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Abstract

This research project analyzes the asymptotic behaviour of a quantum system subject to a sequence of
indirect measurements. These quantum measurements give rise to a stochastic process, called quantum
trajectory, which describes the state of the system after each measurement. Using martingale techniques
we will prove that this quantum trajectory converges non-deterministically to one of the minimal
invariant subspaces determined by the quantum channel, which is a linear map that describes the mean
evolution of the state. The probability of convergence to each subspace depends on the initial state of
the system. The convergence can be steered towards a chosen target subspace, modifying the dynamics
with a feedback control scheme properly designed using Lyapunov techniques and graph-theoretic
ideas, generalizing the control scheme preseneted in [2]. Preparation of quantum states in a target sub-
space finds one of its applications in cooling techniques and in state preparation in quantum information.

The other focus of this research project is on the derivation of some statistical asymptotic laws
(Law of Large Numbers - Central Limit Theroem - Law of Iterated Logarithms) for the stochastic
process describing the measurement outcomes, without requiring any ergodicity assumption on the
quantum channel, and thus generalizing the results obtained in [3]. These statistical asymptotic laws
can be used for solving estimation problems like process tomography.

This research project puts together probability theory and control theory in order to prove asymptotic
results on quantum stochastic processes and in order to design a feedback control scheme that is able to
prepare a quantum system in a precise target subspace. A rigorous mathematical treatment is employed
in deriving results having important applications in quantum engineering problems, like information
encoding or parameter estimation.



Sommario

In questa tesi viene analizzato il comportamento asintotico di un sistema quantistico soggetto ad una
sequenza di misurazioni indirette. Tali misurazioni quantistiche danno vita ad un processo stocastico,
chiamato traiettoria quantistica, il quale descrive lo stato del sistema dopo ogni misurazione. Tale
progetto ricorre a tecniche che utilizzano martingale, per dimostrare che questa traiettoria quantistica
converge in modo non deterministico in uno dei sottospazi invarianti minimali determinati dal canale
quantistico, ossia una mappa lineare che descrive I’evoluzione media dello stato. La probabilita di
convergenza a ogni sottospazio dipende dallo stato iniziale del sistema. Questa convergenza puo essere
orientata verso un preciso sottospazio target grazie ad uno schema di controllo con retroazione, il cui
design sfrutta tecniche di Lyapunov e idee dalla teoria dei grafi. La preparazione di stati quantistici
in un preciso sottospazio target trova applicazione in tecniche di cooling e preparazione degli stati in
informazione quantistica.

L’altro focus di tale progetto di ricerca viene posto sulla derivazione di alcune leggi statistiche asintotiche
(Legge dei Grandi Numeri - Teorema del Limite Centrale - Legge dei Logaritmi Iterati) per il processo
stocastico che descrive i risultati delle misurazioni, senza richiedere alcuna particolare assunzione
ergodica sul canale quantistico, e dunque generalizzando i risultati ottenuti in [3]. Tali leggi statistiche
asintotiche possono essere utilizzate per risolvere problemi di stima come quello di tomografia del
processo.

Questo progetto di ricerca mette insieme teoria della probabilita, teoria del controllo per derivare risul-
tati asintotici per sistemi stocastici quantistici e per il design di uno schema di controllo con retroazione
in grado di preparare un sistema quantistico in un preciso sottospazio target. Viene impiegato in
formalismo matematico rigoroso per derivare risultati aventi importanti applicazioni in problemi di
ingegneria quantistica, come codifica di informazione o stima di parametri.
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Introduction

The potential of quantum technologies has been demonstrated in several applications requiring a high
level of computing power. By exploiting the laws of quantum physics to process binary information,
quantum computing circuits can already do calculations that can’t easily be simulated on classical
supercomputers: in 2019 Google claimed the famous “quantum supremacy”, achieved by its 53 qubits
quantum computer that executed, in about 200 seconds, a specific task that would have taken a classical
computer 10 000 years [16]. At the end of 2021 IBM launched the 127 qubit Eagle quantum processor,
which represents a step towards its goal of creating a 1121 qubit Condor quantum processor by 2023 [4].
On the other hand, solving real world problems, such as simulating drug molecules or materials using
quantum chemistry, will require quantum computers to get drastically bigger (millions of physical
qubits) and more powerful. That’s why at the moment we can only talk about potential applications of
quantum computers, as clearly presented in https://www.youtube.com/watch?v=-UlxHPIEVQA.

The main one regards quantum simulations, since obviously in this area quantum computers have an
exponential speedup over classical ones. Indeed simulating quantum systems with as few as 30 particles
is difficult even on the world’s most powerful supercomputers. We also can’t do this on quantum
computers yet, but their promise is to be able to simulate larger and larger quantum systems. Quantum
simulations concerns simulating chemical reactions or how electrons behave in different materials.
This could permit a step towards understanding what makes some materials superconduct, or study
important chemical reactions to improve their efficiency. One example aims to produce fertiliser in a
way that emits way less carbon dioxide, as fertiliser production contributes to around 2% of global CO9
emissions. In general quantum simulations would mean that we would be able to rapidly prototype
many different materials inside a quantum computer and test all their physical parameters, instead of
having to physically make them and test them in a laboratory, which is a much more laborious and
expensive process. This could be a lot faster and save a huge amount of time and money.

Other applications of quantum computers can be found in optimization problems, machine learning,
financial modelling and cybersecurity. This last one is due to Shor’s algorithm, that can efficiently find
the factors of large integers, breaking current cryptography techniques based on RSA algorithm. With
the motivation provided by this algorithm, the topic of quantum computing has gathered momentum,
supported also by many national government and military funding agencies, and researchers around
the world are racing to be the first to create a working quantum computer.

What is keeping us away from the implementation of a working quantum computer?

Adding qubits to a quantum circuit represents a very challenging task, due to the fragility of quantum



correlations, which represent the key advantage of Quantum Information (QI), and that are easily
destroyed by the unavoidable interaction of the quantum system with its surrounding environment.
The consequence of this interaction is that the information encoded in the qubits will start to leak
away, leading to a phenomena called decoherence. For a deep understanding of decoherence we refer
the reader to the chapter 8 of Nielsen and Chuang’s book [22].,

To overcome this unwanted effect, many quantum control techniques have been developed, with the
aim of cancelling the undesirable parts of the interaction Hamiltonian, which represents the energy
exchanges between the quantum system and the environment and that is responsible of the leak of
information. This type of control could be implemented through unitary pulses applied instantaneously
and equidistantly separated in time to the quantum system, exploiting a technique called bang-bang
control ( 28], [9]).

These techniques are based on open-loop control, while in this project we will recur to feedback
actions to fight decoherence. Decoherence control through feedback techniques can be implemented in
two different ways: through active manipulation of the quantum state and through passive stabilization
of it. In the first approach loss of information is corrected by monitoring the system and conditionally
carrying on suitable feedback operations. On the other hand, the second approach relies on the existence
of a subspace of states that, owing to special symmetry properties, are dynamically decoupled from the
environment. This project deals more with the second approach, realizing a control feedback scheme
that stabilizes the system in a target subspace.

The project is organized as follows: in chapter 3 we will show that a quantum system, subject
to a sequence of indirect measurements, converges to one of the minimal invariant subspaces in a
non-deterministic way. To demonstrate this and to find the probability of convergence to a specific
subspace, we will exploit some tools of probability theory related to Markov Chains, martingales and
ergodic theory, which are briefly presented in chapter 1. To this sequence of indirect measurements we
can associate two stochastic processes: the first one describes the state of the system after each indirect
measurement, while the second one counts how many times you get a certain outcome till a certain step
n. In chapter 4 we will show that a Law of Large Numbers (LLN), a Central Limit Theorem (CLT)
and a Law of Iterated Logarithm (LIL) result can be obtained on the second process, without requiring
the quantum channel to be ergodic and thus generalizing [3]. Finally in chapter 5 we will present our
feedback control scheme that stabilizes the quantum system in a target subspace, that we want to be
a Decoherence Free Subspace (DFS) [20]. This could lead to a “passive” error-prevention scheme, in
which logical qubits are encoded within subspaces which do not decohere thanks to symmetry reasons.



Figure 1: Overview of how quantum simulations can be exploited to solve real world problems: https:
//www .youtube.com/watch?v=-UlxHPIEVqA



Chapter 1

Probability Theory

There is a deep interconnection between quantum mechanics and probability, due to the intrinsic
random nature of quantum measurements. The state of our quantum system subject to a sequence of
indirect measurements will turn out to be a Markov Chain, and its stochastic evolution will be analyzed
through a special martingale, that will permit us to prove the main convergence theorem. Therefore in
this chapter we will review some concepts and tools of probability theory, that will lead us to our main
results. For a deeper understanding of these probability tools we refer the reader to the book [18] and
to the Van Handel lecture notes [27].

1.1 Probability space & types of convergence

In this section we will recap the basic concepts needed for building a probability space where the
probabilistic evolution of an experiment can be modelled. Firstly we introduce the set of events (2,
where each element w € () represents a possible fate of the experimental system. Once we have specified
(), any yes-no question is represented by the subset of {2 consisting of those realizations w € Q2 for which
the answer is yes. We will collect all sensible yes-no questions in a set F < 2.

Definition 1. A ¢ — algebra F is a collection of subsets of €2 such that
1. if A,, € F for countable n, then | J,, A, € F,
2. if Ae F, then A°=Q\A e F,
3. Qe F.

An element A € F is called an F-measurable set or an event.

It remains to assign a probability to every event in F. This has to be done in a consistent way: if A
and B are two mutually exclusive events (A n B = (), then the probability of A or B has to be the
sum of the individual probabilities. This leads to the following definition.

Definition 2. A probability measure is a map P : F — [0, 1] such that:
1. for countable {A,} such that A, N A,, = & for n # m, P(,, An) = 2, P(4,) (o-additivity),
2. P(@) = 0, P(Q) = 1.



We now have all the objects for building a probability space.
Definition 3. A probability space is a triplet (2, F,P).

The next most important ingredient in probability theory is the random wvariable. If (Q, F,P)
describes all possible fates of the experimental system and their probabilities, then random variables
describe concrete observations that we can make on the system. For example the outcome of a
measurement of our experimental system is described by specifying what value it takes for every possible
fate w € Q of the system.

Definition 4. A random variable is a measurable function f : Q — R, namely f~1(A) = {w e Q:
f(w) € A} € F for every A € B(R), where B(R) represents the Borel o-algebra.

For these functions defined on the probability space (€2, F,P) there are different notions of conver-
gence, since the usual notion of pointwise convergence of functions ' is useless in probability. Indeed
typically we do not have convergence for all w, but we have convergence for almost all w (i.e. the set
of all w where we do have convergence has probability one). Moreover, just as we introduced almost
sure (a.s.) convergence because it naturally occurs when “pointwise convergence” (for all “points”)
fails, we need to introduce two more types of convergence, which arise naturally when a.s. convergence
fails, but they are also useful as tools to help to show that a.s. convergence holds. These three different
types of convergence of random variables can be thought as variants of standard pointwise convergence.
There is yet another notion of convergence which is profoundly different from the previous three. This
convergence, known as weak convergence (in distribution), is fundamental to the study of probability
and statistics. For this new type of convergence the actual values of the random variables themselves
are not important. It is simply the probabilities that they will assume those values that matter.

Definition 5 (Types of Convergence). Let {f,,} be a sequence of random variables defined on (Q, F,P).
1. fa LR f: {fn} converge in probability to f if given & > 0 there exists an index N such that

Pz eQ:|fu(z)— f(x)] >€}) <e, Yn> N

2. fn X% fi {fn} converge almost surely to f if f,(x) — f(x) except on a set A with P[A] =0
3. fn 7, f: {fn} converge in LP (mean convergence) to f > 0 if

lim E|f, — fIP =0
n—0o0

4. fn o, f: {fn} converge in distribution to f if for every bounded and continuous function g : R — R
it holds

lim E[g(fn)] = E[g(f)]

n—0o0

Convergence in distribution can be shown to be equivalent to convergence of the cumulative
distribution function (CDF): Fy, (x) — F¢(x) at each continuity point of F}.

Example 1 (weak LLN). Let {X,} be a sequence of independent and identically distributed (i.i.d.)
random variables defined on the probability space (Q, F,P) with m = EX; < 0. Then, the weak law of
large numbers asserts that the empirical mean converges in probability to the the expectation m, namely

1 n
n«
=1

Lpointwise convergence: let f,, : R — R then lim,, oo fn = f if lim, e fn(z) = f(z), Ve eR
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Figure 1.1: Implications between different types of convergence

Example 2 (strong LLN). Let {X,} be a sequence of i.i.d. random variables defined on the probability
space (2, F,P) with m = EX; < 0co. Then, the strong law of large numbers asserts that the empirical
mean converges in almost surely to the the expectation m, namely

1 n
a.s.
DI
n «
i=1

Figure 1.1 illustrates the various implications between different types of convergence, from which
follows that the strong law of large numbers does imply the weak law.

Actually the strong Law of Large Numbers (LNN) represents one of the fundamental results in
probability, since it helps to justify our intuitive notions of what probability actually is, and it has
many direct applications, such as Monte Carlo estimation theory. Another impressive achievements of
probability theory is the Central Limit Theorem (CLT), which serves as the basis for much of statistical
theory.

Example 3 (CLT). Let {X,} be a sequence of i.i.d. random variables defined on the probability space
(Q, F,P) with finite second moment EX? < o0. Let p = EX,,, 0 = E(X —EX)?. Let X, = - " | X;.
Then

Xn_nlu'g 2
T N(0,07)

Thanks to this asymptotic law we can use data to do statistical tests to estimate y and o2 which
fully determine the asymptotic distribution of the statistical average of our random variables.

Another important asymptotic law is represented by the Law of Iterated Logarithm (LIL), that describes
the magnitude of the fluctuations of a random walk.

Example 4 (LIL). Let {X,} be a sequence of i.i.d. random variables defined on the probability space
(0, F,P) with finite second moment EX2 < 0. Let p = EX,, 0? = E(X —EX)% Let X, = 137" | X,.

Then _
X
lim sup [Xn = =1 a.s.
n—o \/2no?loglog no?

On the other hand these three asymptotic laws require the random variables to be i.i.d., which is a
strong assumption that doesn’t hold for our process. Actually we will show that they all hold also for
our process, and we will use martingale techniques to show that.

1.2 The Radon-Nikodym derivative

Let (Q, F,P) be a given probability space. It is often interesting to try to find other measures on F
with different properties, since calculations which are difficult under one measure can often become

6



very simple if we change to a suitably modified measure. For example, if {X,,} is a collection of random
variables with some complicated dependencies under PP, it may be advantageous to pass to a modified
measure Q under which the X,, are independent. In the following we present a technique that will
permit us to generate a large family of measures related to the starting measure PP.

Let f be a nonnegative random variable with unit expectation Ef = 1. For any A € F, define

Q) = Be(laf) = [ FP()
which is a probability measure, and moreover

Eg(g) = jg<w>@<dw> _ f 9(w) F(w)P(dw) = Ep(gf)

for any random variable g for which either side is well defined.

Definition 6. (Density) A probability measure Q is said to have a density with respect to a probability
measure PP if there exists a nonnegative random variable f such that Q(A) = Ep(14f) for every
measurable set A. The density f is denoted as dQ/dP.

Suppose that Q has a density f with respect to P. Then these measures must satisfy an important
consistency condition: if P(A) = 0 for some event A, then Q(A) must also be zero. Evidently, the use
of a density to transform a probability measure P into another probability measure Q “respects” those
events that happen for sure or never happen at all.

Definition 7 (absolutely continuity). A measure Q is said to be absolutely continuous with respect to
a measure P, denoted as Q « P, if Q(A) = 0 for all events A such that P(A4) = 0.

We have seen that if Q has a density with respect to P, then Q « P. It turns out that the converse
is also true: if Q « P, then we can always find some density f such that Q(A) = Ep(14f). Hence the
existence of a density is completely equivalent to absolute continuity of the measures. This is a deep
result, known as the Radon- Nikodym theorem.

Theorem 1 (Radon-Nikodym). Suppose that Q < P are two probability measures on the space (2, F).
Then there exists a nonnegative F-measurable function f with Ep(f) =1, such that Q(A) = Ep(14f)
for every A € F. Moreover, f is unique (i.e. if f’ is another F-measurable function with this property,
then f = f' P —a.s.). Hence it makes sense to speak of ‘the’ density, or Radon-Nikodym derivative, of
Q with respect to P, and this density is denoted as dQ/dP.

1.3 Martingale, Supermartingale & Submartingale

This section introduces the notion of a martingale, which will play a fundamental role in this project.
To talk about martingales we need the notion of stochastic process, which is just a sequence of random
variables {X,}, indexed by time n. We will deal with discrete time stochastic processes (i.e. n € N).
Stochastic processes start leading a life of their own once we build a notion of time into our probability
space. To this aim we need to specify which sub-c-algebra of questions in F can be answered by time
n. If we label this o-algebra by F,,, we obtain the following notion.

Definition 8. Let (2, F,P) be a probability space. A (discrete time) filtration is an increasing sequence
{Fn} of o-algebras Fy  F; < ... ©¢ F. The quadruple (Q, F,{F,},P) is called a filtered probability

space.

Note that the sequence F,, must be increasing, since a question that can be answered by time n can
also be answered at any later time. We can now introduce a notion of causality for stochastic processes.

7



Definition 9. Let (2, F,{F,},P) be a filtered probability space. A stochastic process {X,} is:
e adapted if X,, € F,,
e predictable if X, € F,,_1,

Hence if {X,,} is adapted, then X, represents a measurement of something in the past or present
(up to and including time n), while in the predictable case X,, represents a measurement of something in
the past (before time m). To introduce the definition of a martingale we need the notion of conditional
expectation, which play a fundamental role in much of probability theory.

Definition 10. A o-algebra F is said to be finite if it is generated by a finite number of sets
F = O'{Al, ,Am}

Definition 11. Let F be a separable o-algebra (i.e. F = o{F,}n>0) with F,, finite and generated by
the partition {Ax}" ;. Let X € L'. Then we define

E(X|F) = lim E(X|F,)

with

E(X|F) = . E(X|AR)Ia,
k=1

where E(X|A) = E(X14)/P(A)if P(A) >0 and E(X|A) =0 if P(4) = 0.
We have now all the tools to introduce the notion of a martingale, supermartingale and submartingale.

Definition 12. Let us consider a stochastic process {X,,} which is adapted and with X,, € L'(Q2) ¥n € N.
Then

1. {X,} is a martingale if BE(X, 41 | Fn) = X,
2. {X,} is a supermartingale if E(X,41 | Fn) < Xn,
3. {X,} is a submartingale if E(X 41 | Fn) = X,

We can think about a martingale as a constant process plus some stochastic fluctuations. On
the other hand a supermartingale is a decreasing process plus some stochastic fluctuations, while a
submartingale is an increasing process plus some stochastic fluctuations.

Given a martingale, we can easily obtain a supermartingale from it by simply using a concave
function, as a consequence of the Jensen inequality 2 Same for a submartingale but with a convex
function.

Proposition 1. Let {X,} be a martingale. Let ¢ be a function such that o(X,) € L'(Q) ¥n e N. Then
1. if ¢ is concave then Y, = ¢(X,) is a supermartingale,
2. if ¢ is convex then Y, = ¢(X,,) is a submartingale.

Moreover if a martingale X, is bounded, then it cannot fluctuate forever; in other words, it must
converge to some random variable X.

2For a real convex function ¢, numbers 1, Z2, ..., T, in its domain, and positive weights a;, Jensen inequality can be

stated as ¢ (lea;“> < i gf‘i(,m'i). The inequality is reversed if ¢ is concave.



Theorem 2 (Martingale convergence). Let {X,,} be a martingale such that sup,, E[ X, | < o0, where X,

is the negative part of Xy, i.e. X,; = —min(X,,,0). Then there exists a random variable X € L' (£2)
such that
X, &5 X

Moreover we have convergence in L' to Xo if sup,, E[|X,|] < c.

Martingales play an important role in this project since they will permit us to derive limit theorems
(LLN-CLT-LIL) for a process that is neither i.i.d. nor Markovian. Moreover we will construct a special
martingale to prove the convergence of our quantum trajectory to an invariant subspace.

1.4 Dynamical systems and ergodic theory

Dynamical systems are systems evolving in time, often governed by differential equations, but also
perhaps by other continuous or discrete formulae. Ergodic theory is the study of statistical properties
of that evolution. Originally created to connect thermodynamics to statistical mechanics, it has been
extended to connect with many branches of mathematics, including Markov Chains and their stochastic
evolution.

In our probabilistic setting a dynamical system is defined as a quadruplet (Q,F,P,T), where
(Q, F,P) is a probability space, while T': Q — ) is a transformation that preserves the measure P, i.e.
PoT~! = P. Ergodic theory analyzes the long time behaviour and the average behaviour of (7™ (w))
for P-almost every w € €.

Definition 13. Let (Q, F,P, T) be a dynamical system. We say that A € F is T-invariant if T~1(A) = A.
We say that (2, F,P,T) is ergodic if all T-invariant sets have measure 0 or 1.

Let us recall the most important ergodic theorems which concern some convergence results for the
averages (% 22;8 0 T*)pen , for f e LP(Q), p = 1. The first one requires the notion of a contraction

mapping.

Definition 14. A contraction mapping on a metric space (M, d) is a function f : M — M, with the
property that there is some real number 0 < k£ < 1 such that

d(f(x), f(y)) < kd(xz,y) Vo,ye M

The smallest such value of k is called the Lipschitz constant of f.

Theorem 3 (Von Neumann’s mean ergodic theorem, 1932). Let ¢ be a contraction map on a Hilbert
space H and Iz, be the orthogonal projection on the set of fir points of ¢, i.e. Fg :={x e H | ¢(x) = x}.
Then

1 n—1
n n—o0
k=0
for every x € H.
Theorem 4 (Birkhoff’s ergodic theorem, 1931). Let (2, F,P,T) be an ergodic dynamical system. Then
for every f e LY(Q)

n—0o0

n—1
%Z foT* —E[f] P-—a.s.
k=0

Now that we have recapped all the probability tools that we will need in this project, we pass to
the presentation of the main character of this work: quantum mechanics.



Chapter 2

Quantum Mechanics

In this chapter we will recall the principal features and notions of quantum mechanics. We will provide
the mathematical formalism needed to describe a quantum system and its time evolution, and we will
link it to the notion of attractive and transient subspace. The main role in this connection is played by
the set of invariant states of the quantum channel, namely the linear map that is dictating the time
evolution of the system. Finally we will analyze the structure of this set and the spectral properties
related to the quantum channel. For a detailed introduction on Quantum Mechanics and on quantum
channel we refer the reader to the Nielsen and Chuang’s book [22] and to the Wolf’s lecture notes [29]
respectively.

2.1 A look into the Quantum world

At the subatomic level nature makes strange jokes, and randomness comes into play. For example
a photon could have horizontal and vertical polarization at the same time, in a perfect quantum
superposition. Now the question follows naturally: what happens if we measure its polarization? With
a certain probability, we would observe horizontal polarization, and with “the remaining probability”
we would observe vertical polarization.

A new mathematical framework is needed to describe the quantum world. A Hilbert space sets
up the arena in which quantum mechanics takes place. Hence given a k-dimensional quantum system,
its state space is represented by the Hilbert space H ~ CF. In the Dirac notation |¢)) represents a state

vector in H, while ()| = |)T represents its dual, and (1)|¢) is the inner product of H. Turning back to
the photon example, its quantum state could be described in the Horizontal-Vertical basis {|H ), |V )} as

om0l

To understand the meaning of the coefficients o and 3, we have to introduce the notion of observable,
which defines a projective measurement.

Definition 15 (Observable). A linear operator represents an Observable O iff it is Hermitian, hence it

10
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Figure 2.1: Projective measurement defined by the observable {\g, | Ax ) Ag|}

can be associated to a physical observable. It can be represented through its spectral decomposition

d
O = > Ml ANl
k=1

hence it is completely characterised by its eigenvalues and eigenvectors { A, | Ax){ Mg}

Every measurement can be associated to an observable O, and its possible outcomes correspond
to the eigenvalues \i, while |Ax)(\g| represent the rank-one projectors onto the eigenspaces of the
operator O.

Definition 16. A projective measurement with input |10y and defined by the observable {Ag, |A\x ) Ag|},
gets as output A, with probability p(k) = [{\x|¥)|?, and projects the input into the k-th eigenspace of
the observable, with a final collapse of the quantum state into ) = |Ag).

The measurement basis is represented by the eigenvectors {|\;)} of the observable that we want to
measure.

Turning back to our photon, if we want to measure its Horizontal-Vertical polarization, we have to
measure the observable
0. = +1{H)(H| - 1|V XV

which gives as output [¢)1 = |H) with probability p(+1) = |a|?, and |[¢)_1 = |V') with probability
p(—1) = |3]%. Hence if we let N identical photons pass through a H-V polarazing beam-splitter (PBS),
they will be detected N|a|? times in the H-path, and N|B|? times in the V-path. What if they pass
through a Diagonal-Antidiagonal PBS? Notice that

) = alH) + BIV) = (o + B)ID) + (a — B)|A)!

hence they will be detected N|a + |? times in the D-path, and N|a — §|? times in the A-path.
In this way we have measured the observable

0 = +1|D)XD| - 1]A)(A|

which gives as output [¢))1 = |D) with probability p(+1) = |a + B|?, and [1))_1 = |A) with probability
p(=1) = |a = BI*.

This shows that before the measurement the photon is in a quantum superposition of possibilities,
till its interaction with the measurement apparatus, which makes it collapse in one of the states of
the measurement basis. Therefore the act of measurement of an observable of the system perturbs it,
changing its state. In consequence of this the order of the measurements matters: changing the order
of the measuring filters changes the way the system is perturbed. Therefore measuring filters do not
commute! Hence we move to a matrixz notation, to take into account this non commutative nature.

'Remember that |D) = %, while |A) = %
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Notice that before the measurement we only know the different outputs probabilities, but we cannot
predict in advance what will be the result of our measurement. This explains why there is an intrinsic
random nature of the quantum realm.

The problem is that in practice the state of the quantum system is not known. What is known
is that it can be with probability p; in one of the states |1;). Therefore what we have is an ensemble of
pure states: {pj,|v;)}. To this ensemble we can associate a quantum state, represented by a density
operator p, namely

p= Zpi|¢z‘><1/1i|

which has three properties: it is Hermitian, it is positive semidefinite and it has unitary trace. Notice
that if the state is pure (known), then p = |[¢))(3)|, otherwise it is said to be mized.
We introduce the set of states of H

D(H) = {pe B(H) | p > 0,tr(p) = 1)

which is convex and has as extreme points the pure states, which are rank-one projectors. We will refer
to B(H) as the set of linear and bounded operators on H.

The last thing to formalize is the description of a system composed by n quantum subsystems.
For simplicity we present the interaction of two subsystems, the case of n > 2 is easily obtained by
iteration. The Hilbert space associated to the whole system is given by the tensor product between the
Hilbert spaces associated to the two subsystems, namely

H=Hi ®Hz, with d=d; xda

In this composite setting H is endowed with the inner product (uy,us|vi,ve) := (uy|vi){uz|ve). We
now introduce the concept of partial trace over one tensor factor of H, that will permit us to analyze
the behaviour of one subsystem, tracing out the other.

Definition 17. Let £(#) denote the set of linear operators on H. Let {|e;)}%, be an orthonormal
basis of H1, with Eyj := |e;){e;| € L(H1). We can rewrite any operator A € £L(#) in the following way

do AH . A1d2
A= Z Aij@Ey=| + . |, AijeB(Ha)
iy=1 Ud21 . Ud2d2

Then the partial trace of A over H; is an operator Ay € L(Hsz) defined as

da
AQ = t?”Hl (A) = Z A“
=1

Using the partial trace we obtain the statistical description of the two subsystems, namely their
partial densities, just by “tracing-out” the other subsystem, namely

p1 = try, [10]7 p2 = tr?‘ll [p]

This formalism of composite systems will come out in chapter 3 to describe indirect measurements,
where the system of interest H interacts with a probe H,, and the whole system H ® H, undergoes
a unitary evolution followed by a direct projective measurement of H,. We are interested in the
back-action of these measurements on our system of interest, that’s why we will need the partial trace
to trace out the probe and analyze the evolution of the state in the tensor factor .

12



2.2 Temporal Evolution & Quantum Channel

Quantum mechanics divides every physical process into preparation of a state and measurement of an
observable, therefore there are different (but at the end equivalent) ‘pictures’ depicting time evolution:
the Schrodinger picture describes the state evolution, while the Heisenberg picture describes the observ-
able evolution.

For a given time the evolution is described by a linear transformation on observables A — wu(A)
or on states p — u*(p), where consistency imposes the relation

trlpu(A)] = trlu*(p)A] (2.1)

namely u* is the dual of the map u with respect to the usual Hilbert—Schmidt inner product.

Firstly we introduce closed systems, which are isolated systems whose evolution is physically re-
versible, hence it should be described by a mathematically reversible transformation. Moreover the
concatenation of evolutions is naturally considered to be associative (i.e. (uv)w = u(vw)). Consequently,
the set of reversible evolutions is described by a semigroup of linear and unitary transformations, and
we have that

A u(A)=UTAU or p— u*(p) = UpU' (2.2)

where U € U(H) < B(H) is an element of the unitary operator set U(H). Notice that these types of
maps being unitary are spectrum preserving, hence the spectrum of the state p will be preserved along
the evolution.

What if our particle is interacting with the environment? It becomes an open system which undergoes
a potentially irreversible dynamics. But if we consider it together with its interacting environment, the
whole system becomes closed and so we turn back to the reversible dynamics. This is what stays back
the Stinespring dilatation theorem 5, stated in the following.

Consider an evolution which, in the Schrodinger picture, is described by a map ¢ : B(H) — B(H).
As highlighted in the first chapter of Wolf’s lecture notes [29], when describing a physically meaningful
evolution, ¢ should fulfil the following three conditions:

e linearity: it is a quantum mechanical requirement related to locality, namely the fact that a
spatially localized action does not instantaneously influence distant regions. Any sort of non-
linearity would imply a breakdown of locality. Notice that locality is a crucial ingredient when we
want to talk about small systems without always having to take into account the entire rest of
the universe.

e Trace Preservation (TP) to ensure that density operators are mapped into density operators,
hence preserving its unitary trace.

e Complete Positivity (CP): another consequence of linearity together with asking ¢ to map density
operators onto density operators is that it has to be a positive map, namely

A>0— ¢(A) =0 VYAeB(H)

However positivity alone is not sufficient: consider H as part of a bipartite system so that the
evolution of the larger system is described by ¢ ® I. That is, the additional system merely plays
the role of a spectator. Yet ¢ ® I should again be a positive map - a requirement which is stronger
than positivity. So the relevant condition is complete positivity of ¢ which means positivity of
the map ¢ ® I,,, Vn e N.
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For the map ¢* : B(H) — B(H) describing the same evolution in the Heisenberg picture via

tr(o(p)A] = tr[p¢™(A)] (2.3)

the conditions linearity and complete positivity remain the same, only the trace preserving condition
translates to unitality: ¢*(I) = I, as showed in the following.

A mapping which fulfills the above three conditions (either in Heisenberg or Schrodinger picture)
is called a quantum channel. Quantum channels are the most general framework in which general
input-output relations (i.e. black-box devices) are described within quantum mechanics. It is crucial,
however, that the mapping itself does neither depend on the input nor on its history. If such correla-
tions appear, then the above black-box description becomes inappropriate and either a larger system
(including ‘the environments memory’) has to be taken into account. When talking about quantum
channels in the following we will always mean the Markovian, or synonymously memory-less case, in
which such correlations do not occur. Let us present two important descriptions of a quantum channel:
the Stinespring dilation and the Kraus decomposition.

Theorem 5. (Stinespring dilation) Let ¢ be a CPTP map on B(H), there exists a Hilbert space K, a
unitary operator U on H ® K and a state € D(K) such that

d(p) = tric[U(p® B)UT] ¥pe D(H)
where tri denotes the partial trace over IC.

Theorem 6. (Kraus representation) Let ¢ be a CPTP map on B(H). Then there exists a family of
operators in B(H) denoted by {V;}i_, satisfying

Z AN (2.4)
i=1
such that .
8(p) = Y VipV,', Vpe D(H) (2.5)
i—1

This decomposition is called a Kraus decomposition and the operators {V;}i_, are called Kraus operators.

In general let us note that r» < k?, where r represents the Kraus rank, namely the minimal number
of Kraus operators, while £ = dim H. Moreover this decomposition is not unique. In particular we get
the following characterization.

Proposition 2. Let ¢ be a CPTP map on B(H). Let {V;}i_y and {W;}i_; be two family of operators
such that
T T
$(p) = Y ViVl = > WipW] Vpe D(H)
i=1 i=1
Then there exists a r x r unitary operator U = (u;;) such that W; = Z;Zl ui; Vi
Note that in this proposition some operators V; or W; can be equal to zero.
This project will consider discrete-time quantum dynamics described by sequences of trace-preserving

quantum operations in Kraus representation. This assumption implies the Markovian character of the
evolution, which, along with a forward composition law, ensures a semigroup structure.

Definition 18 (DQDS). A discrete Quantum Dynamical Semigroup is a one-parameter family of CPTP
maps {dn () }nen that satisfies the following properties:

14



1. ¢o = Id,

2. ¢t S ¢s = ¢t+s, Vt, s> 0.

Therefore, ¢ can be seen as the generator of a DQDS in the Schrodinger picture by considering
iterated applications of the map:

pn = d(pn-1) = ¢"(po), Ypo € D(H)

Due to the trace and positivity preserving assumptions, a QDS is a semigroup of contractions, meaning
that ¢ is a contraction map in trace norm:

tr(le(p) = ¢(p2)l) < tr(lpr = p2l), Yor,p2 € D(H) (2.6)

as showed in theorem 8.16 of Wolf’s lecture notes [29]. This implies that

tr(|¢"(p) — pol) < tr(lp — pol)

for any invariant state py of ¢. This means that in the state space the initial distance from an invariant
state can never increase under the system evolution dictated by a quantum channel.

Each semigroup describing the time evolution of an open quantum system on a finite dimensional
Hilbert space is related to a special structure of this space by the invariant states of the evolution,
as deeply presented in [6], [15] and in the Wolf’s lecture notes [29] (section 6.4). We will exploit this
special structure of the state space to prove our main convergence result.

Notice that given a Kraus decomposition for ¢, it follows from (2.3) that ¢* acts on an element
A€ B(H) by
'
¢*(4) = Y VAV, (2.7)
i=1
Thus, the dual of a CP map is still CP. However, it is immediate to show that the dual of a CPTP map
does not need to be TP, but it must be unital, as a consequence of condition (2.4).

2.3 Quantum Subspaces: invariance and stability

In this section, we recall some definitions related to quantum subspaces, which represent a key
mathematical structure for this project.

Definition 19. A quantum subspace R of a system with associated Hilbert space H, is a quantum
system whose Hilbert space Hp is a subspace of H, which can be written as the orthogonal direct sum
of Hr and a remainder space Hy:

H=Hr®Hr (2.8)

To our aim, it is useful to introduce appropriate ‘block’ representations of maps and operators with
respect to the decomposition (2.8) of the underlying Hilbert space. If we choose this orthonormal basis
for H:

{lvnh = {1viH o {lviH

where {|ij>}j is an orthonormal basis for Hr and {|y} )} for Hr, the following block structure is
induced on any matrix representing an element X € B(#) in this orthonormal basis:

[Xp Xp
X = [XQ XT}

15



where Xr, X7, Xp, Xg are operators from Hpr to Hg, from Hy to Hr, from Hr to Hg, and from Hp
to Hr, respectively.
We shall also need the notion of support of a state. Let p be a state, the support of p is defined as

supp(p) = ker(p)*

In a matrix notation: p is supported on the subspace Hp if it has the following block structure
por 0| _
p =Tlgpllg = {pOR 0} , PR € D(HR)

where Ilg is an orthogonal projector onto Hp. Studying how the support of the state evolves under
iterations of the quantum channel ¢, is instrumental for studying the properties of invariant subspaces.
Firstly we will characterize invariance and stability for the mean evolution of our quantum system,
dictated by the quantum channel ¢. In section 3.1 we will clarify why the quantum channel dictates
the mean evolution of our quantum system subject to indirect measurements.

Definition 20 (Invariance). Let ¢ be a quantum channel. A subspace Hpr of H is said to be invariant
iff any trajectory starting from a state with support in it, has its support on Hg for all times, namely

supp(p) € Hr — supp(¢"(p)) < Hr, YneN
An invariant subspace is called minimal if it does not contain other non trivial invariant subspaces.

Definition 21 (Irreducibility). A quantum channel is called irreducible if the only invariant subspaces
are the trivial ones, i.e. {0} and H.

Let V be an invariant subspace of H. If we consider the restriction of the quantum channel to
IyD(H)Ily ~ D(V), we obtain again a quantum channel, that we shall denote ¢y, having Kraus
operators V;)y, := IIyV;lly. If V is minimal, then the associated quantum channel ¢ is irreducible by
construction.

A particular type of invariant subspace is the globally asymptotically stable (GAS) subspace, meaning
that it is globally attractive for the dynamics.

Definition 22 (GAS). Let ¢ be a quantum channel. A subspace Hp of H is globally asymptotically
stable if it is invariant and

Tim || 6"(p) ~ Tpd" (p)IIg [|= 0. ¥p & D(H)
where Iz represents the orthogonal projection onto Hg.

This represent the subspace into which the evolution converges.

2.4 Invariant states & state space decomposition

This section is devoted to the presentation of the structure of the invariant states of a quantum channel,
that will play an fundamental role in this project. For a quantum channel ¢, we denote by Fy4 the set
of invariant states of ¢, that is

Fo={XeBH)| ¢(X) = X}

In order to express the result let us introduce the set
T = {zeH | (x.¢"(p)r) ——0, Ype D(H)} (2.9)
and its orthogonal R = 7.
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Theorem 7. The set T defined in eq. (2.9) is a subspace of H. It is the largest subspace such that for
each p € D(H) we have:

lim ¢r(Tlr ¢"(p)) =0,  lim ir(Ilr ¢"(p)) =1

n—o0

where Il and Ilg denote the orthogonal projectors onto T and R respectively. The decay in both limits
18 monotonus.

This theorem, proved in [6], represents the first step towards the investigation of the structure of
H with respect to the time evolution. Loosely speaking, the subspace 7 contains the supports of all
decaying states, and for this reason it is called transient. The subspace R, containing the supports of
all invariant states, it is called recurrent and can be further decomposed according to the structure of
the set of invariant states, as will be shown in the following. Being R the subspace where the dynamics
converges, it is GAS. The resultant orthogonal decomposition of H reads

H=R®T (2.10)
The next property characterizes the invariance in terms of the Kraus Operators of ¢, as presented and
proved in [11] (proposition 1).

Proposition 3. Let ¢ be a CPTP map on B(H) and H = R®T. Then R is invariant < in any
Kraus Decomposition of ¢, the associated Kraus operators V;’s have the following block structure:

- |Vir Vip
Vi = [ : VT] (2.11)

Theorem 6.14 of Wolf’s lecture notes [29] proves that the set of invariant states of a quantum
channel has the following structure

d
Fp=U (Z po,@B(@ma)@o) Ut

a=1

with U € U(H), for an appropriate decomposition of H = R® T as CF = @izl Cme @ C"r. This
follows from the following facts:

1. being R ~ Zi:1 C"™e GAS, it supports all the invariant states;

2. each C™ has a canonical tensor product structure, namely C"» = Cke @ C™, n, = kama, with
pa > 0 being a full rank density operator on C*e such that

0@ ... ® Un(pa ® Icma ) UL & ... D0 € Fy (2.12)

Therefore this structure of the invariant states of ¢ induces a decomposition of the GAS subspace R
into orthogonal minimal invariant subspaces Vy:

R=V®..0V, (2.13)
~C"@..epCv

as deeply discussed also in [15]. In the general case the decomposition of R into minimal invariant
subspaces is not unique, as reported in the following theorem, proved in [6].

Theorem 8 (Equivalence of splittings). If there are several possibilities to decompose R into orthogonal
minimal invariant subspaces, then all these decompositions, together with the invariant states, are
unitarily equivalent under unitary transformations commuting with the time evolution restricted to
states having support in R.
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The decomposition (2.13) induces the following properties on the Kraus operators characterizing ¢:

1. the restriction of V; to this subspace R is block diagonal with respect to the decomposition (2.13),
which results in the following block structure for the Kraus operators:

Vil o0 s

)

0 0 V& o«
0 0 0 Vir

This follows by the fact that the V,’s are minimal invariant subspaces of H, which implies no
dynamical connections between them, while the last zero blocks derive from the invariance of R,
as stated in proposition 3;

2. each C™ has a canonical tensor product structure, namely C" = CFe ® C™e with respect to
which each Vi(%) can be written as

V) = Ua(V¥ ® Icma UL (2.15)

(a)

where U, is a unitary operator on C"«, while V;" is an operator on Che;

This shows the connection between the orthogonal decomposition of the recurrent subspace R into
minimal invariant subspaces and the structure of the set of invariant states of our quantum channel ¢.

Let us consider the following setting where m, = 1 for all « = 1, ..., d, namely
R~Cho..@CH

with minimal invariant subspaces V, ~ CFe. This is required for having identifiability of the invariant
states from their relative probability measures, which will represent the main assumption of the
convergence theorem for a quantum trajectory. Actually at the end of chapter 3 we will show that the
convergence theorem holds even when mq > 1.

Let po,o be the unique invariant state with full support on V,, namely pyp o = aanct € D(V,) of
eq. (2.12). Being the map ¢ linear, its invariant states are closed under convex combination, hence
they form an operator subspace of D(H) defined as follows

Fy = conv{pe.o € D(H)}
with po 0P8 = Poo,gPw,a = 0 Vo # B since they are supported in different orthogonal subspaces.

Remark (Unitary evolutions). For unitary evolutions there is no decay, namely 7 = {0} and H = R.
FEach minimal invariant subspace V, is one-dimensional and contains an eigenvector of the relative
Hamiltonian. Therefore if the spectrum of the Hamiltonian is non-degenerate, then the decomposition
of R into minimal invariant subspaces is unique.

Unitary evolution may be part of a Markovian evolution in two ways:

1. H may present a subspace on which the time evolution is unitary. In such a subspace the minimal
invariant subspaces are one-dimensional, supporting eigenstates of “energy”. Decoherence does
not take place on them, that’s why their union is called Decoherence Free Subspace (DFS).

2. H may present a subspace which could be factorizable into two spaces, where the dynamics
is factorized into a product of a unitary evolution on one factor-space with a non-invertible
Markovian evolution on the other one. The subsystem that is evolving unitarily is called Noiseless
Subsystem (NS). As an example one can think of a system containing two atoms, where one of
the atoms is decaying, the other one not.

DFS and NS represents Information Preserving Structures (IPS) [10] that allow to store and preserve
quantum information.
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2.5 Spectral analysis

In the following section we will recall some properties of the spectrum of a CPTP map derived in the
lecture notes of M. Wolf [29].

Being ¢ : B(H) — B(H) a linear map having equal input and output space, we can assign a
spectrum to it, which represents the set of scalars A € C that are roots of the characteristic polynomial
Ay(A) = (M — ¢), namely

5p(8) == (A e C | A(N) = 0}

Recall that the spectral radius of the linear map ¢ is defined as o(¢) := sup{|\| | A € sp(¢)}, namely as
the radius of a disc that encapsulates the whole spectrum.

Proposition 4 (Spectral radius of positive maps). If ¢ is a positive map on B(H), then its spectral
radius satisfies

o(¢) < llo(D)]loo (2.16)

Proof. By the theorem of Russo and Dye we have ||¢(X)||oo < [|¢(1)]|co]| X [|oo- Therefore if p(X) = A X,
then
AN X oo = (X oo < l[@()lloo | X [0

which implies (2.16). O

The spectrum of the quantum channel ¢ has the following properties:

1. being ¢ a CP map, it preserves hermicianity, which implies that eigenvalues are either real or
they come in complex conjugate pairs, indeed

$(X) = AX — [6(X)]" = o(XT) = A*XT
2. from the previous property, from proposition 4 and from the unitality of ¢* follows that

o(¢) <1

indeed o(¢) = 0(¢™) < ||0*(I)]|oo = ||{]|leo = 1. This means that the spectrum of a quantum
channel lies in the unit disc;

3. from Brouwer’s fixed point theorem follows that an invariant state of ¢ always exists;

4. Let the peripheral spectrum of ¢ be the set of its eigenvalues lying on the boundary of the unit
disc, namely |A| = 1, then all their Jordan blocks (defined in eq. (2.17)) are one-dimensional, i.e.
JA) = A

Remark. Notice that being any CPTP map a map from the compact set of density operators D(H) to
itself, any trajectory is bounded. This explains property 4.

Being a linear map, ¢ admits a Jordan decomposition:

A1

K
o=V (@ J()\k:)) VoL IO = | (2.17)
k=1 )‘k:
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where J()y) are the Jordan blocks of size dj, (with ), dj = k) and the number K of Jordan blocks
equals the number of different eigenvectors. Subdividing each Jordan block into a projection and a
nilpotent part we get

K
= Z eIl + N, N;jk =0, I Ni = Ni Il = Ng, (2.18)
k=1

Tl = 0 M, tr(Tg) = di, Y M0 = I
s

where Il is the projection onto the generalized eigenspace in B(H) relative to the eigenvalue \;. The
number of Jordan blocks with eigenvalue A\ is the geometric multiplicity vy of A, while their joint
dimension ). A=Ak dy is its algebraic multiplicity ng. If these two multiplicities are equal for every

cigenvalue, then ¢ is called non-defective. In the non-defective case there exist a complete basis of CF
of eigenvectors, and our quantum channel has the following spectral decomposition:

Z|pm><M|+ Z MalRoXLal, Mo #1,1Aa] <1 (2.19)
a=d+1

where {po.a; Ra}®_, are the eigenoperators of ¢, while {M,, L,}%_; are the eigenoperators of the dual
¢*. Therefore the quantum channel action on the state space can be rewritten in the following way

k

d
Z Map)poa+ >, Aatr(Lip)Ra (2.20)
a=1 a=d+1

This operator basis is biorthogonal, therefore

tT(MOlpOO,B) = 604,57 Va, 8 (221)
tr(MaRy) =0, Ya=1,...,d;¥a =d +1,....k

which implies that
d d
Z (MyRy) = tr( Z tr(Ry) =0, Vo/ =d+1,...k — Ry ¢ D(H)

This means that the evolution of a quantum channel on the state space will never end up in an
eigenoperator with associated eigenvalue A\, # 1, |Ao| < 1

Moreover a precise form of the invariant operators M, of the dual ¢* is derived in [14] (proposi-
tion 2.5), and reads
M, =1y, + M, (2.22)

with My, = II,1 Mo1Ily1 and with 0 < < 1. From eq. (2.21) follows that:
1. M, has no support on Vg for o # 3, therefore Mt = Il M,Ilr;

2. Y tr(Mapoo g) = 20 00 <= tr(>, Mapop) =1 < >, My = Idy, since tr(pyp ) = 1 and
0 < M, < 1. Consequently > My, =II7.

The resulting set of invariant operators for the dual map ¢* reads

Fye = span{My e B(H) | 0< M, <1 ZM — Idy} (2.23)

In the following proposition we introduce a map ¢4 that projects onto the set of invariant states JF
(see proposition 6.3 of Wolf’s notes [29]), that we will use in section 3.3.
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Proposition 5 (Cesaro mean). Let us introduce the following map:

Gp = lim — Z " (2.24)

N—w N

Then it is a projector onto the set of invariant states Fy, namely

d
b = > T a (2.25)

a=1

having spectral decomposition
d
Z ap Poo,a

Proof. The Jordan decomposition of ¢ can be subdivided into three parts: the first one relative to the
invariant states, the second one associated with the eigenvalues of the peripheral spectrum different
from one, and the third one associated with the remaining eigenvalues inside the unit circle:

d

d= > Meat+ Y Nllet D) NIl + N
a=1 ki Ag|=1 ki Ag|<1
Ap#1

where in the first and in the second term the nilpotent part is not present due to property 4. Putting
this decomposition in eq. (2.24) and exploiting the properties of the projectors and the nilpotent
matrices in (2.19) we end up with

d N N
1 1
b = D Mg + dim > ~ DA, + v U D NI+ N (2.26)
a=1 k:‘)\k|:1 n=1 n=1 k:|)\k|<1
Ap#1

where N

D NIl + N Z AkaJrZ( >)\” INL + NP
Notice that N

1 11— \N+H
lim — > M= lim ——~—— = kst A\ #1
Nl—r>nocNZ k Nl—r>nooN 1—-A 0, Vks k7

where we have used the geometric sum. Therefore eq. (2.26) becomes

d N
o1 _
%:ZHOWJFJ&EDOONZ > Z()AZ INL+ N
a=1 n=1 \ k:|\gx|<l I=1
d
= 2 Hoc,oz
a=1
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With the spectral analysis of a quantum channel ends the part of the project devoted to the presen-
tation of the preliminaries needed to develop the main subject of the elaborate: indirect measurements
of a quantum system and the analysis of the asymptotic statistics of the stochastic process related to
measurement outcomes. In the following chapter we will present the setting of indirect measurements,
which give rise to a stochastic process called quantum trajectory. This process describes the state of the
system subject to this sequence of indirect measurements. Afterwards we will analyze the asymptotic
behaviour of the quantum trajectory, proving that it converges to one of the minimal invariant subspaces

V., making use of martingale techniques.
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Chapter 3

Indirect measurements & Quantum Tra-
jectory

Due to the laws of quantum physics, a direct projective measurement of an observable brings to the state
collapse of the system in one of the eigenstates of the measured observable. Moreover, measuring directly
a small quantum sized physical system is done by letting it interact with a macroscopic instrument.
This procedure can result in the destruction of the measured system. To avoid this destruction of
the measured system, we recur to a sequence of indirect measurements, which aims at getting partial
information on the quantum system with minimal impact on it. This setup of repeated quantum
measurements, based on the repeated quantum interactions, corresponds to actual important physical
experiments such as the ones performed by S. Haroche’s team on the indirect observation of photons in a
cavity ( [17], [23]). In the following we will briefly recap the procedure of repeated indirect measurements.

We let the quantum system of interest H interact with another quantum system H, ~ C", called the
probe, during a time interval [0, ¢], following an Hamiltonian

Hipy = HiQI, + [, ® H, + Hg,

where Hg and H), represent the Hamiltonians dictating the evolution of the system and of the probe
respectively, while Hg, models the energy exchanges between the two. This Hamiltonian Hy, give rise

to a unitary evolution on H ® H,
U = e_itHwt

Let {|e;)};_; be an orthonormal basis of H,, with E;; := |e;){e;| € B(H,). We can rewrite the unitary
evolution in the following way

r U1 ... Uy,
U= Z Uz‘j ®Eij = , Uij € B(’H) (3.1)
=1 U ... Up
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If we prepare the probe in the pure state |ej){e;|, while our system is in the state pg, and we let them
interact in [0, ¢], then their joint state at time ¢ will be described by the following density matrix:

pjoint(t> = U(pO ® ‘el><€1’)UT
UnpoUfy ... UnpoU),

UppoUf; ... UnpoU)y

If we look at the evolution in H, taking the partial trace over the probe system H,, we get

pr =t [pjomnt()] = D UsnpoU)) =: 6(po) (3.2)
i=1

where ¢ is a quantum channel having Kraus operators V; = U;;, which corresponds to the blocks
of the first “column” of U in 3.1. Indeed ¢ is CP and TP thanks to the unitarity if U: tr(¢(p)) =
tr <Z§:1 UZ-T1 Ui p0> =tr(l;p) = 1. Eq. (3.2) represents the Stinespring dilation, recalled in theorem 5)
of the quantum channel dictating the evolution of our system.

Then we perform a direct projective measurement on H,, with measurement basis {P; := |e; {e;|}_,
which will produce the i*" outcome with probability

7 := tr{(Le ® P)pjoint ()] = tr[VipoV;']
and with consequent state collapse in

]Is -Pz join t ]Is -Pz ‘/z VT
( ® )p] t( )( ® ): povY; ®|€z><€z|

pjoint|i(t) = e T
where the collapse in a measurement eigenstate interests only the probe, while our system only undergoes
a measurement back-action. The crucial point is that thanks to the correlation between the probe and
the system (developed during their interaction), indirect measurements are able to gain information
about the system avoiding its state collapse. Therefore if we look at what happens to our system after
the probe’s measurement, we get this random equation

= 0% ith probability tr(VipoV;)

where the randomness comes from the measurement process, that selects the index i of the Kraus
operator. If we repeat this procedure on p; and with a new copy of the probe, we will get

VimViT

= ————— with probability ¢r ViplviT
tr(Vip1 V') ( )

P2

and so on. This repeated sequence of indirect measurements of our system gives rise to a quantum
trajectory (pn)nen, which is characterized by the random equation

Vian;T

Pn+l = —— _
T (Ve V)

(3.3)

that holds with probability tr(Vi,onV;T). Notice that being the Kraus operators V;’s not time dependent
and being p,11 only dependent on p,, the quantum trajectory (pn)nen is a Markov Chain.
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3.1 Equivalence between invariance and stability in mean and almost
surely

The focus of this project is on the analysis of the asymptotic behaviour of the stochastic evolution of

our quantum system subject to indirect measurements, which is governed by eq. (3.3). In the previous

section we have characterized invariance (20) and stability (22) for the mean evolution of the quantum
trajectory, namely

ﬁn-&-l = E[pn-i-l] = (;5(,5”)

which is deterministic and it is dictated by the quantum channel ¢.
Now we have to characterize invariance and stability for the quantum trajectory, and thus in a
stochastic setting.

Definition 23 (Invariance). A subspace Hp of H is said to be invariant almost surely if
supp(po) < Hr — supp(pn) < Hr, Yn e N a.s.
Definition 24 (GAS). A subspace Hpr of H is GAS almost surely if Vpo € D(H)
Jim [ pp = Tgpallg [|= 0 as.

with Il being the usual orthogonal projector onto the subspace R.

Taking inspiration from [8] we will show that also in the discrete setting there is an equivalence
between invariance and stability in mean and almost surely. The proof is based on the following linear
Lyapunov function:

Vi(p) :==tr(llrp), 0 < V(p) <1

with Il being the usual orthogonal projector onto the subspace 7. Notice that
V(p) =0 <= supp(p) = Hr (3.4)

Lemma 9. If the subspace Hp is invariant then the process (V(ppn))nen 8 a positive supermartingale,
namely
E[V(pn+1) | pn = p] < V(p), Vpe D(H)

Proof. The proof relies on the block structure of the Kraus operators (2.11), induced by the invariance
of Hg, which implies that

My V; = Ty Villy = V0
|0 Vip
Vil = [0 VT} (3.5)
Therefore
VipVy! f
E V n n — = tr 1T L tr % ‘/;
[V (pns1) | pu = p] Z < Ttr(vi,ovj)> (ViV}
—Sur (Vim pViT(T)>
=tr ((ﬁ(T)(mT))
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where ¢(T) is the map defined by the Kraus operators {V;(T)}, while p|,. = IIppllp. What we want to
show is that the map ¢7) is trace non-increasing, namely:

tr (6 (p1,) = ppa ) <0

This can be seen in the following way, exploiting the block structure (3.5):
tr (6(01,)) = tr (2 %Hmﬂﬁ*)
i
=Y tr (VirprVlp) +tr (VirorVily)
i
= 2“‘ <V;,PPTV;TP) + tr <¢(T) (P|T)>
i

with pr € D(Hr) being the non-zero block of p|,.. Being pr > 0, we have that »; tr <W7PpT‘/’iTP> >0,
which implies that

tr (6(py,)) < tr (8lpy,) = tr(py,)
that shows that
B[V (pns1) | pn = pl = tr (67 (p),)) < tr(Tlrp) = V(p)
Finally the positivity comes by the fact that p > 0,Vp € D(H) and by the monotonicity of the trace
map. ]
Now we have all the tools to state and prove the equivalence theorem.
Theorem 10. (Invariance and stability in mean iff almost surely) The subspace Hp:

e is invariant in mean <= it is invariant almost surely

e is GAS in mean <= it is GAS almost surely
Proof. We start by the invariance. Given condition (3.4) it is sufficient to prove that
V(pn) =0VneN < V(p,) =0VneN a.s.
The implication < derives by the linearity of V', which implies that
V(pn) = E[V(pn)]
For showing the other direction (=), let us recall that V(p,) = 0, Vn € N, from which follows that
if V(pn) =E[V(pn)] =0VneN then V(p,) =0VneN a.s.

and the invariance equivalence holds.
We now move to the GAS property. Given condition (3.4) it is sufficient to prove that
lim V(p,) =0 < lim V(p,) =0 a.s.
n—aoo n—0oo

The implication < follows by the dominated convergence theorem applied on V. Indeed if we have
limy, o V(pn) = 0 a.s. and by the fact that V(p,) <1, Vn € N follows that

Tim V(pa) = lim E[V(p)] = E | lim V(p)] =0
The other direction (=) starts by assuming that lim, . E[V(p,)] = 0. Since V(p,) > 0, this
convergence corresponds to a L! convergence to 0. On the other hand, since 0 < V(p,) < 1 and
by lemma 9, the process (V(py)) is a positive bounded supermartingale. It follows from bounded

supermartingale convergence theorem, that this process converges almost surely and in L' to a random
variable Vi,. The uniqueness of the L' limit implies Vi, = 0 almost surely. 0
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3.2 Measurement outcomes

If we don’t look at the measurement outcomes, a sequence of n indirect measurements gives rise to a
random sequence X, := (i1, ig,...,9,) € {1, ...,7}®", where i; is the outcome of the first measurement,
io of the second one and so on. A sequence of outcomes (i1, 12, ..., i,) appears with probability

Poo[(i1, 12, .wevin)] := tr(Vi, .. Vi, po Vil .. Vi) (3.6)

which depends on the initial state pg of the system. This can be easily shown for n = 2 in the following
way
Ppo[(i1,i2)] = Ppg[iali1[Ppg[i1] = tr (Vi prjs, Vil tr (Vi po V1) = (Vi Viy po Vi Vi)

i1 " i2
and the same procedure can be iterated to show that eq. (3.6) holds for any n € N. Let Q be the space of
events, namely of infinite sequences (i1, 42, ...), where i; € {1,..,r} for every measurement [. For a finite
sequence (ig, ...,i,) we can define B;, ;. as the subset of  made of all those realizations w’s whose
first n components are i1, ..., 4,. Let F,, be the o-algebra generated by all the B;, . ;,. For convenience
we define F_; = {F,Q}. Then F := (F_1, Fo, F1,...) is an increasing sequence of o-algebras. We take
F to be the smallest o-algebra on €2 containing all the F,,’s, making (2, F,F) a filtered measurable
space.
An initial state pg induces a probability measure P,, on € which is uniquely determined by the
condition (3.6). Indeed, we see that the Kolmogorov consistency criterion is fulfilled:

r

Mot (Vi Vi Vi Vi VIV Y =t (v, Vi vV

In+1
tny1=1

The resultant probability space is (2, F,P,), where (py)nen is a unobserved Markov Chain defined by
the random equation

Vi VipVl v
tr(Viy,-. Vi, pVil Vi)

Pn (3.7)

which holds with probability tr(‘/;n...‘/glpviz V,LL) The only handy observation is the sequence of the
measurement results (X,,). Bayes law maps the information of (X,,) in the evolution of the Markov
chain. An important thing that we want to point out is that in general the sequence of random variables
(X,) is not i.i.d. (even not Markovian). Therefore the statistical analysis of the asymptotic behaviour of
(X,,) cannot fully rely on standard results on i.i.d. models. That’s why we will make use of martingale’s
asymptotic laws to develop our analysis.

The following proposition highlights some properties of the map p — P,,.

Proposition 6. The map p — P, is:
1. affine: AP, + (1 = NPy =Py, (1-0)s  YA€[0,1], Vp,0 € D(H)
2. k-Lipschitz and consequently it is continuous in total variation with respect to the norm 1, namely

if pn m’ p then ||]P)Pn - IP),OHTV m’ 0

with [Py, —Ppllrv := supser(Pp, (A) —P,(A)].

Proof. 1 is trivially true by the linearity of the trace and by the fact that A is a scalar. To prove 2, we
define the quantity
_ viviv, .,

tr(VI. VIV, Vi)
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We want to prove that p — P, is k-Lipschitz, where k is the dimension of our quantum system, ie.
H ~ CF. We have that

Py (i1, eoeyin) = Pp(it, orin)| = [tV Vi, (pn — p) ViV ]
= [tr[V] .V Vi, Vi (o — )]
= tr (V] V] Vi Vi [Mia it ey i) (0 — )]
<tr(V; Vi Vi Vi) [ Ml llp = pnlla (3.8)
3.9)

<tr(V VI Vi o Vidllp — pall = KBr (it o in)llp — pulli (3.

where (3.8) holds by inequality (17) proved in the appendix, while inequality (3.9) holds since M,, € D(H)
implies that || M|« < 1. Now taking the sup over all possible infinite sequences in F we end up with

IBp, = Ppllry = sup|Py, (A) = Py(A)| < ksup Py (A)llp = pulla
AeF AeF
< kllp = pnl
which shows that p — P, is k-Lipschitz and consequently it is continuous in total variation. O
Let us focus on the probability measures P, , induced by the invariant states po o The identifiability
assumption on these measures represent the main assumption of this project, since if it is satisfied

then the convergence theorem for the quantum trajectory holds and consequently also the asymptotic
statistical analysis.

Assumption. (ID) For any o # 3 there exists an I := (i1, ...,1,) € Fy, such that

P (1) # Py, (1)

This assumption practically means that we are able to discriminate between the different invariant
states from their relative probability measures. In the following we will show that when ID is satisfied
then the probability measures P, , are all mutually singular, that will represent the key point to prove
the main convergence theorem.

Definition 25 (Mutual singularity). The measures P
collection of disjoint subsets (€2,) of £ such that

]P)Pw,a (Qﬁ) = 504,6 Vo, B e {1, ,d}

v aT€ all mutually singular iff there exists a

Let us define the process (7, p) induced by the Kraus operators J = {V;}I_; and by a state p. This
process is called the unravelling of our quantum channel ¢. The left shift on the events space is defined
as

Y Q-0

(wl,WQ, ) — (WQ,(,U:;, )

is a continuous surjection. The process (J,pw.), induced by the Kraus operators J = {V;(a) =
Iy, Villy, }i_; defines a dynamical system (Q, F,P,, .,»). Notice that the Kraus operators {Vi(a) i1
defines the irreducible component cb(o‘) of our quantum channel, having a unique invariant state py q,
which induces a probability measure P, , that is ¢ —invariant, namely

Pppo(o ' (A) =Py, (A), VAEF

We recall the following theorem which applies to our setting and shows that (Q2, F, P, ., ) is ergodic.
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Theorem 11. If py, > 0 is the unique invariant state of ¢, then (0, F,P,,,p) is ergodic.

Therefore we can apply the Birkhoff Theorem 4 for ergodic dynamical systems: for any function
feLY(Q,F,P,, ) we have that

1 n—1
n Z fo 90'“ m ]EJP’,)OO,Q (f), Ppp o —a.s.
k=0

If we take f = 1, with I = (41,...,ip) € Fp, we can define the function Ny(n) : @ — N as Ny(n) :=
ZZ;& 17 0 ¢, which counts the number of times the finite sequence I appears in a realization w € Q
applying n shifts, with
lifw=(1,...
1) = { (z..)

0 otherwise

Applying Birkhoff it turns out that

N,
I(n) N Eppw’a (]ll) = ]Ppoo,a (I)’ P

n n—+aoo

—a.s. (3.10)

Poo,a

and we will need this to prove the following lemma, which shows that when ID holds, then the measures

Py, o are mutually singular.

Lemma 12. If ID holds then there exists a collection of disjoint subsets (Qq) < Q0 such that
Py o(28) =0ap VYo,B=1,...d

Proof. Exploiting eq. (3.10), we define the subsets €, in the following way

Ni(n) ‘ .
Qa = {w e ‘ 7,5 m PPOO,O((I) VI = (21, "‘7”[)} (311)
which are disjoint by ID, and ¢ — invariant, i.e. o~ 1() = Q4. By the definition of €, follows that
P, () =1if a = 3 and zero otherwise, which proves the lemma. t

In the following section we will construct a special martingale that will permit us to prove that,
under the ID assumption, the support of the quantum trajectory converges non-deterministically to
one of the minimal invariant subspaces V.

3.3 Convergence of the quantum trajectory

In the following section we will show that the quantum trajectory will asymptotically converge to one
of the minimal invariant subspaces V,. This convergence is non-deterministic, so we will derive the
probability of convergence to a certain subspace, that will depend on the initial state of the quantum
system and on the invariant states of the dual map ¢*.

The starting point of this analysis is the following random variable

Qa(n) = tr(Mapn)
= tr{Ily, pn] + tr[Mr, pn]

with 0 < Qu(n) < 1 and Zi:l Qo(n) = 1. This quantity represents the probability in p,, distributed
in the V, subspace after the n-th measurement, plus a term ¢r[ My, p,] that is converging to zero by
theorem 7. This random variable Q,(n) gives rise to a sequence that turns out to be a martingale,
and thanks to the convergence theorem for martingales, it will permit us to analyze the asymptotic
behaviour of our quantum trajectory (pn)nen-

29



Proposition 7. The sequence of random variables {Qq(n)}nen is a martingale which converges almost
surely and in L' to a random variable Q, ().

Proof. We have

E[Qa(n + 1) F2]

I

=~
=
=
=
=

i)

s

1
= tr(gb’k (Ma)pn) = tT(Mapn) = Qa(n)

where we have used the fact that M, is an invariant operator of the dual ¢*. As Q.(n) is also
bounded, the martingale convergence theorem 2 ensures that Qq(n) — Qa () P,-almost surely and in
LY(Q, F,P,). O

Under the ID assumption we will show that the asymptotic random variable Q,(0) = lim,,_,o, Qa(n)
is either zero or one, namely tr(Ily, py,) is converging to either zero or one, while the other term tr(M7;, py,)
is converging to zero by theorem 7. Let {|a)}.>; be an orthonormal basis of V,, and {\ﬂ)}gil of Vg.
By the Cauchy-Schwarz inequality

Kalpl B < <alpla)(Blpl B

the off-diagonal blocks of the density matrix converges to zero, since either {a|p|a) or {(B|p|B) is
asymptotically equal to zero. Finally this will demonstrate that the support of our quantum trajectory
either converges to the subspace V, or it converges to another minimal invariant subspace Vg, with 8 # a.

This asymptotic analysis will proceed as follows: we will start by the simpler case that do not
consider the transient part 7 and we will firstly consider the subspaces V, to be one-dimensional, and
secondly we will generalize the result to multi-dimensional subspaces V,. Finally we will introduce the
transient part, proving that everything holds also in this general case. The same asymptotic result was
obtained in [5], which considers the transient part but one-dimensional subspaces V,. In this case the
indirect measurements are called non-demolition, and the convergence of the quantum trajectory is to
one of the pointer states {Ily, = |a)Xa|}d_, .

3.3.1 No transient part: 7 =0

Our analysis starts from the case that do not consider the transient part:
H=V®..®V,; (3.12)
which implies that for any o € {1,...,d}:
1. M, =1y,
2. Iy, V; = ViIIy, for allie {1,,...,r}.

3.V, = Zi:l ITy, V311, since by condition 1 the Kraus operators are block diagonal w.r.t. the
decomposition (3.12).
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Given a sequence I = (i1, ...,i,) € F, and defining V; :=V; ...V;,, from these three properties follows
that the probability measure induced by any state p reads as follows

Po(I) = tr(VipVy) = > tr(Iy, Villy, plly V]I, )

a,of

= Z tr(éa,a’HVa Viily, pHya, VIT)

a,a!

= N tr(Villy, plly, V)
=Pp (1)

with
d

po = Y, Ty, plly, (3.13)

a=1
namely the non-diagonal blocks of p w.r.t. the decomposition (3.12) do not influence the probability
measure induced by it. This will permit us to rewrite the measure P, as a convex combination of some
measures, where each one is induced by a state supported only on one subspace V,.
This section is divided in two parts: the first one considers one-dimensional subspaces V,, while the
second one generalizes to the case of multidimensional subspaces.

One-dimensional subspaces V,,

Let {|a)}®_, be an orthonormal basis of . In this first case the invariant states are pure states, i.e.
Poo,a = |, namely rank one projectors onto the one-dimensional subspaces V,, with d = k. In this
setting the state pg of eq. (3.13) can be written as follows:

k
po =Y. Qa(0)pm.a (3.14)
a=1

where Q,(0) = tr(Ily, po) represents the probability that the initial state pg is in the subspace V,. By
the fact that the map p — P, is affine by 1, follows that the probability measure P,, = [P, can be
written as a convex combination of the probability measures induced by the invariant states pe o’s:

d
Ppyi= Y. Qa(0)Py,, (3.15)
a=1

Observe that from eq. (3.14) and by the fact that IIy and V; commutes follows that

Pﬁoo,a (I)
Ppo (I)

tr(Ty VipoVD)  tr(Vidly, polly, Vi
Qa(ﬂql) = tT‘(HVapn) = T( Vo IpOT I) = T( [22Val0 ]T/a I) = Qa(o)
tr(VipoVy) tr(VipoVy)

(3.16)

for all I = (i1, ...,in) € Fn.

We have now all the tools to prove the main convergence theorem for a quantum trajectory.

Theorem 13. If ID holds then there exists a collection of disjoint subsets () of Q such that
Qa(0) = 1g, P,y -a.s., namely

tr(MaVi, poVy
Qu(0) = 1im ™! MWL):{

no® (Vg poVy )

1if I € Qg

0 otherwise
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Proof. By lemma 12 ID implies that the measures P, , are all mutually singular. Therefore what we
want to prove now is that this mutual singularity of the measures P, , is equivalent to the fact that
there exists a collection of disjoint subsets (£2,) of  such that Q(0) = 1, P,,-a.s.

We start by showing that Q,(n) is the Radon-Nikodym derivative of Qn(0)P,, , with respect to
P,,. Indeed, under the assumption that Q(0) > 0 Ya € {1,...,d}, any set of P, ,-measure 0 has also
Py, o-measure 0, namely P, « P,,. Therefore for all o there exists the Radon-Nikodym derivative of
Qa(0)P,,, , with respect to Py, which we will call Q,(a). This Q,(c) is a IP,,-integrable non-negative
random variable on (2, F,,), such that P,-a.s. > Qn(a) = 1, so that each @,(a) < 1. Moreover

Qa(0)Eg,, [X] = Ep, [Qu()X] (3.17)

-integrable random variable X on (92, F,,). But this implies that

]Ppw,a [I]
Ppo [I ]
for every I € F,,, which is exactly the expression of our random variable Q,(n) as showed in eq. (3.16).

This argument holds also at the limit since @, (n) is bounded, ensuring that the random variable Q, (o0)
on (2, F) is the Radon-Nikodym derivative of Q4 (0)P with respect to P,,, which implies that

for every P,

Qn(a, I) = Qa(0)

pOO,a

Ep,, [Qa(oo)]lﬁg] = Qa(O)EPpm,a []ng] = Qa(0)Pp,, .[25] = Qa(0)da,s

where the last equation holds by the mutual singularity of the measures P Being 0 < Qn(0) < 1

follows that if v # 3 then Qq(0)1lq, = 0 Py,-a.s.. Therefore

pOO,a *

Qa(oo)]lﬁg = Qa(oo)(sa,ﬂ

Py,-a.s.. If we take the sum over o from both sides of the previous equation, we end up with
Y Qa(®@)la, = Ta,, Y Qua(0)das = Qs(x0)
6 (03

from which follows that Qs(o0) = 1o,. The converse is also true: if there exists a collection of disjoint
subsets (24) of 2 such that Q(00) = 1, Pyy-a.s. then the measures P, , are all mutually singular
and concentrated on the Q,’s. ]

This results proves that the quantum trajectory asymptotically selects one of the subspaces V,.
Moreover it permits us to compute the probability of selection of a certain subspace:

d
Ppo[Qa(0) = 1] = Py [Q0] = Z Qs(0)P,,, 4 [Qa] = Qa(0)
A=

This shows that the probability of convergence into the subspace V, is Q4(0) = tr(Mypo), which
depends on the initial state of our system.

Multi-dimensional subspaces V,

In this more general setting, where the invariant states are no more rank one projectors onto the
subspaces V,, the state pg of eq. (3.13) can be written as follows

d
po = Z Qa(0)pa
a=1
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with states p, defined as

Iy, polly,
tr(Iy, polly,)
and supported on V,. As before by the fact that the map p — P, is affine by 1, follows that the
probability measure P,, = P, can be written as a convex combination of the probability measures
induced by states py’s

Po 1= (3.18)

d
Ppy = Y, Qa(0)P,, (3.19)
a=1

Remark. Notice that p, represents the state of our system, after its projection onto the subspace
Vu- This happens when you perform on your system a projective measurement having measurement
basis {IIy,}, and you get o as outcome, which happens with probability ¢r(Ily_ p) = Q4(0). Being V, a
minimal invariant subspace of H, projecting first on it is completely equivalent to conditioning on the
limit being a, namely
Ppo =Pyl [ Qalo0) = 1]

because if the initial state of our system is already supported in V,, then it will remain inside it during
the sequence of measurements by the invariance of V,.

In the following lemma we will show that when ID holds then also the measures P, are all mutually
singular.

Lemma 14. If ID holds then there exists a collection of disjoint subsets () < Q such that
Ppa (QB) = 50475 VO(,,B = 1, ...,d
with po defined in eq. (3.18).

Proof. We start by showing that P,(¢ 1 (A)) = Py(,)(A), VA e F and Vp e D(H). Let By, 3, = {we
Q|w =11,...,w, =i} be a cylinder subset of €2, then

I
Mﬁ

Pp(w_l(cil,m,in)) = Pp(UJQ =11y, Wptl = Zn) IEDp(Wla‘/‘Q =11y, Wptl = Zn)

€

&
I
—

tr(V;, Vi, Vo, pVi vV

w1 11 in

I
Mﬁ

€

S
I
—

— tr (anl N VeV Vi 1@1)

wi=1
= F() (Cir,in)

and this equality holds also for infinite sequences in F. Let us apply this results to the €2,’s, together
with the fact that they are ¢ — invariat:

X P (@) = By sy (@) (320

S\H

P, (Q28) = Pyp) (071 (28)) =

where the last equality holds since the function p — P, is affine by proposition 6. Recall that
b0 = limy, o0 % Y_, ¢ is a projector onto the set of invariant states Fo, namely ¢ 0 ¢o(p) = do(p)-
The function p — P, is continuous in total variation by proposition 6, so we can take the limit:

lim P Zgzlw(pa)(gﬁ) = Pd’oo(ﬁa)(Q/B) Pwa(Q/B) = 0a,8

n—0o0

where we have used the fact that by eq. (2.25) ¢ (pa) = Zi;l oo 0pa = Pos,a since pq is supported

only on V,, while the last equation holds by lemma 12. O
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Now we have all the tools to prove that the theorem of the convergence of the quantum trajectory
to an invariant subspace holds also in this setting.

Theorem 15. If ID holds then Qn(0) = Lo, P,,-almost surely.

Proof. We start by rewriting Q,(n) as follows

aT) = tr(Iy, VipoV]) Qa(0) _ . po f 1 _ Ppa (1)
Qaln. 1) tr(VIpOV[T) Q(0) Qa (0)f (VIHV& Qa(O)HVQVI> tT(V],OoVIT) QQ(O)Ppo(I)
(3.21)

for all I = (i1, ...,1n) € Fp. If ID holds then the measures P, have a disjoint support by the previous
lemma. Let us focus on the current decomposition of the probability measure P,, of eq. (3.19).
Assuming that Q,(0) > 0 for all € {1,...,d}, and then applying the same reasoning of Lemma 13 and
by eq. (3.21), we get that the random variable Q(00) on (2, F) is the Radon-Nikodym derivative of
Qa(0)P,, with respect to IP,,, which implies that

IElP’pO [QOC(OO)]]'QB] = Qa(O)EPpa []lﬂg] = Qa(O)Ppa [QB] = Qa(o)(saﬂ

and following the same procedure as in theorem 13 we get that Qq () = 1q, P,, — a.s. O

The following step will be to generalize the convergence theorem to the case that considers also the
transient part.

3.3.2 Transient part: 7 # 0

Let us come back to the general case where also the transient part is present, therefore the state can
have a part of its support on the transient subspace 7T, that asymptotically decays. Recall that the
resultant Hilbert space decomposition reads

d
H = @ Va®T
a=1
where V, is the subspace where the invariant state pe  has its full support. When the transient part
is present, the operators M, take the form of eq. (2.22), hence they are no more orthogonal projectors,
which brings to their possible non commutativity with the Kraus operators:

MoVi # ViMq

Moreover observe that in this case the measure induced by any initial state p is no more equal to the
measure induced by pg (i.e. P, # P,), as it was in the previous subsection. Therefore we need to find
a new decomposition of the probability measure P,. We start by defining a new probability measure
P, , on Q, induced by an initial state p having tr(Mqyp) # 0:

1
P, ,(I) = ——tr(M,V;pV} 3.22
a,P( ) tT’(Map> 7“( aVIp I) ( )
The normalization condition reads
1
Pop(Q) = Y Pap(l) = ———— > tr(MaVipV)) = 1
IeQ tr(Map) IeQ

since

M tr(MaVipVy]) = tr (Z VITMan> = tr(Map)

1eQ2 1eQ)
by the fact that M, is an invariant operator of ¢*. The positivity condition is also trivially satisfied.
The map p — P, , is neither affine nor continuous in total variation. But we still have continuity in
total variation for a particular sequence ¢, (p), as the following proposition shows.
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Proposition 8. Let ¢,,(p) := 2 37, ¢"(p). If ¢n(p) — p then the measure P, Bn(p) COTVETGES In

total variation to the measure P, ,, namely there e:msts a constcmt Co > 0 such that

IPagn(o) — PapllTv < caklén(p) — plh
for every state p € D(H) such that tr(Map) # 0.

Proof. We start by defining a new quantity M (i1, ..., i), which is equal to

LARRTAR AN

in*

Ma,n il,...,in =
( ) tr(vij...V;nMawn...wl)

when tr(VlVZL M,V;,...Vi,) # 0, while it is 0 when the denominator is equal to zero. We note that

the two measures ]P’m Fn(p) and P, , have the same denominator:
1 o ko 1 o 1o
t’l“( E Z=: a¢ E Z=: E g

Therefore we have that

= tr(Map)

P (o) (015 s i) — Paplin, .oyin)| = Wlap)]tr[MaWn...Wl(q_sn( ) — )VT . Vzn]’
- W(Mla,))!tr[Vi---%LMav;n...m(én@) )]
- (]\Zp)tr(vT VI MoVi, o Vi)t [Man (it v i) (60(p) — p)]|
Rt ViV MaVir Vi) [ Moallol|Ba() = ol
< 157“(]\140{,@tT(ViI""/Yi:Mawn"'%1)||§5n(p) —pll
with . ) _
i) Vi Vi MaVie Vi) l16a(p) = plh = cak Qaty (i s in) [€1(2) = ol
and where ¢, 1= m while Qq 1, /i (i1, -y in) = tr(Ma Vi, .. VzlllfVT VJL) < 1. The first inequality

holds by inequality (17) proved in the appendlx, while the last one holds since ||[Mqy |l < 1. Now

taking the sup over all possible infinite sequences in F we end up with

sup|Py, 5, (5) (A) = Pa,p(A)] < Cakzqua,Ik/k(A)HgEn(p) —rlh
€

AeF
< cakl|on(p) — pllx

O

In line with what we have done in the previous section, we decompose the measure P, as follows

d
= ) Qu(0)P,

and we want to show that if ID holds, then also the measures P, , are all mutually singular.

(3.23)
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Lemma 16. If ID holds then there exists a collection of disjoint subsets () < Q such that
Po,p(Q) =00 p VYa,B=1,..,d (3.24)

for all p e D(H) such that tr(Myp) # 0.

Proof. We define the subsets Q, as in (3.11), which remain disjoint by ID, and ¢ — invariant. We will
show that also with the measures Py, we have that Py ,(¢ ™ (A)) = Py 4(,)(A), VA€ F and Vp € D(H)
such that tr(M,p) # 0. As before

T

Pa,p(¢_1(ci1 ..... zn>) = Pa,p(“? = il; ey Wp41 = Zn) = Z IP)()4,11((")17("-)2 = i17 ey Wnyl = Zn)

wi=1

" 1
_ . : IRTARR Tal
— }: tr(Map)tr(MaWn...VzlmlprlV“ Vi

wi=1

1 '
- tr| MV ..V A AR VAR Al
tr(Myp) T( " 1}_:1 Pren i l”)
= ]P)oz,qb(p) (Cilwwin)

Let us apply this results to the 2,’s, together with the fact that they are ¢ — invariat:

n

_ 1
Pavﬂ(Qﬁ) = Pa,d)(p) (¢ 1(9,3)) = oz¢(p Qﬁ T 2 a,dF(p Pa,%Zzzl (bk(p)(QB) (3.25)

where the last equality holds because

*ZP@’C (Ciy,.in) = :LZM r(MaVi,..Vi, 6" (p)V; 'Vil)

= o B i MV Vs V)

__ Hp
=t (Map) ( S Z ot Z”)
1 1
= tr | MaVi,. Vi, = Y ¢* o)Vl ..V
r (LS o (M) ( Vi Z e )

_ 1 , k( :
tr(Ma%ZZ:ﬁb’“(p))t < Vo Z¢ ' ’")

=Py 1yn  oi(p)(Cir,ooin)

Since the measure P, 7 (p) converges in total variation by proposition 8, we can take the limit:

. i 1 k
A Pot s oD = i gyt | Mo kaZlqﬁ
1
S S 4 t 2
)t [ MaVioso)V] | 20

where ¢, is the projector onto the set of invariant states, defined in eq. (2.24). Recall that the spectral
decomposition of ¢ reads ¢ (-) = Zi:l tr(Mey-)pe,o- Turning back to eq. (3.26) and using this last
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equality we end up with

d

(Tly, + M7,)V; (Z tr(Ma/mpw,a/) v;]

a’'=1

tr [MaVidw(p)V]] =

d
2 tr(M, [tr Iy, Vipeo O/V] ) +tr(M7, Vipeo o'V} )]

o'=1

d
=Xt ) [T, VIThy o 0Tl VT, ) + 10 (M, Vg o0V
tr(

aP)tT(VIPoo oeVT)

where the last equation holds since Iy, ViIly , = 04 o1y, Villy,, and since tr(MTaV]poo’a/VIT) =
0, Ya,a/. To understand why tT(MTaVIPoo,a/VIT) =0, Va,d/, we have to recall that M7, has support

only on the 7 subspace, while Wpoo,a/Y/IT has support only on the V, subspace, due to the block
structure of the Kraus operators and to the fact that p, o is supported only on V.. Finally turning
back to eq. (3.26) we have that:

1

YR Ma (% T
(M) tr(Map)tr(Vipeo,a V)

tr [Ma‘/}¢oo(p)V[T] = tr(Map)
= Ppoo,a (I)

Therefore we end up with
Pap(Q28) = Ppy o (8) = ba s
where the last equation holds by lemma 12. O

We have now all the arguments to prove that the main convergence theorem for a quantum trajectory
holds also in this more general setting that considers the transient part.

Theorem 17. If ID holds then Qq(%0) = 1q, P, — a.s.

Proof. We start by rewriting Q,(n) as follows

tr(MaVipVy) Qa(0)
tr(VIpVIT) Qa(0)

Qa(n7I) = = Qa(o) (3'27>

for all I = (i1, ...,1n) € Fy. If ID holds then the measures PP, , have a disjoint support by the previous
lemma. Let us focus on the current decomposition of the probability measure P, of eq. (3.23). Assuming
that Q,(0) > 0 for all « € {1, ...,d}, and then applying the same reasoning of Lemma 13 and by eq.
(3.27), we get that the random variable Q,(0) on (€2, F) is the Radon-Nikodym derivative of Q(0)Pq,p,
with respect to P,, which implies that

Ep,[Qa(0)1a,s] = Qa(0)Ep, ,[la,] = Qa(0)Pa,[s] = Qa(0)da,s
and following the same procedure of theorem 13 we get that Q,(0) = 1g, P, — a.s.. O

This finally proves that also when the transient part is present, the quantum trajectory asymptotically
converges to one of the minimal invariant subspace V,, with probability of converging to V, that can
be derived as follows

d
Pp[Qa(0) = 1] 2 (0)Pg,p[2a] = Qa(0)
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as in the case of no transient part. The analysis of the asymptotic behaviour of the quantum tra-
jectory concludes ad follows: it will converge to the minimal invariant subspace V, with probability
Qa(0) = tr(Mqpo). But then what happens inside V, 7 Maassen and Kiimmerer explain in [21] that
asymptotically the quantum trajectory performs a random walk between dark subspaces of the same
dimension, i.e. spaces from which no information can leak out. In the trivial case that the dimension
of the dark subspace is 1, purification has occurred. This means that either the quantum trajectory
purifies or it continues to move about in a random fashion between the dark subspaces, thus continuing
to produce ‘quantum noise’.

Let T € {1,...,d} be the index of the subspace asymptotically selected by the quantum trajectory,
namely

d
T =) aQa(o) (3.28)
a=1

We recall a technical lemma proved in [7] and readapted to our decomposition (3.23) of the measure P,
that we will need for the formulation of the asymptotic laws of the following section.

Lemma 18. Let (XZ) be a sequence of random variables depending on « € {1,...,d} and assume that
ID holds. Then

1. almost sure convergence: if for any a € {1, ...,d}

Py, p—as
e

X X

then
Xg P,—as XT

2. convergence in distribution: if for any a € {1,...,d}

xo D-Pa,=as yq
then
XT D-Pp—as v
Finally we conjecture that for n large enough
Qa(n) ~ e (@T) 2T (3.29)

namely the random variable Q4(n) with « # T decays to zero exponentially fast, with a rate of
convergence 7(«, ) that depends on a and on Y. An extension of this project could look in this
direction: prove this conjecture and find the expression of the rate of convergence.

A similar analysis on the rate of convergence of the quantum trajectory can be found in [5], which
considers quantum non demolition measurements and proves that in this case the rate of convergence
is r(a, T) = S(Y|a), with S(Y|a) being the relative entropy of the single measurement outcome
distribution conditioned on the system being in the state po v = |Y)(Y| w.r.t. the one conditioned on
tr(Vipeo v V)
tr(Vipoo,a Vi)

Another article that considers a similar problem but in continuous time is [8], where the authors
provide sharp bounds on the rate of convergence of the quantum trajectory to the GAS subspace R,
making use of the Lyapunov exponents.

the system being in the state po o = |@)(a|, namely S(Y|a) = Y\_; tr(%poox‘/j) In
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3.4 Casem,>1

We recall that in the general case V, ~ C™ has a canonical tensor product structure C" = Chke @
Cme, ng, = kame, with respect to which each VZ.(%) can be written as

ViR =V @ Ieme

with XN/Z-(Q) being an operator on CFe. In this section we analyze the case that considers mq = 1. The
resultant structure of the invariant states of ¢ reads:

d
Fo =D pa ®B(C™) @0
a=1
where p, > 0 is a full rank positive operator in D(CF«). It follows that in this setting the invariant
states supported in V, have the following form

Poo,asi = Pa @ Pajis  Payi € D(C™)
from which follows that
Pppoil) =Py, (D), YI€Fu,Vpai# paj€ DC™)
which represents an identifiability problem. Indeed
B0 (D) = (V) (00 ® o) Vi)
= tr(V;" pa V' @ pai)
= tr(V" V(™) = B, (D)

This means that the state p,; of the subsystem of dimension m, has no impact on the probability
measure P, . induced by the invariant state po ® pa,i, and therefore from this measure is not possible
to discriminate between the different states of the second subsystem. Therefore we need to extend the
definition of identifiability to sectors, which are equivalence classes.

Let us define an equivalence relation among invariant states: two invariant states pw o, and po qa,j
are said to be equivalent (denoted pew o ~ pow,a,j) if, for any I € F,, and for any n e N

]P)poc,a,i (I) = Ppoc,a,j (I)

We define the sector « as the equivalence class of the invariant states supported in V,, with
Po(I) = tr(V;pa V")
The consequent identifiability assumption reads as follows.

Assumption (ID’). For any a # ( there exists an I = (i1, ...,1,) € Fp such that
Pa(l) # P4(l)

Notice that in this setting V, is no more the support of a unique invariant state, that was a key
point for constructing the subsets €, of lemma 12. Therefore we define a new space H' ~ > C"*@C"™,
having a lower dimension than . Here each subspace C™* is the support of a unique invariant

(a)

state po. On this new space the blocks V, *) of the Kraus operators becomes V;(Ef:) = YN/i(a), and their

)

corresponding projection on Vg, i.e. J = {V, )}, induce a process (J, po) that defines a dynamical
system (2, F, PP, , ¢) which is ergodic by theorem 11. But notice that P,, = Pg, therefore the dynamical
system (2, F,Pq, ) is ergodic too. Therefore we can inherit our previous analysis and by the same
reasonings of the case that considers my = 1, we have that when ID” holds then our quantum trajectory
converges to the minimal invariant subspace V, with probability @Q,(0).

(«
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Chapter 4

The Central Limit Theorem

In this chapter we will present the Central Limit Theorem (CLT) applied to the recording of successive
measurements in quantum trajectories. Its first version appeared in [3], but it only tackles the case
that considers a unique invariant state and the one that considers multiple invariant states but no
transient part. Our aim is to establish a central limit type result without any restriction on the quantum
channel ¢. We will show that in this more general case the process associated to the recording of
successive measurements asymptotically approaches a mixture of Gaussians, and we will give a complete
description of their parameters.

In [3] was established a central limit theorem and a law of large numbers for Open Quantum Random
Walks (OQRW) on lattices. Such processes are a possible noncommutative generalization of classical
Markov Chains and have applications in quantum computing, as presented in [24]. A generalization
of [3] is presented in [14], where a large deviations and a central limit theorem result were proved by
making use of deformation techniques and spectral theory. We will apply these results to the recording
of successive measurements in quantum trajectories, and we will exploit the Poisson equation and the
CLT theorem for martingales to prove that also in the case that considers multiple invariant states and
a transient part, the process asymptotically approaches a mixture of Gaussians. Everything is also
showed with some simulations. Finally using the same techniques used to prove the CLT, we will derive
a Law of Iterated Logarithm (LIL), which is then compared with the previously derived CLT.

This chapter is structured as follows: firstly we will treat the case that considers a quantum channel
having a unique invariant state, showing that the process asymptotically approaches a single Gaussian.
Secondly we will generalize this to the case of multiple invariant states but no transient part, showing
that the process asymptotically approaches a mixture of Gaussians. Finally we will show that everything
holds even if a transient part is present, ending the chapter with the derivation of a LIL result, without
requiring any assumption on the quantum channel.

4.1 Single Gaussian

We start by considering a quantum channel ¢ that presents a unique invariant state. The following
decomposition is induced in the state space:

H=VDT
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where V] is the unique minimal invariant subspace supporting the unique invariant state p,,. Therefore
the first hypothesis reads:

(H1). ¢ admits a unique invariant state poo.

Let us introduce a vector m € R", where its r components are defined in the following way:
m; =m-e; = tr(VgpooViT)

namely it contains the probabilities of the measurement outcomes, induced by the invariant state p.
The following lemma is proved in [3], and we will exploit it to demonstrate our main result.

Lemma 19. For every l € R", the equation
L—¢*(L) =Y ViVi(es - 1) = (m - DI (4.1)
i=1

admits a solution L*. The difference between any two solutions of (4.1) is a multiple of the identity.

In the following we will denote by L; a solution of (4.1) associated to [ € R", and with L; a solution
associated to [ = e;. Hence L; can be rewritten in the following way

L= i LiL;
i=1

where [; are the coordinates of the vector I. Let N;(n) be the random variable that counts how many
times a sequence of n measurements produces the i-th outcome. Let N(n) € N” be the corresponding
vector. The process (pn, N(n))nen is @ Markov Chain (MC) that takes values in D(H) x N”, and it is
described as follows: from any position (p,, N(n)), the MC can jump in one of the r different values

Vipa Vi
'07”, N(n)+e;
tr(Vipn V')

with probability tr(VianiT). Now we have all the tools to state and prove our main result: the Central
Limit Theorem applied to measurement records.

Theorem 20. Consider the quantum channel
6(p) = Y, ViV
i=1

on H, for which H1 holds. Consider the random vector N(n) associated to the successive measurements
which give rise to the quantum trajectory of ¢. Then
pon: Y Fomes
n
N(n) —nm p-p

N

CLT: % N'(0,C)

with covariance matriz C' having elements

Cij = 0iymi — mym;j + (tr(LjVi,oooViT) + tT(LiVijOVjT)> — (mitr(Ljpe) + mjtr(Lipe)) (4.2)
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Proof. Consider the MC (pn, N(n))nen and let AN(n) = N(n) — N(n — 1), Vn > 0. The stochastic
process (pp, AN (n))n>0 is also a MC, but with values in D(H) x {e1,...,e,} and with Markov Kernel

" V; V
;lf (tr TpVT) )tr(VpVT)

Given a fixed [ € R", we want to write a CLT for (N (n) - [)pen. Our first step is to find a solution of

the Poisson equation:
(I-P)f(px)=x-1l—m-1 (4.3)

namely we wish to find a function f: D(H) x {e1,...,e,} — R.
Lemma 21. A solution of the Poisson equation (4.3) is given by

f(p,x) =tr(pLl) +x-1 (4.4)
Proof. To prove it we just need to put (4.4) in (4.3):

(I =P)f(p,x) =tr(ply) + -1 — P(tr(pL;) + = - 1)

r V; VT
Z tr pizTLl +e-l tr(VipViT)
tr(VipV;')

i=1

=tr(pl) +x-1—

S tr(pVILVi) + (ei - Dtr(pV; Vi)
=1

= tr (m = 2OV LVi + (i zwvi)) +a-l

i=1

= tr (p (Ll - i(VJL,Vi + (e - z>vjm)>> -l

i=1

=tr<p< — ¢*(L;) — Zvve, )) z-1

:tr(p(—(m-l)l))—i-a:'l
—(m-l)+x-1

=tr(pL;) +x-1—

where the second last equation is true by eq. (4.1). O

The second step of the proof consists in translating the problem of our CLT to a CLT for a martingale.
With the help of the Poisson equation, we have

Nmn)-l—-n(m-1)=N1)-I-N1)-l+...+Nn—-1)-l—Nn—-1)-1+ N(n) -l —n(m-1)

= D ((N(k) = N(k = 1)) —m) -1

k=2
= > (I = P)f(pr, AN(K))
k=2
~ Fon AN@) + 3 [ ok ANR) — Pf (o1, AN(k — 1))] — P (pu, AN ()
k=3
Let "
My := 3 [f(prs AN(K)) = Pf(pr—1, AN (k = 1))] (4.5)
k=3
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which defines a process (My,),>3 that is a martingale with respect to the filtration (F,),>3, where
Fn = o{(pr, AN(k)); k < n} is the o-algebra generated by all the realizations of (pi, AN (k))}_5. Indeed

E[AM, | Fu] = E[f(pn, AN(m) | (o1, AN(n — 1))] = Pf(pn1,AN(n — 1)) = 0
by the definition of the Markov Kernel P. Let
Ry, := f(p2, AN(2)) — Pf(pn, AN(n))

hence
N(n)-l—n(m-1) =R, + M,

We claim that (|Ry|)n>0 is bounded. Indeed by eq.s (4.3) and (4.4) we have
Pf(pn,AN(n)) = f(pn,AN(n)) —z-l+m-1=tr(p,L;) + m-1
and |tr(p,L;)| is bounded independently of n:

[t (pn Lo)| < llpnllr[[ Llloo= (1 Laoo

where the first inequality holds by lemma 33 of the appendix. This means that the term R, has
no contribution to the LLN or to the CLT. It is thus sufficient to obtain a LLN and a CLT for the
martingale (M, )n>3. We recall the CLT for martingales, presented in [12], that we shall use here.

Theorem 22 (CLT for martingales). Let (Mpy)nen be a square integrable, real martingale for the
filtration (Fp)nen- If for all e > 0 we have the following convergences in probability:

1 n
- D EIAM)* Lians, zvi | Fril —0 (4.6)
k=1
1 n
— Y E[(AM,)? | Fra] —— o7 (4.7)
n n—00
k=1
for some o = 0, then
M,
CLT: —= 2) N(O,O’Z)

B

For the class of martingales for which (4.7) holds, the Lindeberg condition is defined by 4.6, where
we recall that the classical Lindeberg condition is a sufficient condition for the CLT to hold for a
sequence of independent random variables. Therefore we have to prove that our martingale (M, ),>3
satisfies these two conditions. We have

AMy, = f(pk, AN(k)) — Pf(pr—1, AN(k — 1))
=tr(prLi) + AN(k) -l —m -1 —tr(pg—1L1)

which permits us to show that AMj, is bounded independently of k:

sl [ L lfoo AN G = [ [ 1211+l [[1 ]l Lalloo
2|\ Laloo #1211+ [l 1]

|AMk| <
<

Concerning the LLN, since M,, has bounded increments it implies that

M,
LLN: —2 22,0
n

by Azuma’s inequality and Borel Cantelli lemma, as showed in [3]. This implies the LLN for (N (n))nen
since |Ry| is bounded and demonstrates that condition 4.6 is satisfied as 1|xpz,|>c/n vanishes for n
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large enough. The last step of the proof consists in computing the quantity E[(AM})? | Fr_1] in order
to verify that also condition (4.7) is satisfied.
We have
AMy, = tr(ppLi) — tr(pr—1L1) + (AN (k) —m) -1

so that
(AM)? = tr(prLi)® — tr(pr—1Ly)?
= 2tr(pe—1Lo)[tr(prLe) — tr(pr—1Li) + (AN(k) —m) - 1]
+ (AN(E) -1 —m-1)* + 2tr(pp L)) (AN () - 1 —m - 1)

We denote by 11,15 and T3, respectively, the three lines appearing in the right hand side above. We
have

E[Ty | Fi1] = E[tr(pxLs)* | Fre1] — tr(pxLs)® + tr(ppLs)® — tr(pg—1L1)?

e the first term E[tr(prL)? | Fx_1] — tr(prL;)? =: AY}, represents the increment of a martingale
(Y,,) and it is bounded independently of k (using the same kind of estimates as for |R,| above).
Hence % 2250

tr(pnLi)® —tr(p1Li)* 0
n

e the second term gives %2222 tr(prly)? — tr(pr_1L1)? =

n—0o0
Then we have
E[Ty | Fi—1] = —2tr(pp—1Li)E[AM} | Fr—1] =0

by the fact that M, is a martingale. Finally we have
E[Ts | Fr-1] = E[(AN(K) - )* + (m - 1)* = 2(AN (k) - 1) (m - 1) + 2tr(px L) (AN (k) - 1 = m - 1) | Fia]

= i [tT(ViPk—l‘GT)[(@i )7+ (m - 1)? = 2(ei - D)(m- D]+ 2tr(Vipe 1 V; L) (e - 1 —m - l)]
=1

= tr [pk_l (Z ViVilei -1 —m-1)? + 2V LiVi(es - 1 —m - z))
i=1

= tr{pp—111]

where we have defined

T = (Z ViVies - 1=m-1)? + 2V LVi(ei - 1 —m- l)>

i=1
Finally by an ergodic theorem for quantum trajectories presented in [19], we have that

1 n
a.s.
2L Pk o
k=1

and putting everything together we have that condition (4.7) holds:

1 & a.s.
= Y E[(AM)? | Fio1] =55 trlpoly] =: of
" =3

and the CLT is proved. The explicit form of the covariance matrix C is derived in [3] by simply rewriting
o) as

O'l2 = ZT: lileZ-J-

4,j=1
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4.2 Mixture of Gaussians with 7 = 0

In the following we will generalize the previously presented CLT to the case where ¢ shows several
wvariant states, but no transient part is present, namely

H=VOVD...® Vy (4.8)

where V), are the orthogonal minimal invariant subspaces of H. Let us recall that in this scenario we
have decomposed the probability measure IP, in the following way:

Iy, plly, _ Hy,plly,
tr(Ily,plly,) — Qa(0)

d
IEDP = Z QO&(O)PPM Po =
a=1

When there is no transient part, M, = Ily , with IIy ViIIy, = Iy, V; = VIl , namely the Kraus
Operators V; are block diagonal with respect to the decomposition (4.8). Let us define the Projection
of the Kraus Operators V;’s onto the V, subspace:

v .=, Vi (4.9)

)

which are associated to the map ¢(a), which is CP but not TP, indeed

i Vi(a)T‘/;(a) — i V;THVa‘/i — HVa i VlTVz — HVa
i=1 i=1 i=1

Notice that IIy, still represents the identity on the V, subspace, meaning that the map d@ is a
quantum channel only on V,. What we have found is a decomposition of our quantum channel ¢ into
its srreducible components ¢(®)’s, and each of them admits a unique invariant state Poo,a, having full
support on V,. From these considerations the following proposition holds.

Proposition 9. Let
_ [y, plly,
Pa

 tr(Iy, pIly, )
Under the law P, , the Markov Chain (pff), N (n))nen originated by the initial state po, has the law of

T
the quantum trajectories associated to the family of operators (V-(a)) X namely
1=

(4.10)

)

_ V[(a)PaV[(a)T
tr (V](Q)Pavj(a”)

Pn

with probability tr (Y/I(a)paY/I(aﬁ> , for every I € F,,.
We finally define the quantities
mi(a) = tr(V;¥poe, o V) = tr(Vipee. V)

which represents the r components of the vector m(a) € R”, and we present some hypothesis under
which we can reconduce ourself to the previous scenario that considers a unique invariant state, and
inherit the CLT:

(H1’). There exists a decomposition of H into orthogonal subspaces
H=HI1OH2D... BHgq

such that all the V;’s are block-diagonal with respect to this decomposition.
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In our scenario this hypothesis holds with H, = V,.
(H2). Each of the mappings ¢(®) admits a unique invariant state Poo,ar-

This hypothesis also holds, being QS(O‘) a quantum channel on V,, which admits a unique fixed point
having full support on it.

(H3). ID
Under these hypothesis the CLT holds in each subspace V,, as stated in the following theorem.
Theorem 23. Under the hypotheses (H1’), (H2), (H3) we have these asymptotic laws

LLN: M M m(T)
n

N(n) —nm(Y)
Vn

with T defined in eq. (3.28), and where the covariance matriz CD) s given by the same formula as in
eq. (4.2), but with Vi(T) instead of V.

CLT: PP, N(0, 0y

Proof. Under the hypotheses (H1’), (H2), (H3) and conditionally to Q,(0) = 1 (i.e. under the measure
P,[- | Qa(0) = 1] = P,,), we have that (pgla),N(n))neN has the law of the quantum trajectories

T
associated to the family of operators (V;(a)> - defined in eq. (4.9) by the previous proposition. In

particular under this conditional law we have that

LLN: N(n) Py, —as
n

m(a)
N(n) —nm(«)
vn

and this by lemma 18 proves our theorem. O

CLT:

D—-P,, N(O, C(a))

What this theorem is telling us is that with probability Q,(0) the process (N(n))nen follows the

T
law of quantum trajectories associated to the family (Vi(a)) " and then satisfies the corresponding

CLT with mean m(a) and covariance matrix C®. This means that each entry N;(n) of the process
(N (n))nen will asymptotically distribute as a mixture of Gaussians, having means m;(«) and variances

Y o= 1,...,d.

i

4.3 Mixture of Gaussians with 7 # 0

Finally we present our main result, that shows that the CLT holds even when the quantum channel
presents multiple invariant states and a transient part, which represents the most general case, namely

H=VDVo®.. VDT (4.11)

Recall that here M, = IlIy, + My, , with M,V; # V;M,.
In this scenario the probability measure P, has been decomposed as follows:

d f
tr(MaVipVy)
Pp= Y. Qa(0)Pay, Po,(l) = ——
P ~ ( ) P 7P( ) t?“(ﬂ{ap)
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We define II, = IIy,, + Il to be the orthogonal projector onto the support of M, which brings to the
following equality
Ha‘/i = Ha‘/iﬂa (412)

indeed from the block structure (2.14) of V; we have that:

ILV; = Iy, Vi + 117, V; = Iy, Villy, + Iy, Vill7, + II7, Vill7,
o Villy = Iy, Villy, + Iy, Villy, + Tz, ViIlT,

T
Now we define a new family of operators (VZ-(O‘)> 28
i=

V() = MLV (\ﬁ) (4.13)

where (\/Ma)+ represents the Moore—Penrose pseudo-inverse, namely /M, (\/Moé)Jr = II,. Notice
that

X = 3 (VIT) VY (V)
_ (m) iVTM v; (WY
(

+

VL) My (VL) =TI, = 10,

Therefore the family of operators (V( )> ~can be associated to a map #\@) | that is a quantum channel

on Vo @ T, where 7T, represents the subspace of 7 on which M, has part of its support. Indeed it is
CP by construction and TP on V, @ 7,. Moreover it admits a unique invariant state po o, having full
support on V,. The next step will be to show that the previously stated CLT holds on each subspace
V,, associated to the quantum channel ¢(®

Proposition 10. Let

N MupVM,
P Ay AL (1

Under the law P, ,, the sequence (pq(f), N(n))nen originated by the initial state p,, has the law of the

T
quantum trajectories associated to the family of operators (Vi(a)) defined in eq. (4.13), namely

B V}(a)pav}(aﬁ
tr (V'I(Oé)pa‘/[(aﬁ)

(@)

Pn

with probability tr <V( )paV ) for every I € F,.
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Proof. What we need to prove is that Py ,(I) = tr (Vl(a) paVI(a)T>, indeed
. <VI( oV ﬁ) iy («/Mavf («/Ma> trz/\/%pv\/ﬁ) (« /Ma) Vi, /Ma>
tr (VIMLVi Tl V] VI )
tr(v/Mapv/Ma)
tr (VM ViTlapTl Vi T/, )

- tr(v/Map/Mo,) 1
tr \/Enavmvfna\/m)
TN TN (4.16)
(M VipV))

tr(Map)

where in (4.15) we have used the fact that /M, = v/ M,Il,, while in (4.16) we have used (4.12). O

What we have proved is that P, , = P,,, which brings to the following consideration: if the initial
state of our system is p, (defined in eq. (4.14)), namely the state is initially supported in V, @ 7, then
the part supported in T will asymptotically decay and the quantum trajectory will converge to the
subspace V,, namely

Py, = Byl | Qu(e) = 1]
as before, but this time p, is also supported in 7. We have showed that ,also when the transient part
is present, we can inherit the CLT, with a little change of H1’, that in this case holds on the recurrent
subspace R, namely

(H1”). There exists a decomposition of R into orthogonal subspaces
R=VI&V:®..BV,

such that all the V;’s are block-diagonal with respect to this decomposition.
T

, defined in (4.13).

i=1

Instead H2 and H3 hold also with the new family of operators (V;(a)>
Theorem 24. Under the hypotheses (H1”), (H2), (H3) we have these asymptotic laws
N _
LLN: ﬂ M m(T)

n

N(n) —nm(Y)
vn

with T defined in eq. (3.28), and where the covariance matriz C ) s given by the same formula as in

eq. (4.2), but with Vi(T) instead of V;.

Proof. Under the hypotheses (H1”), (H2), (H3) and conditionally to Q4 (c0) = 1 (i.e. under the measure

P,l- | Qa(0) = 1] = P,,), we have that (pq(f“),N(n))neN has the law of the quantum trajectories

CLT: D%, N (0,0

T

associated to the family of operators (Vi(a)> - defined in eq. (4.13) by the previous proposition. In
1=

particular under this conditional law we have that

LLN: N(n) Py, —as
n

m(a)
N(n) — nm(a)
NG

and this by lemma 18 proves our theorem. 0

CLT: PPea, £r(0, 0@

48



What we have shown is that, also when a transient part is present, the process (IN(n))nen converges
to a limit distribution that is a mixture of Gaussian distributions.

This type of limit theorem could be useful for a process tomography purpose, namely when we want to
estimate the quantum channel ¢ that is describing the mean evolution of our system. The goal would
be to find an estimate of the parameter 6 that parameterizes the Kraus operators {V;(6)}; describing ¢.

If we prepare the system in the state p, (defined in (4.14)) and we perform a sequence of indirect
measurements, by the CLT previously stated we have that for n large

N(n @)
N =mp(a) + e(a), e(a) ~N (O, ) (4.17)
n n
where y; = Ni(n) represents the data that we can collect from the outcomes of the measurements, while

n

[me(a)]i = tr(Vi(0)peo.oVi(0)T) depends on the parameter 6 that we aim to estimate. The invariant
states poo,o Of ¢ can be found by letting the quantum trajectory evolve till convergence. Same for the
invariant states M, of ¢* but in the dual picture. Let fy(y) be the probability density of y. From (4.17)

we have that
C(@)
Jo(y) ~ N | mg(a), -

We define the likelihood of the data y as L(y,0) := fg(y), and the correspondent negative log-likelihood
as (y,0) := —log L(y,0). The Mazimum Likelihood estimator of the parameter 6 reads

Orir(y) := argmini(y, 0)
0O

and it selects the parameters that give the observed data a posteriori more likely.

4.4 Law of Iterated Logarithm

We turn back to the same setting of section 4.1, with the aim of establishing a Law of Iterated Logarithm
(LIL) result for the process (N(n))nen. More precisely, given a fixed [ € R", we want to write a LIL for
(N(n) - Dnen , exploiting the LIL for martingales. We recall that

N(n)-l—n(m-1l) = R, + M,

where (|Ry|)n>0 is bounded, thus it gives no contribution to the LIL, while (M,),>3 (defined in eq.
(4.5)) is a martingale. Thus it will be sufficient to obtain a LIL for the martingale M,,.

Let

spi= > E[(AM)? | Fia] (4.18)
k=1

What we have proved in section 4.1 is that

, 0220 (4.19)

We now define the random variable
up, = ~/2loglog s2 (4.20)

We recall the LIL for martingales established by Stout in [25].
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Theorem 25. (LIL for martingales) Let { My }nen be an F-martingale defined on the filtered measurable
space (0, F, ), with F := (F_1, Fo, F1,...) being an increasing sequence of o-algebras. Let K, be Fp_1
measurable functions ¥n > 1 with K, — 0, a.s. . Let s2 and u,, be defined as in equations (4.18) and
(4.20) respectively. If s2 — oo, a.s. and forn > 1

IAM,| < K22 as. (4.21)
Up,
then
lim sup —— =1 a.s.
n—ao SpUn

What we need to prove is that these two hypothesis hold in our setting. By (4.19) we have that if
02 > 0 then s2 — o0, which represents the first hypothesis of the theorem. We recall that in our setting

|AMg| < 2[| Ll oo+ [ 2| +[rm|[|2] (4.22)

Therefore to prove that also the inequality (4.21) holds, we choose

Unp,
K = (2| Lalleo + 12l +{ml1Zl) =

n

which is an F,_1 measurable function and it converges to zero almost surely, since

Up 2loglog s2 4.5 0
Sn s2

by the first hypothesis. Then by (4.22) we have that (4.21) holds, and the second hypothesis (inequality
(4.21)) also holds. This proves the following theorem.

Theorem 26 (Unique invariant state). Consider the quantum channel
T
op) = 3. VinV]
i=1

on H, for which H1 holds. Consider the stochastic process N (n) associated to the successive measurements
which give rise to the quantum trajectory of ¢. Then for every i € {1,...,r}

N4 _ .
LIL: Tim sup i) = nmil

=1 P, —as
n—00 \/QTLCZ"Z‘ log log nCz’,i g

with C;; defined in eq. (4.2) and m; = tr(VipooViT).

To extend this results to the case that considers multiple invariant states, we will proceed as
previously done for the CLT, and we obtain the following theorem.

Theorem 27 (Multiple invariant states). Under the hypotheses (H1”), (H2), (H3) we have that

LIL: lim sup [Ni(n) — nmi(T)|
e \/21101.(;() log log nC’Z-(p

=1 P,—as

where Ci(p is given by the same formula as in eq. (4.2), but with Vi(T) instead of Vi, while m;(YT) =
tT’(V%poo,TVZ-T).
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Proof. Under the hypotheses (H1”), (H2), (H3) and conditionally to Q4 (o) = 1 (i.e. under the measure
P, | Qa(0) = 1] = P,,), we have that (pgla),N(n))neN has the law of the quantum trajectories

o
associated to the family of operators (V-(a)) - defined in eq. (4.13) by proposition 10. In particular

T
1=
under this conditional law we have that

N, _ )
LIL: lim sup [Ni(n) — nmi(a))

=1 P, —as
e \/201-2 (n, a)loglog o2(n, a)

and this by lemma 18 proves our theorem. 0
Comparing the CLT and the LIL results we have that for n large enough
N;i(n) — nm;(Y)

~N(0,1)
nCZ»(;r)
[Ni(n) =Dl 5 4 (1) P, —as
\/ nC\}) loglognC.y’

where the first convergence (in distribution) is weaker than the second one (almost sure convergence).
Moreover the first process is asymptotically distributed around 0, with a unitary variance as a Gaussian
bell, but if we go a bit faster than y/n we obtain the second process which is asymptotically bounded
between ++/2.

4.5 Simulations

In this section we present the results obtained by some simulations of a quantum system having
dimension k¥ = 8, namely H ~ C8, subject to indirect measurements having r = 4 possible outcomes.
We will consider two different state space decomposition:

1. H=V1®Vo® V3P T, having dimensions ny = 3, no = 2, n; = 1 and np = 2 respectively;

2. H=V1®Vo@® T, having dimensions n; = 3, no = 3 and ny = 2 respectively.

4.5.1 Three subspaces V, with different dimensions

Firstly we consider the state space decomposition into orthogonal minimal invariant subspaces V,, plus
a transient part that reads

H=V1@®V2®VsDT
~ (C3®C2®C1@(C2
that induces the following block structure in the Kraus operators that describe the measurement
szll%) 0 0 *
0 VZ%) 0 *

Vi= S
0 0 Vg =
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The Kraus operators used for the simulations are:

0.216 —0.104 —0.086 0 0 0 —-0.025 0.117
0.012 —-0.149 0.105 0 0 0 —0.027 —0.034
—-0.209 0.329 -0.027 0 0 0 0.199  0.030
Vi = 0 0 0 0.124 —0.196 0 0.041 —-0.163
0 0 0 —-0.107 —0.199 0 0.028 —0.161
0 0 0 0 0 0.068 0.222  0.015
0 0 0 0 0 0 -0.113 0.101
0 0 0 0 0 0 0.098  0.362
—-0.093 —-0.271 0.118 0 0 0 0.240  0.201
0.026 —0.061 —0.124 0 0 0 —-0.027 —0.275
—-0.012 —-0.251 0.014 0 0 0 —0.299 —0.028
Vy = 0 0 0 —-0.076 —0.084 0 —-0.118 —0.169
0 0 0 0.042  0.069 0 0.190  0.407
0 0 0 0 0 0.104 —-0.150 0.116
0 0 0 0 0 0 0.135  0.193
0 0 0 0 0 0 0.017 —-0.148
—0.066 —0.039 —0.050 0 0 0 0.049 —-0.162
—-0.038 0.098 —0.115 0 0 0 —-0.042 —-0.075
0.1564 —0.287 —-0.221 0 0 0 0.003 —0.280
Vi = 0 0 0 0.071  0.005 0 —-0.037  0.135
0 0 0 0.039 —-0.187 0 —0.245 0.073
0 0 0 0 0 0.158 —0.040 —0.003
0 0 0 0 0 0 —0.116 —0.005
0 0 0 0 0 0 —-0.137 —0.112
0.933 0.120 0.056 0 0 0 0.073  0.039
0 0.781 —0.022 0 0 0 —0.110 —-0.072
0 0 0.940 0 0 0 -0.031 —0.133
vV, = 0 0 0 0.979 0.001 0 —0.007 —0.040
0 0 0 0 0.935 0 —0.059 —0.100
0 0 0 0 0 0.980 0.007 —0.013
0 0 0 0 0 0 0.725 —0.270
0 0 0 0 0 0 0 0.389

which describes a quantum channel ¢ having the following fixed points:

0.403 —0.004 0.107
po1 = | —0.004 0077 —0.064 ,pw,2=<

0.770 —0.027> _
3 Poo,l =1
0.107 —0.064 0.521

—0.027  0.230

where for simplicity we have reported only the non-zero blocks of the fixed points pw. 1, P2, Pow0,3
supported on Vi, Vo, V3 respectively.
The invariant states of the dual ¢* take the form M, = Iy & M7, with

AL (0523 0008) (0304 0.048) (0173 —0.056
Tt~ \0.008 0481)> 7~ \0.048 0452)° 77~ \-0.056 0.067
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The initial state of the system reads

0.176  0.141 —-0.038 0.093 0.022 —-0.017 0.009 0.014
0.141  0.1v7 —-0.041 0.119 0.023 —-0.062 0.025  0.050
—-0.038 —0.041 0.205 —0.094 —-0.005 0.042 —0.027 0.050
| 0.093 0.119 -0.094 0.167 0.024 -0.042 0.055  0.015
PO=1 0022 0023 -0005 0024 0050 —0.004 0012 —0.037
—-0.017 —-0.062 0.042 —-0.042 —-0.004 0.060 —0.022 -0.020
0.009  0.025 —0.027 0.055 0.012 —-0.022 0.045 —0.022
0.014  0.0560 0.060  0.015 —0.037 —0.020 -0.022 0.119

therefore the quantities Q,(0) = tr(Mypo), which represent the probability for the quantum trajectory
to converge to the subspace V,, take the values

Q1(0) = 0.638, Q2(0) = 0.283, Q3(0) = 0.079

from which we can deduce that the evolving quantum trajectory has an high probability of converging
into the V; subspace, indeed it is the biggest minimal invariant subspace between the three. The upper
plot of Figure 4.1 shows the evolution of a realization of the random variables Q,(n). As expected
from the theory, only one of them converges to one, while the others converge to zero. The lower plot
of Figure 4.1 shows the exponential decay of a realization of the random variables tr(M7, p,), which
proves the exponential decay of the quantum trajectory from the transient subspace 7 to the GAS
subspace R.

Finally we looked at the empirical distribution of the random variable N;(n)/n, ¢ = 1,...,4, repeating
a sequence of n = 500 indirect measurements F' = 5x 10* times, and getting the results depicted in Figure
4.2. The four histograms resembles a mixture of three Gaussians, having means mq (i) = tr(‘/ipw7a‘/iT):

0.057 0.039 0.005
my = 0.030 My — 0.008 —— 0.011
0.040 |’ 0.014 |’ 0.025
0.872 0.940 0.960

confirming the theory result.

4.5.2 Two subspaces V, with same dimension

Secondly we consider the state space decomposition into orthogonal minimal invariant subspaces V,
plus a transient part that reads

H=V®Vo DT
2@3@)@3@@2

that induces the following block structure in the Kraus operators that describe the measurement

ViR 0
Vi=l o vi o«
0 0 Vir
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The Kraus operators used for the simulations are:

—0.039 0.044 0.041 0 0 0 0.211  —0.097
0.021  0.130 —0.149 0 0 0 0.182 —0.012
—0.067 0.052 0.183 0 0 0 —0.084 0.235
Vi — 0 0 0 —0.046 —0.078 —0.098 —0.067 0.036
0 0 0 —-0.160 —-0.013 0.130 —0.295 —0.101
0 0 0 0.014  0.040 —0.050 —0.113 0.188
0 0 0 0 0 0 0.008  0.030
0 0 0 0 0 0 —0.206 0.114
0.009 —0.093 —-0.101 0 0 0 —0.015 0.324
0.030 —0.038 0.046 0 0 0 0.247  —0.076
—0.192 0.073  0.057 0 0 0 0.189 —0.188
V, = 0 0 0 —0.112 0.196  0.021  0.207  0.009
0 0 0 —0.214 —-0.058 0.108  0.047 —0.214
0 0 0 0.221  0.122 —-0.174 0.185  0.100
0 0 0 0 0 0 0.080 —0.056
0 0 0 0 0 0 —-0.079 —0.144
0.062  0.224 0.085 0 0 0 0.263  0.051
—0.026 —0.073 0.008 0 0 0 0.201 —0.118
0.192 —0.171 0.180 0 0 0 0.076  —0.021
Vi = 0 0 0 0.166 —0.366 —0.120 —0.112 0.064
0 0 0 —0.026 —-0.066 —0.207 0.229 —0.099
0 0 0 0.042 —-0.061 0.178 0.120 —0.129
0 0 0 0 0 0 0.087  0.073
0 0 0 0 0 0 —0.117 —0.065
0.956 0.037 —-0.013 0 0 0 0.002 —0.028
0 0.936 0.010 0 0 0 —0.070 0.013
0 0 0.942 0 0 0 —0.029  0.007
V, = 0 0 0 0.914 0.042 0.096 —0.041 —-0.100
0 0 0 0 0890 —-0.035 —0.092 —0.022
0 0 0 0 0 0.911  0.068  0.094
0 0 0 0 0 0 0.586  0.228
0 0 0 0 0 0 0 0.720
which describes a quantum channel ¢ having the following fixed points:
0.231 —0.013 —0.102 0.532 —0.111 0.224
poa = [ —0.013 0174 —-0.074 |, pp2 = | —0.111 0.226 —0.203
—0.102 —0.074 0.596 0.224 —0.203 0.242

where for simplicity we have reported only the non-zero blocks of the fixed points pw 1, peo,2 supported
on Vi, Vs respectively.
The invariant states of the dual ¢* take the form M, = Iy, & My, with

0.527  —0.076 0.473 0.076
) = (am )

Mr, = (—0.076 0.531 0.076 0.469
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The initial state of the system reads

0.114 —-0.018 -0.034 —-0.013 -0.029 0.036 —0.010 0.018
—-0.018 0.083 0.008 —0.015 —-0.027 -0.052 —-0.035 0.023
—-0.034 0.008 0.0711 —-0.001 —-0.036 —0.005 0.002 —0.016
_ | —0.013 -0.015 —-0.001 0.116 —0.037 0.010 —0.023 —0.083
PO=1_0.020 —0.027 —0.036 —0.037 0.260 0.009 0.128 0.106
0.036 —0.052 —-0.005 0.010 0.009  0.097 0.001  0.004
-0.010 —-0.035 0.002 -0.023 0.128 0.001  0.131  0.051
0.018 0.023 -0.016 —-0.083 0.106 0.004 0.051  0.129

therefore the quantities Q,(0) = tr(Mypo) take the values
01(0) = 0.601, Q2(0) = 0.399

from which we can deduce that the evolving quantum trajectory has an high probability of converging
into the V; subspace. As before we report in Figure 4.3 the plot of the evolution of a realization of the
random variables Q,(n) and of its transient part.

Finally we looked at the empirical distribution of the random variable N;(n)/n, i = 1,...,4, which
gave the four histograms depicted in Figure 4.4, which resembles a mixture of two Gaussians, having
means meq (i) = tr(‘fip@a‘/;):

0.044 0.013
my = 0.022 - 0.057
0.042 |’ 0.061
0.892 0.869

confirming another time the theory result.
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Convergence of the Martingale Q
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Figure 4.1: The upper plot shows the behaviour of the random variables Q,(n). The lower plot shows the
transient part of the Qn(n)’s, namely Qt,(n) = tr(My, pn)
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Figure 4.2: The upper plot shows the behaviour of the random variables Q,(n). The lower plot shows the
transient part of the Qq(n)’s, namely Qto(n) = tr(Mr, pn)
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Convergence of the Martingale Q
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Figure 4.3: The upper plot shows the behaviour of the random variables @, (n). The lower plot shows the
transient part of the Qn(n)’s, namely Qt,(n) = tr(My, pn)
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Figure 4.4: The upper plot shows the behaviour of the random variables Q,(n). The lower plot shows the
transient part of the Qq(n)’s, namely Qto(n) = tr(Mr, pn)
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Chapter 5

Feedback control scheme

What we have showed in chapter 3 is that the support of the state of a quantum system, subject to
repeated indirect quantum measurements, converges to one of the minimal invariant subspaces V,,
selecting V,, with probability Q,(0) = tr(Mapg). Therefore repeated indirect quantum measurements
can be used to design a non-deterministic protocol for preparing the quantum system in one of the
minimal invariant subspaces V,. This could be of particular interest in quantum information applica-
tions, since to each V), remains associated an Information Preserving Structure (IPS) [10]: the subspace
V, ~ C'> ® C™e contains a perfectly Noiseless Subsystem (NS) of dimension m,, (previously presented
in point 2) where the dynamics is unitary by eq. (2.15), that specifies the form of the blocks Vi(%) of
the Kraus operators. Thanks to the unitary evolution, the subsystem C™« is able to store, preéerve
and protect quantum information from the noise’s action.

In this chapter we will design a feedback control scheme that ensures convergence towards a chosen
target subspace Vyx, a* € {1,...,d}, namely the task of this scheme is to make V,+ GAS. The control
design is made using Lyapunov techniques and some graph theory tools. We refer the reader to Bullo’s
lecture notes [13] for a better overview on graph theory from the viewpoint of dynamical and control
systems. This control technique can be used to stabilize the state of the system in a Decoherence Free
Subspace [20] (previously presented in point 1), which is a subspace that is unitarily evolving. When
Vax supports the minimum energy eigenstate, this control scheme can be used for cooling problems,
otherwise it founds its application in the realization of a “passive” error-prevention scheme, since
quantum information is preserved inside a DFS.

This feedback control scheme that realizes a deterministic convergence towards a chosen subspace opens
the door to a new problem: if the quantum trajectory converges to the subspace V,«, in which case

does it converge to a specific state? Finding an answer to this question could lead to a new way of
doing quantum information encoding exploiting such types of feedback schemes.

5.1 Feedback stabilization of a target subspace V,x

The starting point will be [2], where a Lyapunov technique is used to design a feedback scheme that
stabilizes the quantum system in a target pure state py o = |@){a|. Therefore in that work the subspaces
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V, are one-dimensional. Our goal is to generalize that feedback scheme in the case of multi-dimensional
subspaces V,, using unitary control: the system is controlled by an adjustable unitary evolution between
two successive indirect measurements.

Let us start by defining the Kraus operators describing the closed-loop dynamics as the family of opera-
tors (V;*)I_,, which depend on a scalar control input « € R and satisfy the constraint »};_; VZ“TVl“ = I.
We will consider

Vit =UVi, Uy =e™

which represents an instance of Hamiltonian control, where the amplitude of the Hamiltonian H is
adjusted by the scalar control input u. The consequent dynamics is described by a non-linear controlled
Markov chain (py,)nen, modelled through the random equation:

Pt = Vi (pp) = —in Pl (5.1)
T e e
u ut
that holds with probability tr(V,"*" ani“"T), and defined by the super-operator Vi : p — %
" " r(Vi*pV;

Let K be the Kraus map defined as
K"(p) := >, Vi"pVi"! € D(H)
i=1

We suppose throughout this paper that the two following assumptions are verified by the system under
consideration. Notice that when there is no control input (u = 0), we turn back to the original setting
where generalized measurements are used, i.e. V;O =V;.

Assumption 1 (ID). For any o # B in {1,...,d}, there exists an I := (i1,...,i) € Q such that
f f
tr(Vipoo,aVy) # tr(Vipo,sVr)

We will resort to a technique that uses an open-loop supermartingale to design a Lyapunov function
for the closed-loop system.

Definition 26. An open-loop supermartingale is a function W : D(H) — R that satisfies
E[W (pui1) | pn = pyttn = 0] < W(p), Vp e D(H) (5.2)
namely is a function of the state that at each step decreases in expectation.

Secondly we define the feedback law: at each time-step n, the control input w, is chosen by
minimizing this supermartingale W knowing the state p,:

tn = it(p) = argmin {E[W (pns1) | pu = prttn = ul} (5.3)
ue[—a,u)
where u is a small positive number that needs to be determined. The state p, is estimated by a
quantum filter from indirect measurements, namely if at step n — 1 the outcome of the measurement is
in—1 € {1,...,7} then
VUn—lpn_lvun—lT

p _ In—1 in—1
n =
- -
”(Vz‘qupn—lvqu )

where p,_1 represents the estimate of the state at the previous step. We want to point out that here
the discrete-time behaviour is crucial for a possible real-time implementation of such controllers.
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Being 0 € [, u] and being the control input u, chosen to minimize W at each step, we directly
have that W is also a closed-loop supermartingale, namely

Q(p) :==E[W(pn+1) | pn = p,un = u(p)] = W(p) <0, Ype D(H) (5.4)

If this supermartingale W is bounded from below, then by the following convergence theorem for a
Lyapunov function of a Markov Chain (proved in [1]), the state of the system p,, converges almost-surely
to the set

I :={peDH) | Qp) = 0} (5.5)

Theorem 28. Let X, be a Markov chain on the compact state space S. Suppose there exists a
continuous function W (X) satisfying

where Q(X) is a non-negative continuous function of X, then the w-limit set Q (in the sense of almost
sure convergence) of X,, is contained by the following set I, := {X | Q(X) = 0}

Therefore we have to design the supermartingale W in such a way that the set I, is restricted to
the set of states having support in the target subspace Wy, namely I, = {p € D(H) | supp(p) < Vax}.
Thus we want W to be a strict supermartingale:

E[W(anrl) | Pn = pP,Un = @(p)] <

We propose the following Lyapunov function:

d d
Ws(pn) = Z UaQa(n) — & Z Qa(n)2 (5'6)
a=1

= Wo(pn) —eT'(pn)

where € and the weights o, are strictly positive numbers, except for oy = 0. This function W is a concave
function of our original (open-loop) martingales Q. (n) = tr(Mypy,), and therefore by proposition 1 is
an open-loop supermartingale, namely

E[We(pn+1) | pn = pyun = 0] = We(p) <0, Vpe D(H) (5.7)

and by the reasoning of before W is also a closed-loop supermartingale.

The following proposition will show that the convergence in open-loop could be also proved through
the Lyapunov function I'(p).

Proposition 11 (Open-loop convergence). In open-loop and when ID holds, the convergence of
our quantum trajectory to one of the minimal invariant subspaces V, can also be proven through the

Lyapunov function
d

t?‘(Map)2

a=1

L(p) =
which is a submartingale, with

Q(p) :==E[['(pn+1) | pn = p] —T(p) = 0, Vpe D(H)
=0 < p=pVae(l,..d

where p(o‘) = Ih;ap("‘)l_[vcY can be any state supported in V,,.
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Proof. Being I'(p) a convex function of a martingale, it is a submartingale.
To prove that Q(p) = 0 < p = p{® Ya € {1, ...,d} we refer to a technique used in [1] (in the
proof of theorem 1.3), which in our setting brings to the following equation

Qlp) = 22# ViV tr (V;pV])

o l,]

f "\
tr(MoVipVy)  tr(MaVipVy)
r(VipVy) e (VipV)

implying that
tr(MoVipV)  tr(MaVpV))
tr(VipV;h) tr(VipV))

Qp) =0 — Vi

Rearranging the terms and taking the sum over ¢ we get
Ztr VipV)tr(MoVipVy') = Ztr(ManijT)tr(%pViT)
tr(VipV) )tr(Map) = tr(MaV;pVy)
Pp(j) = Pa(d)
where by eq.(3.23), the last equality holds iff Q4 (0) = 1, and this is true by theorem 17 iff p = p(®. O

Let us go back to the closed-loop scheme. A state p is in the set I, defined in eq. (5.5) with our
Lyapunov function W,, iff Vu € [—u, @] we have

E[W:(pn+1) | pn = pstn = u] — We(p) =0 (5.8)

The design of the weights o, of our Lyapunov function is based on the Hamiltonian H underlying
the controlled unitary evolution and relies on the connectivity of the graph attached to H. They are
obtained by inverting a Metzler matrix derived from H and the quantum states that are supported
in the subspaces V,. In Lemma 30 we will prove that given any o* € {1, ...,d}, we can always choose
the weights o1, ..., 04 so that W determines a function f(u, p(a)) of the control input u and of the state
p(® supported in V,, defined as

Flu, p) i= B[We(pns1) | pn = p'),up = ]
and having the following properties:
1. f(u, p{®) has a strict local minimum at u = 0 for o = a*;
2. f(u, p'*) has a strict local maxima at u = 0 for a # o*.

This ensures that the feedback law (5.3) sets u = 0 when the quantum trajectory finishes in the subspace
V4, while it sets u # 0 when the quantum trajectory finishes in a subspace V,, a # o, preventing it
to stabilize in the wrong subspace. Indeed for o # o™, property 2 implies that

E[We(pnr1) | pn = P un = u] <E[We(pns1) | po = pun = 0] < We (o)
which by eq. (5.8) demonstrates that
pP¥el, & a=a"

The next step will be to prove that the states p(o‘*), supported in the target subspace V,«, are the
unique states contained in the set I, showing that W, is a strict Lyapunov function.
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Proposition 12. Let

Q(p) = E[We(pnt1) | pn = p,un = a(p)] = We(p) <0, Vpe D(H)

Then
*
Qlp) =0 <= p=p")
for every state p(o‘*), supported in the target subspace V.

Proof. Firstly we decompose @Q(p) in the following way:

2
>
!

i (W= (Vi) = We(p) tr(VipV;)
=1

= 3 (W (V200 = Wil + i W2 (V2(0) = WL (7209) ) 0 (Vigh)

uE[—1u,u]

with

Q1(p) = > (W= (V(p)) — We(p)) tr(VipV;")

=1

Qa(p) = 2( min W, (VY(0)) — W (V?@))) (ViU

vt ue[—a,u)
To conclude the proof we will show that

Qi(p) =0 «— p=p, Vae{l,..d} (5.9)
Q2(p) =0 = p=pl? (5.10)

Let us start with Q1(p):

) tr(VipVi') — We(p)

2 T

d
Ztr M, VpV —&‘ZF V(p))tr VpVT Z Myp) +<l(p)
i=1 i=1 a=1

= —82 (p)) tr(VipV;') = —eQ(p)

which by proposition 11 shows (5.9).
Finally notice that

Qap) =0 — minye_amWe (VE(p)) = Wo (V(p)) Vi€ {17}
where the second equality hols iff p = p(o‘*) by property 2. O

To show that properties 1 and 2 hold, we start by decomposing f(u, p(a)) into two different terms,
to analyze separately the two derivatives:

f(u7p(a)) =E[Wo(pn+1) | pn = P(a)vun = u] = €E[l'(pnt1) | pn = p(a)aun = u]
= fo(u, p) —efr(u, p'»)
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with

fou, pt) := E[Wo(pni1) | pn = p', un = ]

= D ostr(Mg ), Vi oV
3 .

= Wo(K" ("))

Frlu, ) i= B[N (pns1) | po = 9, un = u)

722 tr(MgV;p@ VT2
tr(V;pla VT)

We begin with the analysis of the first term fo(u p(a))

fo(u, p') = Wo(K¥(p

d T d
= Y05 RN = 3 e
B=1 i=1 B=1

with Pg = >3, tr(MgVp @ V"), Then taking the first and the second derivative with respect to u
we obtain:
dpPy AV av;t
8 (a)y ut u (a)
T zZ:ltT (Mg il Vi ) +tr (MBV Tu
*Py A2V AT Tl d2v
B _ i (a)y ut i ()i u () i
= > tr|{ Mg—% - 2tr | M, tr | MgV,
du? ;T<Bdu2'g VZ>+ T<Bdup a | Vi du?
with p P
V;'u . —iuH V;u 2 —iuH
Ty —iHe Vi, T2 —H=e Vi
Evaluating the first and the second derivative in zero and using the following property
MsVip @V = b0 gVip V]
that derives by the fact that supp(Vip(a)ViT) C V,, we get
by ; (COVARNE (a)y/ T
e Z —itr(MgHVip''V;7) + itr(MgVip**' V' H)
= —ibo gtr(HVip V) + i gtr(Vip' Vi H) = 0 (5.11)
i
T, Z ~Saptr (H2Vip V) 10 (Mg HVip @V, 1)
du? |, i=1 o R P
— 20, ptr <H2<b(p(a))> +otr (MBHd)(p(O‘))H) = Ros (5.12)
from which follows that

df(](u7 p(a))

=0 Va
du 00
deO(unO(a)) d
A = O-ﬁROtﬂ
du? _— BZZII
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Let us move to the second term:

tr(MgVip@vehz (P5 (i)
ZZ 8 ) 5

tr(V;pla V) 24 3 tr(%p(a)V-T)

)

with Pg (i) := tr(MﬁV“p(o‘)V-u ). Then from eq.s (5.11) and (5.12) follows that

dfp (u, p)) Z Z By ( dPg (i)
du u= tT‘/p“UVJ du

u=0
— (=60 ptr(HV;p V) + i6, str(Vip VI H
ZZW Vp(a)w str(HVip V) + iba,str (Vip IV H))
=0 Va
1 dPy(i) dPy(i d2PY(i
:ZZ : () ()+Pg(z‘) 52()
T B tr V;p(a)‘/; du du du

Py(i)  d*Py(i)
B ZZ tr Vp(a)VT) du?

@ fr(u, p@))
du?

u=0

iy st s OV 85D
T gt (Viple) VT) du?

u=0

2y (B2Vip V) + tr (M HVip OV H) = Rae

Finally we obtain

(a
du we0
df (u, p'*) S
T = Z O-BRO‘ B 5Ro¢ «
u=0 B=1

which proves that the first derivative vanishes in v = 0.
The following step will be to design the weights o3 in such a way that the second derivative,
evaluated in u = 0, is positive for « = a* and negative for o # a*.

5.2 Graph theory for weights design

Let G be the directed graph associated to the Hamiltonian H defining the controlled unitary evolution
U, = e"™H  Tts adjacency matrix P = I — R/tr(R) is constructed through the Metzler matrix R (as
shown in the following lemma), and having elements

Ra,a P _ Ra,ﬁ
tr(R) """ " wr(R)

This graph is formed by d vertices labelled by a € {1, ...,d}. Given (5.12) two different vertices « # 3
are linked by an edge iff ¢r (MBHd)(p(a))H) # 0.

Ppo=1-— a# B (5.13)

Lemma 29. Consider the d x d matriz R with elements defined as

Rop =2 (tr (MgHO(o ) H ) = b str (H26(5) ) )

When R # 0, the matric P = I — R/tr(R) is a non-negative, row stochastic matriz, i.e. P1 =1, 1 =
(1,..,1)T.
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Proof. For a # 33,
Res = 2tr (MaH(p™)H) > 0

being Mg > 0 and H qﬁ(p(a))H > 0. Thus R is a Metzler matrix, namely a matrix having non-negative
off-diagonal components. What we need to prove now is that R1 = 0, namely Zﬁ R, = 0. This
follows by the fact that

ZPB _ZZtr MgV p @Vt = Ztr (Vi p vt =
B i=1

being >, g Mg =1. Therefore deriving two times the previous expression we get

d?>P¥
B _ _
du? _O_)Zﬁ]Ra,,B—O

By the fact that the rows of R sums to zero, while its off-diagonal elements are non-negative follows
that the diagonal elements of R are non positive. Therefore if R # 0, then tr(R) < 0 and the matrix
P =1 — R/tr(R) is well defined with non-negative entries. Since the sum of each row of R vanishes,
the sum of each row of P is equal to 1. Thus P is a row stochastic matrix. ]

The following lemma represents the main result of this chapter, since it proposes a technique for
the design of the weights o, of our Lyapunov function.

Lemma 30. Assume that the directed graph GH associated to the row stochastic matriz P defined in
the previous lemma is strongly connected. Then, there exist d — 1 strictly positive real numbers eq > 0,
ae{l,..,d}\{t}, such that:

e VA, eR, ae {l,.. d}\{t}, there exists a unique vector o € R, with oy = 0 such that Ro = ),
where \ € R* with components A, and Ay = —Za?&a* eala-
If additionally Ao, < 0 for all a € {1, ...,d}\{t}, then oo > 0 for all a € {1, ...,d}\{t}.

o for any o € R%, solution of Ro = X € RY, the function Wy(p,) satisfies

P Wo(K* (p)))
du?

= Ao, Yae{l,...,d}

u=0

Proof. Being G strongly connected, its associated matrix P is irreducible. Being a row stochastic
matrix, its spectral radius is equal to 1. By Perron-Frobenius theorem for non-negative irreducible
matrices, this spectral radius is also an eigenvalue of P and of PT , with multiplicity one and associated
to eigenvectors having strictly positive entries: the right eigenvector 1, being P1 = 1, and the left
eigenvector e (PTe = e — ¢l R = 0). Then

o let \e Im(R) — e\ = Dazak Cata T €Ay = 0 — e can be chosen s.t. e; =1 — >« €ada =
— A
Therefore there exists o solution of Ro = \

e ker(R) = span(1) and rank(R) = d — 1 — there exists a unique o solution of Ro = A s.t. 0, =0

The fact that o, > 0 = 0 when A, < 0 for a # o, comes from elementary manipulations of
Po = o — \/tr(R) showing that min, ., 04 > 0. Finally from eq. 5.12 we have that

2 Wo(K" (p')) d*py
o =20 = 2,99Ras =
u= u 5
with Ao <0 for o # a*, while Ay = — >, « €ada > 0. O
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Therefore if the graph G associated with the Hamiltonian H is strongly connected, then we can
define the weights o, is such a way that A\, < 0 for a # «*, which brings to

. >\a
<0 for a # a*,e€ ]0,mma¢a* Yo ]

e

d*f(u, p@))

= Ao — R
du? "0 {

>0fora=t

and finally proves that
1. f(u, p'¥) has a strict local minimum at u = 0 for o = a*;

2. f(u, p'®) has a strict local maxima at u = 0 for a # a*.

5.3 Connectivity of the graph G

Given a Hamiltonian H we can easily check if the associated graph G is strongly connected using
Tarjan’s algorithm [26], having running time that is linear in the number of nodes and edges in
GH = (V,E),ie. O(|[V|+]|E|). On the other hand, another problem regards the necessary and sufficient
conditions on the Hamiltonian H for having G¥ strongly connected, and consequently for having a
working control scheme. We recall that G¥ is strongly connected iff its adjacency matrix P satisfies

d—1
M P> 0 (5.14)
k=1

This condition requires every couple of nodes a and § to be linked at least by one path of length
ke{l,..,d— 1}, since [Pk]aﬁ > 0 iff there exists a path of length k that links the two nodes. Finding
the necessary and sufficient conditions on H such that condition (5.14) holds is not easy in general,
therefore we will start from the case that considers two nodes, i.e. d = 2. Afterwards we will slightly
generalize that result to the case that considers d > 2 nodes, finding a sufficient condition.

Notice that by the definition of the adjacency matrix P (5.13), a node « is linked to another node
B iff Ry # 0. Thus firstly we derive the conditions on H for having R, g # 0.

We recall that when o # 8 R, g = 2tr (M,gHgZ)(p(a))H), that is different from zero when

tr(Ily, Ho(p" ) H) + tr(Ilr He(p'*) ) H) # 0 (5.15)

Moreover being V, an invariant subspace, we have that cb(,o(a)) remains supported only on V,, and
we define @, to be its unique non-zero block (i.e. ¢(p(*) = @, @ 0). Then we introduce another
decomposition of the state space H:

H=Hr®Va®VsDT

where Hp represents the reminder subspace, namely Hg = @
respect to this decomposition reads

y#a,p Vy- The block structure of H with

Hr hrao hrpg hrr
ha,R Ha ha,ﬁ ha,T
hgr hpa Hg hgr
hrr hro hrpg Hr

H =

From this block structure of H and from eq. (5.15) follows that

Rop #0 < tr(hgaPaha,p) + tr(hrapaha,r) # 0 (5.16)
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where h, g = Al o and hor = h; ., by the hermitianity of H. Let {|z)}.”; be an orthogonal basis for
Vg, and {|y)},L, for T. We can rewrite the blocks hg o and hrq in the following way

ng ne
hoo = O [0Xhsasl, hra = D)1y hrayl
=1 y=1

where (hgq | and (hrqy| represent the rows of the blocks hg, and hr g, respectively. We have now all
the tools to state and prove the following lemma on the conditions for having R, g # 0.

Lemma 31. Let GY be a graph having d nodes, with adjacency matriz P defined in eq. (5.13),
associated to the Hamiltonian H. Then R, g # 0 iff at least one of the two conditions holds:

1. there exists an index x € {1,...,ng} such that {hga z|Pal|hsaz) # 0;
2. there exists an index y € {1,...,ns} such that (hray|@alhTay) # 0.

Proof. Using the fact that tr(B) = 317 (x| B|x) for any ng x ng matrix B, and tr(T) = 2yl Tly)
for any n; x n; matrix T, condition (5.16) reads

ng ng
Ra,,B #0 = Z<h[3a,x @a‘h/)’a,x> + Z<hTa,y Sba|hToz,y> # 0

r=1 y=1

namely R, g # 0 if at least one term of the above two sums is different from zero, since ¢, > 0 and
consequently the terms of the above two sums are non-negative. This proves the stated lemma. O

Our main result is stated in the following theorem, that highlights which edges R, g have to be
different from zero for having the connectivity of the graph. Notice that this condition on the edges
R, s is reflected into a condition on the Hamiltonian H by the previous lemma. Therefore this theorem,
together with the previous lemma, gives a sufficient condition on the Hamiltonian H for having G
strongly connected.

Theorem 32. Let GH be a graph having d nodes, with adjacency matriz P defined in eq. (5.13),
associated to the Hamiltonian H. We have that

o whend=2: G = (V,E), V = (a, ) is strongly connected iff Ro.5 # 0 and Rg o, # 0;

e when d > 2: if all the nodes of G form a cycle, namely there exists a path of length d from a
node o to itself that touches all the other nodes ' # o, then GH is strongly connected. This
path that forms the cycle is defined by the edges R, g that have to be different from zero.

This result represents a first step towards the harder problem of finding a necessary and sufficient
condition on the Hamiltonian H for having G¥ strongly connected. Moreover, once found this
mathematical condition on H, it would be interesting to translate it into a physical condition on the
Hamiltonian.

5.4 Simulations

Let us turn back to the setting of the simulations of subsection 4.5.1, that considers three minimal
invariant subspaces. In open-loop the quantum trajectory of that simulation converged to the subspace
V1. What we will show in this subsection is that if we choose as target subspace Vo, and we close the
loop using the feedback scheme presented in this chapter, the state of our quantum system will actually
converge to the target subspace Vs.
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The unitary control is realized through the fixed Hamiltonian

10 0 00 O OO
00 1 00 0 00
01 -101 0 0O
- 00 0 00 1 00
00 1 00 0 0O
00 0 10 -110
00 0 O0O0 1 0O
00 0 00 0 01

while the resulting Metzler matrix R reads

—0.600 0.600 0
R=1 0974 —-2.000 1.026
1.046  2.607 —3.653

from which we can observe that the associated graph G is strongly connected. Indeed every node
is linked by an edge to all the other nodes, except for the link that goes from node 1 to node 3 (i.e.
Ry 3 = 0). Therefore by lemma 30, we can design the weights o, is such a way that conditions 1 and 2
holds. We have chosen the vector A to be

A= (—0.642 1474 —0.425)"
and the corresponding solution of the equation Ro = A reads
T
o= (1.069 0 0.422)

At the n = 376 iteration the quantum trajectory has converged to the subspace V5. The comparison
between the evolution of the martingale QQ,(n) in open-loop and in closed-loop is reported in Figure
5.1. From this plot we can deduce that the feedback scheme is kicking the quantum trajectory away
from the “most attractive” subspace V3, leading the convergence to the target subspace V5.
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Convergence of the Martingale Q in open-loop
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Figure 5.1: Comparison between the evolution of the martingale Q. (n) in open-loop and in closed-loop



Conclusions

In this project we have analyzed the large time behaviour of a quantum system subject to a sequence
of indirect measurements, constructing a special martingale and exploiting the related convergence
theorem. The asymptotic value of this martingale tells us in which subspace the quantum trajectory is
converged, while its initial value sets the different probabilities of convergence to the various subspaces.
Thus this martingale contains all the information regarding the stochastic evolution of the quantum
trajectory. The second main topic treated by this project regards the central limit theorem applied
to the stochastic process related to the measurement outcomes. What we have showed is that the
distribution of that process converges to a mixture of Gaussians, with parameters that depends on the
invariant states of the quantum channel. Moreover we have presented how this CLT could be applied
for solving a process tomography problem. Finally we have designed a state feedback scheme, which
exploits a Lyapunov technique to realize a deterministic convergence of the quantum trajectory to a
specific target subspace. Two different simulations demonstrate the applicability of our results.

Therefore our control scheme is able to prepare a quantum system in a precise subspace, but it
does not take into account possible measurements imperfections or a non correct initialization of the
quantum filter or a delay between the measurement process and the control process. Hence a possible
extension of this project goes in the direction of the design of a robust control scheme.

For what concerns the rate of convergence to a subspace in open-loop and in closed-loop, it re-
mains to be proved that the convergence is exponential, and to find the relative rate of convergence.
This further analysis could lead to the design of a control scheme that maximizes the rate of convergence,
which could be useful in devising cooling and state preparation strategies in feedback quantum control.
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Appendix

Lemma 33. Given two matrices A, B € C*** such that A > 0 and B = BT, having spectral decomposi-
tion B =Y, X\i(B)|1(B)){1;(B)| we have that

tr(AB)| < || Allw || Bllx (17)
where we recall that
[Al[1 :=tr(|A]), Al := m?XZI%I = max A;(4)
J
Proof. We directly have that
[tr(AB)| = |tr (ZA )Ali(B >><wi<B>|)r - rZA )(Wi(B)|Adi(B)))
Z\/\ N<i(B) Ay (B))| (18)

Z\/\ Al = tr(IBDI[|Alloc = [[Bl[1[| Al

where (18) holds by the Cauchy—Schwarz inequality. O
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