
Università degli Studi di Padova
Facoltà di Ingegneria

Corso di Laurea Magistrale in Ingegneria Informatica

Tools and measurements for the products and
complex services quality in mobility

collaboration environments

Relatore: Ch.mo Prof. Matteo Bertocco
Correlatore: Ing. Mauro Franchin

Laureando: Andrea Veronese

ANNO ACCADEMICO 2011 - 2012

Contents

1 Introduction 1

2 Context and Objectives 3
2.1 Company Context . 3

2.1.1 Mantis Bug Tracker 4
2.1.2 MantisBT mobile interaction 7

2.2 Objectives . 8

3 Environment Analysis 9
3.1 Cognitive Phase . 9

3.1.1 Company Control System 10
3.1.2 Specific usages . 12
3.1.3 MantisBT webservice 14
3.1.4 SOAP interface . 17

3.2 Operative Phase . 22
3.2.1 Native, web and hybrid approaches 23
3.2.2 Comparing the different approaches 29
3.2.3 Choosing the right approach 32

4 Development Environment 35
4.1 PhoneGap . 35

4.1.1 Web Browser . 36
4.1.2 Features . 38

4.2 jQuery Mobile . 39
4.3 Setting the environment 40

4.3.1 Local Development Environment 41

5 Software Design 47
5.1 General Architecture . 47

5.1.1 Evaluation System 48
5.1.2 Project Structure 49

CONTENTS

5.2 Mobile Component (App) 53
5.2.1 Functional Analysis 53
5.2.2 Technical Analysis 56

5.3 Server Component . 60
5.3.1 Functional Analysis 60
5.3.2 Technical Analysis 62

6 Final Considerations 65

A Graphic Details 67
A.1 Login and Home pages . 67
A.2 Resolved Tickets pages . 70

A.2.1 Evaluate . 72
A.2.2 Close . 73

A.3 New Tickets pages . 74
A.3.1 Assign . 75

Bibliography 77

List of Tables 77

List of Figures 78

Chapter 1

Introduction

This Master thesis work started when a personal interest met a real need
in a local company, Mida Solutions (located in Padua, Italy). After the
studies of Quality Engineering, a collaboration proposal - in line with the
Quality theory for the companies and involving a software design and de-
velopment component - permitted to focus our attention on the real need
of the company.

From the beginning the scope of the proposal was very clear: to work on
a project, strongly focused on products and services quality. The work was
developed within an existing environment where the attention to Quality
had become an actual daily mission.

Two are the main points of interest of this work: This work concentrates
on two main point of interest

• the project nature, which is strongly oriented to the Quality theory;

• an innovative software design and development approach, which made
it possible to obtain a cross-platform solution.

As regards the first point, all the work was driven by the volition of
creating a tool closely connected with the company environment. The
company had recently obtained the International Quality Certification,
partly thanks to the adoption of a specific system, whose main task is to
keep track of all the company activities. This system is still being used and
allows the company to keep under control the set of tasks and activities
which happen in and for the company every day. This system is perfectly
in line with Quality standards: the developed tool fits this situation just
because a strong interaction with such a system was required.

As has already been mentioned, the approach adopted for both the
design and the development phases represents a point of interest. In par-

2 Introduction

ticular, the hybrid application approach acts as a “happy medium” between
two completely different approaches, the native and the web approaches.

As usually happens with hybrid solutions, it tries to capture the strength
points from both the different approaches.

Chapter 2

Context and Objectives

This chapter provides a first analysis of the context where the thesis work
was developed; this information is useful in order to understand the com-
pany environment and the motivations related to the project. In particular,
there are interesting aspects of the quality certification - recently obtained
by the company - that are closely connected with the requirement of such
a project.

As regards the company context, a major role in this work was covered
by the company management system which is being used to trace all the
activities that take place in and for the company environment. This system
was adapted for the purpose of activity tracing; starting from a pre-existent
tool which had been created to track software defects during the software
development process, a simple customization allowed the system to be a
real and effective activity tracking tool.

Consequently, the thesis objectives were outlined within this context:
the second part of the chapter will explain the two main objectives of the
project. The first one is related to the company interest in designing and
developing a mobile application which is able to interact with the aforesaid
company management system installation. The second objective arises
from the interest of providing an evaluation tool capable of improving the
company tasks assignment strategy of human resources.

2.1 Company Context

The company environment where the thesis project was designed and de-
veloped is Mida Solutions S.r.l. . The company was founded in 2004, by
a team of telecommunication experts, with the mission to provide added
value innovative technologies for communication. Mida Solutions provides

4 Context and Objectives

expertise and a complete suite of Voice Applications and Added Value Ser-
vices, with the goal of improving the Telephony Infrastructure functions.

In March 2012 Mida Solutions Quality System was officially certified
by DNV1 in accordance with ISO 9001: the certification was released ac-
cording to international standards. This step aims to assure quality and
reliability for both their products and their partners.

One of the most important roles that contributed to Quality certifica-
tion was covered by a specific management tool that had been adopted in
order to track all the company activities. This system was born on an ex-
isting software whose common use is to track software defects: the software
is called Mantis Bug Tracker (hereinafter referred to as MantisBT).

The following description illustrates the structure of the system Man-
tisBT considering all the settings that were applied for the adaptation to
the company environment.

2.1.1 Mantis Bug Tracker

Mantis Bug Tracker is a web-based bug tracking system that was first
made available to the public in November 2000. It is a free and open source
system released under the terms of the GNU General Public License version
2 [?]. The most common use of MantisBT is to track software defects. It
is often configured by users to serve as a more generic tracking system
and project management tool. MantisBT is written in the PHP scripting
language and works with MySQL, MS SQL, and PostgreSQL databases
and a webserver. MantisBT has been installed on Windows, Linux, Mac
OS, OS/2, and others. It is released under the terms of the GNU General
Public License (GPL)2.

MantisBT provides a web-based interface which allows the user inter-
action; a special administration section allows the administrator user to
make the appropriate customizations. It is important to underline that
MantisBT uses access levels to define what a user can do. Each user ac-
count has a global or default access level associated with it. The default
access levels supplied as standard with MantisBT are:

• viewer

• reporter

1DNV (Det Norske Veritas) is an independent foundation with the purpose of safe-
guarding life, property, and the environment.

2http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

2.1 Company Context 5

• updater

• developer

• manager

• administrator

Each feature has several configuration options associated with it and iden-
tifies the required access level to perform certain actions.

Customization

When the company Mida Solutions identified MantisBT as a strong and
useful tool for the above-mentioned purpose, some customizations were ap-
plied. The most significant changes were made in the system nomenclature:
it is important to underline that the structure of the tool was preserved,
and the customization only affected the system strings in order to adapt
the tool to the company reality and needs. All the changes applied are
listed in Table 2.1.

Old Nomenclature New Nomenclature
Bug (or Issue) Ticket

Project Group
Category End Customer
Reporter Poster
Due Date Alert Date

Table 2.1: Nomenclature changes adopted

Thus, from now on the new nomenclature is adopted.

MantisBT statuses

The basic entity of MantisBT is a ticket which represents a generic activity
of the company. Every ticket belongs to a specific group which could
be nested in a father group. An important part of tickets tracking is to
classify them as per their status. Each company team may decide to have
a different set of categorizations for the status of the ticket, and hence,
MantisBT enables the user to customize the list of statuses. MantisBT
assumes that a ticket can be in one of three stages:

• opened

6 Context and Objectives

• resolved

• closed

Hence, the customized statuses list will be mapped in these three stages.
For example, MantisBT comes out of the box with the following statuses:
new, feedback, acknowledged, confirmed, assigned, resolved and closed. In
this case “new” -> “assigned” map in opened, “resolved” means resolved
and “closed” means closed.

Below is the explanation of the meaning of each standard status that are
shipped with MantisBT (see Figure 2.1 for an explanatory representation).

Figure 2.1: Diagram of the status transitions.

New This is the landing status for new tickets. Tickets stay in this status
until they are assigned, acknowledged, confirmed or resolved. The

2.1 Company Context 7

next status can be “acknowledged”, “confirmed”, “assigned” or “re-
solved”.

Feedback This status is used when feedback is required from the ticket
poster. This status is used when a ticket doesn’t follow the standard
path: the ticket that has been closed must be reopened. The ticket
can then be moved to “assigned”, “resolved” or “closed”.

Acknowledged This status is used by the development team to reflect
their agreement to the suggested feature request, or to agree with
what the poster is suggesting in an ticket post, although they haven’t
yet attempted to reproduce what the poster refers to. The next status
is typically “assigned” or “confirmed”.

Confirmed This status is typically used by the development team to men-
tion that they agree with what the poster is suggesting in the ticket
and that they have confirmed and reproduced the ticket. The next
status is typically “assigned”.

Assigned This status is used to reflect that the ticket has been assigned
to one of the team members and that such team member is actively
working on the ticket. The next status is typically “resolved”.

Resolved This status is used to reflect that the ticket has been resolved.
A ticket can be resolved with one of many resolutions (customizable).
The next statuses are typically “closed” or in case of the ticket being
re-opened, then it would be “feedback”.

Closed This status reflects that the ticket is completely closed and no
further actions are required on it.

A ticket is represented by several fields which define all its features:
this possibility allows the user to provide a detailed description of every
activity which evolves inside the company.

2.1.2 MantisBT mobile interaction

As I mentioned above, one of the main interests of Mida Solutions for this
thesis project was to design and develop a tool that interacts with the
company installation of MantisBT. All the discussion of this work starts
from a key feature that is present in the MantisBT project: the SOAP
interface. MantisBT is equipped of a SOAP webservice interface which

8 Context and Objectives

provides an easy way to connect to a Mantis installation. All the techni-
cal details are particularly analyzed in Subsection 3.1.4, however it’s now
important to specify that SOAP3 [?] is a protocol specification for ex-
changing structured information in the implementation of Web Services in
computer networks. It relies on Extensible Markup Language (XML) for
its message format, and usually relies on other Application Layer proto-
cols, most notably Hypertext Transfer Protocol (HTTP) and Simple Mail
Transfer Protocol (SMTP), for message negotiation and transmission.

The MantisBT SOAP interface covers a key role in the communication
of the developed application to the server component.

2.2 Objectives

The two main objectives that have inspired all the thesis work, evolved
from a personal interest in the mobile application development which found
a fitting opportunity in the company needs. Since MantisBT is a web-based
system, it turns out to be inconvenient for a mobile experience, in terms
of - one for all - ease of use. It is right here that the company’s interest
in a mobile tool finds its place: not only a simple system adaptation for
the resized mobile screens, but a useful and practical tool for real inter-
actions, in terms of read and write operations. During the first steps of
collaboration, an interesting case came to the fore: the point is related to
the modality of task assignment to different users. The main question is in
fact: what is the right way - I would say, the best way - to assign a certain
activity to a user. Is it possible to integrate a user evaluation system in the
existing activity management company system? This question led to an
interesting analysis in order to develop an evaluation system of the Man-
tisBT tickets, aiming to improve the assignment criteria and, ultimately
the users efficiency, which is strongly related to customer satisfaction.

3originally defined as Simple Object Access Protocol

Chapter 3

Environment Analysis

In this chapter the environment analysis is conducted through two distinct
phases. This choice traces the Master thesis work experience: at the be-
ginning, in effect, a deep analysis of the company environment was carried
out. This analysis is defined in terms of study of the company’s technolog-
ical equipment: a major role was played by the system MantisBT which
the thesis project interacts with. In particular, all the most usual interac-
tion operations were traced: this study makes it possible to understand the
specific usages of the company control system. This first step was named
“cognitive phase”: this includes a detailed description of the MantisBT
structure - in conjunction with the usual operations - and a description of
the MantisBT SOAP interface.

The second passage, which is referred to us with “operative phase”,
widely illustrates the study of the development environment choice. This
phase occupied a prominent part of the experience since this choice char-
acterized the following phases. All the analysis consists of an ample com-
parison between three possibilities for the application development. The
process of choosing a development approach for the mobile application,
namely native, web or hybrid, involves many parameters, such as budget,
project timeframe, target audience and app functionality to name but a
few. Each approach carries inherent benefits and limitations, and finding
the one that best addresses the company’s needs was a challenging task.

3.1 Cognitive Phase

As I have already mentioned, attention here focuses on the company control
tool. At a later time the detailed analysis of the SOAP interface is carried
out.

10 Environment Analysis

3.1.1 Company Control System

MantisBT is a web based bug tracking system which has become one of
the most popular open source bug/issue tracking systems. MantisBT is
developed in PHP, with support to multiple database backends including
MySQL, MS SQL, PostgreSQL and DB2 (see the logo in Figure 3.1).

Figure 3.1: MantisBT logo (http://www.mantisbt.org).

The Activity Tracking System - based on MantisBT - provides an inter-
active web based platform for activities tracking. This generic process of
activity tracking - which is represented by a ticket - contains the following
information:

ID Unique ID of the ticket.

Description Detailed description of the ticket including what, where,
why, how and when the ticket occurs.

Summary Summary of the ticket, it acts as a ticket title.

Group Specifies the company group which the ticket belongs to.

End Customer Specifies the final customer which the ticket is intended
for.

Priority Priority is assigned for its urgency.

Severity Specifies its impact on the system.

Status Current status of the ticket.

Poster Information of the person already registered with the system who
posts the ticket.

Handler The ticket poster may also assign ticket to specific user.

History Shows the historical ticket changes.

Notes Any other information that would be helpful in identifying the
ticket.

http://www.mantisbt.org

3.1 Cognitive Phase 11

Submitted Date Records the date when the submission has been per-
formed.

Last Update Records the date of the last update action.

Due Date If present, records the date when the ticket expires, i.e. the
deadline.

Relationships Indicates all the other tickets which the ticket is related
to.

Tags All the words that would be helpful in identifying the ticket.

All this information is present both when a ticket has to be submitted
in a group - the mandatory fields are the End Customer, the Summary
and the Description - and when a ticket is displayed.

It is now important to remark that each user account has a global or
default access level associated with it. This access level is used as the access
level for such users for all actions associated with public groups as well as
actions that are not related to a specific group. Users with global access
level lower than a specific private group threshold will not have access to
private groups by default.

The default access levels of the company control system are

• viewer

• poster

• updater

• developer

• manager

• administrator

Each feature has several configuration options associated with it and
identifies the required access level to do certain actions. For example,
viewing a ticket, posting a ticket, updating a ticket, adding a note, etc.

For example, in the case of posting tickets, the required access level is
configurable using the specific posting ticket threshold configuration option
(which is defaulted to “poster”). So for a user to be able to post a ticket
against a public group, the user must have a group-specific or a global
access level that is greater than or equal to “poster”. However, in the

12 Environment Analysis

case of posting a ticket against a private group, the user must have group
specific access level (that is explicitly granted against the group) that is
higher than “poster” or have a global access level that is higher than both
the private group threshold and posting ticket threshold.

Group specific access levels override the global access levels. For exam-
ple, a user may have “poster” as the global access level, but have a “man-
ager” access level to a specific group. Or a user may have “manager” as
the global access level by “viewer” access to a specific group. Access levels
can be overridden for both public and private groups. However, overriding
access level is not allowed for users with global access “administrator”.

Each feature typically has multiple access control configuration options
to defines what access level can do certain operations. For example, adding
a note may require “poster” access level, updating a note my require “de-
veloper” access level, unless the own was owned by the same user and in
this case “poster” access level. Such threshold configuration options can
be set to a single access level, which means users with such threshold and
above are authorized to do such action. The other option is to specify an
array of access levels which indicates that users with the explicitly specific
thresholds are allowed to do such actions.

It is also worth mentioning that the access levels are defined by a specific
enumeration configuration option, and it is possible to customize such list.

3.1.2 Specific usages

The main page of the system reports all the tickets that the logged user
is allowed to view, which depends on the access level of the user. This
page is structured in two main sections: the upper one contains the filter
selection. A filter allows a user to select specific tickets depending on the
selected values. This is a useful opportunity, since the company system
contains thousands of different tickets. The second section shows a list of
the selected tickets: if no filter is selected all the tickets are displayed by
last update in descending order. A dedicated page allows a user to post
a ticket: on this page all the details described in Subsection 3.1.1 can be
inserted. Finally the system includes a wide administration section, which
can be accessed only by users with administrator or manager access level.
Here it is possible to manage the groups, the end customers, the system
settings and the custom fields that could be added to a ticket specification.
In particular, as regards this last detail, MantisBT offers the possibility for
managers and administrators to define custom fields as a way to extend
MantisBT to deal with information that is specific to a group. These are
the main features of custom fields:

3.1 Cognitive Phase 13

• custom fields are defined system wide,

• custom fields can be linked to multiple groups,

• custom fields must be defined by users with access level “administra-
tor”,

• custom fields can be linked to groups by users with access level “man-
ager” or above (by default, this can be configurable),

• number of custom fields is not restricted,

• users can define filters that include custom fields,

• enumeration custom fields can have a set of static values or values
that are calculated dynamically based on a custom function.

The possible procedures that are usually performed by different users of
the control system are now presented: this point could be useful in order to
understand what are the usual actions related to a specific user. This also
aims to highlight the reflection of the differences between users in terms of
access levels and company role. Three main roles were identified in order
to draw a typical usage flow. These three roles are:

1. administrative role

2. technical role

3. commercial role

Administrative role

As regards the first one, the principal actions that were found are admin-
istration and consultative actions. This means that apart from all the
operations of system management (which are periodically performed), this
role consists of general control actions. The administrator often performs
insertion, modification and deletion actions on the system tickets, which
includes the possibility of assigning a ticket to a specific user. Last but not
least the administrative role is responsible for establishing when a ticket
can be considered closed: this is an important action which implies that
the ticket is completely closed and no further actions are required on it.

14 Environment Analysis

Technical role

The technical role is characterized in a set of actions that are closely re-
lated to the practical usage of the system: these actions include all the
operations which cover the tickets evolution. In fact, this role is respon-
sible for changing the ticket’s status during all its lifecycle; even if the
administrator is the person who closes a ticket, all the previous transitions
are under the control of the technicians. This means the it’s usual to see
that all the tickets updates are performed by users who cover technical
roles.

Commercial role

The last role that was identified is related to all the system users that
perform consultation actions for analyzing tickets performances and ac-
cordingly manage all the situations which are closely connected with the
commercial sphere. Usually also a user who covers a commercial role in the
system is allowed to add new tickets in order to follow all the company’s
activities which the company’s commercial section is interested in.

Although these three roles have been enucleated, it’s necessary to spec-
ify that apart from administrative actions, all the actions described are
not rigidly assigned and outlined; however, access levels make it possible
to maintain a well-ordered system structure and hierarchy.

3.1.3 MantisBT webservice

“A few years ago Web services were not fast enough to be in-
teresting.”

The presence of a web service interface in MantisBT became a key
point in the present Master thesis work; the interface comes as part of the
standard MantisBT installation package and it allows an external system
to connect to the MantisBT installation. This is the starting point for the
project design phase.

In general, a Web service [?] [?] is a method of communication between
two electronic devices over the World Wide Web. The W3C defines a “Web
service” as “a software system designed to support interoperable machine-
to-machine interaction over a network”. It has an interface described in
a machine-processable format (specifically Web Services Description Lan-
guage, known by the acronym WSDL). Systems interact with the Web
service in a manner prescribed by its description using SOAP messages

3.1 Cognitive Phase 15

(explained in Subsection 3.1.4), typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related standards.

The Web Services Description Language is an XML-based language
that is used for describing the functionality offered by a Web service. A
WSDL description of a web service (also referred to as a WSDL file) pro-
vides a machine-readable description of how the service can be called, what
parameters it expects, and what data structures it returns. It thus serves a
roughly similar purpose as a method signature in a programming language.

A WSDL document describes a web service using these major elements:

Element Description
<types> A container for data type definitions used by the web

service
<message> A typed definition of the data being communicated
<portType> A set of operations supported by one or more endpoints
<binding> A protocol and data format specification for a particular

port type

MantisBT provides a Web Service whose description can be found at

<mantis-install-dir>/api/soap/mantisconnect.php?wsdl,

where <mantis-install-dir> is the directory where MantisBT system is
installed.
The main structure of a WSDL is reported in Listing 3.1:

1 <d e f i n i t i o n s>
2

3 <types>
4 data type d e f i n i t i o n s
5 </ types>
6

7 <message>
8 d e f i n i t i o n o f the data being communicated
9 </message>

10

11 <portType>
12 s e t o f ope ra t i ons
13 </portType>
14

15 <binding>
16 pro to co l and data format s p e c i f i c a t i o n
17 </binding>

16 Environment Analysis

18

19 </ d e f i n i t i o n s>

Listing 3.1: Main structure of a WSDL document.

The <portType> element is the most important WSDL element; it
describes a web service, the operations that can be performed, and the
messages that are involved. This element can be compared to a function
library (or a module, or a class) in a traditional programming language.
The <message> element defines the data elements of an operation; each
message can consist of one or more parts. The parts can be compared to the
parameters of a function call in a traditional programming language. The
<types> element defines the data types that are used by the web service;
for maximum platform neutrality, WSDL uses XML Schema syntax to
define data types. The <binding> element defines the data format and
protocol for each port type.

A piece of the - seriously wide - WSDL of MantisBT is shown in Listing
3.2; for each aforesaid element some code has been reported.

1 <d e f i n i t i o n s . . .>
2

3 <types>
4 . . .
5 <xsd:complexType name="AccountData">
6 <x s d : a l l>
7 <xsd:e l ement name=" id " type=" x s d : i n t e g e r " . . . />
8 <xsd:e l ement name="name" type=" x s d : s t r i n g " . . . />
9 <xsd:e l ement name="real_name" type=" x s d : s t r i n g " . . . />

10 <xsd:e l ement name=" emai l " type=" x s d : s t r i n g " . . . />
11 <xsd:e l ement name=" a c c e s s " type=" x s d : i n t e g e r " . . . />
12 </ x s d : a l l>
13 </xsd:complexType>
14 . . .
15 </ types>
16

17 . . .
18

19 <message name="mc_issue_getRequest">
20 <part name="username" type=" x s d : s t r i n g "/>
21 <part name="password" type=" x s d : s t r i n g "/>
22 <part name=" is sue_id " type=" x s d : i n t e g e r "/>
23 </message>
24

25 . . .
26

27 <portType name="MantisConnectPortType">
28 . . .

3.1 Cognitive Phase 17

29 <opera t i on name="mc_version ">
30 <input message=" tns :mc_vers ionRequest"/>
31 <output message=" tns :mc_vers ionResponse"/>
32 </ opera t i on>
33 . . .
34 </portType>
35

36 . . .
37

38 <binding name="MantisConnectBinding" . . .>
39 <soap :b ind ing s t y l e=" rpc "
40 t r anspo r t=" h t tp : //schemas . xmlsoap . org / soap/http "/>
41

42 . . .
43

44 <opera t i on name="mc_version ">
45 <soap :ope ra t i on soapAction=" . . . / mc_version " s t y l e=" rpc "/>
46 <input>
47 <soap:body use="encoded "
48 namespace=" h t tp : // futureware . b i z /mantisconnect "
49 encod ingSty le=" . . . "/>
50 </ input>
51

52 <output>
53 <soap:body use="encoded "
54 namespace=" h t tp : // futureware . b i z /mantisconnect "
55 encod ingSty l e=" . . . "/>
56 </output>
57 </ opera t i on>
58

59 . . .
60

61 </binding>

Listing 3.2: Extract of the MantisBT Web Service Description.

3.1.4 SOAP interface

SOAP [?] is a simple XML-based protocol to let applications exchange in-
formation over HTTP. It is important for application development to allow
Internet communication between programs. Today’s applications commu-
nicate using Remote Procedure Calls (RPC) between objects like DCOM
and CORBA, but HTTP was not designed for this. RPC represents a com-
patibility and security problem; firewalls and proxy servers will normally
block this kind of traffic.

A better way to communicate between applications is over HTTP, be-

18 Environment Analysis

cause HTTP is supported by all Internet browsers and servers. SOAP1

was created to accomplish this. SOAP provides a way to communicate be-
tween applications running on different operating systems, with different
technologies and programming languages.

The SOAP protocol has been widely adopted for the communication of
the application module with the MantisBT installation on the server. A
technical description of the SOAP technology is now presented in order to
understand the interaction module that has been developed and which is
described in Section 5.2.

A SOAP message is an ordinary XML document containing the follow-
ing elements:

• An Envelope element that identifies the XML document as a SOAP
message

• A Header element that contains header information

• A Body element that contains call and response information

• A Fault element containing errors and status information

All the elements above are declared in the default namespace for the
SOAP envelope:

http://www.w3.org/2001/12/soap-envelope

The default namespace for SOAP encoding and data types is:

http://www.w3.org/2001/12/soap-encoding

Here are some important syntax rules:

• A SOAP message must be encoded using XML

• A SOAP message must use the SOAP Envelope namespace

• A SOAP message must use the SOAP Encoding namespace

• A SOAP message must not contain a DTD2 reference

1SOAP became a W3C Recommendation 24. June 2003.
2A Document Type Definition (DTD) is a set of markup declarations that define a

document type for an SGML-family markup language (SGML, XML, HTML).

3.1 Cognitive Phase 19

• A SOAP message must not contain XML Processing Instructions

The skeleton of a SOAP message can be viewed in Listing 3.3:

1 <?xml ve r s i on=" 1 .0 "?>
2 <soap:Envelope
3 xmlns :soap=" h t tp : //www.w3 . org /2001/12/ soap−enve lope"
4 s oap : encod ingSty l e=" h t tp : //www.w3 . org /2001/12/ soap−encoding">
5

6 <soap:Header>
7 . . .
8 </ soap:Header>
9

10 <soap:Body>
11 . . .
12 <soap :Fau l t>
13 . . .
14 </ soap :Fau l t>
15 </soap:Body>
16

17 </ soap:Envelope>

Listing 3.3: Skeleton of a SOAP message

Envelope

The required SOAP Envelope element is the root element of a SOAP mes-
sage. This element defines the XML document as a SOAP message (Listing
3.4).

1 <?xml ve r s i on=" 1 .0 "?>
2 <soap:Envelope
3 xmlns :soap=" h t tp : //www.w3 . org /2001/12/ soap−enve lope"
4 s oap : encod ingSty l e=" h t tp : //www.w3 . org /2001/12/ soap−encoding">
5 . . .
6 Message in fo rmat ion goes here
7 . . .
8 </ soap:Envelope>

Listing 3.4: SOAP message envelope.

The namespace defines the Envelope as a SOAP Envelope. If a dif-
ferent namespace is used, the application generates an error and discards
the message. The encodingStyle attribute is used to define the data types
adopted in the document. This attribute may appear on any SOAP el-
ement, and applies to the element’s contents and all child elements. A
SOAP message has no default encoding.

20 Environment Analysis

Header

The optional SOAP Header element contains application-specific informa-
tion (like authentication, payment, etc) about the SOAP message. If the
Header element is present, it must be the first child element of the Enve-
lope element. All immediate child elements of the Header element must
be namespace-qualified.

1 <?xml ve r s i on=" 1 .0 "?>
2 <soap:Envelope
3 xmlns :soap=" h t tp : //www.w3 . org /2001/12/ soap−enve lope"
4 s oap : encod ingSty l e=" h t tp : //www.w3 . org /2001/12/ soap−encoding">
5

6 <soap:Header>
7 <m:Trans xmlns:m=" ht tp : //www. w3schools . com/ t r an s a c t i o n/"
8 soap:mustUnderstand="1">234
9 </m:Trans>

10 </soap:Header>
11 . . .
12 . . .
13 </ soap:Envelope>

Listing 3.5: SOAP message header.

The example in Listing 3.5 contains a header with a Trans element, a
mustUnderstand attribute with a value of 1, and a value of 234.

SOAP defines three attributes in the default namespace (http://www.
w3.org/2001/12/soap-envelope). These attributes are:

• mustUnderstand

• actor

• encodingStyle

The attributes defined in the SOAP Header define how a recipient
should process the SOAP message.

The SOAP mustUnderstand attribute can be used to indicate whether
a header entry is mandatory or optional for the recipient to process.

A SOAP message may travel from a sender to a receiver by passing
different endpoints along the message path. However, not all parts of a
SOAP message may be intended for the ultimate endpoint, instead, it may
be intended for one or more of the endpoints on the message path. The
SOAP actor attribute is used to address the Header element to a specific
endpoint.

http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-envelope

3.1 Cognitive Phase 21

The encodingStyle attribute, as I said before, is used to define the data
types adopted in the document. This attribute may appear on any SOAP
element, and it will apply to that element’s contents and all child elements.

Body

The required SOAP Body element contains the actual SOAP message in-
tended for the ultimate endpoint of the message. Immediate child elements
of the SOAP Body element may be namespace-qualified.

1 <?xml ve r s i on=" 1 .0 "?>
2 <soap:Envelope
3 xmlns :soap=" h t tp : //www.w3 . org /2001/12/ soap−enve lope"
4 s oap : encod ingSty l e=" h t tp : //www.w3 . org /2001/12/ soap−encoding">
5

6 <soap:Body>
7 <m:mc_version xmlns:m=" ht tp : //www. w3schools . com/ p r i c e s ">
8 </m:mc_version>
9 </soap:Body>

10

11 </ soap:Envelope>

Listing 3.6: SOAP message body.

The example in Listing 3.6 requests the version of the MantisBT in-
stallation. Note that the m:mc_version is an application-specific element
(this is just an example: all the details of the MantisBT interaction are
widely described in Subsection 5.2.2) and it is not a part of the SOAP
namespace.

Fault

The optional SOAP Fault element is used to indicate error messages. If
a Fault element is present, it must appear as a child element of the Body
element. A Fault element can only appear once in a SOAP message. The
SOAP Fault element has the following sub elements:

Sub Element Description
<faultcode> A code for identifying the fault
<faultstring> A human readable explanation of the fault
<faultactor> Information about who caused the fault to happen
<detail> Holds application specific error information related

to the Body element

22 Environment Analysis

HTTP protocol

HTTP communicates over TCP/IP. An HTTP client connects to an HTTP
server using TCP; after establishing a connection, the client can send an
HTTP request message to the server. The server then processes the request
and sends an HTTP response back to the client: the response contains a
status code that indicates the status of the request. A SOAP method is
an HTTP request/response that complies with the SOAP encoding rules;
a SOAP request could be an HTTP POST or an HTTP GET request.

3.2 Operative Phase

This ample section describes the challenging path that was followed in
order to obtain a comprehensive and complete picture of the best approach
to adopt for the development phase. The commitment to the approach
choice is strictly related to two main points:

• the technological instrumentation that is used in the company,

• the specifics of the tool to design.

As regards the first point it is useful to say that every user who works
in the company which this Master thesis work has collaborated with, has
a personal mobile phone that can access to internet. Furthermore the
company has different mobile devices like smartphones and tablets with
different OS platforms. Thus the range of mobile OSes present in the
company is quite wide and comprehends:

• iOS of Apple

• Android of Google

• Blackberry OS of Blackberry

• Windows Phone of Windows

Since these are strongly different platforms, it played a key role in the
development approach choice.

The specifics of the tool to design has represented a significant aspect
to keep in mind for all the choice process; in fact the best approach to use
is also strictly connected to the several features that such an application
may have. In this phase, all the project specifics were defined and grouped
into different sets that had therefore conditioned the above choice.

These specifics sets have been expressed into the following terms:

3.2 Operative Phase 23

• front-end operations cardinality,

• back-end degree of processing,

• graphic interface complexity degree.

All these details are widely illustrated in Section 3.2.3. Now it is suf-
ficient to underline that in the following approach choice description they
had contributed to determine the choice.

3.2.1 Native, web and hybrid approaches

As I mentioned above each of these three approaches carries benefits and
limitations. In general, there is no such thing as the "best" development
approach, as this is non-existent, but the environment analysis made it
possible to list the pros and cons each carries and to describe the aforesaid
requirements that best fit one or the other.

Native approach

Native apps have binary executable files that are downloaded directly to
the device and stored locally. The installation process can be initiated
by the user or, in some cases, by the IT department of the organization.
The most popular way to download a native app is by visiting an app
store, such as Apple’s App Store, Android’s Marketplace or BlackBerry’s
App World, but other methods exist and are sometimes provided by the
mobile vendor. Once the app has been installed on the device, the user
launches it like any other service the device offers. Upon initialization, the
native app interfaces directly with the mobile operating system, without
any intermediary or container. The native app is free to access all of the
APIs that are made available by the OS vendor and, in many cases, has
unique features and functions that are typical of that specific mobile OS.

To create a native app, developers must write the source code (in
human-readable form) and create additional resources, such as images,
audio segments and various OS-specific declaration files. Using tools pro-
vided by the OS vendor, the source code is compiled (and sometimes also
linked) in order to create an executable in binary form that can be pack-
aged along with the rest of the resources and made ready for distribution.
These tools, in addition to other utilities and files, are normally called the
software development kit (SDK) of the mobile OS. Although the develop-
ment process is often similar for different operating systems, the SDK is

24 Environment Analysis

platform-specific and each mobile OS comes with its own unique tools. The
Table 3.1 presents the different tools, languages, formats and distribution
channels associated with the leading mobile operating systems.

Apple iOS
Language Objective-C, C, C++
Tool Xcode
Packaging format .app
App store Apple App Store

Android
Language Java (some C, C++)
Tool Android SDK
Packaging format .apk
App store Google Play

Blackberry OS
Language Java
Tool BB Java Eclipse Plug-in
Packaging format .cod
App store Blackberry App World

Windows Phone
Language C#, VB.NET and more
Tool Visual Studio, Windows Phone development tools
Packaging format .xap
App store Windows Phone Marketplace

Table 3.1: Mobile OSes comparison

These differences across platforms result in one of the most critical
disadvantages of the native development approach – code written for one
mobile platform cannot be used on another, making the development and
maintenance of native apps for multiple OSes a very long and expensive
undertaking. The reason for which many companies choose to develop
natively is related to a significant factor: it’s important to understand the
role of the APIs.

3.2 Operative Phase 25

Once the native application is installed on the mobile device and launched
by the user, it interacts with the mobile operating system through propri-
etary API calls that the operating system exposes. These can be divided
into two groups:

• low-level APIs

• high-level APIs

Low-level APIs It is through these low-level API calls that the app
can interact directly with the touch screen or keyboard, render graphics,
connect to networks, process audio received from the microphone, play
sounds through the speaker or headphones, or receive images and videos
from the camera. It can access the Global Positioning System (GPS),
receive orientation information and, of course, read and write files on the
solid-state disk or access any other hardware element available today or in
the future.

High-level APIs In addition to providing the low-level hardware-access
services I just mentioned, mobile operating systems also provide higher-
level services that are important to the personal mobile experience. Such
services include processes like browsing the web, managing the calendar,
contacts, photo album and, of course, the ability to make phone calls or
send and receive text messages. Although most mobile OSes include a set
of built-in applications that can execute these services, a set of exposed
high-level APIs is made accessible for native apps as well, allowing them
to access many of the important services mentioned above (see Figure
3.2). Other APIs enable downloadable apps to access various cloud-based
services that are provided by the OS vendor, such as push notifications or
in-app purchases.

The graphical user interface (GUI) toolkit Another important set
of APIs that the OS provides is the GUI toolkit. Each mobile OS comes
with its own set of user interface components, such as buttons, input fields,
sliders, menus, tab bars, dialog boxes and so on. Apps that make use of
these components inherit the features and functions of that specific mo-
bile OS, which normally results in a very easy and enjoyable user experi-
ence. ItÕs important to note that different mobile platforms carry unique
palettes of user interface (UI) components. As a result, apps that are
designed to work for multiple operating systems require the designer to
be familiar with the different UI components of each OS. Although APIs

26 Environment Analysis

Figure 3.2: The native application interacts with the mobile operating
system through proprietary API calls that the operating system exposes.

are OS-specific and add much complexity and cost to the development of
multiple native apps, these elements are the only means of creating rich
mobile applications that make full use of all the functionality that modern
mobile devices have to offer.

Web approach

Modern mobile devices consist of powerful browsers that support many
new HTML5 capabilities, Cascading Style Sheets 3 (CSS3) and advanced
JavaScript. With recent advancements on this front, HTML5 signals the
transition of this technology from a “page-definition language” into a pow-
erful development standard for rich, browser-based applications. A few
examples of the potential of HTML5 include advanced UI components,
access to rich media types, geolocation services and offline availability. Us-
ing these features and many more that are under development, developers
are able to create advanced applications, using nothing but web technolo-
gies. It is helpful to distinguish between two extreme web-app approaches.
Everyone is familiar with mobile browsing and mobile-optimized websites.
These sites recognize when they are accessed by a smartphone and serve up
HTML pages that have been designed to provide a comfortable “touch ex-

3.2 Operative Phase 27

perience” on a small screen size. But some companies go even further and
enhance the user experience by creating a mobile website that looks like a
native app and can be launched from a shortcut that is indistinguishable
from that used to launch native apps.

There is a wide range of possibilities between these two extremes, with
most websites implementing their own mix of features. Mobile web apps
are a very promising trend. To capitalize on this trend and help developers
build the client-side UI, a growing number of JavaScript toolkits have been
created, such as dojox.mobile, Sencha Touch and jQuery Mobile, which
generate user interfaces that are comparable in appearance to native apps.
Both execute entirely within the browser of the mobile device and make
use of the newest JavaScript, CSS and HTML5 features that are avail-
able in modern mobile browsers. One of the most prominent advantages
of a web app is its multiplatform support and low cost of development.
Most mobile vendors utilize the same rendering engine in their browsers,
WebKit – an open-source project led mainly by Google and Apple that
provides the most comprehensive HTML5 implementation available today.
Because the application code is written in standard web languages that
are compatible with WebKit, a single app delivers a uniform experience
for different devices and operating systems, making it multiplatform by
default. However, these advantages are not without a price.

Despite the potential and promise of web technologies in the mobile
space, they still carry significant limitations. To understand these limita-
tions I need to explain how web applications operate. Unlike native apps,
which are independent executables that interface directly with the OS, web
apps run within the browser. The browser is in itself a native app that
has direct access to the OS APIs, but only a limited number of these APIs
are exposed to the web apps that run inside it (see Figure 3.3). While
native apps have full access to the device, many features are only partially
available to web apps or not available at all. Although this is expected to
change in the future with advancements in HTML, these capabilities are
not available for today’s mobile users.

Hybrid approach

The hybrid approach combines native development with web technology.
Using this approach, developers write significant portions of their applica-
tion in cross-platform web technologies, while maintaining direct access to
native APIs when required. The native portion of the application uses the

28 Environment Analysis

Figure 3.3: Web apps run within the browser which is in itself a native
app that has direct access to the OS APIs: only a limited number of these
APIs (colored in green) are exposed to the web apps that run inside it.

operating system APIs to create an embedded HTML rendering engine
that serves as a bridge between the browser and the device APIs. This
bridge enables the hybrid app to take full advantage of all the features
that modern devices have to offer.

App developers can choose between coding their own bridge or taking
advantage of ready-made solutions such as PhoneGap – open-source library
that provides a uniform JavaScript interface to selected device capabilities
that is consistent across operating systems.

The native portion of the app can be developed independently, but some
solutions in the market provide this type of a native container as part of
their product, thus empowering the developer with the means to create an
advanced application that utilizes all the device features using nothing but
web languages. In some cases, a solution will allow the developer to use any
native knowledge he or she might have to customize the native container
in accordance with the unique needs of the organization (see Figure 3.4)

The web portion of the app can be either a web page that resides on a
server or a set of HTML, JavaScript, CSS and media files, packaged into
the application code and stored locally on the device. Both approaches
carry advantages and limitations. HTML code that is hosted on a server

3.2 Operative Phase 29

enables developers to introduce minor updates to the app without going
through the process of submission and approval that some app stores re-
quire. Unfortunately, this approach eliminates any off line availability, as
the content is not accessible when the device is not connected to the net-
work. On the other hand, packaging the web code into the application
itself can enhance performance and accessibility, but does not accept re-
mote updates. The best of both worlds can be achieved by combining the
two approaches. Such a system is designed to host the HTML resources
on a web server for flexibility, yet cache them locally on the mobile device
for performance.

Figure 3.4: The native portion of the application uses the operating system
APIs to create an embedded HTML rendering engine that serves as a
bridge between the browser and the device APIs. This bridge enables the
hybrid app to take full advantage of all the features (colored in green) that
modern devices have to offer.

3.2.2 Comparing the different approaches

To summarize, a comparison of all three development approaches follows.
The native approach excels in performance and device access, but suffers
in cost and updates. The web approach is much simpler, less expensive
and easier to update, but is currently limited in functionality and cannot

30 Environment Analysis

achieve the exceptional level of user experience that can be obtained using
native API calls. The hybrid approach provides a middle ground which,
in many situations, is the best of both worlds, especially if the developer
is targeting multiple operating systems.

As can be inferred from the Table 3.2, no single approach delivers all the
benefits all the time. Choosing the right approach depends on the specific
needs of the organization and can be driven by many parameters, such as
budget, timeframe, internal resources, target market, required application
functionality, IT infrastructure and many others.

Feature Native App Hybrid App Web App

Development language Native only Native and
web or web
only

Web only

Code portability and optimization None High High
Access device-specific features High Medium Low
Leverage existing knowledge Low High High
Advanced graphics High Medium Medium
Upgrade flexibility Low Medium High
Installation experience High High Medium

Table 3.2: Approaches comparison

Here is a list of the possible scenarios that was used in the process of
choosing the best approach.

Scenarios for the native approach

Existing native skills One of the main arguments against the native
approach is its lack of multiplatform support. Organizations asking to
develop an application for multiple mobile platforms need to hire new em-
ployees or train in-house developers in a variety of native languages. Orga-
nizations that have such native skills in-house are able to take advantage
of them, without significant new investments.

A single mobile OS In some cases, an organization will aim to release a
mobile application to a limited target audience – one that is known to use
a single mobile OS. For example, consider a scenario in which an internal
application is distributed within an organization that issues a BlackBerry
device to its employees. In this case, achieving multiplatform coverage

3.2 Operative Phase 31

might not be a priority and, as developing a single native application re-
quires a limited set of skills and tools, this approach can make much sense.

Native functionality Some applications are built around a single func-
tionality. Take Skype, for example: Voice over Internet Protocol (VoIP)
and access to the user’s contacts are key elements of the app and, given
available technologies today, can only be developed natively. For such ap-
plications, web languages are simply not yet sufficiently evolved and are
far from capable of achieving the desired functionality.

Rich UI requirements For game-like applications that require a rich UI
that provides real-time responsiveness, web technologies do not yet provide
an adequate solution. For applications with such requirements, developers
are still better off taking the native approach.

Scenarios for the web approach

Direct distribution Some organizations prefer distributing their apps
in a manner that is controlled internally and is not subjected to what
can sometimes turn into a long and uncertain approval process. In such
cases, using purely web languages can completely circumvent the app-store
process and allow the organization to fully control the distribution of the
app and its periodical updates.

Pilot app When comparing the costs and time to market involved in the
development of a native as opposed to a web app, using the web approach
to create a pilot version of the app can be a compelling and cost-effective
tactic. Once the concept has been proved, the organization can choose to
create a new application from the beginning or use portions of the existing
code in a hybrid application.

Visibility In addition to the distribution we already mentioned, another
benefit of creating a web application is its visibility in search engine results
which, in many cases, expose the application to a larger audience than that
available through the app store alone.

Scenarios for the hybrid approach

Balancing the tradeoff Using the hybrid approach, companies can en-
joy the best of both worlds. On the one hand, the native bridge enables

32 Environment Analysis

developers to take full advantage of all the different features and capa-
bilities that modern mobile devices have to offer. On the other, all the
portions of the code that are written using web languages can be shared
among different mobile platforms, making the development and ongoing
maintenance process centralized, shorter and cost-effective.

In-house skills Web development skills are very common and can easily
be found in many organizations. By choosing the hybrid approach, sup-
ported by the right solution, web developers are able to build applications
with nothing but web skills, such as HTML, CSS and JavaScript, while
delivering a native-like user experience.

Future considerations HTML5 is rapidly growing in both availability
and capabilities. Many analysts predict that it is likely to become the de-
fault technology for client-side application development. By writing most
of the app in HTML, and using native code only where needed, compa-
nies can make sure that the investments they make today do not become
obsolete tomorrow, as HTML functionality becomes richer and addresses
a wider range of the mobile requirements of modern organizations.

3.2.3 Choosing the right approach

The choice of the approach fell on the hybrid strategy. This choice was
the last action of a set of examinations in which many test modules for
every approach had been created. Since the company was oriented to a
multi-platform solution, the hybrid strategy had early encountered favor-
able opinions. Furthermore during the prototypes testing phase, several
issues in the server interaction emerged with the native approach: in par-
ticular, the creation of the SOAP envelope for the communication met
sticky problems in write-operations invocation.

Another point in favor of the hybrid choice is strictly related to the
personal web development skills which early allowed me to build operative
application test-modules with nothing but web skills, such as HTML, CSS
and JavaScript.

Since the web approach prevents the use of all the services provided by
the mobile device, the focus shrank on the comparison between the native
and hybrid approaches.

As I outlined in Section 3.2 three factors played a main role in the
choice:

3.2 Operative Phase 33

Front-end operations cardinality The number of operations that the
application has to perform in the interaction with the server-side is
limited to a few tens; this aspect relieves an operative burden on the
application so as to encourage the hybrid approach.

Back-end degree of processing Also for this aspect, the hybrid ap-
proach seemed to be a right solution. The degree of elaborations
at the application level is not so high to require the native approach.
As it is possible to see in the discussion of Section 5.2, the applica-
tion’s main role is to display content data retrieved from the server.
Although there are some elaborations, these can be definitely faced
with an hybrid application.

Graphic interface complexity degree As regards this point, the jQuery
Mobile library in combination with PhoneGap, allowed a rapid cre-
ation of the user interface (details in Section 4.2): the hybrid ap-
proach favored a unique and working graphic solution that is auto-
matically optimized for every mobile device screen size - both smart-
phones and tablets.

34 Environment Analysis

Chapter 4

Development Environment

After choosing the approach to tackle the work, the analysis moves on to
an accurate description of the development environment adopted. This
is an indispensable task in order to grasp all the benefits that this choice
involves. The cross-platform is the key feature of this strategy: this chapter
deals with the environment description.

4.1 PhoneGap

PhoneGap (previously called Apache Callback, but now Apache Cordova)
is an open-source mobile development framework produced by Nitobi, pur-
chased by Adobe Systems. It enables software programmers to build ap-
plications for mobile devices using JavaScript, HTML5 and CSS3, instead
of device specific languages (see intuitive representation in Figure 4.1).

Figure 4.1: PhoneGap executive flow.

PhoneGap is a HTML5 application framework that is used to develop
hybrid applications. This means that developers can develop Smartphone

36 Development Environment

and Tablet applications with their existing knowledge of HTML, CSS, and
JavaScript. With PhoneGap, developers don’t have to learn OS specific
languages. These kind of applications are not purely HTML/JavaScript
based, nor are they native. Parts of the application, mainly the UI, the
application logic, and communication with a server, is based on HTM-
L/JavaScript. The other part of the application that communicates and
controls the device (phone or tablet) is based on the native language for
that platform. PhoneGap provides a bridge from the JavaScript world to
the native world of the platform, which allows the JavaScript API to access
and control the device (phone or tablet).

The PhoneGap framework is primarily a JavaScript Library that allows
HTML/JavaScript applications to access device features. The PhoneGap
framework also has a native component, which works behind the scene
and does the actual work on the device (phone or tablet). In Figure 4.2 is
presented the overall PhoneGap architecture. An application build using
PhoneGap will primarily have two parts:

1. The JavaScript Business Logic Part, which drives the UI and its
functionality.

2. The JavaScript Part, which accesses and controls the device (phone
or tablet).

PhoneGap was made possible due to a commonality between all of the
mobile platforms: the browser. If it were not for this common component,
PhoneGap would not have been possible.

4.1.1 Web Browser

The browser world was largely fragmented until just a few years ago. At
the time, different browsers adhered to W3C standards to different degrees.
Firefox and Safari browsers were at the forefront in terms of adhering to
standards, while others lagged behind.

A lot has changed since then. Now, browsers are looking better in terms
of adhering to standards (more so on the mobile platforms). This is also
true because most modern mobile platforms have the same webkit-based
browser.

Also, newer browsers, both on desktops and smartphones, have started
to adhere to newer standards like HTML5/CSS3. This adds more fea-
tures to the browser world and lessens the fragmentation across mobile
platforms.

4.1 PhoneGap 37

Figure 4.2: PhoneGap application architecture

Table 4.1 lists mobile platforms and their corresponding browser plat-
forms. All mobile platforms except the Windows 7 Phone use a webkit-
based browser. While the Windows 7 Phone has its own browser, the
good news is that all of the browsers listed here are already adhering to
HTML5/CSS3 standards, and with the passage of time, their adherence
will continue to improve.

Mobile OS Browser
Android Webkit-based
iOS Webkit-based
BlackBerry OS Webkit-based
Windows 7 Phone IE 7-based
WebOS Webkit-based
Nokia Webkit-based
BADA Webkit-based

Table 4.1: Mobile Browsers

PhoneGap uses these modern browsers as the platform for building
HTML5/CSS3-based applications.

38 Development Environment

4.1.2 Features

The main features of PhoneGap are:

1. The camera API of PhoneGap allows applications to retrieve a pic-
ture from either the camera or fetch the images from already existing
photo galleries.

2. The contacts API of PhoneGap is a way for applications to read and
write contacts. Many social applications can benefit from syncing
phone contacts with contacts on social channels.

3. The geolocation API helps to retrieve the device’s geolocation. This
is good for many applications, including map-based applications, and
applications like foursquare, where the user can check-in to a place by
using their GPS location. There is an option to fetch one reading of
change in device geo location or to continuously receive the changes
in device geo location.

4. The file API of PhoneGap allows applications to read, write, and
list directories and file systems. This is handy if the application is
planning to change the contents of a file in the file system of the
phone. This API can also help write file explorer applications.

5. The compass API of PhoneGap helps the applications know the bear-
ing of the phone. This proves to be useful for map and navigation
applications, since the map rotates as the user changes the bearing of
the phone. There is an option to fetch one reading of change in device
heading or to continuously receive the changes in device heading.

6. The accelerometer API of PhoneGap enables the application to sense
change in the device’s orientation, therefore, it is able to act accord-
ingly. This can be useful in creating applications that have a bubble
level (making sure the phone is aligned horizontally to the ground).
There is an option to fetch one reading of change in device orientation
or to continuously receive the changes in device orientation.

7. The media API allows applications to control the media sensors and
applications on the device. This API allows applications to record
and playback audio and video recordings.

8. The notification API allows applications to notify the user that some-
thing has occurred, by making a beep, vibration, or providing a visual
alert.

4.2 jQuery Mobile 39

9. The storage API of PhoneGap provides a built-in SQL database for
the applications. An application can insert, retrieve, update, and
delete data through SQL statements. Applications can query data
in the database, and search for a specific e-mail in a locally stored
list of e-mails.

10. The network API of PhoneGap provides the applications with the
ability to see the state of the network. Instead of this state being
just online and offline, this tells the application whether the device
is on a 2G/3G/4G network or a Wi-Fi network. Such information
often helps the application decide when to retrieve certain kinds of
information.

4.2 jQuery Mobile

While PhoneGap provides a platform to allow JavaScript apps to access
native phone features, there are many other things that contribute to a
mobile HTML app. One of the most important parts of the mobile HTML
application is the UI. The entire UI could be written by hand using HTML,
JavaScript, and CSS. However, any web developer knows that there are
many issues with this approach, including the following:

• Not all browsers are same; a cross-browser framework is necessary
to be successful. Even if most mobile browser are webkit based, it’s
best to use a framework that abstracts the browser differences from
a developer.

• A framework that lets a programmer to write less and do more would
help actually to focus on the business logic.

• Creating an aesthetically good-looking HTML UI requires designer
skills. At the same time, most mobile clients have predefined themes
or schemas. It would help a developer if a framework provides good-
looking UI out of the box.

One of the easiest frameworks to use with PhoneGap to write the UI is
jQueryMobile. First of all, jQueryMobile is built on top of the very popular
jQuery. jQuery is known to be a JavaScript library that increases developer
productivity and helps developers with cross-browser compatibility. At the
same time, there are many free plug-ins available with jQuery to do a lot
of things.

40 Development Environment

jQueryMobile is a UI framework built for a mobile UI. It has a declara-
tive UI, which means the developer doesn’t have to code the UI in JavaScript,
but just declares it in HTML. jQueryMobile also provides an excellent look-
ing UI out of the box.

All this makes jQueryMobile the most easy to use JavaScript UI frame-
work and the most appropriate framework for a mobile UI of moderate
complexity.

The framework includes an Ajax navigation system that brings ani-
mated page transitions and a core set of UI widgets; the principals are:

• pages

• dialogs

• toolbars

• listviews

• buttons with icons

• form elements

• accordions

• collapsibles

jQuery Mobile is easy to learn with a simple, markup-based system to
applying behavior and theming. For more advanced developers, there is
a rich API of global configuration options, events, and methods to apply
scripting and generate dynamic pages.

To make this broad support possible, all pages in jQuery Mobile are
built on a foundation of clean, semantic HTML to ensure compatibility
with pretty much any web-enabled device. In devices that interpret CSS
and JavaScript, jQuery Mobile applies progressive enhancement techniques
to unobtrusively transform the semantic page into a rich, interactive expe-
rience that leverages the power of jQuery and CSS. Accessibility features
such as WAI-ARIA are tightly integrated throughout the framework to
provide support for screen readers and other assistive technologies.

4.3 Setting the environment

The PhoneGap environment can be setup in the following two manners:

• Local development environment

4.3 Setting the environment 41

• Cloud build environment on PhoneGap Build

The local development environment setup includes the developer set-
ting up environments for each mobile platform that the developer wants
to launch a PhoneGap application on.

The cloud build environment called “PhoneGap Build” allows the de-
veloper to build PhoneGap applications without the need for a local de-
velopment environment. This means that a developer will only code the
PhoneGap portion of the application, which requires HTML, JavaScript,
and CSS. This code will then be provided to the PhoneGap Build ser-
vice. The PhoneGap Build service will build the required binaries for each
platform and the developer can download these.

4.3.1 Local Development Environment

In this subsection it’s explained how to set up a local development envi-
ronment for the following platforms:

1. Android

2. iOS

The description is focused on these two platforms because in the com-
pany environments, where the Master thesis work has been developed, they
cover most of the adopted devices.

Getting started with Android

1. Requirements

• Eclipse 3.4+

2. Install SDK and Cordova1

• Download and install Eclipse Classic (http://www.eclipse.
org/downloads/);

• Download and install Android SDK (http://developer.android.
com/sdk/index.html);

• Download and install ADT Plugin (http://developer.android.
com/sdk/eclipse-adt.html#installing);

1Apache Cordova is the actual name of PhoneGap

http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/eclipse-adt.html#installing
http://developer.android.com/sdk/eclipse-adt.html#installing

42 Development Environment

• Download the latest copy of Cordova and extract its contents
(http://phonegap.com/download).

3. Setup New Project

• Launch Eclipse, and select menu item New Project;

• Specify new Android Application Project (Figure 4.3);

Figure 4.3: New Android Application project.

• Specify new Application Project information (Application name,
Project name, Package name with Namespace and Build SDK);

• Select a graphic of the launcher icon;

• Create a Blank Activity;

http://phonegap.com/download

4.3 Setting the environment 43

• Make sure the activity doesn’t inherit from anything. Once this
is done, click Finish (Figure 4.4).

Figure 4.4: Click Finish to create the project.

• In the root directory of the project, create two new directories:

– /libs

– assets/www

• Copy cordova-2.0.0.js from the Cordova download earlier to
assets/www

• Copy cordova-2.1.0.jar from the Cordova download earlier to
/libs

• Copy the xml folder from the Cordova download earlier to /res

44 Development Environment

• Verify that cordova-2.1.0.jar is listed in the Build Path for
the project. Right click on the /libs folder and go to

Build Paths/ > Configure Build Path...

Then, in the Libraries tab, add cordova-2.1.0.jar to the project.

• Edit the project’s main Java file found in the src folder in Eclipse
(Figure 4.5):

– Add import org.apache.cordova.*;
– Change the class’s extend from Activity to DroidGap;
– Replace the setContentView() line with super.loadUrl

("file:///android_asset/www/index.html");.

Figure 4.5: Edit the project’s Java file.

• Right click on AndroidManifest.xml and select Open With >

Text Editor;

• Edit the AndroidManifest.xml file; it should looks like Figure
4.6.

4. Deploy to simulator

• Right click the project and go to Run As > Android Application

• Eclipse will ask to select an appropriate AVD. If there isn’t one,
it’s necessary to create it.

4.3 Setting the environment 45

Figure 4.6: Edit the Android Manifest.

Getting started with iOS

1. Requirements

• Xcode 4.3+

• Xcode Command Line Tools

• Intel-based computer with Mac OS X Lion or greater (10.7+)

• Necessary for installing on device:

– Apple iOS device (iPhone, iPad, iPod Touch)
– iOS developer certificate

46 Development Environment

2. Install the iOS SDK and Cordova

• Install Xcode from the Mac App Store or Apple Developer Down-

loads;

• Install the Xcode Command Line Tools (from Xcode Preferences);

• Download and extract the latest release of Apache Cordova.

3. Install CordovaLib

• Download the Cordova source (https://github.com/apache/
incubator-cordova-ios);

• Extract to a permanent location on the hard drive.

4. Create a New Project

• Launch Terminal.app;

• Drag the bin folder (located in the permanent folder location
of Cordova) to the Terminal.app icon in the Dock: it should
launch a new Terminal window;

• Type in ./create <project_folder_path> <package_name>

<project_name> then press Enter (see Table 4.2).

Command Description
<project_folder_path> is the path to the new Cordova iOS project

(it must be empty if it exists)
<package_name> is the package name, following reverse-

domain style convention
<project_name> is the project name

Table 4.2: Terminal commands for creating a new iOS Project

• Locate the new project folder just created;

• Launch the .xcodeproj file in the folder.

5. Deploy to Simulator

• Change the Active SDK in the Scheme drop-down menu on the
toolbar to iOS [version] Simulator;

• Select the Run button in your project window’s toolbar.

https://github.com/apache/incubator-cordova-ios
https://github.com/apache/incubator-cordova-ios

Chapter 5

Software Design

This chapter illustrates the whole software design phase; this phase played
a key role in this Master thesis work. All the software requirements are ex-
pressed here, and they are structured so as to obtain a clear representation
of the tools to be developed.

The design phase was focused on two tools:

• applicative component,

• server-side component.

In fact these are the two basic components which defined the entire
work structure. The chapter starts by describing the general architecture
of the project and later focuses on the aforesaid components.

For each one, a general description introduces two more specific anal-
yses: firstly, the functional analysis covers all the functional requirements
that were expressed within the company’s environment. Secondly, a spe-
cific technical analysis describes all the implementation details.

5.1 General Architecture

The installation of MantisBT exposes a SOAP interface which provides all
the operations that can likewise be performed via web interface. Through
the SOAP interface the applicative component performs all the opera-
tions; besides common operations, which are described in the following
sections, this component presents an evaluation section for a specific pur-
pose: the application user (with administrative permissions) can retrieve
performance information related to realization indexes of users. These val-
ues act as performance indicators on all the company’s activities that are
tracked by the control system.

48 Software Design

As I said in the Introduction chapter, this work focused the attention
on a project that could be fully integrated in the existing activities control
system. This aspect played a key role in the applicative design. Generally
speaking, the application retrieves - and exposes - performance information
that is used by the administrative user to take decisions that are therefore
in accordance with past company performances, which is the role of the
server-side component.

The design phase led to an important decision, which is that of limiting
strongly the excessive number of elaborations on the applicative side, in
order to keep the applicative computational exertion as lean as possible.
Like the application, also the server component uses the SOAP interface
to perform the evaluation actions. It is worth underlining that the server
component is a module that is fully integrated in the control system. This
is a feature that aims to get an early adoptable solution within the company
environment.

5.1.1 Evaluation System

As I mentioned in Section 2.1, Mida Solutions was officially certified in
accordance with ISO 9001, an aspect characterized the whole view of this
Master thesis work. The effort was to integrate an activities evaluation
module into the existing certified Quality Management System (referred
to as QMS).

In fact, an effective ISO management system must incorporate monitor-
ing and measurement of key quality performance indicators, which would
provide management objective data upon which to base decisions.

Internal auditing is an “early warning system” to help the company
spot problems that could impact customer satisfaction or operating ef-
ficiency - giving the chance to address and solve them before they are
detected by others, rather than afterwards. And then management re-
view provides management with solid data, enabling management to make
decisions based on actual facts and evidence.

Generally speaking, ISO 9001 includes a continuous process improve-
ment system that requires:

• well-defined objectives,

• ...which are put in place,

• ...with methods for data collection and analyze.

5.1 General Architecture 49

This means that the organization will establish, document, implement
and maintain a QMS, and continually improve its effectiveness in accor-
dance with this International Standard. In particular, the organization
will:

• Identify processes needed for QMS and their application throughout
the organization

• Determine sequence and interaction of these processes

• Determine criteria and methods needed to ensure that both operation
and control of processes are effective

• Ensure availability of resources and information necessary to support
operation and monitoring of these processes

• Monitor, measure and analyze these processes

• Implement actions necessary to achieve planned results and continual
improvement of these processes.

Thus, the attention focused on the analysis of a function - fully in-
tegrated into the system - which could carefully follow the above points.
The possibility of evaluating classified tickets makes the system a precious
source of performance indicators for every user: this aims straight at the
continuous improvement expressed in the ISO 9001.

5.1.2 Project Structure

The Activity Tracking System acts as an intermediary between the Ap-

plication and the Server Component. More precisely, both components
retrieve information from the tracking system to perform different actions.
As shown in the components diagram of Figure 5.1, the Server Component

interacts through the SOAP interface. Also the application speaks directly
to the tracking system, which is done to obtain all the informative content
that the user requests from the mobile device.

Both the Tracking System and the Server Component, which is a back-
ground daemon, perform an initial configuration which draws from a com-
mon repository. In order to maintain information consistency, this con-
figuration repository is nothing but a specific set of special tickets which
are properly created and managed to this purpose. This feature allows the
two components - the Application and the daemon - to “speak the same

50 Software Design

Figure 5.1: Components diagram of the entire project.

language”; I would say, the same existing language. This is in line with a
precise strategy of software integration.

Although the Application and the Server Component are modules which
operate with the same System, they are completely independent: more pre-
cisely, each one exists even if the other does not work, although each one
handles data that are used by the other.

An operative example clarifies this concept: through the Application a
user - with administrative permission - can close a ticket that represents an
activity. As mentioned in Section 2.1.1 when a ticket is marked as closed
this means that the ticket is completely closed and that no further actions
are required on it: this is a completely independent action performed by
the Application. However, the action affects the server-side workflow. The
Server Component in fact, performs a periodic evaluation on closed tickets.

Figure 5.2 illustrates the structural independence of the two main op-
erative modules.

The deployment diagram depicts where the developed components re-
side. It is interesting to notice that the Server Component - named Daemon

in the diagram - resides in the same machine of the Activities Tracking Sys-
tem. As already explained, the configuration repository, consisting of a set
of special tickets resides inside MantisBT. Finally, the Application works
on the user mobile device.

5.1 General Architecture 51

Figure 5.2: Deployment diagram of the entire project.

Before focusing on the two main components - the Application and the
Server Component - it is important to delineate the interaction structure,
as a first step towards a more detailed description of the communicative and
operative modules. For this intent, Figure 5.3 and Figure 5.4 illustrate two
sequence diagrams related to the Application and to the Server Component

respectively.
As regards the Application, the main operations performed are:

Initialization where the Application retrieves the service exposed by the
MantisBT system and invokes a proper method to get all the tickets
with status resolved and new ;

Ticket Closure where the Application updates a resolved ticket to closed

on the user’s will;

52 Software Design

Figure 5.3: Sequence diagram of the Application.

Assignment where, after retrieving all the special tickets which store the
evaluation values, the Application assigns a selected new ticket to a
selected user, on the user’s will.

The last two operations can be performed in either order and as many
times as desired, till the end of all available tickets.

On the other hand the Server Component ’s main operations are:

Initialization where the Application retrieves the service exposed by the
MantisBT system and invokes a proper method to get all the tickets
with status closed ;

Evaluation where the Server Component computes all the evaluation val-
ues and performs update or creation actions on the special evaluation

5.2 Mobile Component (App) 53

Figure 5.4: Sequence diagram of the Server Component.

tickets (details in Section 5.3).

5.2 Mobile Component (App)

The Application was developed using the PhoneGap technology as exposed
in Chapter 4. In this section, the functional analysis introduces all the re-
quirements of the applicative component; and later the technical analysis
underlines all the details adopted in reference to the functional specifica-
tions.

5.2.1 Functional Analysis

As regards the operations required, the applicative module is a component
which allows a user to perform two operations (in accordance with the
sequence diagram of Figure 5.3):

1. evaluating and closing a resolved ticket;

2. classifying and assigning a new ticket to a specific user.

54 Software Design

Figure 5.5: Activity diagram for the initialization operations.

There is a common set of actions for both these operations as is explained
in the activity diagram of Figure 5.5:

Authentication The first action the user performs is authenticating in
the system. Once authentication has taken place, the user will per-
form a specific set of operations.

5.2 Mobile Component (App) 55

Web Service connection The Application connects to the endpoint of
the Web Service: all the methods exposed by the SOAP interface are
ready to use.

Configuration The Application retrieves configurations information that
is used to set up the application environment.

Evaluating and Closing resolved tickets

As regards the operations of evaluating and closing tickets, these are inti-
mately related to the ticket evaluation system which allows the adminis-
trator to classify and evaluate the tickets.

List resolved tickets The Application lists all the tickets that are in the
resolved status;

Display ticket The Application shows all the details of a selected ticket;

Classify If a selected ticket has no classification - a common situation for
all the tickets created before the evaluation system adoption - the
function allows the user to classify it.

Vote and Close The Application allows a user to express an evaluation
for a selected ticket. Once the ticket has been evaluated - and clas-
sified - its status can be set to closed.

Classifying and Assigning new tickets

The operations of classifying and assigning a new ticket to a specific user
follow these steps:

List new tickets The Application lists all the tickets that are in the new

status;

Display ticket The Application shows all the details of a selected ticket;

Classify This function allows the user to classify the ticket.

List users The Application lists all the users that can handle a ticket with
the selected classification: it provides a set of filters which allows the
user to focus the assignment procedure on specific indicators.

Assign to a user The Application makes it possible to assign a selected
user to the ticket.

56 Software Design

5.2.2 Technical Analysis

This section deals with the technical structural details of the Application.
The main modules which are described are:

• the module for communication and interaction with the web service;

• the structure and flow of the application body.

Web Service communication

AJAX is the acronym of “Asynchronous JavaScript and XML”, a tech-
nology based on XMLHttpRequest, which is now supported by all main
browsers. The basic idea is quite simple - and not actually a breakthrough
- but it allows updating a page following a server request, without reloading
the entire set of data. The environment is composed of:

1. a Web Service with the required methods on the server-side;

2. the Application which uses the WSDL (Web Service Description Lan-
guage) to automatically generate a JavaScript proxy class so as to
allow using the Web Service return types.

The diagram of Figure 5.6 shows the SOAP Application workflow for
asynchronous calls. The Application invokes the SOAPClient.invoke method
using a JavaScript function and specifying the following:

• Web Service URL,

• Web method name,

• Web method parameter values,

• Call mode (asynchronous or synchronous),

• CallBack method invoked upon response reception (optional for sync
calls).

The SOAPClient.invoke method executes the following operations (num-
bers refer to the diagram of Figure 5.6)

1. It gets the WSDL and caches the description for future requests,

2. It prepares and sends a SOAP request to the server (invoking method
and parameter values),

5.2 Mobile Component (App) 57

Figure 5.6: Application workflow for asynchronous calls.

3. It processes the server reply using the WSDL so as to build the
corresponding JavaScript objects to be returned,

4. If the call mode is async, the CallBack method is invoked, otherwise
it returns the corresponding object.

Application structure

The structure of the PhoneGap project is composed of the following parts:

index.html contains the main skeleton of the application. All the pages
of the Application are declared in the same file, in line with the
jQuery Mobile declarative strategy (Section 4.2);

58 Software Design

SOAP client library contains the implementation in Javascript of the
module which has previously been presented: this library allows the
application to invoke the Web Service methods.

Javascript classes These comprehend the methods for the retrieved data
management, and subsidiary methods for improving the user’s graphic
experience (pleas refer to details in Appendix A).

Before describing the operations performed, it is useful to analyze the
structure of the main objects of the interactions:

• the Ticket,

• the Group,

• the User.

Table 5.1 presents the attributes of the objects’ structures that were
used in the application development.

Object Attribute Description
Ticket id Unique identification number

view_state The viewing status of the ticket (public
or private)

last_updated The date of the last update
project The group which the ticket belongs to
category The End Customer for the ticket
priority The priority of the ticket
severity The severity of the ticket
status The status of the ticket
reporter The user who has posted the ticket
summary The summary of the ticket
reproducibility The reproducibility of the ticket
date_submitted The date of the submission
handler The user who handles the ticket
description The description of the ticket
custom_fields The fields that have been added for the

customization
due_date The alert date
tags The tags associated with the ticket
notes The notes added for the ticket

5.2 Mobile Component (App) 59

Object Attribute Description

Group id Unique identification number
parent_id The id of the father group
last_updated The date of the last update
name The name of the group
status The status of the group
view_state The viewing status of the group
access_min The minimum access level to access the

group
description The description of the group
reporter The user who has posted the ticket
subprojects The subgroups children of the group

User id Unique identification number
name The username of the user
real_name The real name of the user
email The email of the user
access The global level access of the user

Table 5.1: Main objects’ structures.

All the methods (exposed by the SOAP interface) adopted to perform
the Application’s operations are:

mc_project_get_users Returns all the appropriate users assigned to a
specified group;

mc_project_get_issues Returns all the tickets that match the specified
group;

mc_enum_access_levels Returns the enumeration for access levels;

mc_enum_status Returns the enumeration for statuses;

mc_projects_get_user_accessible Returns the the list of groups that
are accessible to the logged in user;

mc_issue_update Updates a selected ticket.

60 Software Design

5.3 Server Component

The Server Component is a module which has the task of processing all the
closed - therefore already classified and evaluated - tickets of the Activities
Tracking System, and constructing performance indicators of the system.
This new evaluation module entails the presence of five new custom fields
that must be added in the System configuration section.

Three of them act as classification fields; in fact, the following indicators
compose the classification tern which is used to classify the tickets:

• Product

• Region

• Technology

Every activity which is tracked by a ticket falls on a specific value
for each field. An Evaluation value is set as custom field and shows the
evaluation that has been assigned to the ticket. Lastly, a Closure Date

custom field stores the date of the ticket closure.

5.3.1 Functional Analysis

As regards the functionalities that the Server Component provides, these
were designed in order to obtain a specific classification of the activities
performances. The purpose is to provide a useful evaluation scheme when
a new activity has to be assigned to a user. Thus, the past of the company
is no longer ignored in the logic of the system.

The main operations that the Server Component performs are:

• retrieving the Web Service exposed by MantisBT installation;

• retrieving all the evaluation values;

• retrieving all the closed activities;

• for every activity - and each one has a handler - storing three evalu-
ation values for each couple

handler - product_value

handler - region_value

handler - technology_value

5.3 Server Component 61

Figure 5.7: General structure of the Server Component.

• constructing a global table which stores all the evaluation averages;

• providing the possibility to perform both an incremental table update
and an entire re-analysis from the ground;

• the evaluation table must be available for the Application.

A Status Ticket storing a last-update date determines the update level
to perform. If it is present, the updating is computed from the last update.

62 Software Design

Otherwise the whole evaluation table is reprocessed.
Figure 5.7 illustrates the general structure of the operations performed

by the Server Component.

5.3.2 Technical Analysis

The component is written in Java language and is designed to periodically
perform a complete evaluation. This detail loosens the concurrency and
synchronization constraints: it was programmed to work in background -
as a daemon service acts - and to collect once a day all the system tickets
in order to create or update the evaluation table.

Technically speaking, a useful library was adopted to facilitate commu-
nication with the MantisBT installation. This library is

mantis-axis-soap-client-1.2.0.jar

It is composed of SOAP stubs generated using Axis for the MantisBT
SOAP API with a special script which is wsdl2java. This tool takes a
WSDL document and generates fully annotated Java code from which to
implement a service. The WSDL document must have a valid portType
element, but it does not need to contain a binding element or a service
element. Using the optional arguments it is possible to customize the
generated code. In addition, wsdl2java can generate an Ant based makefile
to build an application.

Axis is an implementation of the SOAP protocol. It shields the devel-
oper from the details of dealing with SOAP and WSDL. Axis is used on
the server side to write the web service, and it is uses on the client side to
facilitate the writing of the client. Axis is essentially Apache SOAP 3.0. It
is a from-scratch rewrite, designed around a streaming model (using SAX
internally rather than DOM).

The aforementioned library provides all the structures described for the
Application, which are ready to use with an object-oriented approach. This
useful feature facilitated data manipulation both in the requests and in the
responses to and from the MantisBT installation, leading to a satisfactory
communication level.

1 . . .
2 try {
3 URL ur l = new URL(<MantisBTinstallPath >) ;
4

5 MantisConnectLocator mcl = new MantisConnectLocator () ;

5.3 Server Component 63

6 MantisConnectPortType pt = mcl . getMantisConnectPort (u r l) ;
7

8 pt .<MantisBTMethod>(parameters) ;
9 }

10 catch (Exception e) {
11 e . pr intStackTrace () ;
12 }
13 . . .

Listing 5.1: Skeleton of a request to the web service.

A generic request to the web service is done with the following steps
(see Listing 5.1):

• instance creation of MantisConnectLocator class;

• acquisition of the endpoint to communicate with the web service;

• method invocation;

• returned data management.

It’s important to correctly handle the exception during these opera-
tions.

The way the Server Component operates starts from the creation of
three specific and private subgroups within a father private group with
name Resources Evaluation. The three subgroups are:

• Region,

• Product

• Technology

These subgroups are populated with Evaluation Tickets (a ticket of
this group is referred with t

e
) which are updated according to the follow-

ing policy (the explanation has considered the instance with the Region

subgroup).
The daemon:

• retrieves all the closed tickets of MantisBT and for each ticket (re-
ferred with t):

– search in the subgroup Region for a ticket t
e

which matches the
Handler-RegionValue pair of t;

64 Software Design

– if exists, updates it;

– otherwise creates a new ticket t
e

with such a values pair.

The updating operation deserves a deeper consideration; all the t
e
tick-

ets have two custom fields:

Cumulative Evaluation Value - CEV represents the summatory of the
already precessed evaluations;

Number of processed tickets - N corresponds to the number of the
already processed tickets.

For the new average value computation - which corresponds to the up-
dating operation -, given a new evaluation value v it’s sufficient to perform

CEV + v

N + 1

Finally the Evaluation system provides the possibility to “clear” the
past of a user for a specific value of one of the three subgroups: this is the
situation where - for example - a user has followed a training course and all
the evaluations from that time forth are no longer useful. Since the system
is implemented on the ticket policy, this case is covered by simply closing
the aforesaid ticket - the one that is no longer reliable - and creating a new
ticket which now is the one to act as real performance indicator.

Chapter 6

Final Considerations

This Master thesis work represented an interesting opportunity of collab-
oration with a real company environment.

A rewarding aspect is that the developed tools can be effectively adopted
by the company. Another important aspect is that the efforts that were
made can be useful for a future improvement of the work, which can be
handled by some other colleagues or company employees.

In this regard, here is an interesting improvement that can be the start-
ing point for an extension process:

• create a module for the App which manages the notification that are
thrown from MantisBT; at the moment, the notification structure is
implemented with e-mails. The use of an XMPP server may improve
this notification service.

66 Final Considerations

Appendix A

Graphic Details

The development of the App produced an acceptable result in terms of
both user experience and graphic rendering. This second aspect was made
possible by the use of the jQuery Mobile library which is described in
Section 4.2.

In this appendix chapter all the main views of the application are re-
ported: the graphic realization follows the executive flow expressed and
analyzed in Section 5.2.

The description illustrates the main actions that can be performed
with the App: the scenario which the component interacts with is a test
MantisBT installation with the same characteristics and settings of the Ac-
tivities Tracking System present in Mida Solutions. Fictitious tickets were
added to the system in order to simulate the company environment; how-
ever, the groups and all the displayed fields are modeled on the company
reality.

A.1 Login and Home pages

The Login Page is the first page that is displayed to the user (Figure A.1):
this is the starting point for the interaction with MantisBT. The fields that
are required are:

Server URL is the server address where MantisBT is installed;

Username is the same username that the user adopts to log in MantisBT
via web interface;

Password is the password associated to the username.

68 Graphic Details

Figure A.1: Login page.

After the log in page, the App automatically retrieves the web ser-
vice interface and performs the data requests to the server. The access
level management of MantisBT is directly reflected in the App access level
policy. The set of actions that a user can perform via web interface, cor-
responds to the actions that can be performed with the App.

Hence, the page that is displayed (Figure A.2) presents two buttons
which correspond to the two main actions that the applicative component
provides. These actions are widely described in Section 5.2 and they are
related to operations on:

Resolved Tickets This section provides the functionality of classifying,
evaluating and closing a resolved ticket;

New Tickets This section provides the functionality of classifying and

A.1 Login and Home pages 69

assign a new ticket.

Figure A.2: Home page.

The header bar presents two buttons:

Logout This button allows the logged in user to be logged out from the
system: the page that will be displayed is the Login Page;

Reload When the user wants to reacquire the tickets - this because per-
haps some changes happened on the server side - uses this button.
As described in Section 5.2.2 the WSDL is cached, so this operation
takes a time that is reasonably short.

70 Graphic Details

A.2 Resolved Tickets pages

By selecting the first button in the Home page all the resolved ticket -
grouped by company subgroups - are listed (the company group where this
operation acts is the Customer Care group; however the App is structured
that this is a settable parameter - i.e. other groups can be analyzed, and/or
more that one at the same time).

Figure A.3 shows the described page; this is a clickable and scrollable
list. For each subgroup the tickets are sorted by last modification date.
The content that is displayed on a single ticket line is settable; in the
example there are the id, the summary, and the submission date.

This introduces a feature, related to the orientation graphic manage-
ment - allowed by jQuery Mobile library. In fact this library independently
manages the graphic adaptation to the screen size and orientation. Thus,
in this page, the horizontal orientation allows to view more ticket details;
the tablet screen would show still more.

Figure A.3: Resolved tickets page.

It’s interesting to notice that the “Filter” bar is a useful feature that is
completely managed by the jQueryMobile library.

After selecting a ticket (in this example the ticket with id 174 has been
chosen), a page with all the ticket details is shown; also in this page, the

A.2 Resolved Tickets pages 71

content is organized with a scrolling list. Unlike before, now the footer bar
is fixed. This bar presents two buttons:

Evaluate allows the user to assign an evaluation to a classified ticket; this
feature also gives the possibility to change the actual classification of
the ticket;

Close allows the user to update the status of the ticket to close; this action
can be performed only if the ticket has a classification (a ticket with
evaluation 0 is considered as not influent in the evaluation values
computation).

Figure A.4: Resolved ticket details page.

72 Graphic Details

Figure A.4 shows the described page; the illustration on the right shows
the page contents after a scrolling action: the last information is related
to the classification and evaluation values.

A.2.1 Evaluate

By clicking on the Evaluate button, a specific page shows the Classification
and Evaluation values. Each value can be modified: only after clicking the
Apply button the changes are applied. If the user does not apply the
changes and goes back to the previous page a pop-up message asks for the
confirmation.

Figure A.5: Evaluate page.

All the possible values that can be assigned to each field are dynamically

A.2 Resolved Tickets pages 73

acquired from the server: thus, no values are wired in the App. It is
interesting to notice that the list of the possible values is displayed with
the specific platform layout.

Figure A.5 shows on the left the evaluation page for ticket 174, and on
the right the list of the possible values for the Evaluation field.

A.2.2 Close

By clicking on the Close button, a pop-up box asks for the confirmation.
When user clicks on Yes, the status of the ticket is updated to Closed ; thus
the ticket will not be displayed in the Resolved List page anymore. Figure
A.6 shows the pop-up box.

Figure A.6: Close ticket confirmation pop-up.

74 Graphic Details

A.3 New Tickets pages

By selecting the second button in the Home page all the new tickets -
grouped by company subgroups - are listed (as in the previous section).

By selecting a ticket (in this example the ticket with id 161 is chosen),
a set of information is displayed; no classification or evaluation information
appear because these are New tickets that need an handler to be assigned.

Figure A.7 shows on the left the list of new tickets, on the right the
details of ticket 161.

Figure A.7: New tickets list (on the left) and details of a selected ticket
(on the right).

In the second page the footer bar contains a button that allows the user
to access to the ticket assignment section.

A.3 New Tickets pages 75

A.3.1 Assign

By clicking on the Assign button, a specific page is displayed. It is struc-
tured in three main parts:

• Classification

• Evaluation Table

• Assignment

Figure A.8: Assign page.

The Classification section allows the user to choose a classification tern
of values. After selecting a value, the table in the second section - which

76 Graphic Details

contains the users with the evaluation values - is sorted by decreasing
value for the selected field. This means that when the user select a specific
value for the region, the table is sorted by the region value; the same for
the other fields. The table provides also the functionality of filtering the
classification values; the user in fact may want to have a view of only a
subset of the entire set of fields.

Figure A.8 shows the described page: by selecting a classification the
table sorts all the users. In the view on the right, the third section is
shown. This section allows the user to select the handler of the ticket and
the appropriate access level to assign.

The Assign button permits to apply the selected values to the ticket.

Bibliography

[1] “Mantis Bug Tracker, a free popular web-based bugtracking system.”
http://www.mantisbt.org, 2000.

[2] “SOAP, a simple object access protocol.” http://en.wikipedia.

org/wiki/SOAP, 1998.

[3] “Web Services Glossary.” http://www.w3.org/TR/2004/

NOTE-ws-gloss-20040211/, 2004.

[4] “Web Services Tutorial.” http://www.w3schools.com/webservices,
2012.

[5] “SOAP Tutorials.” http://www.w3schools.com/soap, 2012.

[6] “Native, web and hybrid apps.” http://www.xcubelabs.com/blog/

native-web-and-hybrid-apps-understanding-the-difference/,
2012.

[7] “Hybrid HTML5 Apps Are Less Costly to Develop Than
Native.” http://www.readwriteweb.com/mobile/2012/01/

hybrid-html5-apps-are-more-les.php, 2012.

[8] “Native, web or hybrid mobile-app development.” http://www.

mobileconnectevent.com/downloads/white-papers/Mobile_

Thought_Leadership_White_Paper.pdf, 2012.

[9] J. M. Wargo, PhoneGap Essentials: Building Cross-Platform Mobile

Apps. Addison-Wesley Professional, 2012.

[10] R. Ghatol, Beginning PhoneGap - Mobile Web Framework for

JavaScript and HTML5. Apress, 2011.

[11] J. Munro, 20 Recipes for Programming PhoneGap: Cross-Platform

Mobile Development for Android and iPhone. O’Reilly Media, 2012.

http://www.mantisbt.org
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/SOAP
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3schools.com/webservices
http://www.w3schools.com/soap
http://www.xcubelabs.com/blog/native-web-and-hybrid-apps-understanding-the-difference/
http://www.xcubelabs.com/blog/native-web-and-hybrid-apps-understanding-the-difference/
http://www.readwriteweb.com/mobile/2012/01/hybrid-html5-apps-are-more-les.php
http://www.readwriteweb.com/mobile/2012/01/hybrid-html5-apps-are-more-les.php
http://www.mobileconnectevent.com/downloads/white-papers/Mobile_Thought_Leadership_White_Paper.pdf
http://www.mobileconnectevent.com/downloads/white-papers/Mobile_Thought_Leadership_White_Paper.pdf
http://www.mobileconnectevent.com/downloads/white-papers/Mobile_Thought_Leadership_White_Paper.pdf

78 BIBLIOGRAPHY

[12] J. Marinacci, Building Mobile Applications with Java: Using the

Google Web Toolkit and PhoneGap. O’Reilly Media, 2012.

[13] T. Myer, Beginning PhoneGap. Wrox, 2011.

[14] G. Bai, jQuery Mobile First Look. Packt Publishing, 2011.

[15] M. Doyle, Master Mobile Web Apps with jQuery Mobile. Elated Com-
munications Ltd., 2011.

List of Tables

2.1 Nomenclature changes adopted 5

3.1 Mobile OSes comparison 24
3.2 Approaches comparison . 30

4.1 Mobile Browsers . 37
4.2 Terminal commands for creating a new iOS Project 46

5.1 Main objects’ structures. 59

80 LIST OF TABLES

List of Figures

2.1 Diagram of the status transitions. 6

3.1 MantisBT logo . 10
3.2 Native Approach structure 26
3.3 Web Approach structure 28
3.4 Hybrid Approach structure 29

4.1 PhoneGap executive flow. 35
4.2 PhoneGap application architecture 37
4.3 New Android Application project. 42
4.4 Click Finish to create the project. 43
4.5 Edit the project’s Java file. 44
4.6 Edit the Android Manifest. 45

5.1 Components diagram of the entire project. 50
5.2 Deployment diagram of the entire project. 51
5.3 Sequence diagram of the Application. 52
5.4 Sequence diagram of the Server Component. 53
5.5 Activity diagram for the initialization operations. 54
5.6 Application workflow for asynchronous calls. 57
5.7 General structure of the Server Component. 61

A.1 Login page. 68
A.2 Home page. 69
A.3 Resolved tickets page. 70
A.4 Resolved ticket details page. 71
A.5 Evaluate page. 72
A.6 Close ticket confirmation pop-up. 73
A.7 New tickets pages . 74
A.8 Assign page. 75

	1 Introduction
	2 Context and Objectives
	2.1 Company Context
	2.1.1 Mantis Bug Tracker
	2.1.2 MantisBT mobile interaction

	2.2 Objectives

	3 Environment Analysis
	3.1 Cognitive Phase
	3.1.1 Company Control System
	3.1.2 Specific usages
	3.1.3 MantisBT webservice
	3.1.4 SOAP interface

	3.2 Operative Phase
	3.2.1 Native, web and hybrid approaches
	3.2.2 Comparing the different approaches
	3.2.3 Choosing the right approach

	4 Development Environment
	4.1 PhoneGap
	4.1.1 Web Browser
	4.1.2 Features

	4.2 jQuery Mobile
	4.3 Setting the environment
	4.3.1 Local Development Environment

	5 Software Design
	5.1 General Architecture
	5.1.1 Evaluation System
	5.1.2 Project Structure

	5.2 Mobile Component (App)
	5.2.1 Functional Analysis
	5.2.2 Technical Analysis

	5.3 Server Component
	5.3.1 Functional Analysis
	5.3.2 Technical Analysis

	6 Final Considerations
	A Graphic Details
	A.1 Login and Home pages
	A.2 Resolved Tickets pages
	A.2.1 Evaluate
	A.2.2 Close

	A.3 New Tickets pages
	A.3.1 Assign

	Bibliography
	List of Tables
	List of Figures

