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Abstract
Protein tandem repeats are crucial structural elements in various biological processes, playing

essential roles in cell adhesion, protein-protein interactions, and molecular recognition. These

repetitive regions have sparked considerable interest in structural biology and bioinformatics,

leading to the development of specialized resources like RepeatsDB. RepeatsDB is a

comprehensive, curated database of annotated tandem repeat protein structures, offering a valuable

resource for researchers. In this study, we systematically analyzed protein tandem repeats in

RepeatsDB, with a primary focus on Alpha-Solenoids and Beta-Propellers, to enhance the existing

classification system and provide a more profound understanding of protein tandem repeats. Our

investigation commenced with an initial statistical analysis to elucidate the diversity and

population status of distinct repeat groups within the database, as well as their respective degree

of annotation. This approach proved instrumental in addressing the challenges associated with

numerous entries that had a missing annotation. We conducted a structural analysis using pairwise

structural alignment and explored dimensionality reduction and visualization techniques to

uncover novel structural relationships. These findings improved our understanding of protein

structural comparisons and informed a refined classification system. We utilized the density-based

clustering algorithm, DBSCAN, to establish structural similarity ranges for Clan members and

provide computational support for defining Clan boundaries. This method proved effective in

detecting outlier entries and refining existing clans, leading to the proposal of new repeat groups.

Additionally, we implemented a supervised classification experiment using the K-Nearest

Neighbors (KNN) algorithm, which facilitated the automatic annotation of previously unannotated

entries. This study introduces an automatic annotation methodology that significantly improves

the performance of RepeatsDB curators and can be extended to other bioinformatics applications.

The findings contribute to a more comprehensive understanding of protein tandem repeats and

offer valuable insights for future research in structural biology and bioinformatics.
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1. Introduction

1.1 The Central Dogma of Biology: Understanding the Blueprint of Life
The Central Dogma of molecular biology is a fundamental principle describing the unidirectional

flow of genetic information in living organisms, from DNA to RNA to protein. Initially proposed

by Francis Crick in 1958 [1], this concept has subsequently established itself as a cornerstone in

the field of molecular biology.

The Central Dogma encompasses three stages. Firstly, transcription involves the conversion of

DNA-encoded information into RNA, a process taking place in the nucleus of eukaryotic cells and

the cytoplasm of prokaryotic cells. Secondly, translation entails the decoding of RNA-encoded

information into protein, occurring within the ribosomes of all cells. Lastly, the protein undergoes

folding and post-translational modifications to achieve its final, functional form.

Fig. 1.1: Diagram of the central dogma of biology

Although the Central Dogma provides a fundamental framework for comprehending the flow of

genetic information, exceptions do exist. For instance, certain viruses employ RNA as their genetic

material, while others utilize reverse transcription to revert RNA back into DNA. Moreover, post-
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transcriptional and post-translational modifications can modify the ultimate structure and function

of proteins.

Despite these deviations, the Central Dogma remains an instrumental tool for understanding the

molecular underpinnings of life. It elucidates the transmission of genetic information across

generations and the emergence of genetic variation through mutations and other genetic

recombination events. Over time, these alterations may result in the development of new species

exhibiting distinct traits and functions. Consequently, the Central Dogma serves as a foundation

for understanding the molecular basis of evolutionary change.

Additionally, the Central Dogma has significant implications for biotechnology and genetic

engineering. By comprehending the transfer of genetic information from DNA to protein, scientists

can manipulate this process to synthesize novel proteins with desired functionalities. For instance,

genetic engineering has facilitated the production of insulin for diabetes treatment [2] and the

creation of crops with enhanced resistance to pests and environmental stressors [3].

By exploring the properties and interactions of amino acids, scientists can harness the power of

the Central Dogma to design innovative solutions for various challenges in biotechnology and

genetic engineering, further expanding our capacity to improve human health and address global

concerns.

1.2 Amino Acids: Structure and Classification
Amino acids, the fundamental building blocks of proteins, play a crucial role in numerous

biological processes within living organisms. These organic compounds consist of an amino group

(-NH2), a carboxyl group (-COOH), and a distinct side chain specific to each amino acid. The

organization of atoms within amino acids is vital for their functionality and contribution to protein

synthesis.

1.2.1 Structure of Amino Acids
Each amino acid features a central carbon atom (alpha carbon) connected to four distinct groups:

an amino group, a carboxyl group, a hydrogen atom, and a side chain (R-group). The unique

properties and functions of amino acids are determined by their R-groups.
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The amino group (-NH2) consists of a nitrogen atom bonded to two hydrogen atoms, while the

carboxyl group (-COOH) is made up of a carbon atom double-bonded to an oxygen atom and

single-bonded to a hydroxyl group (-OH). A hydrogen atom (H) is also connected to the alpha

carbon.

The R-group, or side chain, is responsible for the chemical properties of each amino acid. R-groups

can range from a simple hydrogen atom, as in glycine, to a more intricate arrangement of atoms,

as seen in tryptophan. The functional groups within the R-group determine whether an amino acid

is nonpolar, polar, acidic, or basic, which in turn affects its solubility, polarity, and reactivity.

1.2.2 Classification of Amino Acids
Based on the characteristics of their R-groups, amino acids can be classified into four main

categories:

● Nonpolar amino acids: These amino acids possess hydrophobic R-groups that do not

interact with water. Examples include alanine, valine, and leucine.

● Polar amino acids: These amino acids have hydrophilic R-groups that interact with water.

Examples are serine, threonine, and cysteine.

● Acidic amino acids: These amino acids feature negatively charged R-groups. Aspartic acid

and glutamic acid are examples.

● Basic amino acids: These amino acids contain positively charged R-groups. Lysine,

arginine, and histidine serve as examples.
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Fig. 1.2: Molecular structure and classification of amino acids
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1.3 Primary Structure of Proteins

1.3.1 Peptide Bonds
Peptide bonds are covalent linkages that connect amino acids, forming the protein backbone. A

peptide bond is established through a condensation reaction between the carboxyl group of one

amino acid and the amino group of another. The resultant structure, which constitutes the protein's

backbone, exhibits partial double bond characteristics due to resonance between the carbonyl

group and the nitrogen atom. This resonance imparts planarity and rigidity to the peptide bond,

significantly impacting higher-order protein structures. Additionally, peptide bonds possess a

dipole moment, with a slightly negative carbonyl group and a slightly positive nitrogen atom.

1.3.2 Protein Backbone
The primary structure of a protein is composed of its amino acid sequence, which is connected by

a series of peptide bonds to form the protein backbone. This backbone is flexible thanks to the

rotation of single bonds between the alpha carbon and the amino and carboxyl groups. Hydrogen

bonds between the carbonyl group of one amino acid and the amide nitrogen of another stabilize

the backbone, resulting in a recurring pattern of carbonyl groups and amide nitrogens known as

the backbone hydrogen bond pattern. The protein backbone is crucial for the protein's structure

and function, as it provides the framework for the protein's three-dimensional conformation.

1.4 Secondary Structure
The secondary structure of a protein encompasses the regular, repetitive patterns of local structure

within the protein. These patterns significantly impact protein folding, stability, and functionality.

1.4.1 Types of Secondary Structure
Proteins primarily consist of two secondary structure types: alpha helices and beta sheets. Alpha

helices are right-handed helical structures stabilized by hydrogen bonds between the carbonyl

group of one amino acid and the amide nitrogen of another amino acid, four residues away in the

sequence. Beta sheets are planar structures maintained by hydrogen bonds between the carbonyl
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and amide groups of neighboring amino acids in the sequence. Depending on the orientation of the

strands, beta sheets can be parallel or antiparallel.

1.4.2 Formation of Secondary Structure
Secondary structures arise from interactions between peptide bonds in the protein backbone,

specifically between nearby amino acids. These interactions produce regular, repetitive patterns of

structure primarily driven by hydrogen bonding between the backbone's carbonyl and amide

groups. In alpha helices, hydrogen bonds form between carbonyl and amide groups four residues

apart, while in beta sheets, hydrogen bonds form between adjacent carbonyl and amide groups.

1.4.3 Importance of Secondary Structure
The secondary structure is crucial for protein folding and stability. The regular, repetitive patterns

allow the protein to adopt a specific conformation essential for function. The hydrogen bonding

that stabilizes the secondary structure also contributes to the protein's overall stability.

Furthermore, secondary structures can influence the protein's properties, such as solubility,

flexibility, and capacity to interact with other molecules.

1.5 Super Secondary Structures
Super-secondary structures emerge from the interactions between secondary structure elements

within larger structural units. These interactions can be facilitated by various mechanisms,

including hydrogen bonding, hydrophobic interactions, and electrostatic interactions. In some

instances, super-secondary structures may be stabilized by additional interactions, such as disulfide

bonds or metal ions. The specific interactions that stabilize a super-secondary structure depend on

the protein's amino acid sequence and its environment.

1.5.1 Importance of Super-Secondary Structures
Super-secondary structures contribute significantly to protein function and stability by providing

additional structural organization, which can improve the protein's stability and functionality.

Classifying proteins into structural families based on their super-secondary structures offers

insights into their functions and evolutionary relationships [4].
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1.6 Tertiary Structure
The tertiary structure of a protein represents its three-dimensional conformation, determined by

the interactions between its amino acid residues. Tertiary structure is crucial for protein function

and stability and is a key factor in the formation of higher-order structures, such as protein

complexes.

1.6.1 Formation of Tertiary Structure
The protein's tertiary structure arises from the complex interplay of non-covalent interactions

between its amino acid residues. These interactions can involve hydrogen bonding, electrostatic

interactions, hydrophobic interactions, and van der Waals forces. The protein's amino acid

sequence dictates the types and locations of residues involved in these interactions, ultimately

determining the protein's three-dimensional conformation.

Proteins can adopt various shapes and configurations within their tertiary structure. Some common

types include:

● Globular proteins, which possess a compact, rounded shape and are frequently involved

in enzyme catalysis, transport, or signaling.

● Fibrous proteins, which exhibit an elongated, thread-like shape and often contribute to

structural support, such as collagen.

The protein's tertiary structure is vital for its function and stability. The specific conformation

determines the protein's capacity to interact with other molecules, including enzymes, receptors,

and other proteins. The stability of the tertiary structure is essential for maintaining the protein's

functionality under various conditions, such as changes in temperature, pH, and the presence of

denaturants. Furthermore, the tertiary structure plays a crucial role in forming higher-order

structures, such as protein complexes. The interactions between proteins within a complex are

dictated by their tertiary structures and changes in tertiary structure can disrupt these interactions,

potentially leading to altered protein function or even disease.
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1.7 Quaternary Structure
The quaternary structure refers to the assembly of individual protein subunits to form a functional

protein complex. Subunits can be identical (homodimers or homo-oligomers) or different

(heterodimers or hetero-oligomers) and can come together in various ways, including linear chains,

branched chains, and symmetric or asymmetric complexes [5]. Although not all proteins have

quaternary structures, when present, they play a critical role in understanding protein function

within complex biological systems.

A well-known example of a quaternary protein structure is hemoglobin, which is responsible for

carrying oxygen in the blood. This tetrameric protein is composed of two alpha and two beta

subunits. The assembly of these subunits creates a pocket essential for oxygen binding and protein

function [6].

The quaternary structure can significantly impact a protein's function. For instance, some proteins

have allosteric sites that can bind to small molecules, leading to changes in the protein's structure

or function [7].

11



Fig. 1.3: Four types of protein structure
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1.8 Protein Folding Landscape
The protein folding landscape is the energy landscape that guides protein folding, ultimately

forming the tertiary structure. Influenced by factors such as denaturant concentration, temperature,

and the presence of chaperones, the energy landscape can be graphically represented as a funnel-

shaped curve. At the top, the unfolded or denatured state of the protein is present, while the native

or folded state is at the bottom. As the protein folds, it transitions through a series of intermediate

states, each with its own energy level and conformation.

The folding funnel is highly complex, and the protein folding process can be slowed down or

halted by kinetic traps. These traps emerge when the protein encounters an energy minimum that

is not the correct conformation for the folded protein. The protein can become trapped in these

states, preventing proper folding.

Understanding the protein folding landscape is crucial for studying protein folding and misfolding,

which can lead to protein aggregation and, in some cases, disease. Disorders such as Alzheimer's,

Parkinson's, and cystic fibrosis are associated with protein misfolding. Gaining insights into the

energy landscape can provide valuable information about the underlying causes of these diseases

[8].
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Fig. 1.4: A diagram illustrating the protein folding process and various states of protein folding

1.9 Globular VS Fibrous
As was previously mentioned in brief, proteins can be broadly classified into two main categories

based on their shape and function: globular proteins and fibrous proteins.

Globular proteins are known for their compact, approximately spherical shape, which generally

results from the protein folding into a globular form in solution. These proteins tend to be water-

soluble and possess a hydrophobic interior and a hydrophilic exterior, making them well-adapted

to functions such as enzyme catalysis, signal transduction, and transport. The interior of a globular

protein is often densely packed with hydrophobic amino acids, creating a stable environment for

the protein to perform its function.

Myoglobin serves as an example of a globular protein, playing a role in the storage and transport

of oxygen in muscle tissue. Composed of a single polypeptide chain, myoglobin has a compact,

globular structure that enables efficient oxygen binding and release [9]. This shape allows the

protein to be transported with ease through the blood and into muscle tissue.
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In contrast, fibrous proteins are elongated and play a structural role in the body. These proteins are

typically insoluble in water and consist of long, repetitive sequences of amino acids, providing a

high degree of strength and stability. Fibrous proteins usually form long, thread-like structures

well-suited for support and protection, such as keratin, which makes up hair and nails, and

collagen, the primary structural protein in connective tissue.

Although the distinction between globular and fibrous proteins is not always strictly defined, these

two categories represent fundamentally different protein types with distinct roles in the body [5].

Fig. 1.5: A structural comparison of a fibrous protein (collagen) and a globular protein (myoglobin)

1.10 Tandem Repeats
Tandem repeats are short sequences of DNA or amino acids that are repeated in a head-to-tail

fashion. In DNA, tandem repeats are classified based on their length and organization. Short

tandem repeats (STRs) are usually composed of simple, repetitive motifs of 2-6 nucleotides, and

are usually found in non-coding regions of the genome [10]. On the other hand, longer tandem

repeats can span tens or hundreds of base pairs, and are often found in coding regions of the

genome. These long tandem repeats can affect gene expression, splicing, and stability [11].
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On the other hand, in proteins, based on the pioneering research of Andrey V. Kajava, a leading

expert in the field of tandem repeat protein research, a new and more comprehensive classification

of tandem repeat proteins was proposed in 2012. The updated classification takes into account the

diverse structures and functions of these proteins and is summarized as follows: 1. Crystalline

aggregates, 2. Fibrous, 3. Elongated, 4. Closed, and 5. Beads on a string [12]. Later on, each of

these classes will be elaborated upon in detail.

Tandem repeat proteins are prevalent in a wide variety of organisms and are found in a significant

proportion of protein sequences. In fact, it has been estimated that tandem repeat-containing

proteins make up approximately 14% of all proteins [12].

Tandem repeats in DNA and proteins can have different functions and evolutionary

consequences. In DNA, tandem repeats can affect gene expression and stability. For example, the

expansion of tandem repeats in the promoter regions of genes can affect transcription, leading to

diseases such as Fragile X syndrome [13]. In contrast, in proteins, tandem repeats are often involved

in protein-protein interactions and structural stability. For example, the immunoglobulin

superfamily of proteins contains tandem repeats that mediate protein-protein interactions [14].

1.10.1 Diverse Roles of Tandem Repeat Proteins
Tandem repeat proteins are associated with a diverse array of functions such as:

 Structural Suppor

Tandem repeat proteins play a crucial role in providing structural support to cells and tissues. They

can form specific structural motifs, such as alpha-helices, beta-sheets, and beta-turns, which are

important for maintaining the shape and stability of proteins. For example, the protein elastin,

which contains tandem repeat domains, provides elasticity to tissues such as blood vessels and

skin [15]. Similarly, the protein collagen, which contains repeating sequences of glycine, proline,

and hydroxyproline, provides strength and stability to tissues such as bone and cartilage [16].

 Signal Transduction

Tandem repeat proteins also play an important role in signal transduction pathways. They can act

as scaffolds for the assembly of signaling complexes, allowing for efficient and specific signaling
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between cells. For example, the protein beta-catenin, which contains tandem repeat domains, is a

signaling protein that plays an important role in cell adhesion and the regulation of gene expression

[17].

 Immune System Function

Tandem repeat proteins can also act as antigens that stimulate antibody production and activate

immune responses. One such protein is C4BP, which contains tandem repeat domains and serves

as a regulator of the complement system involved in immune response regulation. [18].

 Genetic Markers

The high degree of variability in tandem repeat proteins can also contribute to genetic diversity

within populations. This makes them useful in a number of applications, including as genetic

markers in population studies and in biotechnology. For example, the number of repeats in the

protein D4Z4 has been linked to facioscapulohumeral muscular dystrophy (FSHD), a

neuromuscular disorder [19].

 Vesicle Formation

Tandem repeat proteins are crucial for the regulation and formation of vesicles, small membrane-

bound compartments that transport and deliver proteins and other molecules within cells. One

example of such vesicles is clathrin-coated vesicles, formed via clathrin-mediated endocytosis.

Clathrin proteins, which contain specific types of tandem repeat domains, are essential components

of this process [20]. They assemble into a lattice on the cytoplasmic side of the plasma membrane

and recruit other proteins and adaptors to form a coated pit. The coated pit then invaginates and

eventually buds off from the membrane to form a clathrin-coated vesicle [21]. The figure below

illustrates the constituent elements of the clathrin-coated vesicles.
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Fig. 1.6: A depiction of a clathrin-coated vesicle, highlighting its structural components and assembly

1.11 Composition of Tandem Repeat Proteins
Tandem repeats in proteins are consisted of three main elements:

 Repeat Region: The entire segment of the protein where the tandem repeats occur. Its

length can significantly vary, and it can be found anywhere within the protein sequence.

 Repeat Units: The individual segments repeated in the region, often similar in structure

but also can be significantly degenerate on the sequence level [22]. They can be single

residues or a stretch of multiple residues.

 Insertions: They represent unique structural segments situated within a repeat unit or

between two units. They disrupt the symmetrical pattern of the repeat sequence and pose

challenges for both automated identification and structural analysis of repeated sequences

[23].

The following figure represents these 3 main elements:
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Fig. 1.7: A schematic representation of a protein tandem repeat, detailing its key elements

1.12 Classification of Protein Tandem Repeats
Protein tandem repeats were previously classified solely based on repeat lengths [24]. However, as

previously mentioned, a more refined classification has been proposed by Andrey V. Kajava, due

to the discovery of new 3D structures. The new classification takes into account additional factors

such as repeat secondary structure composition, topologies, and interfaces[12]. Briefly, the

classification is organized as it follows:

 Class I: Crystalline aggregates

This category consists of proteins and peptides that have repeating units of 1 or 2 residues. These

repeating units can form various types of crystal structures that can grow to any size and can be

detrimental to living organisms. In proteomes, regions that contain these repeating units are

typically hydrophilic and are prone to be unfolded.
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On the other hand, the formation of crystalline aggregates can also be detrimental to cells and

tissues. Many neurodegenerative diseases, such as Alzheimer's and Parkinson's, are associated

with the accumulation of insoluble protein aggregates in the brain. These aggregates are thought

to disrupt normal cellular processes and contribute to disease pathology [25].

Further research is needed to fully understand the mechanisms underlying the formation of

crystalline aggregates in proteins and to develop new materials and therapies based on this

knowledge.

 Class II: Fibrous

This category comprises two prominent fibrous structures: collagen and alpha-helical coiled coils.

Collagen is composed of a tripeptide sequence Gly-X-Y, where the residues X and Y can vary but

commonly consist of proline or hydroxyproline. The chains adopt an elongated polyproline II

conformation and form a triple helix structure in the 3D conformation [26].

The alpha-helical coiled coils are identified by a repetitive (abcdefg)n motif, where hydrophobic

residues occupy positions “a” and “d”, and polar residues occupy other positions. The apolar

residues “a” and “d” are spaced at intervals of 3-4 residues. Each chain folds into an alpha-helix

and intertwines around the axis of the coiled-coil structure [27].

 Class III: Elongated

Elongated repeats are composed of two sub-categories of Solenoidal structures and Non-solenoidal

structures. In the first group, repeats of 5–40 residues adopt a solenoidal structure, where the

polypeptide chain is wound in a spiral fashion. As a consequence, solenoid proteins tend to exhibit

elongated structures, which are distinct from the globular shape commonly observed in other

proteins [28].

An example of this is the ‘‘β-spiral’’ structure of the adenovirus fiber shaft having 15 residue

repeats. The β -spiral folds exhibit greater complexity when compared to the solenoidal fold due

to the presence of elongated central beta-strands, which maintain the trimer through inter-chain

hydrogen bonding. Furthermore, the structure is stabilized by interactions involving the nonpolar

side chains and short peripheral beta-strands [29].
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The individual units of Elongated repeats are interdependent for preserving the overall structure.

However, unlike class II proteins, these repeating units can still possess a stable structure

independently without assembling into an oligomeric form [12].

 Class IV: Closed

Proteins belonging to this category exhibit a fixed number of repeats owing to their circular or

"closed" structures. The length of these repeats overlaps with structures classified under both

classes 3 and 5 with, proximately, ranging from 40 to 60 residues. The WD repeat is one of the

most well-known structures belonging to this class. These proteins fold into a closed beta-propeller

structure, where each repeat is a four-stranded antiparallel beta-blade. A single repeat by itself is

not stable, but multiple repeats can form a stable beta-propeller structure where the first and last

blades interact to close the symmetric structure [30].

 Class V: Beads on a string

This category of structures consists of repetitive units that are large enough to independently fold

into stable domains, typically containing over 50-60 residues. The protein structure with these

domains follows a "beads on a string" arrangement, where the beads correspond to globular

domains. The smallest domains of this type start at around 30 residues but require disulfide bonds

or metal ion coordination to stabilize their structure. Zn-finger domains are a classic example of

such structures, being the most common DNA-binding motif that is stabilized by zinc metal ion

coordination. The flexible connections between Zn-finger domains and the diversity of their

binding surfaces enable specific interactions with various DNA motifs [31].

In the following figure, several structures and domains associated with the 5 (I-V) main classes of

protein tandem repeats are illustrated.
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Fig. 1.8: The structural classification of the repetitive proteins based on the length of their repeats. The

examples shown are: class I, 1 – crystalline b-structure of poly-alanine, class II, 2 – triple-helix of collagen, 3

– a-helical coiled coil, class III, 4 – b-solenoid, 5 – a/b-solenoid of LRR protein, 6 – a-solenoid, 7 – trimer of b-

spirals, 8 – single-layer antiparallel b-structure, class IV, 9 – TIM-barrel, 10 – transmembrane b-barrel, 11 –

b-trefoil structure, 12 – b-propeller structure, and Class V, 13 – Zn-finger domains, 14 – polyubiquitin chain.
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1.13 Identification of Protein Tandem Repeats
Over recent years, numerous algorithms and software have emerged to identifying tandem repeats

in proteins. These methods are primarily based on either the protein sequence or its structure.

1.13.1 Sequence-based methods
Sequence-based methods can be broadly categorized into five distinct types, each with its own

advantages and drawbacks:

1. The first type employs Fourier Transform analysis to detect periodicities in amino acid

sequences. As a de novo or ab initio method, it does not depend on prior knowledge of potential

repeats. This approach excels in identifying long tandem repeat arrays without insertions or

deletions, but struggles with short repeats and those containing indels [32].

2. The second type, exemplified by programs like XSTREAM[ 33] and T-REKS [34], utilizes short

string extension algorithms. These methods can detect tandem repeats with indels and are

particularly adept at ab initio identification of short repeats (fewer than 15-20 residues). With linear

time complexity, they are fast and well-suited for large-scale repeat searches.

3. The third type identifies repeats through sequence-sequence alignment algorithms that compare

the protein sequence to itself. Web servers such as RADAR [35] and TRUST [36] embody this

approach, which is effective for ab initio detection of long repeat arrays. However, it often fails to

detect short repeats, and its O(n2) time complexity renders it relatively slow and ill-suited for large-

scale analysis.

4. The fourth type relies on pre-generated alignments of repeats, which are used to build Hidden

Markov Models (HMMs) or sequence profiles. These HMM profiles are then compared to the

query sequence to find the best and multiple hits [37]. Web servers such as Pfam, SMART, REP,

TPRpred, PROSITE, and BiSMM server employ this method. While it excels in detecting long

and highly imperfect tandem repeats, its dependence on prior alignments precludes it from

automated ab initio large-scale analysis.
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5. The fifth type of sequence-based method involves HMM-HMM or profile-profile comparisons,

as seen in the HHrepID server [38]. It constructs an HMM from a multiple sequence alignment of

homologous proteins and searches for sub-optimal alignments within the HMM. This highly

sensitive approach allows efficient ab initio detection of highly divergent "covert" tandem repeats.

1.13.2 Structure-based methods
Structure-based methods aim to identify the periodicity of protein tandem repeats using various

strategies, such as detecting 3D symmetries or examining the regularity of structural features.

These methods differentiate between repeat and non-repeat structures and sometimes annotate

TRPs with unit positions.

Examples of structure-based methods include ConSole and TAPO. ConSole identifies protein

modularity using contact maps [39], while TAPO detects periodicities in atomic coordinates and

other structural representations [40].

Another method, ReUPred [41], identifies structural units by comparing the protein structure to a

manually curated library of TRP units, designed to represent the diversity of repeat units in terms

of their conformational space. This allows for the identification and classification of modular

substructures in TRPs.

1.14 Tandem Repeat Protein Databases
In recent years, numerous databases have been established to support the systematic organization,

classification, and analysis of tandem repeat proteins (TRPs). A prime example of such a database

is RepeatsDB.

RepeatsDB is an extensive database devoted to the classification and structural analysis of TRPs.

It consolidates a vast array of structural and functional information for each protein entry, making

it an invaluable resource for researchers examining TRP structure-function relationships and their

potential applications across diverse scientific fields. The database employs a hierarchical

classification system consisting of four primary levels: Class, Topology, Fold, and Clan. A

numerical index is assigned to each tier to ensure a standardized representation of protein structures

[42].
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In addition to RepeatsDB, other databases have been developed to catalog and analyze TRPs, such

as DbStRiPs [43]. These databases offer complementary resources and tools to enable a

comprehensive understanding of TRPs and their functions. However, in this study, our analyses

are focused solely on the resources provided by RepeatsDB, which will be elaborated upon in

detail through the following sections.

1.14.1 RepeatsDB
RepeatsDB is a database that contains information about tandem repeat structures in proteins. The

initial dataset is extracted from the Protein Data Bank (PDB), which is a large repository of

experimentally determined protein structures. Repeat candidates are identified from the reduced

PDB dataset using ReUPred, which uses a geometric approach to imitate the work of a human

curator. The resulting dataset is stored in the database as 'predicted' entries, which then undergo a

classification and curation process.

The predicted entries are manually curated using a two-level annotation system. In the first manual

annotation level ('manually classified'), an entry is classified into a structural repeat class and

subclass. This classification is based on previous work where five classes of repeat structures are

proposed, which are then further divided into subclasses. Class assignment is based mainly on

repeat unit length, and subclass assignment is based on secondary and tertiary structure features.

In the second manual annotation level ('detailed'), information is provided about the start and end

positions of the repeat units, repeat regions, and/or insertions. A repeat unit is defined as the

smallest structural building block that is repeated to form a repeat region. A repeat region is defined

as a group of at least three repeat units. Proteins with two repeat units are not included because

they significantly complicate classification, as many typical globular domains have this type of

architecture. Insertions, that as previously described are non-repeated segments of structure that

occur either inside a repeat unit or between two of them, are also annotated. These are particularly

interesting because they break the repeat symmetry and represent a challenge both for automatic

detection and for the analysis of repeat structures.

Several curators annotate each protein undergoing manual classification by consensus. For first-

level annotations, at least 75% of the curators have to agree for a protein to be included. Otherwise,
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it is excluded and placed on a reserve list for future annotation. The rationale for this choice is that

ambiguous cases are generally difficult to classify, but may occasionally represent a novel repeat

class. For second-level annotations, the threshold for consensus is at least 65% agreement

(typically two of three curators). In case of discrepancy, an expert arbitrates the final annotation

based on the alternative proposals.

Proteins with detailed annotations are also used to search for similar sequences in proteins from

the PDB. Any PDB chain with at least 40% sequence identity and a coverage of at least 80% of

the classified protein, belonging to the initial list of predicted entries, is added to the 'classified by

similarity' annotation level. The similarity thresholds are implemented to exclude possible false

positives.

1.14.2 Classification of TRPs in RepeatsDB
The classification of Tandem Repeat Proteins (TRPs) currently consists of a hierarchical

organization that includes four primary tiers, which are delineated as follows:

(I) 'Class' characterizes the overarching protein architecture, with particular emphasis on the

general shape, the interplay between repetitive elements, and the oligomerization state, which are

contingent on the length of the repeating sequence.

(II) 'Topology', previously designated as 'subclass', differentiates between various configurations

of the polypeptide chain, as well as the secondary structure types present within each repetitive

unit.

(III) 'Fold' serves as a refinement of the 'topology' tier, providing further distinction based on the

arrangement of secondary structures and the overall structural characteristics, such as the degree

of twisting, within a specific repeat.

(IV) 'Clan' refers to a subcategory of 'fold' that assembles protein structures that share a common

sequence/structure motif within the repeating unit or a portion thereof.

By incorporating these four hierarchical tiers, the classification system for TRPs enables a

comprehensive understanding of their structural properties, as well as their relationships with one

another. Furthermore, in this classification system, each level of the hierarchical organization has
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a numerical index associated with it. This numerical index serves as an identifier for the specific

attributes within each classification tier, enabling a standardized representation of the protein

structure. Consequently, this systematic approach facilitates communication and comparison

between various TRP structures.

The numerical indices assigned to each of the four tiers can be represented as a series of four

numerical values separated by periods, following the format: Class. Topology. Fold. Clan.

An example of this is shown in the figure below.

Fig. 1.9: A visual representation of the classification hierarchy of an entry in RepeatsDB, accompanied by

their corresponding numeric indices

1.15 Where the Problem Arises
The classification of TRPs within RepeatsDB, while comprehensive and valuable, is not without

its limitations. Two key areas where the database may be improved are one, the potential flaws in

the classification system, and two, the limited degree of statistical support provided to elucidate

the classifications. Addressing these issues is crucial to furthering our understanding of TRPs and

enhancing the database's utility for the scientific community.

1.15.1 Challenges with the classification of repeats in RepeatsDB
Although the hierarchical classification system employed by RepeatsDB (Class, Topology, Fold,

and Clan) has proven effective in organizing and representing TRPs, it is not devoid of flaws. One

potential limitation lies in the reliance on the expert-driven manual curation of protein structures.

While this approach ensures accurate classification, it may also introduce biases, be time-
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consuming, and may not scale efficiently with the rapid influx of newly discovered protein

structures. Also, many entries lack a complete annotation, mostly, at the level of Fold and/or Clan,

mostly due to the fact that these entries might not completely fit into certain levels of the existing

classification.

1.15.2 Limited statistical support for the classification system
Another limitation of the RepeatsDB classification system is the absence of robust statistical

support for the assigned categories. While the hierarchical organization allows for a clear and

concise representation of TRP structures, it lacks quantitative measures to justify the classification

decisions, such as statistical significance or confidence intervals. This makes it difficult to assess

the validity and reliability of the classification system and may hinder the interpretation and

comparison of different TRP structures.

1.15.3 Addressing these limitations
To overcome the limitations of the current classification system in RepeatsDB, it is essential to

develop and implement novel methodologies that leverage automated approaches, particularly

machine learning techniques. These methods can significantly improve the classification and

clustering of tandem repeat protein structures, enhancing the accuracy, scalability, and objectivity

of the database.

Machine learning algorithms offer a promising avenue for addressing the challenges associated

with manual curation and the lack of statistical support in the current classification system. By

training models on structural data, machine learning techniques can learn complex patterns and

relationships, ultimately providing a more robust and data-driven classification framework.

Employing these techniques could assist in the manual curation of TRPs and potentially facilitate

a more scalable and unbiased classification process.

1.16 The Expanding Role of Machine Learning in Bioinformatics
Machine learning has brought about groundbreaking changes in various facets of the healthcare

sector, with bioinformatics standing out as one of the most significantly impacted fields. As a

discipline that applies computational methodologies to biological data, bioinformatics has reaped

immense rewards from machine learning algorithms. These advancements have propelled progress
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in genomics, proteomics, drug discovery, and personalized medicine. A few examples of machine

learning applications across different fields of healthcare and biotechnology include:

 Genomics and Personalized Medicine

Machine learning has made a considerable impact on bioinformatics, particularly in the domain of

genomics, which encompasses the study of an organism's entire DNA set. Machine learning

algorithms have found utility in a multitude of genomics tasks, such as:

Genome Sequencing: Machine learning enhances genome sequencing by detecting sequencing

inaccuracies, forecasting gene structures, and assembling raw sequence information into whole

genomes.

Gene Expression Analysis: Researchers employ machine learning to scrutinize gene expression

data, pinpointing patterns and connections that can help comprehend the fundamental molecular

mechanisms of diseases and devise targeted treatments.

Genotype-Phenotype Associations: Machine learning algorithms have the capacity to discern

correlations between genetic variations and specific phenotypes, like disease susceptibility or drug

response. This invaluable information facilitates the development of personalized medicine,

enabling the customization of treatments based on an individual's genetic composition. [44].

 Proteomics

Proteomics, the large-scale study of proteins, represents yet another field where machine learning

has made considerable strides. By investigating protein structures, interactions, and functions,

researchers can glean insights into cellular processes and pinpoint potential drug targets. Some

notable machine learning applications in proteomics encompass:

Protein Structure Prediction: Machine learning algorithms are capable of forecasting the three-

dimensional structure of proteins based on their amino acid sequences. This crucial information

aids in drug design and elucidating protein function.

Protein-Protein Interaction (PPI) Prediction: Identifying PPIs is essential for comprehending

cellular processes and disease mechanisms. Machine learning approaches can predict potential

interactions by analyzing protein sequence, structure, and functional data.
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Post-Translational Modification (PTM) Prediction: PTMs play a pivotal role in modulating protein

function. Machine learning models can predict the sites and types of PTMs, thus enabling the

investigation of protein regulation and signaling pathways. [45].

 Drug Discovery

Machine learning has surfaced as a formidable instrument in the drug discovery process, aiding

researchers in streamlining the identification and development of new therapeutic compounds.

Some of the key applications are:

Target Identification: Machine learning algorithms can analyze extensive biological data to

pinpoint potential drug targets, such as proteins or genes implicated in disease pathways.

Compound Screening: Virtual screening methods, powered by machine learning, can predict the

binding affinity of compounds to specific targets. This substantially reduces the time and cost

associated with experimental screening.

ADMET Prediction: Machine learning models can forecast the absorption, distribution,

metabolism, excretion, and toxicity (ADMET) properties of drug candidates. This allows

researchers to select compounds with a higher probability of success in clinical trials [46].

1.17 Machine Learning Applications
Machine learning algorithms can be effectively applied to TRP structures, offering significant

improvements in the classification, clustering, and visualization of high-dimensional data. The

following approaches can be utilized to enhance the understanding and analysis of TRP structures:

1.17.1 Supervised Classification
Supervised machine learning algorithms, such as the k-Nearest Neighbors (KNN) [47], can be

employed to facilitate the automatic classification of TRP structures. In this approach, the

algorithm is trained using labeled data, which consists of TRP structures with known

classifications. The KNN algorithm classifies a new, uncharacterized TRP structure by analyzing

the classifications of its k-nearest neighbors in the feature space. By leveraging the information

from neighboring structures, the KNN algorithm can effectively predict the class membership of

previously uncharacterized TRPs, providing an automated and scalable classification process.
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1.17.2 Unsupervised Clustering
Unsupervised machine learning algorithms, particularly density-based methods such as DBSCAN

(Density-Based Spatial Clustering of Applications with Noise) [48], can be used to cluster TRP

structures and refine the classification system. These algorithms identify clusters of TRPs with

similar structural features without relying on predefined class labels. Density-based algorithms

group TRPs based on the density of data points in the feature space, allowing for the identification

of clusters with arbitrary shapes and the separation of noise from meaningful data. By revealing

underlying patterns and relationships within the dataset, unsupervised clustering methods can

provide a more comprehensive understanding of the structural landscape of TRPs and contribute

to refining the classification system.

1.17.3 Dimensionality Reduction
Dimensionality reduction techniques, such as Principal Component Analysis (PCA) or

Multidimensional Scaling (MDS) [49], can be employed to visualize high-dimensional TRP data in

lower-dimensional spaces. These methods transform high-dimensional data into a lower-

dimensional representation while preserving the essential structure and relationships between data

points. By projecting the TRP data into a lower-dimensional space, researchers can more

intuitively explore the relationships between TRP structures and identify potential outliers, novel

structural motifs, or trends in the data. This approach facilitates a more accessible and interpretable

understanding of the complex relationships between TRP structures.

1.18 The Importance of Classification and Annotating TRPs
The biological significance of protein tandem repeats was acknowledged previously, but their

study has been fairly limited due to their inherent complexity and variability. However, with

advancements in bioinformatics and computational biology, the potential of TRPs is increasingly

recognized across various fields within life sciences, such as drug discovery, biotechnology, and

diagnostics.

Classification and annotation of TRPs are essential for understanding their biological roles and

harnessing their potential across these diverse applications. Classification groups these proteins

based on characteristics such as structural properties or functional roles, facilitating a systematic
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exploration of TRPs. This reliable classification system aids in identifying novel targets and

applications in drug discovery, biomarker identification, and understanding disease mechanisms.

Comprehensive annotation of TRPs provides invaluable information with wide-ranging

implications. Annotations offer insights into the structure, function, and interactions of TRPs,

which are critical factors in drug design, biotechnology, molecular diagnostics, and personalized

medicine. Understanding the precise three-dimensional structure of a TRP can guide the design

of effective molecules or biotechnological tools, while functional knowledge of a TRP can help

predict biological outcomes, inform disease diagnosis, and develop targeted therapies.

In general, reliable classification and comprehensive annotation of TRPs are pivotal steps in

harnessing the potential of these proteins across life sciences. Such endeavors aid in identifying

new targets and applications, guiding molecular design, and establishing a foundation for future

therapeutic strategies, biotechnological advances, and diagnostic innovations. As bioinformatics

tools continue to evolve, continued investment in these efforts is essential to fully explore the

potential of TRPs and their impact on the scientific community.
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2. Materials and Methods
This section provides a comprehensive overview of the resources and methodologies employed in

this study, segmented into three primary areas: Summary of Materials, Data Collection and

Analysis, and Strategy Formulation.

2.1 Summary of Materials
A concise summary of the resources employed in the current research is as follows:

● Data Source

Data for this research was obtained from RepeatsDB (version 3.0), encompassing a total of 15,296

entries. The release, dated September 15, 2022, was utilized for this study.

● Programming Languages

Python programming language (version 3.9) served as the computational tool for the execution of

data manipulation, analysis, and visual representation operations.

● Analytical Tools

Several Python libraries were employed for the data analytics process. The Pandas library (version

2.0) was instrumental for data structuring and manipulation, whereas the Biopython library

(version 1.81) facilitated the handling of biological data. Further, select modules from the scikit-

learn library (version 1.2.2) were deployed for the application of machine learning algorithms and

statistical techniques. Namely, the KNeighborsClassifier (KNN) was used for supervised

classification, DBSCAN for unsupervised clustering, and MDS for multidimensional scaling.

● Visualization Tools

Data visualization was realized using the Matplotlib (version 3.7.1) and Plotly (version 5.14.1)

Python libraries. These tools were pivotal in generating interactive and static visualizations to

elucidate patterns and trends within the data.

● Protein Comparison Tools
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TM-align and mTM-align were the software tools of choice for the structural comparison of

protein tandem repeats. These tools enabled efficient and accurate alignment of protein structures,

contributing to the comparative analysis.

2.2 Data Collection and Analysis
By performing a comprehensive statistical analysis on the data stored in RepeatsDB, we can

uncover crucial information regarding the various properties of these protein repeats. This

knowledge can be instrumental in making data-driven decisions and devising targeted

experiments. By leveraging these insights, we can increase the efficiency and effectiveness of the

future experiments, potentially saving time, resources, and reducing the likelihood of pursuing

dead ends.

With having this in mind, initially, the RepeatsDB database is acquired from the designated

website and subsequently parsed and processed into a Pandas dataframe using Python. Following

this, an extensive statistical analysis is conducted based on various attributes associated with the

repeat regions. These attributes encompass a diverse set of characteristics, including the length of

the regions, the number of units within each region, the reviewed status, curator ID (if available),

and other less pertinent information.

In this section, we conduct a thorough examination of various features and properties of the

database entries, primarily focusing on the aspects of reviewed status, classifications, and the

extent of annotation. It is important to emphasize, again, that the classification of repeats is

executed across four distinct levels: Class, Topology, Fold, and Clan. To facilitate a more

comprehensive analysis that balances between over-generalization and excessive attention to

minute details, we opt to group the repeats at the Topology level. Consequently, their numerical

representation in subsequent analyses will consist of only the first two numerical indices.

For instance, Alpha-Solenoids, a topology that falls under the Elongated class, and all the folds

and clans that it encompasses, will be denoted as 3.3 in our analysis. This approach enables a more

streamlined and focused examination of the data.
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2.3 Strategy Formulation

This section presents a comprehensive description of the modified strategy employed for the

analysis, clustering, and classification of protein tandem repeats. The approach is delineated in a

meticulous, step-by-step fashion, ensuring a thorough understanding of the methodology.

2.3.1 Focusing on Key Areas
The diversity of protein tandem repeats requires a focused research approach as conducting an in-

depth analysis of each group within this diversity is considerably time-consuming for this study,

rendering it an impractical objective.

The primary aim, therefore, is to identify groups characterized by both a high overall number of

repeats and a significant proportion of manually reviewed entries, due to their greater reliability

compared to unreviewed ones. This focus on key areas, identified by their prevalence and

reliability, aims to enhance the value of the study.

The data analysis carried out in the previous section sets the stage for this targeted approach. By

identifying the distribution and characteristics of the repeats, it allows for the selection and

prioritization of key areas for deeper investigation.

2.3.2 Resolving the Issue of redundancy
Upon examination of the RepeatsDB entries, it becomes evident that a substantial number of

entries (Region_IDs) are associated with the same protein (Uniprot ID), primarily due to the

redundancy of protein structures (PDB IDs) linked to specific proteins. Consequently, this

redundancy within the dataset may adversely affect the validity of experimental outcomes.

To address this issue, for each unique protein (Uniprot ID), a single unique Region ID was

randomly selected, and the remaining Region IDs related to that specific protein segment were

excluded from the dataset. It is essential to note that, on occasion, two distinct repeat regions may

reside on the same polypeptide chain, necessitating caution to avoid the omission of one of the
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repeat regions. By implementing this strategy, potential biases introduced by structural redundancy

can be mitigated, thereby enhancing the integrity of subsequent analyses.

2.3.3 Structural Comparison of Protein Repeats
After establishing the experimental population and eliminating noise and redundancies, the

subsequent stage involves comparing the protein repeats to precisely discern the relationships

between each entry and the entire dataset. Consequently, a distance matrix can be generated,

serving as the foundation for the application of machine learning techniques in this investigation.

Given that this study is focused on the structure of proteins, the method for comparing repeats and

calculating their respective distances relies on Protein Structure Alignment as the primary

approach for assessing structural similarities.

Here we briefly discuss the logistics behind protein structure alignment and TM-align as the main

used algorithm for this purpose.

TM-Align: TM-Align is a structure alignment algorithm that employs a heuristic iterative

approach to align protein structures [1]. The algorithm consists of three main steps: (i) initial

alignment using secondary structure matching, (ii) optimal superimposition of structures based on

the TM-score, and (iii) dynamic programming for the final alignment. The TM-score is a metric

that measures the global similarity between two protein structures, with values ranging from 0 (no

similarity) to 1 (identical structures). TM-Align is known for its speed, accuracy, and ability to

handle large-scale structure comparisons [50]

While TM-Align is primarily used for pairwise comparisons, mTM-Align, an extension of TM-

Align, extends its capabilities to handle multiple structure alignments, making it more suitable for

large-scale analyses involving multiple protein structures [51].

TM-score: One of the key advantages of both algorithms is their reliance on TM-score as a

measure of structural similarity. The TM-score is less sensitive to local structural variations and is

more robust in assessing global structural similarity than traditional measures like RMSD (root-

mean-square deviation).
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2.3.4 Comparison Levels
The analysis of structural similarities among protein repeats can be performed at various levels. In

this study, three distinct methodologies were implemented, each possessing unique advantages and

disadvantages, rendering them suitable for application in diverse scenarios. The following figure

illustrates an example of 3 different levels of structural units that were used during the course of

this study.

Fig. 2.1: An illustration of three distinct levels of structural comparison

● Representative Unit

Initially, for each repeat region, all the units within that region were extracted from the PDB files

and aligned using mTM-align. The algorithm’s output is a similarity matrix of all the units within

a region. By analyzing this matrix, the unit with the highest average similarity to the other units

was identified as the "Representative Unit." This unit is considered to best represent the overall

structure of the units within that region.

Subsequently, the representative units from each region were aligned pairwise using TM-align to

generate a comprehensive similarity matrix of representative units in an all-vs-all manner. The

process of creating a distance matrix with TM-align is illustrated in the figure below.
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Fig. 2.2: A schematic representation of the distance matrix generation process using TM-align

● 3-Consecutive Units

First, the representative units of regions are found using a method similar to the one mentioned

earlier. Then, besides the representative unit, the two closest units to it are also picked and taken

from the PDB structures. So, if the unit is in the middle, the units before and after it are included.

If it's at the N-terminus or C-terminus, two units upstream or downstream are added, depending

on the location.
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Fig. 2.3: Three combinations of 3-consecutive units in relation to the representative unit (R)

● Whole Region

At this level, for each repeat, the whole region is extracted from the associated PDB structures and

is aligned with all the other repeat regions in an all-vs-all PSA (pairwise structural alignment) to

generate the mother distance matrix. This approach is particularly suitable for the comparison of

repeats that do not differ drastically in the number of their entailed units.

2.3.5 Visualization of High Dimensional Data by MDS
Prior to delving into the application of clustering and classification algorithms on the distance

matrices generated in previous steps, it is essential to visualize the data to obtain a more intuitive

comprehension of the information being processed. Heatmaps, a widely utilized data visualization

technique, display the magnitude of a phenomenon as color in two dimensions and are often

employed for visualizing distance matrices.

Despite the accuracy of heatmaps in representing raw data, they can prove difficult to interpret,

particularly when dealing with matrices that span thousands of rows and columns (Fig X).
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Fig. 2.4: A visual example of a large distance matrix

Consequently, alternative visualization approaches may be required. Dimensionality reduction

techniques offer a promising solution in such situations. These algorithms can be beneficial by

effectively reducing the complexity of the data, enabling easier identification of patterns and

relationships within the dataset. By projecting high-dimensional data onto a lower-dimensional

space, Dimensionality reduction algorithms enhance interpretability and facilitate a more

comprehensive understanding of the underlying data structure.

Multidimensional Scaling: In this study, the main algorithm used for this purpose is called

Multidimensional Scaling (MDS). It is a statistical technique that, as previously explained, is used

for visualizing and analyzing complex, high-dimensional data by reducing it to a lower-

dimensional representation. This method aims to preserve the original distances between data
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points as closely as possible while transforming them into a more easily interpretable format,

typically a two or three-dimensional space [52]. The figure below is a simple illustration of how

this technique is applied.

Fig. 2.5: How MDS enables a facilitated visual representation of a distance matrix

2.3.6 Clustering
Employing various unsupervised clustering algorithms to group the data can provide insights into

which repeats exhibit sufficient structural similarity to form distinct clusters. By comparing the

algorithmically defined clusters with the existing classification, we can assess the extent of their

alignment and agreement. In cases of discrepancies, further investigation into the root causes can

help determine whether the classifications can be rectified or enhanced.

Although there is a multitude of clustering methods and configurations available. However, In the

context of clustering a large distance matrix without prior assumptions about the number of

clusters and with the goal of identifying outliers, not all are well-suited to the objectives of this

study or the specific data type under examination. Here, we will discuss 3 of the widely utilized

clustering techniques and provide justification for selecting one method that is most appropriate

for achieving the study's goals.

 K-means Clustering
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K-means is a partitioning algorithm that requires the predetermined number of clusters (k) as input

[53]. This requirement may not align with the aim of clustering without any assumptions about

cluster quantity. Additionally, K-means is sensitive to the initial placement of cluster centroids and

is generally not effective at identifying outliers or handling noise, limiting its suitability for the

given task. Most importantly, it requires continuous, vector-based data as input and cannot be

directly applied to a precomputed distance matrix.

 Hierarchical Clustering

Hierarchical clustering generates a tree-like structure (dendrogram) to represent the hierarchy of

data clusters. The number of clusters can be determined by cutting the tree at a specific level.

While this method does not necessitate prior knowledge of the number of clusters, it may be

sensitive to noise and outliers, making it less suitable for the outlined purpose. Furthermore, its

computational complexity may hinder its performance when applied to a very large dataset.

 DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

DBSCAN is a density-based clustering algorithm that does not require a predefined number of

clusters, making it well-suited for the task. It groups points based on their density, enabling the

detection of clusters of varying shapes and sizes. Additionally, DBSCAN classifies less dense

regions as noise, effectively separating outliers. However, it is essential to note that the algorithm's

performance may be impacted by its sensitivity to the choice of parameters.

Overall, among the widely used clustering methods, DBSCAN emerges as the most suitable

algorithm for clustering a large distance matrix of structural similarities between protein repeats

without prejudice about the number of clusters and for identifying outliers.

In the figure below, it is shown how different clustering algorithms, including K-means and

DBSCAN, handle the clustering task in different cases and conditions. It is obvious that DBSCAN

proves to give out the best results in the given examples.

42



Fig. 2.6: A side-by-side comparison of clustering results obtained from five distinct algorithms

2.3.7 DBSCAN parameters
The DBSCAN algorithm offers a variety of adjustable parameters that can be fine-tuned to

accommodate the specific data and analysis objectives, ensuring optimal and trustworthy results.

The following are some of the most critical parameters relevant to our study:

 Eps: Epsilon (Eps) denotes the radius around a data point, defining the neighborhood within

which other data points are considered neighbors. The choice of Eps directly influences the

algorithm's ability to identify dense regions and separate clusters from noise. An appropriate

Eps value is essential for accurate cluster formation and depends on the scale and distribution

of the data. During the course of the analysis, a multitude of experiments were conducted

utilizing an extensive range of Eps values. The objective was to examine and ascertain the

extent of structural similarity exhibited by the members of a Clan in relation to one another.

       Metric: The metric parameter refers to the distance measure used to compute the similarity

or dissimilarity between data points. Common distance metrics include Euclidean,
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Manhattan, and cosine distances. The choice of an appropriate metric is crucial for capturing

the underlying structure of the data and directly affects the quality of the clustering results.

However, as we already have our distance matrices prepared, this parameter was set to

“precomputed”.

 Min_samples: It represents the minimum number of data points required to form a dense

region or cluster. This parameter is used to differentiate between core points and noise in the

dataset. A suitable min_samples value balances sensitivity to noise and cluster formation,

ensuring that the algorithm can accurately identify meaningful groups within the data. Given

that some Clans in the dataset comprise only a limited number of members, it is essential to

ensure that they, too, have the potential to constitute individual clusters. Consequently, the

min_samples parameter was set to a value of 2 in order to accommodate this constraint.

2.3.8 Classification by KNN and the K Parameter
Having established a refined and reliable classification through the previous step, we are now well-

equipped to proceed with the classification process. In this phase, representative samples were

designated for each group defined within the classification system, corresponding to the Clan level.

Subsequently, the K-Nearest Neighbors (KNN) algorithm was employed to classify and label the

extensive collection of Reviewed but Not-fully Classified entries. In the following discussion, we

elucidate the functioning of KNN and the parameters that would be most suitable for our

experiment.

K-Nearest Neighbors: is a non-parametric, instance-based supervised learning algorithm

employed for classification tasks. It operates by computing the distances between a query instance

and all labeled instances in the training set. The algorithm then selects the 'k' closest instances

(neighbors) and assigns the majority class among these neighbors to the query instance.

The figure below pictures how KNN functions in a simple instance through 4 main steps.
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Fig. 2.7: A simple diagram demonstrating the K-nearest neighbors (KNN) algorithm in action

It is important to note that the choice of 'k' is a very crucial parameter that can significantly impact

the classification results.

The number of neighbors, 'k' influences the algorithm's sensitivity to noise and its ability to

generalize. A small value of 'k' (e.g., k=1) may result in a highly flexible model, making it

susceptible to overfitting and noise. Conversely, a large value of 'k' may lead to an overly smooth

decision boundary, potentially increasing classification errors due to underfitting. Selecting an

appropriate 'k' value involves balancing the trade-off between overfitting and underfitting.

The following figure illustrates how different 'k' values can affect the classification result

drastically.

45



Fig. 2.8: An example of the impact of the K parameter on classification results in KNN

The Choice of 'K': In the present study, two representative samples were selected for each well-

defined and refined group derived from the clustering analysis. A series of tests were conducted

to determine the optimal 'k' parameter for the K-Nearest Neighbors (KNN) algorithm. As a result,

a 'k' value of 3 emerged as an appropriate choice for this experiment.

As previously discussed, an excessively small 'k' value, such as 1, may compromise the model's

reliability, rendering it susceptible to overfitting and noise. Furthermore, a 'k' value of 2 can

introduce complexities when a sample is equidistant from two neighbors with distinct labels. In

this context, a 'k' value of 3 represents the smallest viable option that accommodates the

experimental conditions effectively.

The rationale behind this choice lies in the observation that, in the majority of cases, two of the

three nearest neighbors will belong to the same group, as they represent the same group's units.

This configuration enables the KNN model to operate seamlessly with minimal complexity while

maintaining an adequate level of reliability.
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2.3.9 Distance threshold
A notable limitation of the K-Nearest Neighbors (KNN) algorithm is its inherent tendency to

assign a label to every input, irrespective of its dissimilarity to the labeled training data.

Consequently, even instances exhibiting substantial divergence from the training data will be

assigned labels based on their proximity to the nearest neighbors, potentially resulting in

misclassification. Such misclassifications can undermine the reliability of the classification

outcomes.

To mitigate this issue, a distance threshold was implemented as a preprocessing step before

introducing inputs to the KNN algorithm. By doing so, only inputs exhibiting a minimum degree

of similarity to the labeled data are subjected to KNN classification. Instances failing to meet this

similarity criterion are designated as "unclassified outliers" and segregated into a separate dataset

for subsequent analysis. The determination of the distance threshold was facilitated by the

clustering analysis conducted using the DBSCAN algorithm in the previous stage of the study.

Incorporating a distance threshold as a preprocessing step enhances the reliability of the

classification results by minimizing the misclassification of dissimilar instances and enabling the

identification of unclassified outliers for further examination.

2.3.10 Scavenging the Threshold Outliers
In the concluding stage of the pipeline, an additional round of clustering analysis is conducted on

the unclassified outliers obtained from the previous step. The aim is to determine whether it is

possible to extract novel groups of protein tandem repeats not yet represented in the existing

classification system. By utilizing the insights acquired from the earlier clustering analysis,

including the identification of optimal clustering parameters and the degree of structural similarity

between the members of a Clan, the same principles can be applied to the current stage.

The clusters generated in this step are subject to further analysis and investigation to discern the

presence of common features. Such features typically encompass repeat length, the number of

units, and annotations from third-party sources such as Pfam and InterPro. Through this approach,

the existence of new groups of repeats can be ascertained, if present. Subsequently, these novel

47



groups can be incorporated into the classification system, rendering it more comprehensive and

inclusive.

2.3.11 Assembling everything into a single pipeline
As the final phase of this section, the previously outlined steps are integrated into a unified

pipeline. This integration fosters a more coherent and consistent approach to the study, enhancing

its reproducibility. The entire pipeline, encapsulating all the process stages, is graphically

represented as a flowchart in the subsequent figure.

Fig. 2.9: A flowchart depicting the complete pipeline for TRP classification and automatic annotation
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3. Results
The forthcoming sections presents the results derived from the statistical analysis and the

application of the developed pipeline.

3.1 Statistical Analysis
This section is dedicated to the results of the statistical analysis conducted on the dataset, focusing

primarily on three distinct aspects. These aspects encompass the reviewed status and classification

diversity of protein repeats, the quantities of different classifications, and the completeness versus

incompleteness of annotations of entries. The obtained results play a pivotal role in directing the

pipeline towards areas of the dataset of the highest significance, making the process more targeted

and efficient.

● Reviewed status and classification diversity

The following two pie charts offer valuable insights into the composition of entries within the

dataset. The first chart illustrates the proportion of reviewed and unreviewed entries, and the

second chart delves into the distribution of only reviewed entries across various classification

categories.

Fig. 3.1: Two pie charts: left, reviewed vs. unreviewed entries; right, distinct class.topology proportions
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The pie chart on the left provides an overview of the proportion of reviewed and unreviewed entries

within the dataset. The chart shows that 34% of the entries have been reviewed, indicating that

these entries have been manually curated and have undergone a quality control process for

accuracy and reliability. In contrast, the remaining 66% of the entries are unreviewed, suggesting

that these entries are curated automatically and might require further validation or assessment

before being utilized for research or analysis purposes.

The second pie chart on the right presents the distribution of reviewed entries across different

classification categories. The chart highlights that 23% of the entries belong to the 4.4 class,

making it the most common classification in the dataset. The 3.3 class follows closely, representing

22% of the entries. The 4.1 class accounts for 14% of the entries, while classes 4.2, 3.1, and 3.2

each constitute around 6-7% of the dataset. The remaining 17% of the entries are distributed among

other classification categories

● Quantities of different classifications

The bar graph provides a visual representation of the number of repeat regions in each

classification category (Class. Topology) for tandem repeat proteins. On the X-axis, we have 20

distinct classifications, while the Y-axis displays the corresponding count of repeat regions within

each class. Also, the number of Reviewed regions in each classification is highlighted on the bars

for a more informative presentation.
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Fig. 3.2: A bar graph displaying the entry count for each class.topology category

The graph reveals that the most populated classes are 4.1, 3.3, and 4.4, each containing more than

3,000 entries. These classes represent the most common types of tandem repeat proteins found

within the dataset, highlighting their potential significance in the research domain.

In contrast, the remaining 17 classes exhibit a considerable variation in the number of repeat

regions, ranging from approximately 1,500 down to just a few entries. This wide distribution of

repeat regions across the different classes demonstrates the diverse nature of tandem repeat

proteins and the need for further investigation into these less-represented categories.

● Complete vs. Incomplete Annotations

The bar graph represents the classification status of repeats for three categories based on their

Reviewed status. The X-axis displays the three categories, while the Y-axis indicates the number

of repeats. Each category features double bars, with one bar representing Fully-classified repeats

and the other bar representing Not Fully-classified repeats, which lack a clear annotation on at

least one of the four levels of annotation in the classification system of RepeatsDB.
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Fig. 3.3: A bar graph comparing the number of entries with complete and incomplete annotation, based on

review status

In general, the graph demonstrates that there is a higher number of Not Fully-classified repeats,

almost double, compared to Fully-classified ones across both the Reviewed and Unreviewed

categories. This suggests that a significant portion of repeats are still not fully classified and have

not been validated by curators.

● The implications of the results

The statistical analyses have yielded some key insights. In terms of classification quantities, groups

4.1, 3.3, and 4.4 contain the majority of repeats. However, it is worth noting that groups 3.3 and

4.4 stand out with a significantly larger number of reviewed entries compared to group 4.1. As

reviewed entries generally provide more reliable data than unreviewed ones, focusing on groups

3.3 and 4.4 would be a more prudent approach.
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Additionally, the analysis of the state of entry annotations underscores a pressing need for

improvement. The marked disparity between complete and incomplete annotations points towards

the potential for enhancing the overall quality and reliability of the dataset.

3.2 Application of the Pipeline on Alpha-Solenoids
The entire pipeline was executed separately for both Alpha-Solenoids (3.3) and Beta-Propellers

(4.4). Therefore, the results of each type are examined independently to facilitate focused analysis

and mitigate potential confusion. We commence with a detailed examination of the Alpha-

Solenoids results, encompassing all relevant information. Subsequently, we present a more concise

overview of the Beta-Propellers findings to avert repetition and redundancy.

Through an extensive series of experiments and trials, the decision was ultimately made to employ

a distance matrix based on the structural comparison of "3-consecutive units." This choice was

primarily influenced by a set of anomalies encountered with the "Representative unit" approach,

which will be discussed in further detail at the end of this section.

3.2.1 MDS Results
Initially, to obtain an intuitive understanding of the data, the Multidimensional Scaling (MDS)

algorithm was utilized to reduce the data dimensions to two. This approach enabled the

visualization of the data via a 2D scatter plot. It is crucial to acknowledge that the ensuing

visualizations represent estimations generated by the algorithm to reduce the data's complexity to

the desired dimensions. However, these estimations are not guaranteed to be entirely accurate. For

instance, in a 2D representation of a distance matrix, some entries may appear distant from one

another, but the addition of a third dimension could reveal their proximity. The converse situation

may also hold true. The subsequent scatter plots were generated using Plotly Express to create

interactive plots, thereby facilitating the analysis process.
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Fig. 3.4: A 2D representation, showcasing the relative structural distances of fully-annotated Alpha-

Solenoids by MDS implementation

As observed, the majority of Clans form relatively distinct clusters with reasonably clear

boundaries. However, members of the 3.3.2.2 Clan appear to be scattered in a disordered manner

across the plot, disrupting the boundaries of other clusters, primarily 3.3.3.1 and 3.3.2.5. This

suggests that the 3.3.2.2 Clan may require correction and refinement for a more precise definition.

Another observation of importance is the marked scarcity of data pertaining to Clans 3.3.2.4 and

3.3.3.4, with each having only a single instance in the dataset. This data insufficiency for these

Clans impedes a reliable clustering analysis, as a minimum of two samples is required to form a

cluster core.

Upon gaining a preliminary comprehension of the data, it is recommended to first remove the

members of Clans 3.3.2.2, 3.3.2.4, and 3.3.3.4 from the dataset before advancing to the subsequent

clustering step. This measure will diminish data complexity and facilitate the clustering analysis.

Following this, we will revisit the aforementioned Clans and attempt to establish a more accurate

definition. The figure below illustrates the data after these adjustments, yielding a notable

enhancement in data readability.
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Fig. 3.5: Peculiarities are marked and numbered for further analysis

Several important features are highlighted and numbered in the figure, as described below:

1. As previously noted, these five members belonging to the 3.3.2.1 Clan appear to be situated

far from the main body of the Clan. This observation suggests the possibility of two distinct

types of repeats erroneously labeled as a single Clan.

2. Members of the 3.3.2.3 Clan are positioned in close proximity to the main body of the

3.3.2.1 Clan. This prompts the question of whether they are genuinely two different Clans

or represent the same type of repeats labeled as two separate Clans.

3. A few members belonging to different Clans appear to be notably distanced from the core

of their respective Clans. These instances warrant further investigation to determine the

underlying cause of their outlying positions.

3.2.2 DBSCAN Results
Subsequently, the data was subjected to the DBSCAN algorithm for clustering. The analysis

encompassed a broad range of Eps values to determine the optimal Eps that closely aligns with the

existing Clan definitions in the predefined classification system, where each Clan forms an

individual cluster. Two critical considerations during this step include avoiding excessive data

fractionation and preventing a large number of samples from being classified as outliers.
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It was determined that the most effective way to present clustering results was through bar plots,

with the cluster index displayed on the X-axis and the quantity of repeats within each cluster

represented on the Y-axis. The color composition of each bar correlates with the Clan composition

of the corresponding cluster.

A series of clustering plots, each corresponding to a distinct Eps, were meticulously examined to

observe the dissociation of different Clans at various distance thresholds. These insights shed light

on the relatedness or separation between Clans. Ultimately, it was found that a distance threshold

(Eps) within the range of 25% - 30% (75% - 70% similarity) among cluster members closely

approximates the existing Clan definitions in the predefined classification system.

The subsequent bar plot represents the outcome of clustering the data at a distance threshold of

28% (72% sim).

Fig. 3.6: a bar graph displaying the clan composition of the clustering result
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It is evident that all clans, except 3.3.2.1, are suitably positioned within an individual cluster.

Regarding this particular Clan, 5 members are positioned in a cluster distinct from the main cluster

of the Clan. Aligning perfectly with our observation from MDS scatter plots, as these exact

members of 3.3.2.1 are positioned so distant from the core of the Clan.

Furthermore, three samples from distinct clans are relegated to the outlier bin, indexed as -1,

necessitating a more thorough examination of these repeats to ascertain the underlying cause of

this outlying behavior.

3.2.3 Identification of Outliers
By looking through the outlier bin (-1), the following list of region IDs and their associated Uniprot

IDs was retrieved:

Region ID

1sw6A_243_502

3grlA_18_631

4hotA_48_467

Uniprot ID

P09959

P41541

Q13325

Upon conducting a meticulous examination of each entry individually, which involved comparing

their 3D structures with other repeat structures from their corresponding Clans and reviewing their

annotations in other databases, primarily Pfam and InterPro, we were able to validate the likelihood

of these repeats genuinely belonging to their respective Clans. The results of this analysis are as

follows:

1sw6A_243_502 (P09959): An Ankyrin repeat containing a number of insertions, which

compromises its TM-score relative to other Ankyrin repeats.

3grlA_18_631 (P41541): An ARM-like repeat with a number of insertions, resulting in a

compromised TM-score compared to other Armadillo repeats.

4hotA_48_467 (Q13325): A genuine TRP exhibiting a substantial insertion in the trimmed

structure, consequently compromising its TM-score in relation to other Tetratricopeptide repeats.
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By and large, the presence of insertions in the aforementioned outlier repeats has led to a reduction

in their TM-scores, rendering them distinct from their respective repeat groups.

3.2.4 Fractionation of Clans
This Clan is supposed to contain only Tetratrichopeptide (TPR) repeats. TPR repeats are structural

motifs found in a wide range of proteins, playing a crucial role in mediating protein-protein

interactions. Typically, TPR repeats on average consist of 34 amino acid residues, characterized

by a helix-turn-helix structure, forming a pair of antiparallel alpha-helices connected by a short

loop. TPR-containing proteins usually exhibit multiple tandem repeats, ranging from 3 to 16

repeats, which assemble into a superhelical structure to generate a binding groove for target

proteins [54].

 First Fractionation of 3.3.2.1

During the clustering analysis, it was observed that at relatively very high distance thresholds,

starting from an Eps of 0.4 (60% similarity), a cluster of 5 repeats dissociates from the main body

of the Clan (Cluster 2 in Fig. 3.7).
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Fig. 3.7: Clan composition of clusters at the first fractionation of 3.3.2.1 clan

Looking through the members that form this cluster, the following repeats were obtained:

Region ID

4gtrA_113_368

1ltxA_49_442

2f0yA_114_366

3draA_48_288

3q78A_56_334

Uniprot ID

Q04631

Q08602

P49354

Q9Y765

Q55S71

Further investigation of the members of this independent cluster revealed the truth that even though

they resemble the shape of Tetratricopeptide repeats, none of them is annotated as genuine TPRs.

They are not even included in the “Tetratricopeptide-like helical domain superfamily”

(IPR011990) in InterPro database. Instead, they are annotated as “Protein prenyltransferase, alpha

subunit” (PPTA) repeats both in Interpro (IPR002088) and in Pfam (PF01239).
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The studies regarding these particular repeats show that they are structural motifs found in the

alpha subunit of protein prenyltransferases, a group of enzymes that play a vital role in protein

modification through the prenylation process [55].

Next, the structures of PPTA repeats were compared to canonical TPRs to elucidate structural

differences. Upon pairwise structural alignment of representative units, it was observed that both

the connecting loops between helices within a unit and the loops connecting adjacent units exhibit

greater length in PPTA repeats relative to TPRs.

At the fold level, TPRs demonstrate a more compact arrangement, with each unit exhibiting a

higher rotational angle relative to its preceding unit, resulting in a more pronounced curvature in

comparison to PPTAs. The results of the structural alignment is shown in Fig. 3.8.

Fig. 3.8: Structural alignment of PPTA (orange) vs. TPR (blue) repeats; left: region level, right: unit level
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 Second fractionation of 3.3.2.1

If the distance threshold is brought down to around 25%, we will witness another round of

fractionation of 3.3.2.1’s. At this level, another 2 members of this Clan fractionate into a third

individual cluster (Cluster 6 in Fig. 3.9).

Fig. 3.9: Clan composition of clusters at the second fractionation of 3.3.2.1’s

Looking through the members of this newly formed cluster, the following repeats were obtained:

Region ID

2ifuD_6_244

1qqeA_29_268

Uniprot ID

Q5BJK3

P32602

The same approach for investigation of these repeats was adopted and the results are as follows:

They both encompass 6 units of an average length of 39 residues and even though they are not

annotated as “Tetratricopeptide repeat” either in InterPro (IPR019734) or Pfam (PF13181), they

are at least included in the “Tetratricopeptide-like helical domain superfamily” (IPR011990). On
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the other hand, Pfam has annotated them as “Soluble NSF attachment protein (SNAP)” repeats

(PF14938).

Pertained studies suggest that Soluble NSF Attachment Protein repeats, also known as SNAP

repeats, are a class of protein repeats found in the SNAP family of proteins. These repeats are

involved in intracellular membrane fusion events and are essential for vesicle trafficking. The

SNAP proteins play a critical role in the SNARE (Soluble NSF Attachment Protein Receptor)

complex, which facilitates the fusion of vesicles with target membranes in eukaryotic cells.

These repeats are characterized by their α-helical structure with each repeat unit being composed

of two α-helices connected by a short loop. These tandem repeat units are organized in a right-

handed superhelical manner, creating a larger curved structure that enables protein-protein

interactions and contributes to the stability of the SNAP proteins in their functional complexes [56].

Aside from publications and 3rd party annotations, our structural examination of these repeats

revealed interesting points which are as follows:

At the unit level, the constituent helices of SNAP repeats are 1 turn longer than those of TPRs .

On the fold level, not much difference in curvature and positioning of units compared to each other

can be seen, except that, as mentioned earlier, the helices are longer in SNAPs compared to TRPs.

(Fig. 3.10)
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Fig. 3.10: Structural alignment of SNAP (orange) vs. TPR (blue) repeats

left: region level, right: unit level

These observations explain why the unit lengths of these repeats are above the average length of

TPR units, as their constituent helices are almost one complete turn longer. Also, the proximity of

the structures both at the unit and fold level explains why they are positioned fairly close to the

main body of the 3.3.2.1 Clan in the MDS scatter plots.

The figure below highlights the discoveries obtained through the conducted analyses up to this

point:
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Fig. 3.11: Pecularities that were previously identified, devided and maked by two different tones

1. This group of five data points represents the PPTA repeats identified by the initial

fractionation of 3.3.2.1 Clan at an Eps of 0.4 (60% similarity) through DBSCAN clustering.

2. This small group of two data points represents the SNAP repeats that dissociated from the

main body of 3.3.2.1 Clan at a low Eps of 0.24 (76% similarity) through the clustering

analysis.

3. These three data points, highlighted in yellow, represent the three repeats that fall into the

outlier bin at an Eps of 0.28 (72% similarity), which yields an optimal result in the

clustering analysis, where the majority of Clans form individual clusters.

3.2.5 Pre-Classification
In order to improve the classification process, it is necessary to further refine the dataset by

addressing outliers, defining a new Clan corresponding to the PPTA repeat clusters discovered

during the previous step, and addressing Clans 3.3.2.2, 3.3.2.4, and 3.3.3.4, which were eliminated

from the dataset at the onset of the analysis.

Initially, the three outlying repeats of 1sw6A_243_502, 3grlA_18_631, and 4hotA_48_467 must

be removed to ensure these exceptional repeats do not influence the analytical steps when selecting

representative repeats for each group.
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Subsequently, the primary 3.3.2.1 Clan and its dissociated clusters of PPTA and SNAP repeats

will be labeled as 3.3.2.1_PPTA and 3.3.2.1_SNAP, respectively. This significantly improves the

labeling of existing groups within the dataset, which is crucial for supervised classification

procedures.

To address the eliminated clans, a smaller-scale classification analysis must be performed. Two

representative repeats are selected for each defined Clan (including the modified ones), and the

members of the eliminated Clans are passed through a distance filter. The repeats that pass the

filter are then subjected to KNN classification to determine if they belong to any of the existing

Clans in the dataset.

First, representative repeats are chosen by calculating the average distance of each repeat within a

Clan to other members of that clan and selecting the two repeats with the lowest average distance,

indicating their higher similarity to the rest of the Clan members.

Next, it is determined whether any members of the eliminated Clans have a distance lower than

28% from any of the representatives. This distance threshold is based on observations from the

clustering steps, as clustering the data with a similar Eps reveals the current state of Clans within

the dataset. The filter's purpose is to eliminate repeats less likely to be related to existing Clans.

Subsequently, the repeats that pass the filter are subjected to KNN classification, with the training

data comprising representative repeats and their associated Clan labels.

Upon completion of the designated procedures, the ensuing results were as follows:

Among 19 repeats associated with Clan 3.3.2.2 and one repeat each for Clans 3.3.2.4 and 3.3.3.4

(comprising a total of 21 repeats), 18 did not meet the filtering criteria, whereas the three,

represented in the following table, that surpassed the threshold were classified as 3.3.3.1 by the

algorithm.

Region ID

2h4mA_60_847

3nd2A_50_839

3w3xA_21_1077

Designated Clan

3.3.2.2

3.3.2.2

3.3.3.4

Predicted Clan

3.3.3.1

3.3.3.1

3.3.3.1

65



To assess the validity of these predictions, a subsequent investigation was conducted. By

examining the constituents of Clan 3.3.3.1 in third-party databases, it was discerned that the

majority of members are annotated as Armadillo repeats linked to Importin proteins. This

observation is consistent with the annotation of these three repeats, as they are implicated in both

the "Armadillo-like helical" superfamily (IPR011989) and the "Importin beta" family

(IPR040122). The final determination regarding the potential reclassification of these repeats will

ultimately reside with the lead curator of RepeatsDB. However, for enhanced data representation,

the aforementioned repeats were henceforth designated as 3.3.3.1_ADDED within the scope of

this study.

The other 18 repeats were clustered using an Eps of 0.3, a more relaxed distance threshold

compared to 0.28, to observe their clustering patterns. As expected, and shown in the figure below,

many entries were found in the outlier bin (Cluster -1). This confirms that the initial organization

and labeling of these repeat data were not optimal.

Fig. 3.12: Clustering result shows a main cluster (0) and everything else as outliers (-1)
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By examining the only formed cluster (Cluster 0) and investigating the repeats within to identify

a common feature, it was found that most, but not all, were annotated as "Adaptin N terminal

region (Adaptin_N)" (PF01602) in Pfam. Using a conservative approach, only the repeats with this

specific annotation were extracted and labeled as 3.3.2.2_New. The improvements can be seen in

the MDS scatter plot (Fig. 3.13).

Fig. 3.13: MDS scatterplot of the refined classification with each clan having a distinct boundary

In this updated dataset, each Clan has clearer boundaries, and the distinctions between different

Clans are more easily discernible than before.

3.2.6 Clan-based Classification
With a refined dataset and well-defined classification, we are now prepared to proceed with the

classification procedure for the not-fully classified repeats. First, we will select two representative

repeats per each Clan from the most updated and refined dataset. Subsequently, we will implement

a maximum distance filter of 25%, serving as a conservative approach to exclude samples that are

irrelevant or only marginally relevant to the training dataset. It should be noted that a more lenient

filter would result in an increased number of classified data; however, this would compromise the

confidence and accuracy of the predictions.
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Following the establishment of the distance filter, we trained the k-nearest neighbors (KNN)

algorithm on the representative repeats and their corresponding labels. All the reviewed repeats

that were not fully classified and the repeats that were previously eliminated from the dataset

during the refinement and cleaning procedures were then introduced to the algorithm for labeling.

The classification results for a total of 231 repeats are presented below:

Fig. 3.14: KNN classification results of classifying the unclassified repeats

Upon examination of the results, only 23% (54 out of 231) of the not fully-classified entries were

accurately categorized into five distinct clans, with clan 3.3.2.1 exhibiting the highest frequency

of predictions. Although a comprehensive evaluation by RepeatsDB curators is pending, a

heuristic investigation of the newly labeled data suggests a high degree of accuracy. For instance,

the specialized and recently defined clan of SNAP repeats, which comprises a mere two members

in the dataset, acquired an additional entry bearing a similar label. A thorough examination of the

annotations corroborates the accuracy of this prediction.

Nevertheless, by moderately relaxing the filtering constraint by 5% (equating to a maximum

distance of 30%), a notable 10% increase in the number of classified entries is observed, resulting
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in an overall classification rate of 33% (77 out of 231), which is commensurate with one-third of

the total data.

Fig. 3.15: KNN classification results of classifying the unclassified repeats (loosen threshold)

3.2.7 Family-based Classification
During the experiments conducted with DBSCAN, a notable observation emerged. In a relatively

wide Eps range of 0.38 to 0.33 (corresponding to 62% - 67% similarity), the resulting clusters

remain consistent and, interestingly, align with the Family annotations of the repeats within.

The dataset primarily consists of three major families: Ankyrin, Tetratrichopeptide, and Armadillo

repeats. The subsequent figure illustrates the correspondence between the generated clusters and

these families. Additionally, it reveals that when the repeats do not belong to these families, they

segregate into distinct individual clusters.
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Fig. 3.16: Clustering at lower similarities can yield clusters that represent repeat families

With this newly gained knowledge, an additional experiment can be performed to automatically

assign Family annotations to entries with missing annotations. The methodology for this task is

not significantly divergent from the clan-based classification, with the exception that if the

predicted clan labels pertain to any of the previously mentioned families, the entry will be assigned

the corresponding family label instead.

However, a crucial distinction is that the distance filter can be loosened to 0.35% (65% similarity),

based on the observed clustering behavior. This adjustment will substantially augment the quantity

of entries that can be subsequently subjected to KNN classification.

The results of this experiment are presented below:
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Fig. 3.17: KNN classification based on family labels

As demonstrated, a total of 113 entries were successfully auto-annotated through this approach,

accounting for nearly half of the initial 231 entries. Another notable aspect evident in the plot is

the considerably larger proportion of repeats from the Armadillo and Tetratrichopeptide families

in comparison to the Ankyrin family. This discrepancy may be attributed to the ease of

distinguishing and annotating Ankyrin repeats relative to repeats from the other families.

3.2.8 Scavenging the Outliers
As was shown in the last experiment, we were unable to give any sort of annotation either on the

clan level or family level to an approximately 40% of the, suggesting that these entries are unlikely

to be even marginally relevant to the existing groups within the classification system. Nonetheless,

this does not imply that they cannot be classified or annotated, as the classification system itself

may be inadequate.
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To ensure a comprehensive attempt to classify the repeats, these outliers can be examined by

clustering them using a conservative Eps of 0.25 and a minimum core size of 3 to avoid excessive

data fragmentation. The outcome of this experiment is illustrated in the following figure:

Fig. 3.18: Clustering of threshold outlier from classification step

It is obvious from the results, that in fact, a very large proportion of the data has such a divergent

nature, that cannot be even clustered with a normal set of parameters. Aside from that, 4 other

clusters were formed and a comprehensive investigation through every single of them was carried

out with the hope of identifying new groups of repeats to be added to the classification system.

The results of this endeavor are listed below:

(Whether the listed groups are eligible to be recognized as new Clans or not is out of the scoop of

this research and relies in the hand of the curators of RepeatsDB)
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Cluster 0:

4 members

Region ID

1a38A_2_201

4zq0D_6_213

5nasB_2_208

6fbyC_1_209

Uniprot ID

P63103

E1F4V5

P63104

P31947

Annotations: 14-3-3 protein (PF00244), 14-3-3 domain (IPR023410)

Description: Structurally, 14-3-3 proteins are typically around 200-300 amino acids in length and

form homo- or heterodimers. Each monomer consists of nine antiparallel alpha-helices, with the

overall structure resembling a cupped, elongated hemisphere. The dimeric structure creates a

central, negatively charged channel that can accommodate target peptide sequences containing a

phosphorylated serine or threonine residue. The binding of target proteins to the 14-3-3 domain is

primarily facilitated through specific phosphorylation-dependent motifs. This interaction can lead

to changes in the target protein's conformation, stability, activity, or subcellular localization, thus

modulating its function in the cell [57].

Structure in RepeatsDB:
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Fig. 3.19: Structure of 4zq0D in RepeatsDB

Cluster 1:

3 members

Region ID

2of3A_649_867

6mzeE_310_541

6mzgE_310_543

Uniprot ID

G5EEM5

A0A493R6X7

A0A493R6X8

Annotations: CLASP N terminal (PF12348)

Description: The CLASP N-terminal domain plays a crucial role in modulating microtubule

dynamics by specifically recognizing and binding to the growing plus ends of microtubules,

thereby affecting their growth, shrinkage, or stabilization. This domain is characterized by the

presence of multiple repeats [58].

Structure in RepeatsDB:
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Fig. 3.20: Structure of 2of3A in RepeatsDB

Cluster 2:

3 members

Region ID

2wviA_57_220

3eslA_31_194

4a1gB_3_148

Uniprot ID

O60566

A6ZUJ9

O43683

Annotations: Mad3/BUB1 homology region 1 (PF08311)

Description: The Mad3/Bub1 homology region 1 (also known as the Bub1 and BubR1 N-terminal

(BBN) domain) is a conserved domain found in the mitotic checkpoint proteins Mad3, Bub1, and

BubR1. These proteins are crucial components of the spindle assembly checkpoint (SAC), a

surveillance mechanism that ensures the proper segregation of chromosomes during cell division

by monitoring kinetochore-microtubule attachment [59].

Structure in RepeatsDB:
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Fig. 3.21: Structure of 3eslA in RepeatsDB

Cluster 3:

3 members

Region ID

4xtlA_21_235

4y9hA_9_199

5h2pA_9_194

Uniprot ID

N0DKS8

B0R5N9

P02945

Annotations: Bacteriorhodopsin-like protein (PF01036)

Description: Bacteriorhodopsin-like proteins are a family of transmembrane proteins that share

structural similarities with bacteriorhodopsin, a light-driven proton pump found in the plasma

membrane of certain halophilic archaea. These proteins are characterized by their seven-

transmembrane alpha-helical structure and their ability to bind a retinal chromophore.

The structure consists of seven transmembrane alpha-helices arranged in a barrel-like shape, with

the retinal chromophore covalently bound to a lysine residue in one of the helices. Light-induced
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isomerization of the retinal chromophore triggers a series of conformational changes in the protein,

resulting in the translocation of protons [60].

Structure in RepeatsDB:

Fig. 3.22: Structure of 4xtlA in RepeatsDB

3.2.9 Curation Inconsistency
During the investigation of Alpha-Solenoids, a primary challenge encountered was the

inconsistency in the curation of specific entries. Initially, the "Representative Unit" matrix was

employed as a basis, but as the clustering and classification processes progressed, issues arose with

certain entries. Members within the same clan formed two distinct clusters, despite being the same

type of repeats. This conundrum persisted until a comparison of their curation order in RepeatsDB

revealed inconsistencies in their curation.

The affected clans were 3.3.3.1 and 3.3.2.5, both of which will be elaborated upon in the

subsequent sections, detailing the nature of the issue and the temporary solution implemented to

maintain the research trajectory.

Case 1: 3.3.3.1 Clan
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As depicted in the following figure, clustering the Representative Units (1-unit samples) resulted

in two separate clusters at relatively high distance thresholds (Eps 0.35), even though evidence

suggested they were the same type of repeats.

Fig. 3.23: 1-unit samples of 3.3.3.1 clan forming two distinct clusters at low similarities

Examination of their structures in RepeatsDB demonstrated two distinct curation approaches. Of

the 20 clan members, 15 were curated similarly to A, and 5 were curated similarly to B (Fig. 3.24).
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Fig. 3.24: Different order of structural motifs in two different annotations of the same repeat

Further inquiries in third-party databases and associated literature confirmed that the appropriate

curation order for these repeats is, indeed, form A. To bypass waiting for curation corrections, a

distance matrix based on "3-Consecutive Units" was utilized, as previously described in the

Materials and Methods section. This approach resolved the issue, allowing clan members to remain

in a single cluster even at more stringent distance thresholds (Eps 0.25) (Fig. 3.25).
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Fig. 3.25: Clustering of 3-unit samples of 3.3.3.1 at high similarity levels results in a single unified cluster

Case 2: 3.3.2.5 Clan

An identical issue arose with this clan, and it was addressed in the same manner (Fig. 3.26).

Fig. 3.26: How the change of samples from 1-unit to 3-unit resolves the fractionation

Five clan members were curated similarly to A, and four were curated similarly to B, as shown

in the following figure.
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Fig. 3.27: Different order of structural motifs in two different annotations of the same type of repeat

Employing a similar approach to the previous instance, it was determined that form A is the correct

curation method for these repeats. Typically, in the Tetratrichopeptides family, the shorter helix

(A. 2) serves as the connecting segment between the two longer anti-parallel helices (A. 1&3).

The Permanent Solution

Ultimately, the complete resolution of this issue necessitated correcting the curation for those

curated in the incorrect order. However, this occurred long after the research had concluded. The

subsequent charts illustrate how the corrected curation impacted the clustering of these repeats

using a "Representative Unit" (1-unit sample) matrix.
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Fig. 3.28: Unified clusters are formed for both clans after correcting and unifying the annotations

In the new clustering experiment with refined curations, 1-unit samples from both groups formed

a unified cluster at 70% similarity, a 5% increase compared to the previous experiment, where they

separated into two clusters. This substantiates the claim that they do genuinely belong to the same

clan.

3.3 Summary
As delineated in the preceding section, the pipeline was implemented for both sets of Alpha-

Solenoids and Beta-Propellers. However, in order to mitigate superfluous repetition, the

comprehensive outcomes obtained through the successive stages of analysis were exclusively

presented for Alpha-Solenoids. This section aims to provide a concise summary of the significant

findings obtained from the application of the pipeline on both groups of TRPs.

3.3.1 Alpha-Solenoids
Key findings and actions taken during this research include the following:

1. A distance matrix of “3-consecutive units” appeared to be the most reliable choice

2. Members within a clan demonstrated a structural similarity range of 70-75%.

3. Two Clans of 3.3.2.2 and 3.3.2.1 underwent modifications:
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a. Clan 3.3.2.2 was refined to exclusively include Adaptin_N repeats.

b. Clan 3.3.2.1 was subdivided into three clans encompassing: 1. Genuine TPR 2.

SNAP (TPR-like) 3. PPTA

4. Three outlier entries in the dataset were detected and subsequently identified

5. A total of 54 entries with missing annotations were completely annotated with high

confidence.

6. Members of the three major families (Ankyrin, Tetratrichopeptides, and Armadillo repeats)

exhibited a structural similarity range of 62-67%.

7. To annotate repeats with their associated family, 113 entries with missing annotations

(Almost half of the total) were annotated with high confidence.

8. Through the examination of entries failing to gain any sort of annotations from the

experiments, four groups of repeats were proposed via an additional clustering round.

9. The curation inconsistency in Clans 3.3.3.1 and 3.3.2.5 was identified and subsequently

addressed and resolved.

3.3.2 Beta-Propellers
The comprehensive pipeline employed for studying the Alpha-Solenoids was replicated with

minor modifications to accommodate the distinct properties of Beta-Propellers (4.4.x.x), which

belong to a separate class of protein repeats. To minimize redundancy, only key findings and

critical steps taken during the investigation are summarized below:

1. Selection of Distance Matrix: A "Whole Region" distance matrix was adopted for the basis

of the investigation, as the number of units within each region could be an important factor

for the classification of Beta-Propellers.

2. Analogous to Alpha-Solenoids, structural similarities of 70-75% were observed within

Beta-Propeller clan members (Fig. 3.29).
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Fig. 3.29: Clan composition of clusters formed by clustering of Beta-Propeller

3. The Clan 4.4.2.3 was subdivided into two clans:

a. 4.4.2.3_A comprising Sialidase BNR repeats (Cluster 5 in Fig. 3.29)

b. 4.4.2.3_B comprising Xyloglucanase BNR repeats (Cluster 6 in Fig. 3.29)

As depicted in the figure below, the structural comparison of the two groups indicated

that 4.4.2.3_B (orange) features seven blades, as opposed to the six-bladed propellers

of 4.4.2.3_A (blue), and lacks the characteristic insertion found in Sialidases

(4.4.2.3_A).
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Fig. 3.30: Structural alignment of the fractionated clusters of 4.4.2.3 clan (4.4.2.3_A vs 4.4.2.3_B)

4. Five outlier entries within the dataset were detected and subsequently identified

5. A total of 76 entries with missing annotations were accurately and confidently annotated.

Fig. 3.31: KNN classification results of classifying the unclassified Beta-Propeller repeats
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6. Upon evaluating entries that failed to receive annotations from the experiments, an

additional clustering round proposed 12 groups of repeats, including PQQ, Hemopexin,

and FG-GAP repeats.
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4. Conclusion
In this study, we conducted an exhaustive and systematic analysis of protein tandem repeats in

RepeatsDB, with a primary focus on Alpha-Solenoids and Beta-Propellers. By employing a variety

of advanced computational techniques, algorithms, and statistical analyses, we made substantial

contributions to the enhancement of the existing classification system in RepeatsDB, ultimately

providing a deeper and more comprehensive understanding of protein tandem repeats.

Our initial statistical analysis served as an essential step in identifying the key tandem repeat

protein groups for further investigation. This analysis revealed that Alpha-Solenoids and Beta-

Propellers were of the utmost importance due to their high number of Reviewed entries.

Additionally, we observed a significant number of entries with missing annotations, underscoring

the need for more rigorous efforts towards annotating these protein repeats. Furthermore, despite

RepeatsDB's existing classification system being sufficiently accurate and effective, we identified

opportunities for improvement and refinement.

As the study was centered on the structural analysis of protein tandem repeats, to establish a solid

foundation for our analysis, we employed TM-align for pairwise structural alignment, with the

resultant TM-scores being used to construct a variety of distance matrices.

Multidimensional Scaling (MDS) was utilized for dimensionality reduction and visualization,

enabling us to generate scatter plots and efficiently analyze the relationships between different

protein repeat structures. This approach allowed us to uncover previously unknown structural

patterns, providing valuable insights into the complex nature of protein structural comparison.

We further refined our understanding of the dataset by employing the density-based clustering

algorithm, DBSCAN. One of the most significant findings concerning the clustering of protein

repeat structures was that members within a Clan exhibit a structural similarity range of 70-75%.

This discovery is crucial, as prior to this study, there was no computational support for establishing

Clan boundaries. Additionally, this method proved particularly effective in detecting and

identifying outlier entries, refining existing clans, and proposing new repeat groups.

Upon establishing a more reliable classification system through clustering analyses, we turned our

attention to supervised classification methods. We carefully selected representative entries for each

group of protein tandem repeats and conducted a supervised classification experiment using the
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K-Nearest Neighbors (KNN) algorithm. This approach facilitated the automatic annotation and

labeling of entries with missing annotations in the database, leading to the successful annotation

of a total of 130 entries with high confidence.

The automatic annotation methodology developed in this study can considerably enhance the

performance of curators of RepeatsDB in the sensitive and time-consuming process of curation

and annotation of protein repeats. As it is of great value to double-validate biological findings

through machine learning techniques, this methodology enables curators to focus on high-

confidence annotations while reducing the manual annotation workload. Furthermore, the

approach can be applied to other software and programs for a more accurate prediction of tandem

repeat proteins, contributing to a wider range of applications in the field of bioinformatics.

In conclusion, our research has made significant strides in advancing the understanding of protein

tandem repeats in RepeatsDB, with particular emphasis on Alpha-Solenoids and Beta-Propellers.

The improvements in the classification system and database enhancements can greatly benefit

future research in the fields of structural biology and bioinformatics. Furthermore, the

methodologies, algorithms, and statistical analyses employed in this study can be extended to other

classes and subclasses of protein repeats, opening up new avenues for a more comprehensive

understanding of protein structure and function in the future.
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