

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Chimica e dei Materiali

Caratterizzazione di un acciaio bainitico con medio tenore di carbonio e alligato con alluminio

Tutor universitario:

Ing. PhD Luca Pezzato

Laureando: Alberto Battigelli

Padova, 19/09/2023

Corso di Laurea in Ingegneria Chimica e dei Materiali

Gli acciai bainitici carbide-free appartengono alla 3ª generazione di «Advanced High Strength Steels (AHSS)»

- ✓ Ottime combinazioni di forza e duttilità
- ✓ Ridotto costo di alligazione
- Non sono richiesti trattamenti termici complessi e costosi
- X La trasformazione bainitica può richiedere tempistiche incompatibili con le esigenze industriali

Composizione elementare di PAD2 (wt.%)												
Fe	С	Si	Mn	Cr	Cu	Ni	V	Ρ	S	Мо	AI	Ti
Bal.	0.46	2.8	2.67	0.045	0.042	0.047	0.007	0.007	0.0067	0.019	0.56	0.001

DIPARTIMENTO DI INGEGNERIA

È stata eseguita una analisi dilatometrica preliminare per determinare le temperature di austenitizzazione che prevede:

ANALISI DELLA TEMPERATURA DI AUSTENITIZZAZIONE

- 1) riscaldamento da T_{amb} a 1050°C con heating rate di 10 °C/s
- 2) mantenimento isotermo a 1050°C per 5 min
- 3) raffreddamento da 1050°C a T_{amb} con cooling rate di 10°C/s

Viene scelta una $T_{\gamma} = 1000$ °C per garantire completa la austenitizzazione e la presenza di tutti gli elementi in soluzione solida

Al fine di costruire il diagramma CCT, vengono svolte ulteriori analisi dilatometriche con riscaldamento fino a 1000°C e raffreddamento a T_{amb} con 7 diverse cooling rate: 0.1/0.5/1/5/10/20/50 °C/s

CCT DIAGRAM - T, = 1000°C - PAD2 CR [°C/s] 0.1 0.5 50 L'acciaio manifesta un'ottima 20 10 5 temprabilità, si sceglie una 800 cooling rate di 10 °C/s per il 700 trattamento di austempering F/P **Temperature (°C)** Temperature (°C) Temperature (°C) M_{S} = 228 ± 5 °C M_{F} = 130± 3 °C Ms 200 M_F 100 HV₁₀ 720 ± 4 705 ± 4 705 ± 8 718 ± 5 700 ± 9 365 ± 4 715 ± 5 0 10 100 1000 10000 1 Time (s)

www.dii.unipd.ii

Seguendo il trattamento di austempering, vengono eseguite delle prove dilatometriche con le quattro T_{iso} scelte

- Nel campione trattato a 350 °C, il tratto di raffreddamento a seguito del mantenimento isotermo non è lineare
- Diminuendo T_{iso} si registra un aumento del valore di RCL raggiunto al termine della trasformazione bainitica

www.dii.unipd.it

Seguendo un metodo [2] basato sulla determinazione dell'ampiezza delle curve DRCL vs tempo ad un certa altezza @ rispetto al punto di massimo, vengono determinati i tempi caratteristici della trasformazione bainitica

T_{iso} (°C)	t ₀ (min)	t _{max} (min)	t _f (min)
250	0.9	32.7	359.2
300	2.4	28.9	142.4
320	2.3	26.1	103.9
350	2.3	23.3	97.1

La cinetica della trasformazione bainitica viene rallenta diminuendo T_{iso}

www.dii.unipd.it

Foreste di dislocazioni (frecce gialle) nelle subunità ferritiche osservate tramite TEM nel campione trattato a 300 °C

(a.u.) 14000

a (110)

γ (111)

T _{iso} (°C)	V _γ (%)	C _γ (wt.%)	V _α (%)	C _α (wt.%)	ρ (m ⁻²)
250	21.3	1.19	78.7	0.19	$1.28 \cdot 10^{17}$
300	24.6	1.42	75.4	0.14	$1.05 \cdot 10^{17}$
320	27.5	1.38	72.5	0.12	$8.63 \cdot 10^{16}$
350	31.9	1.22	68.1	0.13	-

www.dii.unipd.it

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE PROVE DI TRAZIONE UNIASSIALE

800 A N N I

www.dii.unipd.it

Sulla base delle precedenti considerazioni, si ritiene che le microstrutture ottenute da trattamento a 250°C e 300°C siano in grado di esibire il comportamento meccanico migliore

Vengono sottoposti a prova di trazione 3 provini con geometria ad osso di cane per ciascuna microstruttura

T _{iso} (°C)	σ _y (MPa)	UTS (MPa)	Elongazione a rottura (%)		
250	1193 ± 67	1775 ± 25	6.7 ± 2.5		
300	1224 ± 12	1665 ± 2	9.7 ± 1.4		

Il fenomeno di decomposizione dell'austenite residua in martensite durante la deformazione prende di nome di **effetto TRIP** (TRansformation Induced Plasticity)

L'austenite residua controlla la duttilità dell'acciaio

[3]: C. Garcia-Mateo, F.G. Caballero, T. Sourmail, M. Kuntz, J. Cornide, V. Smanio, and R. Elvira. Tensile behaviour of a nanocrystalline bainitic steel containing 3wtsilicon. Materials Science and Engineering: A,549:185–192, 2012.
[4]: Maryam Soleimani, Alireza Kalhor, and Hamed Mirzadeh. Transformation-induced plasticity (trip) in advanced steels: A review. Materials Science and Engineering: A, 795:140023, 2020.

- Frattura di tipo coppa-cono
- **Dimples** sulla superficie di frattura

- Diminuendo T_{iso} si raggiungono microstrutture più fini, riuscendo ad ottenere subunità ferritiche di spessore mediamente inferiore ai 100 nm effettuando il trattamento a 250°C e 300°C.
- Il tempo necessario a raggiungere il completamento della trasformazione bainitica aumenta al diminuire di T_{iso} .
- La frazione volumetrica di ferrite bainitica aumenta diminuendo T_{iso} .
- L'arricchimento in carbonio della fase austenitica viene smorzato a basse temperature di trattamento a causa della grande densità di difetti che si accumula nella microstruttura.
- Il valore di UTS è influenzato dalla frazione volumetrica e dalle caratteristiche della fase ferritica presente.
- La duttilità dell'acciaio è controllata dalla fase austenitica tramite l'effetto TRIP.