
DIPARTIMENTO DI TECNICA E GESTIONE DEI SISTEMI INDUSTRIALI

CORSO DI LAUREA IN INGEGNERIA MECCATRONICA

Human-Guided Autonomous Mobile
Manipulator in Dynamic Environments:

A Case Study Using LoCoBot

Advisor Candidate
Prof.ssa Giulia Michieletto Alessio Lovato

Co-Advisor
Prof.ssa Monica Reggiani

ACADEMIC YEAR 2023-2024

Yesterday it worked

Abstract

In the context of Industry 4.0, human-robot interaction emerges as one of the major topics to
relieve human operators from heavy and repetitive tasks. The objective of this research is to
develop a real-world human-robot interaction to help humans with tool transportation. In this
study case, a mobile robot equipped with a robotic arm is tasked to autonomously follow a
human operator through a predefined space while avoiding dynamic obstacles and carrying a
payload. Once the human operator has reached the destination, the robot has to transfer the
item to him/her safely. The platform is controlled using the ROS 2 middleware; all the subtasks
required to perform the entire operation have been implemented through the adaptation of pre-
existing packages into a unique framework. A depth camera is incorporated to detect dynamic
obstacles in the path of the mobile robot, while external cameras are used to obtain the poses
of both the robot and the individual during the entire operation. These are determined using
fiducial marker-based computer vision. To control the behavior of the robot, a state machine is
implemented and the changes between states are performed using hand gesture recognition to
enhance interactivity. The proposed framework is evaluated through simulation tools, followed
by implementation in a real-world scenario.

ii

Contents

1 Introduction 1

2 LoCoBot - the case study AMM 7
2.1 Hardware . 7

2.1.1 Mobile base . 7
2.1.2 Robotic arm . 9
2.1.3 INTEL® NUC . 13
2.1.4 RealSense™ camera . 13

2.2 LoCoBot ROS 2 packages . 14
2.2.1 Interbotix native packages . 14
2.2.2 Interbotix custom packages . 16

2.3 Conclusions . 18

3 AMMmaneuverability tools 21
3.1 ROS 2 . 22

3.1.1 ROS 2 Network . 22
3.1.2 ROS 2 Architecture . 24

3.2 Nav2 . 26
3.2.1 Costmaps . 26
3.2.2 Nav2 Navigation Pipeline . 28

3.3 MoveIt 2 . 29
3.3.1 Motion Planning Pipeline . 30
3.3.2 move_group node . 31
3.3.3 Trajectory Execution . 32
3.3.4 Planning Scene Monitor . 33

3.4 Fiducial markers for pose estimation . 34
3.4.1 AprilTag 3 . 34
3.4.2 AprilTag 3 Coordinate System . 35

iii

3.4.3 AprilTag ROS . 35
3.4.4 TF Tree . 36

3.5 Camera Network . 36
3.5.1 Camera Pose Calibration . 38
3.5.2 Image Rectification . 40
3.5.3 Bandwidth Usage . 40

3.6 Conclusions . 40

4 Human-guided AMM framework 41
4.1 Gesture Recognition . 43

4.1.1 Usability improvement . 43
4.2 LoCoBot Control Node . 44

4.2.1 ArmStatus Class . 44
4.2.2 NavigationStatus Class . 44
4.2.3 LocobotControl Class . 45

4.3 State Machine Node . 46
4.3.1 LastError Service . 47
4.3.2 ClearError Service . 47
4.3.3 ControlStates Service . 47
4.3.4 SpinMachine() Function . 48
4.3.5 Internal States . 48
4.3.6 External States . 51

4.4 Nav2 configuration . 51
4.4.1 Map Server . 51
4.4.2 Map Saver . 52
4.4.3 Behavior Server . 52
4.4.4 Controller Server . 52
4.4.5 BT Navigator . 53
4.4.6 Planner Server . 54
4.4.7 Velocity Smoother Server . 54

4.5 MoveIt 2 Configuration . 54
4.5.1 Loaded Components . 54
4.5.2 Grasping Position . 55

4.6 Simulation Environment: Gazebo Classic Simulator 55
4.6.1 Simulated world file . 56
4.6.2 Framework validation on simulated environment 57

4.7 Conclusions . 57

iv

5 Experimental Results 59
5.1 Navigation tests . 59

5.1.1 Obstacle detection . 60
5.1.2 Obstacle avoidance . 61

5.2 Interaction tests . 66
5.2.1 Gesture recognition . 66
5.2.2 Arm movement . 67

5.3 General test . 70
5.4 Conclusions . 72

6 Conclusions 73

Bibliography 77

Appendix A ros2_control package 83

Appendix B Nav2 Custom Behavior Trees 85
B.1 RPP Behavior Tree . 86
B.2 MPPI Behavior Tree . 87

Appendix C Frame sequence of Behavior 2 with RPP 89

Appendix D Gesture Recognition Tables 91

v

vi

Abbreviations

Abbreviation Meaning

AMM Autonomous Mobile Manipulator
AMR Autonomous Mobile Robot
API Application Programming Interface
BT Behavior Tree
CNN Convolutional Neural Network
DDS Data Distribution Service
DoF Degree of Freedom
GPS Global Positioning System
HRC Human Robot Collaboration
HRI Human Robot Interaction
IDL Interface Description Language
IMU Inertial Measurement Unit
KPI Key Performance Indicators
LIDAR Laser Imaging Detection and Ranging
LLM Large Language Model
MPPI Model Predictive Path Integral
OMG Object Management Group
QoS Quality of Service
RMW ROS MiddleWare
ROS Robot Operating System
RPP Regulated Pure Pursuit
SRDF Semantic Robot Description Format
STVL Spatio-Temporal Voxel Layer
TEM Trajectory Execution Manager
TF Transform
TTL Transistor-Transistor Logic
UGV Uncrewed Ground Vehicle
URDF Unified Robot Description Format

vii

viii

List of Figures

1.1 Example of state-of-the-art Autonomous Mobile Manipulator (Robotnik
RB−KAIROS+UR5e). Source [11] . 3

1.2 Block diagram of the proposed framework . 4

2.1 LoCoBot WidowX-200. Source [15] . 8
2.2 Differential drive kinematics. Source [16] . 8
2.3 WidowX-200 arm’s motors . 10
2.4 Frame position of the joints of the WidowX-200 arm for Denavit-Hartenberg . 13
2.5 Realsense camera D345. Source [19] . 14
2.6 Interbotix_xslocobot_moveit package overview. Source [31] 19

3.1 Overview of the framework components discussed in Chapter 3 21
3.2 Examples of ROS 2 node interfaces: topics, services, and actions. Source [32] . 23
3.3 ROS 2 Client Library API Stack. Source [32] 25
3.4 Example of costmap and its sublayers . 27
3.5 Example of Nav 2 Pipeline. Source [42] . 29
3.6 MoveIt 2 pipeline. Source [45] . 30
3.7 Motion planning pipeline. Source [45] . 31
3.8 move_group node. Source [45] . 32
3.9 Planning Scene Monitor architecture. Source [45] 33
3.10 An example of AprilTag 3 marker of the tag36_11 family 35
3.11 AprilTag coordinate systems . 36
3.12 TF Tree of the camera and markers for the human and the LoCoBot 37
3.13 Estimated position over 5 seconds with two Kinect cameras 39

4.1 Overview of the framework components discussed in Chapter 4 42
4.2 Internal States diagram . 49
4.3 External states diagram . 51
4.4 Example of Gazebo simulation: the static_obstacle world 56

ix

5.1 Obstacle detection coordinates . 60
5.2 Test paths proposed by normative ISO 18646-2. Source [2] 61
5.3 Testing area at the laboratory of the university 62
5.4 No obstacle and static obstacle tests . 63
5.5 Dynamic obstacle tests . 64
5.6 Gesture test differentiation by tester . 68
5.7 Recognition test . 69
5.8 General test video frames . 71

A.1 Components architecture of ROS 2 control. Source [64] 84

x

Chapter 1

Introduction

Contemporary robotics permeate daily life, assisting humanity with tasks ranging from the
simplest to fully automated factory operations. The term robot was originally introduced by
Karel Čapek in his play R.U.R. (Rossumovi univerzàlnì roboti) in the 1920s [1], symbolizing
humanoid entities capable of performing human tasks.
The current interpretation of the term robot refers to a “programmed actuated mechanism with
a degree of autonomy to perform locomotion, manipulation or positioning” — as defined by
ISO 18646 [2] — encompassing a wide variety of machines with diverse morphology. These
range from bio-inspired robots, like those with humanoid or serpentine shapes, to stationary
robotic arms designed for lifting and transport, and extend to mobile robotics, which is a major
focus of modern research.

As the term suggests, a mobile robot is a “robot able to travel under its own control”
[2]. Mobile robotics encompasses a broad category of systems, including subsets like Un-
crewed Ground Vehicles (UGVs). While some UGVs rely on human teleoperation — for
example, robots used for inspecting hazardous environments — others, such as Autonomous
Mobile Robots (AMRs), are designed to navigate their surroundings independently, without
human intervention.
Navigation can be achieved offline, where the robot follows a pre-planned path, or online,
where the robot computes its path in real time, based on environmental cues like RF tags or
obstacles detected by onboard sensors and behavior algorithms developed through software.

Movement mechanisms typically include tracks, wheels, or legs. While wheels and tracks
are primarily used in indoor environments where conditions favor these forms of locomotion,
legged robots are often preferred in rougher environments, as their structure offers greater
degrees of freedom and agility.

1

Recent advancements have seen indoor tracked robots being replaced by wheeled robots
with holonomic wheels. These holonomic wheels allow rotation on the spot and enable
omnidirectional movement, optimizing space usage and reducing maintenance costs — key
factors driving industrial research and implementation.

The industrial environment presents significant challenges for mobile robotics due to the
continuous presence of humans, static objects such as walls and racks, and dynamic objects
that must be avoided or navigated around. Modern sensors such as LIDAR, ultrasound, and
depth cameras facilitate navigation by converting the external world into digital 2D/3D maps
for robotic use.
A robot’s ability to localize itself within its environment is another essential aspect of naviga-
tion. Methods like Simultaneous Localization and Mapping (SLAM), where the robot builds a
map as it navigates, or Adaptive Monte Carlo Localization (AMCL), which uses sensor data
(e.g., IMU, LIDAR) to locate the robot within a pre-existing map, are commonly used.
Additionally, external methods for the estimation of the pose (combination of position and
orientation in space [2]) can be employed, including GPS, motion capture, RF signal triangula-
tion, and computer vision. As reported in [3], many computer vision techniques, such as visual
odometry and fiducial markers, can be used to determine the robot’s pose.
In outdoor applications, GPS is often the preferred technology for its reliability and familiarity.
However, for more challenging terrains, LIDAR is frequently used to scan the surroundings
and create a 3D map of the environment. Although LIDAR is widely used indoors as well, GPS
is typically replaced by Visual Odometry or RF signal triangulation when working in enclosed
spaces.

A key emerging trend in robotics and mobile robotics is human-robot interaction (HRI)
and collaboration (HRC). According to [4], a collaborative operation is defined as “state
in which a purposely designed robot system and an operator work within a collaborative
workspace”. Therefore, conducting human-robot collaboration within an industrial con-
text necessitates strict adherence to this normative and adoption of proper robot to ensure
safety. In contrast, the interaction between humans and robots is less restrictive, even within
a collaborative workspace, as the two entities undertake distinct tasks, thereby enhancing safety.

State-of-the-art Autonomous Mobile Manipulators (AMMs) [5–10] are equipped with
advanced sensors such as LIDAR and cameras, enabling them to detect and navigate around
obstacles and humans along their paths with high precision. The robotic arms integrated with
these AMMs are designed for collaboration, featuring force-feedback mechanisms to ensure

2

Figure 1.1: Example of state-of-the-art Autonomous Mobile Manipulator
(Robotnik RB−KAIROS+UR5e). Source [11]

safe interactions with the environment. In the event of a collision with an object or person,
these arms can safely halt the process, greatly reducing the risk of injury or damage.
High payload requirements often necessitate larger chassis and more powerful drive systems,
increasing the overall cost of the robot. Lastly, robust designs are essential for meeting the
demands of industrial applications, where reliability and safety are paramount.
Figure 1.1 provides an example of these AMM.

This study takes an industrial-oriented approach by proposing a practical scenario in which an
autonomous mobile manipulator assists a human in completing tasks. Specifically, the robot is
tasked with transporting an object while following a human through a predefined map, avoiding
both static and unknown dynamic obstacles.
To achieve this objective, this thesis focuses on the development of a robust framework
to control the LoCoBot WX200, an AMM developed by Carnegie Mellon University and
supported by Trossen Robotics.

3

Figure 1.2: Block diagram of the proposed framework

In Figure 1.2, the framework proposed in this thesis is illustrated. A key feature of this
framework is the high modularity of its components, an attribute inherited from its foundation
on the ROS 2 framework, which itself is designed for modularity and scalability.
The primary objective of the proposed framework is to enable human-robot interaction through
gesture recognition, leveraging computer vision techniques. Gestures are captured using
a pre-trained model, which performs recognition based on the keypoints of the hand. The
recognized gesture is then translated into a command for the state machine.
Depending on its current state and the nature of the received command, the state machine
interprets the command and triggers either the navigation or interaction module. These

4

modules, provided by the Nav2 and MoveIt 2 stacks — widely recognized standards in robotic
navigation and manipulation, respectively — handle the execution of low-level tasks.

Accurate navigation requires the robot’s position within the environment to be known.
To achieve this, a computer vision-based localization system utilizing fiducial markers has been
employed. This approach not only determines the robot’s position but also tracks the human
operator, enabling seamless human-following behavior using the same technology.
Since the camera system plays a crucial role in computer vision tasks, its spatial relationship
with the environment’s origin must be well-defined. To ensure this, a calibration methodology
has been implemented to determine the static positions of all cameras within the environment.

To validate the framework, a comprehensive proof-of-concept demonstration is presented
in this thesis. This includes a general tests to confirm the framework’s functionality and
performance.

Thesis Structure

The structure of this thesis is as follows:

• Chapter 2 provides an in-depth overview of the LoCoBot system, detailing the modifica-
tions made to Trossen Robotics’ ROS 2 packages to operate the LoCoBot.

• Chapter 3 introduces the foundational tools used to develop the framework. It begins
with an overview of basic ROS 2 concepts, which are essential for understanding the
terminology and architecture employed in this work. Next, it provides a brief analysis of
the pipelines utilized by Nav2 and MoveIt 2 for planning and executing navigation and
robotic arm motions. Finally, the chapter outlines the tools and techniques used for the
localization.

• Chapter 4 focuses on the framework’s architecture, including customizations made to
MoveIt 2 and Nav2, the implementation of the gesture recognition module, and the design
of the state machine.

• Chapter 5 presents the validation process, describing the tests performed for individual
modules and for the overall framework.

• Chapter 6 concludes the thesis by summarizing the results and identifying potential future
implementations.

5

6

Chapter 2

LoCoBot - the case study AMM

The autonomous mobile platform used is a LoCoBotWidowX-200 (LowCost Robot) developed
by Carnegie Mellon University [12] and supported by Trossen Robotics [13].
LoCoBot is built on a third party mobile base, while the robotic arm is designed using DY-
NAMIXEL motors [14]. Hardware communication is handled via ROS 2 using an onboard
computer, so that the whole system can be used as a mobile manipulator, able to perform tasks
autonomously. This chapter will cover the hardware of the LoCoBot in detail (Section 2.1) and
the various ROS 2 packages developed by Trossen Robotics to control the system (Section 2.2).

2.1 Hardware

In addition to the base and the robotic arm, other components are integrated into the LoCoBot.
The “brain” of the AMM is an Intel® NUC (Next Unit of Computing), powered by a MAXOAK
K2 50,000mAh powerbank.
Additionally, an aluminum frame tower supports the installation of an Intel® RealSense™ cam-
era, whose pan and tilt are controlled through two DYNAMIXEL motors.

2.1.1 Mobile base

The mobile base used for the LoCoBot is the Kobuki Base, developed by Yujin Robot.
This base uses differential-drive movement and equips caster wheels for balance. Furthermore
it integrates with ROS 2 to receive velocity commands through the ros2_control package
(Appendix A).

7

Figure 2.1: LoCoBot WidowX-200. Source [15]

Kinematics of differential driven mobile bases

A differential-driven robot can move forward, backward, and rotate around an instantaneous
center of rotation (ICR). The motion is provided by two motorized wheels positioned at opposite
ends of the base, which can either be driven independently or coupled with a differential gear.
If both wheels move in the same direction and at the same speed, the robot will move linearly.
If the speeds differ, angular movement is produced.

Figure 2.2: Differential drive kinematics. Source [16]

Let r > 0 be the radius of the wheels, R ≥ 0 the distance between the ICR and the mobile base
center, b > 0 the width of the vehicle and vL, vR ∈ R the modules of left and right wheel ground
contact speed, respectively.

8

Referring to Figure 2.2, considering X and Y as the global coordinate system, (XB, YB) ∈ R2

as the position of the base in the global coordinate system, and φ ∈ [0, 2π] as the planar rotation
of the base respect to the X-axis, it is possible to define the module of angular velocity ω ∈ R
of the vehicle as:

ω(R +
b

2
) = vR

ω(R− b

2
) = vL

Solving those equations for ω results in:
ω =

vR − vL
b

R =

b

2
(vR + vL)

vR − vL

The instantaneous velocity V of the base can be obtained from the angular velocity as

V = ωR =
vR + vL

2

with vR = r · ωR and vL = r · ωL, where ωL, ωR ∈ R are the modules of angular velocities of
the wheels. The kinematics expressed in local body coordinates is

ẋB

ẏB

φ̇

 =

r

2

r

2

0 0

−r

b

r

b

[
ωL

ωR

]

and using the planar rotation matrix Rz(φ) ∈ R3×2 the kinematic model in global coordinates
becomes: ẋẏ

φ̇

 = Rz(φ)

[
V

ω

]
=

cosφ 0

sinφ 0

0 1

[
V

ω

]

2.1.2 Robotic arm

The robotic arm utilized is the WidowX-200 from Trossen Robotics [17]. This arm supports a
maximum payload of 200g, with a reach of 550mm, and a total span of 1100mm, althought the
recommended workspace has a radius of 770mm . It is driven by 7 servo motors (DYNAMIXEL
XM430-W350 andDYNAMIXELXL430-W250) allowing for 5 degrees of freedom (DoF). The
number of motors equipped is higher than the DoF because, to support the arm, the shoulder

9

Figure 2.3: WidowX-200 arm’s motors

joint (Figure 2.3) is equipped with two twin motors and an additional motor is used to control
the movement of the gripper.
The motors’ communication line is set up in a daisy-chain configuration, with each motor as-
signed a unique ID. All motors are controlled via the ROBOTIS U2D2 module, which converts
USB signals from the NUC into Transistor-Transistor Logic (TTL) serial signals, subsequently
sent to the motors [18].
Table 2.1 outlines the joint limits of the WidowX-200 arm. The joint angles are measured
with respect to a centered position, and the gripper’s limit refers to its translational movement,
achieved by a horn mechanism connected to the motor rotor.

Joint Min Max Servo ID
Waist -180 deg 180 deg 1

Shoulder -108 deg 113 deg 2+3
Elbow -108 deg 93 deg 4

Wrist Angle -100 deg 123 deg 5
Wrist Rotate -180 deg 180 deg 6
Gripper 30 mm 74 mm 7

Table 2.1: Joint limits and IDs of WidowX-200 arm.

DYNAMIXEL motors

DYNAMIXEL motors, developed by ROBOTIS, are specifically engineered for robotics ap-
plications. These compact motors offer high payload capacity due to their elevated gear ratio
and they can be controlled in various modes, including position, velocity, current (torque), and

10

PWM control. A PID control system is incorporated for position and velocity regulation, al-
lowing adjustments to be made to suit specific applications. Real-time feedback on parameters
such as position, velocity, current, temperature, and voltage is also provided.
The motors are controlled through the U2D2 module, which supports multiple development en-
vironments such as C++, Python and MATLAB® , across different operating systems (Linux,
Windows, MacOS and RTOS). The WidowX-200 arm uses two types of motors:

• XM430-W350: Mid-level performance motor, powered by a 12V input, with a gear ratio
of 350:1. The ”430” refers to the dimensional class.

• XL430-W250: Low-cost motor, also powered by a 12V input, with a gear ratio of 250:1.
Used for wrist rotation and gripper.

Kinematics in robotic arms

The kinematics of a robotic arm can be approached from two perspectives: forward kinematics
and inverse kinematics. Forward kinematics involves determining the end-effector’s pose from
given joint values, while inverse kinematics addresses the opposite problem.
Forward kinematics can be computed using methods such as the Denavit-Hartenberg convention
or the Product of Exponentials (PoE) formula.
LoCoBot documentation provides the Poe method, where T0 ∈ R4×4 represents the home con-
figuration of the end-effector, and S_list ∈ R6×5 contains the screw axes for each joint.

T0 =

1.0 0.0 0.0 0.408575

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.31065

0.0 0.0 0.0 1.0

Slist =
[
S1 S2 S3 S4 S5

]
=

0.0 0.0 0.0 0.0 1.0

0.0 1.0 1.0 1.0 0.0

1.0 0.0 0.0 0.0 0.0

0.0 −0.11065 −0.31065 −0.31065 0.0

0.0 0.0 0.0 0.0 0.31065

0.0 0.0 0.05 0.25 0.0

The transformation matrix, T(θ) ∈ R4×4, which represents the pose of the end effector relative
to the base frame, is calculated by multiplying the exponentials of the screw axes, scaled by their
corresponding joint variables:

T(θ) = eS1θ1eS2θ2eS3θ3eS4θ4eS5θ5T0

11

Although the Poe represents a more efficient method for computational analysis, Denavit-
Hartenberg provides a more intuitive table to understand the relative position of each joint. The
transformation matrix, Ti ∈ R4×4, maps the frame i to frame i − 1. In representing a joint
position within three-dimensional space, the vector j ∈ R4×1 is used.

ji =

xi

yi

zi

1

 = Ti ji−1 =

cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di

0 0 0 1

xi−1

yi−1

zi−1

1

Within the Denavit-Hartenberg notation, ai ∈ R+, signifies the length of the common normal,
defined as the distance between frames i and i − 1 along the x-axis of frame i − 1. The term
αi ∈ [0, 2π] enumerates the angle between the z-axes around the common normal. di ∈ R+

delineates the link offset, describing the distance from frame i − 1 to frame i along z-axis of
frame i− 1. The joint angle, identified by θi ∈ [0, 2π], denotes the rotational movement around
the z-axis of frame i.

Ti αi [rad] ai [mm] θi [rad] di [mm]
T1 0 0 θ1 113,25

T2 -
pi

2
0 θ2 0

T3 0 206,16 θ3 0

T4 0 200 θ4 0

T5 -
pi

2
0 θ5 174,15

Table 2.2: Denavit-Hartenberg table for Widow-X 200 arm

Table 2.2 is obtained by applying the Denavit-Hartenberg method to the WidowX-200 arm.
As shown in Figure 2.4, a simplification has been introduced between frames 2 and 3. The
arm’s actual structure between these two joints is formed by an L-shaped connection, allowing
to consider the hypotenuse of the triangle created by this junction as the minimal distance
between the axes, eliminating the need for an additional dummy frame.

12

Figure 2.4: Frame position of the joints of the WidowX-200 arm for Denavit-Hartenberg

Inverse kinematics, on the other hand, is more challenging and can be solved either analytically
using algebraic methods or numerically using iterative techniques, such as the Jacobian matrix
or Newton-Raphson method.

2.1.3 INTEL® NUC

The computing platform used in this project is an Intel® NUC, featuring an Intel® Core™ i5-
7260U CPU, 8 GB of DDR4 RAM, and a 240GB SSD. The NUC provides native Bluetooth
and Wi-Fi connectivity, along with HDMI and USB ports for peripheral connections. For this
project, Ubuntu® 22.04 with ROS 2 Humble distribution has been installed on a dedicated par-
tition.

2.1.4 RealSense™ camera

The Intel® RealSense™ D345 is a depth camera capable of generating 3D perceptions of the
environment using infrared light. It has a field of view of 87° horizontally and 58° vertically,
with an optimal depth range between 0.3 and 3 meters, and an accuracy of less than 2% at 2
meters. Additionally, the camera captures RGB Full HD images at 30 frames per second, with
a field of view of 69° horizontally and 42° vertically.

13

Figure 2.5: Realsense camera D345. Source [19]

Using the Realsense-ROS package [20], the camera 3D depth data are published through a ROS
2 topic using the PointCloud2message type. The camera is mounted on two DYNAMIXELmo-
tors that control the pan and tilt. In the updated version of the LoCoBot, a single DYNAMIXEL
2XL motor is equipped, offering the same feature. Each axis of this latter motor is assigned a
unique ID to manage independent movement.

2.2 LoCoBot ROS 2 packages

The LoCoBot is part of Trossen Robotics’s Interbotix product line, which focuses on open-
source solutions tailored for research and development purposes. The Interbotix series imple-
ments both shared and specialized ROS 2 packages. The specialized packages are tailored to
specific applications (such as LoCoBot or X-Arms), whereas shared packages provide universal
functions across all products.
These packages are designed to simplify the integration of hardware and software, enabling
users to quickly set up and operate robots. Although well documented and robust, some minor
adjustments were necessary during the implementation of the packages.

2.2.1 Interbotix native packages

The main Interbotix ROS 2 packages required to operate the LoCoBot are outlined below.

• Interbotix_ros_core [21]: This package provides ROS 2 wrappers around various types
of actuators used by Interbotix robots, such as the DYNAMIXEL motors.

• Interbotix_ros_toolboxes [22]: This repository contains toolboxes shared among differ-
ent families of products.

• Interbotix_ros_rovers [23]: This package is built on top of the previous packages and
includes specific modules designed for the LoCoBot and other rovers from the Interbotix
family.

14

The aforementioned packages include several ROS 2 packages within them. In the
following, a detailed overview will be provided specifically for those included in the
Interbotix_ros_rovers package.

Interbotix_xslocobot_descriptions

This package is responsible for providing the Unified Robot Description Format (URDF) file
of the LoCoBot model, which describes the robot’s physical configuration. It publishes the
state of all non-fixed joints via the joint_state_publisher node [24]. Using these data, the
robot_state_publisher node [25] computes the robot’s forward kinematics, publishing the
results to the tf topic. This allows real-time visualization of the robot state in RViz 2 [26], and
can be used for both real robots and simulations.

Interbotix_xslocobot_control

The control package builds upon the robot’s description and integrates the Interbotix_xs_sdk
package [27], which is responsible for controlling the DYNAMIXEL motors. The
dynamixel_workbench_toolbox [28] is used to manage the low-level operations of the DY-
NAMIXEL motors. This package also launches key components, including the Kobuki base
nodes and the RealSense™ camera node.

Interbotix_xslocobot_sim

This package facilitates the simulation of the LoCoBot in Gazebo Classic [29], a widely used
robotic simulator. The package utilizes the gazebo_ros package from the gazebo_ros_pkgs
collection [30] to simulate the robot in a virtual environment. When using this package, the Lo-
CoBot’s hardware components (e.g., motors, sensors) are replaced with simulated counterparts
in Gazebo, but the same control architecture is maintained.

Interbotix_xslocobot_moveit

This package contains the configuration files used to run MoveIt 2 (Section 3.3) with any robot
of the LoCoBot family. It implements the FollowJointTrajectory interface both in simulation
and on real robots. Figure 2.6 shows the complexity and inclusions of this package.
It is essential to highlight that the launch file associated with this package is dedicated solely to
arm control. Consequently, when the launch file of the Interbotix_xslocobot_ros_control
is included, the use_base parameter is purposely not passed to it.

15

Interbotix_xslocobot_ros_control

This package loads the necessary controllers and controller manager from ros2_control pack-
age (Appendix A), properly tuned for the LoCoBot application.
Furthermore it includes the launch file from Interbotix_xslocobot_control package.

Interbotix_xslocobot_nav

Specifically designed for real-world applications, this package provides the necessary configu-
ration and launch files to run SLAM and autonomous navigation using the ROS 2 Nav2 stack
(Section 3.2). It is optimized for the LoCoBot’s sensor suite and facilitates autonomous explo-
ration and navigation in dynamic environments.

2.2.2 Interbotix custom packages

The modifications focused on two packages: Interbotix_ros_rovers and
Interbotix_ros_toolbox. Both packages failed to operate the LoCoBot properly un-
der the ROS2 Humble distro.
The major issues encountered were the arm not responding to commands given via the
MoveIt 2 interface (Section 3.3), and the depth camera’s perception was not aligned
with the real world. Additionally, the robot in the simulation was drifting around even
without any given velocity commands. These modifications were implemented by cre-
ating a fork of the repositories on GitHub, with those used in this thesis available at
https://github.com/Alessio-Lovato-Unipd/interbotix_ros_rovers/tree/humble
and https://github.com/Alessio-Lovato-Unipd/interbotix_ros_toolboxes/tree/
humble.
It is important to note that all modifications were made specifically for the LoCoBot WX200,
as it was not possible to test the changes with other models.

The packages modified from the repository Interbotix_ros_rovers are:

• Interbotix_xslocobot_description
The URDF of the Kobuki base was assigning an incorrect link name to the Gazebo ref-
erence of the link (e.g., wheel_right_link instead of locobot/wheel_right_link). This mis-
match prevented parameters assigned to the link (such as friction coefficients) from being
correctly loaded. Additionally, the friction values were increased to keep the simulated
LoCoBot stationary when no external velocity commands were sent to the controller.
In the URDF of the camera (pan_and_tilt.urdf.xacro), a parameter was incorrectly defined

16

https://github.com/Alessio-Lovato-Unipd/interbotix_ros_rovers/tree/humble
https://github.com/Alessio-Lovato-Unipd/interbotix_ros_toolboxes/tree/humble
https://github.com/Alessio-Lovato-Unipd/interbotix_ros_toolboxes/tree/humble

as frameName instead of frame_name, causing the point cloud generated from the camera
to be oriented incorrectly relative to the model.

• Interbotix_xslocobot_control
This issue concerned the configuration file of the RealSense™ camera. Specifically, vari-
able names used to set RGB and depth profiles in the RealSense™ launch file were incor-
rect, preventing the adjustment of these values during startup.

• Interbotix_xslocobot_moveit
This package encountered several issues due to incorrect link naming. All links were
missing the locobot/ prefix in the locobot_wx200.srdf.xacro file. In the same file, it was
also necessary to disable a collision between arm_cradle_link and upper_arm_link when
adjacent, as this caused errors during robot startup: the model slightly differed from the
actual components, and in the arm folded position, MoveIt 2 detected a false collision
between the arm and cradle. Additionally, in the configuration file for the controller of
the LoCoBot WX200, the joint for the right finger was added to publish its joint position.
The default Rviz 2 configuration file was also updated since the original did not allow
Rviz to load correctly. Lastly, the gripper’s operating mode was changed from position to
linear_position to enable MoveIt 2 to execute correct movements on the physical robot.

• Interbotix_xslocobot_ros_control
In this package, the operating mode of the gripper was changed from position to
linear_position within the configuration file.

Additionally, the package modified from Interbotix_ros_toolboxes is:

• Interbotix_xs_ros_control
The issue encountered was specific to the LoCoBot application, as this repository’s code
is designed to be compatible with multiple applications. The xs_hardware_interface,
responsible for receiving and processing joint states, was correctly configured to recognize
the number of joints for the robotic arm model. However, when LoCoBot started with
the configuration that also contains its mobile base, the joint states of the wheels were
published before those of the arm. This caused the hardware interface to expect additional
joint states, leading to attempts to access elements beyond the range of the available vector,
resulting in out-of-range errors.

17

2.3 Conclusions

After an overview of the hardware used during the development of this thesis, a comprehensive
review of all the necessary packages needed to operate the LoCoBot has been conducted. Despite
the open-source nature of this project, it became evident that some packageswere not functioning
as expected and needed fixing. Most issues were related to incorrect parameter configurations,
which, while not critical, highlights the need for more attention during development.
Once these packages were fixed, the LoCoBot system could finally be utilized as intended. This
achievement paved the way for the development of the framework later discussed in this thesis.

18

Figure 2.6: Interbotix_xslocobot_moveit package overview. Source [31]

19

20

Chapter 3

AMMmaneuverability tools

Before introducing the framework concept, it is essential to understand its fundamental compo-
nents. As shown in Figure 3.1, this chapter covers the key topics necessary for understanding
the tools utilized to maneuver the LoCoBot.

Figure 3.1: Overview of the framework components discussed in Chapter 3

The chapter begins with an introduction to the ROS 2 framework (Section 3.1), which forms the
basis of this work. A detailed discussion of the Nav2 andMoveIt 2 packages follows in Sections
3.2 and 3.3, respectively. The chapter then delves into fiducial marker localization technology,
with a particular focus on Apriltags, in Section 3.4. Finally, calibration techniques for the camera
system are outlined in Section 3.5.

21

3.1 ROS 2

ROS 2 (Robot Operating System 2) is an open-source framework designed for developing
robotic applications. ROS 2 has a modular architecture (Section 3.1.2) and can effectively
manage distributed communications in complex and real-time environments [32].

In this section, the fundamental communication mechanisms in ROS 2 (Humble distribution)
are explored. Specifically, the methods of node interaction — Topics, Services, and Actions —
are explained, highlighting their roles and typical use cases.
Additionally, the importance of the Data Distribution Service (DDS) and the ROS Middleware
Layer (RMW), which form the backbone of ROS 2’s communication framework, is examined.

3.1.1 ROS 2 Network

The ROS 2 network is composed of nodes and their connections, forming what is called the
ROS graph. Nodes integrate various components (such as publishers, subscribers, servers, and
clients) and communicate with each another through the DDS.
Node discovery happens automatically: when a node initializes, it announces its presence
and, when it shuts down, it signals its disconnection. Nodes also periodically broadcast their
presence to allow new connections.
Communication between nodes is limited to those with compatible QoS settings [33].

ROS 2 nodes are compiled as executables. To avoid the need to create a different executable
to launch each node, ROS 2 introduced the Components. These elements allow nodes to be
compiled as a shared library [34], offering the flexibility to be either loaded into a container
process or executed independently.
The primary advantage of loading multiple components into a single process is that it enables
intra-process communication, which bypasses the need to publish data across the network, thus
reducing communication overhead.

Finally, ROS 2 provides a node lifecycle management model, allowing nodes or Components
to transition through various states such as unconfigured, inactive, active, and finalized. This
model enables system integrators to control when specific nodes should be active, especially in
distributed asynchronous systems.

Figure 3.2 illustrates examples of connections using node interfaces. In this figure, Node C
creates a publisher for a topic to which Node A and Node B subscribe. The topic serves as the

22

channel through which theMessage, or data packet, is transmitted.
Additionally, Node C establishes an Action client and a Service Server. These interfaces are
typically used to perform tasks on demand. Detailed explanations of messages, topics, and
more complex interfaces are provided below.

Figure 3.2: Examples of ROS 2 node interfaces: topics, services, and actions. Source [32]

Messages

Messages are data structures defined using an interface description language (IDL). ROS 2
supports two IDL formats: the ROS IDL format (.msg files) and the OMG IDL standard (.idl
files). ROS IDL is designed for simplicity and ease of use, making it ideal for rapid message
definition within the ROS ecosystem. In contrast, OMG IDL is an international standard
that offers more complexity and flexibility, enabling greater interoperability across different
systems and programming languages.
User-defined interface definitions are generated at compile time, producing the necessary code
for communication in any supported client library language (Section 3.1.2).

Topics and Publisher/Subscriber

A topic serves as a shared identifier that allows publishers (data producers) and subscribers (data
consumers) to find each other and exchange messages. A topic can support multiple publishers
and subscribers simultaneously [35]. The topic interface is primarily used for continuous data
streams.

23

Services

AROS 2 Service is a mechanism for remote procedure calls [36]. It consists of two components:
the Service Server, which receives a request and performs the required computation, and the
Service Client, which sends the request and waits for the response.
The service model is ideal for short-duration operations, with one server potentially serving
multiple clients. Requests and responses are based on messages defined by the ROS IDL.

Actions

ROS 2 Actions are similar to services but are designed for long-duration operations, offering
feedback (via topic interface) during execution and allowing cancelation or preemption of goals
[37].
Actions are divided into two components: the Action Server, which executes the goal and pro-
vides feedback, and the Action Client, which sends the goal request, monitors progress via the
feedback and await the response upon completion of the goal.
As with services, it is preferable to have a single Action Server and multiple Action Clients. The
Goal, Feedback, and Result constructs are defined using ROS IDL.

3.1.2 ROS 2 Architecture

ROS 2’s architecture [32] consists of several key abstraction layers distributed across decou-
pled packages. These layers allow for flexibility in selecting different solutions for essential
functionalities, such as middleware or logging frameworks.
Figure 3.3 shows the ROS 2 Client Library API stack, which consists of various libraries written
in different programming languages. For example, rclcpp is used for C++ and rclpy for Python.
These libraries provide streamlined access to core communication APIs for user applications.
Moreover, they are built on top of the rcl interface, which offers shared functionality across
them and acts as a bridge to the ROS Middleware (RMW) - “rmw” in Figure 3.3 - layer.

ROS MiddleWare (RMW)

ROS 2 introduces the ROS Middleware abstraction layer [38] to support interoperability with
multiple DDS implementations. Since the RMW connects the rcl interface with a specific DDS
vendor, each supported DDS requires a corresponding RMW interface.
This layer converts ROS data objects into DDS-compatible data objects and vice versa.
With this abstraction, users can switch between DDS vendors based on project requirements
without needing to learn the DDS API or modify their existing code.

24

Figure 3.3: ROS 2 Client Library API Stack. Source [32]

25

Supported RMW implementations in ROS 2 Humble include: Eclipse Cyclone DDS, eProsima
Fast DDS, RTI Connext DDS, and GurumNetworks GurumDDS [39].

Data Distribution Service (DDS)

The Data Distribution Service (DDS) is a middleware protocol and standard developed by the
Object Management Group (OMG) for data-centric connectivity, enabling interoperable data
exchange between publishers (data producers) and subscribers (data consumers) in a distributed
system [40]. The primary features of DDS are:

• Quality of Service (QoS) Policies: Controls various aspects of data delivery such as
reliability, durability, and latency.

• Scalability: Supports large-scale systems with thousands of nodes and millions of data
points, ensuring efficient data distribution.

• Interoperability: Guarantees interoperability between different DDS implementations,
allowing seamless integration of components from various vendors.

• Real-time performance: Designed for real-time systems, DDS ensures timely and pre-
dictable data delivery, meeting strict timing requirements.

This layer is agnostic to the system’s architecture, whether it operates within the same process,
across different processes, or on separate machines.

3.2 Nav2

Nav2 [41] is the successor of the ROS Navigation Stack and allows mobile robots to navigate
through complex environments by providing functionalities for perception, planning, control,
localization, and visualization throughout servers. Nav2 also implements costmaps (Section
3.2.1) to represent the environment based on the robot’s perception [42]. Navigation pipeline is
explained in Section 3.2.2.
The input for Nav2 includes the TF tree, which connects the robot to the map’s origin, with
frames defined as in [43], a Behavior Tree (BT) defined in an XML file, sensor data, and a map
if the Static Layer of a costmap is implemented.

3.2.1 Costmaps

A costmap is a way of representing the environment based on the robot’s perception. The cur-
rent implementation in Nav2 uses a 2D grid of cells that can be categorized as unknown, free,
occupied, or inflated.

26

Figure 3.4: Example of costmap and its sublayers

As shown in Figure 3.4, a costmap can be composed of multiple layers, each representing dif-
ferent types of costs. The most common layers are:

• Static Layer: This layer marks the occupied cells in the map provided by theMap Server.

• Obstacle Layer: Uses sensor data (such as LIDAR or depth cameras) to detect obstacles
in the environment.

• Inflation Layer: Inflates the cells next to the those occupied by other layers with expo-
nentially increasing costs.

• External Plugin Layer: An additional layer created by external plugins, such as the
Spatio-Temporal Voxel Layer.

Spatio-Temporal Voxel Layer (STVL)

The Spatio-Temporal Voxel Layer (STVL) [44] will be briefly explained due to its specific
implementation. A voxel represents a value on a regular grid in three-dimensional space. The
”spatial” aspect of the name indicates that the voxel grid represents the environment, while
”temporal” refers to the time decay of voxels, since they disappear after a certain period if
no longer detected. This helps generate more realistic costmaps from sensor data by removing
dynamic obstacles from the costmap if they are no longer perceived. Furthermore, STVL enables
obstacle representation in 3D space, which prevents objects with sufficient clearance from being
marked as obstacles, a limitation of the 2D Obstacle Layer.

27

3.2.2 Nav2 Navigation Pipeline

Nav2’s navigation pipeline, as illustrated in Figure 3.5, integrates multiple servers that collab-
oratively ensure reliable navigation for mobile robots in diverse environments. Each server in
the pipeline operates as a ROS 2 node, typically managed by a common lifecycle manager to
ensure proper initialization, operation, and error handling. The pipeline relies on both static
and dynamic environment representations, enabling path planning, execution, and adaptation
in real time.

At the heart of the system are two costmaps: the global costmap and the local costmap. The
global costmap provides a comprehensive overview of the environment based on preloaded
maps and static obstacles. This map is crucial for the Planner Server, which calculates optimal
paths using algorithms such as A* or Theta* to avoid known obstacles and navigate efficiently
to the target. The local costmap, on the other hand, is updated dynamically with real-time
sensor data, allowing the Controller Server to react to moving obstacles and compute a valid
control effort to follow the global path while ensuring safety in rapidly changing scenarios.
While the local costmap can include information from the preloaded map, this practice is
generally discouraged because avoiding known obstacles should be the responsibility of the
planner. However, in some cases, obstacles that were not previously known can be added to
the global costmap to enable the planner to avoid them during path replanning.

The BT Navigator Server acts as the system’s decision-making core, utilizing a customizable
Behavior Tree (BT) to orchestrate the interactions between the Planner, Controller, and other
servers. It determines the next action based on the robot’s current state, sensor input, and
navigation goals, ensuring adaptability to different tasks.

Additional components enhance the pipeline’s capabilities:

• Behavior Server: Manages task-specific behaviors, such as obstacle recovery and special
maneuvers as docking.

• Smoother Server: Refines planned paths to reduce sharp turns, enhancing robot stability
and motion fluidity.

• Map Server: Handles map storage and retrieval. It also includes a map saver server, which
can save the generated map in response to a service request.

These represent some of the available servers in Nav2. Each server offers high customization,
enabling users to either implement custom plugins tailored to their specific needs or use existing

28

Figure 3.5: Example of Nav 2 Pipeline. Source [42]

plugins from Nav2’s extensive library.
Configuration is handled via YAML files, permitting to set parameters for costmap layers, plan-
ners, controllers, and additional servers, tailoring Nav2 to specific applications.

3.3 MoveIt 2

MoveIt 2 is the ROS 2 robotic manipulator platform that implements motion planning, manip-
ulation, and kinematics [45]. As visible in Figure 3.6, MoveIt 2 is divided into two packages:
moveit_core, which includes planning scenes, planning interfaces, and collision detection plu-
gins, and moveit_ros, which wraps these components within the ROS 2 framework. This
second package extends functionality by offering a complete planning pipeline, the Trajectory
Execution Manager (TEM), and a variety of user-friendly interfaces, including RViz 2 plugins.
In this section, the planning pipeline will be briefly explained (Section 3.3.1), followed by the
move_group node (Section 3.3.2), the trajectory execution (Section 3.3.3), and finally the Plan-
ning Scene Monitor (Section 3.3.4).

29

Figure 3.6: MoveIt 2 pipeline. Source [45]

3.3.1 Motion Planning Pipeline

The motion planning pipeline in MoveIt 2 is performed through the move_group node (Section
3.3.2). This pipeline (Figure 3.7) typically consists of five stages:

• Motion Plan Request: A request that specifies what the motion planner should calculate,
such as moving the arm to a different position or the end-effector to a new pose, is sent
to the move_group node. Collision checking is performed by default on self-collisions
and attached objects. Via the planning pipeline, users can set the planner and add more
kinematic constraints such as: Position constraints, orientation constraints, visibility con-
straints, joint constraints and user-specified constraints.

• Planning Request Adapters: These adapters preprocess the request to adjust the start
state, workspace bounds, or resolve collisions.

• Motion Planner: This stage calls the actual motion planner plugin from moveit_core,

30

such as OMPL [46], Pilz, or CHOMP [47], to generate a feasible trajectory for the robot.

• Path Post-Processing: After the planner generates a kinematic path, this stage adds time
parameterization and enforces velocity and acceleration limits.

• Motion Plan Response: The move_group node generates a desired trajectory based on
the request and the desired maximum velocities and accelerations. The difference be-
tween a trajectory and a path is that the trajectory encapsulates the time information in the
planned path.

Figure 3.7: Motion planning pipeline. Source [45]

Hybrid Planning

MoveIt 2’s default motion planning architecture follows the “Sense-Plan-Act” methodology,
which involves a sequence of tasks: perceiving the environment and the robot state, planning
the motion, and then executing it. This approach is considered safe only in static environments.
In dynamic contexts, however, it is preferable to use “Hybrid Planning” provided by MoveIt
2 to enhance safety. This planning strategy is similar to that of Nav 2, as it employs a global
planner to compute the trajectory and a local planner to avoid dynamic obstacles and follow the
trajectory in real-time.

3.3.2 move_group node

The move_group node is the ROS 2 node used to integrate all the user interfaces available in
MoveIt 2 into a series of ROS services and actions. This node needs three files:

• URDF: The description of the robot.

31

• SRDF: The semantic description of the robot, usually generated with MoveIt Setup As-
sistant.

• MoveIt configuration: Specific MoveIt configurations like joint limits, kinematics, mo-
tion planning, and perception. The configuration file is usually generated by the MoveIt
Setup Assistant.

Figure 3.8: move_group node. Source [45]

This node obtains the current state information (joint states) from the joint_state_publisher
node [24] and a TF listener node to locate the robot in the map.

3.3.3 Trajectory Execution

move_group node is also responsible of the trajectory execution through the Trajectory Execu-
tion Manager (TEM). It interfaces with the robot controllers using the FollowJointTrajectory-
Action action client interface, which points to a ROS 2 controller action server integrated on the
robot side.

32

3.3.4 Planning Scene Monitor

Planning SceneMonitor is a ROS 2 component that allow to read andwrite the state of aPlanning
Scene in a thread-safe manner, ensuring that motion planning is always performed in the most
accurate representation of the robot’s surroundings.
The Planning Scene is an object that represents the environment around the robot and the state
of the robot itself, including attached objects.

Figure 3.9: Planning Scene Monitor architecture. Source [45]

The Planning Scene Monitor gathers information from other components of MoveIt 2:

• World GeometryMonitor: Builds the world geometry using data from sensors on the robot
and user inputs. It uses an occupancy map monitor to create a 3D representation of the
environment, typically using OctoMap [48].

• State Monitor: Tracks the state of the robot’s joints and attached objects in the envi-
ronment to avoid collisions. The joint states are updated based on the data from the
joint_state_publisher.

• Scene Monitor: Listens for updates to the external planning scene and merges them with
the robot’s internal state, ensuring a coherent environment model.

33

3.4 Fiducial markers for pose estimation

To adhere to the goals of this thesis, the most cost-effective approach has been selected to
localize both human and LoCoBot in the environment. Despite the decreasing cost of LIDAR,
only pre-installed sensors on the LoCoBot will be used, leading to the choice of using computer
vision techniques for visual odometry using fiducial markers. This technology requires only
an RGB camera to detect markers, and the analysis can be performed even on a relatively
low-power computer.

Although LoCoBot includes an onboard camera, external cameras have been chosen to
track both the LoCoBot and the human it follows. This choice is driven by two important fac-
tors: first, relying on the onboard camera would require a large number of markers throughout
the environment, and sensor fusion would become essential for estimating the robot’s pose
whenever markers are not visible. Second, if an obstacle temporarily blocks the robot’s view,
it could lose sight of the human, disrupting its tracking capability.

Using a network of external cameras addresses both of these issues. With external cam-
eras, only two markers are necessary, one for the human and one for the LoCoBot. In addition,
complete coverage of the environment can be achieved. This latter hypothesis is assumed in
this thesis, considering that both markers are always visible throughout the strategic positioning
of the cameras.
Furthermore, the external cameras can be connected to external computers to estimate the pose,
while the one on the LoCoBot focuses of navigation and interaction tasks.
Moreover, the same hypothesis allows to not consider the odometry of the wheels and the
consequent sensor fusion needed to track a robot.

In this section, fiducial markers’ technology will be explained (Section 3.4.1), including its
fundamental concepts and the chosen coordinate systems will be described (Section 3.4.2). The
ROS 2 package used for detecting these markers will be discussed in Section 3.4.3. Finally,
the resulting TF tree that is published to link each detected marker to the map origin will be
presented (Section 3.4.4), providing a comprehensive overview of how these markers contribute
to the overall navigation and localization framework.

3.4.1 AprilTag 3

A fiducial marker is a recognizable pattern in an image that enables the calculation of the
relative pose between the camera capturing the image and the marker itself. Commonly used

34

Figure 3.10: An example of AprilTag 3 marker of the tag36_11 family

in augmented reality, fiducial markers vary in design but generally consist of an image with a
predefined size divided into pixels, each arrangement encoding a unique identifier.
The known dimensions of these markers enable precise pose estimation relative to the camera.
For mapping and localization, setting either the camera or a marker as a static reference point
for the map origin allows the position of other markers to be dynamically calculated within this
reference.

A previous study [49] comparing various fiducial markers demonstrated that AprilTag 3
[50] performed better than other popular markers, such as ArUco [51] and Stag [52]. Con-
sequently, the AprilTag 3 family (Figure 3.10) was selected to localize both the LoCoBot
and humans in this project. The chosen tag family, tag36_11, is widely implemented and
compatible with ArUco detectors, such as OpenCV.

3.4.2 AprilTag 3 Coordinate System

The pose of the apriltag is determined by assigning the coordinate system with the origin at the
camera center. The z-axis points from the camera center out the camera lens. The x-axis is to
the right in the image taken by the camera, and y-axis is down. The tag’s coordinate frame is
centered at the center of the tag, with x-axis to the right, y-axis down, and z-axis into the tag.

3.4.3 AprilTag ROS

AprilTag ROS [53] is a ROS 2 wrapper for the AprilTag detector. This package includes a node
that detects markers in a video stream and publishes the transforms from the camera frame to
each detected marker’s frame on the tf topic. In addition, a list of detected marker poses is
published in a separate topic.
The configuration file allows the user to specify which tag IDs to detect and assign each a unique
frame name. Other detector parameters, such as the tag family, can also be set in this file.
A key parameter, z_up, changes the orientation of the detected frame. If set to false, the frame

35

(a) Original frame orientation
(b) Frame orientation with
z_up = false

(c) Frame orientation with
z_up = true

Figure 3.11: AprilTag coordinate systems

matches the orientation in Figure 3.11b; otherwise, it matches the orientation in Figure 3.11c.
The configuration implemented in this thesis is the one in Figure 3.11b. This configuration was
chosen because the navigation map’s z-axis points upward from the ground. As a result, the
z-axis direction of a marker on the LoCoBot is aligned with the map.

3.4.4 TF Tree

By publishing a static TF that links the LoCoBot’s fiducial marker to its base frame (i.e., locobot/
base_footprint), the TF tree generated by the AprilTag node integrates with the one published
by the joint_state_publisher and the robot_state_publisher of the LoCoBot.
As the base_footprint frame is the ground-projected center of theKobuki base, by positioning the
marker over the LoCoBot, only a z-axis translation between the ground and marker is required.
A rotation on the z-axis may also be needed, depending on the position of the marker, as the
LoCoBot x-axis should be facing towards the direction of movement, consistent with navigation
standards.
In Figure 3.12, the TF tree generated by the AprilTag node and cameras is shown. The locobot/
base_footprint node has an attached TF subtree generated by the LoCoBot’s state publishers,
not inserted in this image.

3.5 Camera Network

To track the positions of the human and the LoCoBot within the environment, a network of Azure
Kinect DK cameras was installed. The Kinect comes with a ROS wrapper [54] responsible for
configuring the camera, publishing TFs for camera frames, and streaming images and point
clouds from the depth sensor. At the time of writing, Azure Kinect DK is discontinued, and the
wrapper supports only the Humble release of ROS 2.

36

Figure 3.12: TF Tree of the camera and markers for the human and the LoCoBot

37

As point clouds are unnecessary for this application, each camera only publishes RGB images.
In this thesis, a custom package [55] was utilized to address various issues found in the original
wrapper. The section is structured as follows: first, the camera pose calibration method used is
described in (Section 3.5.1). Next, the issue of image rectification is highlighted (Section 3.5.2),
along with the challenge of network bandwidth usage when transmitting images (Section 3.5.3).

3.5.1 Camera Pose Calibration

A separate package [56] was used to determine the position of each camera on the map. This
package is invoked by several launch files:

• k01calib.launch.py: Launches the Azure Kinect node to publish the RGB and depth
streams for the camera named “K01”, applies image rectification, and starts the AprilTag
detector.

• k02calib.launch.py: Similar to k01calib.launch.py but for the camera “K02”.

• calib_master.launch.py: Starts a node to perform multi-camera calibration.

The calibration method involves placing several AprilTag markers on the ground, with
at least one visible to multiple cameras. By triggering the start_calibration and
stop_calibration services, TFs from each camera to each visible marker are recorded to
calculate the map frame’s location. The marker used as center of the map can be specified in
the parameters file, along with the map frame name. To improve accuracy during calibration,
several factors were taken into account:

• Calibration Time: The calibration duration was set to 10 seconds to ensure sufficient data
for accurate calibration.

• Standard Deviation on the TF: If the pose of a marker is detected with a standard deviation
greater than the selected threshold, that marker is excluded from the calibration process.

• Mean Position of the Camera: The pose of the camera is calculated as the mean of the
poses estimated by each marker.

The same calibration can be performed also with only one camera.

After calibration, a static TF from one camera to the map frame is published, and all cameras
form a daisy-chained TF tree anchored at the first camera.
This setup provides a robust framework in which one camera can track the LoCoBot while
another observes the human, or both cameras may observe the same subjects.

38

The speed of this process allows for daily recalibration in laboratory environments, while in
real scenarios, cameras would be mounted permanently.

Efficiency of this technique

When two cameras detect the same marker and publish TFs for the same child frame, the re-
sulting TF in the tree is defined by the most recently published one. This can lead to significant
flickering in the estimated marker position, introducing errors that go beyond detection inaccu-
racies.
These discrepancies arise from imperfect calibration of the camera positions, causing each cam-
era to estimate the marker position slightly differently.
To quantify this error, an empirical approach was adopted. Two cameras were placed in different
locations, ensuring both could detect the LoCoBot marker within their field of view. Transform
data from the map frame to the locobot/base_footprint frame was recorded every 200 ms over
5 seconds.

Figure 3.13: Estimated position over 5 seconds with two Kinect cameras

As illustrated in Figure 3.13, the data forms two distinct clusters, each representing the pose
estimations of the marker in the map from one camera. While each camera provides consistent

39

estimates within its cluster, clusters positioning reveals the impact of calibration imperfections.
The analysis shows that the positional difference between the clusters is less than 5 cm, which
is deemed acceptable for the purposes of this work.

3.5.2 Image Rectification

Each camera sensor captures an image that is not planar, as the image is distorted by the lens.
Thus, each camera publishes a camera_info topic with parameters needed for image rectifica-
tion. To rectify the image, the Image_proc [57] package was used.

3.5.3 Bandwidth Usage

Due to the nature of the DDS protocol, all data in ROS 2 are broadcasted across the network.
Using multiple cameras with Full HD video streaming at 30 fps requires considerable network
bandwidth, since Kinect camera streaming at this resolution and frame rate can demand close
to 1 Gbit/s. With multiple cameras, this would quickly overwhelm the network bandwidth and
cause inefficient data transfer between the LoCoBot and the remote computer responsible for
calculating the robot’s position on the map.
To mitigate this issue, the nodes responsible for Apriltag pose estimation were loaded in the
same process as the image rectification node (Section 3.1.1).

3.6 Conclusions

The explanation of ROS 2’s framework, covering Topics, Services, and Actions, offered a clear
understanding of node interactions within the ROS graph. Furthermore, the in-depth look at
Nav2’s navigation pipeline and MoveIt 2’s planning interface established the basis for compre-
hending the customization and decisions made in the framework’s development.
Moreover, this chapter emphasized a computer vision technique using fiducial markers for es-
timating object positions in space, a core element of the framework. Essential features were
detailed to ensure proper camera position calibration and to preserve network bandwidth.
In sum, this chapter set the stage for further framework development and adaptation, confirming
that all critical concepts and methods are comprehended and validated.

40

Chapter 4

Human-guided AMM framework

Figure 4.1 presents the components of the proposed framework discussed in this chapter.
Initially, this chapter provides an introduction to the gesture recognition module (Section 4.1),
a core component of the framework that enables human control of the robot. Human-robot
interaction can be achieved through various communication methods, with modern approaches
favoring user-friendly techniques such as speech and gesture recognition over traditional
interfaces like keyboards.
Speech recognition typically employs large language models (LLMs) to interpret spoken
commands, whereas gesture recognition uses image-based machine learning to identify hand
gestures. While speech recognition offers greater flexibility for users, gesture recognition was
chosen for this framework due to its lower computational requirements, the availability of an
onboard camera, and the absence of a microphone.

Besides gesture recognition, this chapter delves into the development process of the state
machine, emphasizing its role as the control node for the LoCoBot. As outlined in Section
4.2, the state machine is not merely a decision-making mechanism but also directly handles
control tasks. By integrating the control logic within the state machine, human command inputs
are efficiently processed and smoothly transformed into executable tasks for the navigation
and interaction modules. A comprehensive description of the state machine’s architecture,
functionality, and individual states is presented in Section 4.3.
In addition, the customizations made to Nav2 and MoveIt 2 will be discussed, as these modules
are directly linked to the state machine. The integration of Nav2 and MoveIt 2 is elaborated in
Sections 4.4 and 4.5, respectively.
Finally, Section 4.6 presents a simulation environment designed to evaluate the functionality of
the state machine and the integration of all framework modules.

41

Figure 4.1: Overview of the framework components discussed in Chapter 4

42

The proposed framework can be found at: https://github.com/Alessio-Lovato-Unipd/
locobot_ws/tree/main.

4.1 Gesture Recognition

The MediaPipe framework [58] was selected as gesture recognition model due to its real-time
performance and low computational demands. This framework processes frames (or video
streams) using a Convolutional Neural Network (CNN), extracting hand skeletons to recog-
nize gestures.
The gesture recognition process was implemented as a ROS 2 node. The node subscribes to the
onboard RealSense™ camera’s image topic and interacts with the state machine via the Control-
States service provided by the simulation_interfaces package.
This node maps recognized gestures to specific state machine commands as outlined in Table
4.1.

Gesture Command
Thumb_Up NAVIGATION

Thumb_Down INTERACTION
Open_Palm IDLE STATE
Pointing_Up OPEN_GRIPPER
Closed_Fist CLOSE_GRIPPER
ILoveYou ABORT

Table 4.1: Gesture to command mapping

The available parameters for the gesture recognition node are summarized in Table 4.2.

Parameter Default Value Description
camera_topic /camera/image_raw Topic for camera images.
service_name – Name of the service to interact with.
minimum_score 0.6 Minimum confidence score for valid gestures.

Table 4.2: Gesture recognition node parameters

4.1.1 Usability improvement

To improve usability, each image frame from the camera was flipped horizontally before be-
ing processed by the model. This adjustment allowed gestures to be performed more naturally
without requiring users to kneel or adjust their position. However, this approach introduced
some ambiguities, such as reversing the Thumb_Up and Thumb_Down gestures. Other gestures
needed to be performed while pointing towards the ground.

43

https://github.com/Alessio-Lovato-Unipd/locobot_ws/tree/main
https://github.com/Alessio-Lovato-Unipd/locobot_ws/tree/main

4.2 LoCoBot Control Node

To simplify interactions with the underlying implementations of Nav 2 and MoveIt 2, all Lo-
CoBot controls are grouped within a ROS 2 node named LocobotControl. This node is devel-
oped as a C++ class inheriting from the rclcpp::Node class.
The LocobotControl node encapsulates functions for navigation and interaction control while
also providing real-time feedback on execution status. Two auxiliary classes, ArmStatus and
NavigationStatus, are integrated within this node to monitor the status of each subsystem.
Table 4.3 lists the configurable parameters for this node.

Parameter Default value Description
navigation_server navigate_to_pose Name of the navigation server

arm_interface interbotix_arm Name of the arm interface in the SRDF
gripper_interface interbotix_gripper Name of the gripper interface in the SRDF

timeout 2.0 Timeout [s] for navigation server availability

Table 4.3: LocobotControl node parameters

4.2.1 ArmStatus Class

As its name implies, this class monitors the arm’s status. It stores the last known poses of both
the arm and the gripper, as well as flags for error and motion states.
The updateStatus() function is used to refresh the arm’s status, and other member functions
provide access to its pose, error flags, and motion state.
Additionally, predefined arm and gripper poses, specified in the SRDF, are stored in enumeration
classes (Table 4.4). These classes also establish a pose that represents an indefinite state.

Enumeration Class ArmPose GripperState

Pose

HOME HOME
SLEEP RELEASED

UPRIGHT GRASPING
UNKNOWN UNKNOWN

Table 4.4: Enumeration classes storing default poses of the robotic arm

4.2.2 NavigationStatus Class

The NavigationStatus class monitors the outcomes of navigation commands. It tracks the suc-
cess, failure, or in-progress status of navigation and gathers feedback from the navigation server,
such as estimated time of arrival and remaining distance. These details are accessible via mem-
ber functions.

44

4.2.3 LocobotControl Class

This class implements the actual ROS 2 node. The constructor retrieves parameters, initializes
the client for the navigation server, and creates an ArmStatus instance to store the arm’s initial
pose. A NavigationStatus instance is also initialized.
The destructor ensures that any ongoing motion is stopped before destroying the node.
Wrapper functions are provided to expose internal status information. Furthermore, the follow-
ing public methods are implemented to control the LoCoBot:

• void MoveBaseTo(const geometry_msgs::msg::PoseStamped &pose,
std::optional<double> timeout = std::nullopt)

– Return Value: void

– Parameters:

pose: Target pose relative to the map frame.

timeout: Timeout for server availability (default is node parameter value).

– Description: Sends a goal to the navigation stack to move the robot to the specified
pose.

• bool SetArmPose(const ArmPose pose)

– Return Value: bool

– Parameters:

pose: Target arm pose.

– Description: Moves the arm to a predefined pose.

• bool SetGripper(const GripperState state)

– Return Value: bool

– Parameters:

state: Target gripper state.

– Description: Moves the gripper to the specified state.

• void StopArm()

– Return Value: void

– Description: Stops ongoing arm or gripper motions.

45

• bool cancelNavigationGoal()

– Return Value: bool

– Description: Cancels all goals sent to the navigation server.

4.3 State Machine Node

To achieve high-level control over the LoCoBot, a state machine was used, with transitions
between states triggered by the gesture recognition node. The state machine is implemented
using a ROS 2 node that inherits from the LocobotControl class, making all the functions to
control the LoCoBot available.
In addition, service servers and topic publishers are created to enable interaction with other
nodes. The parameters configurable for the node are listed in Table 4.5.

Parameter Default value Description
robot_tag_frame locobot_tag Frame of the robot’s tag

map_frame map Frame of the map (map origin)
human_tag_frame human_tag Frame of the human’s tag

follow_human true Specifies whether the robot follows the human
goal_update_topic goal_update Topic to update the navigation goal

state_topic machine_state Topic where the current state is published
sleep_time 100 Sleep duration [ms] between state machine cycles

tf_tolerance 2.0 Time [s] to tolerate TF missing before error
debug false Publish internal state

Table 4.5: State Machine node parameters

The state machine defines two types of enumerated states: Internal states and External states.
Internal states represent the machine’s operation and transition logic, while External states pro-
vide high-level feedback similar to a ROS 2 action interface. These states are summarized in
Table 4.6.
The constructor initializes the TF listener buffer and creates the LastError,ClearError, andCon-
trolStates service servers. All these services are available in the simulation_interfaces
package. Additionally, publishers are set up to broadcast the current state and update nav-
igation goals. Finally, a thread is launched to execute the state machine’s loop function,
SpinMachine(), which ensures continuous operation. This thread is joined during node de-
struction to ensure proper resource cleanup.

46

Type State Description

Internal

IDLE Waits for a new command
SECURE_ARM Ensures the arm is in safe position for navigation
WAIT_ARM_SECURING Waits for the arm to secure
SEND_NAV_GOAL Sends the navigation goal to the navigation stack
WAIT_NAVIGATION Waits for the robot to reach the navigation goal
WAIT_ARM_EXTENDING Waits for the arm to extend to the target position
ARM_EXTENDED Arm extended, allowing gripper usage
WAIT_GRIPPER Waits for the gripper to complete its movement
WAIT_ARM_RETRACTING Waits for the arm to retract
ERROR Indicates an error state
ABORT Aborts the current task
STOPPING Stops the state machine

External

SUCCESS Task completed successfully
FAILURE Task failed to complete
RUNNING State machine is currently active
INITIALIZED State machine has been initialized

Table 4.6: State Machine states and descriptions

4.3.1 LastError Service

This service retrieves the last error encountered by the state machine and its current state. If no
errors are present, the error message will be empty.

4.3.2 ClearError Service

The ClearError service invokes the clearError() function. It returns false if called when the
machine is not in the ERROR or ABORT state. Otherwise, it resets user requests, clears errors in
the NavigationStatus and ArmStatus classes, sets the machine to the IDLE state, and returns true.

4.3.3 ControlStates Service

This service interfaces with the gesture recognition node. Based on the received request mapped
by the Commands (Table 4.1), the state machine modifies internal variables that govern state
transitions.
Direct state changes via this service are avoided to maintain encapsulation. Instead, auxiliary
variables such as requestedInteraction_, requestedNavigation_, requestedAbort_
and requestedGripperMovement_ are used. These requests are processed in the state ma-
chine loop, and mutexes ensure thread safety.
Navigation and interaction requests are accepted only when the machine is in the IDLE state,

47

while gripper commands are valid only in the ARM_EXTENDED state. These constraints prevent
unintended transitions during other states.

4.3.4 SpinMachine() Function

This function operates the state machine in an infinite loop and invokes the nextState() func-
tion to update the machine’s state. The loop terminates upon node destruction or when the ROS
2 context is shutdown. The current external state is published on every cycle, and the internal
state is optionally logged if the debug parameter is enabled.

4.3.5 Internal States

Internal states represent the robot’s functioning and are grouped into three categories: Generic,
Navigation Module, and Interaction Module. Transitions between these states are depicted in
Figure 4.2. A transition occurs automatically in the absence of any attached conditions.
The machine starts in ERROR state for safety, requiring user intervention to proceed. From any
state, the machine can transition to ABORT upon user request or to ERROR in case of critical
failures, such as missing TF of human or LoCoBot.
Each state executes specific tasks to manage robot operations, as described in the following
sections:

Generic

Generic group covers states that, while not specialized, are essential for operation.

• IDLE: In this state, the LoCoBot waits for commands to start navigation or interaction. If
navigation is triggered, the next state is SECURE_ARM. Otherwise, the arm is commanded
to go to the Home position, and the next state is WAIT_ARM_EXTENDING.

• STOPPING: This state sends commands to stop navigation and arm movements. The
next state is ERROR.

• ERROR: This state indicates that an error occurred. It does not perform any action. To
exit this state, the ClearError service must be used, which clears all errors and returns the
state machine to the IDLE state.

• ABORT: This state is triggered by a request from the human. It stops arm movement and
navigation, clears all errors, and returns the state machine to the IDLE state.

48

Figure 4.2: Internal States diagram

49

Navigation Module

The Navigation Module contains all the states dedicated to executing navigation tasks.

• SECURE_ARM: This state send the arm in a safe position for navigation (Sleep position).
The next state is WAIT_ARM_SECURING.

• WAIT_ARM_SECURING: If the arm is moving, this state waits for its completion. If
an error occurs, the next state is STOPPING. Otherwise, the next state is SEND_NAV_GOAL.

• SEND_NAV_GOAL: In this state, the pose of the human relative to the map frame
is obtained and sent as a goal to the navigation stack. The state then transitions to
WAIT_NAVIGATION.

• WAIT_NAVIGATION: If the follow_human parameter is set to true, the position of the
navigation goal is updated every time this state is triggered.
This state loops until navigation is stopped either by the human or due to an error. In the
first case, the next state is IDLE. In the latter case, the next state is STOPPING. If navigation
ends without either of those events, the next state returns to IDLE if follow_human is
false, otherwise SEND_NAV_GOAL.

Interaction Module

The Interaction Module includes states related to manipulation tasks.

• WAIT_ARM_EXTENDING: This state waits for the arm to reach theHome position. If
an error occurs, the next state is STOPPING. Otherwise, it transitions to ARM_EXTENDED.

• ARM_EXTENDED: In this state, commands to move the gripper can be sent. If a com-
mand is issued, the next state is WAIT_GRIPPER. It is also possible to return to the IDLE
state, in which case the next state is WAIT_ARM_RETRACTING.

• WAIT_GRIPPER: This state waits for the gripper to complete its movement. If the
movement succeeds, the next state is ARM_EXTENDED. If the movement fails, the next
state is STOPPING.

• WAIT_ARM_RETRACTING: This state waits for the arm to reach the Sleep position.
Once reached, the next state is IDLE. If an error occurs, the next state is STOPPING.

50

4.3.6 External States

External states provide feedback about the machine’s overall progress. The default state
at startup is INITIALIZED. When internal states SECURE_ARM or WAIT_ARM_EXTENDING are
reached, the external state transitions to RUNNING. Errors trigger the FAILURE state, and upon
clear request, the state resets to INITIALIZED. Lastly, the external state SUCCESS is set when
the destructor of the state machine is triggered.

Figure 4.3: External states diagram

4.4 Nav2 configuration

The navigation stack tuning was the second most significant task in this thesis due to the vast
number of customizable plugins offered by Nav2. Each “server” in the navigation system is
highly configurable and can be selectively implemented. Since achieving perfect navigation
was not within the scope of this thesis, the implementation used only standard plugins without
custom development. Moreover, only the essential servers were utilized and tuned for the spe-
cific application. The selected servers were theMap Server, Behavior Server, Controller Server,
Planner Server, BT Navigator, and Velocity Smoother. This section details the configurations
and choices made for these servers.
A common parameter across all nodes was use_sim_time, which was set to true during simu-
lations and false on the physical robot.

4.4.1 Map Server

The primary parameter for this node was the file path to the map to be loaded. The macro
$(find-pkg-share <package-name>) was used to locate files within specific packages, pro-
viding flexibility and portability.

51

4.4.2 Map Saver

The map saver server was not implemented, as the environment was considered static with few
static and dynamic obstacles that did not require mapping. Instead, navigation maps were gen-
erated by converting the simulation world files (Section 4.6.1) into the Nav2 map format using
[59].

4.4.3 Behavior Server

This server was configured as recommended in [42], with the local_frame and
robot_base_frame parameters set to locobot/base_footprint.
The server loaded the following plugins:

• spin

• backup

• drive_on_heading

• wait

• assisted_teleop

This configuration ensured compatibility with the default BT Navigator.

4.4.4 Controller Server

The primary goal of the controller server was obstacle avoidance and path-following. Two
controllers were evaluated:

1. Regulated Pure Pursuit (RPP): A local trajectory planner based on the Pure Pursuit algo-
rithm, enhanced with collision detection and rotation-to-heading capabilities [60]. This
latter feature is particularly useful, since LoCoBot can only detect obstacles in front of
itself. Parameters were tuned for the application.

2. Model Predictive Path Integral (MPPI): A model-based controller that dynamically de-
viates from the global path to avoid obstacles, returning to the planned trajectory when
clear. The Prefer Forward Critic cost was increased to prioritize forward motion.

The transform_tolerance parameter configuration for both controllers was set to 0.2 in sim-
ulation, 0.5 with one external camera, and 0.8 with two external cameras. This was due to time
difference present in each TF timestamp published by multiple devices.

52

Local Costmap

Both controllers shared the same local costmap, which included:

• A layer based on STVL, loading data from the onboard RealSense™ point cloud, with
voxel_decay of 1.5 seconds, voxel_size of 5 millimeters and obstacle_range 1.5
meters.

• An inflation layer for maintaining safe distances.

4.4.5 BT Navigator

For interoperability, the default navigators, navigate_to_pose and navigate_through_poses,
were retained. Parameters changes included:

• robot_base_frame: locobot/base_footprint

• global_frame: map

• transform_tolerance: Same as the parameter in Controller server

A custom behavior tree for the navigate_to_pose navigator was implemented for both controllers
using BehaviorTree.CPP v4.6 and Groot2 [61].

Behavior Tree for Regulated Pure Pursuit (RPP)

The behavior tree developed for the RPP controller (Appendix B.1) included several features:

• A ComputePath sequence computes a path to the human_tag pose, truncate it to avoid
collisions with the human target, and validate it. Failure at any step aborted the sequence.

• A FollowPath fallback sequence follows the computed path using the specified controller.
If path-following fails, a wait action allows dynamic obstacles to clear.

• After two failed attempts to continue navigation, a recovery routine is invoked: the robot
backs up 10 cm at 0.1 m/s to exit the collision area and recalculates the path. Although the
robot operates without collision avoidance in this brief segment, it is assumed that there
are no obstacles behind the LoCoBot since it passed that way less than 30 seconds earlier.

• The Pipeline sequence - implemented by Nav2 - allowed re-ticking actions to update the
path every second.

• Inverter and ForceFailure nodes ensure continuous tree execution until the goal was
reached or an abort was triggered.

53

Behavior Tree for Model Predictive Path Integral (MPPI)

Since the MPPI controller adapts paths in real time to avoid obstacles, recovery actions were
unnecessary, resulting in a simpler tree (Appendix B.2).

4.4.6 Planner Server

Based on the path planner survey in [62], the Smac Planner 2D [63] was chosen: a cost-aware
A* implementation optimized for circular footprint robots. Furthermore, this planner allows to
plan paths in unknown areas of the map, taking advantage of the collision avoidance performed
by the controllers.

Global Costmap

The global costmap included:

• STVL and inflation layers, similar to the local costmap. In this case, the voxel_decay
time was adjusted based on the controller: higher for RPP, equal to the local costmap for
MPPI.

• Static layer, which integrates known obstacles from theMap Server.

4.4.7 Velocity Smoother Server

The velocity smoother was tuned to achieve the desired maximum velocities and accelerations
for the LoCoBot.

4.5 MoveIt 2 Configuration

The Interbotix_xslocobot_moveit package provides the essential configuration files, along
with the URDF and SRDF necessary for the control of the WidowX-200 arm, minimizing the
need for extensive custom adjustments.
Custom named poses for the arm and gripper were already added to the SRDF, allowing the
move_group node to recognize predefined positions.
An external URDF has been integrated to simulate the Apriltag marker above the LoCoBot.

4.5.1 Loaded Components

The implemented motion planner is OMPL, configured with the following planning request
adapters:

54

• Add time-optimal parameterization.

• Fix workspace bounds.

• Fix start state bounds.

• Fix start state collision.

• Fix start state path constraints.

The configuration also includes aPlanning SceneMonitor, which primarilymonitors joint states.
Environmental changes, such as grasped objects or potential workspace obstacles, are not dy-
namically updated. This approach assumes a clutter-free workspace since the LoCoBot operates
under human supervision, leaving safety evaluation to the user.

4.5.2 Grasping Position

Object grasping can be addressed in three ways:

1. Assuming fixed object dimensions for consistent grasping.

2. Using computer vision to adapt to variable object shapes.

3. Employing soft grippers to reduce the need for precise grasp positioning.

Given the fixed arm structure of LoCoBot, the third option is not feasible. Implementing vision-
based grasping would require additional computational resources, diverging from this thesis’s
low-cost focus. Consequently, a consistent object size is assumed, enabling a fixed grasping
position without requiring a collision model. Moreover, in this setup, objects are handed to the
LoCoBot by a human rather than being picked autonomously.

4.6 Simulation Environment: Gazebo Classic Simulator

The simulation environment for testing the behavior of the state machine relies on Gazebo
Classic Simulator [29], a widely used robotics simulation tool with an extensive library of
plugins and ROS 2 compatibility.
The simulation model is configured using URDF files, which define the robot’s links, joints, and
kinematics. Again, these file were provided by the Interbotix_xslocobot_descriptions
package.

55

Gazebo also supports Actors, which simulate human-like entities or mobile objects, critical for
testing robot navigation in dynamic environments. Additionally, Gazebo’s plugins enable com-
munication with ROS 2 topics and services. For example, the gazebo_ros2_control plugin
integrates with the ros2_control framework (Appendix A), allowing execution of differential
drive or manipulator controllers.

4.6.1 Simulated world file

In Gazebo, simulation environments are configured using world files in SDF for-
mat, which define parameters, models, and spawn positions. For this project, the
Interbotix_xslocobot_sim package launches a default world featuring the LoCoBot and
a model of the Trossen Robotics office. To properly simulate the testing environment available
in the university laboratory, several specific world files were developed:

• big_arena: Represents the maximum navigable space for the LoCoBot in the testing area.

• small_arena: A reduced version of big_arena.

• static_obstacle: Includes big_arena model in a shifted position and a static obstacle.

• dynamic_obstacle: Includes big_arena model with an actor simulating a moving obsta-
cle.

The environment can be switched by setting the world_filepath parameter in the launch file
of the Interbotix_xslocobot_sim package. Figure 4.4 shows the static_obstacle world file.
The other world files follow a similar configuration, differing only in dimensions or obstacle
dynamics.

Figure 4.4: Example of Gazebo simulation: the static_obstacle world

56

4.6.2 Framework validation on simulated environment

To validate the framework in simulation, a RealSense™ camera was connected to a laptop, and
commands were sent to the simulated model of the LoCoBot. The robot was able to navigate
to a simulated human position, both static and dynamic. Additionally, the arm and gripper
movements performed correctly. All tests met expectations, validating the functionality of the
framework in the simulated environment.

4.7 Conclusions

This chapter provides a comprehensive overview of the framework, emphasizing the control
functions for the LoCoBot and the logic behind the state machine. The customization of Nav2
focused on incorporating human-following capabilities and enhancing obstacle avoidance by
leveraging the onboard depth camera. This should ensure reliable navigation even in dynamic
environments with unmapped obstacles.
The validation in the simulation environment has shown promising results, providing a solid
foundation for the tests with the physical robot, which are discussed in the next chapter.

57

58

Chapter 5

Experimental Results

Evaluating the capabilities demonstrated in the previous chapter in a real-world context is
essential to determine if the implementation achieves the defined objectives even with the
physical robot. The aim of this chapter is to assess the performance of the LoCoBot’s state
machine and verify whether the implementation meets the required specifications.
Before performing a general test to evaluate the overall completeness of the proposed frame-
work, specialized tests must be conducted to validate each individual module. Of particular
focus are the interaction module, which includes gesture recognition, and the navigation system.
Camera calibration and pose estimation performance were previously assessed in Section 3.5.

Navigation tests, inspired by the standards outlined in the normative ISO 18646-2 [2],
are presented in Section 5.1, while the interaction and gesture recognition tests (Section 5.2) are
specifically tailored to the application. Finally, a general test to validate the functioning of the
entire framework is conducted in Section 5.3.

5.1 Navigation tests

Autonomous navigation involves verifying several key aspects: obstacle detection, path plan-
ning, and obstacle avoidance in the presence of both static and dynamic objects.
Since all of those features were implemented using the Nav2 stack — whose capabilities are
well-documented — it is assumed that, with the appropriate parameters defined in the previ-
ous chapter, everything performs as expected. The success of the subsequent tests will further
validate this assertion.

59

5.1.1 Obstacle detection

The obstacle detection test aims to determine the area around the LoCoBot where obstacles can
be detected.
According to the normative [2], the test involves measuring the accuracy of obstacle detection
at various positions around the robot, both at the minimum and maximum detection ranges
specified by sensor manufacturers. Since this thesis employs only a depth camera for environ-
ment perception, a modified version of the test was conducted.

Y1 [mm] X1 [mm] X2 [mm] α [deg]
500 600 1500 80

Table 5.1: Obstacle detection distances

Figure 5.1: Obstacle detection coordinates

The test was conducted in a controlled, obstacle-free environment with the robot stationary.
Objects of varying sizes were placed at different positions within the field of view of the depth
camera, which is limited to the frontal area of the LoCoBot. The minimum and maximum
detectable distances were measured from the robot’s center.
The results, validated with a 1 m tall obstacle, are presented in Table 5.1.

The coordinate (X1, Y1), visible in Figure 5.2 and relative to the LoCoBot’s center, represent an
external point of the camera’s horizontal field of view, that extends up to the camera’s sensor.
The maximum detection distance Y2 was software-limited to 1.5 m from the camera frame.
The minimum distance at which a 15 cm tall frontal obstacle could be detected was 70 cm, due
to the angle of the vertical field of view.

60

Figure 5.2: Test paths proposed by normative ISO 18646-2. Source [2]

Furthermore, to prevent the floor from being misidentified as an obstacle, a minimum obstacle
height threshold of 8 cm was applied.
Nevertheless, challenges persist, particularly with inaccuracies in the robot’s pose estimation.
These inaccuracies, often stemming from image distortion during pose estimation, can lead to a
misalignment between the robot’s perceived point cloud and the real-world environment. Such
discrepancies may result in portions of the floor being erroneously classified as obstacles.

5.1.2 Obstacle avoidance

This test evaluates whether the robot can successfully navigate from point to point in an
environment with obstacles. Due to space constraints, the path length was set to 3,15 meters,
instead of the 4,5 meters specified by [2]. All other dimensions were scaled accordingly.

Figure 5.2 illustrates the normative setup. A similar configuration was implemented, but to
establish a baseline for comparison, a “Behavior 0” test (navigation without obstacles) was in-
troduced, resulting in:

• Behavior 0: Linear path without obstacle

• Behavior 1: Linear path with static obstacle

• Behavior 2: Linear path with dynamic traversal obstacle

• Behavior 3: Linear path with dynamic obstacle

61

• Behavior 4: Linear path with dynamic frontal obstacle

Figure 5.3: Testing area at the laboratory of the university

The test was conducted in the testing area at the laboratory of the university, visible in
Figure 5.3. Manual repositioning of the robot was performed before each run but, to improve
repeatability, the goal position was set programmatically via software to the same spot. Each
behavior was executed five times to evaluate repeatability and similarities among runs while
the LoCoBot’s pose was tracked using a single camera, saving its position every 200 ms.
Tests were conducted using both the RPP and MPPI controllers to compare their performance.

In Figure 5.4, the comparison highlights visible differences in the paths taken with and without
obstacles.
Especially with RPP, depending on obstacle distance and position, the robot stops and waits for
the dynamic obstacle to clear the area, following the behavior implemented in Section 4.4.4.
This feature, more perceptible in Behavior 2, is not visible from Figure 5.5, so it has been
explicitly shown in Appendix C.

This test confirms that both controllers can avoid static and dynamic obstacles, each using
distinct strategies. Firstly, as evident from Figure 5.4 and Figure 5.5, the MPPI controller
generates a smoother path. Moreover, the MPPI controller responds instantly to obstacles,
dynamically replanning the robot’s path to avoid them. While this approach can occasionally

62

(a) Behavior 0 - RPP (b) Behavior 0 - MPPI

(c) Behavior 1 - RPP (d) Behavior 1 - MPPI

Figure 5.4: No obstacle and static obstacle tests

63

(a) Behavior 2 - RPP (b) Behavior 2 - MPPI

(c) Behavior 3 - RPP (d) Behavior 3 - MPPI

(e) Behavior 4 - RPP (f) Behavior 4 - MPPI

Figure 5.5: Dynamic obstacle tests

64

Behavior 0 Behavior 1 Behavior 2 Behavior 3 Behavior 4Run RPP MPPI RPP MPPI RPP MPPI RPP MPPI RPP MPPI
1 17.8 18.4 31.9 27.6 27.1 20.5 26.7 26.0 75.1 38.5
2 18.0 16.5 29.1 28.6 31.1 28.3 28.3 26.2 43.6 27.8
3 17.3 18.9 31.6 27.3 32.5 26.2 42.5 21.8 57.2 34.2
4 17.5 19.0 34.0 28.2 29.3 24.0 28.3 21.7 45.2 29.4
5 17.0 18.7 42.0 30.2 30.3 29.5 29.0 22.2 31.3 30.2
Avg 17.52 18.3 33.72 28.38 30.06 25.7 30.96 23.58 50.48 32.02

Table 5.2: Time of each run and average time in seconds

lead to relevant deviations from the goal, especially in environments with multiple obstacles
causing excessive detours, the controller’s replanning frequency ensures consistently reliable
performance. In contrast, the RPP controller adopts a more conservative strategy, waiting for
dynamic obstacles to clear, which can save time in such scenarios.
The superiority of the MPPI controller in these tests is further demonstrated in Table 5.2, which
presents the time taken to reach the goal for each run. This time is measured from when the
navigation goal is accepted by the server to when the navigation server reports success. In the
table, the best runs for each controller are highlighted in green, and the worst runs are marked
in red. For each behavior, the best and worst results are underlined.
In the average value of each behavior (“Avg” in Table 5.2), with the exception of Behavior 0,
the MPPI controller outperforms the RPP. Given that in this setup the LoCoBot had sufficient
space in all directions to avoid the obstacle, the time difference between the averages, aside
from some outliers, can be attributed to the waiting behavior of the RPP controller.

Moreover, the time discrepancies can also be partially attributed to specific test condi-
tions. Near the goal, the camera detected the LoCoBot’s pose as not parallel to the ground,
leading the floor to be mistakenly identified as an obstacle. This highlights the MPPI con-
troller’s superior resilience to pose measurement inaccuracies.

These tests confirmed the proper tuning of parameters and the feasibility of implementing both
controllers. The choice between them depends on the specific scenario. For this thesis, the
MPPI controller is selected due to its smoothness, speed, and obstacle avoidance capabilities,
especially given the low presence of dynamic obstacles in the tested scenarios.

65

5.2 Interaction tests

To validate the interaction module, it is crucial to determine whether the robotic arm performs
tasks accurately as instructed via gesture recognition. This part of the testing includes evaluating
the gesture recognition module and conducting a functional test. The base of the robot was not
considered for the latter test, as only the camera and robotic arm were required.

5.2.1 Gesture recognition

The performance of the gesture recognition module was evaluated in various setup:

• Base: Gesture recognition was tested against a white background under a 500W frontal
light.

• Noise: The background was random but consistent through all the tests.

• Net: The background was a white wall with a green net used to enclose the arena.

• Loco_Noise: Test conducted with the LoCoBot hardware against the same background
as Noise.

• Loco_Net: Same setup as Net, but with the LoCoBot hardware.

The first three tests were conducted using a laptop with an Intel® Core™ i7-9750H CPU@ 2.60
GHz and a RealSense™ camera connected, while the remaining tests used the onboard NUC
and camera. Tests were performed at 40 cm and 100 cm from the camera by three subjects.
Each test included five gesture collection runs, with the gesture sequence for each run randomly
selected from those used in this thesis.
All users were provided with video feedback from the camera.

66

KPI Base Noise Net Loco_Noise Loco_Net
Total Accuracy [%] 85.71 95.92 86.57 92.06 95.18

Average Detection Time [ms] 53.66 53.95 51.43 70.44 71.15
Standard Deviation Det. Time [ms] 7.91 9.38 8.04 3.61 3.37

Average Confidence [%] 0.71 0.72 0.68 0.80 0.82
Standard Deviation Confidence [%] 0.13 0.11 0.12 0.13 0.10

Table 5.3: Tests at 40 cm

KPI Base Noise Net Loco_Noise Loco_Net
Total Accuracy [%] 93.33 79.25 86.44 98.36 97.47

Average Detection Time [ms] 56.15 52.50 51.63 69.75 71.48
Standard Deviation Det. Time [ms] 7.80 8.10 9.61 4.60 3.36

Average Confidence [%] 0.74 0.68 0.71 0.79 0.80
Standard Deviation Confidence [%] 0.11 0.12 0.13 0.14 0.12

Table 5.4: Tests at 100 cm

As shown in Tables 5.3 and 5.4, no significant differences in detection time or accuracy were
observed between tests performed with the laptop and the NUC. However, it is worth noting
that the laptop’s performance degraded significantly in battery mode (data not included in these
results).

To simulate a realistic scenario, Tester 2 was instructed to avoid precision in his hand poses,
adopting a natural posture instead. He was also asked to press the ”ready” button as quickly
as possible to minimize the time spent positioning his hand. Figure 5.6 demonstrates lower
performances under this latter scenario, denoting reduced accuracy when the hand is improp-
erly positioned — a common occurrence during live-feed detection without visual feedback.
Detailed data for each tester and test are provided in Appendix D.

5.2.2 Arm movement

A qualitative analysis was conducted to evaluate the arm’s response to gestures. While no quan-
titative data were collected, Figure 5.7 illustrates that the arm successfully executed commands
associated with specific gestures. Each gesture is marked by a red circle in the first frame of
every command.

67

Figure 5.6: Gesture test differentiation by tester

68

Extend arm - frame 1 Extend arm - frame 2 Extend arm - frame 3 Extend arm - frame 4

Open gripper - frame 1 Open gripper - frame 2 Open gripper - frame 3 Open gripper - frame 4

Grasp - frame 1 Grasp - frame 2 Grasp - frame 3 Grasp - frame 4

To idle - frame 1 To idle - frame 2 To idle - frame 3 To idle - frame 4

Figure 5.7: Recognition test

LoCoBot consistently responded to the given commands, demonstrating the effective imple-
mentation of the interaction module. Furthermore, this test inspired the usability improvement
cited in Section 4.1.1.

69

5.3 General test

After successfully passing all the previous specific tests for each module, a general test was
conducted to verify the implementation of the state machine and ensure proper transitions be-
tween states in response to human gestures. To implement this test, a routine was developed to
specifically evaluate each state transition. The routine includes the following steps:

1. Start the state machine and clear any error states

2. Request interaction with the LoCoBot

3. Open the gripper

4. Close the gripper (potentially passing an object to the LoCoBot)

5. Return to the IDLE state.

6. Request navigation

7. Navigate around, ensuring the LoCoBot follows the human

8. Interrupt navigation

9. Request interaction again

10. Open the gripper and take the object

11. Return the LoCoBot to the IDLE state

Additionally, during the navigation, the obstacle avoidance will be tested again, while the pose
estimation method will be evaluated throughout the entire process. It is important to remember
that if the TF of either the LoCoBot or the human is not detected for a certain period (5 seconds
in this case), the state machine will trigger the ERROR state. The LoCoBot was tracked using
two Kinect cameras.
To demonstrate the ease of operation of this framework, both trained individuals and untrained
participants were considered. Both groups were aware of the optimal positioning in front of
the camera and the command associated with each gesture. The use of the Apriltag marker was
not considered a differentiating factor, as each participant was instructed to walk while always
pointing the marker towards the camera. The only difference between these groups was the
amount of time they had spent using the robot.

Even though the gesture recognition threshold for validating a gesture was set based on
prior tests, some issues were encountered with the gripper interaction gestures, resulting in

70

recognition times of up to 10-20 seconds. This could be attributed to the fact that users were
not aware of the camera’s perspective, leading to suboptimal gesture performance due to a
trial-and-error approach in positioning.

A more significant difference was observed during the navigation phase. Trained users
knew the optimal positioning of the marker to ensure the robot followed them without being
recognized as obstacles. However, the limited size of the testing area meant that the robot was
often navigating close to static obstacles or near the human subject, resulting in continuous
re-planning that also accounted for human avoidance. On the other hand, due to the proper
tuning of parameters, the robot was able to follow the human with minimal delay.

A video of this test is available at https://alessio-lovato-unipd.github.io/tesi_
locobot/.
However, Figure 5.8 provides a general idea of the test execution, as these frames succession
have been extracted from the video.

Figure 5.8: General test video frames

71

https://alessio-lovato-unipd.github.io/tesi_locobot/
https://alessio-lovato-unipd.github.io/tesi_locobot/

5.4 Conclusions

The validation tests for each individual module yielded promising results. Navigation testing
demonstrated that, even if both controller were usable, the MPPI controller was the optimal
choice for this implementation, given the environment’s low percentage of dynamic obstacles.
However, it was observed that navigation in narrow environments posed challenges, primarily
because the human to follow was often perceived as an obstacle, hindering the path planning
process.
The gesture recognition module, despite performing exceptionally well when tested in isolation
from the state machine, exhibited minor issues during the comprehensive test. Nonetheless, it
successfully executed the required tasks.
Overall, the general test was successful, as the state machine efficiently handled all state
transitions. Additionally, this test affirmed the robustness of the pose estimation technology
based on fiducial markers and the effectiveness of the calibration method.

In conclusion, the testing phase demonstrated that the entire framework is a valid solu-
tion.

72

Chapter 6

Conclusions

This thesis introduced the implementation of a human-guided framework for real-world
applications involving human-robot interaction. The chosen platform was an autonomous
mobile manipulator, specifically the LoCoBot WX200. While the AMM was developed
for research purposes, the framework’s concept can be adapted to other contexts, including
industrial automation and service robotics.
Additionally, within the Industry 4.0 context, the proposed framework offers significant
potential for scalability: state machines controlling individual robots can be expanded to
connect with larger systems, facilitating precise management and coordination of extensive
robot fleets.

The primary objectives of this framework included human-following capabilities, interaction
through the robotic arm, and human-driven control. Central to the design was the need for
intuitive control mechanisms, leading to the adoption of the hand gesture recognition model
provided by MediaPipe as the main input method. The state machine at the core of the frame-
work processes human commands and orchestrates actions through navigation and interaction
modules.

Gesture Recognition

During the validation phase, some delays were observed in gesture recognition. Although min-
imal, these delays could affect user experience, potentially causing frustration due to slow task
execution. Two improvements are suggested to address this issue: refining the gesture recogni-
tion model for greater robustness in real-world environments or exploring alternative interaction
methods like voice recognition. Voice commands, while computationally heavier, would allow
greater flexibility by eliminating the need for proximity to the robot during operation and re-
solving issues such as the robot misidentifying the user as an obstacle.

73

State machine

The state machine serves as the control logic for the AMM, handling both the internal states of
the robot and its interaction with external modules. Developed using the ROS 2 framework, it
communicates with two critical packages: Nav2 for navigation tasks and MoveIt 2 for manip-
ulation tasks. Commands from the human, processed through the gesture recognition module,
are translated into actions executed by the state machine.
This architecture enables seamless integration of navigation and interaction functionalities,
while maintaining modularity and interchangeability.

Interaction module

Built on MoveIt 2, the interaction module enables control of the robotic arm. While minimally
customized for this project, the module performed as expected, successfully executing planned
movements. However, a limitation was noted: the arm’s interaction pose is fixed.
While dynamically calculating optimal poses could enhance flexibility, it was deemed outside
the scope of this thesis. Moreover, dynamically generated poses could introduce safety risks by
introducing unpredictable arm movements, potentially catching users off guard.

Navigation module

The navigation module, a customization of the Nav2 stack, represents a core component of the
framework. It incorporates features like human-following and obstacle avoidance, leveraging
the onboard depth camera for real-time environmental perception. The module demonstrated
robust navigation capabilities, effectively avoiding both static and dynamic obstacles, including
unmapped ones. Human-following functionality, implemented using a clever usage of the state
machine, was validated during the general test.
The pose estimation, necessary for the navigation, has been implemented through the localiza-
tion module.

Despite these successes, a limitation emerged: the followed human was also identified as an
obstacle, complicating close-range following in confined spaces. A potential solution involves
introducing a filtering mechanism to merge depth and RGB visual data, excluding the human
from being classified as an obstacle. However, implementing this solution would require a more
powerful processing unit and an upgraded battery to sustain efficient long-term operations.

74

Localization module

This module estimates the poses of both the LoCoBot and the human in the environment using
Apriltag fiducial markers. Pose tracking was achieved with two Kinect cameras, mitigating oc-
clusion issues that could arise with a single camera. While this redundancy improved reliability,
it also introduced the need for precise calibration of the cameras relative to the navigation map
origin.
A calibration technique was developed to synchronize the camera data, minimizing positional
discrepancies between the two perspectives. The results demonstrated effective pose estimation,
enabling accurate navigation.

Final considerations

Although some areas for improvement have been identified, the framework was successfully
validated through normative-inspired tests. These evaluations highlighted its strengths and lim-
itations, confirming the functionality of the Nav2 and MoveIt 2 stacks within the proposed ar-
chitecture.
Ultimately, the framework achieved the objectives of this thesis, demonstrating its capability for
autonomous navigation, human-robot interaction during a comprehensive test.

Suggested improvements

An additional enhancement suggested, based on the conducted tests, is the integration of a LI-
DAR sensor. This would significantly improve navigation reliability by providing the robot with
a comprehensive understanding of its surroundings, enabling reverse navigation and enhancing
safety.

75

76

Bibliography

[1] J. Horáková and J. Kelemen, “The Robot Story: Why Robots Were Born and How
They Grew Up,” in The Mechanical Mind in History, The MIT Press, Feb. 2008, ISBN:
9780262256384. DOI: 10.7551/mitpress/7626.003.0013. eprint: https://direct.
mit.edu/book/chapter-pdf/2284933/9780262256384_cal.pdf. [Online]. Avail-
able: https://doi.org/10.7551/mitpress/7626.003.0013.

[2] Robotics — performance criteria and related test methods for service robots - part 2:
Navigation, ISO 18646-2:2024, 2024.

[3] A. S. Silva Oliveira, M. C. dos Reis, F. A. X. da Mota, M. E. M. Martinez, and A. R.
Alexandria, “New trends on computer vision applied to mobile robot localization,” In-
ternet of Things and Cyber-Physical Systems, vol. 2, pp. 63–69, 2022, ISSN: 2667-3452.
DOI: https://doi.org/10.1016/j.iotcps.2022.05.002. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2667345222000128.

[4] Robots and robotic devices — collaborative robots, ISO/TS15066:2016, 2016.

[5] M. Basiri, J. Gonçalves, J. Rosa, A. Vale, and P. Lima, “An autonomous mobile manipu-
lator to build outdoor structures consisting of heterogeneous brick patterns,” SN Applied
Sciences, vol. 3, no. 5, p. 558, 2021, ISSN: 2523-3971. DOI: 10.1007/s42452- 021-
04506-7. [Online]. Available: https://doi.org/10.1007/s42452-021-04506-7.

[6] H. Engemann, S. Du, S. Kallweit, P. Cönen, and H. Dawar, “Omnivil—an autonomous
mobile manipulator for flexible production,” Sensors, vol. 20, no. 24, 2020, ISSN: 1424-
8220. DOI: 10.3390/s20247249. [Online]. Available: https://www.mdpi.com/1424-
8220/20/24/7249.

[7] Development of an Autonomous Mobile Manipulator for Industrial and Agricultural En-
vironments — hdl.handle.net, https://hdl.handle.net/10589/223386, [Accessed
22-10-2024].

[8] S. Al-Hussaini et al., Human-supervised semi-autonomous mobile manipulators for
safely and efficiently executing machine tending tasks, 2020. arXiv: 2010 . 04899
[cs.RO]. [Online]. Available: https://arxiv.org/abs/2010.04899.

77

https://doi.org/10.7551/mitpress/7626.003.0013
https://direct.mit.edu/book/chapter-pdf/2284933/9780262256384_cal.pdf
https://direct.mit.edu/book/chapter-pdf/2284933/9780262256384_cal.pdf
https://doi.org/10.7551/mitpress/7626.003.0013
https://doi.org/https://doi.org/10.1016/j.iotcps.2022.05.002
https://www.sciencedirect.com/science/article/pii/S2667345222000128
https://doi.org/10.1007/s42452-021-04506-7
https://doi.org/10.1007/s42452-021-04506-7
https://doi.org/10.1007/s42452-021-04506-7
https://doi.org/10.3390/s20247249
https://www.mdpi.com/1424-8220/20/24/7249
https://www.mdpi.com/1424-8220/20/24/7249
https://hdl.handle.net/10589/223386
https://arxiv.org/abs/2010.04899
https://arxiv.org/abs/2010.04899
https://arxiv.org/abs/2010.04899

[9] L. Tagliavini, L. Baglieri, G. Colucci, A. Botta, C. Visconte, and G. Quaglia, “D.o.t.
paquitop, an autonomous mobile manipulator for hospital assistance,” Electronics,
vol. 12, no. 2, 2023, ISSN: 2079-9292. DOI: 10.3390/electronics12020268. [Online].
Available: https://www.mdpi.com/2079-9292/12/2/268.

[10] J. Carius, M. Wermelinger, B. Rajasekaran, K. Holtmann, and M. Hutter, “Deployment
of an autonomous mobile manipulator at mbzirc,” Journal of Field Robotics, vol. 35,
no. 8, pp. 1342–1357, 2018. DOI: https://doi.org/10.1002/rob.21825. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21825. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21825.

[11] RB-KAIROS+ Manipulator - Pick & Place Robot | Robotnik® — robotnik.eu, https:
//robotnik.eu/products/mobile-robots/rb-kairos-2/#rb-kairos-plus-
ur-five, [Accessed 05-11-2024].

[12] LoCoBot — robots.ros.org, https://robots.ros.org/locobot/, [Accessed 28-11-
2024].

[13] Home | Trossen Robotics — trossenrobotics.com, https://www.trossenrobotics.
com/, [Accessed 28-11-2024].

[14] DYNAMIXEL | All-in-one Smart Actuator — dynamixel.com, https : / / www .
dynamixel.com/, [Accessed 28-11-2024].

[15] LoCoBot WidowX-200; Interbotix X-Series LoCoBot Documentation —
docs.trossenrobotics.com, https : / / docs . trossenrobotics . com / interbotix _
xslocobots_docs/specifications/locobot_wx200.html, [Accessed 21-09-2024].

[16] Differential wheeled robot - Wikipedia — en.wikipedia.org, https://en.wikipedia.
org/wiki/Differential_wheeled_robot, [Accessed 22-09-2024].

[17] WidowX-200; Interbotix X-Series Arms Documentation — docs.trossenrobotics.com,
https : / / docs . trossenrobotics . com / interbotix _ xsarms _ docs /
specifications/wx200.html, [Accessed 23-09-2024].

[18] ROBOTIS, U2D2 Manual, [Online]. Accessed 23-09-2024. Available: https : / /
emanual.robotis.com/docs/en/parts/interface/u2d2/.

[19] Depth Camera D435 — intelrealsense.com, https://www.intelrealsense.com/
depth-camera-d435/, [Accessed 28-11-2024].

[20] ROS Package: Realsense2_camera — index.ros.org, https://index.ros.org/p/
realsense2_camera/, [Accessed 23-09-2024].

78

https://doi.org/10.3390/electronics12020268
https://www.mdpi.com/2079-9292/12/2/268
https://doi.org/https://doi.org/10.1002/rob.21825
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21825
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21825
https://robotnik.eu/products/mobile-robots/rb-kairos-2/#rb-kairos-plus-ur-five
https://robotnik.eu/products/mobile-robots/rb-kairos-2/#rb-kairos-plus-ur-five
https://robotnik.eu/products/mobile-robots/rb-kairos-2/#rb-kairos-plus-ur-five
https://robots.ros.org/locobot/
https://www.trossenrobotics.com/
https://www.trossenrobotics.com/
https://www.dynamixel.com/
https://www.dynamixel.com/
https://docs.trossenrobotics.com/interbotix_xslocobots_docs/specifications/locobot_wx200.html
https://docs.trossenrobotics.com/interbotix_xslocobots_docs/specifications/locobot_wx200.html
https://en.wikipedia.org/wiki/Differential_wheeled_robot
https://en.wikipedia.org/wiki/Differential_wheeled_robot
https://docs.trossenrobotics.com/interbotix_xsarms_docs/specifications/wx200.html
https://docs.trossenrobotics.com/interbotix_xsarms_docs/specifications/wx200.html
https://emanual.robotis.com/docs/en/parts/interface/u2d2/
https://emanual.robotis.com/docs/en/parts/interface/u2d2/
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/
https://index.ros.org/p/realsense2_camera/
https://index.ros.org/p/realsense2_camera/

[21] GitHub - Interbotix/interbotix_ros_core: Core ROS Packages for Interbotix Robots —
github.com, https://github.com/Interbotix/interbotix_ros_core, [Accessed
23-09-2024].

[22] GitHub - Interbotix/interbotix_ros_toolboxes: Support-level ROS Packages for Interbotix
Robots — github.com, https : / / github . com / Interbotix / interbotix _ ros _
toolboxes, [Accessed 23-09-2024].

[23] GitHub - Interbotix/interbotix_ros_rovers: ROS Packages for Interbotix Rovers —
github.com, https://github.com/Interbotix/interbotix_ros_rovers, [Ac-
cessed 23-09-2024].

[24] ROS Package: Joint_state_publisher — index.ros.org, https://index.ros.org/p/
joint_state_publisher, [Accessed 18-09-2024].

[25] ROS Package: Robot_state_publisher — index.ros.org, https://index.ros.org/p/
robot_state_publisher/, [Accessed 23-09-2024].

[26] Rviz2: ROS 3D Robot Visualizer — github.com, https://github.com/ros2/rviz,
[Accessed 23-09-2024].

[27] Interbotix X-Series Arms Documentation — docs.trossenrobotics.com, https://docs.
trossenrobotics . com / interbotix _ xsarms _ docs / ros _ interface / ros2 /
overview/xs_sdk.html, [Accessed 15-10-2024].

[28] ROBOTIS e-Manual — emanual.robotis.com, https://emanual.robotis.com/docs/
en/software/dynamixel/dynamixel_workbench/, [Accessed 15-10-2024].

[29] OSRF, Gazebo — classic.gazebosim.org, https://classic.gazebosim.org/, [Ac-
cessed 23-09-2024].

[30] ROS Index — index.ros.org, https : / / index . ros . org / r / gazebo _ ros _ pkgs /
github-ros-simulation-gazebo_ros_pkgs, [Accessed 23-09-2024].

[31] MoveIt 2 Motion Planning Configuration; Interbotix X-Series LoCoBot Documentation
— docs.trossenrobotics.com, https://docs.trossenrobotics.com/interbotix_
xslocobots_docs/ros2_packages/moveit_motion_planning_configuration.
html, [Accessed 23-09-2024].

[32] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot operating
system 2: Design, architecture, and uses in the wild,” Science Robotics, vol. 7, no. 66,
eabm6074, 2022. DOI: 10.1126/scirobotics.abm6074. [Online]. Available: https:
//www.science.org/doi/abs/10.1126/scirobotics.abm6074.

[33] Discovery; ROS 2 Documentation: Humble documentation, https://docs.ros.org/
en/humble/Concepts/Basic/About-Discovery.html, [Accessed 12-09-2024].

79

https://github.com/Interbotix/interbotix_ros_core
https://github.com/Interbotix/interbotix_ros_toolboxes
https://github.com/Interbotix/interbotix_ros_toolboxes
https://github.com/Interbotix/interbotix_ros_rovers
https://index.ros.org/p/joint_state_publisher
https://index.ros.org/p/joint_state_publisher
https://index.ros.org/p/robot_state_publisher/
https://index.ros.org/p/robot_state_publisher/
https://github.com/ros2/rviz
https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros_interface/ros2/overview/xs_sdk.html
https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros_interface/ros2/overview/xs_sdk.html
https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros_interface/ros2/overview/xs_sdk.html
https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_workbench/
https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_workbench/
https://classic.gazebosim.org/
https://index.ros.org/r/gazebo_ros_pkgs/github-ros-simulation-gazebo_ros_pkgs
https://index.ros.org/r/gazebo_ros_pkgs/github-ros-simulation-gazebo_ros_pkgs
https://docs.trossenrobotics.com/interbotix_xslocobots_docs/ros2_packages/moveit_motion_planning_configuration.html
https://docs.trossenrobotics.com/interbotix_xslocobots_docs/ros2_packages/moveit_motion_planning_configuration.html
https://docs.trossenrobotics.com/interbotix_xslocobots_docs/ros2_packages/moveit_motion_planning_configuration.html
https://doi.org/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://docs.ros.org/en/humble/Concepts/Basic/About-Discovery.html
https://docs.ros.org/en/humble/Concepts/Basic/About-Discovery.html

[34] Composition ROS 2 Documentation: Humble documentation, https : / / docs . ros .
org/en/humble/Concepts/Intermediate/About-Composition.html, [Accessed
21-10-2024].

[35] Topics; ROS 2 Documentation: Humble documentation — docs.ros.org, https://docs.
ros.org/en/humble/Concepts/Basic/About- Topics.html, [Accessed 12-09-
2024].

[36] Services; ROS 2 Documentation: Humble documentation, https://docs.ros.org/
en/humble/Concepts/Basic/About-Services.html, [Accessed 12-09-2024].

[37] Actions; ROS 2 Documentation: Humble documentation, https://docs.ros.org/en/
humble/Concepts/Basic/About-Actions.html, [Accessed 12-09-2024].

[38] T. Dirk, ROS 2 middleware interface, https://design.ros2.org/articles/ros_
middleware_interface.html, [Accessed 12-09-2024], 2017.

[39] Different ROS 2 middleware vendors; ROS 2 Documentation: Humble documentation,
https : / / docs . ros . org / en / humble / Concepts / Intermediate / About -
Different-Middleware-Vendors.html, [Accessed 12-09-2024].

[40] G. Pardo-Castellote, “Omg data-distribution service: Architectural overview,” in 23rd
International Conference on Distributed Computing Systems Workshops, 2003. Proceed-
ings., 2003, pp. 200–206. DOI: 10.1109/ICDCSW.2003.1203555.

[41] S. Macenski, F. Martín, R. White, and J. G. Clavero, “The marathon 2: A navigation
system,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2020, pp. 2718–2725. DOI: 10.1109/IROS45743.2020.9341207.

[42] Nav2; Nav2 1.0.0 documentation, https://docs.nav2.org/, [Accessed 13-09-2024].

[43] REP 105 – Coordinate Frames for Mobile Platforms (ROS.org), https://www.ros.
org/reps/rep-0105.html, [Accessed 17-09-2024], 2010.

[44] S. Macenski, D. Tsai, and M. Feinberg, “Spatio-temporal voxel layer: A view on robot
perception for the dynamic world,” International Journal of Advanced Robotic Systems,
vol. 17, no. 2, 2020. DOI: 10.1177/1729881420910530. [Online]. Available: https:
//doi.org/10.1177/1729881420910530.

[45] MoveIt 2 Documentation; MoveIt Documentation: Humble documentation, https://
moveit.picknik.ai/humble/index.html, [Accessed 17-09-2024].

[46] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning Library,” IEEE
Robotics & Automation Magazine, vol. 19, no. 4, pp. 72–82, 2012, https://ompl.
kavrakilab.org. DOI: 10.1109/MRA.2012.2205651.

80

https://docs.ros.org/en/humble/Concepts/Intermediate/About-Composition.html
https://docs.ros.org/en/humble/Concepts/Intermediate/About-Composition.html
https://docs.ros.org/en/humble/Concepts/Basic/About-Topics.html
https://docs.ros.org/en/humble/Concepts/Basic/About-Topics.html
https://docs.ros.org/en/humble/Concepts/Basic/About-Services.html
https://docs.ros.org/en/humble/Concepts/Basic/About-Services.html
https://docs.ros.org/en/humble/Concepts/Basic/About-Actions.html
https://docs.ros.org/en/humble/Concepts/Basic/About-Actions.html
https://design.ros2.org/articles/ros_middleware_interface.html
https://design.ros2.org/articles/ros_middleware_interface.html
https://docs.ros.org/en/humble/Concepts/Intermediate/About-Different-Middleware-Vendors.html
https://docs.ros.org/en/humble/Concepts/Intermediate/About-Different-Middleware-Vendors.html
https://doi.org/10.1109/ICDCSW.2003.1203555
https://doi.org/10.1109/IROS45743.2020.9341207
https://docs.nav2.org/
https://www.ros.org/reps/rep-0105.html
https://www.ros.org/reps/rep-0105.html
https://doi.org/10.1177/1729881420910530
https://doi.org/10.1177/1729881420910530
https://doi.org/10.1177/1729881420910530
https://moveit.picknik.ai/humble/index.html
https://moveit.picknik.ai/humble/index.html
https://ompl.kavrakilab.org
https://ompl.kavrakilab.org
https://doi.org/10.1109/MRA.2012.2205651

[47] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient optimization
techniques for efficient motion planning,” in 2009 IEEE International Conference on
Robotics and Automation, 2009, pp. 489–494. DOI: 10.1109/ROBOT.2009.5152817.

[48] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: An
efficient probabilistic 3D mapping framework based on octrees,” Autonomous Robots,
2013, Software available at https://octomap.github.io. DOI: 10.1007/s10514-
012-9321-0. [Online]. Available: https://octomap.github.io.

[49] C. Matteo, L. Alessio, and P. Alberto, Tecniche di localizzazione indoor per droni basate
su fiducial markers — hdl.handle.net, https://hdl.handle.net/20.500.12608/
34419, [Accessed 06-11-2024].

[50] M. Krogius, A. Haggenmiller, and E. Olson, “Flexible layouts for fiducial tags,” in Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2019.

[51] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marín-Jiménez, “Au-
tomatic generation and detection of highly reliable fiducial markers under occlusion,”
Pattern Recognition, vol. 47, no. 6, pp. 2280–2292, 2014, ISSN: 0031-3203. DOI: https:
//doi.org/10.1016/j.patcog.2014.01.005. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0031320314000235.

[52] B. Benligiray, C. Topal, and C. Akinlar, “Stag: A stable fiducial marker system,” Image
and Vision Computing, vol. 89, pp. 158–169, 2019, ISSN: 0262-8856. DOI: https:/ /
doi.org/10.1016/j.imavis.2019.06.007. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0262885619300903.

[53] GitHub - Adlink-ROS/apriltag_ros: A ROS2 wrapper of the AprilTag 3 visual fiducial de-
tector — github.com, https://github.com/Adlink-ROS/apriltag_ros, [Accessed
27-10-2024].

[54] GitHub - microsoft/Azure_Kinect_ROS_Driver at humble, https : / / github . com /
microsoft/Azure_Kinect_ROS_Driver/tree/humble, [Accessed 21-10-2024].

[55] GitHub - mguidolin/Azure_Kinect_ROS_Driver: A ROS sensor driver for the Azure
Kinect Developer Kit. — github.com, https : / / github . com / mguidolin / Azure _
Kinect_ROS_Driver, [Accessed 06-11-2024].

[56] GitHub - mguidolin/apriltag_calibration — github.com, https : / / github . com /
mguidolin/apriltag_calibration, [Accessed 06-11-2024].

[57] ROS Package: Image_proc, https://index.ros.org/p/image_proc, [Accessed
21-10-2024].

81

https://doi.org/10.1109/ROBOT.2009.5152817
https://octomap.github.io
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1007/s10514-012-9321-0
https://octomap.github.io
https://hdl.handle.net/20.500.12608/34419
https://hdl.handle.net/20.500.12608/34419
https://doi.org/https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/https://doi.org/10.1016/j.patcog.2014.01.005
https://www.sciencedirect.com/science/article/pii/S0031320314000235
https://www.sciencedirect.com/science/article/pii/S0031320314000235
https://doi.org/https://doi.org/10.1016/j.imavis.2019.06.007
https://doi.org/https://doi.org/10.1016/j.imavis.2019.06.007
https://www.sciencedirect.com/science/article/pii/S0262885619300903
https://www.sciencedirect.com/science/article/pii/S0262885619300903
https://github.com/Adlink-ROS/apriltag_ros
https://github.com/microsoft/Azure_Kinect_ROS_Driver/tree/humble
https://github.com/microsoft/Azure_Kinect_ROS_Driver/tree/humble
https://github.com/mguidolin/Azure_Kinect_ROS_Driver
https://github.com/mguidolin/Azure_Kinect_ROS_Driver
https://github.com/mguidolin/apriltag_calibration
https://github.com/mguidolin/apriltag_calibration
https://index.ros.org/p/image_proc

[58] F. Zhang et al., Mediapipe hands: On-device real-time hand tracking, 2020. DOI: 10.
48550/ARXIV.2006.10214. [Online]. Available: https://arxiv.org/abs/2006.
10214.

[59] GitHub - arshadlab/gazebo_map_creator — github.com, https : / / github . com /
arshadlab/gazebo_map_creator, [Accessed 16-11-2024].

[60] S. Macenski, S. Singh, F. Martín, and J. Ginés, “Regulated pure pursuit for robot path
tracking,” Autonomous Robots, vol. 47, no. 6, pp. 685–694, 2023, ISSN: 1573-7527. DOI:
10.1007/s10514-023-10097-6. [Online]. Available: https://doi.org/10.1007/
s10514-023-10097-6.

[61] BehaviorTree.CPP — behaviortree.dev, https : / / www . behaviortree . dev/, [Ac-
cessed 18-11-2024].

[62] S. Macenski, T. Moore, D. V. Lu, A. Merzlyakov, and M. Ferguson, “From the desks
of ros maintainers: A survey of modern & capable mobile robotics algorithms in the
robot operating system 2,” Robotics and Autonomous Systems, vol. 168, p. 104 493, 2023,
ISSN: 0921-8890. DOI: https://doi.org/10.1016/j.robot.2023.104493. [On-
line]. Available: https : / / www . sciencedirect . com / science / article / pii /
S092188902300132X.

[63] S.Macenski, M. Booker, and J.Wallace, “Open-source, cost-aware kinematically feasible
planning for mobile and surface robotics,” 2024. DOI: 10.48550/arXiv.2401.13078.
arXiv: 2401.13078 [cs.RO]. [Online]. Available: https://arxiv.org/abs/2401.
13078.

[64] Ros2_control documentation - Humble; ROS2_Control: Humble Nov 2024 documenta-
tion — control.ros.org, https://control.ros.org/humble/index.html, [Accessed
04-11-2024].

82

https://doi.org/10.48550/ARXIV.2006.10214
https://doi.org/10.48550/ARXIV.2006.10214
https://arxiv.org/abs/2006.10214
https://arxiv.org/abs/2006.10214
https://github.com/arshadlab/gazebo_map_creator
https://github.com/arshadlab/gazebo_map_creator
https://doi.org/10.1007/s10514-023-10097-6
https://doi.org/10.1007/s10514-023-10097-6
https://doi.org/10.1007/s10514-023-10097-6
https://www.behaviortree.dev/
https://doi.org/https://doi.org/10.1016/j.robot.2023.104493
https://www.sciencedirect.com/science/article/pii/S092188902300132X
https://www.sciencedirect.com/science/article/pii/S092188902300132X
https://doi.org/10.48550/arXiv.2401.13078
https://arxiv.org/abs/2401.13078
https://arxiv.org/abs/2401.13078
https://arxiv.org/abs/2401.13078
https://control.ros.org/humble/index.html

Appendix A

ros2_control package

ROS 2 leverages ros2_control [64] to standardize controller implementations. Figure A.1
illustrates the structure of this framework.

Controller Manager

The controller_manager node manages the controller’s lifecycles and hardware interfaces,
supporting strategies such as position, velocity, and effort-based control. During each control
loop, the manager sequentially reads the hardware states, updates active controllers, and outputs
calculated commands to the hardware interfaces. Configuration parameters, loaded from
YAML files, specify the controller types and joint names.

For differential drive, the Diff Drive Controller interprets velocity commands for the left and
right wheels, enabling coordinated movement. For robotic manipulators, the Joint Trajectory
Controller handles multi-DoF movement, generating smooth, time-parameterized commands
for each joint based on desired positions, velocities, and accelerations.

Resource Manager

The Resource Manager abstracts hardware components and provides standardized access to
physical devices, facilitating seamless integration into the ROS 2 ecosystem. It ensures smooth
communication for command and state interfaces, enabling diverse hardware compatibility with-
out requiring specific implementations.

Hardware Components

The ros2_control framework introduces two critical interfaces: the Hardware Interface for
reading joint states and theCommand Interface for sending commands and reading states. Hard-

83

ware components are categorized as:

• Actuator: Simple 1-DoF components, such as motors, with direct control and feedback.

• Sensor: Read-only components providing environmental data.

• System: Complex hardware, like multi-DOF robotic arms, supporting both reading and
writing capabilities.

Figure A.1: Components architecture of ROS 2 control. Source [64]

84

Appendix B

Nav2 Custom Behavior Trees

85

B.1 RPP Behavior Tree

Root

Inverter

KeepRunningUntilFailure

Inverter

Fallback

Recovery

Inverter

Repeat

Inverter

PipelineSequence

RateController

GoalUpdater

Sequence

ComputePath

ComputePathToPose TruncatePath IsPathValid

Fallback

FollowPath

FollowPath ForceFailure

Wait

ForceFailure

BackUp

86

B.2 MPPI Behavior Tree

Root

Inverter

KeepRunningUntilFailure

Inverter

PipelineSequence

RateController

GoalUpdater

Sequence

ComputePath

ComputePathToPose TruncatePath IsPathValid

Fallback

FollowPath

FollowPath ForceFailure

Wait

87

88

Appendix C

Frame sequence of Behavior 2 with RPP

(a) Behavior 3 - frame 1 (b) Behavior 3 - frame 2 (c) Behavior 3 - frame 3

(d) Behavior 3 - frame 4 (e) Behavior 3 - frame 5 (f) Behavior 3 - frame 6

(g) Behavior 3 - frame 7 (h) Behavior 3 - frame 8 (i) Behavior 3 - frame 9

89

90

Appendix D

Gesture Recognition Tables

In this appendix are highlighted the data collected during the gesture recognition tests.

Metric Base Net Noise Loco_Noise Loco_Net
Total Accuracy [%] 80.00 100.00 90.91 88.89 100.00

Average Detection Time [ms] 53.38 52.91 54.33 69.80 70.88
Standard Deviation Det. Time [ms] 7.37 10.56 7.95 4.33 3.50

Average Confidence [%] 0.73 0.74 0.72 0.81 0.80
Standard Deviation Confidence [%] 0.15 0.12 0.10 0.12 0.10

Table D.1: Analysis for Tester 1 at 40 cm

Metric Base Net Noise Loco_Noise Loco_Net
Total Accuracy [%] 77.78 86.67 70.00 84.21 88.89

Average Detection Time [ms] 53.26 53.30 49.83 69.71 71.54
Standard Deviation Det. Time [ms] 9.01 8.46 7.67 3.63 3.82

Average Confidence [%] 0.71 0.71 0.66 0.69 0.80
Standard Deviation Confidence [%] 0.15 0.12 0.10 0.14 0.10

Table D.2: Analysis for Tester 2 at 40 cm

Metric Base Net Noise Loco_Noise Loco_Net
Total Accuracy [%] 96.00 100.00 96.00 100.00 96.67

Average Detection Time [ms] 54.17 57.44 50.16 71.42 71.04
Standard Deviation Det. Time [ms] 7.78 7.47 8.02 2.88 2.87

Average Confidence [%] 0.70 0.71 0.66 0.87 0.87
Standard Deviation Confidence [%] 0.10 0.08 0.14 0.06 0.08

Table D.3: Analysis for Tester 3 at 40 cm

91

Metric Base Net Noise Loco_Noise Loco_Net
Total Accuracy [%] 100.00 96.55 80.95 100.00 100.00

Average Detection Time [ms] 58.05 49.42 52.83 69.02 70.69
Standard Deviation Det. Time [ms] 6.92 9.75 8.40 4.16 2.93

Average Confidence [%] 0.80 0.76 0.68 0.78 0.77
Standard Deviation Confidence [%] 0.11 0.14 0.16 0.15 0.12

Table D.4: Analysis for Tester 1 at 100 cm

Metric Base Net Noise Loco_Noise Loco_Net
Total Accuracy [%] 73.68 68.75 64.29 100.00 96.30

Average Detection Time [ms] 57.70 51.17 54.03 70.14 71.48
Standard Deviation Det. Time [ms] 6.80 7.48 6.37 5.06 4.00

Average Confidence [%] 0.72 0.65 0.69 0.73 0.77
Standard Deviation Confidence [%] 0.14 0.09 0.09 0.14 0.14

Table D.5: Analysis for Tester 2 at 100 cm

Metric Base Net Noise Loco_Noise Loco_Net
Total Accuracy [%] 100.00 85.71 88.89 95.24 96.30

Average Detection Time [ms] 53.18 56.71 50.92 70.18 71.34
Standard Deviation Det. Time [ms] 8.56 10.18 9.06 4.76 3.10

Average Confidence [%] 0.70 0.68 0.68 0.84 0.84
Standard Deviation Confidence [%] 0.06 0.12 0.09 0.10 0.10

Table D.6: Analysis for Tester 3 at 100 cm

92

Ringraziamenti

Ci tengo innanzitutto a ringraziare le professoresse Michieletto e Reggiani per tutto l’aiuto, i
preziosi consigli, il supporto ricevuto e le possibilità fornitemi.

Ci tengo a ringraziare anche il professor Minto, che mi ha gentilmente dedicato molto tempo
durante lo sviluppo di una parte di questa tesi.

Un grazie in particolare a Mattia, Massimiliano, Paride, Pietro e Marco, che mi hanno aiutato
con lo sviluppo della tesi, mi hanno ascoltato parlare a vanvera per mesi e hanno rallegrato le
giornate in laboratorio.

Ringrazio Alberto, Filippo, Francesca, Matteo, Pietro e Sofia per avermi sempre aiutato quando
non avevo voglia di studiare o non riuscivo a capire qualcosa. Sicuramente, senza di voi
l’università sarebbe stata molto più noiosa e lunga.

Vorrei ringraziare i miei amici (Calcroci, un sabato da cretini) perché in questi anni hanno
sempre sopportato.

Un grazie al gruppo Jappe, che periodo abbiamo vissuto insieme!

A big thanks to all the Erasmus friends I made in Sweden, those six months changed my life.

In particolare, però, il ringraziamento più speciale va ai miei genitori, perché senza i loro inseg-
namenti, la loro perseveranza e pazienza non sarei chi sono ora. Mi avete insegnato tutto quello
che so e nulla potrà mai ripagare quanto avete fatto, e fate, per me.

	Introduction
	LoCoBot - the case study AMM
	Hardware
	Mobile base
	Robotic arm
	INTEL® NUC
	RealSense™ camera

	LoCoBot ROS 2 packages
	Interbotix native packages
	Interbotix custom packages

	Conclusions

	AMM maneuverability tools
	ROS 2
	ROS 2 Network
	ROS 2 Architecture

	Nav2
	Costmaps
	Nav2 Navigation Pipeline

	MoveIt 2
	Motion Planning Pipeline
	move_group node
	Trajectory Execution
	Planning Scene Monitor

	Fiducial markers for pose estimation
	AprilTag 3
	AprilTag 3 Coordinate System
	AprilTag ROS
	TF Tree

	Camera Network
	Camera Pose Calibration
	Image Rectification
	Bandwidth Usage

	Conclusions

	Human-guided AMM framework
	Gesture Recognition
	Usability improvement

	LoCoBot Control Node
	ArmStatus Class
	NavigationStatus Class
	LocobotControl Class

	State Machine Node
	LastError Service
	ClearError Service
	ControlStates Service
	SpinMachine() Function
	Internal States
	External States

	Nav2 configuration
	Map Server
	Map Saver
	Behavior Server
	Controller Server
	BT Navigator
	Planner Server
	Velocity Smoother Server

	MoveIt 2 Configuration
	Loaded Components
	Grasping Position

	Simulation Environment: Gazebo Classic Simulator
	Simulated world file
	Framework validation on simulated environment

	Conclusions

	Experimental Results
	Navigation tests
	Obstacle detection
	Obstacle avoidance

	Interaction tests
	Gesture recognition
	Arm movement

	General test
	Conclusions

	Conclusions
	Bibliography
	Appendix ros2_control package
	Appendix Nav2 Custom Behavior Trees
	RPP Behavior Tree
	MPPI Behavior Tree

	Appendix Frame sequence of Behavior 2 with RPP
	Appendix Gesture Recognition Tables

