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Abstract

This thesis explores a collaborative venture with Omniaweb to develop TIScode,

an innovative application facilitating information transmission through sound.

TIScode is meant to transmit information in form of audio messages,made of dif-

ferent frequencies, through a common speaker, so that the devices with a proper

app installed, can automatically capture the message. The project encompasses

the creation of both an encoder and decoder, inspired by QR codes, with a fo-

cus on overcoming potential risks in data transmission. Urban noise presents

a significant challenge, and to counter this, the study employs Reed-Solomon

codes, known for their robust error-correction capabilities. These codes intro-

duce redundancy to minimize errors, complemented by a scrambling technique

distributing errors among codewords. Implemented in Python through the

MATLAB API, the encoder associates each piece of information with a unique

identification code represented by a sound sequence. The decoder, in turn, ex-

tracts frequencies from received sounds to recover the original message. This

research not only presents a technical solution for information dissemination

in challenging environments but also contributes valuable insights into error

mitigation strategies for audio data transmission.
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1
Introduction

The research presented in this thesis represents a collaborative effort with

Omniaweb to create TIScode, an application designed to transmit information

through sound which will be shared thought speakers and captured by a device

provided with a microphone and the appropriate app.

The project draws inspiration from various successful technologies, such as QR

codes [7] [44], which are among the most widely used methods for data shar-

ing [33]. QR codes utilize a specific matrix to encode data, accessible as soon

as the code is captured by a device’s camera. The project’s concept revolves

around sharing data similarly, but through a different medium. In fact, the data

is encoded into sound rather than an image, a microphone is used instead of a

camera to retrieve the message.

The study propose to incorporation of Reed-Solomon codes as a solution to limit

the number of errors during the decoding process. These codes are employed in

QR codes, multimedia contexts, memory system design and in the Underwater

Acoustic Communications (UAC) [12] [17] [45]. In particular UAC is a specialized

field of study and technology that focuses on establishing reliable communica-

tion links underwater and it is an important example of the usage of RS codes for

acoustic transmission. Some of the challenges in underwater communication

include signal attenuation, dispersion, and the presence of ambient noise [41].
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The noise is one of the biggest challenges also when dealing with urban environ-

ment, for this reason in this project it was decided to adopt Reed-Solomon codes.

Another source of inspiration for the project was the Shazam application.

Similar to the TIScode’s objective, Shazam allows users to retrieve information,

in this case, details about a song, by using a microphone to record an audio

segment. The application extracts "features," trying to limit the impact of noise,

which are then used to search for the corresponding song within a database

and return its name [38]. This principle aligns with the designed system, where

specific frequencies are used to construct the sound. Furthermore, similar to

Shazam, a spectrogram is employed to retrieve individual frequencies.

Finally, the efficiency of the system was assessed using Python and Matlab

environments. The evaluation involved testing the system’s behavior with vary-

ing Signal-to-Noise Ratios (SNR) and different types of noises.

The subsequent chapters are organized as follows: Chapter 2 provides an

overview of existing technologies that inspired the development of TIScode.

Chapter 3 summarizes theoretical concepts crucial to the development of the

encoding and decoding mechanisms. Chapter 4 offers an analysis of the de-

velopment and testing processes, focusing on final results and considerations.

Finally, Chapter 5 presents conclusions, along with summaries of future works

and potential implementations.
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2
State of the Art

2.1 QR Codes

QR codes, short for Quick Response codes, are two-dimensional codes that

have become part of everyday life in the modern digital age. They were created

in 1994 by a Japanese company called Denso Wave, with the primary aim of

efficiently tracking automotive parts during manufacturing [7]. Nowadays QR

codes are used in different fields.

Figure 2.1: Different types of QRcodes [7]

QR codes are usually square in shape and consist of black squares arranged on

a white background. These codes are one of the best ways to share information

as they can store a significant amount of data, including text, URLs, contact

details, and more. The bidimentionality of these codes permits to store more

information compared to 1D barcodes, in fact due to their construction. A single

QR Code symbol can hold up to 7089 numeric characters, 4296 alphanumeric
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2.1. QR CODES

characters, 2953 bytes (binary data) or 1817 Kanji characters (character set ac-

cording to JIS X 0208) [31]. QR codes work by encoding data as a pattern of black

and white squares that can be quickly scanned in every direction and decoded

using a smartphone or dedicated QR code scanner. When scanned, the encoded

information is instantly retrieved, making QR codes an invaluable tool for a wide

range of applications, such as marketing, ticketing, inventory management, and

contactless payments.

This technology is very versatile. There are different types of QR codes that

allow to adapt the code to different surfaces or different type of information. For

example the Rectangular Micro QR (rMQR) Code efficiently conserves space by

minimizing the number of eye-shaped “finder patterns” from three to one and

a half. Its space-saving rectangular design allows to use it on narrow surfaces

[36].

Figure 2.2: Example of rMQR code on the left [7]

Besides the different types of QR codes there are also different versions which

span from Version 1 to Version 40, with each version featuring a distinct module

configuration, denoting the number of modules within the symbol. Starting at

Version 1 with a grid of 21x21 modules and culminating at Version 40 with a

grid of 177x177 modules.

Each QR Code symbol version is optimized for maximum data capacity, ac-

commodating various factors such as data volume, character type, and error

correction level. In essence, as the data volume increases, QR Code symbols

expand in size, necessitating the inclusion of more modules to encode the infor-
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CHAPTER 2. STATE OF THE ART

Figure 2.3: Representation of the different versions of QRcodes [7]

mation.

The QR code system consists in an encoder and a decoder. Encoding starts

by specifying the desired data, encompassing alphanumeric characters, binary

information, or even special characters, and then employing error correction

codes for fault tolerance [44]. The error correction is based on Reed-Solomon

algorithms and it has four possible levels: level L, level M, level Q, and level

H [42]. Depending on the chosen level it is possible to restore between 7% and

30% of unreadable codewords without losing data.

The encoded data is organized into multiple data blocks, and each block un-

dergoes various transformations, including data bit padding and Reed-Solomon

error correction encoding. Subsequently, the QR code generator assembles these

blocks into a structured grid, incorporating finder patterns, alignment patterns,

and timing patterns to facilitate quick and accurate detection. Encoding also en-

compasses the inclusion of version-specific information and format information

modules.

On the decoding front, specialized algorithms and image processing techniques

are used to locate the QR code within an image, extract the grid, and discern the

module configuration. This decoded matrix is then subjected to reverse trans-

formations, such as Reed-Solomon error correction decoding, data de-padding,

and character mapping, culminating in the retrieval of the original data. In

essence, the encoding and decoding of QR codes constitute a complex interplay

of data transformation, pattern recognition, and error correction.

In figure 2.4 it is possible to observe the different components of the QR code.
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2.1. QR CODES

Figure 2.4: Structure of a QR code [44]

The most interesting ones are discussed below.

• Quiet Zone: It’s a 4-module wide blank space with no data, used to make
sure that the nearby text or markings don’t misguide the QR code infor-
mation.

• Finder Pattern: It is a special pattern which is collocated in precise positions
and it is designed to be a pattern that is not likely to be found in the other
parts. This module helps to correctly orient the QR code for decoding.

• Timing Patterns: There are two timing patterns, one in a horizontal position
and the other one in vertical position. These patterns are used to determine
the symbol density, module coordinates and version information area.

In summary, in the thesis a similar concept is discussed. Both ideas utilize

multimedia content as a means of communication with a strong focus on ensur-

ing reliability. One of the focal points of this thesis is the use of the Reed-Solomon

algorithm.
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CHAPTER 2. STATE OF THE ART

2.2 Shazam

Shazam, is an application created in 2002 by Shazam Entertainment that can

identify a song by analysing a small fragment of it [38]. The overall functioning

is simple, it is enough to start the app and record a fragment of the song with

the microphone of the device. Shazam’s remarkable functionality hinges on a

complex amalgamation of audio fingerprinting, massive song databases, and

cloud-based computing power.

At its core, Shazam employs a process similar to musical fingerprinting to discern

the unique acoustic signature of a given song. When a user records a snippet of

music with the application, the latter converts the captured audio into a digital

spectrogram, essentially a visual representation of the audio frequencies and

their intensity over time [29], an example of a spectrogram can be seen in figure

2.5. The use of spectogram guarantees robustness when the sound is affected

by noise and it is used to find the peaks. A point of spetrogram is defined as a

peak if it has a higher energy than all of its neighbors.
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CHAPTER 2. STATE OF THE ART

Figure 2.5: Example of spectrogram (first), example of a constellation map (sec-
ond), combinatorial Hash Generation (third), hash details (fourth)
[38]

The complicated spectrogram is then reduced to a "constellation map" of

peaks. This procedure is made for both the song and the audio sample. The

match between the sample and the entire song is achieved if the number of

matching points between the two constellations is significant.

In order to find the correct registration offset the maps are indexed in a specific

way by using "anchor" points. These points have a target zone associated with

them and they are sequentially paired with points within the zone (figure 2.5).

This operation is applied to every track in a database and the outcome is a list

of hashes and their associated offset times.

As soon as the application receives the audio sample, it immediately extracts the

fingerprint, then a set of hash and time offset records is generated. At this point

the hash is compared to the hashes in the database and for each match time

pairs, between the corresponding time offsets and database files, are created

and distributed in bins.

9



2.2. SHAZAM

(a) Representation of a match

(b) Representation of a mismatch

Figure 2.6: Graphical representation of a match and mismatch [38]
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CHAPTER 2. STATE OF THE ART

The bins are then scanned and in the end the song with a higher matching

score, or the number of matching points, is returned as the match. The figure 2.6

shows a scatterplot of matching hash locations and a histogram of differences of

time offsets for the match (a) and a mismatch(b).

As it finds a match, Shazam returns information about the song, including the

title, artist, album, and sometimes even lyrics, enriching the user’s musical expe-

rience. Furthermore, it provides links to various streaming platforms, allowing

users to listen to the full track, explore related content, and seamlessly integrate

their newfound discoveries into their music libraries.

In this thesis the concept behind the functioning of Shazam were considered as

an inspiration, especially the functioning of the fingerprints. In particular, the

main goal of this research is to find a better way of separating frequency peaks

in a given sample. This peaks are easily identifiable by using the spectrogram

and constellation maps even in noisy environments.
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3
Scientific Background

3.1 Digital Signal Processing

The project of this thesis is based on the principles of Digital Signal Process-

ing (DSP). Digital Signal Processing is a set of different techniques used to

manipulate and analyze digital signals, which are numerical representations

of real-world signals such as audio, video, or sensor data. Unlike analog sig-

nals, which are continuous and vary smoothly, digital signals are discrete and

quantized into specific values. DSP algorithms process these digital signals to

perform tasks like filtering, noise reduction, compression, and modulation [26]

[18].

By applying mathematical techniques and algorithms, DSP allows for the extrac-

tion of valuable information from signals, enabling tasks like speech recognition,

image processing, and audio enhancement. It plays a crucial role in various ap-

plications, including telecommunications, audio and video processing, medical

imaging, radar systems, and more, enhancing the efficiency and accuracy of

signal analysis and manipulation in the digital domain.
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3.1. DIGITAL SIGNAL PROCESSING

3.1.1 Fourier Transform

The Fourier Transform is a fundamental mathematical tool in the field of

signal processing. It provides a way to decompose complex signals into sim-

pler sinusoidal components [16]. Named after the French mathematician and

physicist Jean-Baptiste Joseph Fourier, this mathematical technique allows any

signal, no matter how complex, to be represented as a combination of sinusoidal

waves with different frequencies, amplitudes, and phases. By understanding

the frequency components of a signal, the Fourier Transform is widely applied

in various fields. In audio processing, it helps analyze and manipulate different

frequencies of sound waves, enabling tasks like equalization and noise filtering.

There are several types of Fourier Transforms, each designed to handle different

types of signals and applications. Here are the main types:

• Continuous Fourier Transform (CFT)

• Discrete Fourier Transform (DFT)

• Short-Time Fourier Transform (STFT)

Continuous Fourier Transform

This type of Fourier Transform is used for continuous, time-domain signals.

It decomposes a continuous signal into its constituent frequencies, providing a

continuous spectrum. In mathematical terms the CFT of the function 𝑓 (𝑡) is the

function 𝐹 𝑓 (𝑡), where [21] [39]:

𝐹 𝑓 (𝑡) =
∫ ∞

−∞
𝑓 (𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 (3.1)

where 𝜔 = 2𝜋𝑘

14



CHAPTER 3. SCIENTIFIC BACKGROUND

Discrete Fourier Transform

The DFT is used for discrete, time-domain signals, which are sequences of

values sampled at specific intervals. It converts a finite sequence of equally

spaced samples of a function into a same-length sequence of complex numbers,

which represent the signal in the frequency domain. Given a discrete signal 𝑎𝑛
the DFT of the signal is:

𝐴𝑘 =

𝑁−1∑︂
𝑛=0

𝑒−𝑖𝜔𝑛𝑎𝑛 (3.2)

where N is the number of points and indicates how the signal in frequency

domain should be sampled. In particular taken 𝜔 such that the period is 0 <

𝜔 < 2𝜋 and

𝜔𝑘 =
2𝜋
𝑁

𝑘, 𝑘 = 0, 1, ..., 𝑁 − 1 (3.3)

The computation of the DFT is very slow, in fact it requires 𝑂(𝑁2) operations for

𝑁 input samples, for this reason a better algorithm should be used. Fast Fourier

Transform (FFT) are a family of algorithms for computing the DFT. Unlike the

standard DFT, the FFT reduces the computational complexity to 𝑂(𝑁 log 𝑁)
making it significantly faster, especially for large datasets [21]. It is particularly

useful for processing digital signals on computers and digital systems. This

efficiency is crucial in various applications, such as audio and video processing,

telecommunications, and scientific computing, where rapid analysis of signals

is required.

Short-Time Fourier Transform

The Short-Time Fourier Transform is a fundamental technique in the field of

digital signal processing, widely employed for analyzing and processing time-

varying signals. Unlike the standard Fourier Transform, which provides infor-

mation about the frequency content of an entire signal, the STFT focuses on the

variation of frequencies over short, overlapping time intervals. Mathematically

15



3.1. DIGITAL SIGNAL PROCESSING

the STFT of a signal x(t) is defined as:

𝑋(𝑡 , 𝑓 ) =
∫ ∞

−∞
𝑥(𝜏)𝑤(𝜏 − 𝑡)𝑒−𝑖2𝜋 𝑓 (𝜏−𝑡)𝑑𝜏 (3.4)

where X(t, f) represents the STFT of the signal and 𝑤(𝜏− 𝑡) is a window function

that tapers the signal to minimize spectral leakage. The window function limits

the analysis to a specific time interval allowing to observe the signal’s frequency

components within that interval.

In practical applications, signals are usually discrete and sampled at certan

intervals. In order to apply STFT to discrete signals its equation can be adapted

as follows:

𝑋[𝑛, 𝑘] =
∞∑︂

𝑚=−∞
𝑥[𝑚]𝑤[𝑚 − 𝑛]𝑒−−𝑖2𝜋𝑘(𝑚 − 𝑛)/𝑁 (3.5)

By breaking down a signal into smaller segments, the STFT captures how the

frequency components change over time, offering a detailed insight into the sig-

nal’s behavior in both time and frequency domains. This method is particularly

valuable in applications where signals exhibit non-stationary behavior, meaning

their frequency content changes over time.

One of the critical points of the STFT is the choice of the window function. Each

function affect differently the trade-off between frequency and time resolution.

In particular, a narrower window yields better frequency resolution but poorer

time resolution, whereas a wider window provides better time resolution at the

expenses of frequency resolution [24]. Four principal windowing techniques

commonly used are the Rectangular Window, Hamming Window, Hanning

Window, Blackman Window and Gaussian Window. Each technique employs

a different mathematical function to define the shape of the window, affecting

the trade-off between the main lobe width and side lobe levels in the frequency

domain.

16



CHAPTER 3. SCIENTIFIC BACKGROUND

Rectangular Window

The rectangular window is the most basic and simplest form of windowing

technique used in signal processing. Its defining characteristic lies in its abrupt

cut-off at the edges, resembling a rectangular shape. The purpose of the rect-

angular window is to segment a signal into specific intervals for analysis, and

its mathematical representation is straightforward. For a signal of length 𝑁 , the

rectangular window function is defined as follows:

𝑤(𝑛) = 1, 0 ≤ 𝑛 < 𝑁

𝑤(𝑛) = 0, elsewhere

where 𝑤(𝑛) represents the window function, and 𝑛 the discrete time index.

The rectangular window assigns a value of 1 to all data points within the win-

dow’s interval and 0 to points outside this interval. While conceptually simple,

the rectangular window has significant implications for the frequency analysis

of signals.

The Fourier Transform of a signal windowed by a rectangular window is repre-

sented by the sinc function in the frequency domain. The sinc function (sinc(𝑥))
is defined as sinc(x) = sin(𝜋𝑥)

(𝜋𝑥) . For the rectangular window function 𝑤(𝑛), the

Fourier Transform 𝑊( 𝑓 ) is given by:

𝑊( 𝑓 ) = sinc
(︃
𝑓 𝑁

2

)︃
This equation illustrates the frequency response of the rectangular window.

The main lobe of the sinc function is centered around the frequency correspond-

ing to the center of the window, and it gradually attenuates as the frequency

moves away from the center. However, the abrupt cut-off at the edges of the

window results in high side lobes, causing spectral leakage. Spectral leakage

occurs when the energy from the main lobe spills into adjacent frequency bins,

leading to inaccuracies in frequency analysis. One of the significant drawbacks

17



3.1. DIGITAL SIGNAL PROCESSING

of the rectangular window is its poor frequency resolution due to the wide main

lobe. While it provides excellent localization in the time domain, it sacrifices

precision in the frequency domain. This limitation is a direct consequence of

the abrupt transition from 1 to 0 at the edges of the window.

Despite its limitations, the rectangular window finds application in cases where

frequency analysis is not the primary concern, and a simple, straightforward

segmentation of the signal is sufficient.

(a)

(b)

Figure 3.1: Rectangular Window [2]

18



CHAPTER 3. SCIENTIFIC BACKGROUND

Hamming Window

The Hamming window is designed to reduce spectral leakage by tapering the

signal smoothly at the edges. Its equation is defined as follows:

𝑤(𝑛) = 0.54 − 0.46 cos
(︃

2𝜋𝑛
𝑁 − 1

)︃
where 𝑤(𝑛) represents the amplitude of the window at sample 𝑛, and 𝑁 denotes

the total number of samples in the window.

(a)

(b)

Figure 3.2: Hamming Window [2]

The term 0.54 − 0.46 cos
(︁ 2𝜋𝑛
𝑁−1

)︁
shapes the window function. The coefficient
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3.1. DIGITAL SIGNAL PROCESSING

0.54 at the beginning of the equation ensures that the average power of the

window is 1, which is a desirable property for preserving the signal’s energy.

One of the distinctive features of the Hamming window is its smooth transition

from zero to the maximum value, which reduces abrupt changes in the signal.

This smoothness is achieved by the cosine term in the equation. Additionally,

the Hamming window effectively suppresses side lobes, the secondary peaks in

the frequency spectrum. By minimizing side lobe levels, the Hamming window

reduces spectral leakage, a phenomenon where energy from the main lobe spills

into adjacent frequency bins, causing inaccuracies in frequency analysis.

The Hamming window strikes a balance between main lobe width and side

lobe levels. The main lobe width determines the frequency resolution of the

windowed signal. A narrower main lobe provides better frequency resolution

but sacrifices the ability to distinguish closely spaced frequencies. On the other

hand, side lobes represent the amplitude of unwanted frequency components

introduced by windowing. Lower side lobe levels are essential for accurate

spectral analysis, especially in applications like radar systems, where precise

detection of signals amidst noise is critical. The Hamming window’s design

ensures that it offers a reasonable compromise between frequency resolution

and side lobe suppression, making it suitable for a wide range of applications.

Hanning Window

The Hanning window is used to reduce spectral leakage in the frequency analy-

sis of signals and it effectively mitigates this issue by tapering the signal smoothly

at the edges, which reduces the amplitude of the side lobes, resulting in a more

accurate representation of the signal’s frequency content.

The mathematical equation for the Hanning window is defined as follows:

𝑤(𝑛) = 0.5 − 0.5 cos
(︃

2𝜋𝑛
𝑁 − 1

)︃
In this equation, cos denotes the cosine function, and the factor 2𝜋 ensures that
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the cosine wave completes one full cycle within the window length. The term

0.5 − 0.5 cos smoothly tapers the window from 1 to 0, ensuring continuity at

the edges. One of the key characteristics of the Hanning window is its ability

(a)

(b)

Figure 3.3: Hanning Window [2]

to balance between the main lobe width and the level of the side lobes in the

frequency domain. The main lobe refers to the central peak in the frequency

spectrum, while the side lobes are the smaller peaks surrounding the main

lobe. By tapering the signal with the Hanning window, the main lobe width

is effectively reduced, which enhances frequency resolution. Additionally, the

side lobes are attenuated, lowering their amplitude. This attenuation of the side
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lobes is crucial because it minimizes the interference between adjacent frequency

components, leading to a more precise representation of the signal’s frequency

content.

The Hanning window is widely used in various applications where accurate

frequency analysis is essential. One such application is in the field of audio

signal processing, where the Hanning window is applied to audio signals before

performing a Fourier Transform. By using the Hanning window, it is possible

to obtain a more detailed and accurate representation of the audio spectrum,

enabling tasks such as pitch detection, harmonic analysis, and noise reduction.

Blackman Window

The Blackman window is a function designed to minimize spectral leakage and

side lobes in the frequency domain. The Blackman window is a member of the

Blackman family of windows, which includes the Blackman-Harris and Nuttall

windows. It is named after the American engineer and mathematician Robert J.

Blackman. The Blackman window is particularly effective in applications where

high suppression of side lobes is essential, such as in spectrum analysis and

modulation schemes.

The equation for the Blackman window is defined as follows:

𝑤(𝑛) = 0.42 − 0.5 cos
(︃

2𝜋𝑛
𝑁 − 1

)︃
+ 0.08 cos

(︃
4𝜋𝑛
𝑁 − 1

)︃
The Blackman window’s unique formulation includes both cosine and constant

terms, which contribute to its superior performance in terms of side lobe sup-

pression and frequency resolution. The first term, 0.42, provides the central lobe

of the window, ensuring that the window’s values are positive and symmetric

around the midpoint. The second term, −0.5 cos
(︁ 2𝜋𝑛
𝑁−1

)︁
, represents the first side

lobe suppression factor. This term reduces the amplitude of the side lobes, min-

imizing spectral leakage. The third term, 0.08 cos
(︁ 4𝜋𝑛
𝑁−1

)︁
, further refines the side

lobe suppression by addressing higher-order side lobes.

The Blackman window’s effectiveness lies in its balance between the main lobe

22



CHAPTER 3. SCIENTIFIC BACKGROUND

width and the suppression of side lobes. The central lobe is wider compared to

other windows like Hamming and Hanning, resulting in better frequency res-

olution. Simultaneously, the coefficients of the cosine terms minimize the am-

plitudes of side lobes, reducing interference and spectral leakage. This unique

balance makes the Blackman window suitable for a wide range of applications,

including speech and audio processing, radar systems, and sonar applications.

In practical terms, the Blackman window is applied to a signal by element-wise

multiplication. This process effectively tapers the signal at its edges, reducing

the impact of discontinuities during Fourier analysis.

(a)

(b)

Figure 3.4: Blackman Window [2]
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Gaussian Window

The Gaussian window is a widely used windowing function due to its unique

properties, particularly its excellent frequency localization and minimal side

lobes. Unlike other window functions, the Gaussian window is defined by a

Gaussian distribution, which imparts distinct advantages in applications requir-

ing high-frequency precision.

The Gaussian window is mathematically defined as:

𝑤(𝑛) = 𝑒
−
(︂
𝑛−(𝑁−1)/2
𝛼(𝑁−1)/2

)︂2

where 𝑤(𝑛) represents the value of the window at index 𝑛, 𝑁 is the window

length, and 𝛼 is a parameter controlling the width of the Gaussian. The central

peak of the Gaussian window is located at 𝑛 = (𝑁 − 1)/2. The parameter 𝛼

determines the width of the main lobe; smaller 𝛼 values result in wider main

lobes, providing better frequency localization, while larger 𝛼 values yield nar-

rower main lobes.

The Gaussian window’s defining characteristic is its ability to minimize side

lobes, the secondary peaks in the frequency spectrum caused by the windowing

process. By employing the Gaussian distribution, this window function reduces

the amplitude of side lobes significantly, leading to precise frequency localiza-

tion. The Gaussian window’s primary strength is frequency localization. The

narrowness of its main lobe means that energy from the signal is concentrated

in a small range of frequencies, allowing for precise frequency measurement.

While the Gaussian window excels in frequency localization and side lobe sup-

pression, its main lobe is wider than that of other window functions which

can affect frequency resolution. Therefore, the choice of the Gaussian window

depends on the specific requirements of the application.
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(a)

(b)

Figure 3.5: Gaussian Window [2]

3.1.2 Power Spectral Density

Power Spectral Density (PSD) is a fundamental concept in the field of signal

processing and engineering which provides insights into the frequency com-

ponents of a signal [14]. PSD represents the distribution of a signal’s power

over its frequency components and offers a view of how the signal’s energy is

distributed across the frequency spectrum. It plays a central role in various

applications, including communications and audio processing. There are two

methods for the estimation of the PSD: parametric and non- parametric. Para-
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metric methods assume that the data is generated based on a specific model and

do not have limitations on frequency resolution, while non-parametric methods

does not make any assumption about the origin of data.

For a continuous-time signal 𝑥(𝑡), the PSD, denoted as 𝑆( 𝑓 ), represents the

power per unit frequency and is defined as the Fourier Transform of the signal’s

autocorrelation function, 𝑅(𝜏):

𝑆( 𝑓 ) = lim
𝑇→∞

1
𝑇

|︁|︁|︁|︁|︁∫ 𝑇/2

−𝑇/2
𝑥(𝑡)𝑒−𝑖2𝜋 𝑓 𝑡𝑑𝑡

|︁|︁|︁|︁|︁2 (3.6)

In the case of a discrete-time signal 𝑥[𝑛], the PSD is defined as the Discrete

Fourier Transform (DFT) of the autocorrelation function:

𝑆( 𝑓𝑘) =
|︁|︁|︁|︁|︁𝑁−1∑︂
𝑛=0

𝑥[𝑛]𝑒−𝑖2𝜋 𝑓𝑘𝑛/𝑁

|︁|︁|︁|︁|︁2

Here, 𝑓 represents frequency, 𝑡 denotes time for continuous signals, 𝑛 represents

discrete time indices for discrete signals, and 𝑓𝑘 represents discrete frequency

indices. The PSD indicates the distribution of a signal’s power across different

frequencies that means that signals with different frequency content will have

distinct PSDs.

In communication systems, understanding the signal’s power distribution across

frequencies is crucial for efficient transmission and reception. By analyzing the

PSD, it is possible to design filters and modulation schemes that precisely target

specific frequency bands, optimizing signal quality and bandwidth utilization.

Additionally, in fields such as audio engineering, PSD analysis helps in noise

reduction and equalization problems, ensuring high-quality audio output.

Estimating the PSD from finite-duration signals involves various techniques such

as the periodogram and Welch’s method [14]. The periodogram is a straight-

forward approach where the squared magnitude of the Fourier Transform of
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Figure 3.6: Example of a periodogram [4]

the signal is used to estimate the PSD. Welch’s method, on the other hand, di-

vides the signal into overlapping segments, computes individual PSD estimates

for each segment, and averages them to obtain a smoother and more reliable

estimate, especially for non-stationary signals. In the analysis of the real-world

challenges, noise and finite observation time can affect the accuracy of PSD

estimation. It is possible to counter these issues applying techniques such as

windowing.

3.2 Reed-Solomon codes

Reed-Solomon codes (RS codes) are a powerful block-based class of error-

correcting codes [35] widely used in digital communication and data storage

systems, in particular for satellite communications, storage devices and high-

speed modems. Developed by Irving S. Reed and Gustave Solomon in the

1960s [46], these codes offer robust error detection and correction capabilities.

A remarkable features of Reed-Solomon codes is their ability to correct a prede-

termined number of errors while also effectively detecting and flagging others.

This makes them particularly well-suited for deployment in situations where
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data accuracy is very important, such as optical and magnetic storage devices,

QR codes, and noisy channels such as the one taken in analysis in this project.

At their core, Reed-Solomon codes operate by converting data into a sequence of

symbols and then appending redundant information to this data. This redun-

dancy is calculated using polynomial mathematics, typically in the Galois field,

and is strategically designed to enable the recovery of lost or corrupted symbols,

thereby rectifying errors that may occur during data transmission or storage.

The versatility of Reed-Solomon codes is also characterized by the possibility to

choose the number of redundancy symbols.

A Reed-Solomon code is specified as RS(n,k) with symbols’ length equal to s.

This means that the encoder takes k data symbols of s bits each and adds parity

symbols to make an n symbols codeword. There are n-k parity symbols of s

bits each. A Reed-Solomon decoder can correct up to t symbols that contain

errors in a codeword, where 2t = n-k. The values of n and k have to satisfy the

following relation:

0 < 𝑘 < 𝑛 < 2𝑚 + 2 (3.7)

The quantity of parity symbols is tied to both the code’s error-correction capacity

and the total number of symbols. Reed-Solomon codes can be seen as a subset

Figure 3.7: Representation of the Reed-Solomon codeword [6]

of Bose-Chaudhuri-Hocquenghem (BCH) codes, but in comparison to binary

BCH codes, Reed-Solomon codes offer several advantages that make them a

preferred choice in various applications. Firstly, they provide a higher efficiency

in utilizing redundancy, ensuring robust error correction. Moreover, Reed-
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Solomon codes provide flexibility by allowing for adjustments in block length

and symbol size. These codes also offer a wide range of code rates and different

efficient decoding techniques.

Figure 3.8: Block Diagram of Reed-Solomon code[43]

3.2.1 Encoding in Reed-Solomon code

In the Reed-Solomon encoding process, data is transformed into polynomial

form, with each symbol in the data block representing a coefficient in the poly-

nomial. The data polynomial (3.8) is then divided by a generator polynomial

(3.9) to create the encoded message.

𝐷(𝑥) = 𝑥𝑛−𝑘𝑀(𝑥) (3.8)

𝐺(𝑥) = (𝑥 − 𝛼𝑖)(𝑥 − 𝛼𝑖+1)...(𝑥 − 𝛼𝑖+2𝑡) (3.9)

The generator polynomial is a key element in Reed-Solomon coding, determin-

ing the number of redundant symbols added to the original message. These

redundant symbols r(x) are derived through the previous division as follows:

𝑟(𝑥) = 𝑚𝑜𝑑(𝐷(𝑥)/𝐺(𝑥)) (3.10)

Finally the codewords C(x), or code polynomial is obtained by appending r(x)
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to the data polynomial.

𝐶(𝑥) = 𝑟(𝑥) + 𝐷(𝑥) = 𝑟(𝑥) + 𝑥𝑛−𝑘𝑀(𝑥) (3.11)

This polynomial, which includes both the original data and the redundant sym-

bols, is what is transmitted or stored. During decoding, these redundant sym-

bols enable the receiver to identify and correct errors in the received message by

performing polynomial division and evaluating syndromes, thereby ensuring

the integrity and accuracy of the transmitted data.

Figure 3.9: Architecture for Reed-Solomon encoder [17]

3.2.2 Decoding in Reed-Solomon code

In the Reed-Solomon decoding process, the received data, which includes

both the original message symbols and additional redundant symbols, under-

goes intricate calculations to detect and correct errors.

This process begins with the received symbols being converted into a poly-

nomial. The decoder then works to evaluate this polynomial to locate errors.

Reed-Solomon codes are capable of correcting up to t errors and 2t erasures

(missing symbols) within the received data. To achieve this, the decoder uses

a method called syndrome calculation, which involves performing polynomial
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Figure 3.10: Reed-Solomon algorithm decoding process [17]

divisions and evaluating the results to identify errors. The syndromes, repre-

senting discrepancies between the received and expected data, are computed

and analyzed to determine the error locations. Once the errors are located, the

decoder employs mathematical techniques, such as the Berlekamp-Massey algo-

rithm [35], to reconstruct the original message polynomial, effectively correcting

the errors.

It is possible to summarize the decoding stages as follows [17][23]:

• Syndrome generator

• Key equation solver (determine error-location polynomial and error eval-
uator polynomial)

• Solve the error locator polynomial

• Calculate the error magnitude

• Error correction

In the next sections these stages are going to be described in detail.

Syndrome Generator

The first step in the decoding process is to understand if there are any errors in

the codeword or not. To do so it is necessary to evaluate the syndromes, where

a syndrome polynomial is represented as

𝑆(𝑥) = 𝑆0 + 𝑆2𝑥
2 + ... + 𝑆2𝑡−1𝑥2𝑡 − 1 (3.12)
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If we assume P(x) is the received codeword polynomial

𝑅(𝑥) = 𝑅0 + 𝑅1𝑥
2 + ... + 𝑅𝑛−1𝑥

𝑛−1 (3.13)

then 𝑛𝑡ℎ syndrome can be expressed as such

𝑆𝑖 = 𝑅0 + 𝛼𝑖(𝑅1 + 𝛼𝑖(𝑅3 + ... + 𝛼𝑖(𝑅𝑛−1)...))) (3.14)

Figure 3.11: Architecture for Syndrome Generator [17]

Key Equation Solver

After computing the syndrome polynomial, the subsequent step is to de-

termine the error values and their corresponding positions. In this stage, the

2t syndrome polynomials, which were generated in the prior step, are solved.

These polynomials involve v unknowns, where represents the number of errors

in the received codeword.

If the unknown error positions are identified as 𝑖1, 𝑖2, ..., 𝑖, the error polynomial
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can be formulated as follows:

𝐸(𝑥) = 𝑌1𝑥
𝑖1 + 𝑌2𝑥

𝑖2 + ... + 𝑌𝑣𝑥 𝑖𝑣 (3.15)

where 𝑌𝑝 represents the magnitude of the error 𝑝𝑡ℎ at location 𝑖𝑝 .

The error location polynomial is given from the solution for the coefficients of

the error locator polynomial 𝜎(𝑥).

𝜎(𝑥) = 𝜎𝑣𝑥
𝑣 + 𝜎𝑣−1𝑥

𝑣−1 + ... + 𝜎0𝑥 + 𝜎 (3.16)

The polynomial 3.16 is connected to the error value polynomial through a specific

equation referred to as the key equation. When the error value is represented

by 𝜔(𝑥), this key equation is articulated as follows:

𝑆(𝑥)𝜎(𝑥) = 𝜔(𝑥)𝑚𝑜𝑑𝑥2𝑡 (3.17)

These equations are resolved through different methods. In this study, we

employ the "inversion-less Berlekamp-Massey algorithm" (iBM algorithm).

Solving of the Error Locator Polynomial

In the next stage he Chien-search algorithm is employed to identify error

positions. In this method, the roots of the error locator polynomial represent the

inverse error locations in the codeword. This algorithm systematically tests all

possible input values, checking if the outputs result in zeros. The computation

involves summing the odd values (1, 3, 5, ...) on one side and the even values

(0, 2, 4, 6, ...) on the other. The two sums are then added together. If the

summation value becomes zero within any clock cycle (<n), the position of that

cycle determines the error location.
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Figure 3.12: Architecture for Chien-Search Algorithm [17]

Calculation of the Error Magnitude

In order to evaluate the error values Forney algorithm is applied, with the in-

put comprising both the error position and the coefficients of 𝜔(𝑥).Additionally,

it utilizes a Galois field multiplier similar to the Chien-search algorithm. The

formula for determining the error values is expressed as:

𝑌𝑖 =
𝜔(𝑥−1

1 )
𝜎′(𝑥−1

𝑖
)

(3.18)

In 3.18 𝑥−1
𝑖

the root as computed from the Chien-search and 𝜎′(𝑥) denotes the

derivative of the error locator polynomial.

Figure 3.13: Architecture for Forney Algorithm [17]
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Error Correction

After determining both the positions and extents of errors, the error correction

module processes the received code. It conducts XOR operations between the

received code and the computed error magnitudes at their specific positions.

This operation results in obtaining the corrected message symbols.

3.3 Scrambling

Scrambling in digital communication refers to the process of systematically

altering the arrangement of bits in a data stream before transmission [1]. This

technique is used for various purposes, primarily to enhance the quality and

security of data transmission.

Scrambling can help in reducing the occurrence of long sequences of identical

bits, which might be problematic in certain communication systems. For in-

stance, long sequences of 0s or 1s can lead to synchronization issues or loss of

clock signal. Scrambling disrupts these sequences, ensuring a more balanced

distribution of bits, which aids in synchronization and reduces the chance of

errors during transmission. Another application of scrambling is encryption

and security. By rearranging the bits in a specific manner known only to the

sender and the receiver, the transmitted data becomes unintelligible to anyone

who intercepts it without the correct decryption key. This provides a level of

security and privacy for the transmitted information.

Scrambling techniques can be also useful while working with communication

channels. In fact, certain frequencies might get attenuated more than others

and scrambling can be used to spread the energy across various frequencies,

ensuring that no specific frequency range is excessively impacted. This helps in

equalizing the channel, improving the overall quality of the transmitted signal.

In essence, scrambling is a technique employed to optimize data transmission,

enhance security, and ensure reliable communication in digital systems. Two
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common scrambling techniques are Bipolar with 8-zero substitution (B8ZS) and

High-density bipolar3-zero (HDB3) and the choice of the best technique is based

on the application and the goals of the communication system.
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4
Analysis and results

The central focus of this thesis revolves around the development of a system

that can provide a reliable data exchange. In the analysis a particular attention

is brought to the following aspects:

• Assessing the appropriateness of employing Reed-Solomon codes in the
context of data exchange through sound.

• Investigating whether variations in amplitudes can have a positive impact
on the system.

• Exploring the feasibility of enhancing the system’s resilience to selective
noises, a significant challenge in urban environments.

The designed system consists in two parts: the encoding module and the

decoding module. These two parts are highlighted in the 4.1 and discussed in

detail in the following sections.

During the encoding process, the data of different type of format are submit-

ted to an external software module that generates an identification code. The

identification code is translated into binary format. These binary string under-

goes different manipulations and the final result of this process is an audio file of

a total length of around 4 seconds, that comprises two distinct components. The

first component is the "opening mark", a sound element that remains consistent

across all encoded messages. The second component, known as the "infocore,"
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is the sound responsible for actually encoding the information. Between these

two components, there is a deliberate insertion of a 2-second interval of silence.

This pause is used in order to allow the system to activate. In this thesis the

focus was brought on the exchange of the "infocore" as the other component was

already designed.

The second part of the application concerns the retrieval of data. This pro-

cess starts when a device equipped with a microphone and the application,

developed by AppyTech, captures the audio signal. This activation occurs auto-

matically as soon as the opening mark within the audio file is detected and the

recording begins. The recording lasts about 4 seconds in order to completely

capture the "infocore". Later, the captured sound is trimmed to avoid useless

information and undergoes a decoding process. The trimming process is per-

formed using the periodogram to estimate the power spectral density of the

notes and of the received message. In this way it is possible to select the section

where the most of the frequencies are contained.

The trimmed and cleaned sound is passed to the decoder that in response,

furnishes the key required to access the data contained within a remote database.

This process is invisible to the end user. Following the successful retrieval of

the key, the application autonomously retrieves the data and transmits it to the

requesting device.

In the upcoming sections the following concepts are going to be discussed: in

chapter 4.1 the initial preparations and the choices are presented, in chapter

4.2 the structure of the encoder is discussed, in the chapter 4.3 the decoder is

discussed, chapter 4.4 contains the final analysis of the model.
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(a) Encoder

(b) Decoder

Figure 4.1: Block diagram

4.1 Initial preparation

For the project discussed in this thesis Python integrated with MATLAB API

[5] was used. This integration of the two languages allowed to have the benefits

of both. For example it was possible to use functions such as rsenc() and rsdec()

inside the Python program, while the usage of the numpy library simplified the

collection of the data. The following setup was used for the development of the

system.
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Figure 4.2: Setup used to develop the project

Before the encoding and decoding processes are possible, some initial prepa-

rations are needed. The first step involves creating a suitable frequency alphabet,

based on the number of bits designated for the encoding. With each segment

requiring 14 bits, the alphabet must consist of

214 = 16384

components. For this project the frequencies were selected in the range with

the minimum frequency of 415.30 Hz and the maximum frequency of 4978.03

Hz. This choice was made after some considerations. The first idea was to

use the piano notes. From these frequencies it was necessary to remove the 15

lowest frequencies in order to avoid interference with the alternating current

(50Hz-60Hz). For this reason the number of the notes that could be used were

insufficient. In the end there were selected 88 notes. These 88 notes were

arranged into triplets, resulting in a total of 315,735 arrangements. This number

is calculated using the expression

𝐶

(︃
𝑛

𝑘

)︃
=

𝑛!
𝑘!(𝑛 − 𝑘)!
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where 𝑛 = 87 and 𝑘 = 3. It is important to note that the project’s primary focus

is on building a reliable system, for this reason melodic considerations were not

taken into account and may be explored in future studies.

The frequencies were selected starting from a middle range, and then the

other two frequencies were obtained by summing and subtracting of values. For

detailed frequency ranges, refer to Table 4.1.

𝑓1 𝑓2 𝑓3
𝑓2-2 - 𝑓2-18 18-50 𝑓2+3 - 𝑓2+35

16 8 16

Table 4.1: Division of the ranges for the mapping

These ranges were carefully chosen to prevent issues related to overlapping

frequencies. It is evident that the three frequencies are also in an ascending

order, this idea was used in order to simplify the decoding process and also to

avoid errors between similar frequencies.

For a better understanding a pseudocode of the function is shown.

Algorithm 1 Alphabet creation
𝑛𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝑠 ← 16384
𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 ← 𝑎𝑟𝑟𝑎𝑦(3, 𝑛𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝑠)
𝑟𝑎𝑛𝑔𝑒𝑠 ← 𝑟𝑎𝑛𝑔𝑒(3, 35)
𝑟𝑎𝑛𝑔𝑒𝑠 ← 𝑟𝑎𝑛𝑔𝑒(18, 50)
𝑟𝑎𝑛𝑔𝑒𝑠 ← 𝑟𝑎𝑛𝑔𝑒(2, 18)
𝑖 ← 0
while 𝑖 ≤ 𝑛𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝑠 − 1 do

for m,n,h in ranges do

𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 ← 𝑁𝑜𝑡𝑒𝑠[𝑚, 𝑛, ℎ]
𝑖 ← 𝑖 + 1

end for

end while

return 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡

After the construction and analysis of the alphabet it is possible to proceed with

the encoding process.
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4.2 Encoder

The encoder and the decoder codes are developed in Python using a MATLAB

API. This procedure allowed to use some of the MATLAB features for a better

analysis and functioning. The encoding mechanism, which is summarized in

the following pseudo code, is designed to convert binary strings, into an audi-

ble formats. These binary strings of 42 bits are referred to as source code and

they are generated by Omniaweb. The 42 bits are an external constraints of the

company. During the encoding and decoding reed-solomon code is used. The

parameters used during this analysis are n = 12, k=6 and m=7. This means that

the total length of the message is 12 and the length of the information part is 6.

Throught the reed-solomon six more elements are added. In the end a message

of total 84 bits is used to generate the sound.

The process begins by structuring the input bits into an organized 6x7 matrix.

This matrix, representing the binary data, undergoes a transformation into dec-

imal values, followed by the encoding using Reed Solomon Coding. This step

enhances the encoded data’s robustness by introducing error detection and cor-

rection capabilities. The data are then transformed back into a binary string

of 84 bits. In order to provide even more robustness at this point the data can

undergo the scrambling process.

In the end of the process the 84 bits are divided into 14 bits segments that are

transformed into six decimal numbers. Each of these numbers represents the

index inside the alphabet. At each index corresponds three frequencies.

After selecting the three frequencies, these are used to create the sound. This

process is divided in two parts. In the first part three sinusoidal signals are

created each of 0.33 seconds. This choice of duration is made in order to obtain

a final signal of 2 seconds. The second part involves a frequency mixer function,

a component that takes as an input the different frequencies to compose one

sound. In total six sounds of three frequencies are merged together to generate

the final audio signal that accurately represents the encoded binary information.
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Algorithm 2 Encoder
𝑏𝑖𝑡𝑠𝑖𝑛 ← 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑏𝑖𝑡𝑠) {Transforms the binary string into a matrix (6,7)}
starts the matlab engine
𝑏𝑖𝑡𝑠𝑑𝑒𝑐 ← 𝑑𝑒𝑐(𝑏𝑖𝑡𝑠𝑖𝑛)
′𝑏𝑖𝑡𝑠𝑑𝑒𝑐′← 𝑚𝑎𝑡𝑙𝑎𝑏.𝑑𝑜𝑢𝑏𝑙𝑒(𝑏𝑖𝑡𝑠𝑑𝑒𝑐)
𝑚𝑠𝑔 ←′ 𝑅𝑒𝑒𝑑𝑆𝑜𝑙𝑜𝐸𝑛𝑐(𝑏𝑖𝑡𝑠𝑑𝑒𝑐, 𝑛, 𝑘)′
𝑒𝑛𝑐 ← 𝑏𝑖𝑛(𝑚𝑠𝑔)
𝑏𝑖𝑛14← 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑒𝑛𝑐)
𝑖𝑛𝑑𝑒𝑥 ← 𝑑𝑒𝑐(𝑏𝑖𝑛14)
optional 𝑠𝑐𝑟 ← 𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒(𝑏𝑖𝑛14)
for 𝑖 ← 𝑟𝑎𝑛𝑔𝑒(0, 𝑙𝑒𝑛(𝑏𝑖𝑛14)) do

𝑏𝑖𝑡𝑠84← 𝑠𝑡𝑟𝑖𝑛𝑔(𝑠𝑐𝑟[𝑖])𝑜𝑟𝑠𝑡𝑟𝑖𝑛𝑔(𝑏𝑖𝑛14[𝑖])
end for

𝑠𝑜𝑢𝑛𝑑← 𝑐𝑟𝑒𝑎𝑡𝑒𝑠𝑜𝑢𝑛𝑑(𝑖𝑛𝑑𝑒𝑥)
return 𝑎𝑢𝑑𝑖𝑜 𝑓 𝑖𝑙𝑒 , 𝑏𝑖𝑡𝑠84

The resulting audio data is saved in a WAV file format, ensuring compatibility

and fidelity during the encoding process. Moreover, the code includes func-

tionality to convert the generated WAV file into the MP3 format, optimizing

the audio data for practical use and convenient transmission. the final step

is adding the ’opening marker’ to the generated sound in order to obtain the

complete ’tiscode’, that can be spread.

Figure 4.3: Example of an encoded sound
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4.3 Decoder

The decoding process integrates signal processing techniques, frequency anal-

ysis, and error correction through Reed-Solomon codes [RSdecoder]. This pro-

cess is handled by the decoder function that can be divided into two sections,

illustrated in the pseudo-code. In the first section the indexes of the frequencies

are obtained and in the second they are used to go back to the binary string that

represents the original ID.

The function takes parameters such as the signal, sample frequency, alphabet,

and Reed-Solomon decoding parameters (n, k, m) as inputs and returns a binary

string that represents the ID.

In the first part the input signal is divided into six segments of 0.33 seconds of

5333 samples, and each segment undergoes a decoding process independently.

In particular each segment is given as an input to another function, ’decode’,

that returns the three frequencies that compound the sound.

The ’decode’ function is the focal point of the decoding process. It performs

the signal analysis starting by taking as input an audio signal, sample rate, and

a set of musical notes. The function employs the ’signal.spectrogram’ method

from SciPy to calculate the spectrogram of the audio signal, providing informa-

tion about frequency content over time. The spectrogram uses the ’blackman’

window as it was showing a better result during noisy testing. The output of the

spectrogram returns the frequencies, the times and the spectral power density.

The top 7 frequencies with the highest power are extracted for each time seg-

ment of the spectrogram. The frequencies then undergo a control, the ones

falling outside a specified range are filtered out, and the remaining frequencies

are matched to the closest musical notes. The resulting frequencies are sorted

and returned as an output, this last step is useful for the next processes. Notably,

the code is structured to handle scenarios where suitable frequencies might not
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be found, in which case it returns ’None’.

After the three frequencies are returned their common index is searched in

the alphabet using the ’find-idx’ function. When all six indexes are found the

process continues in the second part.

In the second section the code iterates through combinations of indices, attempt-

ing to find the correct combination that matches the received signal. The process

is controlled by flags and includes checks for specific conditions, filtering out

irrelevant frequencies and ensuring the correctness of the decoded message.

The Reed-Solomon decoding is a critical aspect, introducing redundancy to

the data for error correction [34]. The function outputs information such as

the reconstructed message (’rinfo-id’), the total number of errors made during

decoding (’n-errors’), and the number of errors corrected by the Reed-Solomon

code (’n-corrected’).

Algorithm 3 Decoder Algorithm
1: 𝑣𝑎𝑟 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑣𝑎𝑙𝑢𝑒𝑠

2: 𝑎𝑢𝑑𝑖𝑜 ← the 6 segments of the sound {The segments are passed to the ’de-
code’ function that returns three frequencies}

3: 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 ← 𝑓 𝑖𝑛𝑑_𝑖𝑑𝑥( 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑖𝑒𝑠)
4: comb← combination of the indexes
5: idx_binary← convert_binary14(comb)
6: idx_dec ← convert_decimal(idx_binary) {If the encoded data were scram-

bled, unscramble}
7: n_errors← sum(bit1 != bit2 for bit1, bit2 in zip(str1, str2))
8: msg_dec←′ 𝑅𝑒𝑒𝑑𝑆𝑜𝑙𝑜𝐷𝑒𝑐′

9: 𝑖𝑑← 𝑠𝑡𝑟𝑖𝑛𝑔(𝑏𝑖𝑛(𝑚𝑠𝑔_𝑑𝑒𝑐))

4.4 Results

This section summarizes the results obtained during the testing of the previ-

ously described system. The first analysis, which is not mentioned in the thesis,

was made by simply checking if the encoded sound could be decoded correctly
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without any noise addiction. The following step was to add different types of

noise and SNR and observe the behaviour of the system. Finally the test with

different amplitudes was performed. In this last part of the study the idea was

to use different amplitudes calculated from the 14 bits used for each index, that

is used to retrieve the three frequencies from the alphabet. The amplitude used

to create the components of the final sound can have two values: low and high.

The high values is 33% higher than the low.

The noises taken into account are the following:

• AWGN (Additive white Gaussian noise)

• Grocery store noise [11]

• City noise [9]

• Selective noise [10]

The selection of these noises is directly linked to the application of the devel-

oped system. In fact, the application will be used in a daily context, and for this

reason it is necessary to ascertain that the system performs its task efficiently if

used in urban environment. The different noises are shown below.

Figure 4.4: Gaussian noise

Figure 4.5: Grocery store noise
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Figure 4.6: City noise

Figure 4.7: Car honk noise

4.4.1 Additive white Gaussian noise

The white noise is not useful for real life applications, but it is interesting to

observe how it can affect the performance of the system. The noise used for the

analysis was created using the following function.

𝑠𝑛𝑟 ← 10 ∗ ∗(𝑠𝑛𝑟_𝑑𝐵/10)
𝑠𝑖𝑔𝑛𝑎𝑙_𝑝𝑜𝑤𝑒𝑟

𝑛𝑜𝑖𝑠𝑒 ← 𝑛𝑝.𝑟𝑎𝑛𝑑𝑜𝑚.𝑛𝑜𝑟𝑚𝑎𝑙(0, 0.1, 𝑙𝑒𝑛(𝑠𝑖𝑔𝑛𝑎𝑙)
𝑛𝑜𝑖𝑠𝑒_𝑝𝑜𝑤𝑒𝑟

𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓 𝑎𝑐𝑡𝑜𝑟 ←
√︁
𝑠𝑖𝑔𝑛𝑎𝑙_𝑝𝑜𝑤𝑒𝑟/(𝑠𝑛𝑟 ∗ 𝑛𝑜𝑖𝑠𝑒_𝑝𝑜𝑤𝑒𝑟)

𝑛𝑜𝑖𝑠𝑒 ← 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓 𝑎𝑐𝑡𝑜𝑟 ∗ 𝑛𝑜𝑖𝑠𝑒
return noise

The noise is generated by using ’random.normal’ module of the Numpy library.

It is possible to see that the mean is set to zero, the standard deviation is set to

0.1 and the size of array is the same of the original sound. The scaling factor is

used in order to make the two sounds comparable.

For the white noise two experiments were performed. In the first only one id

was used to generate the sound. The only sound was then added to different
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noises randomly created at different SNRs. This was repeated several times to

obtain an average number of errors and corrected bits.

The second experiment was done by using different ids and in this way creating

different sounds. For each SNR were used the same noise with the different

sounds and the results averaged.

This procedure was also repeated by using different amplitudes and the results

are reported in the following graphs.

For both the experiments without the addiction of the different amplitudes the

SNR was chosen in the range between -22dB and -10dB, while in the other

case the range was set between -26dB and -8dB. It is possible to observe that for

lower SNR the number of errors grows drastically while the number of corrected

messages gets smaller. This is caused by the fact that the noise overpowers the

signal and a lot of frequencies are lost. Both experiments shows similar results.

From the graphical representation is it possible to notice also that when different

amplitudes are used, the system reaches its limit for lower SNR and it is able to

correct more errors. The reason of this behaviour is that some signals having

higher amplitude are still decoded, even when the noise is stronger.

It is interesting to observe how the different values of SNR affect the sound and

its spectrogram. The color blue indicates lower values of PSD while the yellow

indicates the higher values.

In the first two images the SNR was set to 10 dB, this means that the power of the

audio signal is ten times bigger than the power of the noise. In this case we can

clearly distinguish the 3 main frequencies used to create the sound, even though

in 4.9 seven frequencies are shown some of them are very close to each other. In

the last two images it is evident how it is no longer possible clearly distinguish

the frequencies of the sound from the noise, this is also confirmed by the clear

presence of seven different frequencies in the 4.11 where the frequencies are

very distant between them.

48



CHAPTER 4. ANALYSIS AND RESULTS

Figure 4.8: Spectrogram of a section of sound at SNR equal to 10dB

Figure 4.9: Spectrogram of a section of sound at SNR equal to 10dB
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Figure 4.10: Spectrogram of a section of sound at SNR equal to -10dB

Figure 4.11: Spectrogram of a section of sound at SNR equal to 10dB
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First experiment

For the first experiment only one id was used, in order to test the system.

ID: "111010110110111110010010101100111010001011" In this test one sound was

used with different noise and SNR.

(a) Performance of the system with AWGN

(b) Performance of the system with AWGN with different am-
plitudes
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Second experiment

In the second test 15 different ids were used. The binary strings were generated

as a random sequence of "0" and "1". For each SNR, only one noise was used to

test the response of the system with the 15 different inputs. The results for each

SNR were averaged in order to obtain the data represented in the graphs.

Figure 4.13: Performance of the system with AWGN

The results for both the experiments, with or without considering different

amplitudes, are very similar. For this reason in the next graphs only the second

type of experiment was considered.
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Figure 4.14: Performance of the system with AWGN with different amplitudes
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4.4.2

Grocery store noise

The audio signal used in this section is a recording of the environment noise

in a german grocery store [11]. It is possible to listen to people talking, sounds

from the streets and the typical sound of the scan. In the following graphs the

results are reported.

It is possible to observe a significant change in the system’s response to Gaussian

noise compared to its performance in a more complex environmental noise,

like in this case. Specifically, it becomes evident that the system encounters

difficulties when the SNR is below -6dB. This challenge arises from the increased

diversity of the recorded noise across various frequency ranges. This differences

introduces alterations in the spectrum levels, impacting the accurate detection of

frequencies and consequently resulting in errors during the decoding process.

Also in this case the graphs show that having different amplitudes makes the

system more robust to the noise and less errors are made.

Figure 4.15: Performance of the system with grocery store noise
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Figure 4.16: Performance of the system with grocery store noise and different
amplitudes

4.4.3 City noise

The following analysis were performed on the system using the sound recorded

in a crowded street of a city [9]. It is possible to observe the presence of common

sounds of the street such the honking of the cars and the motors of the motor-

bikes. Also this noise shows clear differences if compared to the Gaussian one.

In the following graphs it is possible to observe the results.

Also in this case, the system is not able to decode correctly the sound for

values of SNR smaller than -7dB in the case when all the signals have the same

amplitude.
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Figure 4.17: Performance of the system with city noise

Figure 4.18: Performance of the system with city noise with different amplitudes
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4.4.4 Car noise

The audio employed for this part of the testing consists of a recorded car honk.

The objective in this phase is to analyse the system’s response when subjected to

noise that selectively influences only a portion of the original sound. Specifically,

the higher frequencies are confined to a narrow segment of the audio, while the

remainder is composed of Gaussian noise.

From the graphs it is possible to observe that in this case the number of errors for

different SNR is lower, but so it is the number of corrected bits. This behaviour

can be explained by the fact that the high frequencies of the used noise sound

affect just a part of the original sound and some parts can still be delivered. At

the same time the system struggles to reconstruct the message because a high

number of bits is lost.

In this last example it is noticeable how the presence of different amplitudes

is beneficial to the system, as the number of corrected symbols is larger. An

important aspect to consider is the position of the noise peaks. During the

simulations the number of errors and corrections was higher whenever the

peaks were registered in the middle section, while it was the opposite when the

peaks were positioned in the end or the beginning.

57



4.4. RESULTS

(a) Performance of the system with an isolated noise

(b) Performance of the system with car honk noise and differ-
ent amplitudes
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5
Conclusions and Future

Implementations

5.1 Conclusions

The objective of this thesis was to develop a system, drawing inspiration from

the techniques employed in QR codes [7], Shazam [38] and the error-correcting

codes used in the underwater acoustic communications [40] [34], to allow data

exchange through audio signals. In particular, the encoding mechanism was

designed to generate a sound based on a unique ID linked to a piece of data,

while the decoding process, executed by the receiving device, was designed to

return the original ID from a recorded sound.

Throughout this project, various techniques were employed, such as scram-

bling technique that was utilized to enhance the corrective effect of Reed-

Solomon algorithms.

The analysis confirms that the RS codes are a good solution to limit the number

of errors if used in audio context. Additionally, it was demonstrated that using

different amplitudes during encoding improves the performance of the system,

if compared to methods that do not incorporate this feature. Lastly it was shown
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that it is possible to contrast the selective noises if the single sounds are made of

frequencies with different amplitudes.

5.2 Future Implementations

Based on the results obtained during this project’s development, several as-

pects can be explored further.

One potential improvement involves adopting a different Reed-Solomon cod-

ing to correct a greater number of errors. A proposed solution is to employ the

Reed-Solomon code to obtain 17 bits of code for each sound, allocating 14 bits for

encoding the frequency and the remaining 3 for encoding the amplitude. The

decoder would then perform amplitude demodulation, enhancing the overall

system performance.

Another aspect that can be improved is the musicality of the sounds by follow-

ing the music theory [22]. While this aspect was overlooked due to a lack of

knowledge of music theory in this project, it is crucial to consider, especially

since the intended application involves public spaces. The system should be

pleasing to the ear or, at the very least, not overly disruptive.

A final potential enhancement involves noise cancellation. Analyzing the first

one or two seconds of the recording and its spectrum could provide valuable

information for subtracting noise from the recorded sound. This approach, par-

ticularly effective for constant noise, would simplify the isolation of individual

frequencies during the decoding process.

The proposed system represents a highly promising technology with the po-

tential to yield numerous benefits when implemented in practical scenarios.

The core concept of this project is versatile, extending its applicability beyond

the specific field described in this thesis. In recent years, data transmission has

been a focal concern, emphasizing the crucial need to mitigate errors during this

process. Various techniques have already been devised and implemented to
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tackle such challenges [47] and the proposed project can be a valuable resource

to continue this ongoing effort towards achieving more reliable and secure data

transmissions.
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