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Università degli Studi di Padova
Dipartimento di Matematica Tullio Levi-Civita

Double Master’s degree in Mathematics - MAPPA

The concentration-compactness method in L2 and
its application to the Hartree equation with L3/2,∞

convolutional potential

Supervisor: Jérémy Faupin
Co-supervisor: Federico Cacciafesta
Student: Tommaso Pistillo
ID numbers: 2056073 / 22201793

Graduation date: 13/09/2023
Academic Year: 2022/23





.

To my family and my dearest loved ones





Contents

Introduction i

1 Motivations and formulations of the concentration-compactness method 1
1.1 Defining and extracting bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Vanishing sequences and subcritical Lp norms . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 The concentration compactness method in Hilbert spaces . . . . . . . . . . . . . . . . . . 7

1.3.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 A general view: the original concentration-compactness principle . . . . . . . . . . 8
1.3.3 A more specific approach for the H1 framework . . . . . . . . . . . . . . . . . . . . 10

2 Existence of a minimizer for the Hartree equation without external potential 13
2.1 Notation and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Fundamental properties of the energy functional . . . . . . . . . . . . . . . . . . . 15
2.2.2 The concentration-compactness method in action . . . . . . . . . . . . . . . . . . . 16
2.2.3 Properties of the minimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Appendix A. Proofs from Chapter 1 23

Appendix B. Deriving the Hartree equation as mean-field limit of large systems 27

References 28





Introduction

When we consider a bounded sequence (un)n∈N ⊂ L2(Rd) we usually think of a sequence which converges
to u weakly in L2 but does not converge in the strong topology. For istance, we can think of a sequence
un ⇀ 0 weakly in L2 but such that ∥un∥2L2 = λ > 0 for every n. The four “non compact” typical
behaviours of such a sequence can be summarized in the following:

Example 1a: Vanishing

n−
d
2 u( xn )

Example 1b: Concentration

n
d
2 u(nx)

Example 2a: Translation

u(x− nξ)

Example 2b: Oscillation

u(x)einξ·x

Figure 1: In all of these examples un ⇀ 0 while ∥un∥2L2 = λ for all n.
Here u is a fixed smooth function such that ∥u∥2L2 = λ.

In Example 1a the sequence un spreads out but since the total L2 mass is conserved the local mass goes
to 0. Conversely, in Example 1b the sequence concentrates at one point, i.e. |un|2 converges to a delta
measure in 0. In Example 2a the sequence keeps the same shape for all n, but it runs off away from the
origin. Finally in Example 2b we see that un oscillates so fast that it converges to 0 weakly in L2 by the
Riemann-Lebesgue Lemma.
The disposition of these examples in Figure 1 is not random. First of all, the behaviours on the same
row are dual to each other via the Fourier transform: a sequence which oscillates very fast has a lack
of compactness due to translations in the Fourier space, and vice versa. Similarly, a sequence that
concentrates has a lack of compactness because its Fourier transform vanishes and conversely.
One difference between the two lines is the behaviour with respect to the Lp norms with p ̸= 2: if un
vanishes in the sense of Example 1a we have that ∥un∥Lp → 0 for 2 < p ≤ ∞ and ∥un∥Lp → ∞ for
1 ≤ p < 2, and the reverse happens in the case of a concentrating sequence. On the contrary, in both
Examples 2a and 2b we have that all Lp norms are conserved. This tells us that using information on the
behaviour of Lp norms we can detect vanishing and concentration, but not translation and oscillation.
we will give a more precise statement to this idea in Section 1.2.
There are also crucial differences between examples of the first and second column: Examples 1a and 2a
cannot happen in a bounded domain, hence the non compactness of these examples arises from the non
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compactness of Rd. However, these behaviours are locally compact, which will be one of the key factors
that contributes to the concentration-compactness method functioning.
Another difference between the two columns is the behaviour of the derivatives: in both Examples 1b
and 2b we have that ∥∇un∥L2 → ∞ even in the case of a bounded domain, while in Examples 1a and 2a
as ∥∇un∥L2 is uniformly bounded. In particular, if we already know that the sequence un is bounded in
H1(Rd) we can rule out concentration and oscillation a priori.
It is clear that we can combine these examples however we want: we could, for instance, add two sequences
which present different behaviours or compose them. One such example could be a sequence un which
concentrates to a point xn that is escaping to infinity. It is not obvious that the list of behaviours
we discussed is, in some sense, universal; what we mean by universal is that a non-compact sequence
should, up to a subsequence, be a (possibly infinite) sum of sequences having one or more of the above
behaviours. Several works during the 1980s were presented tackling this problem; we have chosen to
focus on the concentration-compactness principle developed by Lions [8, 9] in 1984. Lions’ main result
was Lemma 1.8, which we chose to state as in the original paper to underline its generality. This Lemma
is very general and admits variants based on the setting; however, if one wants to apply it the underlying
space must be locally compact, as in order for the concentration-compactness method to work we need
the Rellich-Kondrachov Theorem (or something equivalent to it for non-Sobolev spaces). Indeed, one
could say that the concentration-compactness method is an extension to functions defined on the whole
Rd of the usual methods that only work on bounded domains: since we know that our problem can be
solved in bounded domains, we prove that most of the mass does not escape to infinity and conclude. An
example of this reasoning can be found in Appendix B of [1].
In this thesis we review the concentration-compactness method and the profile decomposition in Sobolev
spaces, which allow to study and analyse lack of compactness of (minimizing) sequences in these spaces.
We then apply these tools to prove that the Hartree energy functional without external potential and
L3/2,∞ convolutional potential admits a minimizer with large L2 mass, which was not previously known
in this case. Finally, we apply some classical spectral analysis tools to prove basic properties of the
minimizer.
In Chapter 1 we first present the bubble decomposition of a bounded sequence as proposed in [6]; then,
we study the case where there are no bubbles, and the sequence vanishes in some sense. Finally, we state
the concentration-compactness principle and how to apply it to minimizing sequences in Sobolev spaces.
Next, in Chapter 2, we apply the method developed in the first chapter to the minimization of the Hartree
energy functional without external potential 2.1; after a brief presentation of Lorentz spaces and some
useful inequalities, we prove that the Hartree functional admits a minimizer with large L2 mass, in the
general case, and with positive mass for some specific convolutional potentials. This is done by tweaking
the method presented in the first chapter in a new way to adapt it to a L3/2,∞ potential. Finally, using
elliptic bootstrapping and a theorem for positivity improvement we prove that the minimizer is positive
and smooth. We do not discuss uniqueness, as the concentration-compactness method is a tool fit only
for existence.
In Appendix A we prove two technical statements from Chapter 1; to do so, we use standard calculus tools
and we introduce the Levy concentration functions [5]. In Appendix B we give an heuristic explanation
of the mathematical and physical importance of the Hartree functional.
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1 Motivations and formulations of the concentration-compactness
method

In this chapter we will briefly analyse how a sequence u = (un)n∈N bounded in L2(Rd) can behave up
to subsequences; in particular, we will be interested in when u exhibits a lack of compactness. Then, we
will use these results to state the concentration-compactness principle in the H1(Rd) framework and see
how it can be used to prove the relative compactness of minimizing sequences for energy problems. Our
main references for this chapter will be [6] and [8].
Throughout the following two sections, we will always consider the case d ≥ 3 during the proofs, since
all computations are easier to follow in this case but the geist of the proofs stays the same.

1.1 Defining and extracting bubbles

The first problem we are interested in studying is the detection of pieces of mass which retain their shape
and possibly escape to infinity, like in Example 2a. To this aim, we consider all possible limits (up to
translations) of subsequences of u and define the maximum L2 mass that these limits can have.

Definition 1.1. Let u = (un)n∈N be a bounded sequence in L2(Rd) (resp. H1(Rd)). We define

m(u) = sup

{︃∫︂
Rd

|u|2 : ∃(xk)k∈N ⊂ Rd, unk
(·+ xk)⇀ u weakly in L2(Rd) (resp. H1(Rd))

}︃
. (1.1)

First of all, notice that for every sequence of translation x ⊂ Rd we have m(u) = m(u(·+x)). Moreover,
for every subsequence u′ of u we have m(u′) ≤ m(u). However, there does not necessarily exist a u ∈ L2

realizing the supremum in (1.1), that is u such that unk
(·+ xk)⇀ u with ∥u∥2L2 = m(u). Indeed, letting

ψn(x) = n−d/2
√︂

1− 1
nu(x/n) for some fixed u ∈ L2(Rd) and defining un as follows

u1 = ψ1,

u2 = ψ1, u3 = ψ2

u4 = ψ1, u5 = ψ2, u6 = ψ3

u7 = ψ1, ...

one can easily verify that m(u) = ∥u∥2L2 but there is no subsequence which weakly converges (up to
translations) to u.

Example 1.2. We compute m(u) for the examples in Figure 1. We start from Example 1a: fix u ∈
L2(Rd), and let un(x) = n−d/2u( xn ); for every sequence of translations (xn)n∈N such that un(·+ xn)⇀ v
weakly in L2 (up to subsequences) we have that for every φ ∈ L2∫︂

Rd

vφ = lim
n→∞

∫︂
Rd

un(x+ xn)φ(x) dx =

∫︂
Rd

un(x)φ(x− xn) dx = lim
n→∞

n−d/2

∫︂
Rd

u(
x

n
)φ(x− xn) dx

= lim
n→∞

nd/2
∫︂
Rd

u(x)φ(nx− xn) dx = lim
n→∞

∫︂
Rd

u(x)[nd/2φ(nx− xn)] dx = 0

since nd/2φ(nx− xn)⇀ 0 (it is a combination of Examples 1b and 2a). We’ve proved that∫︂
Rd

vφ = 0 for every φ ∈ L2(Rd),

so we have v = 0. This proves that for Example 1a m(u) = 0.
Following this line of reasoning one can tackle Examples 1b and 2b.
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To tackle Example 2a we have to use a different strategy: using the sequence of translations xn = nξ
we have that un(x + xn) = u(x − nξ + nξ) = u(x), for every x ∈ Rd, so un(· + xn) → u strongly
(and in particular weakly) in L2, hence m(u) ≥ ∥u∥2L2 . Next, since ∥ · ∥L2 is weakly lowersemicontinous
we also have that for every sequence of translations (xn)n∈N such that un(· + xn) ⇀ v weakly in L2

∥v∥L2 ≤ lim inf
n→∞

∥un(· + xn)∥L2 = lim inf
n→∞

∥un∥L2 = ∥u∥L2 , hence m(u) ≤ ∥u∥2L2 . In conclusion, we have

that for Example 2a m(u) = ∥u∥2L2 .

If our sequence u is bounded in H1(Rd) we can give the following equivalent definition of m(u):

Lemma 1.3. For every bounded sequence u = (un)n∈N in H1(Rd) we have

m(u) = lim
R→∞

lim sup
n→∞

sup
x∈Rd

∫︂
BR(x)

|un|2, (1.2)

where BR(x) denotes the ball of radius R > 0 centered in x ∈ Rd.

We will provide a proof of this statement in the Appendix.

The purpose of m(u) is to detect the largest piece of mass in the sequence u; this piece of mass can escape
to infinity if |xk| → ∞. Indeed, if m(u) > 0 one can find a subsequence unk

, translations (xk)k∈N ⊂ Rd

and 0 ̸= u ∈ L2(Rd) such that unk
(·+ xk)⇀ u weakly in L2 and 0 <m(u)− ϵ ≤ ∥u∥2L2 ≤ m(u).

We have found the first “bubble” u; we could go on and try to find the next one by considering rk =
unk

− u(· − xk) and the corresponding m(r). Proceeding by induction, we could find all the bubbles
contained in the original sequence u, as shown in the following

Lemma 1.4 (Extracting Bubbles). Let u = {un}n∈N be a bounded sequence in L2(Rd) (resp. H1(Rd)).
Then there exists a sequence of functions {u(1), u(2), ...} in L2(Rd) (resp. H1(R)d) such that the following
holds:
For any ϵ > 0 fixed, there exists

• J ∈ N,

• A subsequence (unk
)k∈N of u,

• space translations (x
(j)
k )k≥1 ⊂ Rd, j = 1, ..., J such that |x(j)k − x

(j′)
k | k→∞−−−−→ ∞ for j ̸= j′,

such that

unk
=

J∑︂
j=1

u(j)(· − x
(j)
k ) + r

(J+1)
k (1.3)

where r
(J+1)
k (·+ x

(j)
k )

k→∞−−−−⇀ 0 weakly in L2(Rd) (resp. H1(R)d) for all j = 1, ..., J and m(r(J+1)) ≤ ϵ.
In particular, we have

unk
(·+ x

(j)
k )⇀ u(j) weakly in L2(Rd)(resp. H1(Rd))

and

lim
k→∞

(︁
∥unk

∥2L2 − ∥rJ+1
k ∥2L2

)︁
=

J∑︂
j=1

∥u(j)∥2L2 . (1.4)

Moreover, if the sequence u is also bounded in H1(R)d we have

lim
k→∞

(︁
∥∇unk

∥2L2 − ∥∇rJ+1
k ∥2L2

)︁
=

J∑︂
j=1

∥∇u(j)∥2L2 (1.5)
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and

lim
k→∞

(︁
∥unk

∥pLp − ∥rJ+1
k ∥pLp

)︁
=

J∑︂
j=1

∥u(j)∥pLp (1.6)

for every subcritical p, i.e. 2 ≤ p ≤ 2∗, 2∗ = ∞ for d = 1, 2 and 2∗ = 2d
d−2 for d ≥ 3.

The bubbles u(j) are the possible weak limits of subsequences of u up to the translations x
(j)
k . What

(1.3) is telling us is that we can decompose u as a linear combination of these limits (translated in space)

up to the reminder r
(J+1)
k . This reminder is not necessarily small in L2-norm, because it can still have

other compactness issues; however, we know that its maximal local mass is small. Let us also remark
that the bubbles u(j) do not depend on the choice of ϵ: they can be constructed a priori for any sequence

u. However, the choice of ϵ influences the number of bubbles J , the translations x
(j)
k and the choice of

subsequence unk
.

Proof of Lemma 1.3. Let Let u = {un}n∈N be a bounded sequence in L2(Rd) (resp. H1(Rd)). We can
assume that m(u) > 0, otherwise there would be nothing to prove. Then, there exist a subsequence

unk
, translations (xk)k∈N ⊂ Rd and u(1) ∈ L2(Rd), u(1) ̸= 0 such that m(u)

2 ≤
∫︁
Rd |u(1)|2 ≤ m(u)

and unk
(· + x

(1)
k )

k→∞−−−−⇀ u(1) weakly in L2 (resp. H1). We define r
(2)
k := unk

− u(1)(· − x
(1)
k ), so that

r
(2)
k (·+ x

(1)
k )⇀ 0 weakly in L2 (resp. H1). Moreover,

∥unk
∥2L2 = ∥u(1)(· − x

(1)
k )∥2L2 + ∥r(2)k ∥2L2 + 2ℜ

⟨︂
r
(2)
k , u(1)(· − x

(1)
k )
⟩︂
L2
.

Next, since ∥u(1)(· − x
(1)
k )∥2L2 = ∥u(1)∥2L2 and

⟨︂
r
(2)
k , u(1)(· − x

(1)
k )
⟩︂
L2

=
⟨︂
r
(2)
k (·+ x

(1)
k ), u(1)

⟩︂
L2

→ 0 by

the weak convergence of r
(2)
k , we conclude that

lim
k→∞

(︂
∥unk

∥2L2 − ∥r(2)k ∥2L2

)︂
= ∥u(1)∥2L2 .

If u is bounded also in H1, reasoning in the same way we get in addition

∥∇unk
∥2L2 = ∥∇u(1)(· − x

(1)
k )∥2L2 + ∥∇r(2)k ∥2L2 + 2ℜ

⟨︂
∇r(2)k ,∇u(1)(· − x

(1)
k )
⟩︂
L2

that we use to conclude
lim
k→∞

(︂
∥∇unk

∥2L2 − ∥∇r(2)k ∥2L2

)︂
= ∥∇u(1)∥2L2 .

Now, if m(r(2)) = 0 we are done. If not, we can find a further subsequence nkl
, other space translations

and u(2) ∈ L2, u2 ̸= 0 such that r
(2)
kl

(· + x
(2)
l ) ⇀ u(2). We also extract a further subsequence unkl

and

x
(1)
kl

. For ease of notation, we will only index further subsequences with the index k. We can can then

write unk
= u(1)(· − x

(1)
k ) + u(2)(· − x

(2)
k ) + r

(3)
k with r

(3)
k (·+ x

(2)
k )⇀ 0.

Now, we prove that |x(1)k − x
(2)
k | → ∞: by contradiction, if x

(1)
k − x

(2)
k is bounded in Rd, then there exists

v ∈ Rd such that, up to a subsequence, x
(1)
k − x

(2)
k → v. Next, unk

(·+ x
(1)
k )⇀ u(1) + u(2)(·+ v) because

r
(3)
k (· + x

(1)
k ) = r

(3)
k (· + v + x

(2)
k ) ⇀ 0 by the weak convergence of r

(3)
k . Since unk

(· + x
(1)
k ) ⇀ u(1) by

construction, this would imply that u(2) = 0, which is not the case.

Now, r
(3)
k (· + x

(1)
k ) = unk

(· + x
(1)
k ) − u(1) − u(2)(· + x

(1)
k − x

(2)
k ) ⇀ 0 since unk

(· + x
(1)
k ) ⇀ u(1) and

u(2)(· − (x
(2)
k − x

(1)
k ))⇀ 0 because |x(1)k − x

(2)
k | → ∞.

Finally, we could apply the same reasoning as before to get

lim
k→∞

(︂
∥∇unk

∥2L2 − ∥∇r(2)k ∥2L2

)︂
= ∥∇u(1)∥2L2 + ∥∇u(2)∥2L2 .
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We could repeat this process until we reach a remainder rJ+1
k such that m(r(J+1)) = 0; if that is not

reached, we continue and construct u(j) and rj for every j ∈ N. Moreover, this construction satisfies

lim
k→∞

(︁
∥unk

∥2L2 − ∥rJ+1
k ∥2L2

)︁
=

J∑︂
j=1

∥u(j)∥2L2

for every J ∈ N. In particular,
∑︂
j∈N

∥u(j)∥2L2 ≤ lim sup
n→∞

∥un∥2L2 <∞, therefore ∥u(j)∥2L2 → 0 as j → ∞.

In addition, if the sequence is bounded in H1, the construction also satisfies

lim
k→∞

(︁
∥∇unk

∥2L2 − ∥∇rJ+1
k ∥2L2

)︁
=

J∑︂
j=1

∥∇u(j)∥2L2 .

Finally, since by construcion m(rJ+1) ≤ 2
∫︁
Rd |u(j)|2, m(r(J)) → 0 as J → ∞.

To prove (1.6) in the H1 framework, we use two functional analysis tools: the Rellich-Kondrachov The-
orem, which states that if un ⇀ u weakly in H1 then up to a subsequence un → u strongly in Lp

loc for
every 2 ≤ p < 2∗ and almost everywhere, and the Brezis-Lieb Lemma, which states that if un → u almost

everywhere, then lim
n→∞

(︃∫︂
Rd

|un|p −
∫︂
Rd

|u− un|p
)︃

=

∫︂
Rd

|u|p for every p ≥ 1.

First, unk
(· + x

(1)
k ) ⇀ u(1) weakly in H1, so up to a subsequence unk

(· + x
(1)
k ) → u(1) in L2 and almost

everywhere. In turn, this implies that∫︂
Rd

|u(1)|p = lim
k→∞

(︃∫︂
Rd

|unk
(x+ x

(1)
k )|p dx−

∫︂
Rd

|u(1)(x)− unk
(x+ x

(1)
k )|p dx

)︃
= lim

k→∞

(︃∫︂
Rd

|unk
|p −

∫︂
Rd

|unk
(x)− u(1)(x− x

(1)
k )|p dx

)︃
= lim

k→∞

(︃∫︂
Rd

|unk
|p −

∫︂
Rd

|unk
(x+ x

(2)
k )− u(1)(x− (x

(1)
k − x

(2)
k ))|p dx

)︃
.

Since unk
(·+x(2)k )⇀ u(2) and u(1)(·−(x

(1)
k −x(2)k ))⇀ 0 weakly in H1, we can repeat this argument to get

lim
k→∞

(︃∫︂
Rd

|unk
|p −

∫︂
Rd

⃓⃓⃓
unk

(x+ x
(2)
k )− u(1)(x− (x

(1)
k − x

(2)
k )− u(2)(x)

⃓⃓⃓p
dx

)︃
=

∫︂
Rd

⃓⃓⃓
u(1)

⃓⃓⃓p
+

∫︂
Rd

⃓⃓⃓
u(2)

⃓⃓⃓p
.

The same reasoning can be applied J times to finally get

lim
k→∞

(︁
∥unk

∥pLp − ∥rJ+1
k ∥pLp

)︁
=

J∑︂
j=1

∥u(j)∥pLp .

Notice that all the terms are well defined because H1(Rd) ⊂ Lp(Rd) for every 2 ≤ p ≤ 2∗.

As we will see in Section 2.2, sometimes it is useful to “isolate” the bubbles; this means writing unk

as a sum of “localized bubbles” u
(j)
k with compact support such that u

(j)
k → u(j) strongly and the

distance between the supports diverges. This is more in spirit of Lions’ original concentration-compactness
principle seen in [8]; it is not always useful in the L2 or H1 framework, but it is the preferred technique
in other spaces, in particular non-Hilbert ones. In our setting we provide the following theorem, which
we will prove in the Appendix.

Theorem 1.5 (Extracting localized bubbles). Let u = (un)n∈N be a bounded sequence in H1(Rd) and
(u(j))j∈N ⊂ H1(Rd) be the sequence given by Lemma 1.4. For any ϵ > 0 and any fixed sequence 0 ≤
Rk

k→∞−−−−→ ∞, there exist

4



• 0 ≤ J ∈ N,

• a subsequence (unk
)k∈N,

• sequences of functions u(1) = (u
(1)
k )k∈N,...,u

(J) = (u
(J)
k )k∈N, ψ

(J+1) = (ψ
(J+1)
k )k∈N in H1(Rd),

• space translations x(1) = (x
(1)
k )k∈N,...,x

(J) = (x
(J)
k )k∈N in Rd,

such that

lim
k→∞

⃦⃦⃦⃦
⃦⃦unk

−
J∑︂

j=1

u
(j)
k (· − x

(j)
k )− ψ

(J+1)
k

⃦⃦⃦⃦
⃦⃦
H1(Rd)

= 0 (1.7)

where

• u
(j)
k converges to u(j) weakly in H1(Rd) and strongly in Lp(Rd) for all 2 ≤ p < 2∗;

• supp(u
(j)
k ) ⊂ BRk

(0) for all j = 1, ..., J and all k;

• supp(ψ
(J+1)
k ) ⊂ Rd\

⋃︁J
j=1B2Rk

(x
(j)
k ) for all k;

• |x(i)k − x
(j)
k | ≥ 5Rk for all i ̸= j and all k;

• m(ψ(J+1)) ≤ ϵ.

We remark that ψ(J+1) is different from r(J+1) defined in Lemma 1.4, even though they behave essentially
the same in the limit k → ∞. Once again, ψ(J+1) is not necessarily small in L2 norm, since it can still
undergo vanishing, but we know that it does not contain local mass larger than ϵ.
Even though we cannot say anything of the L2 masses of both r(J+1) and ψ(J+1), we can say something
about their subcritical norms (provided (un)n∈N is bounded in H1): indeed, at the end of section 1.2 we
will prove the following

Lemma 1.6. Let u = (un)n∈N be a bounded sequence in H1(Rd). There exists a constant C depending
only on d such that

lim sup
n→∞

∫︂
Rd

|un|2+
4
d ≤ Cm(u)

2
d lim sup

n→∞
∥un∥2H1(Rd). (1.8)

Using Lemma 1.6 and Hölder’s inequality we have that for every 2 < p < 2∗

∥r(J+1)
n ∥Lp ≤ ∥r(J+1)

n ∥θL2∥r(J+1)
n ∥1−θ

L2+4/d ≲ m(r(J+1))
2−2θ

d if 2 < p < 2 +
4

d
,
1

p
=
θ

2
+

1− θ

2 + 4/d
,

∥r(J+1)
n ∥Lp ≤ ∥r(J+1)

n ∥θL2+4/d∥r(J+1)
n ∥1−θ

2∗ ≲ m(r(J+1))
2θ
d if 2 +

4

d
< p < 2∗,

1

p
=

θ

2 + 4/d
+

1− θ

2∗
,

and similarly for ψ(J+1). This means that we can make the subcritical norms of the remainders r(J+1)

and ψ(J+1) as small as we want, provided we take J large enough.

1.2 Vanishing sequences and subcritical Lp norms

In the previous section we have defined the highest mass that the weak limits can have up to translations;
then, by Lemma 1.4 we proved that any bounded sequence in L2(Rd) can be written as a linear com-
bination of “bubbles” plus a remainder r(J+1) such that m(r(J+1)) is small. If we continue this process
indefinetly, we are essentially left with a remainder r(∞) such that m(r(∞)) = 0. Motivated by our earlier
remarks on Lp norms in the examples of Figure 1, we proceed in studying what happens when m(u) = 0
under the additional hypothesis of boundedness in H1(Rd),
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Lemma 1.7 (Vanishing). Let u = (un)n∈N be a bounded sequence in H1(Rd). Then the following are
equivalent:

1. m(u) = 0;

2. For all R > 0, we have lim
n→∞

sup
x∈Rd

∫︂
BR(x)

|un|2 = 0;

3. un → 0 strongly in Lp for all 2 < p < 2∗.

Proof of Lemma 1.7. .
(1)⇒(2): We start by proving that

lim sup
n→∞

sup
z∈Zd

∫︂
Cz

|un|2 ≤ m(u) (1.9)

with Cz =

d∏︂
j=1

[z(j), z(j+1)); here we used the notation Rd ∋ z = (z(1), ..., z(d)). Consider a sequence

(zn)n∈N ⊂ Rd such that lim
n→∞

∫︂
Czn

|un|2 = lim sup
n→∞

sup
z∈Zd

∫︂
Cz

|un|2. Then, the sequence un(· + zn) is

bounded in H1, so up to a subsequence it converges to u weakly in H1(Rd) and strongly in L2(C0). Next,
since u is the weak limit of (un)n∈N up to the translations (zn)n∈N we have

lim
n→∞

∫︂
Czn

|un|2 = lim
k→∞

∫︂
C0

|unk
(x+ znk

)|2 dx =

∫︂
C0

|u|2 ≤
∫︂
Rd

|u|2 ≤ m(u)

which proves our claim.

Next, from (1.9) and the hypothesis (1) we get that lim sup
n→∞

sup
z∈Zd

∫︂
Cz

|un|2 = 0. Finally, since every ball

BR(x) ⊂ Rd can be covered by finitely many unitary cubes C
(x,R)
z1 , ..., C

(x,R)
zk , we get

lim sup
n→∞

sup
x∈Rd

∫︂
BR(x)

|un|2 ≤
k∑︂

j=1

lim sup
n→∞

sup
x∈Rd

∫︂
C

(x,R)
zj

|un|2 ≤ k lim sup
n→∞

sup
z∈Zd

∫︂
Cz

|un|2 = 0.

(2)⇒(3): First, we prove that

lim sup
n→∞

∫︂
Rd

|un|2+
4
d ≤ C

(︃
lim sup
n→∞

sup
z∈Zd

∫︂
Cz

|un|2
)︃ 2

d

lim sup
n→∞

∥un∥2H1(Rd). (1.10)

By Hölder’s inequality∫︂
Rd

|un|q =
∑︂
z∈Zd

∫︂
Cz

|un|q ≤
∑︂
z∈Zd

∥un∥qθL2
Cz

∥un∥q(1−θ)

L2∗ (Cz)
with

1

q
=
θ

2
+

1− θ

2∗
.

Choosing q = 2 + 4
d , we have q(1− θ) = 2 and qθ = 4

d . Notice that with this choice we have 2 < q < 2∗.
Combining this with the Sobolev embedding inequality ∥un∥2L2∗ (Cz)

≤ C∥un∥2H1(Cz)
we get∫︂

Rd

|un|2+4/d ≤ C( sup
z∈Zd

∥un∥L2(Cz))
4
d

∑︂
z∈Zd

∥un∥H1(Cz) = C( sup
z∈Zd

∥un∥L2(Cz))
4
d ∥un∥H1(Rd)

because the constant C depends only on the volume of the d-dimensional cube. Passing to the limsup
n → ∞ and recalling that the limsup of a product of non negative sequences is not greater than the
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product of the limsups of the sequences, we deduce our claim.
Then, by (1.10) and the hypothesis (2), we have that ∥un∥L2+4/d → 0. Recalling that by Sobolev embed-
ding (un)n∈N is bounded in both L2 and L2∗ , we end using Hölder inequality in two different ways:

∥un∥Lp ≤ ∥un∥θL2∥un∥1−θ
L2+4/d if 2 < p < 2 +

4

d
with

1

p
=
θ

2
+

1− θ

2 + 4/d
;

∥un∥Lp ≤ ∥un∥θL2+4/d∥un∥
1−θ
L2∗ if 2 +

4

d
< p < 2∗ with

1

p
=

θ

2 + 4/d
+

1− θ

2∗
.

(3)⇒(1): Let (xnk
)k∈N such that unk

(·+ xnk
) ⇀ u weakly in H1 and strongly in Lp, 2 < p < 2∗. Since

∥unk
(·+xnk

)∥Lp = ∥unk
∥Lp → 0 we have that unk

→ 0 strongly in Lp so by uniqueness of the weak limit
u = 0. Since every weak limit of subsequences of u up to translations is 0, then m(u) = 0.

Notice that the hypothesis u bounded in H1 and not only in L2 is really necessary: in Examples 1b and
2b we have m(u) = 0 but both (2) and (3) fail.

Finally, notice that the proof of Lemma 1.6 is a direct consequence of our proof of Lemma 1.7: indeed
combining (1.9) and (1.10) we get

lim sup
n→∞

∫︂
Rd

|un|2+
4
d ≤ Cm(u)

2
d lim sup

n→∞
∥un∥2H1(Rd).

1.3 The concentration compactness method in Hilbert spaces

The concentration-compactness principle was first stated by Lions in [8, 9]; we will briefly discuss his
results and then focus on [6], which provides a more structured approach to the matter.
The concentration-compactness principle is a method which can be used to prove the compactness of
sequences u = (un)n∈N (possibly up to translations); in particular, we are interested in applying it to
minimizing sequences for variational problems. It is important to note that applying this method does not
consist in merely checking the hypothesis of some abstract theorem; one has to adapt a general strategy
to each practical case.
The main idea is to prove the compactness of u by showing that it must stay “concentrated”, meaning
that it does not split in two or more bubbles and it does not vanish. In practice, this is done proving
that if the sequence is not compact then the energy is too high.

1.3.1 Setting

Let E be an energy functional on H1(Rd), which is bounded from below, continous and coercive on

S≤λ =

{︃
u ∈ H1(Rd) :

∫︂
Rd

|u|2 ≤ λ

}︃
.

Letting

Sλ =

{︃
u ∈ H1(Rd) :

∫︂
Rd

|u|2 = λ

}︃
,

we are interested in the minimization problem

I(λ) = inf
u∈Sλ

E(u). (Mλ)

We always assume that I(0) = 0.
To deal with vanishing and splitting (or, as Lions calls it, dichotomy) we introduce two auxiliary fun-
cionals, together with corresponding minimization problems:
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• To deal with vanishing, we define Evan which is the original energy E to which we remove all the
“subcritical terms”, i.e. all terms that go to 0 when un → 0 in Lp(Rd) for 2 < p < 2∗. Then, we
define

Ivan(λ) = inf
u∈Sλ

Evan(u) = inf
u=(un)⊂Sλ

m(u)=0

lim inf
n→∞

E(un) (Mvan
λ )

In most applications, Evan only contains the gradient terms of E .

• To deal with dichotomy, we define a “problem at infinity”: we consider E∞, which is the original
energy E to which we remove all the compact terms that converge to 0 when un ⇀ 0 weakly in
H1(Rd) without assuming a priori that un → 0 in Lp(Rd). Then, we define

I∞(λ) = inf
u∈Sλ

E∞(u) = inf
(un)⊂Sλ
un⇀0

lim inf
n→∞

E(un) (M∞
λ )

In most examples, E∞ consists in the translation-invariant terms of E and the ones which admit a
“limit at infinity”.

Notice that I∞(λ) ≤ Ivan(λ). Moreover, if the initial problem (Mλ) is translation invariant we have
I∞(λ) = I(λ).

1.3.2 A general view: the original concentration-compactness principle

In this section we adapt to our setting what Lions discusses in [8]; there one can find a general method
for functionals defined on Hilbert and Banach spaces.
First of all, one can always prove that

I(λ) ≤ I(α) + I∞(λ− α) for every 0 ≤ α < λ.

We give an heuristic proof of why this inequality holds: let ϵ > 0 and uϵ, vϵ such that{︄
I(α) ≤ E(uϵ) ≤ I(α) + ϵ, ∥uϵ∥2L2 = α

I∞(λ− α) ≤ E∞(vϵ) ≤ I∞(λ− α) + ϵ, ∥vϵ∥2L2 = λ− α

Without loss of generality uϵ and vϵ have compact support. For a fixed unit vector ξ ∈ Rd we define

v
(n)
ϵ = vϵ(·+ nξ), so that dn := dist(supp(uϵ), supp(v

(n)
ϵ )) → ∞. Hence we deduce{︄

∥uϵ + v
(n)
ϵ ∥2L2 − (∥uϵ∥2L2 + ∥v(n)ϵ ∥2L2) → 0

E(uϵ + v
(n)
ϵ )− (E(uϵ) + E∞(v

(n)
ϵ )) → 0

and since E∞ is translation invariant{︄
I(α) + I∞(λ− α) ≤ lim

n
E(uϵ + v(n)ϵ ) = lim

n
(E(uϵ) + E(v(n)ϵ )) ≤ I(α) + I∞(λ− α) + 2ϵ

∥uϵ∥2L2 + ∥v(n)ϵ ∥2L2 → λ

so we conclude
I(λ) ≤ I(α) + I∞(λ− α) + 2ϵ.

We now describe the typical results that we can obtain using the concentration-compactness principle: in
the case where E is not translation-invariant we have that for every fixed λ > 0 all minimizing sequences
of (Mλ) are relatively compact if and only if

I(λ) < I(α) + I∞(λ− α) for every 0 ≤ α < λ. (C1)
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In the translation-invariant case, where (Mλ) and (M∞
λ ) are equivalent, we have that for every fixed λ > 0

all minimizing sequences of (Mλ) are relatively compact (up to translations) if and only if

I(λ) < I(α) + I(λ− α) for every 0 ≤ α < λ (C2)

since in this case I(α) = I∞(α) for every 0 < α ≤ λ. The fact that the condition (C1) (resp. (C2)) is
necessary is a consequence of the argument we just used: for instance, if for some 0 < α < λ

I(λ) = I(α) + I(λ− α)

and we denote with un, vn minimizing sequences with compact supports of (Mα) and (Mλ−α) respec-
tivly, letting ṽn = vn(· + nξ) we have that wn = un + ṽn cannot be relatively compact. Indeed, since
dist(supp(un), supp(vn)) → ∞ we can find χn ∈ C∞

C (Rd) such that
∫︁
Rd wnχn = 0. However, we also find

that {︄
∥wn∥2L2 → λ

E(wn) = lim
n
(E(un) + E(vn)) → I(λ)

hence wn is a non relatively compact minimizing sequence.
We now give an heuristic argument for proving that (C1) (resp. (C2)) is sufficient to ensure the relative
compactness of the minimizing sequences. The argument will be based on the following Lemma, which
admits variants based on the setting:

Lemma 1.8 (Concentration-compactness Lemma). Let (ρn)n∈N ⊂ L1(Rd) such that ∥un∥L1 = λ where
λ > 0 is fixed. Then there exists a subsequence (ρnk

)k∈N such that one of the following three possibilities
occurs:

1. (Compactness) There exists (yk)k∈N ⊂ Rd such that for every ϵ > 0 exists 0 < R <∞ such that∫︂
BR(yk)

ρnk
≥ λ− ϵ; (1.11)

2. (Vanishing) For every 0 < R <∞

lim
k→∞

sup
y∈Rd

∫︂
BR(y)

ρnk
= 0; (1.12)

3. (Dichotomy) There exists 0 < α < λ such that for every ϵ > 0 there exists k0 ∈ N and 0 ≤
ρ
(1)
k , ρ

(2)
k ∈ L1(Rd) such that for every k ≥ k0⎧⎪⎨⎪⎩

∥ρnk
− (ρ

(1)
k + ρ

(2)
k )∥L1) ≤ ϵ

|∥ρ(1)k ∥L1 − α| < ϵ, |∥ρ(2)k ∥L1 − (λ− α)| < ϵ

dist(supp(ρ
(1)
k ), supp(ρ

(2)
k )) → ∞

(1.13)

The proof of this Lemma uses the Levy concentration functions we will introduce in the proof of Theorem
1.5; one can find it in [8].

We apply Lemma 1.8 to a minimizing sequence for (Mλ) with ρn = |un|2 and find a subsequence (unk
)k∈N

such that (1), (2) or (3) occurs. We then have to rule out possibilities (2) and (3):
First of all, (2) cannot occur since by (C1) I(λ) < I∞(λ) and ∥un∥2L2 = λ. Then, if (3) occurs we can

split un as we split ρnk
and find, for all ϵ > 0, u

(1)
k , u

(2)
k ∈ H1(Rd) such that{︄

|∥u(1)k ∥2L2 − α| < ϵ, |∥u(2)k ∥2L2 − (λ− α)| < ϵ, ∥vk∥2L2 < ϵ

dist(supp(u
(1)
k ), supp(u

(2)
k )) → ∞
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Since we can exchange α and λ− α, we can assume that lim
k
(E(u(2)k )− E∞(u

(2)
k )) ≥ 0, and we obtain

I(λ) = lim
k

E(unk
) ≥ lim

k
(E(u(1)k ) + E∞(u

(2)
k ))− δϵ ≥ I(α− ϵ) + I∞(λ− α− ϵ)− δϵ

and sending ϵ to 0 we obtain
I(λ) ≥ I(α) + I∞(λ− α)

which contradicts (C1). To conclude in the case where E is not translation invariant, one should also
check that once we are reduced to (1), we do not have |yk| → ∞.
We once again remark that the argument we’ve presented is not at all rigorous, it will have to be adapted
and perfected in each practical case.
It is also important to notice that in order to be able to apply this method a lot of assumptions on the
energy E are required: this is because we need our problem to be solvable by “usual” arguments (like
convexity-compactness) if it was posed in a bounded domain instead of the whole space. Then, the role
of (C1) (resp. (C2)) is to ensure that when we utilize Lemma 1.8 cases (2) and (3) cannot occur, so that
we can reduce our problem to the case of a bounded domain.

1.3.3 A more specific approach for the H1 framework

In this section we utilize the tools of Sections 1.1 and 1.2 to get a more precise procedure to follow when
we want to use the concentration-compactness method for bounded sequences in H1(Rd). Our main
reference for this part is [6].
The main idea of this method is to study what happens to the minimizing sequences when they undergo
vanishing or splitting and find out how the total energy behaves in these cases.
We start by proving the energetic inequalities

I(λ) ≤ I(λ− α) + I∞(α) for all 0 ≤ α ≤ λ (1.14)

and
I(λ) ≤ I(λ− α) + Ivan(α) for all 0 ≤ α ≤ λ (1.15)

The proof of these inequalities usually follows a similar blueprint to what we’ve discussed in the previous
section. Then, since we always assume I(0) = Ivan(0) = I∞(0) we get that

I(λ) ≤ I∞/van(λ) for every λ

For translation-invariant functionals we always have E∞ = E ; in these cases the best we can do is to
prove relative compactness up to translations. We start by explaining what to do in this case:
The first thing to do is to rule out vanishing, usually by proving that

I(λ) = I∞(λ) < Ivan(λ) for all λ > 0 (1.16)

Unlike our first energetic inequalities, there is no general blueprint to prove this strict one; in the example
we give below, the argument is based on how the different terms of E(u) scale when we scale u. It is worth
mentioning that (1.16) is not the only way to rule out vanishing: by Lemma 1.7, if we already know that
the subcritical norms of un do not go to 0 we know that m(u) > 0, so vanishing does not occur.
Now, by definition of m(u) we know that there exist a subsequence (still denoted with un for ease of

notation), 0 ̸= u(1) ∈ H1(Rd) and (x
(1)
n )n∈N ⊂ Rd such that un(·−x(1)n )⇀ u(1) in H1(Rd). Using Lemma

1.4 we write un(· − x
(1)
n ) = u(1) + r

(2)
n and prove that

E(un) = E(un(· − x(1)n )) = E(u(1)) + E(r(2)n ) + on(1) (1.17)
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using properties (1.4), (1.5), (1.6) or other similar results, for other kinds of terms in the energy E .
Defining

λ(1) :=

∫︂
Rd

|u(1)|2 > 0

we remark that by (1.4) ∫︂
Rd

|r(2)n |2 → λ− λ(1).

Using that

E(r(2)n ) ≥ I

(︃∫︂
Rd

|r(2)n |2
)︃

and passing to the limit n→ ∞ (here we use the continuity of λ ↦→ I(λ)) we get

I(λ) = E(u(1)) + I(λ− λ(1)) ≥ I(λ(1)) + I(λ− λ(1))

which together with (1.14) gives

I(λ) = E(u(1)) + I(λ− λ(1)) = I(λ(1)) + I(λ− λ(1)).

This in particular implies that u(1) is a minimizer for (Mλ(1)) and that E(r(2)n ) → I(λ−λ(1)), i.e. (r(2)n )n∈N
is a minimizing sequence for (Mλ−λ(1)).
If we already know that

I(λ) < I(λ− α) + I(α) for all 0 < α < λ (1.18)

we conclude (since λ(1) > 0) that λ = λ(1) and so u(1) is the sought minimizer of (Mλ).
In practice, proving (1.18) may be difficult without knowing more information on I(α) and I(λ− α). In
the example provided in Section 2.2, to get this strict inequality we once again take advantage of the
scaling properties of the Hartree energy functional through the application of the following

Lemma 1.9. Let h ; [0, λ] → R such that for every x ∈ (0, λ) and every θ ∈ (1, λx ) h(θx) < θh(x). Then
h(λ) < h(x) + h(λ− x) for every 0 < x < λ.

Proof. If, x ≥ λ− x, we have

h(λ) = h(
λ

x
x) <

λ

x
h(x) = h(x) +

λ− x

x
h(x) = h(x) +

λ− x

x
h(

x

λ− x
(λ− x)) < h(x) + h(λ− x).

Conversely, if λ− x ≥ x just exhange x and λ− x in the previous computation.

More generally, one possible strategy consists in extracting more bubbles and apply the previous argument

to r(2) = (r
(2)
n )n∈N, which we know to be a minimizing sequence for I(λ−λ(1)) (assuming that λ(1) < λ):

by (1.16) r(2) cannot vanish, so there exists 0 ̸= u(2) ∈ H1(Rd) and x
(2)
n such that un(·+x(2)n )⇀ u(2) (up

to a subsequence). As before, we can prove that u(2) is a minimizer for Mλ(2) , where λ(2) :=
∫︁
Rd |u(2)|2 > 0.

Moreover, we can write r
(2)
n (·−x(2)n ) = u(2)+ r

(3)
n and r(3) is a minimizing sequence for I(λ−λ(1)−λ(2)).

As a consequence, we get
I(λ) = I(λ(1)) + I(λ(2)) + I(λ− λ(1) − λ(2))

and that I(λ(1)) and I(λ(2)) have u(1) and u(2) as minimizers. Next, by applying (1.14) twice

I(λ) ≤ I(λ(1) + λ(2)) + I(λ− λ(1) − λ(2)) ≤ I(λ(1)) + I(λ(2)) + I(λ− λ(1) − λ(2))

and since the first and last term are equal we have

I(λ(1) + λ(2)) = I(λ(1)) + I(λ(2)).
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To get a contradiction, we have to prove the strict inequality (1.18); we’ve gained that without loss of
generality we can assume that both I(α) and I(λ−α) have minimizers. In practice, one proceeds to put
the minimizers “far away” at a distance R and then study the energy expansion as R→ ∞ to show that
the bubbles must in fact attract each other.

If our functional is not translation-invariant, i.e. E ̸= E∞, we need one more step in the beginning. We
first need to show that

I(λ) < I∞(λ) for all λ > 0,

which implies that a minimizing sequence u = (un)n∈N cannot have a vanishing limit up to subsequences,

i.e. un ⇀ u(1) ̸= 0. Notice that in this first step there is no translation. Then, we write un = u(1) + r
(2)
n

and as before we need to show that the energy splits as

E(un) = E(u(1)) + E∞(r(2)n ) + on(1).

Notice that the second term is E∞ because r
(2)
n ⇀ 0, so the local terms disappear.

Arguing as before we find
I(λ) = I(λ(1)) + I∞(λ− λ(1)).

The rest of the precedure is similar to the translation-invariant case, and the strict inequality one needs
to prove is

I(λ(1) + λ(2)) < I(λ(1)) + I∞(λ(2)),

where both I(λ(1)) and I∞(λ(2)) can be assumed to have minimizers.
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2 Existence of a minimizer for the Hartree equation without
external potential

In this chapter, we will discuss the existence of a minimizer for the Hartree energy functional without
external potential. In particular, we will study the functional

J(u) = ∥∇u∥2L2 −
∫︂
R3

(w ∗ |u|2)(x)|u(x)|2 dx, u ∈ Sλ (2.1)

where 0 ≤ w = w1 + w2 ∈ L∞(R3) + L3/2,∞(R3), w ̸≡ 0 and Sλ = {u ∈ H1(R3) : ∥u∥2L2 = λ}.
This energy functional arises from the study of the stationary states of the Hartree equation

i∂tu = −∆u+ (w ∗ |u|2)u, (HE)

which has many applications in the quantum theory of large systems of non-relativistic bosonic atoms
and molecules. Indeed, HE appears in the study of the mean-field limit of such systems, i. e., of a regime
where the number of bosons is very large, but the interactions between them are weak. We will give an
heuristic explanation of this in Appendix B.

We are interested in finding a minimizer for

I(λ) = inf
u∈Sλ

J(u). (2.2)

In order to do so, we will need the following assumption on w:

Hypothesis 1. The decomposition w = w1 + w2 ∈ L∞(R3) + L
3/2,∞
ϵ (R3) is such that w1(x) → 0 as

|x| → ∞. In more precise terms, for every ϵ > 0 there exist w1,ϵ ∈ L∞ and w2,ϵ ∈ L3/2,∞ such that⎧⎪⎨⎪⎩
w = w1,ϵ + w2,ϵ,

w1,ϵ(x) → 0 as |x| → ∞,

∥w2,ϵ∥L3/2,∞ ≤ ϵ

For example, it is not difficult to verify that for all 0 < α < 2, the potential w(x) = 1
|x|α belongs to

L∞+L
3/2,∞
ϵ . Indeed, setting w2,ϵ =

1|x|≤δϵ

|x|α and w1,ϵ =
1|x|≥δϵ

|x|α with δϵ ≤
(︂
( 3
4π )

2
3 ϵ
)︂ 1

2−α

, we have that w1,ϵ

is bounded and vanishing at infinity, while a direct computation shows that ∥w2,ϵ∥L3/2,∞ ≤ ϵ.

Proving the following theorem will be the main goal of this section; its proof relies mainly on the
concentration-compactness principle stated in Chapter 1, along with some ideas from [8] and [1].

Theorem 2.1. Let 0 ≤ w = w1 + w2 ∈ L∞(R3) + L
3/2,∞
ϵ (R3), w ̸≡ 0 satisfy Hypothesis 1. Then there

exists λ∗ ≥ 0 such that for every λ > λ∗ problem (2.2) has a minimizer u ∈ Sλ, which is smooth and
strictly positive.

We will show that for the specific convolutional potential w = 1
|x|α , 0 < α < 2 we have λ∗ = 0. However,

it is known that for some specific potentials that λ∗ > 0.

We remark that Theorem 2.1 does not answer the question of uniqueness (up to translations) of the
minimizer. There are, however, some results in this direction: E. Lieb [7] has proven uniqueness of the
minimizer up to phases and translations in the case w = 1

|x| .
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2.1 Notation and Preliminaries

In the proofs contained in Section 2.2, we will use some functional inequalities in Lorentz spaces that we
present in this section.

Definition 2.2. For 1 ≤ p < ∞, 1 ≤ q ≤ ∞, we define the Lorentz space Lp,q(Rd) as the set of
(equivalence classes of) measurable functions f : Rd → C such that

∥f∥Lp,q = p1/q∥λ({|f | > t})1/pt∥Lq((0,∞),dt/t)

is finite. Here λ is the Lebesgue measure on Rd.
In particular, for 1 ≤ p <∞

∥f∥Lp,∞ = sup
t>0

(︂
tλ({|f | > t})1/p

)︂
.

Remark 2.3. For 1 ≤ p <∞, 1 ≤ q1 ≤ q2 ≤ ∞, we have Lp,q1 ⊂ Lp,q2 and such embedding is continous.
Moreover, we can identify Lp,p with Lp.

Remark 2.4. For 1 < p <∞, if f ∈ Lp,∞ then for every δ > 0 f1|f |≥δ ∈ Lq ∀ 1 ≤ q < p.

Lemma 2.5 (Hölder Inequality in Lorentz spaces). For 1 ≤ p, p1, p2 <∞, 1 ≤ q, q1, q2 ≤ ∞, there exists
a constant C > 0 such that

∥f1f2∥Lp,q ≤ C∥f1∥Lp1,q1∥f2∥Lp2,q2 ,
1

p
=

1

p1
+

1

p2
,
1

q
=

1

q1
+

1

q2
(2.3)

whenever the right hand side is finite.

Lemma 2.6 (Young Inequality in Lorentz spaces). For 1 < p, p1, p2 <∞, 1 ≤ q, q1, q2 ≤ ∞, there exists
a constant C > 0 such that

∥f1 ∗ f2∥Lp,q ≤ C∥f1∥Lp1,q1∥f2∥Lp2,q2 , 1 +
1

p
=

1

p1
+

1

p2
,
1

q
=

1

q1
+

1

q2
(2.4)

whenever the right hand site is finite. Moreover, for 1 < p <∞, 1 ≤ q ≤ ∞ there exists C > 0 such that

∥f1 ∗ f2∥L∞ ≤ C∥f1∥Lp,q∥f2∥Lp′,q′ ,
1

p
+

1

p′
= 1 =

1

q
+

1

q′
(2.5)

For a proof of these inequalities, see [4].

We also have the following estimates that will be used several times in Section 2.2. The first one is an
obvious application of the usual Hölder and Young inequalities, while the second and third ones are close
to the Hardy-Littlewood-Sobolev inequality but cannot be directly deduced from it. To be more concise,
we introduce the following notation: a ≲ b if and only if there exists C > 0 such that a ≤ Cb. We also

recall the definition of the homogeneous Sobolev space Ḣ
1
(Rd) = {f ∈ D′(Rd) : ∇f ∈ L2(Rd)}.

Lemma 2.7. .

1. Let u1, u2 ∈ L2 and w ∈ L∞. Then

∥w ∗ (u1u2)∥L∞ ≲ ∥w∥L∞∥u1∥L2∥u2∥L2 . (2.6)

2. Let u1, u2 ∈ Ḣ
1
and w ∈ L3/2,∞. Then

∥w ∗ (u1u2)∥L∞ ≲ ∥w∥L3/2,∞∥u1∥Ḣ1∥u2∥Ḣ1 . (2.7)
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Proof. .
(2.6) follows directly from the classical Young and Hölder inequalities:

∥w ∗ (u1u2)∥L∞ ≤ ∥w∥L∞∥u1u2∥L1 ≲ ∥w∥L∞∥u1∥L2∥u2∥L2 .

To prove (2.7), we start applying Young and Hölder inequalities (2.4) and (2.3)

∥w ∗ (u1u2)∥L∞ ≲ ∥w∥L3/2,∞∥u1u2∥L3,1 ≲ ∥w∥L3/2,∞∥u1∥L6,2∥u2∥L6,2 .

Moreover, Ḣ
1
(R3) ⊂ L6,2(R3): indeed,

∥u∥L6,2 ≲ ∥F̄(F(u))∥L6,2 ≲ ∥F(u)∥L6/5,2 = ∥ 1

|k|
|k|F(u)∥L6/5,2 ≲ ∥ 1

|k|
∥L3,∞∥|k|F(u)∥L2,2

≲ ∥∇u∥L2 = ∥u∥
Ḣ

1 ,

where we’ve used (2.3) once more and that

∥ 1

|k|
∥L3,∞ = sup

t>0
[tλ(

1

|k|
> t)

1
3 ] = sup

t>0
[t(

4

3
π
1

t3
)

1
3 ] <∞.

Putting all of this together, we get (2.7).

2.2 Proof of Theorem 2.1

2.2.1 Fundamental properties of the energy functional

In this section we will check the fundamental properties of the functional J required for the application of
the concentration-compactness method as stated in Section 1.3.3, which can be sum up in the following.

Lemma 2.8. Assume that w satisfies Hypothesis 1. Then J is well defined, translation invariant, con-
tinous, bounded from below on H1(R3) and coercive on S≤λ for all λ ≥ 0, where S≤λ = {u ∈ H1(R3) :
∥u∥2L2 ≤ λ}.

Proof. First of all, ∥∇u∥2L2 is finite for every u ∈ H1; then, |
∫︁
R3(w ∗ |u|2)|u|2| ≤ ∥w ∗ |u|2∥L∞∥u∥2L2 and

∥w ∗ |u|2∥L∞ ≤ ∥w1 ∗ |u|2∥L∞ + ∥w2 ∗ |u|2∥L∞ ≲ ∥w1∥L∞∥∥u∥2L2 + ∥w2∥L3/2,∞∥u∥2
Ḣ

1

by (2.6) and (2.7) In conclusion, we have that⃓⃓⃓⃓∫︂
R3

(w ∗ |u|2)|u|2
⃓⃓⃓⃓
≲ (∥w1∥L∞∥u∥2L2 + ∥w2∥L3/2,∞∥u∥2

Ḣ
1)∥u∥2L2 , (2.8)

which allows us to conclude that J is well defined on H1(R3).
Now, we prove that J(u) = J(u(·+ z)) for every z ∈ R3:
Clearly ∥∇u∥2L2 = ∥∇(u(·+ z))∥2L2 ; then,∫︂

R3

(︃∫︂
R3

|u(y + z)|2w(x− y) dy

)︃
|u(x+ z)|2 dx =

∫︂
R3

(︃∫︂
R3

|u(y)|2w(x+ z − y) dy

)︃
|u(x+ z)|2 dx

=

∫︂
R3

(︃∫︂
R3

|u(y)|2w(t− y) dy

)︃
|u(t)|2 dt,

so J(u) = J(u(·+ z)).
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Using (2.8), we have J(u) = ∥∇u∥2L2 −
∫︁
R3(w ∗ |u|2)(x)|u(x)|2 dx ≳ −∥u∥4H1 > −∞, so J is bounded from

below.
To prove that J is continous from H1 to R, we just need to show that u ↦→

∫︁
R3(w ∗ |u|2)(x)|u(x)|2 dx is:

Let (un)n∈N and u such that un → u in H1; then,⃓⃓⃓⃓∫︂
R3

(w ∗ |un|2)|un|2 −
∫︂
R3

(w ∗ |u|2)|u|2
⃓⃓⃓⃓
=

⃓⃓⃓⃓∫︂
R3

(w ∗ (|un|2 − |u|2))|un|2 +
∫︂
R3

(w ∗ |u|2)(|un|2 − |u|2)
⃓⃓⃓⃓

≲ ∥(w1 ∗ (|un|2 − |u|2))|un|2∥L1 + ∥(w2 ∗ (|un|2 − |u|2))|un|2∥L1

+ ∥(w1 ∗ |u|2)(|un|2 − |u|2)∥L1 + ∥(w2 ∗ |u|2)(|un|2 − |u|2)∥L1

We handle the third and forth term by applying respectively (2.6) and (2.7).
For the first term, using the classical Young inequality, together with ∥un∥L2 = 1 for every n we get

∥(w1 ∗ (|un|2 − |u|2))|un|2∥L1 ≲ ∥w1 ∗ (|un|2 − |u|2)∥L∞∥un∥L2 ≲ ∥w1∥L∞∥|un|2 − |u|2∥L1

Finally, for the second term we use (2.3), (2.4), the inclusion Ḣ
1 ⊂ L6,2 and that (un)n∈N is bounded in

H1:

∥(w2 ∗ (|un|2 − |u|2))|un|2∥L1 ≲ ∥w2 ∗ (|un|2 − |u|2)∥L3/2,∞∥|un|2∥L3,1

≲ ∥w2∥L3/2,∞∥|un|2 − |u|2∥L1∥un∥2L6,2 ≲ ∥w2∥L3/2,∞∥|un|2 − |u|2∥L1 .

Putting all four terms together, we get⃓⃓⃓⃓∫︂
R3

(w ∗ |un|2)|un|2 −
∫︂
R3

(w ∗ |u|2)|u|2
⃓⃓⃓⃓
≲ (∥w1∥L∞ + ∥w2∥L3/2,∞)∥|un|2 − |u|2∥L1

≲ (∥w1∥L∞ + ∥w2∥L3/2,∞)∥un + u∥L2∥un − u∥L2

≲ (∥w1∥L∞ + ∥w2∥L3/2,∞)∥un − u∥L2 ,

which proves continuity.
Lastly, to prove the coercivity on S≤λ, by (2.8), we have that

J(u) ≳ ∥∇u∥2L2 − (∥w1∥L∞∥u∥2L2 + ∥w2∥L3/2,∞∥∇u∥2L2)∥u∥2L2 ≥ −∥w1∥L∞λ2 + (1− λ∥w2∥L3/2,∞)∥∇u∥2L2

if u ∈ S≤λ, so J is coercive on S≤λ under the assumption 1− λ∥w2∥L3/2,∞ > 0, which we have thanks to
Hypothesis 1.

Remark 2.9. The computations we did for the continuity of u ↦→
∫︁
R3(w ∗ |u|2)(x)|u(x)|2 dx can be done

with fewer assumptions: indeed, one can prove that if (un)n∈N is bounded in H1 and un → u in L2(R3)
then

∫︁
R3(w ∗ |un|2)(x)|un(x)|2 dx→

∫︁
R3(w ∗ |u|2)(x)|u(x)|2 dx.

2.2.2 The concentration-compactness method in action

Now that we’ve proved that J is coercive and continous on S≤λ, we know that every minimizing sequence
u = (un)n∈N is bounded in H1(R3), so up to a subsequence there exists u∞ ∈ H1(R3) such that un ⇀ u∞
weakly in H1. We prove that the convegence is also strong in L2(R3) using the concentration-compactness
method explained in section 1.3.
Our problem is translation invariant, we do not need to define a problem “at infinity”. In order to rule
out vanishing, we define

Jvan(u) = ∥∇u∥2, (2.9)
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so that Jvan(un) → 0 if un → 0 in subcritical Lp. Next, we define the respective minimal energy

Ivan(λ) = inf
u∈Sλ

Jvan(u). (2.10)

It can be easily proved that Ivan(λ) = 0 for all λ ≥ 0.
We start by proving inequality (1.14), i.e.

I(λ) ≤ I(λ− α) + I∞(α) for all 0 ≤ α ≤ λ,

following the general reasoning we discussed in Section 1.3.2: for every ϵ > 0 there exist uϵ ∈ Sα and
vϵ ∈ Sλ−α such that {︄

I(α) ≤ J(uϵ) ≤ I(α) + ϵ

I(λ− α) ≤ J(vϵ) ≤ I(λ− α) + ϵ

By continuity of J and density of C∞
C (R3) in H1(R3), we can take uϵ and vϵ with compact support

without loss of generality. For a fixed ξ ∈ R3 and n ∈ N, define v(n)ϵ = vϵ(· − nξ), so that for n large

supp(v
(n)
ϵ ) ∩ supp(uϵ) = ∅. Then, for such n we have uϵ + v

(n)
ϵ ∈ Sλ and

J(uϵ + v(n)ϵ ) = ∥∇(uϵ + v(n)ϵ )∥2L2 −
∫︂
R3

(w ∗ (|uϵ|2 + |v(n)ϵ ))|uϵ|2 −
∫︂
R3

(w ∗ (|uϵ|2 + |v(n)ϵ |2))|v(n)ϵ |2

= J(uϵ) + J(v(n)ϵ )−
∫︂
R3

(w ∗ |uϵ|2)|v(n)ϵ |2 −
∫︂
R3

(w ∗ |v(n)ϵ |2)|uϵ|2

≤ J(uϵ) + J(v(n)ϵ )

because w ≥ 0. As a consequence, we have

I(λ) ≤ J(uϵ + v(n)ϵ ) ≤ J(uϵ) + J(v(n)ϵ ) ≤ I(α) + I(λ− α) + 2ϵ

that allows us to conclude the proof of (1.14) by arbitrarity of ϵ. In exactly the same way, we can prove
inequality (1.15).
As a consequence of (1.15), we also have that

I(λ) ≤ Ivan(λ) for every λ ≥ 0 (2.11)

Our next step is to prove that vanishing does not occur: to do so, we need to prove inequality (1.16), i.e.

I(λ) < 0 for every λ > 0.

Since by (2.11) we already know that I(λ) ≤ 0, we just need to prove that I(λ) ̸= 0.
Assuming that for some λ > 0 we have I(λ) = 0: if this is the case, for every ϵ > 0 there exists u ∈ Sλ

such that ∥∇u∥2L2 =
∫︁
R3(w ∗ |u|2)|u|2 + ϵ. Then, for θ > 0, we have that θu ∈ Sθ2λ and

J(θu) = θ2∥∇u∥2L2 − θ4
∫︂
R3

(w ∗ |u|2)|u|2 < 0 for θ ≫ 1,

which shows that there exists λ∗ such that for every λ ≥ λ∗ (1.16) holds.
It is important to remark that while in general we cannot do better than this, as there are convolution
potentials for which λ∗ > 0, for specific potentials we can do better: for instance, for the potential
w(x) = 1

|x|α , 0 < α < 2, which is in L∞(R3) + L3/2,∞(R3), we can prove that I(λ) < 0 for every λ > 0

following a similar scaling argument as before:
for σ > 0 letting uσ(x) = σ−3/2u( xσ ), we have

J(uσ) =

∫︂
R3

|∇uσ|2 −
∫︂
R3

(w ∗ |uσ|2)|uσ|2 =
1

σ2

∫︂
R3

|∇u|2 − 1

σα

∫︂
R3

(w ∗ |u|2)|u|2 < 0
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for σ ≫ 1, which proves that vanishing does not occur for every λ > 0 in this case.
We proceed in proving (1.18), i.e. the strict inequality

I(λ) < I(λ− α) + I(α) for all 0 < α < λ.

In order to establish this inequality, we will apply Lemma 1.9 to h(λ) = I(λ); to do so, we need to prove

Lemma 2.10. For every λ > 0 such that I(λ) < Ivan(λ) = 0, I(θλ) < θI(λ) for every θ > 1.

Proof. First, notice that

I(θλ) = inf
u∈Sλ

{︃
θ∥∇u∥2L2 − θ2

∫︂
R3

(w ∗ |u|2)|u|2
}︃

= θ inf
u∈Sλ

{︃
∥∇u∥2L2 − θ

∫︂
R3

(w ∗ |u|2)|u|2
}︃

Then, notice that when defining problem (2.2) we can restrict ourselves to taking the inf over the set{︁
u ∈ Sλ such that

∫︁
R3(w ∗ |u|2)|u|2 ≥ α

}︁
for a fixed α > 0: indeed, if that wasn’t the case, there would

exist a minimizing sequence (vn)n∈N ⊂ Sλ such that
∫︁
R3(w ∗ |vn|2)|vn|2 → 0. In turn, this would imply

that I(λ) = Ivan(λ) = 0, which contradicts our hypothesis.
To conclude, observe that since θ > 1

I(θλ) = θ inf
u∈Sλ

{︃
∥∇u∥2L2 − θ

∫︂
R3

(w ∗ |u|2)|u|2
}︃
< θ inf

u∈Sλ

{︃
∥∇u∥2L2 −

∫︂
R3

(w ∗ |u|2)|u|2
}︃

= θI(λ).

Finally, we need to prove that minimizing sequences do not split into two or more bubbles. Unlike what
we’ve discussed in Section 1.3.3, we choose to rely on Theorem 1.5 instead of Lemma 1.4 and prove a
similar result to (1.17).
Since we’ve already ruled out vanishing, we know that every minimizing sequence u = (un)n∈N is such

that m(u) > 0. Then, by Theorem 1.5, we know that if we fix a sequence 0 ≤ Rk
k→∞−−−−→ ∞ there exist

• A subsequence (unk
)k∈N,

• Sequences of functions (u
(1)
k )k∈N, (ψ

(2)
k )k∈N in H1(R3)

• A sequence of translations (x
(1)
k )k∈N ⊂ R3

such that
unk

− u
(1)
k (· − x

(1)
k )− ψ

(J+1)
k → 0 in H1(R3), (2.12)

and

• u
(1)
k converges to u(1) weakly in H1(R3) and strongly in L2(R3),

• supp(u
(1)
k ) ⊂ BRk

(0) and supp(ψ
(2)
k ) ⊂ R3\B2Rk

(x
(1)
k ).

Since our problem is translation invariant and we will only deal with a single bubble, without loss of

generality we can choose the translations x
(1)
k ≡ 0.

As u
(1)
k → u(1) strongly in L2, we have that ∥u(1)k ∥2L2 → ∥u(1)∥2L2 =: α > 0. This, combined with (2.12),

proves that ∥ψ(2)
k ∥2L2 → λ− α. We also have

lim inf
k→∞

J(u
(1)
k ) ≤ J(u(1)). (2.13)

Indeed, since u
(1)
k is bounded in H1 and u

(1)
k → u(1) strongly in L2 we can apply Remark (2.9) to get∫︁

R3(w ∗ |u(1)k |2)(x)|u(1)k (x)|2 dx→
∫︁
R3(w ∗ |u(1)|2)(x)|u(1)(x)|2 dx. The gradient part comes from the weak
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lower semicontinuity of the L2 norm and the fact that ∇u(1)k ⇀ ∇u(1).
Then, by the continuity of λ ↦→ I(λ) we have

J(ψ
(2)
k ) ≥ I(∥ψk∥2L2) → I(λ− α) as k → ∞. (2.14)

Now, if we are able to prove that

J(unk
) = J(u

(1)
k ) + J(ψ

(2)
k ) + ok(1), (2.15)

combining (2.13), (2.14) and (2.15) and passing to the liminf we obtain

I(λ) ≥ J(u(1)) + I(λ− α) ≥ I(α) + I(λ− α).

Since the converse inequalty (1.14) holds, we have that

I(λ) = I(α) + I(λ− α),

which contradicts the strict energetic inequality (1.18) unless α = λ.
Finally, since unk

⇀ u(1) weakly in L2 by Lemma 1.4 and ∥unk
∥2L2 = λ = ∥u(1)∥2L2 we have that the

convergence is also strong in L2(R3), and by uniqueness of the limit u∞ = u(1).
To prove (2.15), we start by noticing that as a consequence of (2.12) and the continuity of J we have

J(unk
) = J(u

(1)
k + ψ

(2)
k ) + ok(1).

Moreover, since the supports of u
(1)
k and ψ

(2)
k are disjoint, we have

J(u
(1)
k + ψ

(2)
k ) = ∥∇u(1)k +∇ψ(2)

k ∥2L2 −
∫︂
R3

(w ∗ (|u(1)k |2 + |ψ(2)
k |2))(|u(1)k |2 + |ψ(2)

k |2)

= J(u
(1)
k ) + J(ψ

(2)
k )−

∫︂
R3

(w ∗ |u(1)k |2)|ψ(2)
k |2 −

∫︂
R3

(w ∗ |ψ(2)
k |2)|u(1)k |2.

To tackle the integral terms, we define wδ = w1|w|≥δ for a fixed δ > 0, so that∫︂∫︂
R3×R3

w(x− y)|u(1)k (x)|2|ψ(2)
k (y)|2 dxdy ≤ δλ2 +

∫︂∫︂
R3×R3

wδ(x− y)|u(1)k (x)|2|ψ(2)
k (y)|2 dxdy

≤ δλ2 +

∫︂∫︂
R3×R3

wδ(x− y)1|x−y|≥Rk
|u(1)k (x)|2|ψ(2)

k (y)|2 dxdy

since ∥u(1)k ∥2L2 , ∥ψ(2)
k ∥2L2 ≤ ∥unk

∥2L2 = λ and dist(supp(u
(1)
k ), supp(ψ

(2)
k )) ≥ Rk.

Finally, letting w1,δ = w11|w1|≥δ and w2,δ = w21|w2|≥δ,∫︂∫︂
R3×R3

w1,δ(x− y)1|x−y|≥Rk
|u(1)k (x)|2|ψ(2)

k (y)|2 dxdy ≤ ∥w1,δ1|·|≥Rk
∥L∞λ2 → 0

as k → ∞ since by Hypothesis 1 w1 → 0 at infinity and∫︂∫︂
R3×R3

w2,δ(x− y)1|x−y|≥Rk
|u(1)k (x)|2|ψ(2)

k (y)|2 dxdy ≤ ∥|u(1)k |2∥
L

2q
2q−1

∥|ψ(2)
k |2∥

L
2q

2q−1
∥w2,δ1|·|≥Rk

∥Lq

= ∥u(1)k ∥2
L

4q
2q−1

∥ψ(2)
k ∥2

L
4q

2q−1
∥w2,δ1|·|≥Rk

∥Lq → 0

as k → ∞ for every 1 ≤ q < 3
2 . Indeed, by Remark 2.4 w2,δ ∈ Lq for 1 ≤ q < 3

2 , so ∥w2,δ1|·|≥Rk
∥Lq → 0

as k → ∞. Moreover, for such q we have 3 < 4q
2q−1 ≤ 4, so H1(R3) ⊂ L

4q
2q−1 (R3) and since in the proof of
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Theorem 1.5 we built both u
(1)
k and ψ

(2)
k are proportional to unk

, which is bounded in H1, we get that

∥u(1)k ∥2
L

4q
2q−1

∥ψ(2)
k ∥2

L
4q

2q−1

is bounded.

By arbitrarity of δ > 0 we can conclude the proof of (2.15), which, in turn, gives us that unk
→ u∞

strongly in L2.
Lastly, we prove that u∞ is in fact a minimizer for (2.2): since uj → u∞ in L2(R3), ∥u∞∥2L2 = λ, so
u∞ ∈ Sλ. Then, by weak lower semicontinuity of the L2 norm we have,

∥∇u∞∥2L2 ≤ lim inf
j→∞

∥∇uj∥2L2 .

Moreover, by Remark 2.9, we have that∫︂
R3

(w ∗ |u∞|2)|u∞|2 = lim
j→∞

∫︂
R3

(w ∗ |uj |2)|uj |2.

Combining these, we obtain
I(λ) ≤ J(u∞) ≤ lim inf

j→∞
J(uj) = I(λ),

so u∞ is the sought-after minimizer.

2.2.3 Properties of the minimizer

We start by proving that we can take a strictly positive minimizer. First of all, since ∥∇|u|∥L2 ≤ ∥∇u∥L2

we have that J(|u|) ≤ J(u) fore every u ∈ H1. Thus, we can choose our minimizer u∞ to be real valued
and non negative. Introducing the Schrödinger operator H = −∆+ V with V = 2w ∗ u2∞, we know that
u∞ is an eigenfunction, i.e.

Hu∞ = −ωu∞,

which can be written as
e−Hu∞ = eωu∞.

We will prove that e−H is positivity improving, i.e. that if f ≥ 0 with f ̸≡ 0 then e−Hf > 0, which in
turn will give us the positivity of the minimizer.
We just check the hypothesis of the following Theorem, whose proof can be found in the proof of Theorem
2 in [2].

Theorem 2.11. Let H = −∆ + V be a Schrödinger operator defined on Rd, with 0 ≤ V ∈ L1
loc(Rd).

Then the lowest eigenvalue of H is simple and e−tH has strictly positive kernel for every t > 0.

The fact that e−tH has strictly positive kernel means that

e−tHf(x) =

∫︂
Rd

k(x, y)f(y) dy with k > 0.

which in turn would imply that e−tH is positivity improving.
The hypothesis of Theorem 2.11 are satisfied because H is self adjoint on L2(R3) with domain H2(R3)
and by (2.6), (2.7) V ∈ L∞(R3) ⊂ L1

loc(R3).
To get the smoothness of the minimizer, we can use elliptic bootstrapping; here, we only choose to show
the first step for the sake of brevity. We know that u∞ solves the eigenproblem

Hu = −ωu, u ∈ H1(R3)

where ω > 0 is as above. We write this as

−∆u = f(·, u(·)), u ∈ H1(R3) (2.16)

20



where f(x, t) = −V t − ωt. Now, since −∆ is an isometry between H1 and H−1, it is also an isometry
between W 2,p ∩H1 and Lp ∩H−1; to get the integrability of f(·, u) we need in order to conclude, we use
the following Lemma.

Lemma 2.12 (Continuity of the superposition operator). Let f : Rd×R → R be a Caratheodory function
such that for some θ ≥ 1 |f(x, t)| ≲ |t|θ for every x, t. Then, for every θ ≤ p < ∞ the superposition
operator

Φf : Lp(Rd) → Lp/θ(Rd)

u ↦→ f(·, u)

is continous. In particular, for θ ≤ p ≤ 2∗ Φf : H1(Rd) → Lp/θ(Rd) is continous.

Proof. We compute ∫︂
Rd

|f(x, u(x))|p/θ dx ≲
∫︂
Rd

|u|p = ∥u∥pLp .

This is sufficient to prove our claim. To prove the continuity of Φf : H1 → Lp/θ we just combine what
we just proved with the usual Sobolev injections H1 ↪→ Lp, 2 ≤ p ≤ 2∗:

H1(Rd) ↪→ Lp(Rd) ↪→ Lp/θ(Rd)

Since our f defined in (2.16) is clearly Caratheodory and |f(x, t)| ≤ (∥V ∥L∞ + ω)|t| we can apply
Lemma 2.12 to get that f(·, u∞(·)) ∈ L2∗ = L6, as u∞ ∈ H1 ⊂ L6. As a consequence, we get that
u∞ ∈W 2,6 ⊂ C1,1/2. One can proceed in this fashion to get that u∞ ∈ C∞(R3). □
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Appendix A. Proofs from Chapter 1

In this section, we prove Lemma 1.3 and Theorem 1.5, whose proof we postponed during Chapter 1 for
the sake of exposition. We start by proving the equivalent definition of m(u) for a sequence u bounded
in H1(Rd).

Proof of Lemma 1.3. To prove the equality

m(u) = lim
R→∞

lim sup
n→∞

sup
x∈Rd

∫︂
BR(x)

|un|2.

we prove that both inequalities hold.
≥): We proceed as we did in Lemma 1.7. Let (xn)n∈N ⊂ Rd such that

lim
n→∞

∫︂
BR(xn)

|un|2 = lim sup
n→∞

sup
x∈Rd

∫︂
BR(x)

|un|2.

Since un is bounded in H1, up to a subsequence un(·+xn) converges to u weakly in H1(Rd) and strongly
in L2(BR(0)). Then,

lim
n→∞

∫︂
BR(xn)

|un|2 = lim
n→∞

∫︂
BR(0)

|un(x+ xn)|2 dx =

∫︂
BR(0)

|u|2 ≤
∫︂
Rd

|u|2 ≤ m(u).

Since this estimate holds for every R > 0, it passes to the limit R → ∞ to get us our desired inequality.

Notice that the limit exists because R ↦→ lim sup
n→∞

sup
x∈Rd

∫︂
BR(x)

|un|2 is a non decreasing function.

≤): We start from the definition of m(u): for every ϵ > 0, there exist a subsequence unk
and translations

(xk)k∈N such that unk
(· + xk) ⇀ u weakly in H1 with m(u) − ϵ ≤

∫︁
Rd |u|2 ≤ m(u). By the Rellich-

Kondrachov Theorem, up to a further subsequence unk
(· + xk) → u strongly in L2

loc. Then, for every
x ∈ Rd

m(u)− ϵ ≤
∫︂
Rd

|u|2 = lim
R→∞

∫︂
BR(x)

|u|2 = lim
R→∞

lim
nk→∞

∫︂
BR(x)

|unk
|2.

Then, since the limit along a subsequence is always not greater than the limsup and the inequality holds
for every x in Rd, we get that

m(u)− ϵ ≤ lim
R→∞

lim sup
n→∞

sup
x∈Rd

∫︂
BR(x)

|un|2

for every ϵ > 0. Since the choice of ϵ is arbitrary, we get the desired inequality.

Before tacklig the proof of Theorem 1.5, we state and prove a technical Lemma we will need:

Lemma A.1. Let (un)n∈N be a bounded sequence in H1(Rd). Consider two sequences of real numbers
(ak)k∈N and (bk)k∈N such that 0 ≤ ak ≤ bk and ak → ∞. Then there exists a subsequence (unk

)k∈N such
that∫︂

|x−x
(j)
k |≤ak

|unk
(x)|2 dx k→∞−−−−→

∫︂
Rd

|u(j)(x)|2 dx and

∫︂
ak≤|x−x

(j)
k |≤bk

(|unk
(x)|2 + |∇unk

(x)|2) dx k→∞−−−−→ 0

for every j = 1, ..., J , where x
(j)
k and u(j) are as in Lemma 1.4.
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Proof. We define the Levy concentration functions

Q
(j)
k (R) =

∫︂
BR(x

(j)
k )

|unk
|2 and K

(j)
k (R) =

∫︂
BR(x

(j)
k )

|∇unk
|2;

Clearly Q
(j)
k (R) +K

(j)
k (R) ≤ ∥unk

∥2H1(Rd) < ∞, so by the Rellich-Kondrachov Theorem for every R > 0

and every j = 1, ...J

Q
(j)
k (R) =

∫︂
BR(0)

|unk
(x+ x

(j)
k )|2 dx k→∞−−−−→

∫︂
BR(0)

|u(j)|2 =: Q(R).

Then, since K
(j)
k is a bounded sequence of non-decreasing non-negative functions, there exists a non-

decreasing function K(j)(R) such that K
(j)
k (R)

k→∞−−−−→ K(j)(R) for every R. Moreover, for every fixed

j K(j)(R) is bounded for every R so it has finite limit as R → ∞. Next, since Q
(j)
k (ak) → Q(j)(ak),

Q
(j)
k (bk) → Q(j)(bk), and the same for the K

(j)
k , for every j we have that up to a further subsequence

|Q(j)
k (ak)−Q(j)(ak)|+ |Q(j)

k (bk)−Q(j)(bk)|+ |K(j)
k (ak)−K(j)(ak)|+ |K(j)

k (bk)−K(j)(bk)| ≤
1

k
,

which is what we need to prove our claims:

|
∫︂
Bak

(x
(j)
k )

|unk
|2 −

∫︂
Rd

|u(j)|2| = |Q(j)
k (ak)−Q(j)(∞)| ≤ |Q(j)

k (ak)−Q(j)(ak)|+ |Q(j)(ak)−Q(j)(∞)|

≤ 1

k
+

∫︂
Rd\Bak

(x
(j)
k )

|u(j)|2 k→∞−−−−→ 0

proves the first one. Similarly,∫︂
ak≤|x−x

(j)
k |≤bk

|unk
(x)|2 = Q

(j)
k (bk)−Q

(j)
k (ak) ≤

1

k
+Q(j)(bk)−Q(j)(ak),∫︂

ak≤|x−x
(j)
k |≤bk

|∇unk
(x)|2 = K

(j)
k (bk)−K

(j)
k (ak) ≤

1

k
+K(j)(bk)−K(j)(ak),

which converge both to 0 since both Q(j) and K(j) have finite limits at infinity.

Remark A.2. Under the hypothesis of Lemma A.1 we can also prove that unk
1
Bak

(x
(j)
k )

→ u(j) strongly

in Lp(Rd) for 2 ≤ p < 2∗: first, unk
1
Bak

(x
(j)
k )

= unk
(· + x

(j)
nk )1Bak

(0) ⇀ u(j) weakly in L2 and

∥unk
1
Bak

(x
(j)
k )

∥2L2 → ∥u∥2L2 , so the convergence is also strong in L2. Moreover, by Sobolev embeddings

(un)n∈N is also bounded in Lp(Rd), for every 2 ≤ p ≤ 2∗, and as a consequence so is unk
(·+x(j)k )1Bak

(0).
Then, by Hölder inequality

∥1Bak
(0)unk

(·+ x
(j)
k )− u(j)∥Lp ≤ ∥1Bak

(0)unk
(·+ x

(j)
k )− u(j)∥θL2∥1Bak

(0)unk
(·+ x

(j)
k )− u(j)∥1−θ

L2∗

with 1
p = θ

2 + 1−θ
2∗ .

We now proceed with the proof of Theorem 1.5, which will mainly rely on the ideas used to prove Lemma
1.4 and on this last technical Lemma.
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Proof of Theorem 1.5. First, fix J ∈ N. By Lemma 1.4, there exist space translations x
(j)
k , j = 1, ..., J ,

and a subsequence unk
such that unk

(·+x
(j)
k )⇀ u(j) weakly in H1(Rd). Looking at the proof of Lemma

1.4, clearly we can choose x
(j)
k such that |x(i)k − x

(j)
k | ≥ 5Rk for every i ̸= j and every k.

Now, we apply Lemma A.1 with ak = Rk/2 and bk = 8Rk: there exists a subsequence (unk
)k∈N such that∫︂

|x−x
(j)
k |≤Rk/2

|unk
(x)|2 dx→

∫︂
Rd

|u(j)(x)|2 dx (A.1)

and ∫︂
Rk/2≤|x−x

(j)
k |≤8Rk

(|unk
(x)|2 + |∇unk

(x)|2) dx→ 0. (A.2)

Next, let χ ∈ C∞(R+; [0, 1]) such that 0 ≤ χ′ ≤ 2, χ|[0,1] ≡ 1 and χ|[2,∞)
≡ 0 and define

χk(x) = χ

(︃
2|x|
Rk

)︃
and ζk(x) = 1− χ

(︃
|x|
2Rk

)︃
Finally, define

u
(j)
k = χkunk

(·+ x
(j)
k )

for j = 1, ..., J and

ψ
(J+1)
k =

⎛⎝ J∏︂
j=1

ζk(· − x
(j)
k )

⎞⎠unk
.

Notice that supp(u
(j)
k ) ⊂ BRk

(0) for every j = 1, ..., J and supp(ψ
(J+1)
k ) ⊂ Rd\

⋃︁j
j=1B2Rk

(x
(j)
k ) by con-

struction, as the balls B2Rk
(x

(j)
k ), j = 1, ..., J are pairwise disjoint for every k.

To prove that unk
−

J∑︂
j=1

u
(j)
k (· − x

(j)
k ) − ψ

(J+1)
k

k→∞−−−−→ 0 in H1(Rd), first notice that the support of this

function is contained in the union of annuli {Rk/2 ≤ |x−x(j)k | ≤ 4Rk}. Next, let’s analyse the behaviour

of the function on, for instance, the annulus {Rk/2 ≤ |x− x
(1)
k | ≤ 4Rk}: here, our function is reduced to

unk
(1− χk −

∏︁J
j=1 ζk(· − x

(j)
k )) which behaves like

|x− x
(1)
k |Rk

2

unk
(1− χk)

Rk

unk

2Rk

unk
(1−

∏︁
ζk)

4Rk
.

In the region S1 = {Rk/2 ≤ |x− x
(1)
k | ≤ Rk} we have

|unk
(1− χk)|2 ≤ |unk

|2 (A.3)

and

|∇(unk
(1−χk))|2 = |−∇χkunk

+χk∇unk
|2 ≤ (|unk

||∇χk
|+ |χk||∇unk

|)2 ≤ 32

R2
k

|unk
|2+2|∇unk

|2; (A.4)

we’ve used that |χk| ≤ 1 and that |∇χk(x)| = |χ′( 2|x|Rk
) 2
Rk

x
|x| | ≤

4
Rk

as |χ′| ≤ 2. Using A.3 and A.4, we
get

∥unk
(1− χk)∥H1(S1) ≲ ∥unk

∥H1(S1) → 0
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by (A.2).

In the region S2 = {Rk ≤ |x− x
(1)
k | ≤ 2Rk} we directly have that ∥unk

∥H1(S2) → 0 by (A.2).

In the region S3 = {2Rk ≤ |x− x
(1)
k | ≤ 4Rk} we can proceed as in region S1.

Moreover, since by (A.1) lim
k→∞

∫︂
Rd

|u(j)k |2 = lim
k→∞

∫︂
BRk/2(0)

|u(j)k |2 =

∫︂
Rd

|u(j)|2 and u
(j)
k ⇀ u(j) weakly in

H1(Rd) the convergence is also strong in Lp, 2 ≤ p < 2∗. To prove this, we just use Hölder inequality
and Sobolev embeddings as we’ve done in Remark A.2.

Notice that by construction 1
B8Rk

(x
(j)
k )
ψ
(J+1)
k → 0 strongly in L2(Rd) for every j = 1, ...J .

To prove that m(ψ(J+1)) → 0 as J → ∞, we proceed in three steps:

1. We prove that if ψ
(J+1)
k (· − yk) ⇀ ψ ̸= 0 weakly in H1 for (yk)k∈N ⊂ Rd, then unk

(· − yk) ⇀ ψ
weakly in H1;

2. We prove that ψ(J+1)(·+ x
(j)
k )⇀ 0 weakly in H1 for every 1 ≤ j ≤ J ;

3. We conclude.

Step 1: Assume that ψ
(J+1)
k (· − yk) ⇀ ψ ̸= 0 weakly in H1 for (yk)k∈N ⊂ Rd: if, up to a subsequence,

|yk| ≤ 6Rk, then B2Rk
(yk) ⊂ B8Rk

(0) and ψ
(J+1)
k (· − yk)1B2Rk

(0) ⇀ 0 = ψ which contradicts the fact

that ψ ̸= 0. We can therefore assume that |yk| ≥ 6Rk for k large; this in turn implies that ζK ≡ 1 on

B2Rk
(yk), thus unk

(· − yk)(1)B2Rk
= ψ

(J+1)
k (· − yk)(1)B2Rk

⇀ ψ, which concludes the proof of our claim.
Step 2: We have

ψ
(J+1)
k (·+ x

(j)
k ) =

(︄
J∏︂

l=1

ζk(·+ x
(j)
k − x

(l)
j )

)︄
unk

=

⎛⎝ζk∏︂
l ̸=j

ζk(·+ x
(j)
k − x

(l)
j )

⎞⎠unk
m,

hence ψ
(J+1)
k (·+ x

(j)
k )1B2Rk

(0) ≡ 0 as supp(ζk) ⊂ Rd\B2Rk
(0). This proves our claim.

Step 3: Since all the possible weak H1 limits of ψ
(J+1)
k (· − yk) are also the limits of unk

(· − yk), they
are the u(j), j ∈ N given by Lemma 1.4. Moreover, Step 2 implies that all the possible limits remaining
are the u(j) with j > J , thus impliying that

m(ψJ+1) = sup
j>J

∥u(j)∥2L2 .

Since in Lemma 1.4 we proved that ∥u(j)∥2L2 → 0 for j → ∞, we have m(ψ(J+1)) → 0 as J → ∞.
This concludes the proof of the Theorem.
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Appendix B. Heuristically deriving the Hartree equation as mean-
field limit of large systems

In this section we demonstrate heuristically the emergence of the Hartree equation in the description of
a bosonic system in its mean-field limit; our main reference for this is [3].
Consider a system ofN identical, non-relativistic bosons with two-body interactions given by the potential
κw, where κ ≥ 0 is a coupling constant and w is a real valued function. To be coherent with the energy
functional and equation given in Chapter 2, we work with no external potential. The dynamical evolution
of the state is governed by the linear Schrödinger equation

i∂tΨN = HNΨN , (B.1)

where ΨN = ΨN (t, x1, ..., xN ), xj ∈ R3, 1 ≤ j ≤ N and the N -particle Hamiltonian HN is given by

HN =

N∑︂
j=1

− 1

2m
∆xj

+ κ

N∑︂
i<j

w(xi − xj), on L
2(R3)⊗sN . (B.2)

We have denoted with ∆xj the Laplacian associated with the jth copy of R3, with ⊗s the symmetric
tensor product and with m the mass of the boson.
Since the energy of the system scales like O(N)+κO(N2), the energy per particle is O(1) if the coupling
obeys κ = O(N−1). Thus, we define the mean field limit as

N → ∞, and κ→ 0, such that ν = κN is constant.

We will operate under the assumption that all (except o(N)) bosons are in the same one-particle state
described by the wave function ψ ∈ L2(R3). We pick an initial datum ψ0 ∈ L2(R3) with ∥ψ0∥2L2 = 1 and
introduce the N−particle state

ΨN (t = 0, x1, ..., xN ) =

N∏︂
j=1

ψ0(xj) ∈ L2(R3)⊗sN

We also assume that B.1 approximately preserves the norm of ΨN (t) when N becomes large, so we can
write

ΨN (t, x1, ..., xN ) ≈
N∏︂
j=1

ψ(t, xj) ∈ L2(R3)⊗sN .

Physically speaking, this means that correlation effects remain small.
When approaching the mean-field limit, we expect that the potential per particle Veff given by

Veff (t, x) =
ν

N

N∑︂
j=1

∫︂
R3

w(x− xj)|ψ(t, xj)|2 dxj = ν(w ∗ |ψ(t)|2)(x). (B.3)

From this heuristic discussion we conclude that the dynamical evolution of the bosonic system in its
mean-field regime is described by the Schrödinger equation for the one-particle wave function, ψ(t, x)
with a potential term given by Veff (t, x). Thus, we are led to the (nonlinear) Hartree equation as an
effective description of the limiting dynamics:{︄

i∂tψ = −∆ψ + ν(w ∗ |ψ|2)ψ,
ψ(0, x) = ψ0(x)

(HE)
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[3] Fröhlich, J., Lenzmann. E., Mean-Field Limit of Quantum Bose Gases and Nonlinear Hartree Equa-
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28


	Introduction
	Motivations and formulations of the concentration-compactness method
	Defining and extracting bubbles
	Vanishing sequences and subcritical Lp norms
	The concentration compactness method in Hilbert spaces
	Setting
	A general view: the original concentration-compactness principle
	A more specific approach for the H1 framework


	Existence of a minimizer for the Hartree equation without external potential
	Notation and Preliminaries
	Proof of Theorem 2.1
	Fundamental properties of the energy functional
	The concentration-compactness method in action
	Properties of the minimizer


	Appendix A. Proofs from Chapter 1
	Appendix B. Deriving the Hartree equation as mean-field limit of large systems
	References

