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Introduction

Given its importance and notoriety, the Galois Theory is probably that subject that every
mathematician has eventually crossed paths with. Its origins lie within the problem of
finding a criterion for when with a polynomial equation of the form:

f(x) = 0

it is possible to obtain its roots only using radicals and standard arithmetic operations,
but the results that were obtained thanks to it have gone way further than just arithmetic.
It was between 1830 and 1832 that a young Évariste Galois sent his memoir to the Paris
Academy of Science about his work regarding solvability by radicals, but got rejected due
to the lack of formality. Luckily, the ideas in such papers were innovative and did not
go unseen. His trick was to focus on a correspondence between two algebraic structures:
groups and fields. Galois’ major result, the ”Fundamental Theorem of Galois Theory”,
asserts that when given a field F and a field extension satisfying some constraints Ω/F ,
called Galois extension there exists a bijection between intermediate fields F ⊂ L ⊂ Ω and
subgroups of the Galois group, namely the groups Gal(Ω/F ) = {σ ∈ Aut(Ω)|σ|F = idF}.
A more formal characterization of all the Galois extensions was given some time later by
Emil Artin, who gave some equivalent definitions. One important aspect of the Galois
extension was that they were finite by definition, and as usually happens in mathematics,
it is natural to think about what the outcome might be if this particular hypothesis is
removed. For Galois Theory, this happened when the limitation of finite extensions was
removed. The reason was that there were some quite easy algebraic field extensions that
were normal and separable, but not finite. Unfortunately, as Richard Dedekind showed
at the beginning of the 20th century, the Fundamental Theorem could not hold if given
an infinite extension, and thus it required some more work that we will present in the
following chapters:

• Chapter 1 gives some basics of group theory, specifically properties of topological
groups and inverse limits.

• Chapter 2 is the core of this thesis and it focuses for real on the problem of Infinite
Galois extensions. We will explicitly build a topology for an arbitrary Galois group
and then prove the Fundamental Theorem of Galois Theory.

As stated earlier, there were already some known infinite separable and normal exten-
sions, and particularly some were related to the separable closure of a field, and for this,
we have:
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• Chapter 3, that shows two particular cases of such infinite Galois extensions, focusing
on the computation of the corresponding Galois group, called the Absolute Galois
Group. The first example is related to finite fields, while the second to the more
complex and sophisticated set of p-adic numbers.

Finite fields, sometimes also called Galois fields, have an especially easy extension
structure and their Galois group are some of the easiest. Moreover, obtaining the absolute
Galois group of a finite field is quite easy since it only relies on profinite groups, making
finite fields a perfect example for the study of an infinite extension. The set of p-adic
numbers, Qp, on the contrary, requires a lot more preliminaries in order to achieve such
result. For this reason, in Chapter 3, we will first introduce normed spaces and discrete
valuation rings, which are needed to define Qp, to study p-adic extensions, their basic
properties and relations with finite fields. Secondly, some useful tools of ramification
theory will be provided and used to finally compute the absolute Galois group.

Finally, at the bottom of this paper, there will be two appendixes. The first one
contains basic concepts and results of finite Galois Theory, hence, the original results from
Galois, while the second one is focused more on some elementary topological aspects.

Remark. Please note that in what follows, unless specified, ”field extension” is meant as
”algebraic field extension”.
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e disponibilità, per avermi sempre fornito ogni materiale utile, ma soprattutto per la
gentilezza e la fiducia riposte in me sin dal principio di questo progetto.

Non posso non ringraziare i miei genitori, due instancabili macchine da guerra, che
nonostante tutto mi hanno sempre supportato in ogni scelta e percorso intrapreso. Da
sempre mi spronate a dare il meglio di me, mi spingete ad inseguire i miei sogni e di fare
di ogni conoscenza acquisita un tesoro, imparando a prendere il meglio di ogni cosa. In
questi tre anni tortuosi non avete mai smesso di regalarmi amore e affetto e nonostante ciò
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mentale per la buona riuscita di questa tesi e di questa esperienza universitaria. Mi
hai supportato, sopportato e costantemente stimolato ad immergermi sempre di più nel
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Chapter 1

Topological preliminaries

In this chapter, we will introduce a few topological structures and results required for
the study of the Fundamental Theorem in Chapter 2, where we will show that all Galois
groups associated with arbitrary Galois extensions do have a close connection to a specific
topology. Please note that basic definitions, properties and results of topology can be
found in Appendix B.

1.1 Topological groups

Definition 1.1.1. A set G together with a group structure and a topology is a topological
group if the following maps are both continuous

· :G×G G

(g, h) gh

−1 :G G

g g−1

Following this request, we can show that if G is a topological group then the map:

aL :G G

g ag
, a ∈ G

is a homeomorphism. It is firstly a continuous map because it is the composition of the
injection of G in G×G and the multiplication map ·. Moreover, the map (a−1)L is inverse
with aL and continuous by definition.
Consequentially, if H ⊂ G is a subgroup of G, the coset aH of H is open or closed ac-
cording to H being open or closed.
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Chapter 1. Topological preliminaries

Lemma 1.1.2. Let G be a topological group and H a subgroup of G.

1. If H is open then is also closed;

2. If H is closed and of finite index is then open. Particularly, if G is compact and H
is closed, H is open if and only if it is of finite index.

Proof. Let H be an open subgroup of G. Then G =
⋃

a∈G aH and consequentially we have
that H = G/

⋃

a∈G,a ̸=1G
aH, being aH open. Such arbitrary union is still an open set of

G as well meaning H is the complementary of an open set. Hence, closed. Let now H be
a closed subset of finite index of G. Therefore, there exists a finite number of elements
a1, ..., an ∈ G, such that G =

⋃n
i=1 aiH, being aiH closed by hypothesis, their finite union

is still closed and so H is the complementary of a closed set. Hence, open. Now, let G
be compact and H a closed subgroup. If H is of finite index then is open thanks to what
we have just proved. Conversely, if H is open, then the family of open sets {aH : a ∈ G}
is a covering for G. Being G compact, there exist a1, ..., an ∈ G such that G =

⋃n
i=1 aiH.

This implies that H is of finite index.

Recalling that a neighbourhood base for a point x of a topological space X is a set
of neighbourhoods N such that for every open subset U of X containing x, there exists
N ∈ N for what N ⊂ U . We can consequentially give the following result:

Proposition 1.1.3. Let G be a topological group, and let N be a neighbourhood base for
the identity element e of G. Then:

1. for all N1, N2 ∈ N , there exists an N
′

∈ N such that e ∈ N
′

⊂ N1 ∩N2

2. for all N ∈ N , there exists an N
′

∈ N such that e ∈ N
′

N
′

⊂ N

3. for all N ∈ N , there exists an N
′

∈ N such that e ∈ N
′

⊂ N−1

4. for all N ∈ N and for all g ∈ G, there exists an N
′

∈ N such that N
′

⊂ gNg−1

5. for all g ∈G, {gN |N ∈ N} is a neighbourhood base for g.

Conversely, if G is a group and N is a non-empty set of subsets of G satisfying the first
four properties, then there is a topology on G for which the last propriety holds.

Proof. If N is a neighbourhood base at e in a topological group G, then (2), (3), (4) are
consequences of the continuity of the multiplication and inversion maps. Moreover, (1) is
a consequence of the definitions and (5) of the fact that the map gL is a homeomorphism
for every g ∈ G.

Conversely, let N be a nonempty collection of subsets of a group G satisfying the
conditions from (1) to (4). Note that (1) implies that e lies in all the N in N . Define
now U to be the collection of subsets U of G such that, for every g ∈ U there exists
an N ∈ N with gN ⊂ U . Clearly, the empty set and G itself are in U , and unions of
sets in U are still contained in U . Let U1, U2 ∈ U , and g ∈ U1 ∩ U2; by definition there
exists N1, N2 ∈ N with gN1, gN2 ⊂ U ; in applying (1) we obtain an N ′ ∈ N such that
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Chapter 1. Topological preliminaries

gN ′ ⊂ U1 ∩U2, which shows that U1 ∩U2 ∈ U . It follows that the elements of U are open
sets of a topology on G. In fact, it is the unique topology for which (5) holds.

We next use (2) and (4) to show that the multiplication map is continuous. Note
that the sets g1N1 × g2N2 form a neighbourhood base for (g1, g2) in G × G. Therefore,
given an open subset U in G and a pair (g1, g2) such that g1g2 ∈ U , we have to find
N1, N2 ∈ N such that g1N1g2N2 ⊂ U . As U is open, there exists an N ∈ N such that
g1g2N ⊂ U . Apply (2) to obtain an N ′ such that N ′N ′ ⊂ N , then g1g2N

′N ′ ⊂ U . But
g1g2N

′N ′ = g1(g2N
′g−1

2 )g2N
′ and it remains to apply (4) to obtain an N1 ∈ N such that

N1 ⊂ g2N
′g−1

2 .
Finally, we use (3) and (4) to show that the inversion map is continuous. Given an

open subset U of G and a g ∈ G such that g−1 ∈ U , we have to find an N ∈ N such
that gN ⊂ U−1. By definition, there exists an N ∈ N such that g−1N ⊂ U . Now,
N−1g ⊂ U−1, and we use (3) to obtain an N ′ ∈ N such that N ′g ⊂ U−1, and (4) to
obtain an N ′′ ∈ N such that gN ′′ ⊂ g(g−1N ′g) ⊂ U−1.

1.1.1 Totally separable and totally disconnected spaces

Definition 1.1.4. Let X be a topological space then

1. Given an element x ∈ X, its connected component is the biggest connected set
Cx ⊂ X that contains x ;

2. Given an element x ∈ X its quasicomponent is the intersection of all clopen sets of
X containing x.

Definition 1.1.5. 1. A topological space X is said to be totally separable if for every
two distinct points, there exists a clopen set that separates them;

2. A topological space X is said to be totally disconnected if the connected component
of every point x ∈ X is the set {x} itself.

Proposition 1.1.6. A topological space X is totally separable if and only if each of its
quasicomponent is a singleton set.

Proof. (⇒) By contradiction, suppose that there exist two distinct x, y ∈ X such that
they are in the same quasicomponent. By hypothesis, there exists a clopen set U such
that separates x and y, but this implies that this specific set contains x, hence the qua-
sicomponent containing x is contained in such set U. Hence, y cannot be part of the
quasicomponent set that contains y by assumption.

(⇐) Given two distinct points x,y, the quasicomponent of x is {x}, hence it separates
x from y.

There is lastly an important result that will not be proven that shows a crucial corre-
lation between the connected components and the quasicomponents.

Lemma 1.1.7 (Shura-Bura’s Lemma). [[1], p.171-172] Given a compact topological space
X, quasicomponents and connected components coincide.
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Chapter 1. Topological preliminaries

1.2 Inverse Limits

Definition 1.2.1. Given a partially ordered set (I, ≤), it is said to be a directed set, and
consequentially ≤ is said to be a directed partial order, if:

∀i, j ∈ I there exists k ∈ I such that i, j ≤ k

Definition 1.2.2. Let (I, ≤) be a directed set, and let G a family of groups

1. An inverse system in G indexed by (I, ≤), directed set, is a family (Gj)j∈I of groups
of G together with a family (pji : Gj −→ Gi)i≤j of homomorphisms such that pii = idGi

and pji ◦ p
k
j = pki ∀i ≤ j ≤ k

2. An object G of G together with a family (pj : G −→ Gj)j∈I of homomorphisms
satisfying pji ◦ pj = pi ∀i ≤ j, is an inverse limit of an inverse system, if G holds the
following universal property:

”For any other group H and family of homomorphisms (qj : H −→ Gj) such that
pji ◦ qj = qi, i ≤ j, there exists a unique homomorphism r : H −→ G such that
pj ◦ r = qj for j ∈ I”

H

G

Gi Gj

r

qjqi

pi pj

pji

Conventionally, the inverse limit of an inverse system of groups is written lim←−(Gi, p
j
i )

or just lim←−(Gi). Now that we have the definition, we can consider a more specific case of
inverse limit of a family of groups.
Let (Gi, p

j
i : Gj → Gi) be an inverse system of groups. Consider the set

G = {(gi)i ∈
∏

i

Gi|p
j
i (gj) = gi∀i ≤ j}

where the maps pi : G→ Gi are the usual projection maps. We can see that the property
pji ◦pj = pi is equivalent to pji (gj) = gi, which always holds in the set G by definition. Let
now (H, qi) be another family such that pji ◦ qj = qi and let’s consider the following map:

p :H
∏

i Gi

h (qi(h))i∈I

We show that p is the map that follows the universal property of inverse limits.

7



Chapter 1. Topological preliminaries

1. We show that the image of the homomorphism is contained in G. Let h ∈ H be a
fixed element. Then

p(h) ∈ G↔ pji ((p(h))j) = (p(h)i), ∀i ≤ j ↔ pji (qj(h)) = qi(h)∀i ≤ j

but by definition of the family (H, qi) this is true;

2. We show that p respects the uniqueness property. Let q : H →
∏

i Gi be another
homomorphism such that pi ◦ q = qi, ∀i ∈ I. The image of q is in G because
q(h) ∈ G ↔ pji ((q(h))j) = q(h)i, ∀i ≤ j. By definition, q(h)i = (pi ◦ q)(h) = qi(h)
and pji ((q(h))j) = (pji ◦ pj ◦ p)(h) = (pji ◦ qj)(h) = qi(h). Let’s now fix i ∈ I, then
by assumption pi(q(h)) = qi(h) = pi(p(h)) ↔ pi(pi(h)(qi(h)

−1) = 1Gi
and since the

maps pi are projections, this means that the entrance (pi(h)(qi(h)
−1)i = 1Gi

, but
this is valid for all i meaning that p ≡ q.

Hence (G, pi) = lim←−(Gi, p
j
i ). Note that the same result can be given if the groups are

topological groups and
∏

i Gi is endowed with the product topology. It is interesting to
note that even if we have introduced the inverse limit based on group families, inverse
limits are usually defined for categories by only replacing some terms in Definition 1.2.2.
Besides that, this general definition will not be needed throughout the paper and the
group-related one is enough.

After the introduction of inverse limits, we are in need of some properties of these
structures, and from all of them the ones that we are interested in are proven in the
following

Lemma 1.2.3. The inverse limit S of an inverse system of non-empty compact Haus-
dorff spaces (groups) {Si}i∈I given their (homo)morphisms πj

i is a non-empty compact
Hausdorff space (group).

Proof. We first show that S is a closed subset of
∏

i∈I Si. Suppose s = (si)i ∈
∏

i∈I Si

does not belong to lim←−(Si) ⇒ ∃i, j ∈ I such that i ≤ j, πji(sj) ̸= sj. Let’s now consider

the open disjoint neighbourhoods Ui and U
′

i of si and πji(sj) respectively, whom existence
is certain thanks to the sets Si being Hausdorff spaces. Then Ui × π−1

ji (U
′

i )×
∏

k ̸=i,j Sk is
an open neighbourhood of s in

∏

i∈I Si that does not intersect S. Since
∏

i∈I Si is compact
thanks to Tychonoff’s Theorem, S is a closed subset of a compact set, hence compact.
We now prove that S is nonempty. Let’s define Rij = {s ∈

∏

i∈I Si|πki(sk) = sj} and
consider S =

⋂

k>j Rkj. The natural map: prk × prj :
∏

i Si → Sk × Sj is continuous.
The Hausdorff property of Sj implies that the set T = {(sk, sj) ∈ Sk × Sj|πki(sk) = sj}
is closed in Sk × Sj. Hence, Rkj = (prk × prj)

−1(T ) is a closed subset of
∏

i∈I Si. Since
∏

i∈I Si is compact, we only need to show that the intersection of finitely many of the Rkj

is non-empty.
Indeed, let j1 ≤ k1, ..., jn ≤ kn be n pairs in I. Choose l ∈ I with ki ≤ l, i = 1, ..., n, and
choose sl ∈ Sl. Define sji = πl,ji(sl) and ski , fori = 1, ..., n. Let now sr be an arbitrary
element of Sr, for each r ∈ I/{j1, ..., jn, k1, .., kn}. Then s = (si) ∈

⋂n
i=1 Rki,ji

8



Chapter 1. Topological preliminaries

1.3 Profinite Groups

In this subsection, we will introduce the notion of profinite groups, which are a particular
type of inverse limits. The interest in profinite groups is large, but for this paper its
introduction is mainly related to the fact that every Galois group will be proved to be
a profinite group of some field extensions, giving us another view of both structures and
properties of Galois groups.

Definition 1.3.1. Let G be a topological group. G is a profinite group if it is the inverse
limit of an inverse system of finite groups, each one equipped with the discrete topology.

Proposition 1.3.2. A topological group is profinite if and only if it is Hausdorff, compact
and totally disconnected

Proof. (⇒) Let (Gi, p
j
i : Gj −→ Gi) be an inverse system of finite groups and G = lim←−Gi.

Thus,

G = {(gi)i ∈
∏

i

Gi: p
j
i (gj) = gi all i ≤ j}

If (xi) /∈ G, say pj0i0 (xj0) ̸= (xi0), then:

G ∩ {(gj)|gj0 = xj0 , gi0 = xi0} = ∅

as the second set is an open neighbourhood of (xi), this shows that G is closed in
∏

i(Gi),
which is compact by Tychonoff’s Theorem (B.0.15), leading to the fact that G is also
compact. Let now consider every map pi, continuous by hypothesis for all i, and let Ui be
its kernel. Such sets are all open and of finite index in G, hence closed, and

⋂

i Ui = {e}.
This implies that a subset of all the clopen sets containing the identity has its intersection
consisting of only {e} hence the quasicomponent of e is {e}. We have just proved that G
is compact and thanks to the Shura-Bura’s Lemma (1.1.7) the connected component of
the identity is precisely {e}. Hence, for homogeneity, G is totally disconnected. Lastly,
since G is the inverse limit of finite groups, from Lemma 1.2.3 and from the fact that all
discrete topological groups are Hausdorff, G is Hausdorff.
(⇐) Now, knowing that G is Hausdorff, totally disconnected and compact, we want to
prove that G is isomorphic to the inverse limit of all quotients, G/N, where N represent
an open normal subgroup. This family of sets is an inverse system made of nonempty
Hausdorff compact sets, hence for Lemma 1.2.3 its inverse limit H is a Hausdorff non-
empty compact set. We can see that the family {G, πN |G→ G/N} of natural projections
is such that there exists a unique morphism ϕ from G → H thanks to the universal
property of the inverse limit. We have to prove that this map is a bijection and continuous.
To prove this statement we study the following commutative diagram where the symbol
N indicates the set of all the normal subgroups of G :

G lim←−N∈N
G/N

∏

N∈N G/N

G/N

∃!φ

πN

ι

pN
π̂N

9



Chapter 1. Topological preliminaries

1. injectivity; By looking at the diagram we can state that given an element g ∈ G
then

g ∈ kerϕ↔ ϕ(g) = 1↔ ∀N ∈ N , π̂N(ι ◦ ϕ(g)) = 1

↔ ∀N ∈ N , pN(ϕ(g)) = 1↔ ∀N ∈ N , πN(g) = 1↔ g ∈
⋂

N∈N

N

but thanks to the hypothesis such intersection is the connected component of the
identity element, meaning that g is the identity element. ϕ is consequentially injec-
tive;

2. continuity; From the fact that G is a topological group and G/N are endowed
with the discrete topology, given a normal open subgroup N, the maps πN and π̂N

are always continuous, thus pN is continuous as well. Thanks to Lemma 1.2.3, we
know that the inverse limit is Hausdorff and compact, and G/N are Hausdorff and
compact as well thanks to the discrete topology, hence the map pN is also closed
(B.0.14) and every closed subset C in lim←−N∈N

G/N , pN(C) is closed in G/N , too.

Finally, thanks to the fact that πN is continuous π−1
N ◦ pN(C) is closed in G. Thus,

ϕ is continuous;

3. surjectivity; Let’s denote with S a directed set that indices all open normal sub-
groups of G and let (gsNs)s∈S be an element of H. Then, by proposition 1.1.2 each N
is a non-empty closed subset of G. Let’s suppose that

⋂

s∈S gsNs =. Then because
G is compact, there is some finite collection s1, ..., sn ∈ S such that

⋂n
i=1 gsiNsi = ∅.

Since the sets N form an inverse system, there must be an element s of S, with
s ≥ s1, ...sn and by definition of inverse limit, we have gsNs ⊂

⋂n
i=1 gsiNsi , but as

shown before the set Ns is non-empty, yielding a contradiction.

Thanks to this we have shown that G is a profinite group.

Remark. This proof hides an interesting trick for generating profinite groups when given a
generic group G. To be precise, when G was a topological group we associated the inverse
limit of G/H where H was running over normal open subgroups, to prove that G was
actually the inverse limit itself. Similarly, if we are given a group G then we can still
compute the inverse limit of G/H, where H runs over all normal subgroups of G and the
result is called the ”profinite completion” of G, written Ĝ.

Remark. The previous observation and the result in the proposition lead us to the fact
that every profinite group G is always isomorphic to the inverse limit of its quotient G/N,
N being a normal open subgroup of G.

It is remarkable that what we proved in Proposition 1.3.2, together with the observa-
tions, is precisely the topological key for the already mentioned correspondence between
Galois groups and profinite groups. That is thanks to the fact that now we know how
to associate profinite groups with generic groups and how strict their topological features
are. Finally, right before exploring the correspondence in detail, we conclude this chapter
with an example of a profinite group that will come back in hand further in the paper:

10



Chapter 1. Topological preliminaries

Example 1.3.3. Let (I, ≤) = (N, ⪯), the set of natural numbers with the ordering
defined by the division operator: x ⪯ y ↔ x divides y.
We then define the following inverse system:

{Z/nZ, ϕmn}, where
ϕmn : Z/nZ Z/mZ

x+ nZ x+mZ

for every m ⪯ n

and call Ẑ its inverse limit. Such set is the profinite completion of Z and in particular:

Ẑ = {(xn)n∈N ∈
∞
∏

n=1

Z/nZ|m ⪯ n =⇒ xn ≡ xmmod m}

We can also easily embed all the integers with the following map:

i : Z Ẑ

x (x+ nZ)n∈N

consequentially showing that Z forms a dense subset of Ẑ, making this last one is topo-
logical closure, but being Z also a cyclic group generated by 1, we can more specifically
say that it is the topological closure of the generator itself.

11



Chapter 2

Fundamental Theorem for Galois
Extensions

We have already stated in the introduction of this paper that the theorem proved by
Galois fails when the finite hypothesis is taken away, but we have yet to give a clear
example of when this happens. Let p be a prime number and Q(ζp∞) =

⋃

n≤1 Q(ζpn)
be the extension of rational numbers over the powers of the primitive pn-th root of the
complex unit. This gives us the following lattice:

Q(ζp∞)

Q(ζp3)

Q(ζp2)

Q(ζp)

According to the finite case, Gal(Q(ζpn)/Q) ∼= (Z/pnZ)× by the morphism σ such that
σ(ζpn) = (ζpn)

an for some integer an mod pn, where GCD(an, p) = 1.
Given an element σ ∈ Q(ζp∞), we get a list of numbers anmod pn in (Z/pnZ)×, which are
not independent of each other. There is in fact a compatibility condition between them
since for every n we have (ζpn+1)p = ζpn . Following from this we can assert that:

σ((ζpn+1)p) = σ(ζpn)⇒ (σ(ζpn+1))p = (ζpn)
an ⇒ ((ζpn+1)an+1)p = (ζpn)

an ⇒ (ζpn)
an+1 = (ζpn)

an

so an+1 ≡ anmod pn. The condition we found can occur in two cases only: when an is an
integer or if an = 1 + p+ ...+ pn−1.

Now that we have a specific construction, we study our counterexample considering

12



Chapter 2. Fundamental Theorem for Galois Extensions

p=2 and denoting with L and Q the sets Q(ζp∞) and Q(ζ2), respectively.

L

Q(ζ8)

Q(i)

Q

For every odd number a ∈ Z let σa be the morphism in Gal(L/Q) such that elevate the
pn-th primitive root to the power of a. In this example we will consider when a = 5, 13 and
we will call H := ⟨σ5⟩ and H ′ := ⟨σ13⟩. First of all, if H = H ′ then the generator for σ13

would be one of the two generators σ±1
5 of H, which would mean that 13 ≡ 5±1mod 2n for

all n but this would also mean that 13=5 or 13= 5−1 which is incorrect. Let’s notice that
this equivalence is not always wrong, for example, if n = 2 we have that 5, 13 ≡ 1mod 4.
Also, since the extension Q(ζ4) is equal to Q(i) and 5,1/5 and 13 are different in Q, we
can say that the element i is fixed by both σ5 and σ13.

In order to understand why this situation really is a counterexample, we have prove
the following lemma:

Lemma 2.0.1. Let a ∈ Z be such that a ≡ 1mod 4 and a ̸≡ 1mod 8 then the subgroup
generated by a in (Z/2nZ)× has index 2 in (Z/2nZ)×, n ∈ N.

Proof. Firstly we observe that the multiplicative group (Z/2nZ)× is composed of only the
element of Z/2nZ such that are coprime with 2n, hence all the odd numbers between 1
and 2n− 1 which are precisely 2n−1. We now have to compute the multiplicative order of
a. To do so, we need some results.

• By induction we prove that for every non-negative integer k, a2
k
≡ 1 mod 2k+2. It

is true for k = 0 by hypothesis. Let’s now assert that a2
k
≡ 1 mod 2k+2 holds, we

prove that the statement is correct also for k + 1. a2
k+1

= (a2
k
)2 ≡ 1 mod 2k+3 if

and only if a2
k
is equivalent to 1,−1, 2k+2+1 or 2k+2−1 mod 2k+3. By hypothesis,

we can assert that a2
k
≡ 1 mod 2k+3 or a2

k
≡ 1 + 2k+2 mod 2k+3.

• We now prove by induction that for every non-negative integer k, a2
k
̸≡ 1 mod 2k+3.

It is true for k = 0 by hypothesis. Let’s now assert that a2
k
̸≡ 1 mod 2k+3 holds,

we prove that the statement is correct also for k + 1. (a2
k
)2 = a2

k+1
̸≡ 1 mod 2k+4

holds if and only if a2
k
̸≡ 1,−1, 1+ 2k+3 or − 1+ 2k+3 mod 2k+4. Consequentially,

the property holds if and only if a2
k
̸≡ 1,−1 mod 2k+3, which is true by hypothesis.

Now, with this in mind, let’s consider k = n− 2, n ≥ 3. Then a2
n−2
≡ 1 mod 2n and we

prove that 2n−2 = |a|. Let now 1 ≤ l < n− 2 be a positive integer such that a2
n−2−l

≡ 1
mod 2n and observe that n − l + 1 < n, since 1 ≤ l. Now, we observe that a2

n−2−l
≡ 1

13



Chapter 2. Fundamental Theorem for Galois Extensions

mod 2n ⇒ a2
n−2−l

≡ 1 mod 2n−1+l, and if we define the following integer k := n − l − 2
we have that a2

k
≡ 1 mod 2k+3, which has been proven wrong. Finally, we have that ⟨a

mod 2n⟩ has index 2n−1/2n−2 = 2.

Furthermore, we can notice that the relation between 5 and 13 actually holds for every
positive integer n bigger than 2, and so ⟨5mod 2n⟩ = ⟨13mod 2n⟩ and since neither of
them is equivalent to 1mod 8, they both have index 2 in (Z/2nZ)×. This index means
that despite the integer n the fixed field will always be Q(i) because it has degree 2 over
Q. But this also means that LH = Q(i) = L′

H . So we have found a situation where even
if two subgroups are different, H,H ′, the Galois correspondence still gives us the same
exact intermediate field.

This example was described by R. Dedekind in 1901 and it clearly proves that if
given an infinite algebraic extension, which is still separable and normal, it does not
follow the Fundamental Theorem of Galois theory, which is why we have been calling it
”Fundamental Theorem of Finite Galois Theory” since then. The Galois correspondence,
so powerful in the finite case, needs to be fixed for the infinite case, and the idea to solve
this issue was given by W. Krull.

2.1 The Krull Topology

Recall that in order to define a Galois extension three specific characteristics are required:
given Ω/F an algebraic field extension, it is said to beGalois if finite, normal and separable
(Definition A.2.3), implying that for every irreducible polynomial f ∈ F[X] that has a
root in Ω, it also has degf distinct roots in Ω. What we want to do is to get rid of the
finiteness hypothesis, while still preserving all the results already proven for the finite
case. To do so, from now on we will consider the property of being a ”Galois extension”
as follows:

Definition 2.1.1. Let Ω/F be an algebraic extension, then Ω is said to be Galois over
F if Ω/F is a normal and separable field extension of F.

Proposition 2.1.2. If Ω is Galois over F, then it is Galois over every intermediate field
M.

Proof. Let f(x) be an irreducible polynomial in M[X] having a root α in Ω. The minimal
polynomial g(x) of α over F splits into distinct factors of degree one in Ω[X]. As f divides
g (in M[X]), it also split into distinct factors of degree one in Ω[X].

Proposition 2.1.3. Let Ω be a Galois extension over F and let E be a subfield of Ω
containing F. Then every F-homomorphism between E and Ω can be extended to an F-
isomorphism in Ω.

Proof. The proof that an F -homomorphism between E and Ω extends to a homomorphism
α : Ω → Ω can be found in the [[6], p.90]. Let’s now consider a ∈ Ω, and f its minimal
polynomial over F. Then Ω contains exactly deg(f) roots of f, and so therefore does
α(Ω) ⊂ Ω. Hence a ∈ α(Ω), which shows that α is surjective.

14
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Corollary 2.1.4. Let F ⊂ E ⊂ Ω be as in Proposition 2.1.3. If E is stable under
Aut(Ω/F ) then E is Galois over F.

Proof. Let f(x) be an irreducible polynomial in F[X] having a root a ∈ E. Because Ω is
Galois over F, f has n := deg(f) distinct root a1, ..., an ∈ Ω. There is an F -isomorphism
F(a)→F (ai) ⊂ Ω sending a to ai, which extends to an F -isomorphism Ω → Ω. As E is
stable under Aut(Ω/F ), this shows that ai ∈ E ∀i.

Let Ω be a Galois extension of F, and let G := Aut(Ω/F ). We consider, for every
finite subset S of Ω the following set:

G(S) = {σ ∈ G|σs= s for all s ∈ S}

and with the family of sets {G(S)}S⊂Ω finite we want to induce a topology over the group
Aut(Ω/F ). For this, we prove the following proposition:

Proposition 2.1.5. There is a unique structure of a topological group on G for which
the sets G(S) form an open neighbourhood base of the identity. For this topology, the
sets G(S) with S being stable under G action, form a neighbourhood base of the identity
consisting of open normal subgroups.

Proof. We show that the first four conditions of Proposition 1.1.3 are satisfied by the
G(S) sets collection.
(1) is satisfied because G(S1) ∩G(S2) = G(S1 ∪ S2);
(2) and (3) are satisfied because each set G(S) is a group;
Let now S be a finite subset of Ω. Then F(S) is a finite extension of F, and so there
are only finitely many F -homomorphisms between F(S) → Ω (A.3.2). Since σS = τS if
σ|F (S) = τ|F (S), this shows that S =

⋃

σ∈G σS is finite. Now, σS = S for all σ ∈ G, and it

follows that G(S) is normal in G. Therefore, σG(S)σ−1 ⊂ G(S), which proves (4). This
also proves the second statement.

Therefore, if S is a finite set stable under G, then F(S) is a finite extension of F stable
under G and hence Galois over F. The following set is consequentially a neighbourhood
base of the identity consisting of open normal subgroups:

{Gal(Ω/E)| E finite and Galois over F}

This observation also leads us to the following proposition:

Proposition 2.1.6. Let Ω be Galois over F. For every intermediate field E finite and
Galois over F, the map:

ϕE : Gal(Ω/F ) Gal(E/F )

σ σ|E

is a continuous surjection (Gal(E/F ) embedded with the discrete topology)

15
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Proof. Let σ ∈ Gal(E/F ) and regard it as an F -homomorphism between E and Ω. Then
σ can be extended as an F -automorphism in Ω thanks to the Proposition 2.1.3, which
shows that the map ϕE is a surjection. For every finite set S of generators of E over
F, Gal(Ω/E) = G(S), which shows that the inverse image of 1Gal(E/F ) is open in G. By
homogeneity, the same is true for every element of Gal(E/F ).

The topology obtained on Aut(Ω/F ) by this proposition is called Krull topology and
the group Aut(Ω/F ) endowed with this said topology is called Galois group of Ω/F,
denoted with Gal(Ω/F ).

Remark. When given a Galois group Gal(Ω/F ) endowed with the Krull Topology, where
all the open sets are all related to intermediate finite Galois extension, it is easy to see
that any intermediate subfield of Ω containing F is Galois if and only if it is the union of
finite Galois extensions of F .

Proposition 2.1.7. The Galois group G of a Galois extension Ω/F is Hausdorff, compact
and totally disconnected.

Proof. We first show that G is Hausdorff. If σ ̸= τ ⇒ σ−1τ ̸= 1G, and so it moves some
element of Ω, i.e. there exists an a ∈ Ω such that σ(a) ̸= τ(a). For every S containing
a, σG(S) and τG(S) are disjoint subgroups because their elements act differently on a.
Hence they are disjoint open subsets of G containing σ and τ respectively

We now show that G is compact. As we noted above, if S is a finite set in Ω stable
under G, then G(S) is a normal subgroup of G, and it has finite index because it is the
kernel of the immersion of G inside Sym(S ), which is specifically the group of all different
permutation of the elements of S which has cardinality |S|!. Given an arbitrary element
α ∈ Ω we observe that it is first of all algebraic over F and secondly it is such that the set
{σ(α)}σ∈G, called orbit, is composed only by the roots of its minimal polynomial, which
come in finite number thanks to Ruffini’s Theorem. This tells us that every finite set is
contained in a stable finite set and the following map is consequentially injective:

G→
∏

S finite stable under G

G/G(S)

Notice that if we endow
∏

S G/G(S) with the product topology, the induced topology
on G is that for which the G(S) form an open neighbourhood base of the identity, i.e.
the Krull topology. Now, according to Tychonoff’s Theorem,

∏

S G/G(S) is compact,
and so it remains to show that G is closed in the product. For each S1 ⊂ S2, there
are two continuous maps

∏

S G/G(S) → G/G(Si), for i = 1, 2, namely, the natural
projections. This is followed by the quotient map G/G(S1) → G/G(S2). Let E(S1, S2)
be the closed subset of

∏

S G/G(S) on which the two maps agree. Then
⋂

S1⊂S2
E(S1, S2)

is closed and equals the image of G. Finally, for each finite set S stable under G, G(S)
is a subgroup that is open and hence closed. Basically, it is a family of clopen sets in G.
Since

⋂

S finite stable under G
G(S) = {1G}. Thanks to the already proven compactness and

Lemma 1.1.7 this shows that the connected component of G containing 1G is {1G} itself.
By homogeneity, G is totally disconnected.
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Proposition 2.1.8. Let G be a group of automorphisms of a field E, and let F = EG

(definition at Theorem A.4.4). If G is compact and the stabilizer of each element of E is
open in G, then E is a Galois extension of F with Galois group G

Proof. Let x1, x2, ..., xn be a finite set of elements of E, and let Hi be the open subgroup
of G fixing xi. Because G is compact, the set Gxi : {σ(xi)}σ∈G of xi is finite, and the
subgroups of G fixing its elements are the conjugates of H. Let N be the intersection of
all the subgroups of Hi. It is an open normal subgroup of xi. Thus, G/N is a (finite)
group of automorphisms of M with fixed field F. According to Artin’s Theorem (A.4.4),
M is a finite Galois extension of F with Galois group G/N . As E is a directed union of
such fields M, it is a Galois extension of F. Thus, Gal(E/F ) is defined and by assumption
G maps itself continuously and injectively into it. Such image is also closed thanks to
G compactness and it is dense because it maps onto all the group Gal(M/F ). Thus,
G→ Gal(E/F ) is an isomorphism.

Proposition 2.1.9. For every Galois extension Ω/F , ΩGal(Ω/F ) = F .

Proof. Every element of Ω/F lies in a finite Galois extension of F, and so this follows
from the surjectivity proven in Proposition 2.1.6.

Remark. Following from this proposition and Proposition 1.3.2 we can assert that every
Galois group of a Galois extension is indeed a profinite group. The vice versa also holds
as every profinite group is the Galois group of some field extension:

Proof. Let G be a profinite group and let S be the disjoint union of the sets G/H,
given the open subgroup H ⊂ G. Then G acts faithfully on S, i.e. give g ∈ G if
g(s) = s, ∀s ∈ S ⇒ g = 1G, and the stabilizer of each element of S is open in G. Let K
be a field and K(S)=:E be the field of fractions of K[S], the polynomial ring over K in
the elements of S. Then, G acts faithfully on E through its action on S and the stabilizer
of each element in E is consequentially open in G. According to Proposition 2.1.8, E is
Galois over F := EG with Galois group G.

2.2 The Fundamental Theorem

Proposition 2.2.1. Let Ω/F be a Galois extension and G its Galois group. Let’s define
for every subgroup H of G the following set ΩH := {α ∈ Ω|σα = α, ∀σ ∈ H}, then:

1. If M is a subfield of Ω containing F, then Ω is Galois over M, the Galois group
Gal(Ω/M) is closed in G and ΩGal(Ω/M) = M ;

2. For every subgroup H ⊂ G,Gal(Ω/ΩH) is the closure of H.

Proof. 1. The first assertion was proved in 2.1.2. For each finite subset S ⊂ M , G(S)
is an open subgroup of G, hence closed. Also, Gal(Ω/M)=

⋂

S⊂M G(S) is closed as well.
The final statement follows from 2.1.9.
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2. Since Gal(Ω/ΩH) is a closed set containing H, it certainly contains H ’s closure H.
Let’s now consider σ ∈ G/H and we show that σ moves some element of ΩH . Because σ
is not in H ’s closure:

σ(Gal(Ω/E)) ∩H = ∅

for some finite Galois extension E of F in Ω (because the sets Gal(Ω/E)) form a neigh-
bourhood of the identity). Let Φ denote the surjective map Gal(Ω/E) → Gal(F/E).
Then σ|E /∈ Φ(H) and so σ moves some element of EΦ(H) ⊂ ΩH .

Now that all the preparations have been made we are finally ready to prove the mile-
stone of the infinite Galois Theory:

Theorem 2.2.2. (Fundamental Theorem of Galois Theory) Let Ω be a Galois extension
of F with Galois group G. Then the maps:

ΩH ←− H

M −→ Gal(Ω/M)

are inverse bijections between the set of closed subgroups of G and the set of intermediate
fields between Ω and F:

{H ⊂ G|H closed in G} ←→ {M |F ≤M ≤ Ω,M subfield}

Moreover,

1. H2 ⊂ H1 ⇐⇒ ΩH1 ⊂ ΩH2 Meaning that the found correspondence is order reversing.

2. A closed subgroup H of G is open if and only if ΩH has finite degree over F. In this
case: (G : H) = [ΩH : F ]

3. For every σ ∈ G, σHσ−1 ↔ σM , i.e.

ΩσHσ−1 = σ(ΩH);

Gal(Ω/σM) = σGal(Ω/M)σ−1

4. A closed subgroup H of G is normal if only if ΩH is Galois over F, in which case:

Gal(ΩH/F ) ≡ G/H

Proof. For the first statement, we have to show that the two defined functions are in-
deed inverse maps. Let H be a closed subgroup of G. Then Ω is Galois over ΩH and
Gal(Ω/ΩH) = H (see 2.2.1) Let M be an intermediate field, then Gal(Ω/M) is a closed
subgroup of G and ΩGal(Ω/M) = M (See 2.2.1)

1. We have the following obvious implications:

H1 ⊃ H2 ⇒ ΩH1 ⊂ ΩH2 ⇒ Gal(Ω/ΩH1) ⊃ Gal(Ω/ΩH2)

As Gal(Ω/ΩHi
) = Hi, this proves the first statement.
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2. Let H be an open subgroup of G. Since G is a topological compact group, H is also
closed and must have finite index (G : H). The map σ 7→ σ|ΩH

defines a bijection
between G/H and HomF (ΩH ,Ω) from which the statement follows (2.1.3).

3. For τ ∈ G and α ∈ Ω, τα = α↔ στσ−1(σα) = σα.
Therefore, Gal(Ω/σM) = σGal(Ω/σM)σ−1, and so σHσ−1 ↔ σM .

4. Let H ↔ M . It follows from the previous point that H is normal if and only if
M is stable under the action of G. But M is stable under the action of G if and
only if it is a union of finite extension of F all of them stable under G. We have
already observed that an extension is Galois if and only if it is a union of finite
Galois extensions (remarked in section 2.1). Hence, H is normal if and only if M is
Galois over F .

2.3 Galois groups as profinite groups

We have already proven that Galois Groups and profinite groups are two sides of the same
coin: it is always possible to associate a Galois extension with a given profinite group and
conversely, a Galois group is always a profinite group thanks to its topological properties.
We could assert that in order to build a Galois Group of an infinite extension we could just
use what we have proven in the Proposition 1.3.2. Right after the proof we observed that
when given a group G it is possible to compute the inverse limit of the quotient classes
G/N, running over the normal subgroups, and when G was in fact a topological group,
the result was that such inverse limit was isomorphic to G itself. Besides how interesting
and curious this strategy is, it is not the most efficient when trying to compute the Galois
group for an infinite extension.

Galois groups are in fact a little special and for them there exists a more practical
inverse limit. What we are going to prove is that Gal(Ω/F ) ≃ lim←−E/F finite Galois

Gal(E/F )

Let Ω/F be a Galois extension of a field F. The composite of two finite Galois exten-
sions in Ω is again a Galois extension (follows from Proposition A.4.6), and so if sorted
by inclusion, all the intermediate finite Galois extensions in Ω/F form a directed set I.
More specifically given two fields F ≤ E,E ′ ≤ Ω we say that E ≺ E ′ ↔ E ⊂ E ′ and also
we can consider the restriction morphism

pE
′

E : Gal(E ′/F )→ Gal(E/F )

We have consequentially obtained an inverse system (Gal(E/F ), pE
′

E ). Alongside, we also
have the couple (Gal(Ω/F ), pE) where pE represent the family of restriction homomor-
phisms pE : Gal(Ω/F )→ Gal(E/F ). This way, thanks to the universal property of inverse
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limits we can define a homomorphism:.

Φ: Gal(Ω/F ) lim←−E/F finite Galois
Gal(E/F )

σ (σ|Gal(E/F )){E|E/F finite Galois}

This specific map is also an isomorphism of topological groups.

• Let σ ∈ ker(Φ), then σ|Gal(E/F ) = idE for every finite Galois extension of F. Since
Ω =

⋃

E, σ ≡ idΩ. Φ is injective;

• Let now (σE) ∈ lim←−Gal(E/F ), withσE ∈ Gal(E/F ). Then we define σ : Ω → Ω
such that σ|E ≡ σE. σ is well-defined. Let E,E’ be finite Galois extensions, then
E ∩ E ′ is also a finite Galois extension.

pEE∩E′(σE) = σE∩E′

pEE∩E′(σE′) = σE∩E′

thus σE and σE′ agree on E ∩ E ′. By construction, σ|E = σE. Φ is surjective;

• Since we are working with topological groups we prove that Φ is also continuous.
Let’s consider the directed set I obtained from ordering all the finite Galois sub-
extension of Ω/F and then the following topology for

∏

i∈I Gal(Li/F ):

(gi) ◦ (
∏

i ̸=i1,...,in

Gal(Ei/F )×
n
∏

j=1

(idLij
))

con (gi) ∈
∏

i∈I Gal(Ei/F ). Let’s define the following labels:

– H := lim←−Gal(E/F )

– K :=
∏

i ̸=i1,...,in
Gal(Ei/F )×

∏n
j=1(idLij

)

– x := (gi)

By definition, (xK) ∩ H ̸= ∅. Thus, there exist y ∈ H, k ∈ K such that y =
xk. Meaning that yK = xK ⇒ (yK) ∩ H = y(K ∩ H). We have to prove that
Φ−1(y(K ∩H)) = Φ−1(y)Φ−1(K ∩H) is open in Gal(Ω/F ) for every y ∈ H. This is
true because Φ−1(K∩H) = Gal(Ω/Li1)∩...∩Gal(Ω/Lin) which is open in Gal(Ω/F ).

• Lastly, we prove that Φ is open. We show specifically that: Φ(Gal(Ω/Ls)) =
{(σLi

) ∈ lim←−Gal(Li/F )|σLs = idLs} =: T

It is clear that for every σ ∈ Gal(Ω/Ls)⇒ Φ(σ) ∈ T . Let’s now consider (σLi
) ∈ T

and σ = Φ−1((σLi
)) such that σ ∈ Gal(Ω/Ls) since σ|Ls = σLs = idLs . T is

open in lim←−Gal(Li/F ) since T = lim←−Gal(Li/F ∩ (
∏

i ̸=s Gal(Li/F ) × idLs). Thus,
Φ(Gal(Ω/Li)) is open for every i ∈ I. Thanks to the fact that Φ is a homomorphism
we can assert that Φ is such that Φ(aGal(Ω/Li)) = Φ(a)Φ(Gal(Ω/Li)) are all open.
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Chapter 3

The Absolute Galois Group

In this final chapter, we will examine a classic example of an infinite Galois extension
of two specific fundamental fields: the first one is the well-known family of finite fields,
while the second one is the intricate p-adic numbers field. From the very beginning, these
two fields might look unrelated, but this will likely change. What we plan to do in this
chapter is to fully compute the Galois group for a specific kind of infinite extension.

Definition 3.0.1. Let F be a field, then F is said to be algebraically closed if every
polynomial f ∈ F [x] splits in F.

Definition 3.0.2. Let Ω/F be a field extension, then it is called an algebraic closure of
F if:

1. Ω/F is algebraic

2. Ω is algebraically closed

The property of being algebraically closed might sometimes be too strong, so we want
to work with something weaker:

Definition 3.0.3. Given a field Ω, it is said to be separably closed if every separable
polynomial in Ω[X] splits in Ω. Similarly to the algebraic closure, we say that when
given a field extension Ω/F , Ω is a separable closure of F if it is algebraic, separable and
separably closed.

When given a certain field, however, just like the algebraic closure, the separable
closure is unique up to isomorphism. Hence, we give the following definition:

Definition 3.0.4. Let F be a field, and F an algebraic closure of F. We define the
following set:

Fs = {x ∈ F |x is separable over F}

Fs is called the separable closure of F
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Proposition 3.0.5. Let E be a separable closure for a field F, then E is equal to Fs.

Proof. By definition, E is a separable extension, hence every element in E must also be in
Fs. On the other hand, given an element α ∈ Fs then its minimum polynomial fα ∈ F [X]
is separable, but since F [X] ⊂ E[X], fα is also separable in E[X]. Since E is separably
closed then α ∈ E ⇒ Fs ⊂ E.

It is not hard to see that Fs/F is indeed a Galois extension. It’s trivially separable
and also normal. This is because when given an irreducible polynomial f ∈ F [X] that
has a root α ∈ Fs, then α’s minimum polynomial fα is separable and fα|f ⇒ fα = f
meaning that every root of f is the root of a separable polynomial, hence, they are all
contained in Fs.

Proposition 3.0.6. Let F be a field and Fs the separable closure defined over an algebraic
closure F . Then F = Fs if and only if the field F is perfect.

Proof. (⇐) If F is perfect, every irreducible polynomial in F[x] is then separable. Hence,
if α ∈ F , let fα ∈ F [x] be its minimum polynomial it is separable by hypothesis.

⇒ α ∈ Fs ⇒ F ⊂ Fs

meaning that they are equal.
(⇒) Let f ∈ F [x] be an irreducible polynomial and α ∈ F one of its roots. By hypothesis,
α ∈ Fs, hence its minimum polynomial pα is separable, hence pα|f . But since f was
irreducible by hypothesis, f = pα, so f is separable.

Since the absolute Galois Groups that will be studied later on are both built over two
perfect fields, we will give a brief example of a non-perfect field.

Example 3.0.7. Let Fp be the finite field of characteristic p, prime integer, and t a
transcendental element over F. We prove that the transcendental extension Fp(t) is non-
perfect. Let’s consider the polynomial f(x) := xp − t ∈ Fp(T )[X]

1. f is irreducible thanks to Eisenstein’s Criterion (the general one for UFDs). In fact,
t is first of all prime in Fp(T ), the polynomial is monic and the last coefficient is t
itself, hence t2 does not divide it.

2. f is totally inseparable. In an extension were α is a root for f then since the
fundamental field has characteristic p, f(x) = (x− α)p

So in this case, Fp(T ) ⊂ Fp(T )s ⊂ Fp(T ). Specifically, we have that the algebraic extension
associated with the polynomial xp − t is called purely inseparable. The first variation of
Galois theory for some purely inseparable extensions was proposed in the 1940s and was
updated during the 1970s. Despite their interest, such results are way too far from this
paper’s objective and so we are satisfied with just a practical example of a non-perfect
field.

22



Chapter 3. The Absolute Galois Group

3.1 The Absolute Galois group of finite fields

Let p be a prime number and F = Fp be the finite field of order p. We already know that
any finite Galois extension of Fp of order m is Fp-isomorphic to the extension Fpm/Fp and
it is specifically the splitting field of the polynomial xpm − x. Now, the Galois groups as-
sociated with an arbitrary extension Fpm/Fp is generated by the Frobenius automorphism,
which is defined as

σ : Fpm Fpm

α αp

Furthermore, there is an isomorphism such that Gal(Fp/Fp) ≃ Z/mZ.
It follows from this that given a generic extension of the form Fpm/Fp, all the possible

intermediate extensions are all Galois and of the form Fpn/Fp where n|m. Consequentially
we have the two following anti-isomorphic diagrams:

Fpm ⟨σ⟩ ≃ Z/mZ

Fpn ⟨σ⟩/⟨σn⟩ ≃ Z/(m/n)Z

Fp {1}

Thanks to this remark we know the entire structure of the lattice beneath the separable
closure of a finite field of prime order p, but more importantly, we know that all the possible
finite extensions are Galois. By what we have proven in Chapter 2 we have that the set of
all normal subgroups of the Galois group is an inverse system when the morphism is the
restriction map between the quotient groups. In this case the restriction map between
the Galois groups of two extensions Fpn/Fp ⊂ Fpm/Fp, where n|m, sends the Frobenius
automorphism to itself meaning that such restriction map

Φnm : Gal(Fpm/Fp) Gal(Fpn/Fp)

τ τ|Gal(Fpn/Fp)

is the analogue of the reduction map mod n between Z/mZ and Z/nZ. This implies
that the inverse system defined by the normal subgroup of the absolute Galois group is
precisely the same defined in the example 1.3.3. As proven in Chapter 2, we know that
the Absolute Galois group GFp we are looking for is the profinite group obtained as the
inverse limit of all finite Galois extensions of Fp contained in its separable closure. Thanks
to the observations we just made all the possible Galois extensions are Fpn , n ∈ N, hence:

GFp = lim←−
K/Fp finite Galois

Gal(K/Fp) = lim←−
n

Z/nZ = Ẑ

Remark. The choice of p does not affect the result we just found. Meaning that regard-
less of which prime we use to define the finite field all the Absolute Galois groups are
isomorphic to Ẑ.
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3.2 The Absolute Galois group of Qp

The field of p-adic numbers was first described in 1897 by Kurt Hensel and since then they
have been constantly studied because of their topological, metric and modular properties.
The goal of this section is to study the basic properties of the set of p-adic numbers as
well as its extensions in order to compute the Absolute Galois group, which is a process
that is far from being trivial.

3.2.1 Discrete Valuation Rings & Absolute Values

Here below we will first introduce the analytic preliminaries and later on, the algebraic
ones required for both the definition of Qp and the study of p-adic extensions through a
metric and an algebraic meaning.

Absolute values

Definition 3.2.1. Let F be a field.

1. An absolute value (also called norm) is a map, denoted ∥·∥, from F to non-negative
real numbers such that:

(a) ∥x∥ = 0↔ x = 0

(b) ∥xy∥ = ∥x∥∥y∥

(c) ∥x+ y∥ ≤ ∥x∥+ ∥y∥

Regarding the last condition, a norm ∥·∥ on a field F is said to be non-Archimedean
if the property ∥x + y∥ ≤ max(∥x∥, ∥y∥) always holds. Otherwise, it is called
Archimedean.

2. The metric induced by a norm ∥·∥ is defined as d(x, y) := ∥x− y∥

Example 3.2.2. Just to give a practical example, the usual norm on real numbers is
Archimedean. We find a couple of numbers x, y ∈ R such that |x + y| > max(|x|, |y|).
Such numbers are for example, |1/2 + 1/3| = |5/6| = 5/6 > max(|1/2|, |1/3|) = 1/2.

Definition 3.2.3. Let ∥·∥1, ∥·∥2 be non-trivial absolute values of a field F. Then we say
that they are equivalent if they induce the same topology on F. An equivalence class of
absolute values on F is called a place.

A final, but fundamental aspect is the following:

Definition 3.2.4. Given a field F and an absolute value | · |, we say that F is complete,
with respect to | · |, if every | · |-Cauchy sequence converges in F in the metric induced by
| · |. If a field (F, | · |) is not complete then it can undergo the process of completion which
is a process that adds to F every possible limit of every possible | · |-Cauchy sequence
of elements in F by defining equivalence classes of sequences that are equivalent if and
only if they have the same limit, i.e. given two sequences {xn}n∈N ∼ {yn}n∈N, they are
equivalent if limn→∞ |xn − yn| = 0.
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Remark. The relation introduced in the previous definition is indeed an equivalence re-
lation. Let’s consider the | · |-Cauchy sequences {ai}i∈N, {bi}i∈N, {ci}i∈N

• |ai − ai| = 0⇒ limi→∞ |ai − ai| = 0

• If {ai}i∈N ∼ {bi}i∈N, then |bi − ai| = |ai − bi| →i→∞ 0⇒ {bi}i∈N ∼ {ai}i∈N

• Given {ai}i∈N ∼ {bi}i∈N, {bi}i∈N ∼ {ci}i∈N, then

|ai − ci| = |ai − bi + bi − ci| ≤ |ai − bi|+ |bi − ci| →i→∞ 0

hence {ai}i∈N ∼ {ci}i∈N

Discrete Valuation Rings & Valuations

In order to associate the metric preliminaries to an algebraic point of view we will need to
briefly recall some basic algebraic concepts. A non-empty set R with two binary operations
+, ·, called respectively addition and multiplication, is called a ring, if (R,+) is an abelian
group and if the multiplication · is associative, with an identity element and distributive
with respect to addition. Since the family of rings is quite wide, from now on we will
work specifically with a family of rings called commutative integral domains, which are
such that the multiplication is commutative and the product of two nonzero elements is
nonzero.

Definition 3.2.5. A subset I of a ring R is called an ideal if (I,+) is a subgroup of
(R,+) and if it is such that for every choice of elements i ∈ I, s ∈ R, then i · s ∈ I.

An ideal I ⊂ R is proper if I ̸= R and it is a maximal ideal if proper and not
contained in a larger proper ideal. An arbitrary ring R is consequentially called local if it
has a unique maximal ideal m.

Lemma 3.2.6. 1. If R is a local ring, then its maximal ideal is m = R/R×;

2. If R/R× is an ideal, it is maximal and R is a local ring.

Proof. Let’s first note that every proper ideal I ⊂ R is also a subset for R/R×. If there
exists an element x ∈ R× ∩ I, then xR ⊂ I ⇒ I = R, contradicting properness.

1. Suppose R local. It is known that m ⊂ R/R×. If m ̸= R/R×, then there exists
y ∈ R/R× such that y /∈ m. But then y must be contained in a maximal ideal m′

not equal to m, which leads to a contradiction.

2. By the above arguments R/R× must be maximal. Moreover, it also contains any
proper ideal of R, so it must be the unique maximal ideal. Hence, R is local.
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Definition 3.2.7. A ring R is a discrete valuation ring (DVR), if:

1. R is a local ring, and

2. R is a PID (Principal Ideal Domain), and

3. R is not a field.

Definition 3.2.8. If R is a DVR, then its unique maximal ideal m is principal and any
generator of m is called a uniformiser. Such uniformiser is usually labeled with π.

Proposition 3.2.9 ([9], p. 40-41). Let R be a DVR with uniformiser π. Let F = Frac(R)
(fraction field of R), then every element in F can be written uniquely in the form x = uπr

where u ∈ R×, r ∈ Z.

The reason why we defined both the DVRs in the first place and the uniformiser it is
because they are deeply connected with a family of field functions:

Definition 3.2.10. A valuation on a field F is a function

v : F× → R

such that for all x, y ∈ F×:

1. v(xy) = v(x) + v(y)

2. v(x+ y) ≤ min(v(x), v(y))

Remark. Following from the definition, we can easily prove that v(1) = 0 and v(x) =
−v(x−1). In fact, v(1) = v(1 · 1) = v(1) + v(1) = 2v(1). Hence, since we are working
integral domains, v(1) = 0. Following from this, 0 = v(1) = v(x · x−1) = v(x) + v(x−1).

It is important to notice that a valuation is not always a surjection, for instance, the
valuation’s codomain could be Z instead of R, the first one being a discrete set and the
second one not. Such situations are not uncommon and for this, we give the following
classification:

Definition 3.2.11. Given a field F and a valuation v then v is a discrete valuation if
the subset v(F×) ⊂ R is discrete. In particular, if v(F×) = Z then it is also said to be
normalized.

Definition 3.2.12. If v is a valuation on a field F, with the associated absolute value
| · |, we define:

1. O := {x ∈ F ||x| ≤ 1} = {x ∈ F |v(x) ≥ 0}, the valuation ring ;

2. m := {x ∈ F ||x| < 1} = {x ∈ F |v(x) > 0}, the maximal ideal ;

3. k := O/m, the residue field.

Now, with the definition of a discrete valuation, it is possible to explain their correla-
tion with DVRs.
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Lemma 3.2.13. If F is a field with a non-trivial discrete valuation v, then its valuation
ring O is a DVR. Conversely, if R is a DVR, then there exists a unique normalized
discrete valuation v on Frac(R) such that R is its valuation ring.

Proof. We must prove that O respects the conditions in Definition 3.2.7.

1. Note that m = O/O× and it is an ideal. Hence, thanks to Lemma 3.2.6, O is local;

2. Let I ⊂ O be a non-zero ideal. Let a ∈ I such that v(a) = min{v(x)|x ∈ I} ⊂ R≥0.
Since v is discrete, this minimum is always attained. Now, if x ∈ I, then v(x) ≥ v(a),
so xO ⊂ aO ⇒ I ⊂ aO, but it is also true that aO ⊂ I, hence, I = aO;

3. Since v is non-trivial, there exists an element x ∈ O such that v(x) ̸= 0⇒ v(x) /∈ O.
Hence, O is not a field.

Conversely, let π be a uniformiser in F, consequentially every x ∈ F× can be written
uniquely as x = uπr. We define

v : F× Z

uπr r

Note that v(x) ≥ 0↔ r ≥ 0↔ r ∈ R, so R = O.

Finally, the most important result that put together valuations and the previously
introduced absolute values is the following:

Lemma 3.2.14. Let 0 < a < 1 be a fixed real number.

1. If v is a valuation over a field F, then the function

| · |v : F R≥0

x av(x)

is a non-Archimedean absolute value on F. We use the convention that for x = 0
the valuation is equal to ∞.

2. If | · | is a non-Archimedean absolute value on F, then the function

v|·| : F
× R

x loga |x|

is a valuation on F.

Proof. To prove both facts it is only necessary to show that the definitions for a valuation
and an absolute value hold for v and | · | respectively.
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1. Let’s fix x, y ∈ F .

• |x|v = 0↔ av(x) = 0. If v(x) ∈ R this is not possible, hence x = 0.

• |xy|v = av(xy) = av(x)+v(y) = av(x)av(y) = |x|v|y|v

• |x + y|v = |av(x+y)|. By definition we have that v(x + y) ≥ min(v(x), v(y)),
so av(x+y) ≤ amin(v(x),v(y)) since f(x) = ax, a ∈ (0, 1) is monotonically non-
increasing. Hence, |x+y|v ≤ max(|x|v, |y|v) ≤ |x|v+ |y|v. Thanks to this chain
of inequalities we have also proved that | · |v is non-Archimedean.

2. Let’s fix x, y ∈ F×.

• v|·|(xy) = loga(|xy|) = loga(|x||y|) = loga(|x|) + loga(|y|) = v|·|(x) + v|·|(y)

• v|·|(x + y) = loga(|x + y|). Since | · | is non-Archimedean and loga(·) is mono-
tonically non-increasing:

v|·|(x+ y) ≥ loga(max(|x|, |y|)) = min(loga(|x|), loga(|y|)) = min(v|·|(x), v|·|(y))

Not only this lemma explicitly tells us how to associate a valuation with an abso-
lute value and vice versa, but it also shows that all such obtainable norms are non-
Archimedean.

3.2.2 The p-adic numbers

The set of p-adic numbers is related to rational numbers and in order to properly define
it, we will need to focus on a specific norm:

Proposition 3.2.15. Let p be any prime number, then the following map:

|x|p =

{

1/pordp x if x ̸= 0

0 otherwise
(3.1)

where ordp x is the highest power of p which divides x, is a norm on Q, called p-adic norm

Proof. We prove that every property in Definition 3.2.1 holds for | · |p.

• If x = 0 ⇒ |x|p = 0 by definition. Conversely, if |x|p = 0 it is not possible that
x ̸= 0, because otherwise x would be such that 1/pordp x = 0 which is impossible;

• Let’s consider x, y ∈ Q/{0}, then they can both be written as x = pordp(x)ax/bx and
y = pordp(y)ay/by, where ax, bx, ay, by are not divided by p. Then:

xy = pordp(x)+ordp(y)(axay)/(bxby)

⇒ |xy|p = 1/pordp(xy) = 1/pordp(x)+ordp(y) = 1/pordp(x)1/pordp(y) = |x|p|y|p.

If at least one between x, y is equal to 0, then the property trivially holds;
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• Let’s consider x, y ∈ Q/{0} and use the notation introduced in the previous point.
Let’s suppose that ordp(x) ≤ ordp(y), then

|x+ y|p = |p
ordp(x)ax/bx + pordp(y)ay/by|p = |p

ordp(x)(ax/bx + pordp(y)−ordp(x)ay/by)|p

By hypothesis, ax, bx are not divided by p, hence,

|x+ y|p ≤ 1/pordp(x) ≤ 1/pordp(x) + 1/pordp(y) = |x|p + |y|p

If at least one between x, y is equal to 0, then the property trivially holds;

Remark. What is interesting and fundamental about this norm, is that | · |p is non-
Archimedean. The reason for this is explicit in the proof of the previous proposition when
the property of subadditivity was being proven.

Now, a quite renowned result of measure theory tells us that every non-trivial norm
over real numbers is equivalent to one another, hence the only place for non-trivial norms
has the Euclidian one as a representative. Does this also apply to rational numbers? The
answer is no, but it is not so far from reality.

Theorem 3.2.16. (Ostrowski) [[9], p. 28-30] Any non-trivial absolute value | · | on Q is
equivalent to either the standard norm | · | or | · |p for a prime p. Moreover, the completion
of a number field F with respect to an Archimedean absolute value | · | is always isomorphic
to R or C as topological fields.

This means that when working with rational numbers absolute values are really limited
and this limitation is the reason why p-adic numbers are such a powerful resource in
algebra even if we will have only a small taste of such power. With this in mind, we now
properly build the p-adic numbers.

The construction of Qp

From now on p will be considered as a fixed finite prime number.
What’s the idea behind p-adic numbers? By recalling Theorem 3.2.16 we can see that

when a field is completed with respect to an Archimedean norm, the resulting field is
isomorphic to real numbers or complex numbers, but for what concerns rational numbers,
the process of completion, if done with respect to the usual norm | · |, precisely results
in obtaining the set of real numbers. We might want to see what could happen if the
completion was made with respect to a non-Archimedean norm and since we already know
an example of such a norm we define the following set:

Definition 3.2.17. The set of p-adic numbers Qp is the completion of Q with respect to
| · |p.
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Now, since we have already stated and defined the metric completion of a field, this
definition might be enough, but for the sake of formality, we will still go through the
process of completion so that we explicitly show which are the elements of Qp obtained.
For this matter, let S be the set of rational | · |p-Cauchy sequences and let’s define the
following equivalence ∼: two sequences of S, {ai}i∈N, {bi}i∈N, are equivalent if and only if
|ai − bi|p →i→∞ 0.

Now that we have equivalence classes, we also want to extend the definition of the
p-adic norm for these as well. Let a ∈ S/ ∼ be an equivalence class and {ai}i∈N one of
its representatives, then we define |a|p := limi→∞|ai|p.

Remark. The limit always exists. Since for a=0 this is trivial, we prove it for a ̸= 0.
If a is not 0 then for some ϵ and ∀N∃iN > N such that |aiN |p > ϵ. If we choose N
large enough so that |ai − aj|p < ϵ when i, j > N , we have |ai − aiN |p < ϵ∀i > N . Since
|aiN |p > ϵ, it follows that |aiN |p = |ai|p. Thus, this value is constant for all i > N , hence,
its value is the value of the limit.

Now we have a more accurate description of the set we introduced and we can upgrade
its definition:

Definition 3.2.18. For every positive finite prime p, the p-adic numbers are the comple-
tion of Q with respect to | · |p, that is:

Qp := {| · |p-Cauchy sequences in Q}/ ∼

Now, it is important to notice that the structure we have obtained has two important
properties:

1. Qp is a field, (Qp,+, ·, {0}, {1}), where + and · are defined as follows:

+: Qp ×Qp Qp

({ai}, {bi}) {ai + bi}

· : Qp ×Qp Qp

({ai}, {bi}) {aibi}

2. Q is strictly contained in Qp, this is because there exists a correspondence between
a rational number q and the constant sequence of value q. This fact also tell us
that the char(Qp) is 0, hence it is a perfect field; Moreover, Q is dense in Qp by
definition.

We now prove that the operations are well-defined and that they really induce a field
structure. First of all, given an equivalence class a ̸= 0 we define its (multiplication
and bilateral) inverse as a−1 := {1/ai}i∈N where {ai}i∈N is a representative of a and
−a := {−ai}i∈N as its additive inverse. Let’s consider two equivalence classes a, b and
two sequence couples ({ai}, {bi}), ({a

′
i}, {b

′
i}) such that both are representatives of the

couple (a, b).
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1. |aibi − a′ib
′
i|p = |a′i(b

′
i − bi) + bi(a

′
i − ai)|p ≤ max(|a′i(b

′
i − bi)|p, |bi(a

′
i − ai)|p) and as

i→∞ we have that limi→∞|aibi − a′ib
′
i|p ≤ 0 hence the two are equivalent.

2. |ai + bi − (a′i + b′i)|p = |(ai − a′i) + (bi − b′i)|p ≤ |ai − a′i|p + |bi − b′i|p and as i → ∞
both |ai − a′i|p, |bi − b′i|p → 0

With the same proof strategy, we can easily show that both + and · are associative and
commutative, having respectively the classes {0} and {1} as bilateral identity elements.
Finally, distributively also holds between multiplication and addition.
Now, recalling Lemma 3.2.14, we know that the p-adic norm | · |p induces a valuation func-
tion over Q. Specifically, such valuation is defined as v(x) = loga(|x|p) = − loga(p

ordp(x)),
where a is a fixed positive number smaller than 1 and since for every prime p, 1/p < 1 we
can choose a = 1/p. This way, v(x) = ordp(x) and it is called the p-adic valuation. Being
such an important map, vp has an alternative definition, in which rational numbers are
represented as pna/b where p does not divide either a and b:

vp : Q× Z

α = pna/b n

It is easy to notice that the ord operator makes the p-adic valuation a normalized
discrete valuation. Recalling the subsets defined in Definition 3.2.12, in the specific case
of Qp, the valuation ring for the p-adic valuation is called Zp: the p-adic integers. Conse-
quentially, the maximal ideal is pZp and the residue field k = Zp/pZp. This also tells us
that a uniformiser for Qp is p itself.

Remark. Similarly to Qp, the set of integers Z is dense in Zp. In fact, we prove that the
set Q ∩ Zp, written usually as Z(p), is dense in Zp and Z is dense Z(p).

1. Let a/b ∈ Z(p). Since b is prime to p, for each n ≥ 1 we may choose a sequence
yn ∈ Z such that byn ≡ 1 mod pn. Hence, {yn}n∈N is a | · |p−Cauchy sequence of
integers tending to 1/b, and so ayn tends to a/b. Hence, Z is dense in Z(p);

2. Since Q is dense in Qp by definition, then the set Q ∩ Zp is dense in the induced
subspace topology.

Lemma 3.2.19. Zp/pZp ≃ Fp

Proof. We prove that since Z ⊂ Zp, there is an isomorphism between Zp/pZp and Z/pZ.
Consider the projection

π : Zp Z/pZ

∑∞
n=0 anp

n a0

To have proof of the fact that π is a homomorphism, refer to [[10], p.27]. Let a ∈ ker(π),
then π(a) = 0 ↔ a0 = 0 ↔ p|a ↔ a ∈ pZp. We conclude with the Isomorphism
Theorem.
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What’s most interesting about p-adic integers is that their structure is not only given
by the p-adic valuation, but it also has a more topological structure. First of all, similar
to integers Z the ideals of Zp are all and only the ones of the form Zp/p

nZp, n ∈ N. Let’s
recall Lemma 3.2.13, we have shown in the proof that the valuation ring for a discrete
valuation is a PID, hence given an ideal I we have a p-adic integer a such that aZp = I.
Thanks to the fact that a = pordp(a)

∑∞
n=0 anp

n, it is automatic that I = pordp(a)Zp. Hence
all possible ideals for Zp are of the form pkZp for every k ∈ N.

Lemma 3.2.20. Zp/p
nZp ≃ Z/pnZ, n ≥ 1

Proof. We have already proven the case for n = 1. We use the reduction homomorphism
between Z and Zp/p

nZp that for every integer x 7→ x mod pnZp. Since Z is dense in
Zp then for every x ∈ Zp, there exists a ∈ Z such that |a − x|p < 1/pn, this means
consequentially that x ≡ a mod pnZp and that the morphism is a surjection. Now
we compute the kernel of this map. Let x ∈ Z such that x ≡ 0 mod pnZn, but this
happens if and only if pn|x, so ker = pnZ. Thanks to the First Homomorphism Theorem
Z/pnZ ≃ Zp/p

nZp.

Thanks to this correspondence, we can state that {Zp/p
nZp}n∈N is indeed an inverse

system thanks to the fact that {Z/pnZ}n∈N is an inverse system with reduction morphisms.
Moreover, thanks to what we learned in Chapter 1 we know that consequentially the p-adic
integers are themselves the inverse limit, hence, Zp = lim←−n

Zp/p
nZp = lim←−n

Z/pnZ.
At this point, we have introduced Qp and also talked about the subring Zp, but we have

yet to talk about its extensions. Some may ask themselves: ”What might happen when
Qp is extended? What happens to the p-adic norm?”. The answer is quite surprising.
In reality, when given any number field F , a similar non-Archimedean p-adic absolute
value can always be defined and it is in fact a generalization of the | · |p where p ⊂ K
is a prime ideal, specifically, a proper ideal such that if the product of two elements
ab ∈ p⇒ a ∈ p ∨ b ∈ p. The following theorem is consequentially an important result for
p-adic extensions:

Theorem 3.2.21 ([9], p. 31). Given a field F and a norm | · |p, if the completion of
F with respect to such norm is labelled as Fp, then the extension Fp/Qp is a finite field
extension of degree at most [F : Q] and the restriction of | · |p to Q is equal to | · |p

On the other hand, is also possible to extend the p-adic norm onto a field F if a finite
extension of Qp.

Lemma 3.2.22. Let F be a finite extension of Qp, then the residue field kF is isomorphic
to a finite field Fpn for some n ∈ N.

Proof. We prove that the residue field for F is a finite field extension of the residue
field kQp for Qp. Since such residue field is isomorphic to Fp, we would consequentially
have that kF ≃ Fpn . By definition, kF = OF/mF and by Theorem 3.2.21 we know
that such norm extends the p-adic norm in Qp. Hence, given an element x ∈ kQp , then
1 > |x|p = |x|p ⇒ x ∈ kF . Hence, kQp ⊂ kF , meaning it is indeed a field extension.
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3.2.3 Some tools from Ramification Theory

Let’s consider two fields L/F, both finite extensions of Qp, with valuation rings OL(resp.F ),
uniformisers πL(resp.F ), normalized discrete valuations vL(resp.F ) and residue fields kL(resp.F ).

Definition 3.2.23. The ramification index of L/F is e(L/F ) := vL(πF ) ∈ Z. The residue
index of L/F is f(L/F ) := [kL : kF ] ∈ Z ∪ {∞}

And the important property that these two indexes have is the following:

Lemma 3.2.24 ([9], p.101-102). For a finite extension L/F the degree [L : F ] = e(L/F )f(L/F )

In addition, the ramification index is used to classify extensions in the following mean-
ing:

Definition 3.2.25. The extension L/F is:

1. unramified if e(L/F ) = 1

2. ramified if e(L/F ) > 1

3. totally ramified if e(L/F ) = [L : F ]

The reason why we introduced this classification is mainly because of the next theorem,
which gives an interesting result about the possible subfields of the extension L/F .

Theorem 3.2.26 ([9], p.114). Let L/F be a finite extension, with residue fields respectively
Fqn ,Fq. Let m := qn− 1 and ζm be a primitive mth root of 1. Then F ⊂ F (ζm) ⊂ L, with

F (ζm)/F unramified

L/F (ζm) totally ramified

The following set gives the last piece of our puzzle:

Definition 3.2.27. Let L/F be a Galois extension and let’s consider the reduction map
between Gal(L/F ) and Gal(kL/kF ), then we call inertia group the kernel of such map.

IL/F := ker[Gal(L/F )→ Gal(kL/kF )]

As the kernel of a group homomorphism, the inertia group is a normal subgroup of
the Galois group Gal(L/F ), but since the reduction map is a surjection, we have that
|IL/F | = |Gal(L/F )|/|Gal(kL/kF )| = e(L/F ).

Let’s now consider the easy case where F = Qp, hence L is consequentially a finite
extension of Qp. Recalling Lemma 3.2.22 and Definition 3.2.23 we can clearly say that
L’s residue field is isomorphic to Fpf(L/Qp) and we proceed to study the Galois groups of

L/Qp(ζm) and Qp(ζm)/Qp, where m := pf(L/Qp) − 1. To make everything easier n :=
f(L/Qp).

1. Gal(Qp(ζm)/Qp) is isomorphic to Gal(Fpn/Fp). This is thanks to the reduction map
ϕ : σ 7→ σ mod π, where π is a uniformiser in Qp(ζm).
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• The fact that such map is an injection is claimed on page 114 ([9]) in the proof
of the analog of Theorem 3.2.26;

• It is a surjection by counting size. First of all, since L/Qp(ζm) is totally ramified
its residue index f(L/Qp(ζm)) = 1, but since [kL : kQp(ζm)] = f(L/Qp(ζm)) we
have that L and Qp(ζm) have the same residue field. Having this:

e(Qp(ζm)/Qp)f(Qp(ζm)/Qp) = [Qp(ζm) : Qp] ≤ [kQp(ζm) : Fp] = [Fpn : Fp] = n

Having that Qp(ζm)/Qp is unramified:

e(Qp(ζm)/Qp) = 1

⇒ n = f(Qp(ζm)/Qp) = [Qp(ζm) : Qp] ≤ [kQp(ζm) : Fp] = [Fpn : Fp] = n

Hence, Gal(Qp(ζm)/Qp) ≃ Z/nZ

2. As for the second group, we have that Gal(L/Qp(ζm)) ≃ IL/Qp . Following from its
definition, the inertia group IL/Qp = ker[Gal(L/Qp) → Gal(Fpn/Fp)] is a normal
subgroup of Gal(L/Qp), and because of the Fundamental Theorem there exists a
finite Galois extension K of F such that IL/Qp = Gal(L/K):

{1} I(L/Qp) = Gal(L/K) Gal(L/Qp) Gal(kL/Fp)

Given the fact that n = |Gal(kL/Fp)| = f(kL/Fp), we have that [L : Qp(ζm)] =
[L : Qp]/[Qp(ζm) : Qp] = e(L/Qp)n/n = e(L/Qp). By adding this last result
with Definition 3.2.27, we have that |IL/Qp | and |Gal(Ω/Qp(ζm))| are both equal to
e(L/Qp). As stated earlier, these two groups are actually isomorphic and to have
an elegant and immediate proof of this fact refer to [11], page 7.

3.2.4 The structure of Gal(Qp/Qp)

Having all the necessary preliminaries, we are finally ready to present the structure of the
absolute Galois Group of the p-adic numbers. As seen in Chapter 2, all Galois groups
are profinite groups, and more specifically they are the inverse limit running over the
quotients by normal subgroups. Since we are talking about Galois extension, all the
normal subgroups of the absolute Galois group are all and only finite Galois extensions
of p-adic numbers.

So the absolute Galois group of p-adic numbers is GQp := lim←−L/Qpfinite Galois
Gal(L/Qp)

We have already proven in Theorem 3.2.26 that all the extensions of Qp can be broken
into an unramified and a ramified part. Let’s now fix the proper m ∈ Z and let ζm be the
m-primitive root of the identity such that the two extensions L/Qp(ζm) and Qp(ζm)/Qp

are respectively totally ramified and unramified, then the Galois groups for this two
extensions are well known: Gal(Qp(ζm)/Qp) is a finite cyclic group Z/nZ, for some n, and
Gal(L/Qp(ζm)) ⋍ IL/Qp , hence we have that:

Gal(L/Qp) ⋍ Z/nZ ⋊ IL/Qp
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Morally, the Galois group of a finite Galois extension Gal(L/Qp) is composed of a cyclic
unramified part and a ramified part. Passing to the inverse limit, we get:

GQp := [lim←−
n

Z/nZ]⋊ [ lim←−
L/Qp finite Galois

IL/Qp ] = Ẑ ⋊ IQp

It is interesting to notice that since the residue fields are always finite fields then the
Absolute Galois group obtained in section 3.1 appears in the p-adic one as well. So, as
stated at the beginning of the chapter, even if the two fields have completely different
properties their Absolute Galois groups differ for only the inertia group.
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Finite Galois Theory

Here below we will resume some of the important results and basic definitions known for
finite Galois Theory that have been used throughout the paper

A.1 Field Extensions

Definition A.1.1. Let F and Ω be fields, Ω is called an extension of F if Ω contains F.
Written Ω/F

An extension Ω/F is naturally an F -vector space and its dimension dimFΩ = [Ω : F ]
is called the degree of the extension, which is positive by definition. More specifically, if
the degree is a finite integer then the extension is said to be finite.
Let Ω/F be an extension and α ∈ Ω, we define the following map:

evα : F [x] Ω

f(x) f(α)

called evaluation. This function is more precisely a ring homomorphism and it gives
crucial information regarding the nature of α:

1. If ker(evα) = {0} then α is said to be transcendental over F ;

2. If ker(evα) ̸= {0} then α is said to be algebraic over F. Please note that since the
kernel of a ring homomorphism is an ideal and F [x] is a PID (Principle Ideals Do-
main) the subring ker(evα) = (p), for a certain irreducible p ∈ F [x] (supposed monic
since F is a field by assumption) called minimal polynomial.

Remark. Let’s denote F [α] = Im(evα), the smallest subring containing F and α and
also a domain in Ω, thanks to the First Homomorphism Theorem we can assert that
F [x]/(p) ⋍ F [α], but a subring of a ring is a domain if and only if p is prime and
consequentially irreducible. This also implies that F [α] is a subfield and will be denoted
by F (α).

36



Appendix A. Finite Galois Theory

Definition A.1.2. An extension Ω/F is said algebraic if every single element of Ω is
algebraic over F, in particular, it is also said simple if there exists a specific element α
such that Ω = F (α). On the contrary, if there is at least one element in Ω that is not
algebraic, then Ω/F is called transcendental.

A.2 Polynomials and field extensions

We have shown that field extensions are closely related to roots of polynomials and here
we will summarize the correspondence between the two concepts. Let F be a field and
Ω/F an extension.

Definition A.2.1. A polynomial f ∈ F [x] splits in Ω if there exists a finite set of elements
{a, a1, ..., an} ⊂ Ω such that:

f(x) = a

n
∏

i=1

(x− ai), ∃a ∈ Ω

Particularly, if there exist two different indexes i and j such that ai = aj then the root ai
is called multiple. On the other hand, if f is such that for every extension of F where f
splits, the set a1, ..., an has always n distinct elements, then f is called separable over F.

Definition A.2.2. With the notation above, if Ω = F (a1, ..., an) then it is called splitting
field for f over F.

Definition A.2.3. Ω/F is said to be a separable extension if it is a field extension and
is such that for every α ∈ Ω its minimal polynomial is separable over F.
Also, Ω/F is called normal if for every polynomial f ∈ F [x] the following proposition
holds:

If ∃α ∈ Ω such that f(α) = 0⇒ f splits in Ω

The following is a criterion for irreducible polynomials which is usually given for
integers, but the generalization is also a useful result.

Lemma A.2.4. (Generalized Eisentein’s Criterion) Given an integral domain R, let Q =
∑n

i=0 aix
i an element of D[X]. Suppose there exists a prime ideal p ⊂ D such that:

• ai ∈ p, ∀i ̸= n

• an /∈ p

• a0 /∈ p2

Then Q is irreducible in D[X].
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A.3 F -Automorphisms

Definition A.3.1. Let Ω/F be a field extension and σ : Ω → Ω a function. σ is said
to be an F-automorphism if it is an isomoprhism such that σ|F ≡ idF . The set of all
F-automorphisms is denoted by Aut(Ω/F ).

Proposition A.3.2. Let f(x) ∈ F [X] and R be the set of all roots of f in an appropriate
extension. Let also Ω/F be the extension obtained by adding some of the roots in R to F:
Ω = F (α1, ..., αr), for some α1, ..., αr ∈ R. Let now L/F be another extension such that
L is a splitting field for f. Then:

1. The number of F-homomorphisms between L and Ω is at most [L : F ] and is exactly
[L : F ] if f has only distinct roots in L

2. If Ω is also a splitting field for f then every F-homomorphism is also an F-isomorphism

Corollary A.3.3. Let f ∈ F [X] be a separable polynomial, then for every couple of
splitting fields for f L,Ω, there exists an F-isomorphism between L and Ω. Also, the
number of F -isomorphism is equal to [Ω : F ]

A.4 Fundamental Theorem of (Finite) Galois Theory

Definition A.4.1. Let Ω/F be a field extension and Aut(Ω/F ) := {ϕ : Ω→ Ω|ϕ|F ≡ idF}
be the set of F -isomorphisms. We then define:

1. For all G subgroup of Aut(Ω/F )

ΩG := {α ∈ Ω|σ(α) = α, ∀σ ∈ G}

is a subfield called G-invariant subfield of Ω

2. For all M, intermediate fields between F and Ω

Aut(Ω/M) := {ϕ : Ω→ Ω|ϕ is isomorphism and ϕ|M ≡ idM}

is a subgroup of Aut(Ω/K)

Theorem A.4.2. Let Ω/F be an extension, then the following are equivalent:

1. Ω is the splitting field of a separable polynomial f ∈ F [x]

2. [Ω : F ] is finite and F = ΩAut(Ω/F )

3. ∃G a finite subgroup of Aut(Ω/F ) such that ΩG = F

4. Ω/F is finite, normal and separable

Definition A.4.3. Let Ω/F be a finite, normal and separable extension, then Ω it is said
to be Galois over F and the group Aut(Ω/F ) is usually written as Gal(Ω/F ) and called
Galois group associated to the Galois extension Ω/F .
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Theorem A.4.4 (Artin). Let G be a finite subgroup of automorphisms of a field F and
E = FG := {α ∈ F |σ(α) = α, ∀σ ∈ G}. Then F is a Galois extension of E with Galois
group G, and [F : E] = |G|.

The result proved by Galois in his paper was that the two defined structures in the
Definition A.4.1 can be put under a bijective correspondence, hence giving an interesting
structure theorem to all the Galois extension as well as their associated Galois group
which is the following

Theorem A.4.5 (Fundamental Theorem). Let Ω/F be a Galois extension and let G be
their Galois groups. Then for all intermediate subfield M (defining GM := Aut(Ω/M))
and every subgroup H the maps:

Φ : M 7→ GM

Ψ : H 7→ ΩH

are inverse maps and therefore induce a bijection between the lattices:

{M |M field , F ≤M ≤ Ω} ↔ {H|H subgroup of G}

Moreover,

1. The maps Φ and Ψ are both order reversing isomorphisms, specifically,

H2 ⊂ H1 ⇐⇒ ΩH1 ⊂ ΩH2

2. For all H1 ≤ H2, (H2 : H1) = [ΩH1 : ΩH2 ] and conversely, for all L1 ≤ L2(subfields), [L2 :
L1] = (GL1 : GL2)

3. For every σ ∈G σHσ−1 ↔ σM

ΩσHσ−1 = σ(ΩH);

σ−1GLσ = Gσ(L)

4. A subgroup H of G is normal if only if ΩH/F is a normal extension, in which case:

Gal(ΩH/F ) ≡ G/H

Proposition A.4.6. Let E and L be extensions of F, both contained in a common field
Ω. If E/F is Galois, then:

1. E ∧ L/L is Galois

2. E/E ∩ L is Galois

3. The map

: Gal(E ∧ L/L) Gal(E/E ∩ L)

σ σ|E

is an isomorphism
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Corollary A.4.7. Let E1 and E2 be extensions of F contained in some common field. If
both fields are Galois over F, then:

1. E1 ∧ E2 and E1 ∩ E2 are both Galois over F

2. the map

: Gal(E1 ∧ E2) Gal(E1/F )×Gal(E2/F )

σ (σE1 , σE2)

is an isomorphism of Gal(E1∧E2) onto the subgroup H := {(σ, τ)|σ|E1∩E2 = τ|E1∩E2}

Following from the proposition and the corollary we give the following lattice structures
for a generic Galois extension.

E ∧ L E1 ∧ E2

E L E2 E1

E ∩ L E1 ∩ E2

F F

∼

∼
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Basic Topology

In this appendix, we will list without proof the basic topological results and definitions
used in the paper.

Definition B.0.1. Given a set X, a topology over X is a family τ ⊂ P(X) such that:

1. X, ∅ ∈ τ

2. Given any σ ⊂ τ , then
⋃

A∈σ A ∈ τ

3. For every A,B ∈ τ , then A ∩B ∈ τ

The elements of τ are called open and the pair (X, τ) is called topological space.
Furthermore, subsets of a topological space are called closed if their complementary subset
is open in X, and for closed sets the dual statements provided in Definition B.0.1 hold.

Example B.0.2. The easiest examples of topologies are:

• The trivial topology, where τ = {X, ∅}

• The discrete topology, where τ = P(X)

Definition B.0.3. A base for a topology τ over X is a family B made of non-empty open
sets such that ∀A ∈ X, ∃H ⊂ B such that A =

⋃

B∈H B.

Definition B.0.4. Given U,M ⊂ X, then we say that U is a neighbourhood of M if there
exists an open set A ∈ τ such that M ⊂ A ⊂ U .

Let’s now consider a generic topological space X and a subset S.

Definition B.0.5. A point x ∈ X is an interior point of S if there exists a neighbourhood
U of X such that U ⊂ S. A point x ∈ X such that for every neighbourhood U, U ∩S ̸= ∅
is called adherent.

We can consequentially define the interior part S̊ of S as the union of all the open
sets contained in S and the closure S as the intersection of all closed sets that contain S.
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Proposition B.0.6. S is open if and only if S = S̊. Similarly, S is closed if and only if
S = S.

Let’s now consider two topological spaces X, Y and a map f : X → Y

Definition B.0.7. f is continuous if the inverse image f−1(U), for every open subset
U ⊂ Y , is an open subset of X. Consequentially, the inverse image of every closed subset
of Y is closed in X. In addition, When f is a continuous bijection with a continuous
inverse, is called homeomorphism.

When given a map f between a set X and a topological space (Y, τY ) it is possible to
induce a topology over X defined as τX = {f−1(v)|v ∈ τY }. A fundamental example of
this is the induced topology which is associated to the map i : X ↪→ Y , when X ⊂ Y . In
this specific case, τX = {X ∩ A|A ∈ τY }.

Definition B.0.8. Let {Xi}i∈I be a family of topological spaces where I represent a
generic index set, and let X be defined as the Cartesian product of the Xi. We define
the product topology τP over X as the smallest topology over X such that every canonical
projection pi : X → Xi is continuous. (X, τP) is then called the topological product of
the family {Xi}i∈I (In analytic terms, this topology is the weak topology induced by the
canonical projections).

Definition B.0.9. A topological space X is called Hausdorff if ∀x, y ∈ X, x ̸= y there
exist two open sets U, V in X such that x ∈ U, y ∈ V, U ∩ V = ∅.

Lemma B.0.10. 1. Every subspace of a Hausdorff space is a Hausdorff space;

2. Every product of Hausdorff spaces is a Hausdorff space.

Definition B.0.11. Let X be a topological space

1. X is called connected if the only open and closed sets (clopen) are just X and the
empty set;

2. Given an element x ∈ X the connected component of x is the largest connected
subset of X that contains x ;

3. X is said to be totally disconnected if for every element x its connected component
is the singleton {x}.

Definition B.0.12. A topological space X is said to be compact if every open cover of
X has a finite subcover. Precisely, if A is a collection of open subsets of X such that
X =

⋃

A∈A A then there exists B ⊂ A such that X =
⋃

B∈B B and B is finite.

Lemma B.0.13. 1. Every closed subspace of a compact space is compact;

2. Every compact subspace of a Hausdorff space is closed.

Lemma B.0.14. Let X and Y be compact Hausdorff topological spaces and ϕ : X → Y
be a continuous map then ϕ is closed.

Theorem B.0.15. (Tychonoff’s Theorem) Given a family {Xi}i∈I of compact topological
spaces then their product

∏

i∈I Xi is a compact topological space.
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