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Abstract

Data is fundamental in order to have a deep understanding of a complex scenario,
whether it is the financial health of a business, specific market trends, influence
of given policies, or performances of a process. Its key role is to highlight specific
objective aspects in order to create a big picture that summarizes an activity
helping in decision making tasks. Given that misinterpreted data may lead to
wrong choices while complete and accurate information can take to great benefits,
there is no surprise in the increase of the role of data-driven decisions in all areas.
A key factor of this revolution has been played by technology, since nowadays it
is affordable to collect and store big data quantities and hardware improvements
made complex machine learning tasks feasible.
This thesis studies the influence of data analysis and machine learning applied
to the industrial productive process of wheels casting in which it has been tried
to predict product quality using machine settings and in-process measurements.
It can be considered as a preliminary feasibility research of the potential of such
approaches in process analysis and control. The working method used resembles
black box modeling in which a system is described uniquely as a set of inputs
and outputs since its creation needed a very little domain expertise and it did
not require any process knowledge to learn how to predict wheel quality. Despite
that, the underlying techniques used have been described exploiting a statistical
framework that helped in the introduction of key concepts for data evaluation
and results interpretation.
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1
The productive process

In this chapter RONAL group is presented and the wheel productive process is
briefly described.

1.1 RONAL group

Figure 1.1: RONAL group logo.

RONAL group is one of the world’s
leading manufacturers and suppliers
of light alloy wheels for passenger
cars and commercial vehicles∗. The
company counts over 8000 employers
throughout the world. In 2018 it sold
over 21 million wheels for a revenue of
1.4 billion euros. The group was founded in 1969 in Forst (Germany) and in 6
years it expanded in France. Between 80s and 90s RONAL opened productive
plants in Spain, Portugal, Poland, Mexico and Czech Republic and only recently,
in 2007, it acquired Speedline SRL in Santa Maria di Sala (Italy) due to its
expertise in flowforming technology.

∗Further information at https://www.ronalgroup.com/
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1.2 The productive process

The productive process is divided in 5 phases:

• Alloy fusion, wheel casting and X-ray inspection;

• Flowforming and thermical treatments;

• Mechanical processing;

• Finishing and painting;

• Quality tests.

After each phase the wheel is visually checked and, in case of defects, it is dis-
carded.
The process starts with an alloy fusion of aluminum, silicon and magnesium
(AlSi7Mg0.3) on different ovens. Raw materials are composed by alloy ingots
and processing wastes such as chips and scrap wheels. Fused alloy is then carried
to low pressure casting machines (BP from the italian name ”bassa pressione”)
each one having an oven for maintaining the temperature of the alloy as depicted
in Figure 1.2.
Wheel casting process is divided into 4 different phases shown in Figure 1.3:

1. At first air is injected in the oven in order to increase pressure. Melted alloy
goes up the ascent tube.

2. As soon as the ascent tube is filled up, the filling phase of the mould starts.
The speed of this process is variable and it depends on a filling rate param-
eter.

3. When the mould is filled up, pressure is maintained stable for a certain
amount of time in order to compact the wheel. Multiple cooling circuits
cool the wheel using air or a mixture of air and water

4. At the end of phase 3 the mould is closed, pressure is released and cooling
continues until the wheel solidifies.

This procedure lasts from 240 to 420 seconds depending on wheel size and on
filling or cooling specifications.
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Figure 1.2: Schematic plot of the casting machine. The oven contains fused
alloy that rises the tube in order to fulfill the mold. After wheel casting, the
mould is opened and the released wheel sent to a conveyor.

Figure 1.3: Oven pressure over time:
the 4 different phases are highlighted.

The wheel is then moved to a con-
veyor which sends it to a machine
that removes the risers (materozze in
Italian) and then analyzes it using X-
rays in order to find impurities and
check its density. This procedure is
machine-aided since employees classify
only scanned wheels whose images dif-
fer significantly from a referral one. If
X-ray analysis didn’t show any critic-
ity, the wheel is sent† to flowforming

†Monoblock wheels skip flowforming since their casting shape is already the final one.
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department where it is flow formed in order to increase its mechanical perfor-
mances while maintaining a low weight. Some thermical processes are performed
on the wheel that is then processed mechanically in order to remove metal smudges
and to create the hole for the valve. Finally the wheel is painted and prepared
for the shipping.
During the whole production chain several control quality checks are applied to
the wheel in order to ensure its safety and the meeting of client’s requests.

1.3 Wheel characteristics

In Figure 1.4 are shown the 3 parts that characterize a wheel:

• The hub (mozzo in Italian) is the central part of the wheel and the one from
which the alloy rises in order to fulfill the mould.

• The spoke (razze in Italian) is the most visible part of the wheel and it links
the hub to the rim.

• The rim (canale in Italian) is the largest part of the wheel and the one on
which the tire is placed.

Figure 1.4: Vertical section of a wheel.

As introduced before, wheels may be divided into monoblock and flowformed.
Monoblock wheels shape does not change after the casting while flowformed

4



wheels are subject to a procedure that enlarges the rim via mechanical opera-
tions. This latter category of wheel is more performing and lighter.
In the thesis 4 wheels have been analyzed but, due to the amount of data received,
only three of them have been effectively studied. They all are big flowformed
wheels (20 inches or more) and their internal code are: 3213, 3701, 4273 and
4509. Figure 1.5 shows them.

Figure 1.5: Image of the wheels analyzed in this case study.
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2
Data structure and analysis

In this chapter dataset structure and the main projectual choices have been de-
scribed. The aim of this study is to exploit data from wheel casting and X-ray
analysis in order to predict whether a wheel will be OK or discarded (NOK). The
choice of limiting this analysis to only these two processes is due to logistic rea-
sons: after X-ray analysis, wheels are removed from the conveyor and it is not
possible to track them anymore.
Data analysis and prediction have been perfomed by programming in python 3
and exploiting jupyter notebook to divide code into cells and to show results nicely.
Mathematical operations had been performed using numpy library while prediction
models are part of sklearn.

2.1 Dataset structure

Wheel information are spreaded into 4 .csv files of variable length∗:

• ”PRD_XXXX.csv” contains general wheel casting information such as the
project ID number, the mould ID code, casting machine ones and casting

∗Each file contains a timestamp of the saving date in its name. In the following examples it
will be referred as ”XXXX”.
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process result.

• ”PRM_XXXX.csv” contains casting setups such as the filling rate of the
mould, a setting for the desired oven temperature, the final pressure of the
working cycle and the cooling systems settings.

• ”PD_XXXX.csv” contains measurements of physical features (mostly tem-
peratures and pressures) during the casting process. Each measurement is
taken every 5 seconds so for each wheel multiple values are recorded.

• ”XRAY_XXXX.csv” contains X-ray scan information such as the number
of the X-ray machine that performed the analysis and its result.

Each tuple of every file is univocally referred by the combination of a serial number
and a date that has been used as a key to get data of a specific wheel†. Appendix
A contains further information on the different parameters of each file and their
meaning.

2.2 Data preprocessing

Saving data in different files is convenient but some troubles may arise in case of
writing errors. The most frequent issue is on duplicate tuples since in some cases
files have multiple records referring erroneously to the same wheel‡. The dual
problem of missing parameters has also been found in the data. This behavior
may be an issue§ or not¶ depending on data values and on which value is miss-
ing. Similarly, it has been noticed that some wheels don’t have enough casting
process measurements. Casting process lasts at least 4 minutes (which means at
least 4*60/5=48 casting process measurements) but some of them are produced
in a shorter amount of time: these wheels are used only to warm the mould after

†This choice is due to the serial number range that is limited to the first 10000 numbers.
By doing so scalability has been achieved since a single BP machine produces less than 10000
wheels per day. In case of an extension of this study to multiple BPs this constraint is no longer
valid but adding the machine number to the key should solve the issue.

‡Some examples may be wheels with duplicate machine settings or non unique X-ray results.
§For example if casting settings are missing.
¶Think about a scrap wheel after casting: since the wheel is discarded before X-ray analysis,

it is obvious not to have its record on X-ray data file.
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its change and they are always discarded.

By analyzing the temporal series of process measurements other issues have
been noticed. The first one is about temperature measurements of thermocouple
number 1 (TC_1) since there have been many cases in which this sensor has been
activated but it hasn’t been placed correctly on the mould so its values, despite
having some physical meaning, they were logically erroneous. In particular, those
values were around 40℃ so the thermocouple measured the temperature in the
proximity of the casting machine instead of the one of the wheel during casting
(that is on average higher than 200℃). Dually some wheels show a very high
measurement (higher than 3000℃) and that’s the typical behavior of when the
thermocouple is detached. This may not be a problem if the wheel doesn’t use
that specific sensor (some moulds have only place for one or two thermocouples)
but a consistency issue arises if sometimes it is used and sometimes not. Another
observation has been made on the behavior of humidity parameter instability and
this suggests a malfunctioning of its sensor or on the acquisition of its data. Figure
2.1 sums up all the problems presented so far regarding time series analysis.

Figure 2.1: Plots of temporal series issues: thermocouple misplaced (left), de-
tached (center) and humidity values highly unstable (right). Red lines represent
NOK wheels while green is used for OK ones.

Wheels have been then summarized using a list of values as explained in details
later in Section 2.3 and histograms of distributions for each parameter had been
analyzed. This study highlighted that some minimum values of pressure measure-
ments, despite referring to non negative physical entities, they were stored with
negative values due to some data collection issue.

9



In order to deal with all these problems, it has been decided to divide the
wheels into 3 categories:

• Conform wheels are the subset of wheels whose casting process data meets
the two following constraints in order to be analyzed by the program:

– Casting process should last more than 4.30’.
– Measures from TC_1 should be on average higher than 200℃.
– Minimum values of pressure measurements shouldn’t be negative.

• Complete wheels are a subset of conform wheels that contain all the
information needed for prediction. In particular, complete wheels must
have their machine setup, their casting measurements and a result that
describes their status. A wheel is considered as OK if both casting process
and X-ray analysis were positive while it is considered as NOK if casting
process or X-ray analysis were unsuccessful‖.

• Unique wheels are those complete wheels whose values were not dupli-
cated during writing phase. It has been decided to study this set since it is
unbiased from decisions about which values to keep and which to discard∗∗.

It is relevant to note that both complete and unique wheels pass an additional
filtering stage. If the rules applied to conform wheels consider only one wheel,
this procedure has been thought for implementing rules that use the whole data
distribution such as distribution-wise average, standard deviation and other sta-
tistical features. Currently this stage filters thermocouple values implementing
an adaptive strategy to remove automatically:

• Wheels for which the thermocouple should have been attached but it has
not by analyzing if at least 15% of the wheels have a valid thermocouple
measurement.

‖From this analysis it has been decided to exclude also those wheels whose casting process
was successful but no X-ray result has been collected since a good casting result is not sufficient
to ensure a positive outcome on X-ray inspection. This is the case of those wheels that have
been manually removed from the conveyor so it was impossible to track them during X-ray
analysis.

∗∗In the dataset it has been recorded a wheel with two X-ray analysis, the first one that marks
the wheel as scrap and a second with a positive result. Which one to keep? One may suggest
to keep the last record but it has been decided to follow a more conservative approach and to
not consider that wheel.
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• Outliers that differ by more than 10 standard deviations from the mean.

Both control rules have been set empirically by knowing the usual process values
and the general trend of the data.

2.3 Feature Engineering

Wheels are then processed in order to create a data vector representing them and
summarizing their values. Since there is no standard way to deal with temporal
series and developing a new one is out of the scope of this work, it has been
decided to summarize process measurements temporal series by calculating their
minimum, maximum, average, median and standard deviation. These statistical
descriptors have been stacked with casting parameters creating an array of values
that represent numerically the wheel.

Figure 2.2: Example of data extraction from thermocouple time series. This
procedure is repeated for each process measurement each one returning 5 val-
ues.

Process measurements taken into account in the creation of the vector may change.
In particular, due to an expansion in the data collection system, it is possible to
use a standard set of 23 parameters or an extended one of 42. If present, humid-
ity had been discarded given its instability. A particular focus has been given
to the parameter ”OvenDoorOpen” of the extended analysis set that is equal to
1 if the machine’s oven door is opened, 0 otherwise. Given the boolean nature
of this parameter and some previous analysis†† it has been decided to use it to

††They shown that there is an higher probability of obtaining a scrap wheel in proximity of
alloy refuelings.
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Figure 2.3: Different data distributions in histograms analysis. Both complete
and unique wheels have been shown in order to check the absence of biases in
selection of unique ones.

calculate the number of wheels casted with success after the last door opening
instead of treating it as all the others process measurements. Their complete list
and meaning is available in Appendix A.3 while a full description of all the data
used to create the vector is available in Appendix A.

2.4 Data distribution and visualization

In order to ensure high data quality, a last study on data has been performed by
displaying the histograms of data distribution and time series after filtering proce-
dure. Histogram analysis, as represented in Figure 2.3, shows the variety of data
trend behaviors in these plots: some parameters distribute as a Gaussian, others
as a multiclass distribution and some are constant. Since these latter values don’t
change over wheels they do not help in discrimination of OK and NOK wheels
and for this reason they have not been considered in the prediction task in order
to have lighter vectors and speeding up the computations. Those parameters
are usually about constant machine settings or unused thermocouples (5 of them
are recorded but in the dataset maximum 2 of them are used). Histograms on
results distributions, mould and machine usage and other additional information
are then displayed. Histograms are plotted both for unique and complete wheels.
They are used to ensure that the two sets behave similarly so selecting unique
wheels doesn’t introduce some biases in the prediction.
Temporal series plots are instead exploited to reveal new issues on data measure-
ments: each unusual behavior is discussed with the group experts in order to
understand whether it is allowed or it is due to some errors. In the latter case an
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update of filtering rules may be needed. These plots have also been used to search
for a visual rule that could discriminate between OK and NOK wheels but, as
Figure 2.4 shows, sometimes it is easy while some others it is not so there seems
not to exist such a graphical rule.

Figure 2.4: Plots of thermocouple (left) and airflow (right) measurements on
which NOK wheels are marked in red and OK ones in green. Sometimes it is
easy to tell if a wheel is discarded (last two NOK wheels shows a strange TC
distribution) but some others it is not. Parameters such as airflow don’t seem
helpful in visual discrimination since their trend looks the same for each wheel.
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3
Methods for prediction

This chapter is dedicated to the introduction of the statistical learning framework
and of the techniques used for prediction. This chapter is heavily inspired by [4].

3.1 Stastical framework and key concepts

In order to explain the prediction methods used afterwards, it is useful to in-
troduce a statistical framework that describes the data, the classifiers and their
results. The mathematical notation adopted represents scalars with lower case
letters (eg. y), (column) vectors with bold letters (eg. x), uppercase letters rep-
resent sets or matrices (eg. set S) while xi has been used in order to refer to the
i-th element of vector x∗.
Data is represented as a vector of features x coming from a domain set X of
object that we wish to label. Labels y come from a label set Y of all possible
labels associated to the data. The training set is the set of labeled domain points
represented as pairs S = ((x1, y1), ..., (xm, ym)) in X × Y . The learner takes S as
an input and it outputs a function called prediction rule h : X → Y . This rule
is also referred as predictor or classifier and it associates a label for each input

∗By the given definitions, xi represents a scalar so it is the i−th element of vector x while
xi represents a vector so it is the i−th one of a collection of vectors.
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point x̃ ∈ X , whether there exists a ỹ ∈ Y such that (x̃, ỹ) ∈ S or it is a new
domain point.
It is possible to model the process as follows: an instance x ∈ X is generated
following a probability distribution D over X unknown to the learner† and its
value y ∈ Y is given by a ”correct”‡ labeling function f : X → Y such that
yi = f(xi) for every i. Each dataset tuple (xi, yi) is then composed by sampling
a point xi ∈ X according to D and by assigning the label yi = f(xi).
The goal of h is then to emulate the unknown labeling function f as closely a
possible. In order to determine each predictor’s performances it has been defined
an error metric as the probability of predicting a wrong label on a random dataset
sampled from D. The loss of predictor h with respect to probability distribution
D and labeling function f is then described as:

LD,f (h)
def
= Px∼D[h(x) ̸= f(x)] (3.1)

LD,f (h) is called generalization error, generalization loss or true error of h. If
f is obvious then LD(h) is used. Its calculation is impossible since the learner
doesn’t know both D and f so it is estimated numerically via the empirical risk
(or empirical error) LS(h) defined as the number of wrongly predicted elements
in the set divided by its size:

LS(h)
def
=

|(xi, yi) ∈ S : h(xi) ̸= yi|
|S|

(3.2)

By adapting these concepts to the wheel prediction model:

• The domain set X is equal to Rd where d is the dimension of the vector
representing a wheel. A wheel is then characterized by a vector x ∈ X of d
real numbers.

• Label set Y is equal to {1,−1} where 1 represents an OK wheel and -1
stands for a NOK wheel.

• The dataset S is then made of tuples (xi, 1) if the i-th wheel is OK, (xi,−1)

†Otherwise it may be possible to ”create” new input data points by just sampling some
elements from that distribution.

‡This constraint may be relaxed since errors and noises affect the predicted value as well.
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otherwise

• As a measure to evaluate the performances of the predictor two methods
have been used. The first one corresponds to the empirical risk LS(h) while
the second one measures the degree of certainty in wrong predictions. The
predicting methods used return a probability associated to each label P (1)
and P (−1) = 1 − P (1) for then assigning a result to each wheel by just
selecting the maximum. By supposing to have a misclassified wheel labeled
with the value ywrong, the value |0.5 − P (ywrong)| measures how ”bad” is a
wrong prediction, namely how much the predictor was confident in assigning
the wrong label to the wheel. This loss measurements takes values in (0, 0.5]

where values close to 0 mean that the probability of selecting the two labels
were similar (so it may be possible to fix the prediction by hard tuning
the parameters) while values close to 0.5 mean that the classifier was quite
confident in labeling the wheel with the erroneous tag.

Since the empirical risk is a snapshot of the generalization error on the sampled
dataset S, one may think of a procedure (Empirical Risk Minimization or ERM)
that searches for a predictor that minimizes the empirical error. This procedure
however may fail miserably. Think about having a uniform distribution probabil-
ity D over a given interval and a labeling function f such that P (−1) = 0.5 and
P (1) = 0.5. By considering the following predictor

hS(x) =

yi if ∃ (xi, yi) ∈ S such that xi = x
−1 otherwise

(3.3)

it is obvious that LS(hS) = 0 while LD,f (hS) = 1/2. This kind of classifier is then
perfect on the dataset while having poor performances on new and unseen data.
This behavior is called overfitting and it occurs when the classifier isn’t able to
generalize its decision rule to new data.
In order to understand how to avoid overfitting it is important to understand how
the generalization error is composed. By considering a finite set of hypotheses
(or hypotheses class) H that describes the characteristics of the predictors found
by a specific algorithm, it is possible to decompose the generalization of hS ∈ H
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as a sum of two different entities.

LD(hS) = ϵapp + ϵest where: ϵapp = min
h∈H

LD(h) and ϵest = LD(hS)− ϵapp (3.4)

The first value is the approximation error and it represents the error of the best
predictor in H. Its value does not depend on the number of elements on the
dataset but rather from the hypothesis class chosen since it is possible to select a
more accurate classifier by choosing a more complex hypothesis class. The second
parameter is the estimation error and it represents the distance of the current
predictor from the optimum one. This value may be decreased by increasing the
dataset used to train the model or by selecting an easier hypothesis class with
less parameters to be tuned. This analysis highlights the bias-complexity tradeoff
for which selecting a rich H might lead to overfitting (because of having an high
ϵest) while restricting it may not be suitable to cover the complexity of the data
leading then to underfitting.
In order to understand predictor’s performances, empirical risk is compared to
the performances of some naive descriptors. These classifiers label the elements
randomly or uniformly using only one label, in both cases without looking at the
features therefore failing at generalizing its characteristics. In the case of random
label assignment the predictor is wrong on average

LS(hrandom) =
number of classes− 1

number of classes =
|Y| − 1

|Y|

times while in the latter case error is

LS(huniform) =
total number of elements - number of elements in the most popolar class

total number of elements

By applying this reasoning to wheel casting problem, the first predictor is wrong
50% of the times while the second

LS(huniform) =
number of NOK wheels

total number of wheels analyzed ≤ 5%

since OK wheels are more than NOK ones§. The second descriptor has better
§The value of this approximation is found empirically and may change by considering differ-

ent datasets from the one given.
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performances than the first and it is then used as a comparison for the classifiers
found using the specific algorithms presented in the following sections.

For the sake of completeness, it is common to distinguish between linear and
non linear predictors. By defining the class of affine functions of parameters
w ∈ Rd and b ∈ R as

Ld =

{
hw,b(x) = ⟨w,x⟩+ b =

d∑
i=1

wixi + b : w ∈ Rd, b ∈ R

}
(3.5)

or using the compact notation

Ld =

{
hw’(x) = ⟨w’,x’⟩ =

d+1∑
i=1

w′
ix

′
i : w’ = (w, b),x’ = (x, 1),w ∈ Rd, b ∈ R

}
(3.6)

it is possible to describe the different hypothesis classes of linear predictors as a
composition of a function ϕ : R → Y on Ld. Common choices of ϕ are the sign
function for binary classification purposes and the identity function for regression
ones. Non linear predictors, instead, they use more advanced calculations to
divide the data into different classes. Given their simplicity, linear predictors
may be learnt efficiently and they are easy to interpret while non linear ones are
more complex but may fit the data more accurately.

When trying to evaluate predictor’s performances, it is of key importance to use
a test set T of fresh data not used to create the classifier in order to have the most
unbiased estimation possible. Sometimes it is also necessary to choose between
models with different parameter settings and this is usually done by selecting the
best method over a validation set V. The standard procedure is then to split the
input data into 3 disjoint sets S, V, T for training, validation and testing purposes
respectively¶. The different models h1, ..., hn are trained on the training set S: the
best performing one on V hbest is then selected as best model and its error rate
is finally calculated over test set T.
Another technique to choose the best model is k-fold cross validation procedure
that divides the training set in k subsets (folds) and uses each fold to evaluate the

¶In case of having only one model, the input dataset is splitted in 2: training set S and test
set T.
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performances of the predictor trained on the other k-1 folds. By averaging the
value over all subsets, only the overall best performing parameters are kept, the
predictor is trained on the complete training set and its performances are then
evaluated on the test set.

3.2 Logistic Regression

Logistic regression applies a sigmoid function

ϕsig(z) =
1

1 + e−z
(3.7)

to the result of an affine function Ld. Using compact notation for affine spaces,
logistic regression hypothesis class is therefore

Hsig = ϕsig ◦ Ld = {x 7→ ϕsig(⟨w’,x’⟩) : w’ = (w, b),x’ = (x, 1),w ∈ Rd, b ∈ R}
(3.8)

that maps vectors of d real values into a value in (0,1). The sigmoid function
ϕsig(z) is an S-shaped relation that takes values close to 1 if z is very large and
it takes values close to 0 if z is very small. These properties justify its use in
binary classification task to predict the probability of belonging to a certain class:
if the return value is higher than 0.5 the corresponding input is associated to
class number 1 otherwise it is classified as belonging to the other class. A nice
property of this descriptor is the possibility to value the estimation confidence: if
the probability is close to 0.5 then the predictor is not sure about which class to
assign while if it is close to 0 or 1, the classifier is quite confident of its result.
By supposing the label set to be Y = {−1, 1}, a suitable error metric for logistic
regression is a function that takes big values if the real label is y = 1 and the
predicted value is h(x) = −1 or vice versa. A function like

lA(hw, (x, y)) =
1

1 + ey⟨x,w⟩ (3.9)

shows the desired behavior since it takes big values if y and ⟨x,w⟩ have different
sign and low ones otherwise. Since the sign of the latter term is associated to the
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predictor’s output‖, the given function takes big values if the real label y and the
predicted value h(x) differ. Any other function behaving like lA is a reasonable
loss function: a particular example is

lB(hw, (x, y)) = log (1 + e−y⟨x,w⟩) (3.10)

that in addition shows the convexity property with respect to w.

The predictor weights are found by using an optimization algorithm that mini-
mizes an error function. Empirical risk minimization is applied and it searches for
the best fitting set of weights wbest on the training set S = ((x1, y1), ..., (xm, ym))

such that
wbest ∈ argmin

w∈Rd

1

m

m∑
i=1

log (1 + e−yi⟨xi,w⟩) (3.11)

Given the convexity of lB this can be solved efficiently using standard optimization
techniques.

3.2.1 Regularization

It may happen that logistic regression’s predictors overfit the data and in those
cases it is necessary to reduce hypothesis’ class size in order to lower the estimation
error ϵest. A standard technique to achieve this result is called regularization
and it applies a penalty to complex descriptors. More specifically, this approach
modifies the ERM rule into a Regularized Loss Minimization (RLM) that jointly
minimizes the sum of the empirical risk and of a regularization function. This
latter function may be seen as a complexity measure of the hypotheses or as a
stabilizer of the learning algorithm.
RML searches for the set of weights wbest such that

wbest ∈ argmin
w

(LS(w) +R(w)) (3.12)

‖By approaching it empirically if ⟨x,w⟩ is positive then e−⟨w,x⟩ < 1 so 1

1 + e−⟨w,x⟩ > 0.5

then the assigned label is h(x) = 1. In the case of ⟨x,w⟩ being negative then e−⟨w,x⟩ > 1 so
1

1 + e−⟨w,x⟩ < 0.5 then the assigned label is h(x) = −1.
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where the regularization is the function R : Rd → R. Regularized loss mini-
mization is then a way to find a trade-off between low empirical risk and low
complexity. Plenty of regularizers exist: the ones used in this thesis are L1, L2
and elastic net.
L1 regularizer uses the L1 norm as a measure of complexity resulting in R(w) =

λ||w||1 = λ
∑d

i=0 |wi|. The associated RML will then find the set of weights wbest

such that
wbest ∈ argmin

w
(LS(w) + λ||w||1) (3.13)

In this formula λ controls the trade-off between complexity and accuracy on the
training set: the higher its value the easier the predictor, while if it takes low
values complex predictors with lower empirical risk are preferred.
L2 regularizer uses instead the L2 norm as a measure of complexity resulting
in R(w) = λ||w||2 = λ

∑d
i=0w

2
i . The associated RLM will then find the set of

weights wbest such that

wbest ∈ argmin
w

(LS(w) + λ||w||2) (3.14)

As in the L1 case, λ controls the accuracy-complexity trade-off.
The two regularizers despite being structurally similar, they find different param-
eter settings. The most noticeable difference is on parameters shrinking on λ

changes. As depicted in Figure 3.1, as λ grows using L1 regularization only a few
parameters differ from zero while using L2 lot of them have small but different
from zero values [5] [1]. This implies that classifiers found using L1 are easier to
understand since they use less parameters for the prediction.
Elastic net uses a combination of L1 and L2 losses R(w) = λ1||w|| + λ2||w||2 in
order to exploit both their advantages: having good explicative models and ease
them setting some parameters at 0. The associated RML will then find the set
of weights wbest such that

wbest ∈ argmin
w

(LS(w) + λ1||w||1 + λ2||w||2) (3.15)

A naive approach may suggest to apply a two-step algorithm that calculates
applies a L2 regularizer and them adjusts the weights using a L1 rule but that
cause a double shrinkage of the parameters that seems not to be helpful to reduce
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Figure 3.1: Parameters shrinkage by changing λ using L2 and L1 penalties. [1]

data variability. The correct way to implement the rule is to modify the weights
using an L2 rule, compensate L2 shrinkage using a normalization term and then
calculate the L1 regularization as suggested in [6].

3.3 SVM

Let suppose the label set to be Y = {−1, 1} and training set S = ((x1, y1), ..., (xm, ym))

to be linearly separable so there exists a line described by a set of weights w and
a bias term b that perfectly divides the points labeled with y = −1 from those
with label y = 1. Mathematically speaking that means that ∀(xi, yi) ∈ S : yi =

sign(⟨w,xi⟩+ b) or alternatively∗∗ that ∀(xi, yi) ∈ S : yi(⟨w,xi⟩+ b) > 0.
For any separable training set there may exist many couples (w, b) that separate
the dataset correctly so a question arises: which one of them is the best? By
looking at Figure 3.2 both lines separates the data but one may prefer the righter
one since it is more distant its closest points. By defining as margin this dis-
tance, it is easy to notice how lines with an higher margin divide the data in a
better way since they lower classification errors due to noises. By normalizing
the weight vector w, one may define the minimum distance of a dataset of points
from the line as mini∈[0,m) |⟨w,xi⟩+b|. Hard support vector machine (Hard-SVM)
[7] [8] searches for the line with the biggest margin from the data that correctly

∗∗This can be proved empirically since yi and (⟨w,xi⟩+ b) must be of the same sign in order
for their product to be positive.
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Figure 3.2: Two lines dividing the data. The righter one is preferred since it has
an higher margin [2].

separates the two classes so a couple weight-bias such that

argmax
(w,b):||w||=1

min
i∈[0,m)

|⟨w,xi⟩+ b| such that ∀(xi, yi) ∈ S, yi(⟨w,xi⟩+ b) > 0 (3.16)

or alternatively
argmax

(w,b):||w||=1

min
i∈[0,m)

yi(⟨w,xi⟩+ b) (3.17)

Hard-SVM calculation can be efficiently solved as a quadratic optimization prob-
lem that searches for the minimum of a convex quadratic function having linear
inequalities as constraints. A dual representation of the problem that uses inner
products between vectors is described in Appendix B.
Support vector machine takes its name from support vectors that are those ele-
ments at minimum distance from the separation line, namely those that define
the margin width. It has been demonstrated that the weight vector w is a linear
combination of support vectors.
Despite being a powerful method, Hard-SVM requires the dataset to be linearly
separable which is a strong condition that may not be met in practice. A relax-
ation of this constraint has been studied in Soft-SVM that introduces some slack
variables ξ1, ..., ξm ≥ 0 that measure by how much the separation constraint is
violated. The separation constraint becomes then

yi(⟨w,xi⟩+ b) > 1− ξi (3.18)
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and the optimization problem can be rewritten as

min
w,b,ξ

(λ||w||2 + 1

m

m∑
i=1

ξi) (3.19)

The algorithm minimizes jointly the norm of w†† and the average of the slack
variables in order to find the separation line with the highest margin that misses
the fewest points. This trade-off is controlled by a parameter λ > 0: if λ is
very big then the SVM will try to enlarge the margin while if it is close to 0 the
algorithm will select the line that misses the lowest number of elements.

3.3.1 Kernels

SVM is a powerful algorithm but it is still limited to linear models. An extension
to non-linear patterns may be to transform the training set S into another set
S ′ = ((ψ(x1), y1), ..., (ψ(xm), ym)) using a non-linear function ψ() in order to learn
a predictor ĥ. Any new instance x will be then transformed using ψ() and finally
given to ĥ for the classification task.
By considering the dual formulation introduced in Appendix B one may notice
that transforming the data using ϕ is not mandatory since the calculation is
based on inner products. The knowledge of the kernel function Kψ(x,x’) =

⟨ψ(x), ψ(x’)⟩ is then the only constraint to train the SVM and that may allow
some speedups in calculation‡‡. It is convenient to think the kernel function
that uses inner products to evaluate the similarity between instances. A final
remark is about incorporating prior knowledge in kernel choices. If one thinks
that the positive samples can be distinguished by a circle then he may define ϕ
as a measure of distance from its center, for example.
A variety of kernels are shown in the literature but in the thesis only four of them
have been exploited:

• linear kernel Klin(x,x’) = ⟨x,x’⟩ maps the inner product in Rd in itself.
Basically this doesn’t produce any transformation of the data and it is

††It is equivalent at maximizing the margin as shown in Appendix B.
‡‡In the literature this phenomena is called ”kernel trick” since transforming the data and

then calculating the inner products may take a certain amount time while calculating directly
the value of the inner product may require a shorter one.
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equivalent as using Hard/Soft-SVM as described in Section 3.3.

• polynomial kernel Kpoly(x,x’) = (γ⟨x,x’⟩ + r)d implements a polynomial
of degree d. In the thesis tested values are d = {2, 3, 4, 5, 6, 7}.

• radial basis function (RBF) kernel KRBF (x,x’) = e−γ||x,x’||2 implements a
Gaussian kernel in which parameter γ > 0 equals the quantity 1

2σ
.

• sigmoid kernel Ksig(x,x’) = tanh(γ⟨x,x’⟩ + r) maps the points using a
sigmoid-like function.

Figure 3.3: SVM using Linear kernel (left), degree 3 polynomial kernel (center),
RBF kernel (right) on a data distribution. Support vectors are highlighted with
bigger points [3].
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4
Data classification results

This chapter is dedicated to the presentation of prediction results. Multiple tests
have been implemented by varying parameters number, data quantity and opti-
mization solvers. This chapter will use the notation of Appendix C to refer
specific datasets by concatenating of the project number, a letter {s,m,c} indicat-
ing dataset size (respectively s=small, m=medium, c=complete) and, in the case
of the extended dataset, an additional ”e”. Full result log is available at Appendix
D. Reading both appendixes C and D is suggested in order to have a complete un-
derstanding of datasets characteristics and prediction evaluation measurements.

4.1 Influence of data quantity in prediction

As described in Chapter 3, the generalization error of a given predictor depends
on data quantity so in this section it has been studied its influence on prediction
accuracies. To do so, classification results have been compared on all datasets of
wheel number 3701 both with standard and extended parameter set.
As shown in Table 4.1 by increasing dataset size also prediction results on the test
set improve. By using a small dataset chances of overfitting are higher (both logis-
tic regression with L1 and SVM with RBF kernel show very good performances
on training set but lack on generalizing results on test set) while using larger
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datasets lowers the gap between training and test results, increasing consistency
therefore returning more stable classifiers. It is interesting to notice how SVM
using RBF kernel needs lot of data to be effective as it overfits the small dataset
and it predicts nicely the extended one.

Technique Training Test
IMP CON IMP CON

Standard solvers
(s) Logistic regression + L1 +68.10% 94/100 +10.10% 61/100
(m) Logistic regression + L1 +34.67% 89/100 +9.17% 68/100
(c) Logistic regression + L1 +32.10% 97/100 +14.14% 95/100
(s) SVM + RBF kernel +88.80% 100/100 +3.90% 37/100
(m) SVM + RBF kernel +62.28% 100/100 +6.61% 55/100
(c) SVM + RBF kernel +40.21% 100/100 +23.76% 97/100
(s) SVM + poly kernel (deg.2) +60.30% 96/100 +21.00% 91/100
(m) SVM + poly kernel (deg.2) +40.11% 89/100 +10.06% 73/100
(c) SVM + poly kernel (deg.2) +26.17% 86/100 +10.21% 83/100

Stochastic solvers
(s) Logistic regression (SAGA) +51.20% 100/100 +25.50% 93/100
(m) Logistic regression (SAGA) +34.61% 100/100 +20.78% 94/100
(c) Logistic regression (SAGA) +28.69% 100/100 +22.07% 99/100
(s) Logistic regression + L2 (SAGA) +54.60% 100/100 +30.60% 97/100
(m) Logistic regression + L2 (SAGA) +34.94% 99/100 +18.17% 96/100
(c) Logistic regression + L2 (SAGA) +29.90% 100/100 +18.45% 97/100

Table 4.1: Training and test result comparison for five techniques on small (s),
medium (m) and complete (c) dataset for project number 3701. IMP measures
the percentage increment in performances of a predictor with respect to the
naive classifier while CON counts the consistency of the result namely how
many times it overperformed the naive predictor.

An opposite behavior appears when considering SVM with polynomial kernels
showing nice results when applied on small dataset that are not replicated on
medium and complete datasets. This may be due to small dataset’s character-
istics that may not emulate closely the probability distribution but resembles a
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particular one that is easily classified with a degree 2 polynomial. By sampling
more data, however, the dataset may lose its easy-to-predict shape resulting in
another one more complex and with lower predicting performances. This is sup-
ported by the fact that on average classification results on small dataset are
better than on medium size one. Despite that, using the complete dataset is
still preferable since the greater generalization ability (shown as an improvement
in consistency of results) and the higher discriminative power between effective
methods (whose performances are improved with respect to small datasets) and
weak ones (whose performances are worsened).
Stochastic solvers behave similarly to SVM with polynomial kernels but main-
taining higher performances. Extended parameters set shows the same behavior
having on average smaller but more consistent improvements.

4.2 Influence of standard and extended set in predictions

Adding parameters may enhance classifiers’ performances by incrementing their
generalization power but it also increases class complexity therefore it may lead
to overfitting. This test had been performed to investigate this relationship by
comparing results over standard and extended parameter sets for wheel number
3701 and 4273. Whenever possible, different dataset sizes have been used to study
the trade-off between parameters number and data quantity.
Extended parameter affects nicely prediction in small datasets by increasing per-
formances of 4/5% on average while losing effectiveness as the dataset size grows.
On 4273 dataset, extended parameter set shows a bad impact on classifiers low-
ering their accuracy up to 7%. This behavior may be due to noisy additional
observations, therefore more data may be required to achieve a good prediction.
Consistency of predictions generally follows the same trend as the improvements
with respect to the naive classifier. Table 4.2 contains a useful snapshot of two
predicting methods on the different datasets: data from stochastic solvers have
been omitted since it follows the described trends.
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Technique Standard Extended
IMP CON IMP CON

(3701s) Logistic regression + L2 +20.30% 85/100 +25.00% 87/100
(3701s) SVM + RBF kernel +3.90% 37/100 +5.50% 33/100
(3701m) Logistic regression + L2 +16.78% 87/100 +15.67% 91/100
(3701m) SVM + RBF kernel +6.61% 55/100 +10.00% 61/100
(3701c) Logistic regression + L2 +15.03% 97/100 +15.83% 98/100
(3701c) SVM + RBF kernel +23.76% 97/100 +22.62% 97/100
(4273) Logistic regression + L2 +22.86% 100/100 +22.14% 98/100
(4273) SVM + RBF kernel +25.86% 96/100 +21.89% 97/100

Table 4.2: Test result comparison for standard and extended parameters set on
small (s), medium (m) and complete (c) dataset for project number 3701 and
on dataset for project 4273. IMP measures the percentage increment in perfor-
mances of a predictor with respect to the naive classifier while CON counts the
consistency of the result namely how many times it overperformed the naive
predictor.

4.3 Influence of solvers in computational time

Computational time increases with data quantity and it might be an issue for
performing tests given the big amount of repetition for each method. It has then
been decided to study the influence of different solvers of scikit-learn in order to
find the best one considering both efficiency and performances. This test had
been performed on all 3701 datasets with standard parameters set but the results
apply to the extended one as well.
The following solvers use coordinate descend (liblinear), Newton’s method (newton-
cg), limited memory Broyden-Fletcher-Goldfarb-Shanno Algorithm (lbfgs), stochas-
tic average gradient (SAG), SAGA. Liblinear is for L1 penalization only, new-
toncg, lbfgs and SAG are for L2 only while SAGA works with all penalization
types. These two methods try to overperform stochastic gradient descend (SGD)
by implementing

xk+1 = xk − αk
1

n

n∑
i=1

yki where yki =

f ′
i(x

k) if i = ik

yk−1
i otherwise

(4.1)
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for SAG [9] and

xk+1 = xk − γ

[
f ′
j(x

k)− f ′
j(x

k−1) +
1

n

n∑
i=1

f ′
i(x

k−1)

]
(4.2)

for SAGA∗ [10]. They rely heavily on a tollerance parameter that sets the accuracy
of the result and on a maximum iteration number that prevents the algorithm to
loop. If this value is reached, then the algorithm returns the best solution found.
Table 4.3 contains time comparison of 5 different methods using standard solvers
(liblinear or lbfgs) and stochastic ones such as SAG/SAGA. It is easy to see
that, differently from every other method that has a maximum variation of 6
times between small and complete dataset runtime, logistic regression with an
L1 regularizer solved with liblinear solver takes much longer as the dataset size
increase. A valid alternative with big datasets and L1 penalization may be to use
SAGA solver that achieves even better performances (those will be discussed in
Section 4.4) in much less time. The same speed advantage cannot be achieved by
using SAG or SAGA with L2 regularization since lbfgs is already faster than them
but prediction performances differ as well. Between the two stochastic methods,
however, it is preferable to use SAG since it achieves similar performances in half
of the time. However, it is important to point out that the maximum number of
iterations have been reached in every run using SAG or SAGA solver therefore
their running time to get an equivalent solution of standard solvers† may be
higher.

4.4 Early stop as a form of regularization

Another analysis has been performed by stopping logistic regression algorithms
with stochastic solvers after 100 iterations before they converge to an optimal
solution with a given approximation of 0.0001. By doing so, the trained predictor
may get the input data specifics but without overfitting them therefore being
regularized.

∗Both SAG and SAGA use a learning rate parameter (respectively αk and γ) to control
the convergence speed. The choice of the best learning rate is a very studied problem in the
scientific community that has not been investigate in this work.

†Therefore selecting a predictor that is close to the best one by less than a given tolerance
parameter.

31



Technique Test set Time
IMP CON s/iter

(s) Logistic regression + L1 (liblinear) +10.10% 61/100 148.48
(m) Logistic regression + L1 (liblinear) +9.17% 68/100 1729.97
(c) Logistic regression + L1 (liblinear) +14.14% 95/100 95348.28
(s) Logistic regression + L2 (lbfgs) +20.30% 85/100 166.01
(m) Logistic regression + L2 (lbfgs) +16.78% 87/100 363.63
(c) Logistic regression + L2 (lbfgs) +15.03% 97/100 788.09
(s) Logistic regression + L1 (SAGA) +27.20% 94/100 965.91
(m) Logistic regression + L1 (SAGA) +17.17% 89/100 1774.50
(c) Logistic regression + L1 (SAGA) +18.69% 98/100 5888.99
(s) Logistic regression + L2 (SAG) +29.10% 95/100 579.51
(m) Logistic regression + L2 (SAG) +16.89% 90/100 1033.32
(c) Logistic regression + L2 (SAG) +18.83% 99/100 3057.72
(s) Logistic regression + L2 (SAGA) +30.60% 97/100 1200.88
(m) Logistic regression + L2 (SAGA) +18.17% 96/100 2182.96
(c) Logistic regression + L2 (SAGA) +18.45% 97/100 6820.12

Table 4.3: Test result comparison for 5 different methods on small (s), medium
(m) and complete (c) dataset of wheel number 3701. IMP measures the percent-
age increment in performances of a predictor with respect to the naive classifier
while CON counts the consistency of the result namely how many times it over-
performed the naive predictor.

By looking at Table 4.3 it is clear how SAG and SAGA outperform lbfgs and
liblinear both on improvement and consistency. This behavior is more evident the
less the data confirming the intuition of an early stop as a rough regularization.
It may be possible having more data, however, that this trend continues until the
point when tolerance based algorithms (lbfgs and liblinear) outperform tollerance-
and-iteration based ones such as SAG and SAGA.

4.5 Errors and improvements distributions analysis

Errors and improvements distributions analysis have been performed as well ex-
ploiting two different plots:

• Improvement distribution histograms that show both the training and test
improvements over the naive descriptor during each of the 100 iterations.
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• Prediction probability’s distance from 0.5 of misclassified elements that mea-
sures the degree of certainty in wrong predictions as described in Section
3.1. These values as well are represented using an histogram.

Improvements histograms can be classified in two classes. A first one of Gaussian-
like distributed elements usually represents good predictor whose average im-
provement are positive in contrast to a second, shaped similarly to a negative
exponential, that is usual of bad classifiers and it has a peak around 0. Figure
4.1 shows one example per class.

Figure 4.1: The two different behaviors of error rate improvement distributions:
the left one (SVM + RBF kernel) represents a good predictor while the right
one (SVM + polynomial kernel of degree 4) a bad performing one.

Histograms of distance from 0.5 of misclassified samples are instead quite similar
despite being referred to good predictors (such as the one on the left image in
Figure 4.2) or bad ones (central histogram). The only exception of this rule is
represented by logistic regression trained with SAGA solver that shows a more
spreaded and various trend as in right histogram of Figure 4.2. General distribu-
tion shows a peak around 0.5 and that means that lot of misclassified elements
are wrongly predicted with an high certainty by the classifier. This behavior
may suggest that current combination of models and parameters, despite having
good performances, may not be enough to cover very accurately and completely
dataset’s variability.

4.6 Comparison between different wheels and methods results

Given the variety of wheels analyzed and data distributions, it is interesting to
compare classifiers performances on all the datasets in order to detect significant
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Figure 4.2: Histogram of distance from 0.5 of misclassified samples for SVM
with RBF kernel (left), SVM with polynomial kernel of degree 5 (center) and
logistic regression solved with SAGA (right).

behaviors.
The best performing methods on 3701 complete dataset are SVM with RBF kernel
and logistic regression solved with SAGA solvers showing improvements around
22/23.7% with respect to naive predictor with a great confidence level. Better
results are achieved when studying wheel 4273 with improvements peaks of 28%
and several methods passing 20% all achieving nearly perfect confidence scores.
Wheel number 4509 predictions, instead, are far away from these results achieving
a 20% improvement peak on logistic regression with SAGA solver and a second
best result of +12.56%. In addition, all 4509 classifiers cannot reach a good level
of confidence stopping at a maximum level of 78/100 but with several values lower
than 60/100. Table 4.4 helps results visualization with a quick resume of best
methods per wheel type.
The reasons of these many differences may be multiple. At first data quantity
plays an important role because some methods may overfit as depicted in Sec-
tion 4.1 considering SVM with RBF kernel. Data distributions affect predictions
as well, in particular wheel 4273 seems much easier to predict than 3701 since
it achieves better performances despite having less data. NOK%, in particular,
may play an important role given that the predictor may have difficulties in gen-
eralization if they train mainly on OK samples. Finally collected parameters may
heavily affect classification. This could explain 4273 having better performances
than 3701 since the former gathers information from 2 thermocouples measure-
ments while the latter only from one. For the same reason, wheel 4509 may need
some other sensor or parameter tuning that are now missing from the dataset
leading to poor prediction performances.
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Technique Training Test
IMP CON IMP CON

Wheel number 3701
(1) SVM + RBF kernel +40.21% 100/100 +23.76% 97/100
(2) Logistic regression (SAGA) +28.69% 100/100 +22.07% 99/100
(3) Logistic regression + L2 (SAG) +33.17% 100/100 +18.83% 99/100

Wheel number 4273
(1) Logistic regression + L1 (SAGA) +38.93% 100/100 +28.68% 100/100
(2) SVM + poly kernel (deg.2) +42.32% 98/100 +26.71% 99/100
(3) Logistic regression + L2 (SAG) +39.68% 100/100 +25.43% 100/100

Wheel number 4509
(1) Logistic regression (SAGA) +41.00% 100/100 +20.44% 78/100
(2) Logistic regression + L1 (SAGA) +43.70% 94/100 +12.56% 69/100
(3) Logistic regression + L2 (SAGA) +42.30% 93/100 +11.44% 65/100

Table 4.4: Top 3 training and test results for each wheel number on its biggest
dataset available. IMP measures the percentage increment in performances of a
predictor with respect to the naive classifier while CON counts the consistency
of the result namely how many times it overperformed the naive predictor.
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5
Conclusions and future developments

This thesis was a feasibility study about the potential of machine learning algo-
rithms applied to casting process data. The first stage of this work had been of
reading and collecting data from a given casting machine (BP10). A dataset had
then been created by removing outliers and data reading errors while only wheels
with a specific project ID number had been taken into account. The next phase
consisted in the creation of a vector representing a wheel by calculating statistical
features from in-process measurements. Histogram and temporal series plots had
been used for data visualization and analysis in order to find particular behaviors
or untracked data writing errors. Finally, various models had been built and
trained on the dataset with different outcomes.
Overall results of this preliminary test on quality prediction are good since for
each wheel nearly all the classifiers behave better than the naive predictor and
this is an indicator that current data contains information that can be exploited
by machine learning algorithms.
In order to understand results properly, performance variability had been studied
and, despite its complexity, it had been tackled on different aspects. Data quan-
tity surely affects predictors quality since some methods need a good amount of
data to generalize properly wheels characteristics and not overfit. NOK% or spe-
cific intrinsic wheel properties may influence effectiveness as well since the model
is richer with examples of various type and not only well-casted wheels. If one
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may be tempted to extend the parameter set, Section 4.2 shows that this should
be done properly since at first they may help in prediction but they may not
be affective as with higher data quantities. Bigger datasets, on the other side,
take more time to be filtered and trained: runtime analysis shown that stochastic
algorithms may help in speeding up computations but they are not always the
fastest solution∗. This class of algorithms surprisingly performs really well in all
datasets despite lowering their effectiveness when dealing with high data quanti-
ties: this trend is expected to continue as more data is gathered. Finally error
and improvement analysis had been performed suggesting how to discriminate
well-fitting predictors from bad ones and that extra work is needed to increase
prediction accuracy.
Performance increase may be achieved by trying other methods (one-class SVMs,
random forests or, with an higher amount of data, neural networks), by improv-
ing used ones (for example implementing a non-trivial elastic net regularizer) or
by extending the parameters set with the addition of thermocouples, that turned
out from testing-time weight analysis to be within the most informative parame-
ters, or with the creation of ad-hoc ones. Additional tests may involve predicting
new wheels using old time series data (now shuffling is applied before splitting
train and test sets so temporal correlations are lost) to check in-field classification
effectiveness. Another option may be to generalize this method to new models,
machines or moulds. An extension of data gathering systems may then be used
to check performances variabilities and predictor generalization abilities. It may
be worth trying to modify current methods by allowing them to use different pa-
rameters in prediction for example being able to exploit only information of one
thermocouple if the others are not connected while using dynamically multiple
values whenever two or more are attached. Lastly it would be nice to dig deeper
into prediction understanding how parameters affect results in order to translate
data expertise into human knowledge for productive process improvement.

∗However this may not be a big problem if data is analyzed using batch processing techniques.
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A
Data legend

This appendix is dedicated to list the different parameters recorded in the .csv files
and how their information has been processed.

A.1 PRD data file

Here there is a list of all the parameters contained in PRD data files.

Field Description
SerialNo Serial number identifying a single wheel
ProjectID Project ID. This is the wheel project number
MouldID Mould ID. Represent the ID of a single mould for a specific

project
ReturnCode Return code from operator. See below.
shiftNumber Shift number
MachineID Machine ID
shiftStartTime Shift start time
t_stamp Row timestamp

Return code Table is the following. For the extent of the thesis, wheel casting
is considered OK if return code is 20, it is not considered if return code is 30
otherwise it is NOK.
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Id Description
1 Restart after mould change
2 Restart after machine set
3 Restart after machine fault
4 Visible Cavity/Holes
5 Inclusions of dust/dirt
6 Other visible defects
7 Lack of alluminium in oven
8 Other defects
20 Wheel is OK and sent to the Conveyor
30 Wheel is manually removed from casting machine, thus is nor OK neither

NOT OK.

A.2 PRM data file

Here there is a list of all the parameters contained in PRM data files. Each mould
has up to 16 cooling circuits that may work in different modes.
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Field Description Unit of Measure
SerialNo Serial number identifying a single

wheel. This is the key on all files
for a single wheel

N/A

MachineID Machine ID N/A
Name Machine Name N/A
ProjectID Project ID. This is the wheel

project number
N/A

MouldID Mould ID. Represent the id of a
single mould fo a specific project

N/A

FinalPressure Final pressure to reach for oven mBar
Phase2Pressure Switch pressure between phase 2

and phase 3. Phase 2 ramp is con-
trolled by filling rate parameter.

mBar

FillingRate Filling rate for phase 2 mBar/s
Oven_Temp Oven temperature ℃
PressureTime Pressure phase duration sec
CoolingTime Cooling phase duration sec
CX_TY_AirFlow For each Circuit number X and

Time sequence Y this parameter
set the quantity of air injected by
the circuit

l/min

CX_TY_WorkTime For each Circuit number X and
Time sequence Y this parameter
set how many seconds the circuit
has to wait from the beginning of
cycle to start working.

sec

CX_WorkMode 0 = Circuit disabled, 1-4 circuit
working in Thermo mode (not
used), 5 = Circuit working in
timed mode

N/A

t_stamp Record timestamp N/A
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A.3 PD data file

Here there is a list of all the parameters contained in PD data files.
Field Description Unit of Measure
SerialNo Serial number identifying a single

wheel. This is the key on all files
for a single wheel

N/A

TC_1 Thermocouple temperature 1.
Value 3276 means no TC con-
nected.

℃

TC_2 Thermocouple temperature 2.
Value 3276 means no TC con-
nected.

℃

TC_3 Thermocouple temperature 3.
Value 3276 means no TC con-
nected.

℃

TC_4 Thermocouple temperature 4.
Value 3276 means no TC con-
nected.

℃

TC_5 Thermocouple temperature 5.
Value 3276 means no TC con-
nected.

℃

OvenAirFlow Oven air inlet flow l/min
Pressure Oven overpressure mBar
Temperature Oven temperature ℃
AirFlow_X Circuit X air flow l/min
CCPressure_X Cooling circuit pressure mBar
OvenDoorOpen 1 if oven door is opened, 0 otherwise N/A
EnvironmentTemp Foundry temperature ℃
EnvironmentHygro Relative environment humidity N/A
t_stamp Row time stamp N/A

Standard set of process measurements contains all the parameters of the Table
from thermocouple values to airflows while extended set contains also pressure,
door opening and environment informations (except humidity). Door opening is
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not treated as a process measurement (by calculating statistical descriptors over
the time series) but it is used to calculate the number of wheels casted since last
door opening.

A.4 XRAY data file

Here there is a list of all the parameters contained in XRAY data files.

Field Description
SerialNR Serial number identifying a single wheel. This is the key on all

files for a single wheel. If 0 wheel has been loaded manually.
WheelCode Project ID. This is the wheel project number
MouldID Mould ID. Represent the id of a single mould for a specific

project.
ND Machine number. The number of machine that casted the

wheel.
XRay Xray machine. The number of machine that did the Xray

inpection.
ErrorCodeXR Error code from xray. See below.
t_stamp Row time stamp

Return code Table is the following. For the extent of the thesis, wheel xray
analysis is considered OK if return code is 0 otherwise it is NOK.

Id Description
0 OK wheel
1 Cavity on spoke-channel link
2 Cavity on center spoke
3 Cavity on spoke-hub link
4 Cavity on hub
5 Bubbles on hub
6 Porosity/cavity on channel
7 Porosity inner edge
8 Crooked degating
9 Filter inclusion
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B
Dual representation of SVM

This appendix introduces a dual representation of SVM optimization problem based
on inner products that is fundamental for kernel use. This appendix is heavily
inspired by [4].

As described in section 3.3, hard SVM tries to find the couple (w, b) that
linearly separates the data with the highest margin by calculating

argmax
(w,b):||w||=1

min
i∈[0,m]

|⟨w,xi⟩+ b| such that ∀(xi, yi) ∈ S, yi(⟨w,xi⟩+ b) > 0 (B.1)

or given the fact that yi ∈ Y = {−1, 1}, its alternative form

argmax
(w,b):||w||=1

min
i∈[0,m]

yi(⟨w,xi⟩+ b) (B.2)

Another equivalent formulation may be given as an optimization problem of a
convex quadratic function with linear inequalities as constraints like

(w0, b0) = argmin
(w,b)

||w||2 such that ∀(xi, yi) ∈ S, yi(⟨w,xi⟩+ b) ≥ 1 (B.3)

that forces the margin to be 1 but scales the measurement unit with the norm of
w. The following lemma demonstrates this statement.
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Lemma B.0.1. Equations (B.2) and (B.3) are two equivalent resolutions of hard-
SVM problem

Proof. Define γ∗ = mini∈[0,m] yi(⟨w∗,xi⟩+ b∗) as the minimum distance from the
solution of equation (B.2) (w∗, b∗).
For all i then

yi(⟨w∗,xi⟩+ b∗) ≥ γ∗

By dividing both members by γ∗ it becomes

yi(⟨
w∗

γ∗
,xi⟩+

b∗

γ∗
) ≥ 1

so the vector (w∗

γ∗
, b

∗

γ∗
) satisfies (B.3) conditions therefore ||w0|| ≤ ||w∗

γ∗
|| = 1

γ∗
.

By defining ŵ = w0

||w0|| and b̂ =
b0

||w0|| it follows that

yi(⟨ŵ,xi⟩+ b̂) =
1

||w0||
yi(⟨w0,xi⟩+ b0) ≥

1

||w0||
≥ γ∗

Since ||ŵ|| = 1 all conditions (B.2) are met, (ŵ, b̂) is an optimal solution.

It is important to remember that a dual version that embeds the constraints
in the maximization problem is available.
By considering the function

g(w) = max
α∈Rm:α≥0

m∑
i=1

αi(1− yi⟨w,xi⟩) =

0 if ∀i, yi⟨w,wi⟩ ≥ 1

+∞ otherwise
(B.4)

it is possible to rewrite (B.3) as

min
w

(
1

2
||w||2 + g(w)) =

= min
w

max
α∈Rm:α≥0

(
1

2
||w||2 +

m∑
i=1

αi(1− yi⟨w,xi⟩)) ≥

≥ max
α∈Rm:α≥0

min
w

(
1

2
||w||2 +

m∑
i=1

αi(1− yi⟨w,xi⟩))

(B.5)
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By fixing α, the optimization problem with respect to w is differentiable with
optimum value at

w −
m∑
i=1

αiyixi = 0 ⇒ w =
m∑
i=1

αiyixi (B.6)

By substituting this result in the last equation of (B.5) it leads to

max
α∈Rm:α≥0

(
1

2
||

m∑
i=1

αiyixi||2 +
m∑
i=1

αi(1− yi⟨
m∑
j=1

αiyixj,xi⟩)) (B.7)

Rearranging the terms, the rule becomes

max
α∈Rm:α≥0

(
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyj⟨xj,xi⟩) (B.8)

It is important to notice how this formulation doesn’t require the access to the
elements xi,xj but it only needs to know their inner product. This property is
fundamental in the implementation of SVM with kernels.
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C
Dataset presentation

This appendix contains information about the different datasets used for predic-
tion. At first the overall dataset received is presented and then lot of small subset
datasets used in prediction evaluation are described.

C.1 Overall dataset

Overall dataset is composed by 28 .csv files (7 per type described in Section 2.1)
of 11895 complete wheels (11418 OK and 477 NOK) of which 11573 are unique
(11108 OK and 465 NOK). Various moulds have been used of 14 different wheel
types all casted by the same casting machine (BP10). 8819 of these wheels are
collected with the extended parameter set of which 8577 are OK and 242 are
NOK.
From this big dataset others are obtained by selecting only a specific project ID.
They are described below: for the sake of simplicity their name is briefly sum-
marized as the concatenation of the project number, a letter {s,m,c} indicating
dataset size (respectively s=small, m=medium, c=complete) and, in the case of
the extended parameter set, an additional ”e”.
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C.2 Wheel number 3213

From the overall dataset only 17 refers to project ID number 3213. They are not
enough to be analyzed by the prediction algorithm

C.3 Wheel number 3701

For wheel number 3701 it is possible to extract 6 different datasets:

• 3701s counts 915 unique wheels, 895 OK (97.81%) and 20 NOK (2.19%).
Vector dimension before non informative columns cleanup is 261 and after
it is 93.

• 3701se counts 915 unique wheels, 895 OK (97.81%) and 20 NOK (2.19%).
Vector dimension before non informative columns cleanup is 347 and after
it is 143.

• 3701m counts 1642 unique wheels, 1606 OK (97.81%) and 36 NOK (2.19%).
Vector dimension before non informative columns cleanup is 261 and after
it is 93.

• 3701me counts 1642 unique wheels, 1606 OK (97.81%) and 36 NOK (2.19%).
Vector dimension before non informative columns cleanup is 347 and after
it is 143.

• 3701c counts 3824 unique wheels, 3766 OK (98.48%) and 58 NOK (1.52%).
Vector dimension before non informative columns cleanup is 261 and after
it is 137.

• 3701ce counts 3824 unique wheels, 3766 OK (98.48%) and 58 NOK (1.52%).
Vector dimension before non informative columns cleanup is 347 and after
it is 200.

This wheel’s moulds have only one thermocouple place that is related to TC_2.

C.4 Wheel number 4273

Wheel number 4273 had been predicted on two datasets:
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• 4273c counts 2183 unique wheels, 2127 OK (97.43%) and 56 NOK (2.57%).
Vector dimension before non informative columns cleanup is 261 and after
it is 101.

• 4273ce counts 2183 unique wheels, 2127 OK (97.43%) and 56 NOK (2.57%).
Vector dimension before non informative columns cleanup is 347 and after
it is 175.

For this wheel both TC_1 and TC_2 are used to gather temperature information.

C.5 Wheel number 4509

Data related to wheel number 4509 has been collected using only standard set
of parameters therefore only one dataset had been extracted. 4509c counts 646
unique wheels, 627 OK (97.06%) and 19 NOK (2.94%). Vector dimension before
non informative columns cleanup is 261 and after it is 87. Both TC_1 and TC_2
data have been collected.
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D
Result logs

This chapter contains result logs of models performances on the different datasets
described in C. The tests have been performed on 100 random shuffles of the data
and 3 statistics have been evaluated. The error rate (ER) counts the mean number
of misclassified elements, the improvement over naive predictor (IMP) studies
predictor’s real classification ability (IMP = ER - naive predictor ER) while
consistency (CON) counts how many time the trained classifier overperformed the
naive one. Tests have been performed on a system with a Intel Celeron E1200 CPU,
8 GB of RAM and an optical hard disk: this configuration surely is not a state
of the art one but time values are collected in order to compare different methods,
not for having an absolute idea of what is the runtime on modern computers.

D.1 Wheel number 3213

As described in the previous appendix, no training have been performed on wheel
number 3213 since its data is not enough to ensure the training of a good model.
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