
 

UNIVERSITA’ DEGLI STUDI DI PADOVA 

Dipartimento di Ingegneria Industriale DII 

Corso di Laurea Magistrale in Ingegneria Aerospaziale 

 

 

 

Direct numerical simulation of the erosion  

of a wall of a turbulent channel 

 

 

 

 

Relatore: Prof. Francesco Picano 

 

Laureando: Alessandro Campice 

Matricola: 1179752 

 

Anno Accademico 2019/2020 



Abstract

L’interazione tra fluido e struttura è un problema che, a causa delle non linearità
implicite nella sua definizione, risulta in una difficile trattazione, che spesso non
ammette soluzioni analitiche. Esso è tuttavia di enorme importanza in molti campi
dell’ingegneria per la descrizione di fenomeni distruttivi e non (fracking e frattura
idraulica, flutter, sloshing, ecc...). Per quanto riguarda la descrizione dei fenomeni
distruttivi, ossia in cui si ha la rottura del solido in analisi, entrano in gioco anche
le difficoltà legate alla descrizione della propagazione dinamica della frattura. Le
tecniche di analisi numerica più largamente diffuse, infatti, non sono in grado
di risolvere quest’ultimo punto. Questo è dovuto al fatto che tecniche quali il
metodo degli elementi finiti (FEM) sono sviluppate basandosi su derivate spaziali
e non trovano quindi applicazione in prossimità di una frattura, poichè essa è per
definizione una discontinuità nelle proprietà del materiale.

In questa tesi si andrà ad analizzare il problema dell’erosione di una parete
in un canale turbolento, tramite una simulazione numerica diretta realizzata me-
diante l’accoppiamento a due vie delle tecniche dei contorni immersi (IBM) e
della peridinamica. La scelta di queste due tecniche è motivata dalle loro pro-
prietà intrinseche: il metodo IBM bene si presta alla descrizione dell’evoluzione
dei carichi scambiati tra fluido e solido, anche quando posizione e configurazione
di quest’ultimo variano nel tempo; la peridinamica d’altro canto, in virtù della
sua formulazione non locale, permette di risolvere la propagazione di cricche nel
solido senza la necessità di conoscenze pregresse.

L’accoppiamento di queste tecniche risolutive fornirà quindi informazioni circa
le modalità e le dinamiche con cui si sviluppa l’erosione della parete; permetterà
inoltre una caratterizzazione del materiale in termini di resistenza all’erosione.
Nel seguente elaborato, particolare attenzione verrà posta ai carichi scambiati
all’interfaccia solido-fluido.
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Chapter 1

Introduction

Erosion is a process that follows from the interaction between a fluid flow and a
solid media in contact with it and it is the main responsible for breaches in dams
and embankment dikes [1]. It is a qualitatively well known, spatial multiscale
phenomenon characterized by great time scales. Very little, however, is known
in terms of numerical description of the problem due to its intrinsic difficulties
in an accurate modeling. Indeed, to numerically describe erosion mechanisms, a
two-way coupled code in which dynamic crack propagation is taken into account
must be developed.

Experimental tests are available and allow to determine the resistance to jet
erosion and piping erosion for cohesive soils (JET and HET respectively). They
are tests conducted in laboratory or in-situ on soil samples, the results of which are
the parameters used to rate the sensitivity of the soil to erosion. It becomes clear
that, which such a typology of tests, no information about the detailed process and
mechanics behind erosion are obtained.

On the other hand, fluid structure interaction (FSI) solvers commonly avail-
able describe solid’s motion by mean of classical local theories, based on spatial
derivatives equations. However, this kind of theories are not suitable for fracture
description, unless a previous modeling is available.

This thesis aims to numerically describe the evolution and the mechanics in-
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volved in the erosion of a flat plate, which represents a wall in a fully developed
turbulent channel. This is done by a mean of a simulation, in which peridynam-
ics and an immersed boundary method are coupled, together with Navier-Stokes
equations. Fluid’s domain is solved with a direct numerical simulation (DNS). No
previous numerical models are thus required. After a complete description of the
flow in the channel, an accurate description of the evolution of the erosion of the
surface will be achieved and loads exchanged at the fluid-solid interface are going
to be deeply analyzed.

The following work is divided in 5 chapters. Initially, an overview about state
of the art for erosion and FSI problems will be presented (sections 2.1, 2.2). A
numerical description of the methods used will be given in chapter 3: in particular,
sections 3.1, 3.2 and 3.3 for what concerns peridynamics, Navier-Stokes equations
and Immersed Boundary Methods respectively. The code CaNS-ExPS developed
to solve the problem is described in section 4.1, where it is explained the cou-
pling of all numerical techniques already introduced. Section 4.3 gives a precise
description of the geometric characteristics of this problem, as well as the param-
eters used to describe the fluid and the solid body. Finally, results before rupture,
as erosion proceeds and a confrontation of obtained data with the predicted trend
are in chapter 5.
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Chapter 2

State of the art overview

2.1 Erosion process

Erosion is defined by washing away of grains by mean of a fluid flow in contact
with a solid medium, which may end up in failure. It can be internal or external,
whether the flow is in contact with the surface of the solid or it is underneath
the surface, respectively. Mechanisms to originate erosion are piping erosion,
regressive erosion, contact erosion and suffusion.

Since erosion is one of the main causes for failure of dams, in order to pre-
vent them from irreversible damages that will lead to floods and damages, lot of
attention is given to the characterization of the erodabiblity of the material. This
is done in particular for soils and it is done by mean of experimental tests (HET,
JET), in which the rate of eroded material is measured and related to the properties
of the flow. Usually 2 parameters are needed to describe the resistance to erosion
of a material since, in the most accepted view of the problem, the rate of erosion
is proportional to the applied shear stress. This approach to the problem allows
for a determination of the time necessary for a structure to fail in averaged terms.

The linear dependence for the rate of erosion was first introduced by Du Boys
[2] in the field of bed sediment transportation. Many modifications to its theory
have been made since then, adjusting the proportionality coefficient [3] or mod-
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ifying the linearity of the relation [4]. Einstein [5] proposed a treatment to the
problem in which shear stress is abandoned in favor of fluctuations of velocity.
However, all these models were formulated empirically for granular soils and no
mathematical explanation of the phenomenon was given.

In many models, turbulence of the flow is also taken into account. As a title
of example, Shields [6] proposed a model in which the threshold shear stress for
non cohesive particles is related to the maximum pressure fluctuations. As for
cohesive soils, Briaud et al. [7] related erosion to the fluctuations in shear and
normal stress. However subsequent developments and simplifications lead again
to a linear proportionality as the one described above.

The most commonly used erosion law [8], experimentally verified under dif-
ferent conditions, is:

ver =

kd(τ− τc) if τ > τc

0 otherwise
(2.1)

being ver the velocity of erosion, kd the erosion coefficient and τc the critical
shear stress, a threshold value the shear stress has to overpass in order to initialize
erosion.

As for numerical modeling of the problem, the first model was developed by
Vardoulakis et al. [9] for the determination of sand production in the field of oil
extraction. This is, however, only reliable to granular solids.

More recent studies treat erosion with a volume of fluid (VOF) approach [10]
to determine the interface of the domains and describe their interaction. However,
low resolution is achieved for the properties of the fluid at the interface where the
mesh has to be substantially refined.
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2.2 Fluid Structure Interaction problems

Fluid Structure Interaction (FSI) problems deal with strongly nonlinear multi-
physics phenomena that cover a wide range of engineering fields [11]. In gen-
eral, they are focused on studying the behavior of a solid body interacting with
a surrounding or internal fluid flow. These kind of problems are encountered in
many different fields of study, from the microscopic scale to the macroscopic one.
A typical example of a FSI problem is flutter or, more generally, aeroelasticity
[12] which is by definition the result of the mutual interaction between a body
and the fluid flowing around it (i.e. a wing of a plane). Some other examples of
FSI problems include, but are not limited to, sloshing [13], aerodynamics [14],
sedimentation [15], particles motion and bio mechanics [16].

Due to the natural complexity of these problems, very little can be done us-
ing only a theoretical approach. In addition, problems such as blood flow in an
organism [17] are difficult to be studied also experimentally. All of this led to
the development of numerical codes in order to properly investigate these kind of
phenomena.

There are mainly 2 possible approaches to a FSI problem: the monolithic
and the partitioned one. In the former, fluid and solid dynamics are studied to-
gether using a single system of equations. Interface conditions are automatically
solved and are implicit in the nature of the problem. On the other hand, the latter
solves fluid and solid equations separately. These two must then communicate at
their interface and coupling is made possible with interface conditions, that are
introduced lately and can vary following the nature of the problem. The main
advantage of the partitioned method is that it permits the usage of well known
and validated theories when solving both structural and fluid dynamics as they
are treated independently from each other. Therefore computational cost can be
maintained low. However, this kind of approach lacks in accuracy with respect to
the monolithic one which, in contrast, requires a more complex implementation
[11].

With the partitioned approach it is clear that solid bodies and fluid domain are
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required to have different meshes in order to properly solve their specific equa-
tions. Again, there are 2 more possibilities: the conforming mesh method and the
non-conforming one.

When using a conforming mesh, the interface between the domains is deter-
mined by the mesh itself and the position of the interface is considered as part of
the solution. As the solution advances, re-meshing is required in order to adapt
the grid to the position of the solid body. This is not the case for non-conforming
mesh methods where different and independent grids are determined for the solid
body and for the fluid. In this case interface conditions and location are introduced
in the problem in the form of boundary conditions to be applied to the equations.

Immersed methods represent most of recent developments in FSI field and are
an example of non-conforming mesh methods.

As we will discuss later, in this framework the approach is going to be a par-
titioned approach, since it allows for the usage of arbitrary chosen theories when
solving fluid and solid body dynamics. In particular DNS will be used when
solving the fluid domain, while peridynamics will analyze solid body motion and
determine crack propagation. Immersed boundary method will allow for these
two computational techniques to communicate.
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(a)

(b)

Figure 2.1: Examples of a conforming (a) and non-conforming (b) mesh method [11].
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Chapter 3

Methodology

3.1 Peridynamics

Although being a phenomenon long studied, fracture is still a field of major in-
terest in many engineering fields. First steps in understanding fracture mechanics
were made by Griffith [18] during World War I, and then by Irwin [19]. With
the advent of computers and the improvement in their capabilities, many struc-
tural solvers have been developed, but still simulation of crack propagation is a
challenging issue.

3.1.1 An introduction to peridynamics

By definition, a crack is a discontinuity in a solid medium and therefore it repre-
sents a problem when trying to study it with classical mechanics, such as Finite
Elements Method (FEM) [20]. Indeed, problems encountered are related to the
fact that equations of motion in this kind of method are based on spatial deriva-
tives and therefore discontinuities can not be solved with a similar formulation.
Across the years many alternative ways of treating the problem have been pro-
posed and they mostly consist of modifications of numerical methods based on
classical mechanics. Cohesive crack models [21] can be introduced together with
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the usage of interface elements to solve the equation of motion in the proximity
of discontinuities [22] - [23]. However it is required to know a priori how the
path of the discontinuity evolves. An alternative method is the eXtended Finite
Element Method (XFEM), in which some additional functions are added in order
to predict the crack propagation [24]. This way of proceeding results in a difficult
implementation, especially in 3D cases.

Only in recent years an innovative method called Peridynamics has been pro-
posed [25]. The peculiarity of this theory is that it does not use strain in its formu-
lation. It is therefore built around integral equations instead of differential ones
and, as a consequence, crack propagation can be easily studied. In addition, this is
a meshfree particle method as it deals only with a discrete number of particles to
describe the state of the system. This represents a great advantage when studying
fracture since mesh constraint dependencies are eliminated and there is no need
for remeshing as the crack propagates. As we will see, the only limitations for this
method are related to its computational cost which is higher than FE methods.

Peridynamics has been used in a wide variety of fields, showing surprisingly
good results. First publication about numerical simulations using this technique
has been made by Silling and Askari 155 , in which they studied convergence in
fracture simulation problems with brittle materials and the effect of the impact
of a sphere on a plate. Ha and Bobaru [26] - [27] were able, by mean of this
computational method, to explain the asymmetry of a crack path in a symmetri-
cal domain, reproducing previously obtained experimental results. Agwai et al.
[28] conducted a confrontation between the resolutive methods discussed above
(XFEM, cohesive zone models and peridynamics). Further developments of the
peridynamic model allowed to apply this numerical technique also to the field of
composite materials. This is possible with the introduction of fiber bonds, matrix
bonds and interply bonds [29] - [30]. Another way to study composite materials
proposed by Kilic et al. [31] uses a random number generator to predict fiber
position in a reinforced lamina. They then studied fracture propagation in center
cracked lamina with fibers oriented at different angles. With peridynamics it is
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also possible to account for fatigue phenomena by progressively reducing some
critical parameters used for the characterization of the material [32].

Peridynamics, from greek “peri” (around) and “dynami” (force), is a non-local
theory of continuum in which material points are thought to interact with a whole
set of points within a certain distance called peridynamic horizon [33]. Its earliest
formulation, called Bond Based Peridynamics, allows for the description of brittle
materials. A more general formulation that include a wider class of materials is
under the name of State Based Peridynamics.

In the following we will address only to Bond Based Peridynamics.

3.1.2 Equations of motion

As already said, peridynamics is a non local continuum theory that treats a solid
medium as an ensemble of material points interacting between each other, even
if not adjacent. In the bond based formulation, interactions between couples of
material points are referred to as bonds and the maximum distance among which
they can interact is the perydinamic horizon δ . All particles closer than δ from a
material point (i.e. all particles with whom it can interact) represent its neighbor-
hood.

Let ρs be the density of the material of which the continuum R0 is made [20],
then for every material point of coordinates xi the equation of motion can be writ-
ten as:

ρs
d2xi

dt2 =
∫

Hi

f(u(x, t)−u(xi, t),x−xi)dVx +bi (3.1)

in which Hi = {x ∈ R0, ||x− xi < δ} is the neighborhood of the considered ma-
terial point, the function f is the pairwise force function (PW) and the vector bi

is representative of external forces acting on the body per unit volume at the time
instant t. PW force function is representative of the force density per unit volume
squared exchanged between material points of coordinates x and xi.

In bond based formulation, each interaction between material points is inde-
pendent from each other and it occurs along bonds. Therefore, PW force function
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Figure 3.1: Graphical representation of relative initial position ξ and relative displace-
ment η between solid particles xi and x j [34]

can be shown to depend only upon the relative position of material points in their
reference configuration ξ and their relative displacement in actual configuration
η .

ξξξ = xxx0−xxxi0 (3.2)

ηηη = (xxxt−xxx0)− (xxxit−xxxi0) (3.3)

What said is valid for so called prototype microelastic brittle (PMB) materials, for
which PW force function can be derived from a potential and it is in the form of
an elastic force in classic mechanics:

f = f(ξξξ ,ηηη) = c0sµ(s)
ξξξ +ηηη

||ξξξ +ηηη ||
. (3.4)

s =
||ξξξ −ηηη ||− ||ξξξ ||

||ξξξ ||
(3.5)

The parameter c0 in this formulation is called micro-modulus and it is the stiffness
of the bond, s is the stretch of the bond and µ(s) is a function that accounts for
bond fracture. Thinking of 3.4 as an elastic force, c0 would be the stiffness of
a spring. In this particular formulation it is assumed to be constant over time
and position, but a dependence upon this characteristics, thus anisotropy, may be
included [35].

In bond based peridynamics, fracture is thought to evolve from bond rupture
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which occurs only when the stretch of a bond overcomes a threshold value, de-
noted as critical stretch s0. Once a bond is broken, it can no more transmit any
load. Hence, µ(s) is a history-dependent scalar valued function that introduces
this last consideration in PW force function formulation:

µ(s) =

1 if s < s0

0 otherwise
. (3.6)

It’s important to notice that bonds only break in tension (i.e. s > 0) and can
not break when in compression.

3.1.3 PMB material characterization

There are only 2 parameters needed to completely describe a PMB material: c0

and s0. Different formulations for these two can be done, depending on the char-
acteristics of the problem: plane stress or plane strain (2D problems) or 3D. In all
cases, expressions are derived from energetic considerations at microscopic and
macroscopic scale.

Consider a large 3D homogeneous body under isotropic tension so that every
material point undergoes the same tensile condition. The strain energy density
computed at microscopic scale under peridynamics assumptions must equal the
one computed from classical mechanics [36].

In particular, denoting η = |ηηη | and ξ = |ξξξ |, under these assumptions we will
have η = sξ anywhere. It follows that the modulus of PW force between 2 arbi-
trary particles is f = c0s = c0η/ξ . The energy stored in the body per unit volume
(i.e. the strain energy density) is derived from:

W =
∫

Hi

wdVi =
∫

δ

0

(
1
2

f η

)
4πξ

2dξ =
πc0s2δ 4

4
(3.7)

where w = f η/2 is the micro elastic potential associated to a single bond (i.e.
the work required to stretch a single bond from ξ to η under isotropic extension).
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The value computed from 3.7 must equal the strain energy density deriving from
linear elastic theory W = 9kss2/2. Equating these expressions and solving for the
micromodulus c0 yields to:

c0,3D =
18k
πδ 4 . (3.8)

Critical stretch s0 can then be computed from the work required to break all the
bonds per unit fracture area for a brittle material. This is, following peridynamics:

G0,3D =
∫

S0

w0dS =
πcs2

0δ 5

10
(3.9)

w0 =
∫ s0

0
f dη (3.10)

in which S0 is the fracture surface and w0 is the work associated to the breakage
of a single bond. G0 is the energy release rate and it is a measurable quantity
for brittle materials. It is also a parameter widely used in other fields of research
and it was first introduced by Griffith. It follows that an expression for s0 can be
obtained simply from 3.9:

s0,3D =

√
5G0

9ksδ
. (3.11)

In a similar way it is possible to express the micromodulus c0 and the critical
stretch s0 for plane strain and plane stress cases. For the sake of completeness, all
3 formulations are reported below [37]:

c0 =


9E

πhδ 3 for 2D plane stress
48E

5πhδ 3 for 2D plane strain
12E
πδ 4 for 3D

(3.12)

s0 =


√

4πG0
9Eδ

for 2D plane stress√
5πG0
12Eδ

for 2D plane strain√
5G0
9ksδ

for 3D

(3.13)
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Attention must be payed when defining material properties for a PMB mate-
rial. Indeed, as we already said, material points interact only between couples.
This defines a so called Cauchy crystal for which Poisson ratio νs is limited in
value as it necessarily is νs = 0.25 [38]. This limitation is overpassed in state
based peridynamics where every value for νs is suitable.

3.1.4 Damage level and crack evolution

From what said in the previous section it is possible to determine how a body will
eventually break. Breakage will occur in different steps, having the separation of
a particle when all the bonds with all points within its horizon break. Therefore
it is possible to have a configuration where only some of the bonds break, so that
there is not a complete separation of the particle itself. We can therefore define a
damage level for a material point of coordinates xi at time instant t as:

Φ(xi, t) = 1−
∫

Hi
µ(xi, t,ξ )dVx∫

Hi
dVx

. (3.14)

Following this definition, complete separation occurs only when Φ = 1, while
Φ = 0 represents virgin material.

3.2 Navier Stokes equations for a turbulent flow

The equations used to describe the behavior of an incompressible flow (ρ = cost.)
are the continuity equation and the momentum equation [39]-[40]:

∇ ·u = 0 (3.15)

Du
Dt

=− 1
ρ

∇p+∇ · (2νE) (3.16)
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in which u represent the velocity of the fluid, ν its kinematic viscosity, p its pres-
sure and E is a 3x3 tensor called the energy tensor:

E =
1
2
(∇u+∇u) (3.17)

This set of equations holds both for turbulent and non turbulent flows, however
when dealing with turbulence it’s usually convenient to further develop the mo-
mentum equation. Since turbulence is a non stationary and chaotic phenomenon,
we can refer to the instantaneous variables involved in the problem as a sum of a
mean part and deviations from the mean, or fluctuations. When considering mean
fields only, symmetries of the problems lost by the effect of turbulence are brought
back. It is therefore possible to substitute all the variables in Navier-Stokes equa-
tions (u,ν ,E) with their relative Reynolds decomposition, obtaining:

∇·< u >= 0 (3.18)

D < u >

Dt
=− 1

ρ
∇ < p >+∇ · (2ν < ~~E >)−∇ ·τRτRτR (3.19)

~~τR =< u′ ·u′t > (3.20)

where fluctuations are evidenced by a superscript and the mean fields by <>.
The only difference with respect to the previous set of equations is the presence

of the Reynolds stress tensor τRτRτR. If the fluid was stationary (non turbulent), the
terms u′ would be null, thus obtaining again 3.16. This additional term can be
interpreted as an extra stress exerted by the turbulent fluctuations on the mean
field. It is though important to notice that, despite the name, it is not an effective
stress as it could be better described as an additional momentum flux due to the
turbulent motion of the fluid. Its magnitude is usually nonzero, being greater than
viscous stress except for near wall regions, where the latter becomes predominant.
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3.2.1 Resolutive methods

DNS

Due to strong non linearity of the problem, it is not possible to compute any ana-
lytical solution, so that numerical methods are needed [41]. The most intuitive res-
olutive method consists of discretizing Navier-Stokes equations (3.15 - 3.16) over
the fluid domain. This technique is called Direct Numerical Simulation (DNS).
Its limitations are related to computational time, being this method very expen-
sive. Indeed, to properly solve the fluid domain it is required to take into account
all the processes present in turbulence. This reflects the need of having cell sizes
comparable to the smallest fluid scale, the Kolmogorv scale η .

Denoting the characteristic size of the problem as L and the grid spacing
as ∆x, the number of points needed along the x direction is Nx = L/∆x. From
Kolmogorov’s theory, the turbulent kinetic energy dissipation rate and the Kol-
mogorov scale can both be related to scale entities, being respectively:

ε ∝
U3

L
η =

ν3

ε1/4 (3.21)

where U is a reference velocity. It follows that, since we must have ∆x ∝ η , with
reference to all 3 dimensions, the number of points needed to properly solve the
fluid is:

Np ∝ N3
x ∝

(
L
η

)3

=

(
L

ν3/ε1/4

)3

∝

(
L4U3

Lν3

)3/4

= Re
9
4 (3.22)

As for the discretization time, it is necessary to introduce the Kolmogorov char-
acteristic time τη = η/uη = (ν/ε)1/2 and the scale time T = L/U so that the
number of time steps required is Nt = T/τη .

In conclusion, the total simulation time is:

Ttot ∝ Np×Nt ∝ Re11/4 ≈ Re3 (3.23)
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It follows that DNS is a technique to be employed only with relatively low
Reynolds numbers in order to contain the computational cost. As a consequence,
it can not be used when trying to solve large scale flows characterized by higher
Re, despite the improvements in computers’ capabilities of recent years. How-
ever, DNS offers full reliability on the results achieved as they are considered as
significant as experimental ones, with the further advantage of knowing the whole
motion field at any instant.

RANS

Less expensive methods to solve Navier-Stokes equations when dealing with high
order Re are the so-called Reynolds Averaged Navier Stokes (RANS) simulation
and Large Eddies Simulation (LES).

RANS simulations are based on averaged Navier-Stokes equations (3.18 -
3.19). The considerations at the base of this resoultive method are that averaged
fields vary smoothly, since they do not include fluctuations. Also, as said before,
when dealing with mean fields, symmetries are restored allowing for 2D simpli-
fications when the geometry of the problem allows it. The minimum cell size
required is then imposed by the gradients of the mean field of motion and it is
therefore bigger than in DNS.

Difficulties arise when trying to determine Reynolds stress tensor: it is a
symmetric 3x3 tensor, so that RANS consist of 4 equations in 10 unknowns
(u,v,w, p,τxx,τyy,τzz,τxy,τxz,τyz). This term not being negligible, as it is the only
term that distinguishes between a turbulent and a laminar flow, a modeling is re-
quired. Indeed, there is no way to estimate velocity fluctuations u′i without having
already solved the problem.

A first attempt to find a suitable solution to the problem comes from Boussi-
nesq, who introduced the concept of turbulent viscosity ντ . Turbulent viscosity
differs from viscosity since the former depends on time and position and on the
state of motion of the fluid. Following his theory, Reynolds stress tensor τRτRτR can
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be expressed in a similar way of viscous stress tensor T:

T =−pI+2µE (3.24)

τττ =−2
3

KI+2ντ < E > (3.25)

where K is the turbulent kinetic energy. Substituting this latter expression in 3.19
we obtain the following:

D < u >

Dt
=−∇ < pm >+∇ · (2(ν +ντ)< E >) (3.26)

pm =
p
ρ
+

2
3

K (3.27)

in which pm is called modified pressure. At this point it is necessary to find a way
to express ντ . The most common models used to model it are the so called k− ε

and k−ω but still, they depend on parameters that are function of the particular
case to be studied.

LES

Finally, Large Eddies Simulation (LES) aims to solve the fluid field only up to a
certain scale. Indeed, following K41 theory of Kolmogorov, the larger scales are
directly influenced by the geometry and the characteristics of the motion itself,
while characteristics of the smaller scales are universal as they behave all in the
same way and prescind from the particular geometry of the problem. The main
idea of this particular technique is to directly simulate the larger scales, whose
characteristics are a direct consequence of the geometry of the problem, while the
effect of the smaller ones on these ones is modeled.

Since the bigger scales are those that mainly characterize the behaviors of the
fluid flow and they are fully resolved, LES correctly consider turbulence and non
stationary effects. In that they differ from RANS, where all the effects of turbu-
lence had to be modeled and only the main field, stationary, could be resolved.
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It is therefore necessary to define a threshold scale up to which the velocity field
will be filtered. We define a filtering operator G∆ that allows us to decompose
the velocity as ui = ũi + u′i, where the filtered velocity is ũi and u′i is the residual
velocity. Applying G∆ to Navier-Stokes equation we obtain a system of equations
similar to that for RANS:

∂ ũ
∂ t

+∇ · ũũ =− 1
ρ

∇p̃+∇ · (2νẼ)−∇ ·τττr (3.28)

where τττr is the residual stress tensor that has to be modeled. Equation 3.28
is formally identical to 3.19 but they are significantly different in the meaning.
Quantities in the latter are tridimensional, chaotic and non-stationary and the only
term to be modeled express the effect of the smaller scales on the bigger ones. On
the other hand, in RANS, the additional stress tensor has to model the effect of
all scales of the fluid and it acts on the averaged fluid field which, in contrary, is
stationary.

LES allows for a lower spatial resolution with respect to DNS since smallest
scales does not need to be solved. A typical model for τττr is Smagorinsky’s, which
is based on the concept of eddy viscosity.

From what has been briefly said in this section, it is evident that the only
resolutive method able to describe a fluid in detail from its larger scale down
to the Kolmogorov scale is DNS. Although its time consuming limitations, this
technique is to be considered the most accurate and reliable and has to be chosen
when a great level of accuracy is required.
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3.3 Immersed Boundary Method

As briefly discussed in chapter 2.2, the main task concerning a FSI problem is the
exchange of informations at the interface between fluid field and solid medium.
The Immersed Boundary Method (IBM) is a numerical technique that allows for
a simple representation of the problem. Here, the presence of the body is taken
into account by mean of additional forces added into the fluid domain in order to
mimic no-slip and no-penetration conditions on the surface of the body. In turn,
these forces, computed to correctly solve fluid’s equation of motion, are the same
exerted by the fluid itself on the body and therefore they are used also to solve
solid’s equations.

IBM was first introduced and developed by Peskin [17]-[42] as a method to
study blood flow through a beating heart. Being born in a bio-medical field, after
that it has become a widely used method thanks to its versatility and computational
efficiency. The particularity of this method is that it uses a fixed in time, struc-
tured and spatial uniform grid to discretize the fluid domain, unlike more common
resolutive methods where the grid is body-fitted. In time-dependent problems, as
material particles move through the computational domain, remesh is therefore
not required, thus containing computational cost. Another grid, solidal to the
body, will then be introduced to discretize the body itself. It is common to address
these two grids as eulerian and lagrangian respectively. Information between the
two are exchanged at the interface.

These characteristics make IBM one of the most commonly used methods for
the study of particle-laden flows or, more in general, when dealing with complex
geometry problems [43].

3.3.1 Numerical definition

A particle-laden flow is governed by Navier-Stokes and Newton-Euler equations
for what concerns fluid phase and solid particles respectively. Boundary condi-
tions (no-slip and no-penetration) permit to couple these two sets of equations
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and they enforce the continuity of the velocity at the interface between the phases
and the continuity of traction force:

u f
i = ub

i (3.29)

σ
f

i jn j = σ
f

i jn j (3.30)

Here superscripts b and f denote solid body entities and fluid related ones respec-
tively.

This condition is achieved with the introduction of a forcing term on the right-
hand side of equation 3.16, when in proximity of the body. This new equation is
then solved over the entire fluid domain:

ρ

(
∂u
∂ t

+∇ ·uu
)
=−∇p+µ∇

2u+ρf (3.31)

where ρ is the fluid density and f is a force per unit volume. In 3.31, the term
represented as E in 3.16 has been written extensively.

The resolutive scheme can be summarized as follows [44]:

u∗ = un +
∆t
ρ

(
−∇pn−1/2 +RHSn+1/2

)
(3.32)

u∗∗ = u∗+∆tfn+1/2 (3.33)

∇
2 p̃ =

ρ

∆t
∇ ·u∗∗ (3.34)

un+1 = u∗∗− ∆t
ρ

∇ p̃ (3.35)

pn+1/2 = pn−1/2 + p̃ (3.36)

where u∗ and u∗∗ are the first and second prediction velocities, ∆t is the compu-
tational time step, p̃ is a correction pressure and superscripts denote the nth step
of the integration scheme. For the sake of simplicity, the term RHS has been
introduced and it includes convective and viscous terms.
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First prediction velocity u∗ is computed directly from 3.31 without consider-
ing IBM forcing term f. Thus, u∗ does not satisfy boundary conditions. The pres-
ence of the body is introduced only on u∗∗ and f must be computed iteratively.
This is done by first interpolating the velocity u∗ computed at eulerian nodes on
the lagrangian grid solidal to the body. The velocity U∗ obtained in this moving
frame of reference is compared to the one of the solid particle Un

l , allowing for a
determination of f. The IBM forcing term is then spread on the eulerian grid in
order to satisfy no-slip and no-penetration conditions and the prediction velocity
is finally updated. Interpolation and spreading operations are done by mean of a
regularized Dirac delta function δD.

Better accuracy in the solution can be obtained by an iterative repetition of this
process: regularized Dirac delta functions have a finite amplitude so that forcing
loads are spread within a radius, characteristic of the particular delta function
considered. Areas of influence of near-by eulerian points could then overlap. As
a consequence, lagrangian points on the interface can be forced in the same time
by different eulerian points, leading to a bad determined forcing term.

The process described above can then be repeated until boundary conditions
are satisfied with a certain accuracy, but it is obvious that a higher number of
iteration will also increase the computational cost of the process. This forcing
scheme can be expressed in mathematical terms as follows [45]-[43]:

U∗,s−1
l = ∑

i, j,k
u∗,s−1

i, j,k δ (xi, j,k−Xn
l )∆Ve (3.37)

Fn+1/2,s
l =

Un
l −U∗,s−1

l
∆t

(3.38)

fn+1/2,s
i, j,k = ∑

l
Fn+1/2,s

l δ (xi, j,k−Xn
l )∆Vl (3.39)

us
i, j,k = u∗i, j,k +∆tfn+1/2,s

i, j,k (3.40)

where subscripts l denote quantities computed on the lagrangian grid, superscripts
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Figure 3.2: Multidirect forcing: circumferences denote the area of influence for each of
the lagrangian points marked with a triangle. It follows that all eulerian points in the
overlapping region will simultaneously force both these lagrangian points [43].

s denote the sth iteration of the multidirect scheme, ∆Ve and ∆Vl are the volumes
for eulerian grid and solid particle respectively.

The forces and torques exerted by fluid and solid onto each other are preserved
using the regularized Dirac delta function of Roma et al. [46] during interpolation
and spreading. However, this is true only if the spatial resolution of the eulerian
grid is uniform in each coordinate direction. For this reason in this framework,
fluid domain will be discretized with a uniform element size mesh ∆x = ∆y = ∆z.

3.3.2 Inward interface retraction

The usage of a regularized delta function for a multidirect forcing scheme like
the one described in the previous section, introduces some critical aspects for all
lagrangian points on the interface. Indeed, the smooth outer surface of the body is
replaced by a thin porous shell of width equal to that of the delta function. For the
particular case of delta function in the form of Roma et al., this is equal to 3∆x.
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Two effects arise: the first is a direct consequence of the increased size of the body
of 3∆x/2, and it is an increase in drag. The second effect, on the other hand, is
that porosity is accompanied by a drag reduction, especially when the fluid is in
laminar motion near the surface. The predominant effect is the former, so that the
overall consequence is of having a body slightly bigger than the original. This fact
is mitigated by an inward retraction of all lagrangian points on the surface of the
body. The amount of the retraction is such as the computed drag equals the one of
the actual body.

Figure 3.3: Effect of the usage of a regularized delta function. Particle’s initial interface
is replaced by a porous shell and the effective size of the particle itself is bigger than
the original one. This effect is mitigated by a retraction of all lagrangian points on the
interface (blue dots) [43].
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Chapter 4

Problem definition and approach

This thesis aims to present a study of the interaction between a fluid flow and a
solid plate. This is done by mean of a particulary developed code, whose structure
is presented in this chapter. In the following, also similarity coefficients to be used
within the code and the problem configuration will be presented.

4.1 CaNS-ExPS

CaNS-ExPS [33]-[34] is a code especially developed for the solution of FSI prob-
lems in which crack propagation is a subject of interest. It is a double precision
massively parallelized Fortran code that follows the partitioned approach with a
non-conforming mesh method. Numerical techniques embodied are peridynam-
ics for what concerns solid solver, DNS for the fluid flow and IBM for interface
conditions. Problems are two-way coupled, meaning that mutual interactions be-
tween solid and fluid phases are constantly solved. A validation of all the modules
involved has been previously done, as well as of their coupling.
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4.1.1 Peridynamics module

To solve the equations of motion for a solid medium, the first step is to discretize
the body in a set of solid particles of volume ∆V , that overall equate the volume of
the body itself. This is done with a structured equispaced grid of constant element
size ∆x such as, in first approximation, ∆V = (∆x)3. Then for the ith node, the
equation of motion 3.1 takes the form:

ρsẍn
i =

M

∑
j=1

f(un
j −un

i ,x
n
j −xn

i )β (∆Vj)+bn
i (4.1)

where the subscript j denotes one of the particles of the neighborhood, whose
total number is M and the vector bn

i represents the loads applied by the fluid on
the surface of the body. Here β is a scalar value that is used to correct the volume
associated to the jth node. Indeed, a particle has to be considered in equation 4.1
if its distance from the ith node is less than the peridynamic horizon δ . However,
particles close to the limit of the horizon, often are not completely inside the area
of influence of the particle, and therefore their volume needs to be reduced for a
correct solution of 4.1:

β =


1 if |ξ |< δ −0.5∆x
δ+0.5∆x−|ξ |

∆x if δ −0.5∆x < |ξ | ≤ δ +0.5∆x

0 otherwise

(4.2)

Equation 4.1 is solved by a fully explicit, low storage, third order Runge-Kutta
algorithm. The fact that the resolutive method is explicit imposes a boundary on
the maximum value for the time step. Indeed in order for the code to be stable,
the time step is required to be less than ∆tmax:

∆tmax =
|ξ |min

ck,max
(4.3)

where |ξ |min is the minimum size of the bond and ck,max is the maximum sound
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Figure 4.1: Nodes marked with blue dots are those included in the neighborhood, whose
area is identified by mean of the black circumference. The volume of the red-colored nodes
is not fully inside the circumference and therefore it has to be reduced. On the other hand,
nodes marked with a cross are outside of the neighborhood but part of their volume falls
inside the circumference [34].

velocity in the solid medium:

ck,max =

√
E
ρs

(4.4)

The peridynamic solver in the following will be addressed as ExPS (Explicit
Peridynamic Solver).

4.1.2 Navier Stokes and IBM modules

The flow solver is a further development of open source code CaNS, originally
written by P. Costa [47], that has been expanded with the addition of IBM of [43].
Fluid phase has to be fully solved by mean of a DNS, meaning that equations of
motion to be solved are 3.15 - 3.31. However, for practical reasons, the solver
works in a non-dimensional frame, thus Navier-Stokes equation have to be further
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developed. Non-dimensional form of these equations is [39]:

∇ ·u = 0 (4.5)(
∂u
∂ t

+∇ ·uu
)
=−∇p+

1
Re

∇
2u+ f (4.6)

in which every entity is now non-dimensional and Re = ρuL/µ .
Boundary conditions for the fluid field are applied by mean of ghost nodes, or

additional nodes external to the computational domain. Dirichlet and Neumann
conditions, as well as periodicity, can be imposed both for velocity and pressure.
Time integration is achieved by a low-storage third order Rounge-Kutta algorithm
while spatial integration by finite differences method.

IBM resolutive scheme is the multidirect forcing scheme described in section
3.3.1.

4.1.3 IBM and peridynamics coupling

Main advantage of a partitioned method, see section 2.2, is that fluid and solid
solvers work in parallel, independently from each other. However, they need to
communicate when updating the position of the lagrangian points and when apply-
ing loads conditions on the body. These are directly determined from the solution
of solid phase’s motion and fluid phase, respectively. Indeed, when solving fluid’s
equations of motion, IBM treats the body as a set of forces applied at the loca-
tion of interface lagrangian points in order to satisfy no-slip and no-penetration
constraints. These forces, in turn, are the same loads applied to the solid phase
and are therefore the input to the peridynamic solver. After solving the equations
of motion for solid particles, their new position will be determined and it will di-
rectly influence fluid’s motion in the next iteration. This way the problem is 2 way
coupled.

In a principled way, the modules should be recalled together at every iteration
in order to properly describe the problem. However, this way of proceeding could
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heavily influence the computational efficiency of the code since DNS and peridy-
namics are both expensive in terms of computational time. The way adopted is to
consider 2 different time steps for solid and fluid domain. This way, the solvers
are recalled with different frequencies, being their ratio adaptable to the kind of
problem studied. By doing so, solid bodies are thought to move and deform fol-
lowing quasi-equilibrium states even if this is not always true. The solution to
this problem is achieved with the introduction of a damping factor for velocities
in peridynamics equations of motion 4.1:

ρsẍn
i =

M

∑
j=1

f(un
j −un

i ,x
n
j −xn

i )β (∆Vj)− c(un
i −un

avg,i)+bn
i (4.7)

where un
avg,i is the averaged velocity of the particles within the neighborhood of

particle i.
The damping factor c helps peridynamic particles to move by states of equilib-

rium, although its determination is not easy and it influences the overall solution
to the problem. The aspects that have to be considered during the determination
of its value, as well as that of the frequencies with which the solvers are used,
are the temporal scale of the problem and the phenomena in which the user is
interested. Indeed, the addition of a damping term will surely neglect high fre-
quencies vibrations in the solid phase over a threshold value. This could represent
a problem for acoustic studies but, for non-acoustic applications such as the one
described in this framework, this effect is negligible. Indeed, incompressible fluid
solvers would not solve the equations for the propagation of mechanical waves.
As a consequence it becomes useless to solve high frequencies vibrations in the
body, since they can not be transmitted to the flow.

4.1.4 Loads and displacement transmission

Particular attention must be paid on how the peridynamic and fluid modules have
to communicate between them. Indeed, they can not directly exchange informa-
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tions since fluid phase is solved in a non-dimensional form while peridynamics
has to be dimensional. This issue is solved by scaling IBM loads and displace-
ments. Scaling factor for IBM forces can be obtained from the dimensional IBM
equation 3.31. This can be non-dimensionalized by relating all dimensions in-
volved to their characteristic ones, denoted in the following with the subscript
0:

U0

T0

∂u
∂ t

+
U2

0
L0

∇ ·uu =− p0

L0ρ0
∇p+

νU0

L2
0

∇
2u+F0f (4.8)

and since:

T0 =
L0

U0
p0 = ρ0U2

0 (4.9)

it follows that:
∂u
∂ t

+∇ ·uu =−∇p+
1

Re
∇

2u+
F0L0

U2
0

f. (4.10)

From a comparison between 4.10 and 4.6, it is noted the only difference con-
cerns the additional forcing term f. Since it actually represents an acceleration
(i.e. a force per mass unit), the dimensionalizing factor f ∗ can be easily derived:

f ∗ = ρ0
U2

0
L0

. (4.11)

This is the factor that allows to apply IBM forces computed in a non-dimensional
frame as load conditions b in the dimensional peridynamic formulation:

bi = f ∗fIBM. (4.12)

In a similar way, the scaling factor to be used for displacements is easy to find.
Consider a body in which the nodes of the lagrangian grid coincide with the peri-
dynamics particles; Then, displacements will be translated in a non-dimensional
form simply scaling for the reference length L0. Thus:
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xi =
X
L0

(4.13)

From what has been said, it follows that for a given geometry fluid phase
and interface conditions depend only upon some characteristics dimensions: Re,
L0, U0, ρ0. The peridynamic module works in a similar way and it is therefore
possible to identify the only physical dimensions needed to completely define the
problem. These are the material characteristics E, ρs, G0.

4.2 Dimensional analysis and similarity

Just like it has been done for Navier-Stokes equations, also peridynamics equa-
tions can be non-dimensionalized in order to describe the solution of the problem
starting from some characteristic scaling groups. This procedure helps to define
similarity properties, which are useful to reduce computational time [48]. Rewrit-
ing equation 4.7 and relating all dimensions to their characteristic ones:

ρs
U2

0
L0

ẍn
i =

M

∑
j=1

Es

L0
(fβ∆Vj)−ρs

U2
0

L0
c(un

i −un
avg,i)+ f ∗bn

i (4.14)

where all entities are now non-dimensional and the previously determined scaling
factor f ∗ has been used for the definition of external applied loads (i.e. IBM
non-dimensional loads). For the sake of clarity, the argument of the PW force
function has been omitted in this formulation. After some simple mathematical
steps, equation 4.14 leads to:

ẍn
i =

M

∑
j=1

Es

ρsU2
0
(fβ∆Vj)− c(un

i −un
avg,i)+

ρ f

ρs
bn

i (4.15)

In this last equation, only 2 characteristic groups can be identified and they are
the ones that allow for the dimensionalization of the solution. Therefore, similar-
ity in the peridynamic module itself is achieved if these 2 groups are kept constant.
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Figure 4.2: Flowchart of the code after the coupling of fluid and solid solvers

As for the fluid flow and IBM module, non-dimensional Navier-Stokes equa-
tions are solved and it is well known that fluid similarity depends only upon
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Reynolds number Re. In this context, computed IBM forcing are non-dimensional
and they are consequences of Re too. IBM forces and external loads bn

i in equation
4.15 are the same. Scaling factor f ∗ is therefore used only to allow for a commu-
nication between the modules in this particular code and it is not a characteristic
parameter of this kind of problems.

In conclusion, it follows that similarity for FSI problems is based on the equiv-
alence of the following non-dimensional groups:

Re =
ρ fU0L0

µ
, Φ2 =

Es

ρsU2
0
, Φ3 =

ρ f

ρs
. (4.16)

If these 3 groups are kept constant while geometric similarity is satisfied as well,
the solutions of the problem will not vary.

This aspect is greatly useful, especially for the code used in the present frame-
work. Indeed, peridynamics and DNS are 2 heavily expensive computational
techniques and the fact that they have been implemented following an explicit
approach limitates the maximum allowable time step, as previously said. Accept-
able time steps are limited by Young’s modulus Es and therefore realistic materials
with Es of the order of 1e+9Pa become nearly impossible to simulate for exten-
sive domains. The issue is solved using fake materials with much lower Es and
similarity.

An example of the application of similarity principle is showed in figures 4.3
- 4.4 where identical results are obtained from 2 different simulations run with
CaNS-ExPS code while keeping the aforementioned non-dimensional groups con-
stant. The main difference is about the Young’s modulus of the material, equal to
E1 = 70e+9Pa in the first case, and E2 = 70e+1Pa in the second one.
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(a)

(b)

Figure 4.3: Fluid flow in a channel with a vertical plate perpendicular to the flow di-
rection, solved for different reference dimensions and different material properties. Since
similarity groups Re,Φ2,Φ3 are kept constant between the 2, once the solutions are di-
mensionalized, obtained results are the same.

4.3 Problem definition and configuration

The present study wants to focus on the mechanics of the erosion of an elastic wall
due to its interaction with a turbulent channel flow. The geometry of the problem
is kept as simple as possible in order to contain the computational cost in a first
approach.

The flow studied is a fully developed turbulent channel flow driven by a stream-
wise mean pressure gradient.

Following the nature of the problem, the overall computational domain shall
include fluid’s computational domain as well as solid’s one. The size of the tur-
bulent channel at initial configuration is 6h x 3h x 2h in stream-wise, span-wise
and wall-normal direction respectively. The elastic wall is at coordinate z = 0 and
it is included in the simulation as a plate of the same extension of the channel and
thickness 0.250h. The overall computational domain has thus an extension of 6h
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(a) (b)

Figure 4.4: Detail of the peridynamics solution for the same FSI problem of the previous
figure.

x 3h x 2.250h and it is dicretized with an eulerian grid of 288 x 144 x 108 nodes.
Since the lagrangian grid, solidal to the body, is required to have a spacing

comparable to that of the eulerian grid, it is therefore made up of 288 x 144 x 12
nodes. Grid spacing is 1.04e−2 for both solid and fluid grids.

Boundary conditions for the flow are no-slip and no-penetration at the upper
rigid wall and periodicity in stream-wise and span-wise directions. Fluid flow
is driven by a pressure gradient in the stream-wise direction, in order to avoid
dissipation due to friction with the walls of the channel to stop the flow. Also
peridynamics is periodic in x and y directions. This way the domain is thought to
extend indefinitely in these directions. Additional boundary conditions for solid
particles are at the lowest limit of the domain, where they are anchored. This
condition is achieved by the introduction of 2 more rows of solid particles outside
of the computational domain, for which:

ux = uy = uz = 0. (4.17)
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Figure 4.5: Computational domain. The lower zone represent the elastic wall.

In total, bounded solid particles are 82944.
As for the solid phase, the ratio between the peridynamic horizon and the

spacing of the grid is set to m = δ/∆x = 2.
Physical parameters required to fully define the nature of the problem are

Re,L0,U0,ρ (see section 4.2). Their values are contained in table 4.1 together
with the material mechanical properties.

Re 4500
L0 0.1 m
U0 0.5 m/s
ρ 1e+3 kg/m3

E 5e+1 Pa
ρs 5e+3 kg/m3

G0 1.32e−3 J/m2

c 1000 kg/(m3s)

Table 4.1: Characteristic physical dimensions of the problem

It is evident that mechanical properties of the solid phase are highly unrealistic.
The choice of such parameters is justified after the considerations made in section
4.2 and helps to contain the computational cost. A more realistic case, whose
behavior is the same as the one of the case described in the following, would
include fluid and solid in the subsequent table:
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Re 4500
L0 0.1 m
U0 50 m/s
ρ 1000 kg/m3

E 5e+5 Pa
ρs 5e+3 kg/m3

G0 1.321e+2 J/m2

c 1000 kg/(m3s)

Table 4.2: Characteristic physical dimensions of a similar problem, in which the solid
is characterized by realistic values. Non-dimensional groups Re,Φ2 and Φ3 are kept
constant between the 2 cases.

Initial conditions for the flow impose a Poiseuille profile for the stream-wise
component of the velocity across the channel, while y and z components follow a
sinusoidal law: 

ux,0(x,y,z) = 6z(Lz− z)

uy,0(x,y,z) = Ay cos
(

πz
2

)
sin
(

2πy
Ly

)
uz,0(x,y,z) = Az sin

(
πz
2

)
cos
(

2πy
Ly

) (4.18)

where 0 ≤ z ≤ Lz is the wall-normal coordinate in the channel, considered 0 in
correspondence of the elastic plate, and Ay and Az are constants set to 6 and 1
respectively.

This initial velocity profile, together with periodicity conditions, helps to de-
velop a fully turbulent flow, avoiding the risk of vorticity being dumped across the
domain. For this reason it is necessary, to dedicate the first iterations to the initial-
ization of the flow, when running the simulation. Peridynamics module will then
be switched off during this phase. For this specific case, the first 20000 iterations
served this purpose.

39



40



Chapter 5

Results

As stated above, the solid solver is not used from the very beginning of the sim-
ulation when, on the contrary, only the fluid solver is active. This allows for the
initialization of a fully developed turbulent flow across the channel. For this par-
ticular case, trial simulations showed that 20000 iterations are enough to achieve
this condition.

Starting from iteration 20001, both solid and fluid solvers are recalled together
as described in the previous chapters and the lower wall of the channel begins to
deflect under the effect of the fluid flow. The body is damaged from the loads
exerted at the interface that eventually break bonds, gradually increasing damage
level for solid particles involved. Rupture first occurs at iteration 33800, when a
particle firstly reaches a damage level of Φ = 1.

From this point on, a constantly increasing number of particles is separated
from the body as the erosion process continues. The simulation is stopped when
the plate is locally eroded for a depth equal to its original thickness, this happening
at iteration 45500.

The simulation is complexively made of 45500 iterations, 6800 of which will
allow to study the behavior of a flow near an elastic wall and 12500 of which will
permit to study erosion.

Results presented in the following are obtained from a single simulation, run
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Figure 5.1: Phases in which the overall simulation is divided, together with their relative
iterations.

at MARCONI CINECA using 324 cores. The overall required computational time
is of 96 hours, which corresponds to about 31000 core hours.

5.1 Results before rupture

5.1.1 Fluid domain

Turbulent flows in channels with rigid impermeable walls have been long studied
and detailed numerical and experimental results can be easily found in literature
[49]-[50]-[51]. Hence, it is reasonable to take them as a reference and to compare
results obtained to these, already validated. In particular, mean velocity profiles
for turbulent flows follow the so-called law of the wall. It is possible to define z+

and u+ as:

z+ =
uτz
ν

u+ =
< u >

uτ

(5.1)

They represent the wall-normal distance from the wall and the fluid’s velocity
parallel to the wall itself in an internal system of coordinates, so that they are
dimensionless entities. uτ is the shear velocity, computed as:

uτ =

√
τw

ρ
(5.2)

where τw is the wall shear stress.
Expressing u+ as a function of z+ in a turbulent channel, allows to define

3 different layers in the fluid: the viscous sublayer for y+ < 5 where u+ = y+,
the buffer layer, for 5 < y+ < 30, where no particular laws exist and the log-law

42



region, for y+ > 30, where u+ = 1
k lny++C. In the latter expression, k = 0.41 is

the Von Karman constant and C is a constant set equal to 5.5 for a smooth wall.
First results to be presented concern fluid flow from iteration 27000 to 33000,

these being evaluated every 50 iterations. In total, available fields are 120. The
time-averaged velocity profile in this particular framework is a function only of
wall-distance z. This is true assuming that the mean position of the fluid-solid
interface remains fixed over time (i.e. displacements of interface points along
z have a mean value equal to 0). It is therefore possible to analyze 2 different
aspects for this particular mean velocity profile, whether the origin of the z-axis is
set in correspondence of the rigid wall or the elastic one. Figure 5.2 already shows
clear non-symmetries in the flow’s mean velocity profile, when compared to the
mean velocity profile of a turbulent channel flow with rigid walls only, denoted as
reference DNS.

Figure 5.2: Mean velocity profiles for a rigd-elastic wall turbulent channel and for a
rigid-rigid wall turbulent channel (cross marked line) as a function of channel position.
Velocity and distance are normalized with respect to bulk velocity and channel height
respectively.

It has to be pointed out that the comparison of different results requires them
to be normalized. However, for the normalization of coordinates in wall-normal
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Figure 5.3: Graphical comparison between the mean velocity profile of the fluid flow in a
turbulent channel with an elastic wall.

direction when in presence of an elastic wall, the channel height to be considered
is not equal to 1, as it would be expected. Indeed, the inward interface retraction
effect described in section 3.3.2 has to be taken into account. In this particular
geometry configuration the actual interface is moved ∆x/3 toward the interior of
the plate so that the channel height to be considered from now on is: hc = 1.0017.
Velocities on the other hand are normalized with respect to the bulk velocity.

Mean velocity profiles in proximity of the rigid impermeable wall and of the
elastic one are then computed in terms of z+ and u+. The wall shear stress to be
used in the definition of uτ in equation 5.2, is the sum of viscous stress τµ and
Reynolds stress τR at the wall:

τµ,wall = µ
∂ < u >

∂ z

∣∣∣∣∣
z=0

(5.3)

τR,wall =−ρ < u′w′ >|z=0 (5.4)

τw = τµ,wall + τR,wall. (5.5)
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It is noticeable that τR,wall = 0 when dealing with rigid walls, since no-slip and
no-penetration constraints have to be respected and the wall is fixed in time. On
the other hand, it assumes a finite value when it is computed near an elastic, and
thus moving, wall.

Results are graphically presented in figure 5.3. In the same figure, a more
common mean velocity profile for a turbulent channel flow with only rigid walls
(cross marked line) is also presented. This last one is computed from an additional
DNS at the same Reynolds number and with the same spatial discretization. This
case, denoted in the following as reference DNS, shows perfect accordance with
predicted results. The case for z = 0 at the rigid wall also shows good accordance
to the predicted trend, showing only a slight difference in the buffer layer, where
the curve overshoots the expected one.

Major differences concern the case of the origin of axis at the elastic wall.
Here, the computed velocity is generally greater than the predicted one. This can
be easily seen in figure 5.2 but it appears even more clear in figure 5.3 where it
is evident both in the buffer layer and in the loglaw region. This suggest a drag
reduction when in presence of an elastic wall, while the flow near the rigid wall
remains undisturbed.

At this purpose, an analysis of stresses within the fluid has been carried out
and results are shown in figure 5.4. Here, Reynolds stress τR, viscous stress τµ and
total shear stress have been computed across the channel and they are normalized
with respect to the total shear stress in correspondence of the rigid wall. It turns
out that effectively, the total shear stress in correspondence of the elastic wall is
less than that at the rigid wall, being:

τw,elastic

τw,rigid
= 0.96 (5.6)

As a consequence, the location of zero turbulent production (i.e. where shear
stresses becomes 0) moves closer to the elastic wall.

Finally, also the diagonal terms of the Reynolds stress tensor have been com-
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Figure 5.4: Reynolds stress, viscous stress and total shear stress in the channel as a
function of wall distance. Both stresses and distances are normalized with respect to rigid
wall stress and channel height respectively.

puted and compared to those of the reference DNS. As it can be seen from figure
5.5, the effect of the elastic wall on turbulence intensities is not limited to the
near wall region but, on the contrary, it affects the fluid all over the channel. In
particular, stream-wise fluctuations are the most influenced by the presence of an
elastic wall. It is interesting to note that for the stream-wise direction, an increase
in velocity fluctuations close to the elastic wall is associated to a reduction of
fluctuations near the rigid one.

Smaller effect are associated to fluctuations in the span-wise and wall-normal
directions.

5.1.2 Loads

Until now we mainly focused on the effects of the presence of an elastic wall
on the fluid flow. In particular it has been found out that the compliant wall is
associated with a reduction in drag and this means that also loads transmitted to
the wall will necessary undergo a modification between upper and lower wall of
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Figure 5.5: Rms of velocity fluctuations. Dashed lines are referred to the reference DNS
with only rigid walls.

the channel. To further analyze this aspect, a detailed study focused on the loads
exchanged by fluid and plate has been developed. The way the code is structured
allows us to access the exchanged loads for every point of the grid in terms of
IBM forcing, which are non-dimensional forces per unit volume. These can then
be dimensionalized and associated to stresses (i.e. forces per unit surface) since
the spacing of the grids ∆x is constant in all 3 directions:

τinter f ace = FIBMρU2
0
(∆x)3

(∆x)2 [Pa]. (5.7)

On the other hand, when dealing with rigid walls, boundary forces are not
directly given as an output of the code. However, they can be easily estimated
with the help of equation 5.3 for stream-wise and span-wise direction.

Again, the previously presented reference DNS has been used at this purpose,
over the same time interval to that considered for the FSI simulation. From the
former, rigid wall shear stresses have been carried out while IBM forcing at the
interface are obtained from the latter. In order to effectively compare wall stresses
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and find out differences, probability density functions (PDF) and cumulative den-
sity functions (CDF) are computed for each case. Obtained results are presented
in figure 5.6.

As expected, stream-wise wall shear stresses show a slight reduction for what
concerns their mean value when passing from a rigid to an elastic wall. Spectral
analysis however, shows that this mean stress reduction is associated to a wider
peak distribution. Indeed, rare events have stress magnitudes almost doubled with
respect to those in a non-deformable wall. Finally, a particular effect of elastic-
ity in the channel wall is the presence of negative shear stresses in stream-wise
direction, not remarkable other way.

As for span-wise wall shear stresses, their mean value remains unchanged and
it is equal to 0. PDFs are symmetrical with the only difference that, also in this
case, the distribution is wider for the elastic wall case.

In conclusion, it appears evident that an elastic wall is subjected to high mag-
nitude sporadic loads and these rare events are those who will cause the material
to get damaged the most.

5.1.3 Solid damage

Once the behavior of the fluid flow near the wall and the forces exchanged at the
interface are well understood, the way the material breaks has to be investigated. It
has however to be noticed that the separation of a particle from the original body
is not an instantaneous phenomenon but it follows from a slow and continuous
degradation of the material that only in the end is translated into a macroscopic
rupture.

This fact is well described by peridynamics, where crack formation is a con-
sequence of subsequent ruptures of bonds. Therefore, from iteration 27000 to
33800, although no macroscopic effects are visible, the wall of the channel is con-
tinuously damaged. A quantitative overview of this aspect is derived from the
evaluation of damage level for solid material particles.

An a posteriori analysis of the problem identifies, by mean of contour plots,
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: PDFs and CDFs of wall shear stresses [Pa] in stream-wise (a - b), span-wise
(c - d) and wall-normal (e - f) directions. Dashed lines denote mean values.
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the first surface particle which is separated. This one has to be chosen as the
representative one for a significant description of the evolution of the damage
process. Figure 5.8 reports the loads magnitudes that the solid particle undergoes
as an effect of the fluid flow as a function of time, together with its global damage
level. Here, initial time t = 0s is set at the activation of the peridynamic solver
so that rupture first occurs at 4.72s, corresponding to iteration 33800 (figure 5.1).
As expected from the loads analysis reported in the previous chapter, forces along
y and z axis always keep a zero mean value but their amplitude increases as an
effect of vibrations of the plate. Indeed, although peridynamic solver is activated
at t = 0s, it still requires some time for the fluid-plate system to adapt and move
freely under the effect of their mutual interaction.

(a) t1 = 4.32 (b) t2 = 4.69s

Figure 5.7: Detailed view of damage level for material points at iterations near to 33800,
when the first particle reaches a damage level Φ = 1.

On the other hand, force magnitude in stream-wise direction shows a clear in-
crement as the particle stops to communicate with its neighbors and the damage
level increases. This is due to the dynamic of the breakage of the particle (fig-
ure 5.7), as well as to the fact that when in virgin conditions, the material point
redistributes all applied loads to the particles in its neighborhood. However, as
degradation starts and bonds break, forces have to be redistributed only along re-
maining bonds. As a consequence, the load carried by the considered particle
alone increases and causes the breakage of even more bonds under a chain effect.
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It is because of this fact that forces along x axis and damage level both show an
exponential-like trend.

Figure 5.8: Time evolution of forces applied to the first solid particle to break, decom-
posed along the axis. The black curve represent the damage level of the particle, whose
values are printed on the right y-axis.

The overview of the applied forces itself is not sufficient to determine whether
the elastic wall will break in shear or, more in general, what are the mechanics be-
hind rupture. Indeed, since peridynamics deals with fracture only in terms of rela-
tive displacement and energy release rate, no informations and distinctions about
the fracture mode are given in a principle way. However, results clearly show that
bonds that initially break are those in diagonal with respect to the direction of the
flow. This can be stated after considering a frame of reference centered on a mate-
rial point. When a bond breaks, the relative position of the correspondent particle
is registered and it is plotted in figure 5.9. This is done for all lagrangian points
at the interface of the fluid-solid domain (i.e. on the upper surface) and iterations
considered for this purpose are 27000 to 28000. As a result, it is possible to say
that these are the initial phenomena that lead to fracture formation and therefore,
erosion will begin as a shear fracture.

The consideration of bonds individually introduces another great advantage
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(a) (b)

Figure 5.9: Graphical representation of the relative position of solid particles when bonds
break. Points marked with ’o’ denote the position of the particles in the initial configura-
tion, while ’x’ is the position they have when the bond breaks.

once the mode of rupture is determined. Indeed, the knowledge of the relative
position of bonds before and after their breakage implies the possibility of a de-
termination of ultimate axial and angular deformations. Averaging those entities
for all broken bonds and combining them with the material properties leads to the
determination of a shear strength:

τ
∗ = 1.7160Pa. (5.8)

After the particles represented in figure 5.9 can no more exchange forces along
bonds, loads are redistributed to the remaining ones that will eventually break later
on. At this point the order in which bonds break becomes more casual and it is
determined by fluctuations in the flow and vibrations in the plate.
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5.2 Results after rupture

After the first particle has reached a damage level Φ = 1, macroscopic effects of
the action of the fluid begin to become visible. These are investigated both under
a qualitative and quantitative point of view and the results achieved are presented
in this chapter.

5.2.1 Dynamics of rupture

As the erosion process develops, the number of solid particles removed from the
wall constantly increases and surface degradation becomes more relevant. A qual-
itative overview of the evolution of damage at different times is reported in figure
5.10.

This process is self-powered in a chain effect. Indeed, an extension of what
said before allows also for a description of how the whole process evolves. Once
the first particle is torn apart by the flow, a lot of other bonds will already be
broken. The material is thus weakened and forces transmitted to the plate can not
be redistributed to the neighborhood as they initially were. Consequence of this,
just like what happened when a single point was considered (see paragraph 5.1.3),
is that loads perceived by particles become greater. This way, new particles reach
a unitary damage level so that forces have to be directly applied to points that
initially were not in direct contact with the fluid flow. The effect of this process
is an heavy weakening of the material that has the overall effect of increasing the
erosion velocity.

In figure 5.11 it is plotted the way the erosion process evolves in terms of
removed material. The plotted curve shows an exponential-like trend: in a short
time erosion massively damages the plate. Indeed, if 4.72s are needed to first
compromise the surface of the plate, in ∆t = 2.7s the number of particles eroded
is already 1000 and they count up to 48210 by the end of the simulation at time
t = 12.95s.

The removal of particles under the action of the fluid flow continuously modi-
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(a) t = 5.60s (b) t = 7.01s

(c) t = 8.05s (d) t = 1.01s

(e) t = 10.15s (f) t = 11.20s

(g) t = 11.90s (h) t = 12.60s

Figure 5.10: Contour plots for the damage level of the plate at different times. All solid
particles with a damage level Φ = 1 are not plotted for a better representation of the
evolution of the eroded surface.
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Figure 5.11: Evolution of the erosion of the plate in terms of removed peridynamics
particles as a function of time.

fies the shape of the wall, which initially was flat and smooth. The effect is that the
surface becomes rough and therefore, also drag will undergo continuous changes
in intensities as the configuration of the interface evolves. Generally, for turbulent
flows, roughness translates in a wall shear stress above that of the hydraulically-
smooth one. However, since relative roughness is constantly varying, no analyt-
ical predictions can be done a priori. A computation of mean wall shear stress
time evolution, together with their relative maximum and minimum values (figure
5.12), confirms what just said. In particular, it correlates the increase in shear
stress with the removal of particles. Until t = 7s, when erosion is still in its initial
phase and very little damage has been done, wall shear stress averaged on the total
surface maintains an almost constant value and roughness effects can therefore be
neglected. Mean value begins to increase as the number of particles become rele-
vant and the geometry of the plate is substantially changed. This is accompanied
by an augmented spread also between maximum and minimum values.

A graphical overview of the velocity field of the fluid flow, together with re-
sults computed for the plate, can justify the rapid increase in the number of eroded
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Figure 5.12: Evolution of shear stress exerted by the fluid on the plate as the erosion
develops. The line in black represent the spatial averaged value, while the ones in red and
the blue the minimum and maximum values respectively.

particles at t = 11s to t = 12s, as well as the peaks for what concerns applied loads.
In figure 5.13, attention is posed on the deeper eroded area, which corresponds
approximately to x > 1.7 and y < 0.9. The detachment of particles influences the
motion of the turbulent flow. When the depth of erosion reaches a value close to
the original plate thickness, the flow occasionally recirculates in the above men-
tioned zone and interacts with the particles that are washed away. Turbulence is
locally increased and high velocity fluctuations occur. The high velocity fluid pen-
etrates between the cavities that formed before, as erosion proceeded. This causes
an enormous increase of loads applied to the remaining particles.

Also the presence of the bounded particles pays an important role in the pro-
cess. Indeed, since all degrees of freedom are locked, displacements can not be
transferred to them, making the rupture of bonds easier.
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(a) t = 11.34s (b) t = 11.34s

(c) t = 11.90s (d) t = 11.90s

Figure 5.13: Visualization of streamlines in correspondence of the most eroded zone,
when the simulation is about to end. Figures a, c, shows the contour plot of load’s magni-
tude. Already eroded particles and the ones underneath the surface, to which zero loads
are directly applied, are colored in grey and their opacity is reduced to allow for a better
visualization. Figures b, d, on the other hand, show the same time instant and the same
streamlines, but the damage level is plotted on the plate. In this case, particles already
detached are hidden.
In the visualized time instants a large part on the bottom of the plate is removed. This
can be easily seen in the right-side column, while on the left-side the increase of loads to
cause this event is noticeable
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5.2.2 Erosion depth dependence

Studying the evolution of loads by their averaged values is a great instrument but
still it does not give any correlation between them and the actual geometry of the
plate. Indeed, from figure 5.10 it is clear that geometry is highly irregular and
therefore loads distribution can not be uniform on the entire surface.

To overcome this problem and find more information about how the repartition
of loads varies with the position, the flat plate is discretized into a 100x30 grid
and results are then averaged on each of these sectors. By doing so, geometry
dependence is included in the analysis but still, surface irregularities at smaller
scales are smoothed out. While in the previous chapters the plate was considered
to remain flat with a thickness equal to its mean one, now the geometry of the
plate is derived from the coordinates of each sector.

Figure 5.14: Plate discretized in sectors by a 100x30 grid

Loads transmitted at the fluid-solid interface are then computed at every sector
and averaged on it. Mean shear stresses τx,τy and normal stresses σz are associated
to the mean thickness of the plate in that particular sector, which is the mean z
coordinate of the sector itself. This procedure is done at different time instants,
as the erosion proceeds, from that analysis it derives that the increase in applied
loads is a direct consequence of the dynamic state of the problem. Indeed, after
erosion has started, there is the definition of 2 preferential zones for it to evolves,
identified as 2 erosion channels. The one at lower y is eroded much faster than
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that at higher y where, on the contrary, the process slows down and the erosion
seems to be freezed, compared to the other one.

The analysis of loads shows a different behavior for the 2 areas: when the
erosion process slows down, transmitted stresses to the eroded zones increase
in intensity. For this reason, highest magnitude loads are in correspondence of
z≈ 0.011, which corresponds to the average depth of the second erosion channel.
As for normal stresses, in general, a decrease in thickness is associated to negative,
higher magnitude loads (figure 5.15).
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(a) t = 6.62s (b) t = 7.31s

(c) t = 8.37s (d) t = 9.07s

(e) t = 10.96s (f) t = 11.52s

Figure 5.15: Stresses applied on the surface, evaluated at every sector in which the plate
is discretized. At each time instant, components of the stresses along the 3 directions are
plotted against the z-coordinate of the sector itself. This results in a representation of the
evolution of stress distribution as a function of the depth of erosion.
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5.3 Erosion law

As it can be seen from the previous chapters, erosion is a process that proceeds in
different ways across the body, leading to complex shapes not predictable a priori.
In particular, once a particle is removed from the flat surface, erosion develops in
proximity of this point increasing the size of the damaged area as the simulation
continues.

Aspects covered with present work until now are mechanics that drive the ero-
sion of the plate and the process has been treated in terms of forces and removed
material. Figures 5.10 and section 5.2.2 show that erosion is not a spatial homoge-
neous process but, on the contrary, it is strongly related to position and it proceeds
with different speeds depending on where attention is payed. If a mean erosion
depth had to be computed across the whole plate, no significant results would be
achieved. Indeed, the simulation ends when erosion reaches a depth equal to the
original thickness of the plate but still there are some spots on it almost unaffected
by the process.

In a similar way to what done in the previous section, it is possible to iden-
tify different regions of the flat plate where the behavior of the material is kept
almost uniform until the end of the simulation and where erosion has removed
material evenly across the area. A computation of a localized averaged erosion
depth becomes thus significant in these confined zones.

As an example, one of these regions, graphically represented in figure 5.16-a
is identified by:

1.9≤ x≤ 2.6 1.2≤ y≤ 1.5 (5.9)

and the time evolution of its height as erosion proceeds is found in figure 5.16-b.
It is useful to define an erosion velocity as

ver =
∂hc

∂ t
(5.10)
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(a)

(b)

Figure 5.16: Figure a: the area identified by the black line is one of the circumscribed
regions where erosion proceeds homogeneously. Figure b: height of the plate in the zone
of figure a. The line in black represents the spatial averaged value, while the ones in red
and the blue the minimum and maximum values respectively.

where hc is the channel height. This height is considered against the plate height
hp, since hc + hp = 1.125 always and in this way erosion velocity assumes only
positive values. The erosion velocity in different zones is not constant through all
the process but it varies continuously. Considering a mean value for the velocity
based on the averaged depth of erosion on each of the sectors defined above, it is
possible to obtain the time profile of the erosion velocity. This is, finally, the time
derivative of the curve in figure 5.16.

Actually, very little can be derived from such a time evolution. Erosion veloc-
ity becomes useful when related to shear stresses applied. The most commonly
used erosion law in soil mechanics is:

ver =

kd(τ− τc) if τ > τc

0 otherwise
(5.11)

with kd the erosion coefficient expressed in [m2s/kg] and τc the critical shear
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stress, or the minimum shear stress above which erosion begins. The same law is
often expressed in terms of rate of removed material ṁ so that erosion coefficient
in this case is ker = ρskd .

Figure 5.17: Erosion law. Points marked with an x are numerically computed while the
line in red is the regression line to fit those values that allows for the determination of τc

and kd .

This relationship between shear stresses and erosion velocity can be verified
for the regions of similar behavior. For the same region already represented in
figure 5.16-a, obtained results are shown if figure 5.17. The trend is linear and it
could be improved with a finer spatial discretization. However results are satis-
factory. Computed τc, identified as the point where ver = 0 on the interpolation
line, and the angular coefficient kd are:

τc = 1.84±0.34Pa kd = (7.59±1.95)e−5
m2s
kg

. (5.12)

A comparison between this value for τc and shear strength computed in 5.8 shows
good accordance between the two. In this framework, obtained results have to be
considered acceptable.

Further improvements of this considerations will be the use of a realistic ma-
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terial in the simulation, whose characteristic parameters τc and kd are well known
in order to have a better confrontation with reality.
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Chapter 6

Conclusions

The aim of this thesis is the direct study of a FSI problem in which a plate, repre-
sentation of a wall in a channel, is eroded by a turbulent flow. As for the author
knowledge, no previous attempts to directly solve this kind of problem can be
found in literature, where on the contrary, this has been done only by mean of
models derived from experimental considerations.

The work here presented required the usage of a numerical code especially
developed for the solution of similar problems. The approach followed in this
code is a partitioned approach because of the possibility of treating solid and fluid
phases with two completely different methods. In particular, the chosen methods
are peridynamics, for what concerns solid, and DNS and IBM for the fluid phase.

Reasons behind the choose of peridynamics are the intrinsic capabilities of this
method to solve fracture and crack propagation without any pregress knowledge
on how this is going to evolve. IBM then, allows to easily determine the forces
exchanged at the solid-fluid interface in dynamic problems.

The simulation here run required the usage of 2 different grids with the same
spatial discretization: the first is fixed in time and concerns the fluid flow, while
the other is solidal to the body and is used to solve its equations of motion.

Since the solid solver is built following an explicit approach and maximum
allowable time steps are proportional to the elastic modulus of the material, un-
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realistic properties are assigned to both fluid flow and solid body. This way, the
computational time is maintained low. The results here obtained can then be re-
lated to a more realistic case thanks to similarity. This is assured thanks to three
non-dimensional groups that have to be kept constant.

The presence of an elastic wall in the channel before erosion begins influences
directly the behaviors of the flow. In particular it implies a drag reduction in
correspondence of the elastic wall with respect to that computed if a rigid wall
were considered. Furthermore, the sum of Reynolds stress and viscous stress
measured within the fluid in proximity of the elastic wall shows a reduction. This
results in a zero turbulence production location closer to the elastic wall. Those
effects are confined in a region near the wall. As for turbulence and velocity
fluctuations on the other hand, the effect of elasticity can be seen all across the
height of the channel.

After focusing on the fluid flow, an analysis of loads transmitted at the solid-
fluid interface has been carried out. A comparison between stresses exerted in the
elastic and rigid wall cases relates the already mentioned drag reduction to a wider
distribution of loads around that value. In particular, the presence of this kind of
wall implies higher magnitude loads in rare events. These are responsible for the
initialization of erosion, that is a process that follows from a slow and continuous
degradation of the material. The way peridynamics is formulated allows for a
deep analysis of the mechanics that drive erosion; the body breaks at shear.

The relation between the velocity of erosion derived from the numerical sim-
ulation and the shear stresses measured at the surface of the plate showed good
accordance to the experimental predicted trend. Finally, the two parameters re-
quired for a description of the erosion process for the material here considered
have been computed. These parameters can otherwise be derived only from ex-
perimental tests.

Results achieved until now are surprisingly good, even considering the small-
size domain used. However, during the dissertation, the limitations of the methods
used to approach the problem have been identified. A further development of this
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work is surely to introduce the possibility to simulate realistic materials without
the need of similarity. This will also open to the possibility of a comparison
between results obtained experimentally and those obtained by a DNS of the same
problem.
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