
Università degli Studi di Padova

Dipartimento di Ingegneria dell'Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Modelling of the real-time

control system for a nuclear

fusion experiment using Uppaal

Student Advisor

Emanuele Zampieri Prof. Michele Moro

Co-Advisor

Dr. Gabriele Manduchi

Academic Year 2016/2017

ii

Table of Contents

1 Introduction 1

1.1 Related works . 2

1.2 Thesis structure . 3

2 UPPAAL 5

2.1 Timed Automata . 6

2.1.1 Timed Automata Extensions . 8

2.1.2 System behaviour de�nition in Uppaal 9

2.2 Verifying properties with Uppaal . 10

3 The Nuclear Experiment 13

3.1 The real-time control system . 14

3.1.1 Hardware organisation . 16

3.1.2 Software organisation . 16

3.1.3 Core assignment . 19

4 The Linux Scheduler 21

4.1 2.6 scheduling structure . 22

4.2 SMP load balancing . 23

5 Model implementation 25

5.1 RAW_Data template . 26

5.2 Pre_Proc template . 27

5.3 Shared_Memory template . 29

5.4 Threads_Noti�cation template . 31

5.5 Control_Alg template . 32

5.6 Output template . 33

5.7 Templates for scheduling . 34

5.7.1 Scheduler_Group template . 35

5.7.2 Scheduler_Free template . 36

5.8 System de�nition . 38

6 Model validation 41

6.1 Verify the correct execution of the model 42

6.2 Model execution time . 42

6.3 Times between an output generation and the subsequent 46

6.4 Execution times of the MHD control algorithm 48

iv TABLE OF CONTENTS

7 Query veri�cation times 51

8 Conclusions and future works 55

9 Appendix 57

9.1 Appendix A . 57
9.2 Appendix B . 58
9.3 Appendix C . 58
9.4 Appendix D . 59
9.5 Appendix E . 59

Bibliography 64

List of Figures

1.1 Conductive shell of the RFX experiment. 1

2.1 Uppaal o�cial logo. 5
2.2 Semantics of timed automata [4]. 7
2.3 Example of timed automata de�nitions with Uppaal [4]. 10
2.4 The Uppaal's path formulae. Bold edges denote the paths on which the

formulae are evaluated. The �lled states are those for which a given state
formulae φ holds. 11

3.1 The RFX machine for a nuclear fusion experiment. 13
3.2 Interaction between plasma and wall due to plasma instabilities [15]. . . 14
3.3 Magnetic �elds in the RFX experiment. The toroidal coils are shown in

blue and the �eld shaping coils are shown in green. The yellow coils are
used to induce plasma current but not for control [1]. 15

3.4 The saddle coils mounted around a torus section [15]. 15
3.5 The hardware organisation of the new real-time control system [17]. . . . 17
3.6 Real-time threads organisation of the RFX experiment [1]. 18
3.7 Pipelined organisation of MHD control task [15]. 19

4.1 2.6 scheduler run-queue structure [21]. 22

5.1 Automaton for raw data acquisition thread. 26
5.2 Automaton for pre-processing thread. 28
5.3 Shared memory implementation. 30
5.4 Automaton for synchronisation between threads. 32
5.5 Automaton for control algorithms thread. 33
5.6 Templates for DAC supervisory threads. 34
5.7 Implementation of the Scheduler_Group template. 36
5.8 Implementation of the Scheduler_Free template. 37

6.1 Real execution time of MHD control in a con�guration in which the Linux
scheduler is free to assign threads to any core [1]. 49

7.1 Htop screenshot with threads running on Amazon EC2 instance. 53

vi LIST OF FIGURES

List of Tables

3.1 Main technical characteristics of the RFX machine [14]. 14

5.1 Average times measured for pre-processing algorithms. 39
5.2 Average times measured for control algorithms. 39

6.1 Core allocation for the second scenario. 41
6.2 Execution times [µs] obtained with di�erent schedulers. 43
6.3 Execution times [µs] for di�erent schedulers without pipeline. 44
6.4 Latency times [µs] for cycles 1, 2 and 3. The latency times for cycle 1

are those of the "one cycle" column in Table 6.2. 45
6.5 Maximum and minimum times [µs] between an output generation and

the subsequent. 47
6.6 Execution time [µs] of the MHD control algorithm. 48

7.1 Query veri�cation times [s] when the condition is veri�ed. 51

viii LIST OF TABLES

Abstract

Recent nuclear fusion experiments require a real-time control system to improve plasma
con�nement and suppress its magneto hydrodynamic (MHD) instabilities. Referring
to the RFX experiment (Padua, Italy), we want to model its real-time control system
with the tool Uppaal. The main objective of this thesis is to analyse how the system's
behavior changes according to the di�erent schedulers and their con�gurations. Two
categories of scheduler for real-time threads are considered: scheduler with �xed assign-
ment and Linux 2.6 free scheduler. The results obtained show that �xed assignment
with a one-to-one thread-core relationship guarantees better performance for the RFX
control system. Moreover, the simulations performed show the modelling limitations
due to the performance of the Uppaal veri�cation engine.

x

Abstract

I recenti esperimenti di fusione nucleare necessitano di un sistema di controllo real-
time per migliorare il con�namento del plasma e per la soppressione delle sue instabil-
ità magneto-idrodinamiche (MHD). Facendo riferimento all'esperimento RFX (Padova,
Italia), si vuole modellizzare il suo sistema di controllo real-time utilizzando il tool Up-
paal. L'obiettivo principale di questa tesi consiste nell'analizzare come cambia il com-
portamento del sistema al variare degli scheduler utilizzati e delle loro con�gurazioni.
Sono state considerate due categorie di scheduler per processi real-time: scheduler con
assegnazione �ssa e scheduler libero di Linux 2.6. I risultati ottenuti mostrano che
l'assegnazione �ssa con relazione uno-a-uno tra processi e core garantisce migliori per-
formance per il sistema di controllo di RFX. Inoltre, le simulazioni eseguite mostrano
le limitazioni di modellazione derivanti dalle prestazioni del motore di veri�ca usato da
Uppaal.

2

Chapter 1

Introduction

Figure 1.1: Conductive shell of the RFX experiment.

In recent years, the need to have a source of sustainable energy is becoming increas-
ingly evident. One possibility is o�ered by nuclear fusion, but it needs further research
and experimentation before it can be available for energy production. Today, there are
several nuclear fusion experiments around the world.
Recent nuclear fusion experiments use real-time control systems to improve plasma con-
�nement. Plasma is created inside a shell, and it's important to control its position and
suppress its magneto hydrodynamic (MHD) instabilities, which can lead to an interac-
tion between plasma and shell. The conductive shell can only partially and temporarily
counteract plasma instability. Without an active control system, interactions between
the plasma and the container occur, and this can lead to a disruption [1].
This thesis refers to the RFX nuclear fusion experiment, supported by the homonymous
consortium based in Padua (Italy) and inaugurated in 1992. The RFX machine is a
magnetic con�nement experiment for study plasma con�nement techniques and for re-
duce the MHD instabilities.
Around the container of this machine several coils are positioned that generate di�erent
magnetic �elds. Some of these coils are used to perform global placement corrections
of the plasma column inside the container. Instead, the remaining coils perform local
corrections to limit MHD instabilities.

2 CHAPTER 1. INTRODUCTION

The RFX machine has been improved over the years by introducing a new real-time
control system in 2012. This new control system is based on a multi-core server capable
of processing all the necessary control algorithms ful�lling the implied time constraints.
The control system is able to acquire the measures of some physical quantities through
electromagnetic probes and coils placed around the container. Acquired data are encap-
sulated in UDP packets and sent to the server via a Gigabit Ethernet network. These
data must be pre-processed by the server to provide information on the plasma position
and its currents and to provide the requested control signals.
The control system of this experiment uses Scienti�c Linux distribution with the PRE-
EMPT_RT patch as operating system (soft real-time) and the MARTe framework [2].
This distribution of Scienti�c Linux is released by Fermilab, CERN, and is used by
several universities and laboratories around the world [3]. Its primary purpose is to
reduce duplicate e�ort and to have a common install base for the various experimenters
[3].
As shown in [1], the performance of the real-time control system depends on various
parameters such as the type of scheduler, the number of CPUs available, the interac-
tions between the real-time threads that compose the system, and so on.

To study the system performance, we want to model the real-time system by taking
into consideration its main aspects and used features of the operating system. To do
this, the Uppaal tool, developed by the universities of Uppsala and Aalborg, was chosen
[4]. This tool is used for modelling, simulation, and veri�cation of real-time systems.
Uppaal being able to describe the system with a network of timed automata [4], each
one may interact with another. When the system has been modelled, it's possible
to verify some properties for validate the implemented model. To verify properties,
queries are implemented using a speci�c language. Queries are used to analyse the
system performance depending on the di�erent schedulers and their con�guration. In
addition, we want to �nd the limits of Uppaal in system modelling and see if it's possible
to represent the main features of the real-time system and operating system in more
general terms.

1.1 Related works

During the development of this thesis, there weren't Uppaal applications for modelling
real-time control systems applied to nuclear fusion experiments. At the same time
Uppaal has already been successfully applied for the study of various real-time systems
and communication protocols, as reported in [4].
One of the studies that is closer to this thesis is described in [5]. The authors of this
article want to determine schedulability of a real-time taskset on a multicore processor
with global scheduling policies such as global �xed-priority (FP) or earliest deadline
�rst (EDF) algorithms.

1.2. THESIS STRUCTURE 3

1.2 Thesis structure

This thesis is organised as follows. Chapter 2 describes the Uppaal tool in detail: for-
mal de�nition of timed automata, its extensions, the model de�nition language and the
model property veri�cation. Chapter 3 presents the RFX nuclear experiment: character-
istics of the experiment, the system hardware components and the software organisation.
Chapter 4 explains how the Linux scheduler works, referring to kernel 2.6. Chapter 5
shows the model implementation: description of the various functional components of
the system and explanation of the implementation choices. Chapter 6 discusses model
validation: description of the queries used for validating the model and analysis of the
results obtained with the di�erent schedulers. Chapter 7 discusses the Uppaal veri-
�cation engine performance. Chapter 8 presents the conclusions and possible future
developments of this thesis.

4 CHAPTER 1. INTRODUCTION

Chapter 2

UPPAAL

Figure 2.1: Uppaal o�cial logo.

UPPAAL is a tool environment for modelling, simulation and veri�cation of real-time
systems, jointly developed by Aalborg University and Uppsala University [6]. Typical
application areas are real-time controllers and communication protocols, or more in gen-
eral all areas where timing aspects are critical. This tool has been applied successfully
in several case studies as reported in [4].
The main idea is to model a system using networks of timed automata extended with
user de�ned functions, integer variables, structured data types and channel synchroni-
sation. Timed automata are �nite state machines with clocks and all these automata
can communicate with each other through shared variables or channels.

UPPAAL has three main parts [7]: a description language, a simulator and a model
checker. The description language serves as a design language to de�ne system behav-
ior using clocks, user functions and simple data types (e.g. arrays, integers, bounded
integers, etc.). The simulator is a validation tool which allows examination of possible
dynamic executions of a system [8]. This tool provides an inexpensive mean of fault
detection prior to veri�cation by the model checker which is computationally heavy be-
cause it covers the exhaustive dynamic behavior of the system [8]. The model checker is
an exhaustive search that checks reachability, safety and liveness properties by exploring
the state-space of a system.

The two main design criteria for Uppaal are e�ciency and ease of usage [7]. The
model checker e�ciency is achieved with the application of on-the-�y searching and a
symbolic technique that reduce veri�cation problems to that of solving simple constraint
systems [9, 10].

Since its �rst release in 1995, UPPAAL has been constantly updated in order to
meet requirements arising from the various case studies. Uppaal has been developed
with client-server architecture, allowing it to be split into two components: a graphical
user interface (GUI) and a model checking engine. The client is developed in Java and

6 CHAPTER 2. UPPAAL

enables the user to design and validate the system through a user-friendly graphical
user interface. Instead, the server (model checking engine) is compiled speci�cally for
some operating systems such as Windows, Linux, Solaris and OS X [6].
The subdivision into client and server allows execution on di�erent machines that com-
municate via TCP/IP. This is very useful when the model checking engine runs complex
models that require high computing and memory capability. Thanks to the rich o�er
of cloud services available today, it's possible to use resources needed only for the time
required to validate the model.

2.1 Timed Automata

A timed automaton is a �nite state machine extended with clock variables. All the
clocks progress synchronously with the same rate and they are initialized with zero
when the system is started. In Uppaal a system is modelled as a network of timed
automata in parallel. The model can be extended with user-de�ned variables that are
de�ned and used as in common programming languages. A state of the system is de-
�ned by the locations of all automata, the values of the variables and the clock values
[4]. Every automata may have edges where each of them represents a transition that
can be taken, separately or synchronise with other automaton when the guard on the
edge is satis�ed. The guard allows to de�ne the conditions for which the transition is
enabled and can be taken. When a transition is taken, the corresponding edge leads to
a new state. Every edge has a source location from which it starts, and a destination
location that is reached when the respective transition is taken.
It's also possible to de�ne local timing constraints for the locations called location in-
variants [11]. When the location invariants are de�ned, an automaton may remain in
a location as long as the invariant condition of the location is satis�ed.

Assume the following notations [4]: C is a �nite set of clocks and B(C) is a set of clock
constraints compose by the conjunctions of conditions of the form x • c or x − y • c,
where x, y ∈ C, c ∈ N and • ∈ {<,≤,=,≥, >}.

De�nition 2.1 (Timed Automaton) [4]: A timed automaton A is a sextuple
(L, I 0, C, A, E, I) where

• L is a �nite set of locations (or node),

• I 0 ∈ L is the initial location,

• C is the �nite set of clock variables,

• A is a set of actions, co-actions and the internal τ -action,

• E ⊆ L×A×B(C)× 2C ×L is a set of edges between locations with an action, a
guard and a set of clocks to be reset, and

• I : L −→ B(C) assigns invariants to locations

To keep track of the changes of clock values, we use the functions u : C → R+ called
clock assignments [11]. Let u0(x) = 0 for all x ∈ C and RC be the set of clock assign-
ments. Let u denote clock assignments function, and use u ∈ g to indicate that the

2.1. TIMED AUTOMATA 7

clock values denoted by u satisfy the guard g.

De�nition 2.2 (Semantics of Timed Automaton) [4]: Let (L, I 0, C, A, E,
I) be a timed automaton. The semantics is de�ned as a labelled transition system
〈S, s0,→〉, where S ⊆ L × RC is the set of states, s0 = (l0, u0) is the initial state, and
→⊆ S × (R+ ∪A)× S is the transition relation such that:

• (l, u)
d−→ (l, u+ d) if ∀d′ : 0 ≤ d′ ≤ d =⇒ u+ d′ ∈ I(l), and

• (l, u)
a−→ (l′, u′) if there exists e = (l, a, g, r, l′) ∈ E s.t. u ∈ g, u′ = [r 7→ 0]u, and

u′ ∈ I(l′)

where for d ∈ R+, u + d maps each clock x in C to the value u(x) + d, and [r 7→ 0]u
denotes the clock valuation which maps each clock in r to 0 and agrees with u over C\r.

Figure 2.2 illustrates an example of a timed automaton semantics. From the initial
location A, we can choose to take an action or delay the transition. This Figure shows
how a delay transition can lead to an invalid state due to the violation of the invariant
for the location B.

Figure 2.2: Semantics of timed automata [4].

In agreement with the de�nition there are two types of transitions between states:
delay transition where the automaton may delay for some time and action transition
when the automaton follows an enabled edge [11].

A model of a system is often composed into a network of timed automata over a set
of clocks and actions. The invariant functions are composed into a common function
over location vectors I(l̄) = ∧iI i(li), where l̄ = (l1, ..., ln) is a location vector. As indi-
cated in [4], l̄[l′i/li] denotes the vector where the ith element li of l̄ is replaced by l′i.

8 CHAPTER 2. UPPAAL

De�nition 2.3 (Semantics of a network of Timed Automata) [4]: Let Ai =
(Li, li

0, C,A, Ei, I i) be a network of n timed automata. Let l̄0 = (l1
0, ..., ln

0) be the
initial location vector. The semantics is de�ned as a transition system 〈S, s0,→〉, where
S = (L1 × · · · × Ln) × RC is the set of states, s0 = (l̄0, u0) is the initial state, and
→⊆ S × S is the transition relation de�ned by:

• (l̄, u)
d−→ (l̄, u+ d) if ∀d′ : 0 ≤ d′ ≤ d =⇒ u+ d′ ∈ I(l̄).

• (l̄, u)
a−→ (l̄[l′i/li], u

′) if there exists li
τgr−−→ l′i s.t. u ∈ g,

u′ = [r 7→ 0]u and u′ ∈ I(l̄[l′i/li]).

• (l̄, u)
a−→ (l̄[l′j/lj, l

′
i/li], u

′) if there exist li
c?giτ i−−−→ li and

lj
c!gjrj−−−→ l′j s.t. u ∈ (gi ∧ gj), u′ = [ri ∪ rj 7→ 0]u and u′ ∈ I(l̄[l′j/lj, l

′
i/li]).

where c! and c? represent the synchronisation between two or more timed automata.

2.1.1 Timed Automata Extensions

The Uppaal description language extends the de�nition of timed automata with the
following main features:

Templates automata are de�ned with a set of parameters [4], e.g. int or synchronisa-
tion channel, that are replaced by a given argument in the process declaration.

Binary synchronisation channels are declared as chan name, e.g. chan c;. An edge
labelled with c! represents the sender that synchronises with the receiver rep-
resented by an edge labelled with c?. A synchronisation pair is chosen non-
deterministically if several combinations are enabled [4] and not necessarily belong
to the same template.

Broadcast channels are declared as broadcast chan name, e.g. broadcast chan c;.
In this type of synchronisation one sender c! can synchronise with an arbitrary
number of receivers c?. When some receiver can synchronise with the sender, they
must do so. If there are no receiver, then the sender can still execute the c! action
[4] (never blocking).

Urgent synchronisation channels are declared by adding the keyword urgent as a
pre�x of the channel declaration. The urgent synchronisation transitions should
be taken as soon as they are enabled. If an edge uses urgent channels for synchro-
nisation it can not have time constraints, i.e. clock guards are not allowed.

Urgent locations are a particular locations where time can not pass. These are se-
mantically equivalent to adding an extra clock x, that is reset on all incoming
edges, and having an invariant x ≤ 0 on the location [4].

Committed locations are used to model atomic sequences of actions [11] and are
more restrictive on the execution than urgent locations. If any process is in a
committed location then only transitions (synchronisation or not) starting from
a committed location are allowed [11]. This implies that process in committed
locations may be interleaved only with other processes in committed locations.

2.1. TIMED AUTOMATA 9

User functions has C-like syntax but without pointers. User functions can be de-
�ned global or local to templates and only local functions can access template
parameters.

Moreover, the extension provides the possibility of declaring constants, integer and
bounded integer variables, arrays, record types and custom types.

2.1.2 System behaviour de�nition in Uppaal

In Uppaal the edges of the automata can be enriched with four types of optional labels:
select, guard, synchronisation and update. In addition, the locations may be extended
with invariants labels, which are conditions expressing constraints on the clock values.
The exhaustive BNF is in the appendix A.

Select label de�nes variables accessible only to the associated edge and they take a non-
deterministic value in the range of their respective types [4]. This label contains a
comma-separated list of expressions of the form name : type, which express name
and type of the variables, respectivelly.

Guard label allows to de�ne conditions on the values of integer variables, clocks and
constants (or arrays of these types) that must be satis�ed in order to enable the
associated transition [8]. A guard may call a user functions (side e�ect free) that
return a boolean value. These conditions must be side e�ect free, evaluate to a
boolean and clocks (or clock di�erences) are only compared to integer expressions
[4].

Synchronisation label allows to de�ne roles (sender or receiver) for the synchronisa-
tion between two or more automata. This label is on the form Expression! or
Expression?. The expression must be side e�ect free, evaluate to a channel, and
only refer to integers, constants and channels [4].

Update label contains a list of side e�ect expressions, each separated from the other
by a comma. In this case an expression must only refer to clocks, integer variables
and constants and only assign integer values to clocks [4]. Moreover, it may call
user functions.

Invariant label is a conjunction of conditions of the form x • i where • ∈ {<,≤}, x is
a clock and i evaluates to an integers. The invariant may call a side e�ect free
user function (global or local) that returns a boolean value.
An invariant must be side e�ect free and only refer to clocks, integer variables and
constants [4].
An example is shown in Figure 2.2, where the location B has the invariant x < 3.
This example shows that the invariant violation leads to an invalid state.

Figure 2.3 illustrates an example of timed automata de�nitions. The automaton on the
left has a loop with guard x >= 2, which activates the transition when the value of the
clock x is greater than 2. When this loop is taken, the synchronisation between the two
automata is performed through the binary channel reset. An example of update label
is visible in the edge that goes from location taken to idle in the right automaton.

10 CHAPTER 2. UPPAAL

Figure 2.3: Example of timed automata de�nitions with Uppaal [4].

2.2 Verifying properties with Uppaal

The Uppaal's model checker engine is designed to verify system requirements with a
subset of TCTL formula [12] for networks of timed automata. TCTL allows to express
the requirement speci�cation in a machine readable and formally well-de�ned language.
This language consists of path formulae and state formulae, and should be one of the
following forms [11]:

• A[]φ - for all paths φ always holds.

• E <> φ - there exists a paths where φ eventually holds.

• A <> φ - for all paths φ will eventually hold.

• E[]φ - there exists a path where φ always holds.

• φ ψ - whenever φ holds ψ will eventually hold.

where the local properties φ and ψ can be checked locally on a state.

A state formula is an expression (see Appendix A) that can be evaluated on a state
without considering the behaviour of the system [4], these expressions must be side ef-
fect free. Also a state formula allows to verify whether a process is in a speci�c location
using an expression on the form P1.l0, where P1 is a process and l0 is a location.
Uppaal uses the keyword deadlock as a special state formula for the deadlock. This
formula is satis�ed for all deadlock states. When a state has no outgoing transitions
from itself and any of its delay successors, then it is a deadlock state.

Uppaal supports di�erent path formulae: reachability, safety and liveness. These for-
mulae are shown in Figure 2.4.

Reachability property veri�es whether a state formula φ possibly can be satis�ed by
any reachable state. Reachability property is satis�ed if there is a path starting
at the initial state where φ is eventually holds.
In Uppaal, these properties are expressed using the syntax E <> φ.

2.2. VERIFYING PROPERTIES WITH UPPAAL 11

Figure 2.4: The Uppaal's path formulae. Bold edges denote the paths on which the
formulae are evaluated. The �lled states are those for which a given state formulae φ
holds.

Safety properties are on the form "something good will always happen", or negatively
as "something bad will never happen".
Let φ be a state formula. The A[]φ path formulae expresses that φ should be true
in all reachable states, whereas E[]φ expresses that there should exist a maximal
path such that φ il always true [4]. A maximal path is a particular path that is
in�nite or where the last state has no outgoing transitions.
Uppaal uses the positive formulation of safety property with the syntax A[]φ and
E[]φ, respectively.
Note that A[]φ = Ē <> φ̄ .

Liveness properties are on the form "something will eventually happen" [4] and are
expressed with the path formulae A <> φ. An alternative formulation is the
response property which is interpreted as whenever φ is satis�ed, then eventually
ψ will be satis�ed. The response property is de�ned with the path formula φ ψ.
In Uppaal, these properties are expressed using the syntax A <> φ and φ−− > ψ,
respectively.
Note that A <> φ = Ē[]φ̄ .

12 CHAPTER 2. UPPAAL

Chapter 3

The Nuclear Experiment

Figure 3.1: The RFX machine for a nuclear fusion experiment.

The RFX (Reversed Field eXperiment) machine is a medium-size magnetic con�ne-
ment experiment designed to study this phenomenon and to reduce the mechanisms
that destabilise plasma in high current regimens. Experiments are performed using
plasmas of hydrogen, deuterium or helium. RFX can operate in two con�gurations:
Reversed Field Pinch and Tokamak.

The RFX experiment was inaugurated in 1992. The knowledge gained in the past
years led to a deep modi�cation of the reactor between 1999 and 2004. The various
optimisations introduced over these years allow to execute experiments with high plasma
current, up to 2 million ampere (2MA). One of the most innovative changes is the
introduction of an active control system for magneto hydrodynamic (MHD) instabilities.
This new feature contributed to several important results such as the experimental
evidence of a new helical equilibrium, published in Nature Physics in August 2009 [13].
The control system was further upgraded in 2012. It is today the most advanced plasma
stability control system for this type of nuclear fusion experiments, allowing it to run
more sophisticated control algorithms than the previous version.
The main technical features of the RFX machine are brie�y listed in the Table 3.1.

13

14 CHAPTER 3. THE NUCLEAR EXPERIMENT

Vacuum chamber material Inconel 625

First wall material (2016 tile) graphite

Shell material (3mm) copper

Conductive material of the coils copper

Insulating material of the coils �berglass and kapton

Greater radius of the toroid 2 m

Smaller radius of the toroid 0,5 m

Vessel volume 8,31 m3

Maximum plasma current 2 MA

Maximum toroidal magnetic �eld 0,7 T

Vessel vacuum level 10-12 bar

Pulse duration >0.5 s

Electron Temperature >1.2 keV

Table 3.1: Main technical characteristics of the RFX machine [14].

3.1 The real-time control system

In recent years, nuclear fusion experiments use real-time control systems to make the
plasma con�nement more e�ective. Plasma position control is possible by coils that gen-
erate di�erent magnetic �elds: toroidal, poloidal, vertical and radial. A vertical �eld is
used to shape the plasma column, otherwise the radial �eld is used for the control of
the plasma MHD instabilities.

Figure 3.2: Interaction between plasma and wall due to plasma instabilities [15].

However, the conducting shell surrounding the plasma container performs correc-
tive actions. This happens because the plasma instabilities generate counterbalancing

3.1. THE REAL-TIME CONTROL SYSTEM 15

currents inside the conducting shell [1]. The advantage is that this e�ect is immediate
and with a response time lower than a digital control system, but this corrective e�ect
ends soon, due to the �nite resistance of the shell and penetration time of the magnetic
�eld [1]. The conductive shell without the real-time control system is unable to fully
suppress plasma instabilities that increase the interaction between plasma and the con-
tainer (Figure 3.2), eventually leading to a disruption.

Figure 3.3: Magnetic �elds in the RFX experiment. The toroidal coils are shown in
blue and the �eld shaping coils are shown in green. The yellow coils are used to induce
plasma current but not for control [1].

Figure 3.4: The saddle coils mounted around a torus section [15].

The RFX experiment performs two control tasks: axisymmetric control and MHD sta-
bility control [16]. The axisymmetric control allows to control the position and shape of
the plasma column and other parameters such as magnetic �eld reversal and plasma cur-
rent. This is possible by acquiring information from a set of 128 electromagnetic probes
and by driving the current �owing into toroidal and �eld shaping coils (see Figure 3.3),
that generate toroidal �eld component and vertical �eld components, respectively. The
MHD control task is designed to limit the plasma instabilities. Its inputs derive from
a set of 192 saddle coils located around the torus as a 48x4 array, as shown in the
Figure 3.4. The saddle coils allow to acquire the radial magnetic �eld. The 2D Fouries
transform is used to compute the spatial modes (m,n) that are the input for the control

16 CHAPTER 3. THE NUCLEAR EXPERIMENT

algorithm, which computes 192 reference signals for the power supply units feeding the
actuator coils located in the same array [15]. Any physical quantities used for control
computation are not directly derived from measurements, therefore a pre-elaboration of
the signals acquired by the probes is performed.
In practice, the saddle coils are used to provide localised corrections, whereas the
toroidal and �eld shaping coils are used for correcting global parameters which are
the same along the poloidal direction.

An important factor for a control system is the maximum allowable latency. In the
RFX experiment, the plasma instabilities that are too fast to be handled by the digital
control system are compensated by the conducting shell. This compensation ends after
a few tens of microseconds and the intervention of the control system is then required
[1]. For this experiment, the MHD control system must provide a response time less
than 2ms [15] which is faster than the axisymmetric control system (<10ms).

3.1.1 Hardware organisation

The �rst version of the RFX experiment control system was replaced by a new one in
2012, described in more detail in [3]. The new hardware organisation is shown in Figure
3.5 and is based on a multi-core server (HP ProLiant DL370) hosting 12 2.8Ghz cores
with 12GB RAM. The data acquisition is supervised by four VME chassis, each hosting
a Motorola MVME 5500 single board computer with 1Ghz clock speed and an analog
to digital converter (ADC). All VMEs are interconnected with the multi-core server via
Gigabit Ethernet. In this new hardware organisation, the VME processors only acquire
raw data and send it to the multi-core server via UDP packets [17]. The raw data
packets transmission over the network causes communication latency that a�ects the
total latency of the system.
The server executes the control algorithms and is connected to four PXI racks via
�ber-optics based bus extenders where each bus has a dedicated PCIe port. Each PXI
rack generates the reference waveforms and hosting three National Instruments NI6723
digital to analog converter (DAC) with 32 channels [17]. As shown in the Figure 3.5,
two sets of DAC are used to generate the 192 reference waveforms for the 192 saddle
coils that are required for MHD control and the correction of the radial �eld. This
con�guration with two di�erent PXI racks allows to parallelize the generation of the
reference waveforms and reduces the latency due to the conversion time.
Other set of DAC device, hosted in two di�erent PXI racks are used for the generation
of the reference waveforms for toroidal and axisymmetric control.

3.1.2 Software organisation

Before 2012, the software architecture of the control system was based on VxWorks,
a commercial real-time operating system (OS). A completely di�erent approach was
adopted for the new system and this was possible by the alternatives o�ered by Linux
and the new framework MARTe [2]. A key element for adopting Linux instead VxWorks
is the introduction of the PREEMPT_RT Linux Patch (kernel version 2.6). This patch
provides preemptible critical sections, priority inheritance, in-kernel semaphores and
spinlocks and preemptible interrupt handlers [17].

3.1. THE REAL-TIME CONTROL SYSTEM 17

Figure 3.5: The hardware organisation of the new real-time control system [17].

The software environment chosen for the new system is MARTe [3], a framework for
real-time control used in several fusion experiments [2]. This framework is written in
C++ and developed at JET [18] with the collaboration of RFX [3]. MARTe is a �exible
and generic engine for the implementation of multithreaded control and provides the
supervision of the data movement and of the real-time threads. Every real-time thread
runs cyclically a set of Generic Application Modules (GAMs). The GAMs allow to inte-
grate in MARTe some speci�c components for data acquisition and control algorithms.
All the con�gurations concerning MARTe are de�ned in a user-friendly text �le, thus
allowing an easy recon�guration of the system.
MARTe has an interface called IOGAM that speci�es the data �ow from/to hardware
devices and provides a customisation of read, write and synchronisation operations for
a speci�c hardware. It also provides InputGAM and OutputGAM to perform generic
input and output operations. Every GAMs is associated with a speci�c IOGAM to use a
particular hardware. In the RFX experiment, two IOGAM classes have been developed
for receiving the raw data (UDP packets) over Ethernet and for generating the reference
waveforms via DAC devices. Moreover, GAMs have been developed for the derivation
of the bi-dimensional Fourier transform for the raw data and for MHD, toroidal and
axisymmetric control [17].
In MARTe, all threads share the same address space because they belong to a sin-
gle process. This allows the inter-thread communication directly in memory and the
data consistency is ensures through locking and synchronisation mechanisms between
threads. This two mechanisms are implemented by a service component and the ba-
sic functions for writing and reading shared data are implemented with an IOGAM class.

18 CHAPTER 3. THE NUCLEAR EXPERIMENT

As shown in Figure 3.6, the MARTe con�guration of the RFX control system de�nes 11
real-time threads. Four real-time threads acquire raw data packets sent from the VME
system through a speci�c InputGAM. The InputGAM of these threads are connected to
another GAM which performs pre-elaboration of input data. There are two type of pre-
elaboration: spatial bi-dimensional Fourier (�rst three threads) and the derivation of
several plasma parameters (last thread). The MHD, toroidal and axisymmetric control
are performed by the three real-time threads in the middle. These threads receive data
from the pre-elaboration threads and produce the output values for the reference wave-
forms [17]. The last four real-time threads supervise the DAC conversion, performed
by four PXI racks using a speci�c OutputGAM.

Figure 3.6: Real-time threads organisation of the RFX experiment [1].

The software organisation represents a pipeline: the Figure 3.7 illustrates the data
�ow for the MHD control. At every acquisition clock edge (Acq clock i in the �gure)
data are sampled and read by the VMEs (VME Acquisition), then the data are sent
via UDP packets (Data communication). Three real-time threads read the incoming
raw data packets and perform the pre-elaboration on these data (CPU core [0, 2] Pre
Elaboration). As shown in the �gure, all of these operations are performed in parallel.
The next acquisition clock edge may occur before pre-elaborated data are ready [15].
When data pre-elaboration are completed, a speci�c real-time thread will carry out

3.1. THE REAL-TIME CONTROL SYSTEM 19

MHD control (CPU core3 Elaboration). The output data of the MHD control are
exchanged with two real-time threads that generate in parallel the output reference
waveforms.
In this system, the latency is de�ned as the time between the acquisition clock edge
and the generation of the last DAC output for that cycle [3].

Figure 3.7: Pipelined organisation of MHD control task [15].

3.1.3 Core assignment

The multi-core server used for the RFX experiment has 12 core, this allows a �xed
core assignment: 11 cores are dedicated for the 11 real-time threads and the left core is
used for the system activity. Fixed core assignments is realised by the ISOLCPU Linux
boot parameter and with the cpu_seta�nity() system call. ISOLCPU boot parameter
forces the Linux scheduler to use only speci�c cores for system activity. The system
call cpu_seta�nity() is useful for explicitly assign threads to cores. Fixed assignment
removes most jitter in latency due to non determinism in core assignment which may
occur if the Linux scheduler is con�gured to use all cores [1]. Additionally, with a
exclusive �xed core assignment, where each core is assigned to a single real-time thread,
there are no context switches among the threads.
In large systems, the number of processes may be higher than the number of cores and
in this case it is required that multiple threads share the same core. Two approaches
are possible:

• Assign more than one thread to a given core. The freedom of the Linux scheduler
is limited but now it handles the required context switches for the threads assigned
to the core.

• Enable processor hyperthreading in order to double the number of cores usable
by the OS. This mode exploits the replicated components of the cores, instead
non-duplicate hardware resources are contended by the threads.

20 CHAPTER 3. THE NUCLEAR EXPERIMENT

The performance obtained with the di�erent con�gurations can be observed in [1].

Chapter 4

The Linux Scheduler

Every operating system (OS) has a scheduler that assigns cores to various ready-to-run
processes in the system. Available processors can be considered as shared resources
that are contended among the ready processes. The scheduler manages these shared
resources and allocates them temporarily to a task (for a time period called time slice).
The time slice length estimation is critical for balancing system performance vs process
responsiveness. In addition, the scheduler must minimise the response time for the most
critical tasks (real-time).

The scheduler is one of the kernel components that selects the next process to be
execute. With the introduction of the kernel preemtability in Linux kernel 2.6, the
Linux operating system responsiveness has been increased and now is considered a soft
real-time OS [19]. In this type of real-time systems, the system response times to
external events can be considered almost always bounded and more deterministic than
the previous version, but this can not be guaranteed for all cases. The PREEMPT_RT
Linux patch further improves system responsiveness with the following novelties:

• preemptible critical section;

• preemptible interrupt handlers;

• priority inheritance for kernel semaphores.

In Linux kernel 2.6, critical sections in the kernel are protected by a mechanism
implemented as spinlocks, in PREEMPT_RT this mechanism is implemented with a
particular semaphore called rt-semaphore. Real-time performance can be reduced due
to priority inversion that can inde�nitely delay a high-priority task. This problem is
avoided with the priority inheritance that allows the scheduler to boost the priority
of a speci�c task. Another enhancement introduced by the patch concerns the length
of the interrupt service routines (ISR). In practice, preemptible interrupt handlers are
implemented by performing very short ISR and shifting the remaining driver actions
into real-time threads which are managed by the Linux scheduler according to their
priority [19].

Before the 2.6 kernel, the scheduler used algorithms with complexity O(n) which
represents a large limitation when many tasks were active. With this type of scheduler
when the system is very loaded, the processor can be used predominantly by scheduling

21

22 CHAPTER 4. THE LINUX SCHEDULER

algorithm, leaving little CPU time to tasks.
The early 2.6 scheduler (called O(1) scheduler), developed and implemented by Ingo
Molnár, was designed to solve the scalability problem of the previous scheduler version.
The O(1) scheduler manages tasks with run-queues; there are two queues (one for active
task and one for expired task) for each CPU. This task organisation allows to identify
the task to execute next simply by dequeuing the �rst task from the speci�c per-priority
run queue.
CFS[20] scheduler replaces the previous O(1) scheduler for user tasks, and introduces
task organisation through a time-ordered red-black-tree instead of the run/expired
queues [20]. In addition, CFS introduces the scheduler classes where each task belongs
to a speci�c class, which de�nes the scheduling policy for a task.

4.1 2.6 scheduling structure

Figure 4.1: 2.6 scheduler run-queue structure [21].

In the 2.6 scheduler each CPU has two run-queues, one active run-queue and one
expired run-queue. These two queues are made up of 140 priority list that are served
with FIFO policy, as shown in the Figure 4.1. The �rst 100 priority list (with the
highest priority) are reserved for real-time tasks, and the remaining 40 are used for
user tasks [21]. The executable tasks are added at the end of their respective active
run-queue's priority list. For each task is de�ned a time slice and when the task on the
active run-queue uses all of its time slice, it's moved into the expired run-queue. Whit
this structure, the scheduler selects the task to be executed on the highest priority list.
Note that the time it takes to select the task to execute depends only on the number
of priorities, so the time to schedule is �xed and deterministic. For this reason the
scheduler is O(1) respect to the number of active task.
Linux 2.6 scheduler allows preemption, this means that a low priority task will not
run until there are high priority task ready to run. The scheduler can preempt the
lower priority task, when this happens the task is inserted back on its priority list and
rescheduled.

4.2. SMP LOAD BALANCING 23

This scheduler version also o�ers dynamic task prioritisation and symmetric multipro-
cessing (SMP) [22] load balancing.

4.2 SMP load balancing

The symmetric multiprocessing (SMP) architecture is composed by two or more iden-
tical CPUs connected to each other through a shared memory. When a task is created
in this type of systems, it's inserted on a CPU's run-queue. This assignment is not
based on the computing time required to complete the task, and therefore the initial
allocation of tasks to CPUs is almost always suboptimal. It becomes important to keep
the workload balanced between the CPUs, moving a task from an overloaded CPU to
an underloaded one. Generally, load balancing is performed every 200ms [21], but this
value can be changed as needed.
A task migration has a disadvantage that data for a task is not placed in the new CPU's
local cache. This requires to pull its data into the new cache space.

24 CHAPTER 4. THE LINUX SCHEDULER

Chapter 5

Model implementation

The model implementation in Uppaal requires the creation of templates that represent
the di�erent components of the real-time system.
This model declares some global variables which allow it to be versatile and con�gurable.
The main variables used by the templates are the following:

• const int N : is the number of VME machines, pre-processing threads and DAC
supervisory threads

• const int M : is the number of control algorithm threads

• const int num_cycle : is the number of cycles, where a cycle begins with the
generation of raw data and ends with the generation of the reference waveforms

• const int num_core : is the number of core available for real-time threads

• const int num_threads : is the number of real-time threads

• clock master_clock : is the main clock used to calculate the time between the
start of the simulation and the deadlock

The model during the simulation performs a number of cycles equal to num_cycle.
Every component of the real-time system completes a cycle when the associated au-
tomaton returns to its initial location. When all the components of the model complete
the cycles, the deadlock occurs. During dynamic execution, the model may have di�er-
ent evolutions due to the possible di�erent interlaces possibilities between transitions.
Each of these evolutions is characterised by a sequence of transitions that de�ne the
sequence of crossed states. By imposing a maximum number of cycles, the number of
possible transitions and the size of the states sequence can be limited. This limitation
reduces the calculation time required to validate model properties, because Uppaal has
to check conditions on fewer evolutions and relative states.

25

26 CHAPTER 5. MODEL IMPLEMENTATION

5.1 RAW_Data template

The RAW_Data template models raw data acquisition by VMEs and the subsequent
transmission of UDP packets over the Gigabit Ethernet. VMEs acquire data at a �xed
frequency and incapsulate these data in an UDP packet before sending them. These
operations are performed sequentially.
This template has the following parameters:

• urgent chan ¬ify_end : is the binary synchronisation channel to signal com-
pletion of RAW data transmission

• const int t_pck : is the sampling period and is calculated as t_pck = 1
sampling_frequency

• const int t_acq : is the acquisition time of the VME machine

• const int t_delay : is the average transmission delay

• const int t_jitter : is the transmission jitter

In addition, an integer variable count and three clock x, y and t are declared. The count
variable is required to count the number of acquisition cycles performed.

Figure 5.1: Automaton for raw data acquisition thread.

The Figure 5.1 shows the timed automaton for raw data acquisition, where the initial
location is represented with two concentric circles. Starting from the initial location,
the wait for the data acquisition is modelled simply by imposing the activation of the
outgoing edge from that state only at a speci�c instant of time (t_acq). Moreover,
the invariant de�ned for this location prevents to stay here longer than t_acq. Subse-
quently, there is the transmission of data that requires an average transmission time
t_delay with jitter t_jitter. To simulate the presence of jitter is de�ned an invariant for
Data_TX location, forcing the automaton to take the outgoing edge of that location
after a time equal to t_delay − half(t_jitter), where half(int x) is a function that
returns the largest integer value less or equal to x/2. After this, the automaton is in
the TX_Jitter location where it can wait for a maximum time t_jitter before taking
the outgoing edge leading to the Waiting_Noti�cation location.
After this phases it's necessary to notify the availability of data to the pre-processing
thread for the preliminary processing. Noti�cation is possible through the binary syn-
chronisation channel notify_end, where the RAW_Data's edge has the role of sender,

5.2. PRE_PROC TEMPLATE 27

while the receiver is represented by a pre-processing thread. The channel is de�ned
as urgent, this ensures that the edge is taken immediately when its receiver is await-
ing synchronisation. Note that the Waiting_Noti�cation location can not be removed
because the TX_Jitter location has an invariant that can be violated if its outgoing
edge requires a not available synchronisation (with a speci�c pre-processing automa-
ton) when the clock x is equal to t_jitter. This leads the systems into a illegal state.
When synchronisation is complete, if the automaton has run a number of cycles equal to
num_cycle, then the new data generation is interrupted by going in the End location.
If the number of cycles executed is less than num_cycle, then the automaton waits for
the expiration of time t_pck (counted by the clock y, initialised to 0 in the initial state)
and repeats the execution from the initial location.

5.2 Pre_Proc template

The Pre_Proc template models the pre-processing of raw data and storage operation
into shared memory.
This template has the following parameters:

• urgent chan &start : is the binary synchronisation channel to signal completion
of RAW data transmission

• urgent chan ¬ify_end[num_cycle + 1] : is the binary synchronisation channels
array to signal completion of the pre-processing operation

• urgent chan &lock : is the binary synchronisation channel for mutually exclusive
access to shared memory

• urgent chan &unlock : is the binary synchronisation channel for memory lock
release

• chan &lock_request : is the binary synchronisation channel to record the request
for shared memory access

• urgent chan &wait_lock : is the binary synchronisation channel that signals the
unavailability of shared memory

• urgent chan &core_request : is the binary synchronisation channel to require a
core

• urgent chan &core_assigned : is the binary synchronisation channel to assign a
core

• urgent chan &core_release : is the binary synchronisation channel to release a
core

• const int t_comp : is the average calculation time for pre-processing

• const int t_save : is the average time needed for saving in shared memory

28 CHAPTER 5. MODEL IMPLEMENTATION

In addition, a clock y and an integer variable count are declared.

Figure 5.2: Automaton for pre-processing thread.

The Figure 5.2 shows the timed automaton for pre-processing computation, where
Waiting_Data is the initial location. The outgoing edge for the initial location becomes
active when the corresponding RAW_Data automaton is in the Waiting_Noti�cation
location. The next step modelling the request and assignment of a core for executing
the pre-processing algorithm. The notify_end array has num_cycle + 1 elements be-
cause at the end of the last cycle the automaton is in the Waiting_Data location and
waits for synchronisation on the channel with index num_cycle + 1. So if the array
contained only num_cycle channels the simulation would return an error.
The core_request channel allows to register the core request, otherwise core_assigned
allows to active the corresponding edge when the scheduler assigns a core to that au-
tomaton. When the core is assigned, pre-processing of the data can start and this
operation requires a �xed time equal to t_comp. When outgoing edge for the Computa-
tion location is taken, with the channel lock_request is possible to request the access to
the shared memory (served with FIFO policy). Subsequently, the pre-processing thread
saves the data in shared memory with mutually exclusive access. The automaton can
take one of two edges that synchronise on the lock channel or on the wait_lock channel.
Synchronisation via the lock channel is possible only if the memory space is not used
in write mode by another pre-processing thread. If the shared memory is unavailable,
synchronisation on channel core_release occurs. Note that both channels are urgent,
the automaton can't take the outgoing transition after an arbitrary time. In the latter
case, the automaton releases the core and waits for the memory lock. When the lock is

5.3. SHARED_MEMORY TEMPLATE 29

available, the core request is repeated and it waits the core assignment. In both cases
the automaton arrives in the Start_Writing location where it waits for t_save time
units. Once the writing is completed, the memory lock and core are released through
the unlock and core_release channels, respectively.
Now the automaton needs to report the availability of data to control algorithms. To
do this, the automaton uses the channel with index count in the notify_end array. The
array contains a channel for each pre-processing cycle, this avoids possible false data
availability noti�cations due to the execution of di�erent cycles for pre-processing and
control algorithms threads.
Finally, the automaton returns to its initial location and waits for new raw data.
In this template some locations are committed, but this is not mandatory for the correct
operation of the automaton. The automaton also works correctly without the committed
property because all outgoing edge for the locations with this property require synchro-
nisation on an urgent channel. The committed property is used to limit the possible
interlacing of transactions that may occur during model simulation and veri�cation.
This eliminates some possible system evolutions that are not relevant, and results in a
reduction in property veri�cation times. Exclusion of some evolution is possible because
interlacing between transitions involves only transitions that don't increase the clock
values (transactions are instantaneous).

5.3 Shared_Memory template

The Shared_Memory template simulates the management of shared memory written by
some threads. Write access to shared memory must be mutually exclusive and access
list must be managed with FIFO policy.
This template has the following parameters:

• const int A : is the number of threads that want to use the shared memory

• urgent chan &lock[N] : is the binary synchronisation channels array to assign the
memory lock to a speci�c thread

• urgent chan &unlock[N] : is the binary synchronisation channels array to release
the memory lock

• chan &request[N] : is the binary synchronisation channels array to request access
to shared memory

• urgent chan &wait : is the binary synchronisation channel to signal the lock
unavailability

In addition, a int[0, A-1] id_t custom type and an integer variable length are declared.
Every shared memory user has an integer identi�er i in the range [0, A] and two channels
lock[i] and unlock[i]. Instead, the wait channel is the same for all threads. The memory
manager uses three functions: enqueue() to register the memory access request into the
access list; dequeue() to remove the thread id from the list; and next() which returns
the next thread identi�er for the lock assignment.

30 CHAPTER 5. MODEL IMPLEMENTATION

Figure 5.3: Shared memory implementation.

As shown in the Figure 5.3, the initial location, called Free, indicates the availabil-
ity of write access to memory and has two outgoing edges. The edge leading to the
Acquire_Look location is active only if the access list is empty (length = 0) and an
automaton is awaiting synchronisation on the i-th channel of the request array. When
the transition is taken, the thread id i is inserted into the access queue (in the �rst
position because it is empty). In this case, the memory lock is assigned through the
transition leading to the Access location. This transition allows the memory manage-
ment to synchronise only with the automaton waiting on the i-th lock channel, where i
is the �rst thread id in the access list returned by the next() function.
If length > 0 in the Free location, then the lock is assigned to the �rst thread in the
access list.
Location Access represents occupied (write mode) memory status. This location has
two loops that are required to register new memory access requests (through the chan-
nel request[e]) and to indicate that memory is used in write mode by another process
(through the channel wait).
When a thread wants to release the memory lock, the transition outgoing from Ac-
cess location is enabled. The transition removes the thread from the access list (with
dequeue() function) and the memory comes back available and accessible for the next
thread. The ability to release the memory lock is only available for the thread that
owns the lock, the control is executed by setting a guard on the transition using the
next() function.

The full implementation of the template functions is shown in appendix B (Listing
9.1).

5.4. THREADS_NOTIFICATION TEMPLATE 31

5.4 Threads_Noti�cation template

The Threads_Noti�cation template handles input data availability noti�cations. It's
used by pre-processing and control algorithms to signal completion of their execution
and the output data availability in shared memory. At the same time, it's used by
control algorithms and reference signal generators to know when their input data are
available for processing. This synchronisation mechanism requires the con�guration
of dependencies between threads that generate output data and threads involved in
their processing. The con�guration is de�ned by an array of array with the following
organisation:
{{id0,0, id0,1, ..., id0,n−1}, {id1,0, id1,1, ..., id1,n−1}, ..., {idm−1,0, idm−1,1, ..., idm−1,n−1}}
where n is the number of threads that produce output data, m is the number of threads
that await the input data and idj,k ∈ {0, ...,m − 1} ∪ −1 ∀j ∈ {0, ...,m − 1},∀k ∈
{0, ..., n − 1}. In practice, each subarray is associated with a thread and contains the
ids (in increasing order of value) of the threads that generate the data that it needs for
computing. Often a thread only needs the data provided by a subset of the m generating
threads. In this case the associated subarray contains an amount of thread id less than
m, the remaining positions will be �lled with the value -1. The Listing 5.1 shows an
example where a thread waits for data generation by threads 0,1,2 and 3, a thread waits
for data generated by threads 0 and 2, and a thread that only waits for data generated
by the thread 3.

{{0 , 1 , 2 , 3} , {0 , 2 , −1, −1}, {3 , −1, −1, −1}}

Listing 5.1: Example of dependency con�guration array for 4 data generation threads.

This template has the following parameters:

• const int num_sender : is the number of threads that notify data availability (n)

• const int num_receiver : is the number of threads awaiting receipt of the noti�-
cation (m)

• urgent chan ¬ify[N][num_cycle + 1] : are the binary synchronisation channels
array used to notify the data availability

• urgent chan &start[N][num_cycle + 1] : are the binary synchronisation channels
array used by data generating threads to notify data availability

• const int sources[N][N] : is the input dependency con�guration array described
above

32 CHAPTER 5. MODEL IMPLEMENTATION

Figure 5.4: Automaton for synchronisation between threads.

This template has a single location with two loops needed to record data availability
and to notify this availability to the waiting threads. As shown in Figure 5.4, the up-
per loop registers the data availability thanks to the log_noti�cation() function. This
allows to track which thread generated the data and in which cycle, ensuring that there
are no overlapping noti�cations in di�erent execution cycles. Threads notify the data
availability using the appropriate notify[i][j] channels, where j indicates the cycle in
which the thread operates and i indicates the thread id.
Threads that require input data remain awaiting synchronisation on the start[i][j] chan-
nel, where i indicates the thread id and j indicates the cycle in which the thread op-
erates. As shown in the �gure, the lower loop can only be executed if the edge guard
is satis�ed, ie when the function check() return true. This function veri�es whether all
generating threads, whose id is present in the sources subarray, for a speci�c waiting
thread have noti�ed the data availability. If all dependencies are satis�ed for a certain
thread, then the function returns true, otherwise false.

The full implementation of the template functions is shown in appendix C (Listing
9.2).

5.5 Control_Alg template

The Control_Alg template models the execution of control algorithms and storage op-
eration into shared memory. This template has the same Pre_Proc parameters except
for the following:

• urgent chan &start[num_cycle + 1] : are the binary synchronisation channels
array to signal data availability

• const int t_synch : is the time to receive the data availability noti�cation

As shown in the Figure 5.5, the implementation of this template is similar to Pre_Proc.
The template simulates the time between the generation of the data availability noti�-
cation (by the last pre-processing) and the activation of this control algorithm. This is

5.6. OUTPUT TEMPLATE 33

possible by adding the location Waiting_Synch, with y <= t_synch invariant, before
the core request through the channel core_request.
In the model implementation, the clock time_partial are de�ned. This clock is used to
measure the time that the algorithm needs to execute a cycle, which includes the time
for core assignment, the time for access to shared memory and its writing.

Figure 5.5: Automaton for control algorithms thread.

5.6 Output template

The Output template modelling the execution of the algorithms, called output algorithm,
that generate the reference waveforms. These algorithms receive input data processed
by control algorithms through shared memory.
The template has the following parameters:

• urgent chan &start[num_cycle + 1] : are the binary synchronisation channels
array for signalling data availability

• urgent chan &core_request : is the binary synchronisation channel to require a
core

• urgent chan &core_assigned : is the binary synchronisation channel to assign a
core

• urgent chan &core_release : is the binary synchronisation channel to release a
core

• const int t_synch : is the time to receive the data availability noti�cation

• const int t_comp : is the average calculation time for processing

34 CHAPTER 5. MODEL IMPLEMENTATION

Figure 5.6: Templates for DAC supervisory threads.

The implementation of this template is visible in the Figure 5.6, where Waiting is
the initial location. When the automaton is in the initial location, it waits for a data
noti�cation through the channel start (for a speci�c cycle). After synchronisation, the
automaton goes to the Waiting_Synch location and waits for a time equal to t_synch.
This simulates the time needed for the system to send the noti�cation of data availability
to this thread. The next step modelling the request and assignment of a core for
executing the output algorithm. The automaton reaches the Computation location and
waits for t_comp time unit, simulating the execution of the output algorithm. After
the computation, the core is released and the automaton returns to the initial location.
Location End is used only to facilitate the de�nition of some veri�cation queries and is
not required for proper model operation. Even in this template, the committed property
is not essential for proper model operation but reduces possible interlacing between the
transitions. As in other cases, reducing interlacing of transitions leads to a reduction in
query veri�cation time.

5.7 Templates for scheduling

The type of scheduler chosen is decisive for system performance and for this reason is
important to analyse the behavior of the system according to the di�erent cores assign-
ment policies for the real-time threads. Two types of schedulers have been implemented
in this model: Scheduling_Group and Scheduling_Free.
Scheduling_Group provides initial core assignment to individual threads and then the
core can be used by individual threads in order of request according to FIFO policy.
Otherwise, Scheduling_Free does not require an initial core assignment and this is done
automatically by the scheduler. The core assignment depends on the cores workload
when the scheduler receives the �rst core request from a speci�c thread.

Many schedulers de�ne a time slice, usually 100 milliseconds. In the particular case
of this model, threads use cores for a period of time less than 100 milliseconds, making
unnecessary the time slice simulation.

Another feature of modern schedulers that work on SMP systems is the ability to
balance the workloads among CPUs. For this model, balancing is not considered be-
cause during the simulation a limited number of cycles are performed, and the virtual
simulation time is less than the time after which this balancing is performed (if neces-
sary). Balancing generally occurs every 200 milliseconds. As shown in the next section,
the model is generally executed for a maximum of three cycles, with a virtual simulation

5.7. TEMPLATES FOR SCHEDULING 35

time less than 10 milliseconds. Then the CPU workloads balance is not implemented
because it would never executes.

In scheduler implementation, we have assumed that all real-time threads have the
same level of priority.

5.7.1 Scheduler_Group template

The �rst scheduler implemented is the version with prede�ned core allocation, whose
de�nition is contained in the Scheduler_Group template. This scheduler can be used
to simulate the 1-1 assignment where each core is assigned uniquely to a single thread,
or is possible to assign multiple threads to a single core. The ability to con�gure the
scheduler allows the simulation of all possible assignment combinations. This scheduler
allocates a queue of execution requests for each core, managed with FIFO policy. Each
thread must send a request before it can use the core.
Assignment con�gurability is possible by de�ning two-dimensional array with num_core
x num_thread channels, in particular for core_request, core_assignment and core_release
channels. The main idea is to assign an array of num_thread channels to each core,
where each array's channel is associated with a single thread of the system. To facil-
itate con�guration, the channel index in the subarray associated with the core coin-
cides with the thread id. For example, to assign the thread with id 4 to core 1 it is
su�cient to force the automaton that modelling this process to operate on channels
core_request[1][4], core_assignment[1][4] and core_release[1][4]. The choice to de�ne
an array of num_threads channels for each core is due to the need to know with which
thread the scheduler is operating. Every time there is a synchronisation on the index
channel [i][j], the scheduler knows that the operation involves the core i and thread with
id j. This need is more evident for the core assignment to a thread, where the scheduler
informs the thread of the assignment via the core_assignment channel. If each core has
only one of this channel, there may be more processes waiting for synchronisation on
the speci�c core_assignment[i] channel for core i. Since the channel is binary, when the
scheduler activates the synchronisation a waiting thread is randomly selected, violating
FIFO policy. This does not occur if threads waiting for synchronisation use di�erent
channels. In practice, the �xed assignment takes place through the correct con�guration
of the channels needed to use the scheduler.

The template of this scheduler has the following parameters:

• urgent chan &request[num_core][num_thread] : are the binary synchronisation
channels to require a core

• urgent chan &assigned[num_core][num_thread] : are the binary synchronisation
channels to assign a core

• urgent chan &release[num_core][num_thread] : are the binary synchronisation
channels release a core

In addition, a int[0, num_core - 1] id_core and int[0, num_thread - 1] id_t custom
types are declared.

36 CHAPTER 5. MODEL IMPLEMENTATION

Figure 5.7: Implementation of the Scheduler_Group template.

The template implementation is shown in the Figure 5.7. Scheduler implementa-
tion only has one location and three loops needed to perform the request, assignment,
and release operations for cores. The �rst upper left loop shown in the �gure is taken
when a thread with id e requires a core i, ie it is awaiting synchronisation on the
core_request[i][e] channel that coincides with the channel request[i][e] of this template.
When this edge is taken, the function enqueue() that stores the request in the appro-
priate queue according to the required core is executed. Requests are always inserted
at the end of the queue.
The upper right loop allows the scheduler to report the core assignment to a speci�c
thread. This edge syncs only with the channel of the speci�c threads id that is in the
�rst position in the core's queue. The correct channel synchronisation occurs thanks to
the next(i) function, that returns the thread id in the head position in the core i queue.
The last loop allows a thread to release the core, assuming that all threads use the
cores for a time ever lower than the time slice. When this edge is taken, the function
dequeue() removes the thread id from the core queue. In addition, the edge is only
active for those threads whose id is in the �rst queue position for a speci�c core. This
control is not strictly necessary but avoids errors in queue management due to errors in
the cores requests and releases.

The full implementation of the template functions is shown in appendix D (Listing
9.3).

5.7.2 Scheduler_Free template

The second type of scheduler implemented simulates the linux 2.6 scheduler for real-
time threads without �xed core assignments. This scheduler provides two queues for
each core, one for active threads and one for expired threads. When a thread requires
core usage, it is placed in the correct queue of active threads. Subsequently, when it
releases the core, it is placed in the expired threads queue. The active threads queue is
handled with FIFO policy.
The organisation of the channels for requesting, assigning and releasing the core is
di�erent from the previously described scheduler version. In this case, it's enough to
associate a single channel with the threads for each operation (request, assign and

5.7. TEMPLATES FOR SCHEDULING 37

release).
In these schedulers, thread allocation to a core occurs during the �rst core request for
it. The core is chosen by searching the �rst core that has an active queue with the
smallest number of threads. When the core is found, the thread id is inserted into its
active queue. Subsequently, all requests don't require the search of a free core, but only
the insertion of the thread id into the active queue of the core already identi�ed in the
�rst request.
The implementation of this scheduler is in the Scheduler_Free template and has the
following parameters:

• urgent chan &request[num_thread] : are the binary synchronisation channels array
to require a core

• urgent chan &assigned[num_thread] : are the binary synchronisation channels
array to assign a core

• urgent chan &release[num_thread] : are the binary synchronisation channels array
to release a core

As for the Scheduler_Group template, a int[0, num_core - 1] id_core and
int[0, num_thread - 1] id_t custom types are declared.

Figure 5.8: Implementation of the Scheduler_Free template.

The scheduler implementation is visible in the Figure 5.8. The initial location
Init is committed to ensure that the outgoing edge is taken at the beginning of sys-
tem simulation. The outgoing edge from the initial location executes the function
init_assignment(), which initialises to -1 all the elements of an array. This array is the
assignment array, where each element with index i containing the id of the core assigned
to the i-th thread. This edge leads to the second location where the automaton will
remain for the entire execution.

38 CHAPTER 5. MODEL IMPLEMENTATION

The second location has three loops that perform similar functions to those already seen
for the previous scheduler. The higher loop is taken when a thread sends a core request.
In this case, the id of the requesting thread is inserted into the active threads queue of
the assigned core, possibly removed from the expired threads queue. If the thread has
not been assigned to a core (value -1 in the assignment array) then the �rst core with
the smallest number of threads in the active queue is selected.
The central loop is similar to the same edge in the Scheduler_Group template, where
synchronisation on the core assignment channel is only enabled for the thread that is
in the top position in the active threads queue for a speci�c core i.
The last loop allows a thread to release the core, even in this case the time slice
is not considered because it is greater than the running time of the threads. When
this edge is taken, the synchronised thread is removed from the active threads queue
(by remove_run_queue() function) and inserted into the expired thread queue (by
add_expired_queue() function). As with the previous scheduler, it imposes that this
edge is only active for the threads that are actually running on a core.

The full implementation of the template functions is shown in appendix E (Listing
9.4).

5.8 System de�nition

The templates described above implements the basic component that de�ne the real-
time system, and make the model easily con�gurable and totally modular. All templates
are parameterised, allowing the declaration of components that share the same template
but with di�erent con�guration parameters.
This model de�nes 4 components for raw data acquisition, 4 pre-processing units, 3
control algorithms and 4 components for supervising the generation of reference wave-
forms. The 4 pre-processing units process di�erent types of raw data and take the
following names (the value in brackets is the id): Radial_P (0), Toroidal_P (1), Actu-
ators_Currents_P (2) and Axisymmetric_P (3). The units that perform the control
algorithms are named MHD_C (0), Toroidal_C (1) and Axisymmetric_C (2). The last
four components for the reference waveform generation are called MHD_First_Half_O
(0), MHD_Second_Half_O (1), Axisymmetric_O (2) and Toroidal_O (3).
One of the con�guration parameters is the communication time over Gigabit network
and the calculation times for preprocessing algorithms, control algorithms, and �nal
algorithms for generating reference waveforms (also called output alghoritms). In this
model, an average transmission time of 100 µs with a jitter of 10 µs is considered. For
the output algorithms, an average computing time of 30 µs is considered. In addition,
the memory writing time t_save is equal to 1 µs, the time t_synch needed for synchro-
nisation between threads is equal to 10 µs and the VMEs acquisition time is equal to
10 µs. Processing times for other algorithms are given in the Table 5.1 and 5.2. The
mean times given in the tables are obtained by measuring the actual system during its
normal operation.

As already announced, control algorithms need some input data that is produced by
pre-processing threads. In particular the MHD control (MHD_C) algorithm requires all
the data provided by the 4 pre-processing, otherwise the Toroidal_C and Axisymmet-

5.8. SYSTEM DEFINITION 39

Radial_P 60 µs

Toroidal_P 14 µs

Actuators_Currents_P 15 µs

Axisymmetric_P 80 µs

Table 5.1: Average times measured for pre-processing algorithms.

MHD_C 60 µs

Toroidal_C 34 µs

Axisymmetric_C 20 µs

Table 5.2: Average times measured for control algorithms.

ric_C algorithms only need data processed by the Axisymmetric_P pre-processing. In-
stead, for the �nal output algorithms, MHD_First_Half_O and MHD_Second_Half_O
need the data inputs provided by MHD_C, otherwise Axisymmetric_O requires data
from Axisymmetric_C and Toroidal_O needs Toroidal_C data. The two con�guration
arrays are visible in the Listing 5.2. In the listing there is a subarray for control algo-
rithms with only -1 values, this is because the fourth element is not used but is required
because the template Threads_Noti�cation expects an array with N xN dimensions.

const i n t s ou r c e s_con t r o l_a l g [N] [N] = {{0 , 1 , 2 , 3} , {3 , −1, −1, −1}, {3 ,
−1, −1, −1}, {−1, −1, −1, −1}}; // con t r o l_a l g

const i n t sources_output [N] [N] = {{0 , −1, −1, −1}, {0 , −1, −1, −1}, {2 ,
−1, −1, −1}, {1 , −1, −1, −1}};

Listing 5.2: Arrays for con�guration of input sources for control algorithms and for
output algorithms.

Pre-processing and control threads need a shared memory space for storing their
output data. The two process groups must store the data on two di�erent memory
spaces, so the model allocates two di�erent instances of the Shared_Memory template.

The last con�guration concerns the type of scheduler to be used in the simulation. In
the case of �xed core assignment, we must associate the correct synchronisation channels
to the threads in accordance with the assignment we want to obtain, as explained at
the beginning of this section. Instead, the totally free scheduler only requires that each
timed automata has its own synchronisation channel (for request, assign and release
operation).

40 CHAPTER 5. MODEL IMPLEMENTATION

Chapter 6

Model validation

The Uppaal main feature allows to de�ne and verify the properties that the model has
to satisfy. Properties are implemented with a speci�c language and are called query,
as described in Chapter 2. Some queries have been de�ned to validate the correctness
of the implemented model and to determine the execution times of the various system
threads. Each query is evaluated for all model con�gurations, in particular for the
di�erent types and con�gurations of the schedulers considered.
Simulated scenarios are the following:

1. static thread allocation in a one-to-one thread-core relationship by using the
Scheduler_Group template.

2. static thread allocation of 6 cores, as shown in the Table 6.1, by using the
Scheduler_Group template.

3. free allocation of 11 core by using the Scheduler_Free template.

Core 0 1 2

Threads

Radial_P

and

Toroidal_P

Actuators_Currents_P

and

Axisymmetric_P

MHD_C

Core 3 4 5

Threads

Toroidal_C

and

Axisymmetric_C

MHD_First_Half_O

and

MHD_Second_Half_O

Axisymmetric_O

and

Toroidal_O

Table 6.1: Core allocation for the second scenario.

As already mentioned, each model component performs up to 3 execution cycles. We
chose to limit the number of cycles to 3 because it represents the minimum number of
iterations for analyse the e�ect of the pipeline (see Figure 3.7) on the system behavior.
If the number of cycles increases, then the possible dynamic behaviors of the model

41

42 CHAPTER 6. MODEL VALIDATION

would increase enormously, making property veri�cation di�cult.

All queries have been validated using a Uppaal remote server installed on an Amazon
AWS EC2 instance [23]. The instance used is the R4.large, which has 2 virtual CPUs,
15.25 GiB of RAM, and uses Intel Xeon E5-2686 v4 processors.

6.1 Verify the correct execution of the model

The �rst implemented query allows to verify if the model runs correctly and executes
all the required cycles. Each modelled thread must run a number of cycles equal to
num_cycle. The model has some threads that depend on others because they need
their output to execute the algorithm. For this reason, if a pre-processing or control
threads doesn't run all the cycles, then even the threads awaiting their output will not be
able to execute all the cycles. More speci�cally, considering a pre-processing algorithm
that only executes c cycles (with c < num_cycle), then the control algorithm will only
execute c cycles because it doesn't have input data for the c + 1 cycle.
The query implementation is visible in the Listing 6.1.

A [] dead l ock imp ly
output0 . count == num_cycle and

output1 . count == num_cycle and

output2 . count == num_cycle and

output3 . count == num_cycle

Listing 6.1: Query for check the correct execution of the model.

As shown in the listing, the query only veri�es if output algorithms execute a num-
ber of cycles equal to num_cycle. Is possible to restrict the control to output algorithms
because if any other threads did not complete all the cycles, then even the output al-
gorithms wouldn't complete all the cycles.

In all scenarios considered, this query has obtained positive validation, con�rming
the correctness of the model.

6.2 Model execution time

In order to be able to analyse the behavior of the model for di�erent scheduler types
and con�gurations, is necessary to measure the model execution times. Execution time
is the time interval that begins with the �rst raw data acquisition and ends with the
generation of the last reference waveform in the last cycle for the output threads. Uppaal
does not allow the de�nition of a query that can provide the maximum or minimum
value of a clocks in a speci�c system state. For this reason, it's necessary to implement a
query to verify whether the value of a speci�c clock takes a certain value or an inequality
relation is satis�ed. The two queries implemented are visible in the Listing 6.2 and 6.3,
and allow to measure the maximum and minimum execution time, respectively. These
queries use the master_clock that is initialised to 0 at the model execution startup.
The maximum execution time is detected by attempts, by changing the x value for the
master_clock <= x inequality. If for a given value of x the query is not satis�ed, then

6.2. MODEL EXECUTION TIME 43

the maximum value is greater than x, otherwise the maximum is equal or less than x.
Then the maximum execution time coincides with the smallest value of x for which the
query is satis�ed. The minimum execution time is determined in a similar way, but in
this case the minimum time coincides with the highest value of x for which the query
in the Listing 6.3 is satis�ed.

A [] (output0 . Complete and output0 . count == num_cycle) or

(output1 . Complete and output1 . count == num_cycle) or

(output2 . Complete and output2 . count == num_cycle) or

(output3 . Complete and output3 . count == num_cycle)
imp ly maste r_c lock <= 769

Listing 6.2: Query to determine the maximum execution time.

A [] (output0 . Complete and output0 . count == num_cycle) or

(output1 . Complete and output1 . count == num_cycle) or

(output2 . Complete and output2 . count == num_cycle) or

(output3 . Complete and output3 . count == num_cycle)
imp ly maste r_c lock >= 637

Listing 6.3: Query to determine the minimum execution time.

The times obtained in the di�erent scenarios for one cycle or three cycles are shown in
the Table 6.2. The �rst observation concerns the minimum execution times, for both
cycle numbers the minimum times of the three scenarios coincide. This does not im-
ply that in the best case the three scheduling con�gurations are equivalent, because in
scenarios 2 and 3 the scheduler performs context switches (the cores are shared with
two or more threads). The context switch time is not considered in the model, and
for this reason the minimum times coincide with the case of one-to-one assignment of
scenario 1. Scenario 1 has a maximum execution times lower than the other two cases
for both cycle numbers. This shows how the �xed thread allocation with a one-to-one
thread-core relationship has the best execution times, as stated in [1].

one cycle 3 cycles

Scenario Minimum Time Maximum Time Minimum Time Maximum Time

1 237 290 637 690

2 237 379 637 779

3 237 324 637 769

Table 6.2: Execution times [µs] obtained with di�erent schedulers.

From the results obtained, it's possible to observe the bene�ts of the software pipeline
organisation (see Figure 3.7). Table 6.3 shows the execution times in the absence of soft-
ware pipeline organisation, these values are obtained by multiplying by 3 the maximum
and minimum times for a single cycle in Table 6.2. In the case with pipelines, times are
lower than the case without it for all three scenarios, as expected. This demonstrates
that the model correctly simulates the presence of the pipeline organisation.

44 CHAPTER 6. MODEL VALIDATION

3 cycles without pipeline

Scenario Minimum Time Maximum Time

1 711 870

2 711 1137

3 711 972

Table 6.3: Execution times [µs] for di�erent schedulers without pipeline.

During the di�erent executions of the model is possible to noticed that the free
scheduler (scenario 3) assigns the core when a thread executing his �rst cycle. This
assignment only involves the �rst 4 core of 11 available, due to the core choice approach
used by this scheduler for assign a core to a thread. To prove what's being observed,
a new query has been implemented (Listing 6.4). This query veri�es if there is a path
where the cores with id from 4 to 10 are assigned. To do this check, the query uses the
array threads_on_core (de�ned in the Scheduler_Free template) which indicates how
many threads are assigned to each core of the system. For example, threads_on_core[i]
indicates how many threads use the core with id i.

E<> (s c h e d u l e r . threads_on_core [4] != 0) or

(s c h e d u l e r . threads_on_core [5] != 0) or

(s c h e d u l e r . threads_on_core [6] != 0) or

(s c h e d u l e r . threads_on_core [7] != 0) or

(s c h e d u l e r . threads_on_core [8] != 0) or

(s c h e d u l e r . threads_on_core [9] != 0) or

(s c h e d u l e r . threads_on_core [1 0] != 0)

Listing 6.4: Query to check if only the �rst four core (with id from 0 to 3) are assigned.

If the property expressed by this query is veri�ed, then at least one of the cores with id
between 4 and 10 is assigned to one or more threads.
From the tests performed this property is not veri�ed, showing that the observation
made is true for scenario 3. This result indicates that the same execution times for
scenario 3 are obtained for any number of available cores greater or equal to 4.

The time determined with queries 6.2 and 6.3 when num_cycle = 1 coincides with
the latency of the system in case of a single cycle, it measures the time between the
start of the raw data acquisition and the generation of the last reference waveforms for
the cycle 1. To understand how the scheduler a�ects the behavior of the control system,
it's also necessary to determine the maximum and minimum latency times for cycles 2
and 3. To do this, the queries in the listing 6.5 and 6.6 have been implemented. These
queries test a condition on the clock t, which is initialised to zero each time the raw data
acquisition begins. In order to determine the latency for the i-th cycle, it's necessary to
set num_cycle = i.
Note that these two queries are a special case of those in the Listing 6.2 and 6.3.

6.2. MODEL EXECUTION TIME 45

A [] (output0 . Complete and output0 . count == 2) or

(output1 . Complete and output1 . count == 2) or

(output2 . Complete and output2 . count == 2) or

(output3 . Complete and output3 . count == 2)
imp ly t <= 290

A [] (output0 . Complete and output0 . count == 2) or

(output1 . Complete and output1 . count == 2) or

(output2 . Complete and output2 . count == 2) or

(output3 . Complete and output3 . count == 2)
imp ly t >= 237

Listing 6.5: Queries to �nd the maximum and minimum latency times for cycle 2.

A [] (output0 . Complete and output0 . count == 3) or

(output1 . Complete and output1 . count == 3) or

(output2 . Complete and output2 . count == 3) or

(output3 . Complete and output3 . count == 3)
imp ly t <= 290

A [] (output0 . Complete and output0 . count == 3) or

(output1 . Complete and output1 . count == 3) or

(output2 . Complete and output2 . count == 3) or

(output3 . Complete and output3 . count == 3)
imp ly t >= 237

Listing 6.6: Queries to �nd the maximum and minimum latency times for cycle 3.

Latency for cycle 1 Latency for cycle 2

Scenario Minimum Time Maximum Time Minimum Time Maximum Time

1 237 290 237 290

2 237 379 237 379

3 237 324 237 349

Latency for cycle 3

Scenario Minimum Time Maximum Time

1 237 290

2 237 379

3 237 369

Table 6.4: Latency times [µs] for cycles 1, 2 and 3. The latency times for cycle 1 are
those of the "one cycle" column in Table 6.2.

The latencies obtained for cycles 1, 2 and 3 are shown in Table 6.4. From these results
it's noted that in scenarios 1 and 2 the maximum and minimum latency times coincide

46 CHAPTER 6. MODEL VALIDATION

in each cycle. This indicates that for both schedulers, the latency varies over a constant
time interval for each execution cycle.
Instead in scenario 3 with free scheduler, the maximum latency time increases in cycles 2
and 3 (compared to the �rst). This shows how with this type of scheduler the latency can
increase from a cycle to the next, which proves that the best control system con�guration
doesn't require the use of the free scheduler.

6.3 Times between an output generation and the subse-

quent

System analysis requires the study of the time variation between the i-th output gener-
ation and the subsequent generation for di�erent types of schedulers and their settings.
In practice, for each of the four output algorithms, the maximum and minimum time
between an output generation and the subsequent is measured for each scenario. To
determine these times, the two queries in the Listing 6.7 and 6.8 are implemented for
each output thread. In both queries, a condition is imposed on the value of the clock
time when the automaton is in the Complete location (see Figure 5.6). In this case, the
value of the clock is considered only when the control algorithms have execute at least
one cycle. The time measured in the �rst cycle is discarded because it coincides with
the time between the start of the simulation and the generation of the last output (is
the latency of the system).

A [] output0 . Complete and output0 . count > 1 imp ly output0 . t ime <= 240

Listing 6.7: Query to determine the maximum time between an output generation and
the subsequent for the MHD_First_Half_O thread (with id 0).

A [] output0 . Complete and output0 . count > 1 imp ly output0 . t ime >= 160

Listing 6.8: Query to determine the minimum time between an output generation and
the subsequent for the MHD_First_Half_O thread (with id 0).

Even in this case, the maximum and minimum times are determined by attempts.
Table 6.5 shows the results obtained by performing three cycles (num_cycle = 3). Sce-
narios 2 and 3 have a greater di�erence between maximum and minimum times than
scenario 1. At the same time, scenario 1 has a minimum times greater than the other
two cases. This does not imply that the type of scheduler and its con�guration used
in scenarios 2 and 3 provide better results than the �rst case. In fact, in the �rst case,
maximum times recorded are lower respect maximum times in the other two scenarios.
For the latter reason and for the smallest variation between the maximum and minimum
times, the �rst scenario with �xed and one-to-one thread-core assignment is preferable.
Also in the �rst scenario, times are closer to the sampling period of 200 µs than the
other cases.

In scenario 1, the maximum and minimum times of MHD_First_Half_O and
MHD_Second_Half_O threads are the same, this observation is also valid for Ax-
isymmetric_O and Toroidal_O. This is because the two thread groups have the same

6.3. TIMES BETWEEN AN OUTPUT GENERATION AND THE SUBSEQUENT47

MHD_First_Half_O MHD_Second_Half_O

Scenario Minimum Time Maximum Time Minimum Time Maximum Time

1 190 210 190 210

2 160 240 160 240

3 91 326 91 326

Axisymmetric_O Toroidal_O

Scenario Minimum Time Maximum Time Minimum Time Maximum Time

1 187 213 187 213

2 84 316 105 293

3 117 285 119 281

Table 6.5: Maximum and minimum times [µs] between an output generation and the
subsequent.

dependencies for input data and each of them has the exclusive use of a core (they can
start at the same instant).
Similarly, times for MHD_First_Half_O and MHD_Second_Half_O are the same in
scenario 2 and 3. Regarding scenario 2, the times coincide because the two threads share
the same core and have the same input data dependencies. In this case, only one thread
at a time can be executed, and therefore the dynamic evolution of the system considers
the case where MHD_First_Half_O is executed before MHD_Second_Half_O and
vice versa. In scenario 3, we can't make assumptions about the cores assignments to
these threads. However, it's possible to check if the two threads are always assigned to
the same core. This check is done by the query in the Listing 6.9, where the thread
MHD_First_Half_O has id 7 and MHD_Second_Half_O has id 8. The query uses
the core_assignment array, declared in the Scheduler_Free template, that associates at
each thread the assigned core id. This property is veri�ed and therefore the assignment
to the same core isn't guaranteed.
Note that the implemented query returns true when these threads are assigned to dif-
ferent cores.

E<> ((output0 . Complete and output0 . count == 1) or

(output1 . Complete and output1 . count == 1)) and

(s c h e d u l e r . co re_ass ignment [7] != s c h e d u l e r . co re_ass ignment [8])

Listing 6.9: Query to check if there is a case where MHD_First_Half_O and
MHD_Second_Half_O are assigned to two di�erent cores.

48 CHAPTER 6. MODEL VALIDATION

6.4 Execution times of the MHD control algorithm

The most critical algorithm is the MHD control that allows to limit plasma instabilities.
For this reason, it's important to evaluate how the type of scheduler used can a�ect the
execution times of this algorithm. The measured time considers the core assignment
time, the calculation time, and the time to save the data in shared memory.
To determine the maximum and minimum executing times, several attempts are made
using the queries visible in the Listing 6.10 and 6.11, respectively. Both queries use the
clock time_partial de�ned in the Control_Alg template, as shown in the Figure 5.6.

A [] c on t r o l_a l g0 . End imp ly con t r o l_a l g0 . t ime_pa r t i a l <= 106

Listing 6.10: Query to determine the maximum execution time of the MHD control.

A [] c on t r o l_a l g0 . End imp ly con t r o l_a l g0 . t ime_pa r t i a l >= 71

Listing 6.11: Query to determine the minimum execution time of the MHD control.

In practice, the two queries determine if the time_partial clock in the location End,
for the instance representing the MHD control of the Control_Alg template, satis�es a
certain inequality time_partial • x, where • ∈ {≤,≥}.
Also in this case, the maximum execution time coincides with the smallest value of x
that satis�es the property in the Listing 6.10. Otherwise, the minimum execution time
coincides with the highest value of x that satis�es the property in the Listing 6.11.

Scenario Minimum Time Maximum Time

1 61 61

2 61 61

3 61 96

Table 6.6: Execution time [µs] of the MHD control algorithm.

The measured times by executing three cycles (num_cycle = 3) are visible in Table 6.6.
The results obtained show that recorded times in scenario 1 and 2 are identical, and
coincides with the running time of the MHD algorithm that is equal to 61 µs (see section
5.8). This indicates that in both cases the MHD control algorithm doesn't have to wait
for the core assignment, and doesn't even wait to acquire the lock required for write
in shared memory. The core acquisition time is zero since in both scenarios the MHD
control thread has the exclusive use of the core (no context switch). Otherwise, the lock
acquisition time is zero because all control algorithms �nish their execution before the
access request to shared memory by MHD algorithm. The MHD control immediately
acquires the lock because it's not owned by any other threads. These observations are
valid for each cycle of the MHD algorithm execution, because the maximum and mini-
mum time coincide for each cycle.
In scenario 3, the MHD control thread can be assigned to a core in a non-exclusive way
and then compete with other threads for its use. For this reason, the core acquisition

6.4. EXECUTION TIMES OF THE MHD CONTROL ALGORITHM 49

time is not always zero and the algorithm may have to wait for the write-lock availabil-
ity. What this entails is visible in the Table 6.6, where the maximum execution time of
the MHD algorithm is greater than the other scenarios.
This analysis also concludes that the best execution times are obtained when the algo-
rithm uses a core assigned exclusively to him.

The results provided by the queries considered in this section show the limit of the
simulated model. Figure 6.1 shows the real execution time distribution for the MHD
control if the scheduler is free to assign the core to the threads, as in the scenario 3.
This execution time does not take into account the time for core acquisition, but instead
considers the lock acquisition time and the time for memory writing [1]. The execution
time shown in the �gure has two peaks that are not detected in the simulations of this
model. Non-detection is due to the inability to simulate all aspects of a Linux oper-
ating system. For example, the model does not consider the CPU cache management,
Translation Lookaside Bu�er (TLB) management, and other aspects that can a�ect the
execution time. The model can't be extended to consider all the major aspects of the
operating system that may a�ect execution times, because the model would become too
complex and computationally heavy.

Figure 6.1: Real execution time of MHD control in a con�guration in which the Linux
scheduler is free to assign threads to any core [1].

50 CHAPTER 6. MODEL VALIDATION

Chapter 7

Query veri�cation times

Queries are a fundamental tool to verify the model properties. Every query requires
a veri�cation time that depends on the number of states on which the conditions are
evaluated. For this reason, if the possible dynamic evolution of the model increases then
the number of states to be analysed also increases.
Table 7.1 shows the veri�cation time of the main queries used in Chapter 6. Except
for column "One Cycle", all the times in the table refers to queries veri�ed for the
model that executes 3 cycles. These times are obtained by averaging the times of �ve
independent veri�cations, without the reuse option of Uppaal. This option allows to
reuse part of the previous veri�cation processing for the same model con�gurations.
The main bene�t is to reduce the time of property analysis.

Execution Time

One Cycle 3 Cycles

Scenario Minimum Time Maximum Time Minimum Time Maximum Time

1 0,8 1,3 4,3 4,9

2 0,4 0,5 941 914

3 8 16 3300 1601

Time between an output and

the subsequent
MHD Control Execution Time

Scenario Minimum Time Maximum Time Minimum Time Maximum Time

1 20,9 4,8 4,4 4,3

2 1896 1635 977 934

3 6365 4013 3492 3401

Table 7.1: Query veri�cation times [s] when the condition is veri�ed.

The table shows that in the scenario 2 and 3 the veri�cation times are higher than
scenario 1. This is due to a greater dynamism in the evolution of the model in the two

51

52 CHAPTER 7. QUERY VERIFICATION TIMES

scenarios, thanks to the greater possibility of interlacing between transitions respect to
scenario 1.

As highlighted in Chapter 6, queries allow to determine execution times by attempts.
The approach to determine the maximum and minimum times it's based on the query
test with a value close to the maximum or minimum that we want to determine. Based
on the query result, the test is performed on a value greater or less than the previous
one. This requires performing a large number of tests, so we must try to reduce the
time that Uppaal takes for veri�cation. In particular, it's important to know in a short
time whether a certain value doesn't satisfy the relationships expressed by the query.
Queries to determine execution times impose a condition that must be veri�ed for all
model states. When Uppaal checks these query, return false statements as soon as it
�nds a state that violates the condition, avoiding the complete analysis of all state
sequences. If a failure in query execution requires a similar veri�cation time to those
in the table, then the determination of the maximum and minimum times would be
di�cult to accomplish.
In general, Uppaal adopts a breadth �rst exploration approach, where the analysis of
the tree, that represents the evolutions of the model, starts from the root node and
explores the neighbor nodes �rst, before moving to the next level of neighbors. Most
veri�ed queries require condition analysis of system states that are in the �nal part
of the sequence of states of any possible dynamic evolution of the model. This would
require the analysis of a long sequence of states before it could get a false result for the
query. So a depth �rst approach is preferable to breadth �rst, where condition analysis
starts from the root node of the tree and explores all branches before backtracking.
Uppaal allows the choice of the space exploration strategy and also implements the
depth �rst technique. In this way, in the worst case and for heavyer computational
queries we can get a false result in a maximum of 10 minutes (a query veri�cation may
take more than one hour).

To speed up the property validation, Uppaal provides the reuse option. When reuse
is active, Uppaal reuse portions of the state space generated during the analysis of
previous queries for the same model con�gurations. The veri�cation time reduction
obtainable with this option is mainly observed for queries that determine the model
execution time, where the veri�cation time is reduced by approximately 40%.

In addition to the veri�cation time, we must also consider the amount of RAM
needed to run the veri�cation process and to store the evolution tree of the model on
which the property analysis takes place. The RAM consumption during the veri�cation
performed is never more than 4GB. Due to the availability of primary memory provided
by the EC2 instance, this is not considered a critical point.

Another factors a�ect the property veri�cation time. The Uppaal server process,
called socketserver, is not multithreaded and this is observable by analysing it behavior.
Figure 7.1 shows the screen obtained through the Htop software [24], where is possible
to see that the socketserver process (highlighted in blue) has only one thread child called
server. This doesn't allow the Uppaal server to exploit the various vCPUs that are made
available by the Amazon AWS instance or more in general by the recent computers.

53

Figure 7.1: Htop screenshot with threads running on Amazon EC2 instance.

As shown in this chapter, the time to verify a property can be very high due to the
multiple dynamic evolution of the model. This doesn't allow the creation of models
that simulate every aspect of the system, because some queries may require very high
veri�cation times. In the speci�c case of the RFX system, it isn't possible to model
some aspects of the operating system and of the real-time algorithms, and at the same
time keeping the property veri�cation time low. For example, adding a jitter to the
computing time of real-time algorithms the model becomes heavy for the simulation,
that may requires up to 3 hours for a single veri�cation. For these reasons, it's important
to model only the most signi�cant aspects of the system.

54 CHAPTER 7. QUERY VERIFICATION TIMES

Chapter 8

Conclusions and future works

Uppaal is the fundamental tool for developing this thesis. Its versatility has allowed
to model the most signi�cant aspects of the real-time control system used in the RFX
experiment. Query de�nition and veri�cation is a very powerful and generic tool that
o�ers the ability to test whether the model satis�es certain properties, allowing to de-
termine the execution times of system components. The limits of modelling are evident
when queries are being veri�ed. In fact, the veri�cation time depends on the complexity
of the model and its possible dynamic evolution. Whenever simulation considers new
aspects of the real-time system or operating system, such as jitter time for algorithms
execution, the veri�cation time may increase until it doesn't allow the analysis in an
acceptable time. For this reason, it's necessary to model only the aspects of the system
and operating system that most a�ect the behavior of the control system.
Even in the presence of some limitations, Uppaal has allowed to develop a correct model
that simulates the behavior of the real-time control system and operating system. The
most important aspects of the control system are the synchronisation mechanisms be-
tween thread, the simulation of the algorithm execution, shared memory management
with mutual exclusion, and subsequent writing. For the operating system, it was pos-
sible to develop models describing the execution of two schedulers types for real-time
tasks, in particular �xed core allocation and free assignment.
From queries validation, we can con�rm what is shown in [1]. In fact, thanks to the
results obtained, it's possible to state that the best con�guration of the control system
involves the use of �xed assignment with one-to-one thread-core relationship (scenario
1). In this case, the latency times, the execution times of the MHD control algorithm
and the times between output generation and the subsequent, guarantee better perfor-
mance for the control system than the other two scenarios.

A possible future development for this thesis is to implement a simulation where
the physical cores are virtually doubled by hyperthreading. This would allow a more
in-depth comparison with the measurements of the real control systems reported in [1].
A second development considers the re�nement of the model, introducing new aspects
of the operating system and control system. An aspect of the control system not con-
sidered in the current model is the presence of jitter in the execution time of algorithms
for the real-time threads. Currently the model considers a constant execution time for
algorithms but in reality this time varies within a range. For the operating system, we

55

56 CHAPTER 8. CONCLUSIONS AND FUTURE WORKS

can model the time it takes to perform a context switch or the CPU cache manage-
ment. These features are not currently considered because the template becomes too
complex for queries veri�cation, requiring in the worst case up to 5-6 hours for a single
veri�cation. Future Uppaal optimisations could make possible the model improvements.

Chapter 9

Appendix

9.1 Appendix A

Syntax of expressions in BNF is the following:

Expression→ ID | NAT
| Expression ′[′ Expression ′]′

| ′(′ Expression ′)′

| Expression ′ + +′ | ′ + +′ Expression

| Expression ′ −−′ | ′ −−′ Expression
| Expression AssignOp Expression
| UnaryOp Expression
| Expression BinaryOp Expression
| Expression ′?′ Expression ′ :′ Expression
| Expression ′.′ID

(9.1)

UnaryOP → ′ −′ | ′!′ | ′not′ (9.2)

BinaryOp→ ′ <′ | ′ <=′ | ′ ==′ | ′! =′ | ′ >=′ | ′ >′

| ′ +′ | ′ −′ | ′ ∗′ | ′/′ | ′%′ | ′&′

| ′|′ | ′ˆ′ | ′ <<′ | ′ >>′ | ′&&′ | ′||′

| ′ <?′ | ′ >?′ | ′and′ | ′or′ | ′imply′

(9.3)

AssignOp→ ′ :=′ | ′+ =′ | ′− =′ | ′∗ =′ | ′/ =′ | ′% =′

| ′| =′ | ′& =′ | ′ˆ =′ | ′ <<=′ | ′ >>=′
(9.4)

57

58 CHAPTER 9. APPENDIX

9.2 Appendix B

t ypede f i n t [0 , A−1] id_t ;
id_t queue [A] ;
i n t [0 , A] l e n g t h ;

// Puts an e l ement at the end o f the queue
vo id enqueue (id_t e) {

queue [l e n g t h++] = e ;
}
// Removes the f i r s t e l ement o f the queue
vo id dequeue () {

i n t i = 0 ;
l e n g t h −= 1 ;
wh i l e (i < l e n g t h)
{

queue [i] = queue [i + 1] ;
i ++;

}
queue [i] = 0 ;

}
// Retu rns the f i r s t e l ement o f the queue
id_t next () {

r e t u r n queue [0] ;
}

Listing 9.1: Functions implementation for the Shared_Memory template.

9.3 Appendix C

t ypede f i n t [0 , num_sender − 1] id_sender ;
t ypede f i n t [0 , num_rece iver − 1] i d_ r e c e i v e r ;
t ypede f i n t [0 , num_cycle] c y c l e ;
boo l l ogbook [num_sender] [num_cycle + 1] ;

// R e g i s t r a t i o n o f the n o t i f i c a t i o n
vo id l o g_ n o t i f i c a t i o n (i n t i , i n t j) {
logbook [i] [j] = t r ue ;

}
//Check i f a l l i n pu t data a r e a v a i l a b l e
boo l check (i n t i , i n t j) {
i n t k ;
f o r (k = 0 ; k < num_sender ; k++){
i f (s o u r c e s [i] [k] < 0)
r e t u r n t r ue ; // A l l i n p u t s a r e a v a i l a b l e

i f (logbook [s o u r c e s [i] [k]] [j] == f a l s e)
r e t u r n f a l s e ;

}
r e t u r n t r ue ;

}

Listing 9.2: Functions implementation for the Threads_Noti�cation template.

9.4. APPENDIX D 59

9.4 Appendix D

t ypede f i n t [0 , num_core − 1] id_core ;
t ypede f i n t [0 , num_thread − 1] id_t ;

id_t queue [num_core] [num_thread] ;
i n t [0 , num_thread − 1] l e n g t h [num_core] ;

// Puts an e l ement at the end o f the queue f o r co r e " i "
vo id enqueue (id_core i , id_t e) {

queue [i] [l e n g t h [i]++] = e ;
}
// Removes the f i r s t e l ement o f the queue f o r co r e " i "
vo id dequeue (id_core i) {

i n t k = 0 ;
l e n g t h [i] −= 1 ;
wh i l e (k < l e ng t h [i])
{

queue [i] [k] = queue [i] [k + 1] ;
k++;

}
queue [i] [k] = 0 ;

// Retu rns the f i r s t e l ement o f the queue f o r co r e " i "
id_t next (id_core i) {

r e t u r n queue [i] [0] ;
}

Listing 9.3: Functions implementation for the Scheduler_Group template.

9.5 Appendix E

t ypede f i n t [0 , num_core − 1] id_core ;
t ypede f i n t [0 , num_thread − 1] id_t ;

i n t [−1 , num_core − 1] core_ass ignment [num_thread] ;
i n t [0 , num_thread] threads_on_core [num_core] ;

id_t run_queue [num_core] [num_thread] ;
id_t exp i red_queue [num_core] [num_thread] ;

i n t [0 , num_thread − 1] l ength_run [num_core] ;
i n t [0 , num_thread − 1] l e ng th_exp i r e d [num_core] ;

// I n i t
vo id i n i t_a s s i g nmen t () {
i n t i ;
f o r (i = 0 ; i < num_thread ; i++)
core_ass ignment [i] = −1;

}

60 CHAPTER 9. APPENDIX

// As s i g n s the th r ead to the co r e i f i t ' s the f i r s t r e q u e s t and r e t u r n the
core_id

i d_core co r e_as s i gn (id_t t) {
i f (core_ass ignment [t] != −1)
r e t u r n core_ass ignment [t] ; //Core a l r e a d y a s s i g n e d

e l s e {
i n t min = num_thread ;
id_core co r e ;

// S e l e c t the co r e w i th l e s s work load on run_queue
i n t i ;
f o r (i = 0 ; i & l t ; num_core ; i++){
i f (l ength_run [i] < min) {
min = length_run [i] ;
c o r e = i ;

}
}

core_ass ignment [t] = co r e ;
threads_on_core [co r e]++;

r e t u r n co r e ;
}

}

// Puts an e l ement at the end o f the run_queue f o r the c o r r e c t co r e
vo id add_run_queue (id_t t) {
id_core co r e ;
co r e = co r e_as s i gn (t) ;
run_queue [co r e] [l ength_run [co r e]++] = t ;

}

// Puts an e l ement at the end o f the exp i red_queue f o r the c o r r e c t co r e
vo id add_expired_queue (id_t t) {
id_core co r e = 0 ;
co r e = co r e_as s i gn (t) ;
exp i red_queue [co r e] [l e ng th_exp i r e d [co r e]++] = t ;

}

// Removes the e l ement " t " o f the exp r i r ed_queue f o r the c o r r e c t co r e
vo id remove_expired_queue (id_t t) {
i n t k = −1, i ;

id_core co r e = 0 ;
co r e = co r e_as s i gn (t) ;

f o r (i = 0 ; i < l eng th_exp i r e d [co r e] ; i++){
i f (exp i red_queue [co r e] [i] == t) {
k = i ;
i = l eng th_exp i r e d [co r e] ;

}
}

i f (k >= 0) {
l eng th_exp i r e d [co r e] −= 1 ;
wh i l e (k < l eng th_exp i r e d [co r e])
{

exp i red_queue [co r e] [k] = exp i red_queue [co r e] [k + 1] ;

9.5. APPENDIX E 61

k++;
}
exp i red_queue [co r e] [k] = 0 ;

}
}

// Removes the f i r s t e l ement o f the run_queue f o r the c o r r e c t co r e
vo id remove_run_queue (id_t t) {
i n t i , k = 0 ;

i = co r e_as s i gn (t) ;

l ength_run [i] −= 1 ;
wh i l e (k < length_run [i])
{

run_queue [i] [k] = run_queue [i] [k + 1] ;
k++;

}
run_queue [i] [k] = 0 ;

}

// Retu rns the f i r s t e l ement o f the run_queue f o r s p e c i f i c co r e
i n t next (id_core i) {
i f (l ength_run [i] > 0)

r e t u r n run_queue [i] [0] ;
e l s e

r e t u r n −1;
}

Listing 9.4: Functions implementation for the Scheduler_Free template.

62 CHAPTER 9. APPENDIX

Bibliography

[1] G. Manduchi, A. Luchetta, and C. Taliercio, �The new multicore real-time control
system of the rfx-mod experiment,� 2013. Consorzio RFX, Padova Italy.

[2] A. C. Neto, F. Sartori, F. Piccolo, R. Vitelli, G. D. Tommasi, L. Zabeo, A. Bar-
balace, H. Fernandes, D. F. Valcarcel, and A. J. N. Batista, �Marte: A multi-
platform real-time framework,� IEEE Transactions on Nuclear Science, vol. 57(2),
pp. 479�486, April 2010.

[3] G. Manduchi, A. Barbalace, A. Luchetta, A. Soppelsa, and E. Zampiva, �Upgrade of
the rfx-mod real time control system,� Fusion Engineering and Design, vol. 87(12),
pp. 1907�1911, June 2012.

[4] G. Behrmann, A. David, and K. G. Larsen, A Tutorial on UPPAAL 4.0.
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf. 28 Nov
2006.

[5] Z. Gu, Z. Wang, and H. Chen, �A model-checking approach to schedulability analy-
sis of global multiprocessor scheduling with �xed o�sets,� Int. J. Embedded System,
vol. 6, pp. 176�187, 2014.

[6] Uppaal o�cial site. http://www.uppaal.org. Online in date 10/05/2017.

[7] Tool Environment for Validation and Veri�cation of Real-Time Systems.
https://www.it.uu.se/research/group/darts/papers/texts/uppaal-pamphlet.pdf.

[8] K. G. Larsen, P. Pettersson, and W. Yi, �Uppaal in a nutshell.�

[9] UPPAAL 4.0: Small Tutorial. 16 Nov 2009.

[10] K. G. Larsen, P. Pettersson, and W. Yi, �Compositional and symbolic model-
checking of real-time systems,� Proceedings, 16th IEEE Real-Time Systems Sym-
posium, pp. 76�87, December 1995. IEEE Computer Society Press.

[11] J. Bengtsson and W. Yi, �Timed automata: Semantics, algorithms and tools.�

[12] R. Alur, C. Courcoubetis, and D. L. Dill, �Model-checking for real-time systems,�
Proceedings, Seventh Annual IEEE Symposium on Logic in Computer Science,
pp. 414�425, June 1990.

[13] Nature Physics, vol. 5. August 2009.

[14] Technical features RFX machine - O�cial Site.
https://www.igi.cnr.it/www/?q=content/machine. Online in date 10/05/2017.

64 BIBLIOGRAPHY

[15] G. Manduchi, A. Luchetta, A. Soppelsa, and C. Taliercio, �From distributed to
multicore architecture in the rfx-mod real time control system,� Fusion Engineering
and Design, vol. 89(3), pp. 224�232, 2014.

[16] M. Cavinato, A. Luchetta, G. Manduchi, G. Marchiori, and C. Taliercio, �First
operation of rfx-mod realtime control system,� Fusion Engineering and Design,
vol. 81(15-17), pp. 1765�1770, July 2006.

[17] G. Manduchi, A. Luchetta, A. Soppelsa, and C. Taliercio, �The new feedback con-
trol system of rfx-mod based on the marte real-time framework,� IEEE Transac-
tions on Nuclear Science, vol. 61(3), pp. 1216�1221, June 2014.

[18] JET o�cial site. https://www.euro-fusion.org/jet/. Online in date 10/05/2017.

[19] I. C. Bertolotti and G. Manduchi, Real-Time Embedded Systems - Open-Source
Operating Systems Perspective. CRC Press, 2012.

[20] M. T. Jones, Inside the Linux 2.6 Completely Fair Scheduler.
https://www.ibm.com/developerworks/library/l-completely-fair-scheduler/,
December 2009. Online in date 10/05/2017.

[21] M. T. Jones, Inside the Linux Scheduler. https://www.ibm.com/developerworks/linux/library/l-
scheduler/, June 2006. Online in date 10/05/2017.

[22] M. T. Jones, Linux and symmetric multiprocessing.
https://www.ibm.com/developerworks/library/l-linux-smp/, March 2007. Online
in date 10/05/2017.

[23] Amazon AWS EC2 o�cial site. https://aws.amazon.com/ec2/. Online in date
10/05/2017.

[24] Htop o�cial site. http://hisham.hm/htop/. Online in date 10/05/2017.

	Introduction
	Related works
	Thesis structure

	UPPAAL
	Timed Automata
	Timed Automata Extensions
	System behaviour definition in Uppaal

	Verifying properties with Uppaal

	The Nuclear Experiment
	The real-time control system
	Hardware organisation
	Software organisation
	Core assignment

	The Linux Scheduler
	2.6 scheduling structure
	SMP load balancing

	Model implementation
	RAW_Data template
	Pre_Proc template
	Shared_Memory template
	Threads_Notification template
	Control_Alg template
	Output template
	Templates for scheduling
	Scheduler_Group template
	Scheduler_Free template

	System definition

	Model validation
	Verify the correct execution of the model
	Model execution time
	Times between an output generation and the subsequent
	Execution times of the MHD control algorithm

	Query verification times
	Conclusions and future works
	Appendix
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

	Bibliography

