuable insights for understanding and
potentially mitigating lipid-related disorders.
However, a potential drawback of this method is that since it is trained on synthetic data, it
may lose its generalization capability when applied to real patient data, especially given that
such data is unfortunately not currently available.

In conclusion, potential future developments could build upon this work in several ways,
starting from the extension of the model to a multicellular scenario as an hepatic lobule, hav-
ing approximately 108 cells/g, to see how the actual implementation scales for problems on
a much larger scenario. Additionally, there is potential for extending this approach to other
tissues, broadening its applicability and enhancing our understanding of lipid dynamics in var-
ious physiological contexts.
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A
Appendix

This Appendix A is used to provide the mathematical details omitted in the main text for the
sake of simplicity, ensuring clarity while preventing the inclusion of complex formulas in the
narrative.

A.1 Hormones and metabolites plasma profiles

The glucose level in the blood is the proxy used for the feeding state of the patient/mice, high
glucose level means we are measuring short after a meal and this cause an increase in the TAG
synthesis in hepatocytes.

A.1.1 Insulin and glucagon

Concentration of the insulin and glucagon hormones is controlled by the glucose concentra-
tion of the blood. While insuline enhances TAG synthesis and storage in hepatocytes, here
directly in昀氀uencing the ApoB degradation rate (A.67), glucagon counteracts the e昀昀ects of
insulin and leads to the breakdown of TAGs. It promotes lipolysis by activating hormone-
sensitive lipase (HSL), which breaks down stored TAGs into free fatty acids and glycerol.
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To compute their level, the following glucose hormone transfer function (GHT) is used.

Ins = 2 ·

(

1.55nM ·
(Glcex )5.7

(Glcex )5.7 + (7.7mM)5.7

)

(A.1)

Glucagon = 2 ·

(

0.253nM ·

(

1−
(Glcex )5.65

(Glcex )5.65 + (4.7mM)5.65

)

+ 0.02nM

)

(A.2)

The concentration of these two hormones determine the phosphorylation state ´ of the inter-
convertible enzymes.

´ =
1

2
·

(

1−
Ins 1.75

Ins 1.75 + (0.70nM)1.75
+

Glucagon 3.6

Glucagon 3.6 + (0.08nM)3.6

)

(A.3)

A.1.2 Total and free fatty acids

The relationship between plasma total and free fatty acids (TFA and FFA) and plasma glucose
(Glcex) levels can be described using the glucose free fatty acid transfer (GFT) functions. These
functions were developed to capture the dependence of plasma FFA concentrations on plasma
glucose levels, using experimental data from several studies to 昀椀t Hill-type transfer functions.

TFAex = 1.2mM− 1.1mM
Glc4ex

Glcex + (6.5mM)4
(A.4)

Plasma fatty acids are primarily bound to plasma albumin, with only free fatty acids available
for liver uptake. To estimate the free fatty acid (FFA) concentration, we use a fourth-order
polynomial equation to calculate FFAs from the total fatty acids (TFA) in the blood plasma
(ex).

FFAex

[nM]
= 27.86

(

TFAex

[mM]

)4

− 18.29

(

TFAex

[mM]

)3

+ 30.88

(

TFAex

[mM]

)2

+ 17.83

(

TFAex

[mM]

)

(A.5)
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A.2 Reaction equations

List of the rate equations and kinetic parameters from the model [1]. The square parenthesis
is the notation commonly used to indicate the metabolite concentration, while bold style is
used to indicate vectors, namely array of values containing a number of elements equal to the
chosen number of LD classes. The brackets with no number inside, 〈−〉, refer to processes
that are not graphically depicted in Fig.3.1. Letters are used, e.g. 6a, 6b, 6c where multiple
processes are involved in the main reaction.

A.2.1 Metabolic module

〈1〉 FA uptake by a combination of di昀昀usion and an active transport process with CD36.

[FA]ex
diff,CD36
−−−−−−→ [FA]cyt (A.6)

vdiff = V diff
max ([FA]ex − [FA]cyt) (A.7)

vCD36 = V CD36
max

[FA]ex − [FA]cyt

1 + [FA]ex

K
FAex
m

+ [FA]cyt

K
FAcyt
m

(A.8)

KFAex

m = 0.000083mM, KFAcyt

m = 0.004mM (A.9)

V diff
max = 1.2442 · 105 h−1, V CD36

max = 1.14 · 101 h−1 (A.10)

〈2〉Activation of FFA by ACS.

[FA]cyt + [CoA]cyt + [ATP ]
ACS
−−→ [FA-CoA]cyt + [ADP ] (A.11)

vACS = V ACS
max

(

[FA]cyt

[FA]cyt +K
FAcyt
m

)

(

[ATP ]

[ATP ] +KATP
m

)

(

[CoA]cyt

[CoA]cyt +K
CoAcyt
m

)

(A.12)

KFAcyt

m = 0.05mM, KATP
m = 0.65mM, KCoAcyt

m = 0.0064mM (A.13)

V ACS
max = 3.1104 · 106 mM/h (A.14)
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〈3〉Mitochondrial ³-oxidation by CPT1.

[FA-CoA]cyt + [Car]cyt
CPT1
−−−→ [FA-Car]cyt + [CoA]cyt (A.15)

vCPT1 = V CPT1
max

(

[FA-CoA]2.47cyt

[FA-CoA]2.47cyt + (KFA-CoA
m )2.47

)(

[Car]cyt
[Car]cyt +KCar

m

)

(A.16)

KFA-CoA
m = KFA-CoA

0

(

1 +
[malcoa]cyt
Kmalcoa

i

)

(A.17)

K
FAcyt

0 = 0.03mM, KCar
m = 0.0032mM, Kmalcoa

i = 0.0025mM (A.18)

V CPT1
max = 1.8000 · 103 mM/h (A.19)

〈4a〉 Esteri昀椀cation of G3P by GPAT.

[G3P ]cyt + [FA-CoA]cyt
GPAT
−−−−→ [LPA]er + [CoA]cyt (A.20)

vGPAT = V GPAT
max

(

[G3P ]cyt
[G3P ] +KG3P

m

)(

[FA-CoA]cyt
[FA-CoA]cyt +KFA-CoA

m

)

(A.21)

KG3P
m = 0.2mM, KFA-CoA

m = 0.09mM (A.22)

V GPAT
max = 5.4000 · 102 mM/h (A.23)

〈4b〉 Esteri昀椀cation of LPA with a long-chain acyl-CoA by AGPAT.

[LPA]er + [FA-CoA]cyt
AGPAT
−−−−→ [PA]er + [CoA]cyt (A.24)

vAGPAT = V AGPAT
max

(

[LPA]er
[LPA]er +KLPA

m

)(

[FA-CoA]cyt
[FA-CoA]cyt +KFA-CoA

m

)

(A.25)

KLPA
m = 0.0065mM, KFA-CoA

m = 0.004mM (A.26)

V AGPAT
max = 5.4000 · 102 mM/h (A.27)

〈4c〉Hydrolysis of PA by PAP.

[PA]er
PAP
−−−→ [DAG]er + [Pi]cyt (A.28)

vPAP = V PAP
max

(

[PA]2.2er

[PA]2.2er + (KPA
m )2.2

)

(A.29)

KPA
m = 0.35mM (A.30)

V PAP
max = 3.6000 · 103 mM/h (A.31)
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〈5〉 PC synthesis by CPT.

[DAG]er
CPT
−−−→ [PC]er (A.32)

vCPT = V CPT
max

(

[DAG]er
[DAG]er +KDAGer

m

)

(A.33)

KDAG
m = 0.125mM (A.34)

V CPT
max = 3.6mM/h (A.35)

〈5b〉 PC export.

[PC]er
PCTP
−−−−→ [PC]ex (A.36)

vPCTP = V PCTP
max [PC]er (A.37)

V PCTP
max = 3.6000 · 103 h−1 (A.38)

〈6〉 Synthesis of TAG by DGAT1 and DGAT2.

〈6a〉 TAG synthesis by DGAT1.
DGAT1 resides in the ERmembrane and synthesizes TAGer(1) used for VLDL synthesis and
nLD formation.

[DAG]er + [FA-CoA]cyt
DGAT1
−−−−→ [TAG]er(1) + [CoA]cyt (A.39)

vDGAT1
TAGer(1)

= V DGAT1
max

(

[FA-CoA]cyt
[FA-CoA]cyt +KFA-CoA

m

)(

[DAG]er
[DAG]er +KDAGer

m

)

(A.40)

KFA-CoA
m = 0.1mM, KDAG

m = 0.03mM (A.41)

V DGAT1
max = 2.8800 · 102 mM/h (A.42)

〈6b〉 TAG synthesis by DGAT2.
DGAT2 resides either in the ER membrane and synthesizes [TAG]er(2) used for nascent LD
formation or distributes to LD surface synthesizing [TAG]LD directly 昀椀lling LDs 〈10〉. The
distribution of DGAT2 between the er and the di昀昀erent LD classes, LDn, depends on the
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number of LDs in each class,numLD, and the radius of the LDs, rLD.

[DAG]er + [FA-CoA]cyt
DGAT2
−−−−→ [TAG]er(2) + [CoA]cyt (A.43)

KDGAT2
er =

10
∑

numLD

(A.44)

KDGAT2

LD
= numLD ·

(

1−
rLD

3

rLD
3 + k3

rLD

)

(A.45)

V DGAT2
maxer

= V DGAT2
max

KDGAT2
er

KDGAT2
er +

∑

KDGAT2

LD

(A.46)

vDGAT2
TAGer(2)

= V DGAT2
maxer

(

[FA-CoA]cyt
[FA-CoA]cyt +KFA-CoA

m

)(

[DAG]er
[DAG]er +KDAGer

m

)

(A.47)

krLD
= 0.15 µm, KFA-CoA

m = 0.1mM, KDAG
m = 0.03mM (A.48)

V DGAT2
max = 3.0240 · 102 mM/h (A.49)

A.2.2 Lipid module

〈7〉De novo synthesis of nLD.
The produced nascent lipid droplets belong to the 昀椀rstLD class, both for the ones synthesized
from TAGer(1) and TAGer(2), and they are not concerned by protein coating to their surface.

[TAG]er(1,2)
de novo
−−−−→ [TAG]nLD (A.50)

vde novo
LD(1,2) = V de novo

maxLD
· [TAG]er(1,2) (A.51)

V de novo
maxLD

= 3.6 h−1 (A.52)

〈−〉 nLD coating with TIP47. Coating with TIP47 convert the nascent lipid droplets to
actual lipid droplets, detaching from the ER.

[TAG]nLD + [TIP47]cyt
TIP47
−−−−→ µn,1[TAG]LD (A.53)

vTIP47
nLD = kTIP47

nLD · [TAG]nLD · [TIP47]cyt (A.54)

kTIP47
nLD = 3.6 · 103 h−1 (A.55)
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〈−〉 nLD degradation by ATGL.

[TAG]nLD + [ATGL]cyt
ATGL
−−−→ (A.56)

vATGL
nLD = kATGL

nLD · [TAG]nLD · [ATGL]cyt (A.57)

kATGL
nLD = 7.92 h−1 (A.58)

〈8〉 TAG 昀椀lling of LDs by DGAT2.
The distribution ofDGAT2 between ER and LDs have been already de昀椀ned inA.44 andA.45.

[DAG]er + [FA-CoA]cyt
DGAT2
−−−−→ [TAG]LD + [CoA]cyt (A.59)

V DGAT2

maxLD
= V DGAT2

max

KDGAT2

LD

KDGAT2
er +

∑

KDGAT2

LD

(A.60)

vDGAT2

TAGLD
= V DGAT2

maxLD

(

[FA-CoA]cyt
[FA-CoA]cyt +KFA-CoA

m

)(

[DAG]er
[DAG]er +KDAGer

m

)

(A.61)

The 昀椀lling of LDs of class n diminishes the cellular TAG content [TAG]LDn
in the respective

class and increases the content [TAG]LDn+1 in classn+1 by shifting TAG from the smaller to
the bigger droplet. The shifting rate depends on the relative volume∆V olLDn

between classes
n and n− 1.

∆V olLDn
=

V olLDn

V olLDn−1

− 1 (A.62)

vDGAT2
shiftLDn

= vDGAT2
TAGLDn−1

·∆V olLDn
(A.63)

The changeof [TAG]LDn
is the sumof昀椀lling this class accompaniedby the shiftingof [TAG]LDn−1

into this class, and shifting from this class in the next bigger class

vfillDGAT2

TAGLDn
= vDGAT2

TAGLDn−1
+ vDGAT2

shiftLDn
− vDGAT2

shiftLDn+1
(A.64)

〈9a〉 Synthesis and degradation of ApoB.
The degradation rate of ApoB, vdegApoB , is the sum of a basal rate k1 and a insulin dependent rate
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k2, while the synthesis rate, vsynApoB , is considered to be a constant.

v
syn
ApoB

−−−→ [ApoB]er
v
deg
ApoB

−−−→ (A.65)

vsynApoB = const. = 3.6 · 103 mM/h (A.66)

vdegApoB = V
ApoBdeg
max · [ApoB]er ·

(

k1 + k2
[Ins]ex

[Ins]ex +KInsex
m

)

(A.67)

k1 = 0.3, k2 = 0.7, KInsex
m = 103 pM (A.68)

V
ApoBdeg
max = 2.8804 · 104 h−1 (A.69)

〈9b〉 Synthesis and secretion of VLDL.

[ApoB]er + [TAG]er(1)
MTP
−−−→ [TAG-V LDL]er

V LDLex−−−−−→ [V LDL]ex (A.70)

vMTP = V MTP
max · [TAG]er(1) · [ApoB]er (A.71)

vV LDLex
= V V LDLex

max

(

[TAG-V LDL]er

[TAG-V LDL]er +K
[TAG-V LDL]er
m

)

(A.72)

V MTP
max = 3.440mM−1h−1, V V LDLex

max = 5.4000 · 101 mM/h (A.73)

〈10〉 LD fusion regulated by FSP27.
The fusion rate frij between two droplets belonging to size classes i and j depends on their
radii ri and rj and their droplet number numLDi

and numLDj
, as well as on the availability of

the regulating protein FSP27 in the cytoplasm.

frij = V fus
max · [FSP27]cyt · numLDi

· numLDj
·

∣

∣

∣

∣

1

rLDj

−
1

rLDi

∣

∣

∣

∣

(A.74)

V fus
max = 1.8000 · 10−2 mMµm−2h−1 (A.75)

Considering the droplets indices i and j with i > j, themodel is implemented in such away
that [TAG]LDi

and [TAG]LDj
decrease and [TAG]LDj+1

increases, simulating the absorption
of the droplet i by j and the 昀椀lling of [TAG]LDj

with [TAG]LDi
. Analogously to the LDs

昀椀llingprocess, there is a shift ofTAGfrom [TAG]LDj
to [TAG]LDj+1

, with a rate proportional
to the relative volume∆V olLDj

.
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Droplets of the maximum size (radius equal to 3µm) cannot fuse.

vshrinkTAGLDj
=

Nc−1
∑

i=j

frij · V olLDj
(A.76)

vshrinkshiftLDj
= vshrinkTAGLDj

·∆V olLDj
(A.77)

vgrowth
TAGLDj

=

j−1
∑

i=i

frij · V olLDi
(A.78)

vgrowth
shiftLDj

= vgrowth
TAGLDj

·∆V olLDj
(A.79)

vfusTAGLDj
= vgrowth

TAGLDj
− vshrinkTAGLDj

+ vgrowth
shiftLDj

− vshrinkshiftLDj+1
(A.80)

〈−〉Reversible binding of RSPs to LD surface.
Binding rate depends both on a function of the radius of the LD, kX

r
, and the free fraction of

its surface, ffree
LD . The vectorXLD describes the fraction of the LD surface occupied by the

RSPsX , whereX = PLIN1, ADRP, TIP47, CGI58, ATGL.

vXon−−→XLD

vX
off

−−→ (A.81)

vPLIN1

on
= kPLIN1

on · kPLIN1

r
· [PLIN1]cyt · f

free
LD (A.82)

vPLIN1

off
= kPLIN1

off · (1− kPLIN1

r
) · PLIN1LD (A.83)

where kPLIN1

r
=

r15

LD

r15

LD
+ k15

rLD

and krLD
= 2µm (A.84)

vADRP
on

= kADRP
on · (1− kADRP

r
) · [ADRP ]cyt · f

free
LD (A.85)

vADRP
off

= kADRP
off ADRPLD (A.86)

where kADRP
r

=
r12

LD

r12

LD
+ k12

rLD

and krLD
= 2µm (A.87)

vTIP47

on
= kTIP47

on · kTIP47

r
· [TIP47]cyt · f

free
LD (A.88)

vTIP47

off
= kTIP47

off · (1− kTIP47

r
) · TIP47LD (A.89)

where kTIP47

r
= 1−

r10

LD

r10

LD
+ k10

rLD

and krLD
= 0.5µm (A.90)

kPLIN1
on = 1.8000 · 104 h−1, kPLIN1

off = 3.6000 · 103 h−1, (A.91)

kADRP
on = 1.2600 · 105 h−1, kADRP

off = 3.6000 · 103 h−1, (A.92)

kTIP47
on = kTIP47

off = 3.6000 · 103 h−1 (A.93)
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The binding of CGI58 to the LD is mediated by PLIN1 andADRP , and its phosphoryla-
tion in response to hormonal stimulation leads to binding and therefore activation ofATGL.

vCGI58
on

= kCGI58
on · [CGI58]cyt · (k1 · PLIN1LD + k2 ·ADRPLD) (A.94)

vCGI58
off

= kCGI58
off ·CGI58LD (A.95)

where k1 = 0.1 and k2 = 0.2 (A.96)

vATGL
on

= kATGL
on · numLD · [ATGL]cyt · f

free
LD (A.97)

vATGL
off

= kATGL
off ·ATGLLD (A.98)

vCGI58on

ATGLLD
= kCGI58on

ATGLLD
· numLD · SurLD · (CGI58LD · (1− ´)) ·ATGLLD

(A.99)

v
CGI58off

ATGLLD
= k

CGI58off
ATGLLD

·ATGL-CGI58LD (A.100)

kCGI58
on = 3.6000 · 103 h−1, kCGI58

off = 3.6000 · 104 h−1, (A.101)

kATGL
on = 3.6 µm−2h−1, kATGL

off = 3.6000 · 101 h−1, (A.102)

kCGI58on
ATGLLD

= 3.6 µm−2h−1, k
CGI58off
ATGLLD

= 33.6000 · 101 h−1 (A.103)

〈11a〉 LD’s TAG degradation by ATGL.

[TAG]LD
ATGL
−−−→ [DAG]LD + [FA]cyt (A.104)

vATGL = V ATGL
max · numLD · (ATGLLD + 20 · [ATGL-CGI58]LD) · [TAG]LD

(A.105)

V ATGL
max = 7.92 h−1 (A.106)

〈11b〉 LD’s TAG and DAG degradation by HSL.
HSL can hydrolyze TAG, although its main activity is DAG hydrolyzation. HSL is activated
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by phosphorylation ofPLIN1LD +ADRPLD.

[TAG]LD
HSL
−−−→ [DAG]LD + [FA]cyt (A.107)

vTAG
HSL

= V HSLTAG
max · (1− ´) · numLD · SurLD· (A.108)

· (ffree
LD + PLIN1LD +ADRPLD) ·

[TAG]LD

[MAG]LD + [DAG]LD + [TAG]LD

(A.109)

[DAG]LD
HSL
−−−→ [MAG]LD + [FA]cyt (A.110)

vDAG
HSL

= V HSLDAG
max · (1− ´) · numLD · SurLD· (A.111)

· (ffree
LD + PLIN1LD +ADRPLD) ·

[DAG]LD

[MAG]LD + [DAG]LD + [TAG]LD

(A.112)

V HSLTAG
max = 3.1700 · 10−3 mMµm−2h−1, V HSLDAG

max = 3.17mMµm−2h−1 (A.113)

〈11c〉 LD’s MAG degradation byMGL.

[MAG]LD
MGL
−−−→ [FA]cyt (A.114)

vMGL = V MGL
max · numLD · SurLD ·

[MAG]LD

[MAG]LD + [DAG]LD + [TAG]LD

(A.115)

V MGL
max = 3.6000 · 103 mMµm−2h−1 (A.116)

A.2.3 Stoichiometric matrix

The set of coupled ordinary di昀昀erential equations that govern the system evolution. When
indexing over theNc di昀昀erent size classes it is used the index n.
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d[FA]cyt
dt

= vCD36 + vdiff − vACS +
∑

vATGL +
∑

vTAG
HSL

+

+
∑

vDAG
HSL

+
∑

vMGL (A.117)
d[FA-CoA]cyt

dt
= vACS − (vGPAT + vAGPAT ) ·

V oler
V olcyt

− vCPT1−

− (vDGAT1
er(1) + vDGAT2

er(2) ) ·
V oler
V olcyt

−
∑

vDGAT2

TAGLD
(A.118)

d[CoA]cyt
dt

= −vACS + (vGPAT + vAGPAT ) ·
V oler
V olcyt

+ vCPT1+

+ (vDGAT1
er(1) + vDGAT2

er(2) ) ·
V oler
V olcyt

+
∑

vDGAT2

TAGLD
(A.119)

d[PC]er
dt

= vCPT − vPCTP (A.120)

d[PA]er
dt

= vAGPAT − vPAP (A.121)

d[LPA]er
dt

= vGPAT − vAGPAT (A.122)

d[MAG]cyt
dt

=
∑

(vDAG
HSL

− vMGL) (A.123)

d[DAG]er
dt

= vPAP − vCPT − vDGAT1
er(1) − vDGAT2

er(2) −
(

∑

vDGAT2

TAGLD

) V oler
V olcyt

(A.124)
d[MAG]LD

dt
= vDAG

HSL
− vMGL (A.125)

d[DAG]LD

dt
= vATGL + vTAG

HSL
− vDAG

HSL
(A.126)

d[TAG]er(1)
dt

= vDGAT1
er(1) − vMTP − vde novo

LD(1)

V olER

V olcyt
(A.127)

d[TAG]er(2)
dt

= vDGAT2
er(2) − vde novo

LD(2)

V olER

V olcyt
(A.128)

d[TAG]LD

dt
= v

fillDGAT2

TAGLD
− vATGL − vTAG

HSL
+ v

fusFSP27

TAGLD
+ µn,1v

TIP47
LD (A.129)

d[TAG]nLD
dt

= vde novo
LD(1) + vde novo

LD(2) − vTIP47
LD1

− vTAGnLD

ATGL (A.130)
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d[TAG-V LDL]er
dt

= vMTP

V oler
V olcyt

− vV LDLex
(A.131)

d[ApoB]er
dt

= vsynApoB − vdegApoB − vMTP (A.132)

dXLD

dt
= vX

on
− vX

off
, (forX = PLIN1, ADRP, TIP47) (A.133)

dCGI58LD

dt
= vCGI58

on
− vCGI58

off
− vCGI58on

ATGLLD
+ v

CGI58off

ATGLLD
(A.134)

dATGLLD

dt
= vATGL

on
− vATGL

off
− vCGI58on

ATGLLD
+ v

CGI58off

ATGLLD
(A.135)

dCGI58-ATGLLD

dt
=

dATGL-CGI58LD

dt
= vCGI58on

ATGLLD
− v

CGI58off

ATGLLD
(A.136)

dffree
LD

dt
= −

dPLIN1LD

dt
−

dADRPLD

dt
−

−
dADRPLD

dt
−

dTIP47LD

dt
−

dATGLLD

dt
(A.137)

where the compartment volumesmultiplied and divided in order to conserve themass are 昀椀xed
constants

V olcyt = 2.81 · 10−12 L (A.138)

V oler = 2.1 · 10−12 L (A.139)

A.3 Change in number of LDs

This section will present calculations related to the changes in the number of lipid droplets
(LDs) as they grow or shrink in response to variations in their lipid content, brie昀氀y explained
in section 3.2.5.
Uptake of a given lipid amount vTAG ·∆t = ∆TAG > 0 into a LDowing to lipid (TAG) 昀氀ow
vTAG within the time span∆t would actually increase the size of a LD. Since we are working
with classes, both the uptake and release of TAG into or from lipid droplets (LDs) of size class
n increase the total TAG content and the number of LDs in neighboring size classes (n+1 and
n− 1), while simultaneously decreasing the total TAG content and the number of LDs in size
class n. This process is described by:
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if∆TAGn ≥ 0:

LDn → LDn · (1−∆LDn) (A.140)

LDn+1 → LDn+1 · (1 + ∆LDn) (A.141)

where∆LDn = ∆TAGn/(TAGn+1 − TAGn) (A.142)

if∆TAGn < 0:

LDn → LDn · (1−∆LDn) (A.143)

LDn−1 → LDn−1 · (1 + ∆LDn) (A.144)

where∆LDn = |∆TAGn|/(TAGn − TAGn−1) (A.145)

Working on the 昀椀rst case, when ∆TAGn ≥ 0, we can reformulate the equations to include
explicit time dependence, allowing us to derive an ODE that describes the evolution of the
number of LDs.

LDn(t+∆t) = LDn(t) · (1−∆LDn) (A.146)

⇒
LDn(t+∆t)− LDn(t)

∆t
= −LDn(t)

∆LDn

∆t
(A.147)

⇒
∂LDn(t)

∂t
= −LDn(t)

vTAG

TAGn+1 − TAGn

(A.148)

LDn+1(t+∆t) = LDn+1(t) · (1 + ∆LDn) (A.149)

⇒
LDn+1(t+∆t)− LDn+1(t)

∆t
= LDn+1(t)

∆LDn+1

∆t
(A.150)

⇒
∂LDn+1(t)

∂t
= LDn+1(t)

vTAG

TAGn+1 − TAGn

(A.151)

Similarly, the same applies to the case of∆TAGn < 0 leading to

∂LDn(t)

∂t
= −LDn(t)

|vTAG|

TAGn − TAGn−1

(A.152)

∂LDn−1(t)

∂t
= LDn−1(t)

|vTAG|

TAGn − TAGn−1

(A.153)
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A.4 Results comparison

In this Appendix section some metrics are shown as comparison for the obtained results with
the ones of the original paper [1].

A.4.1 Rates comparison

List of the steady state 昀氀ux values. The metabolites and proteins residing in lipid droplets,
whose 昀氀uxes are reported in bold, have been summed up over all the size classes. Fluxes ex-
pected here by the authors may be wrong considering the volume corrections to ensure mass
conservation between compartments seem not to have been considered.

59



昀氀ux obtained expected rel. di昀昀.

vdiff 1.77 1.8 0.016
vCD36 11.3 11.4 0.013
vACS 39.7 27.3 0.31
vCPT1 3.56 0.82 0.77
vGPAT 15.3 9.24 0.40
vAGPAT 15.3 9.24 0.40
vPAP 15.3 9.24 0.40
vCPT 2.00 1.26 0.37
vPCTP 2.00 1.26 0.37
vsynApoB 3600 3600 -
vdegApoB 3595 3600 0.001
vMTP 4.64 1.90 0.59

vV LDLex
3.47 1.90 0.45

vDGAT1
TAGer(1)

7.41 3.89 0.48
vDGAT2
TAGer(2)

0.30 0.81 1.73
vDGAT2

TAGLD
7.49 3.28 0.56

v
fillDGAT2

TAGLD
7.49 4.68 0.38

vde novo
LD(1) 3.72 1.99 0.46
vde novo
LD(2) 0.39 0.81 1.04

vPLIN1

on
2585 2220 0.14

vPLIN1

off
2585 2220 0.14

vADRP
on

60918 57400 0.058
vADRP
off

60918 57400 0.058
vTIP47

on
153 157 0.023

vTIP47

off
153 157 0.023

vTIP47
nLD 2.06 1.40 0.32

vCGI58
on

15512 14400 0.072
vCGI58
off

15512 14400 0.072
vATGL
on

5.54 62.3 10.2
vATGL
off

5.54 62.30 10.2
vCGI58on

ATGLLD
0.26 0.401 0.53

v
CGI58off

ATGLLD
0.26 0.401 0.53

vATGL 8.81 4.52 0.49
vATGL
nLD 2.06 1.4 0.32
vTAG
HSK

0.08 0.154 0.85
vDAG
HSL

8.89 4.68 0.47
vMGL 8.89 4.68 0.47
v
fus
TAGLD

-0.52 1e-08 1.00

Table A.1: Rela琀椀ve di昀昀erence between the obtained and expected (from [1]) 昀氀uxes stable values for the rat hepatocyte
parameters. The 昀氀uxes in bold, namely vectors, are summa琀椀on over all the LD classes.
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