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Abstract

This research project analyzes the asymptotic behaviour of a quantum system subject to a sequence of
indirect measurements. These quantum measurements give rise to a stochastic process, called quantum
trajectory, which describes the state of the system after each measurement. Using martingale techniques
we will prove that this quantum trajectory converges non-deterministically to one of the minimal
invariant subspaces determined by the quantum channel, which is a linear map that describes the mean
evolution of the state. The probability of convergence to each subspace depends on the initial state of
the system. The convergence can be steered towards a chosen target subspace, modifying the dynamics
with a feedback control scheme properly designed using Lyapunov techniques and graph-theoretic
ideas, generalizing the control scheme preseneted in [2]. Preparation of quantum states in a target sub-
space finds one of its applications in cooling techniques and in state preparation in quantum information.

The other focus of this research project is on the derivation of some statistical asymptotic laws
(Law of Large Numbers - Central Limit Theroem - Law of Iterated Logarithms) for the stochastic
process describing the measurement outcomes, without requiring any ergodicity assumption on the
quantum channel, and thus generalizing the results obtained in [3]. These statistical asymptotic laws
can be used for solving estimation problems like process tomography.

This research project puts together probability theory and control theory in order to prove asymptotic
results on quantum stochastic processes and in order to design a feedback control scheme that is able to
prepare a quantum system in a precise target subspace. A rigorous mathematical treatment is employed
in deriving results having important applications in quantum engineering problems, like information
encoding or parameter estimation.
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Sommario

In questa tesi viene analizzato il comportamento asintotico di un sistema quantistico soggetto ad una
sequenza di misurazioni indirette. Tali misurazioni quantistiche danno vita ad un processo stocastico,
chiamato traiettoria quantistica, il quale descrive lo stato del sistema dopo ogni misurazione. Tale
progetto ricorre a tecniche che utilizzano martingale, per dimostrare che questa traiettoria quantistica
converge in modo non deterministico in uno dei sottospazi invarianti minimali determinati dal canale
quantistico, ossia una mappa lineare che descrive l’evoluzione media dello stato. La probabilità di
convergenza a ogni sottospazio dipende dallo stato iniziale del sistema. Questa convergenza può essere
orientata verso un preciso sottospazio target grazie ad uno schema di controllo con retroazione, il cui
design sfrutta tecniche di Lyapunov e idee dalla teoria dei grafi. La preparazione di stati quantistici
in un preciso sottospazio target trova applicazione in tecniche di cooling e preparazione degli stati in
informazione quantistica.

L’altro focus di tale progetto di ricerca viene posto sulla derivazione di alcune leggi statistiche asintotiche
(Legge dei Grandi Numeri - Teorema del Limite Centrale - Legge dei Logaritmi Iterati) per il processo
stocastico che descrive i risultati delle misurazioni, senza richiedere alcuna particolare assunzione
ergodica sul canale quantistico, e dunque generalizzando i risultati ottenuti in [3]. Tali leggi statistiche
asintotiche possono essere utilizzate per risolvere problemi di stima come quello di tomografia del
processo.

Questo progetto di ricerca mette insieme teoria della probabilità, teoria del controllo per derivare risul-
tati asintotici per sistemi stocastici quantistici e per il design di uno schema di controllo con retroazione
in grado di preparare un sistema quantistico in un preciso sottospazio target. Viene impiegato in
formalismo matematico rigoroso per derivare risultati aventi importanti applicazioni in problemi di
ingegneria quantistica, come codifica di informazione o stima di parametri.
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Introduction

The potential of quantum technologies has been demonstrated in several applications requiring a high
level of computing power. By exploiting the laws of quantum physics to process binary information,
quantum computing circuits can already do calculations that can’t easily be simulated on classical
supercomputers: in 2019 Google claimed the famous “quantum supremacy”, achieved by its 53 qubits
quantum computer that executed, in about 200 seconds, a specific task that would have taken a classical
computer 10 000 years [16]. At the end of 2021 IBM launched the 127 qubit Eagle quantum processor,
which represents a step towards its goal of creating a 1121 qubit Condor quantum processor by 2023 [4].
On the other hand, solving real world problems, such as simulating drug molecules or materials using
quantum chemistry, will require quantum computers to get drastically bigger (millions of physical
qubits) and more powerful. That’s why at the moment we can only talk about potential applications of
quantum computers, as clearly presented in https://www.youtube.com/watch?v=-UlxHPIEVqA.

The main one regards quantum simulations, since obviously in this area quantum computers have an
exponential speedup over classical ones. Indeed simulating quantum systems with as few as 30 particles
is difficult even on the world’s most powerful supercomputers. We also can’t do this on quantum
computers yet, but their promise is to be able to simulate larger and larger quantum systems. Quantum
simulations concerns simulating chemical reactions or how electrons behave in different materials.
This could permit a step towards understanding what makes some materials superconduct, or study
important chemical reactions to improve their efficiency. One example aims to produce fertiliser in a
way that emits way less carbon dioxide, as fertiliser production contributes to around 2% of global CO2

emissions. In general quantum simulations would mean that we would be able to rapidly prototype
many different materials inside a quantum computer and test all their physical parameters, instead of
having to physically make them and test them in a laboratory, which is a much more laborious and
expensive process. This could be a lot faster and save a huge amount of time and money.

Other applications of quantum computers can be found in optimization problems, machine learning,
financial modelling and cybersecurity. This last one is due to Shor’s algorithm, that can efficiently find
the factors of large integers, breaking current cryptography techniques based on RSA algorithm. With
the motivation provided by this algorithm, the topic of quantum computing has gathered momentum,
supported also by many national government and military funding agencies, and researchers around
the world are racing to be the first to create a working quantum computer.
What is keeping us away from the implementation of a working quantum computer?

Adding qubits to a quantum circuit represents a very challenging task, due to the fragility of quantum
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correlations, which represent the key advantage of Quantum Information (QI), and that are easily
destroyed by the unavoidable interaction of the quantum system with its surrounding environment.
The consequence of this interaction is that the information encoded in the qubits will start to leak
away, leading to a phenomena called decoherence. For a deep understanding of decoherence we refer
the reader to the chapter 8 of Nielsen and Chuang’s book [22].,

To overcome this unwanted effect, many quantum control techniques have been developed, with the
aim of cancelling the undesirable parts of the interaction Hamiltonian, which represents the energy
exchanges between the quantum system and the environment and that is responsible of the leak of
information. This type of control could be implemented through unitary pulses applied instantaneously
and equidistantly separated in time to the quantum system, exploiting a technique called bang-bang
control ( [28], [9]).

These techniques are based on open-loop control, while in this project we will recur to feedback
actions to fight decoherence. Decoherence control through feedback techniques can be implemented in
two different ways: through active manipulation of the quantum state and through passive stabilization
of it. In the first approach loss of information is corrected by monitoring the system and conditionally
carrying on suitable feedback operations. On the other hand, the second approach relies on the existence
of a subspace of states that, owing to special symmetry properties, are dynamically decoupled from the
environment. This project deals more with the second approach, realizing a control feedback scheme
that stabilizes the system in a target subspace.

The project is organized as follows: in chapter 3 we will show that a quantum system, subject
to a sequence of indirect measurements, converges to one of the minimal invariant subspaces in a
non-deterministic way. To demonstrate this and to find the probability of convergence to a specific
subspace, we will exploit some tools of probability theory related to Markov Chains, martingales and
ergodic theory, which are briefly presented in chapter 1. To this sequence of indirect measurements we
can associate two stochastic processes: the first one describes the state of the system after each indirect
measurement, while the second one counts how many times you get a certain outcome till a certain step
n. In chapter 4 we will show that a Law of Large Numbers (LLN), a Central Limit Theorem (CLT)
and a Law of Iterated Logarithm (LIL) result can be obtained on the second process, without requiring
the quantum channel to be ergodic and thus generalizing [3]. Finally in chapter 5 we will present our
feedback control scheme that stabilizes the quantum system in a target subspace, that we want to be
a Decoherence Free Subspace (DFS) [20]. This could lead to a “passive” error-prevention scheme, in
which logical qubits are encoded within subspaces which do not decohere thanks to symmetry reasons.
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Figure 1: Overview of how quantum simulations can be exploited to solve real world problems: https:

//www.youtube.com/watch?v=-UlxHPIEVqA

3



Chapter 1

Probability Theory

There is a deep interconnection between quantum mechanics and probability, due to the intrinsic
random nature of quantum measurements. The state of our quantum system subject to a sequence of
indirect measurements will turn out to be a Markov Chain, and its stochastic evolution will be analyzed
through a special martingale, that will permit us to prove the main convergence theorem. Therefore in
this chapter we will review some concepts and tools of probability theory, that will lead us to our main
results. For a deeper understanding of these probability tools we refer the reader to the book [18] and
to the Van Handel lecture notes [27].

1.1 Probability space & types of convergence

In this section we will recap the basic concepts needed for building a probability space where the
probabilistic evolution of an experiment can be modelled. Firstly we introduce the set of events Ω,
where each element ω P Ω represents a possible fate of the experimental system. Once we have specified
Ω, any yes-no question is represented by the subset of Ω consisting of those realizations ω P Ω for which
the answer is yes. We will collect all sensible yes-no questions in a set F Ă Ω.

Definition 1. A σ ´ algebra F is a collection of subsets of Ω such that

1. if An P F for countable n, then
Ť

nAn P F ,

2. if A P F , then Ac “ ΩzA P F ,

3. Ω P F .

An element A P F is called an F-measurable set or an event.
It remains to assign a probability to every event in F . This has to be done in a consistent way: if A

and B are two mutually exclusive events (AXB “ H), then the probability of A or B has to be the
sum of the individual probabilities. This leads to the following definition.

Definition 2. A probability measure is a map P : F Ñ r0, 1s such that:

1. for countable tAnu such that An XAm “ H for n ‰ m, PpŤ
nAnq “ ř

n PpAnq (σ-additivity),

2. PpHq “ 0, PpΩq “ 1.
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We now have all the objects for building a probability space.

Definition 3. A probability space is a triplet pΩ,F ,Pq.

The next most important ingredient in probability theory is the random variable. If pΩ,F ,Pq
describes all possible fates of the experimental system and their probabilities, then random variables
describe concrete observations that we can make on the system. For example the outcome of a
measurement of our experimental system is described by specifying what value it takes for every possible
fate ω P Ω of the system.

Definition 4. A random variable is a measurable function f : Ω Ñ R, namely f´1pAq “ tω P Ω :
fpωq P Au P F for every A P BpRq, where BpRq represents the Borel σ-algebra.

For these functions defined on the probability space pΩ,F ,Pq there are different notions of conver-
gence, since the usual notion of pointwise convergence of functions 1 is useless in probability. Indeed
typically we do not have convergence for all ω, but we have convergence for almost all ω (i.e. the set
of all ω where we do have convergence has probability one). Moreover, just as we introduced almost
sure (a.s.) convergence because it naturally occurs when “pointwise convergence” (for all “points”)
fails, we need to introduce two more types of convergence, which arise naturally when a.s. convergence
fails, but they are also useful as tools to help to show that a.s. convergence holds. These three different
types of convergence of random variables can be thought as variants of standard pointwise convergence.
There is yet another notion of convergence which is profoundly different from the previous three. This
convergence, known as weak convergence (in distribution), is fundamental to the study of probability
and statistics. For this new type of convergence the actual values of the random variables themselves
are not important. It is simply the probabilities that they will assume those values that matter.

Definition 5 (Types of Convergence). Let tfnu be a sequence of random variables defined on pΩ,F ,Pq.

1. fn
PÝÑ f : tfnu converge in probability to f if given ε ą 0 there exists an index N such that

Pptx P Ω : |fnpxq ´ fpxq| ą εuq ă ε, @n ą N

2. fn
a.s.ÝÝÑ f : tfnu converge almost surely to f if fnpxq Ñ fpxq except on a set A with PrAs “ 0

3. fn
Lp

ÝÑ f : tfnu converge in Lp (mean convergence) to f ą 0 if

lim
nÑ8

E|fn ´ f |p “ 0

4. fn
DÝÑ f : tfnu converge in distribution to f if for every bounded and continuous function g : R Ñ R

it holds
lim
nÑ8

Ergpfnqs “ Ergpfqs

Convergence in distribution can be shown to be equivalent to convergence of the cumulative
distribution function (CDF): Ffnpxq Ñ Ff pxq at each continuity point of Ff .

Example 1 (weak LLN). Let tXnu be a sequence of independent and identically distributed (i.i.d.)
random variables defined on the probability space pΩ,F ,Pq with m “ EXi ă 8. Then, the weak law of
large numbers asserts that the empirical mean converges in probability to the the expectation m, namely

1

n

nÿ

i“1

Xi
PÝÑ m

1pointwise convergence: let fn : R Ñ R then limnÑ8 fn “ f if limnÑ8 fnpxq “ fpxq, @x P R
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Figure 1.1: Implications between different types of convergence

Example 2 (strong LLN). Let tXnu be a sequence of i.i.d. random variables defined on the probability
space pΩ,F ,Pq with m “ EXi ă 8. Then, the strong law of large numbers asserts that the empirical
mean converges in almost surely to the the expectation m, namely

1

n

nÿ

i“1

Xi
a.s.ÝÝÑ m

Figure 1.1 illustrates the various implications between different types of convergence, from which
follows that the strong law of large numbers does imply the weak law.

Actually the strong Law of Large Numbers (LNN) represents one of the fundamental results in
probability, since it helps to justify our intuitive notions of what probability actually is, and it has
many direct applications, such as Monte Carlo estimation theory. Another impressive achievements of
probability theory is the Central Limit Theorem (CLT), which serves as the basis for much of statistical
theory.

Example 3 (CLT). Let tXnu be a sequence of i.i.d. random variables defined on the probability space
pΩ,F ,Pq with finite second moment EX2

n ă 8. Let µ “ EXn, σ
2 “ EpX ´EXq2. Let X̄n “ 1

n

řn
i“1

Xi.
Then

X̄n ´ nµ?
n

DÝÑ N p0, σ2q

Thanks to this asymptotic law we can use data to do statistical tests to estimate µ and σ2 which
fully determine the asymptotic distribution of the statistical average of our random variables.

Another important asymptotic law is represented by the Law of Iterated Logarithm (LIL), that describes
the magnitude of the fluctuations of a random walk.

Example 4 (LIL). Let tXnu be a sequence of i.i.d. random variables defined on the probability space
pΩ,F ,Pq with finite second moment EX2

n ă 8. Let µ “ EXn, σ
2 “ EpX ´EXq2. Let X̄n “ 1

n

řn
i“1

Xi.
Then

lim
nÑ8

sup
|X̄n ´ nµ|a

2nσ2 log log nσ2
“ 1 a.s.

On the other hand these three asymptotic laws require the random variables to be i.i.d., which is a
strong assumption that doesn’t hold for our process. Actually we will show that they all hold also for
our process, and we will use martingale techniques to show that.

1.2 The Radon-Nikodym derivative

Let pΩ,F ,Pq be a given probability space. It is often interesting to try to find other measures on F
with different properties, since calculations which are difficult under one measure can often become
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very simple if we change to a suitably modified measure. For example, if tXnu is a collection of random
variables with some complicated dependencies under P, it may be advantageous to pass to a modified
measure Q under which the Xn are independent. In the following we present a technique that will
permit us to generate a large family of measures related to the starting measure P.

Let f be a nonnegative random variable with unit expectation Ef “ 1. For any A P F , define

QpAq :“ EPp1Afq “
ż

A

fpωqPpωq

which is a probability measure, and moreover

EQpgq “
ż
gpωqQpdωq “

ż
gpωqfpωqPpdωq “ EPpgfq

for any random variable g for which either side is well defined.

Definition 6. (Density) A probability measure Q is said to have a density with respect to a probability
measure P if there exists a nonnegative random variable f such that QpAq “ EPp1Afq for every
measurable set A. The density f is denoted as dQ{dP.

Suppose that Q has a density f with respect to P. Then these measures must satisfy an important
consistency condition: if PpAq “ 0 for some event A, then QpAq must also be zero. Evidently, the use
of a density to transform a probability measure P into another probability measure Q “respects” those
events that happen for sure or never happen at all.

Definition 7 (absolutely continuity). A measure Q is said to be absolutely continuous with respect to
a measure P, denoted as Q ! P, if QpAq “ 0 for all events A such that PpAq “ 0.

We have seen that if Q has a density with respect to P, then Q ! P. It turns out that the converse
is also true: if Q ! P, then we can always find some density f such that QpAq “ EPp1Afq. Hence the
existence of a density is completely equivalent to absolute continuity of the measures. This is a deep
result, known as the Radon- Nikodym theorem.

Theorem 1 (Radon-Nikodym). Suppose that Q ! P are two probability measures on the space pΩ,Fq.
Then there exists a nonnegative F-measurable function f with EPpfq “ 1, such that QpAq “ EPp1Afq
for every A P F . Moreover, f is unique (i.e. if f 1 is another F-measurable function with this property,
then f “ f 1 P ´ a.s.). Hence it makes sense to speak of ‘the’ density, or Radon-Nikodym derivative, of
Q with respect to P, and this density is denoted as dQ{dP.

1.3 Martingale, Supermartingale & Submartingale

This section introduces the notion of a martingale, which will play a fundamental role in this project.
To talk about martingales we need the notion of stochastic process, which is just a sequence of random
variables tXnu, indexed by time n. We will deal with discrete time stochastic processes (i.e. n P N).
Stochastic processes start leading a life of their own once we build a notion of time into our probability
space. To this aim we need to specify which sub-σ-algebra of questions in F can be answered by time
n. If we label this σ-algebra by Fn, we obtain the following notion.

Definition 8. Let pΩ,F ,Pq be a probability space. A (discrete time) filtration is an increasing sequence
tFnu of σ-algebras F0 Ă F1 Ă ... Ă F . The quadruple pΩ,F , tFnu,Pq is called a filtered probability
space.

Note that the sequence Fn must be increasing, since a question that can be answered by time n can
also be answered at any later time. We can now introduce a notion of causality for stochastic processes.

7



Definition 9. Let pΩ,F , tFnu,Pq be a filtered probability space. A stochastic process tXnu is:

• adapted if Xn P Fn,

• predictable if Xn P Fn´1,

Hence if tXnu is adapted, then Xn represents a measurement of something in the past or present
(up to and including time n), while in the predictable case Xn represents a measurement of something in
the past (before time m). To introduce the definition of a martingale we need the notion of conditional
expectation, which play a fundamental role in much of probability theory.

Definition 10. A σ-algebra F is said to be finite if it is generated by a finite number of sets
F “ σtA1, ..., Amu.

Definition 11. Let F be a separable σ-algebra (i.e. F “ σtFnuną0) with Fn finite and generated by
the partition tAkumk“1

. Let X P L1. Then we define

EpX|Fq “ lim
nÑ8

EpX|Fnq

with

EpX|Fnq “
mÿ

k“1

EpX|AkqIAk

where EpX|Aq “ EpXIAq{PpAq if PpAq ą 0 and EpX|Aq “ 0 if PpAq “ 0.

We have now all the tools to introduce the notion of a martingale, supermartingale and submartingale.

Definition 12. Let us consider a stochastic process tXnu which is adapted and with Xn P L1pΩq @n P N.
Then

1. tXnu is a martingale if EpXn`1 | Fnq “ Xn,

2. tXnu is a supermartingale if EpXn`1 | Fnq ď Xn,

3. tXnu is a submartingale if EpXn`1 | Fnq ě Xn,

We can think about a martingale as a constant process plus some stochastic fluctuations. On
the other hand a supermartingale is a decreasing process plus some stochastic fluctuations, while a
submartingale is an increasing process plus some stochastic fluctuations.

Given a martingale, we can easily obtain a supermartingale from it by simply using a concave
function, as a consequence of the Jensen inequality 2 Same for a submartingale but with a convex
function.

Proposition 1. Let tXnu be a martingale. Let φ be a function such that φpXnq P L1pΩq @n P N. Then

1. if φ is concave then Yn “ φpXnq is a supermartingale,

2. if φ is convex then Yn “ φpXnq is a submartingale.

Moreover if a martingale Xn is bounded, then it cannot fluctuate forever; in other words, it must
converge to some random variable X8.

2For a real convex function ϕ, numbers x1, x2, ..., xn in its domain, and positive weights ai, Jensen inequality can be

stated as ϕ
´ ř

i
aixiř
ai

¯
ď

ř
i
aiϕpxiqř
i
ai

. The inequality is reversed if ϕ is concave.

8



Theorem 2 (Martingale convergence). Let tXnu be a martingale such that supn ErX´
n s ď 8, where X´

n

is the negative part of Xn, i.e. X
´
n “ ´minpXn, 0q. Then there exists a random variable X8 P L1pΩq

such that
Xn

a.s.ÝÝÑ X8

Moreover we have convergence in L1 to X8 if supn Er|Xn|s ď 8.

Martingales play an important role in this project since they will permit us to derive limit theorems
(LLN-CLT-LIL) for a process that is neither i.i.d. nor Markovian. Moreover we will construct a special
martingale to prove the convergence of our quantum trajectory to an invariant subspace.

1.4 Dynamical systems and ergodic theory

Dynamical systems are systems evolving in time, often governed by differential equations, but also
perhaps by other continuous or discrete formulae. Ergodic theory is the study of statistical properties
of that evolution. Originally created to connect thermodynamics to statistical mechanics, it has been
extended to connect with many branches of mathematics, including Markov Chains and their stochastic
evolution.

In our probabilistic setting a dynamical system is defined as a quadruplet pΩ,F ,P, T q, where
pΩ,F ,Pq is a probability space, while T : Ω Ñ Ω is a transformation that preserves the measure P, i.e.
P ˝ T´1 “ P. Ergodic theory analyzes the long time behaviour and the average behaviour of pTnpωqq
for P-almost every ω P Ω.

Definition 13. Let pΩ,F ,P, T q be a dynamical system. We say that A P F is T -invariant if T´1pAq “ A.
We say that pΩ,F ,P, T q is ergodic if all T -invariant sets have measure 0 or 1.

Let us recall the most important ergodic theorems which concern some convergence results for the
averages p 1

n

řn´1

k“0
f ˝ T kqnPN , for f P LppΩq, p ě 1. The first one requires the notion of a contraction

mapping.

Definition 14. A contraction mapping on a metric space pM,dq is a function f :M Ñ M , with the
property that there is some real number 0 ď k ă 1 such that

dpfpxq, fpyqq ď kdpx, yq @x, y P M

The smallest such value of k is called the Lipschitz constant of f .

Theorem 3 (Von Neumann’s mean ergodic theorem, 1932). Let ϕ be a contraction map on a Hilbert
space H and ΠFφ

be the orthogonal projection on the set of fix points of ϕ, i.e. Fφ :“ tx P H | ϕpxq “ xu.
Then

1

n

n´1ÿ

k“0

ϕkpxq ÝÝÝÑ
nÑ8

ΠFφ
x

for every x P H.

Theorem 4 (Birkhoff’s ergodic theorem, 1931). Let pΩ,F ,P, T q be an ergodic dynamical system. Then
for every f P L1pΩq

1

n

n´1ÿ

k“0

f ˝ T k ÝÝÝÑ
nÑ8

Erf s P ´ a.s.

Now that we have recapped all the probability tools that we will need in this project, we pass to
the presentation of the main character of this work: quantum mechanics.

9



Chapter 2

Quantum Mechanics

In this chapter we will recall the principal features and notions of quantum mechanics. We will provide
the mathematical formalism needed to describe a quantum system and its time evolution, and we will
link it to the notion of attractive and transient subspace. The main role in this connection is played by
the set of invariant states of the quantum channel, namely the linear map that is dictating the time
evolution of the system. Finally we will analyze the structure of this set and the spectral properties
related to the quantum channel. For a detailed introduction on Quantum Mechanics and on quantum
channel we refer the reader to the Nielsen and Chuang’s book [22] and to the Wolf’s lecture notes [29]
respectively.

2.1 A look into the Quantum world

At the subatomic level nature makes strange jokes, and randomness comes into play. For example
a photon could have horizontal and vertical polarization at the same time, in a perfect quantum
superposition. Now the question follows naturally: what happens if we measure its polarization? With
a certain probability, we would observe horizontal polarization, and with “the remaining probability”
we would observe vertical polarization.

A new mathematical framework is needed to describe the quantum world. A Hilbert space sets
up the arena in which quantum mechanics takes place. Hence given a k-dimensional quantum system,
its state space is represented by the Hilbert space H » Ck. In the Dirac notation |ψy represents a state
vector in H, while xψ| “ |ψy: represents its dual, and xψ|ϕy is the inner product of H. Turning back to
the photon example, its quantum state could be described in the Horizontal-Vertical basis t|Hy, |V yu as

|ψy “ α|Hy ` β|V y “ α

„
1
0

ȷ
` β

„
0
1

ȷ

To understand the meaning of the coefficients α and β, we have to introduce the notion of observable,
which defines a projective measurement.

Definition 15 (Observable). A linear operator represents an Observable Ô iff it is Hermitian, hence it

10



Figure 2.1: Projective measurement defined by the observable tλk, |λkyxλk|u

can be associated to a physical observable. It can be represented through its spectral decomposition

Ô “
dÿ

k“1

λk|λkyxλk|

hence it is completely characterised by its eigenvalues and eigenvectors tλk, |λkyxλk|u.

Every measurement can be associated to an observable Ô, and its possible outcomes correspond
to the eigenvalues λk, while |λkyxλk| represent the rank-one projectors onto the eigenspaces of the
operator Ô.

Definition 16. A projective measurement with input |ψy and defined by the observable tλk, |λkyxλk|u,
gets as output λk with probability ppkq “ |xλk|ψy|2, and projects the input into the k-th eigenspace of
the observable, with a final collapse of the quantum state into |ψyk “ |λky.
The measurement basis is represented by the eigenvectors t|λkyu of the observable that we want to
measure.

Turning back to our photon, if we want to measure its Horizontal-Vertical polarization, we have to
measure the observable

σz “ `1|HyxH| ´ 1|V yxV |

which gives as output |ψy`1 “ |Hy with probability pp`1q “ |α|2, and |ψy´1 “ |V y with probability
pp´1q “ |β|2. Hence if we let N identical photons pass through a H-V polarazing beam-splitter (PBS),
they will be detected N |α|2 times in the H-path, and N |β|2 times in the V-path. What if they pass
through a Diagonal-Antidiagonal PBS? Notice that

|ψy “ α|Hy ` β|V y “ pα ` βq|Dy ` pα ´ βq|Ay1

hence they will be detected N |α ` β|2 times in the D-path, and N |α ´ β|2 times in the A-path.
In this way we have measured the observable

σx “ `1|DyxD| ´ 1|AyxA|

which gives as output |ψy`1 “ |Dy with probability pp`1q “ |α` β|2, and |ψy´1 “ |Ay with probability
pp´1q “ |α ´ β|2.

This shows that before the measurement the photon is in a quantum superposition of possibilities,
till its interaction with the measurement apparatus, which makes it collapse in one of the states of
the measurement basis. Therefore the act of measurement of an observable of the system perturbs it,
changing its state. In consequence of this the order of the measurements matters: changing the order
of the measuring filters changes the way the system is perturbed. Therefore measuring filters do not
commute! Hence we move to a matrix notation, to take into account this non commutative nature.

1Remember that |Dy “ |Hy`|V y?
2

, while |Ay “ |Hy´|V y?
2

11



Notice that before the measurement we only know the different outputs probabilities, but we cannot
predict in advance what will be the result of our measurement. This explains why there is an intrinsic
random nature of the quantum realm.

The problem is that in practice the state of the quantum system is not known. What is known
is that it can be with probability pi in one of the states |ψiy. Therefore what we have is an ensemble of
pure states: tpi, |ψiyu. To this ensemble we can associate a quantum state, represented by a density
operator ρ, namely

ρ “
ÿ

i

pi|ψiyxψi|

which has three properties: it is Hermitian, it is positive semidefinite and it has unitary trace. Notice
that if the state is pure (known), then ρ “ |ψyxψ|, otherwise it is said to be mixed.

We introduce the set of states of H

DpHq “ tρ P BpHq | ρ ě 0, trpρq “ 1u

which is convex and has as extreme points the pure states, which are rank-one projectors. We will refer
to BpHq as the set of linear and bounded operators on H.

The last thing to formalize is the description of a system composed by n quantum subsystems.
For simplicity we present the interaction of two subsystems, the case of n ą 2 is easily obtained by
iteration. The Hilbert space associated to the whole system is given by the tensor product between the
Hilbert spaces associated to the two subsystems, namely

H “ H1 b H2, with d “ d1 ˆ d2

In this composite setting H is endowed with the inner product xu1, u2|v1, v2y :“ xu1|v1yxu2|v2y. We
now introduce the concept of partial trace over one tensor factor of H, that will permit us to analyze
the behaviour of one subsystem, tracing out the other.

Definition 17. Let LpHq denote the set of linear operators on H. Let t|eiyud1i“1
be an orthonormal

basis of H1, with Eij :“ |eiyxej | P LpH1q. We can rewrite any operator A P LpHq in the following way

A “
d2ÿ

i,j“1

Aij b Eij “

¨
˚̋
A11 . . . A1d2
...

. . .
...

Ud21 . . . Ud2d2

˛
‹‚, Aij P BpH2q

Then the partial trace of A over H1 is an operator Ā2 P LpH2q defined as

Ā2 “ trH1
pAq “

d2ÿ

i“1

Aii

Using the partial trace we obtain the statistical description of the two subsystems, namely their
partial densities, just by “tracing-out” the other subsystem, namely

ρ̄1 “ trH2
rρs, ρ̄2 “ trH1

rρs

This formalism of composite systems will come out in chapter 3 to describe indirect measurements,
where the system of interest H interacts with a probe Hp, and the whole system H b Hp undergoes
a unitary evolution followed by a direct projective measurement of Hp. We are interested in the
back-action of these measurements on our system of interest, that’s why we will need the partial trace
to trace out the probe and analyze the evolution of the state in the tensor factor H.

12



2.2 Temporal Evolution & Quantum Channel

Quantum mechanics divides every physical process into preparation of a state and measurement of an
observable, therefore there are different (but at the end equivalent) ‘pictures’ depicting time evolution:
the Schrodinger picture describes the state evolution, while the Heisenberg picture describes the observ-
able evolution.

For a given time the evolution is described by a linear transformation on observables A ÞÑ upAq
or on states ρ ÞÑ u˚pρq, where consistency imposes the relation

trrρupAqs “ trru˚pρqAs (2.1)

namely u˚ is the dual of the map u with respect to the usual Hilbert–Schmidt inner product.

Firstly we introduce closed systems, which are isolated systems whose evolution is physically re-
versible, hence it should be described by a mathematically reversible transformation. Moreover the
concatenation of evolutions is naturally considered to be associative (i.e. puvqw “ upvwq). Consequently,
the set of reversible evolutions is described by a semigroup of linear and unitary transformations, and
we have that

A ÞÑ upAq “ U :AU or ρ ÞÑ u˚pρq “ UρU : (2.2)

where U P UpHq Ă BpHq is an element of the unitary operator set UpHq. Notice that these types of
maps being unitary are spectrum preserving, hence the spectrum of the state ρ will be preserved along
the evolution.

What if our particle is interacting with the environment? It becomes an open system which undergoes
a potentially irreversible dynamics. But if we consider it together with its interacting environment, the
whole system becomes closed and so we turn back to the reversible dynamics. This is what stays back
the Stinespring dilatation theorem 5, stated in the following.

Consider an evolution which, in the Schrodinger picture, is described by a map ϕ : BpHq Ñ BpHq.
As highlighted in the first chapter of Wolf’s lecture notes [29], when describing a physically meaningful
evolution, ϕ should fulfil the following three conditions:

• linearity : it is a quantum mechanical requirement related to locality, namely the fact that a
spatially localized action does not instantaneously influence distant regions. Any sort of non-
linearity would imply a breakdown of locality. Notice that locality is a crucial ingredient when we
want to talk about small systems without always having to take into account the entire rest of
the universe.

• Trace Preservation (TP) to ensure that density operators are mapped into density operators,
hence preserving its unitary trace.

• Complete Positivity (CP): another consequence of linearity together with asking ϕ to map density
operators onto density operators is that it has to be a positive map, namely

A ě 0 ÝÑ ϕpAq ě 0 @A P BpHq

However positivity alone is not sufficient: consider H as part of a bipartite system so that the
evolution of the larger system is described by ϕb I. That is, the additional system merely plays
the role of a spectator. Yet ϕb I should again be a positive map - a requirement which is stronger
than positivity. So the relevant condition is complete positivity of ϕ which means positivity of
the map ϕb In, @n P N.
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For the map ϕ˚ : BpHq Ñ BpHq describing the same evolution in the Heisenberg picture via

trrϕpρqAs “ trrρϕ˚pAqs (2.3)

the conditions linearity and complete positivity remain the same, only the trace preserving condition
translates to unitality : ϕ˚pIq “ I, as showed in the following.

A mapping which fulfills the above three conditions (either in Heisenberg or Schrodinger picture)
is called a quantum channel. Quantum channels are the most general framework in which general
input-output relations (i.e. black-box devices) are described within quantum mechanics. It is crucial,
however, that the mapping itself does neither depend on the input nor on its history. If such correla-
tions appear, then the above black-box description becomes inappropriate and either a larger system
(including ‘the environments memory’) has to be taken into account. When talking about quantum
channels in the following we will always mean the Markovian, or synonymously memory-less case, in
which such correlations do not occur. Let us present two important descriptions of a quantum channel:
the Stinespring dilation and the Kraus decomposition.

Theorem 5. (Stinespring dilation) Let ϕ be a CPTP map on BpHq, there exists a Hilbert space K, a
unitary operator U on H b K and a state β P DpKq such that

ϕpρq “ trKrUpρb βqU :s @ρ P DpHq

where trK denotes the partial trace over K.

Theorem 6. (Kraus representation) Let ϕ be a CPTP map on BpHq. Then there exists a family of
operators in BpHq denoted by tViuri“1

satisfying

rÿ

i“1

V
:
i Vi “ Ik (2.4)

such that

ϕpρq “
rÿ

i“1

ViρV
:
i , @ρ P DpHq (2.5)

This decomposition is called a Kraus decomposition and the operators tViuri“1
are called Kraus operators.

In general let us note that r ď k2, where r represents the Kraus rank, namely the minimal number
of Kraus operators, while k “ dimH. Moreover this decomposition is not unique. In particular we get
the following characterization.

Proposition 2. Let ϕ be a CPTP map on BpHq. Let tViuri“1
and tWiuri“1

be two family of operators
such that

ϕpρq “
rÿ

i“1

ViρV
:
i “

rÿ

i“1

WiρW
:
i @ρ P DpHq

Then there exists a r ˆ r unitary operator U “ puijq such that Wi “ řr
j“1

uijVj

Note that in this proposition some operators Vi or Wi can be equal to zero.
This project will consider discrete-time quantum dynamics described by sequences of trace-preserving
quantum operations in Kraus representation. This assumption implies the Markovian character of the
evolution, which, along with a forward composition law, ensures a semigroup structure.

Definition 18 (DQDS). A discrete Quantum Dynamical Semigroup is a one-parameter family of CPTP
maps tϕnp¨qunPN that satisfies the following properties:
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1. ϕ0 “ Id,

2. ϕt ˝ ϕs “ ϕt`s, @t, s ą 0.

Therefore, ϕ can be seen as the generator of a DQDS in the Schrödinger picture by considering
iterated applications of the map:

ρn “ ϕpρn´1q “ ϕnpρ0q, @ρ0 P DpHq

Due to the trace and positivity preserving assumptions, a QDS is a semigroup of contractions, meaning
that ϕ is a contraction map in trace norm:

trp|ϕpρ1q ´ ϕpρ2q|q ď trp|ρ1 ´ ρ2|q, @ρ1, ρ2 P DpHq (2.6)

as showed in theorem 8.16 of Wolf’s lecture notes [29]. This implies that

trp|ϕnpρq ´ ρ8|q ď trp|ρ´ ρ8|q

for any invariant state ρ8 of ϕ. This means that in the state space the initial distance from an invariant
state can never increase under the system evolution dictated by a quantum channel.

Each semigroup describing the time evolution of an open quantum system on a finite dimensional
Hilbert space is related to a special structure of this space by the invariant states of the evolution,
as deeply presented in [6], [15] and in the Wolf’s lecture notes [29] (section 6.4). We will exploit this
special structure of the state space to prove our main convergence result.

Notice that given a Kraus decomposition for ϕ, it follows from (2.3) that ϕ˚ acts on an element
A P BpHq by

ϕ˚pAq “
rÿ

i“1

V
:
i AVi (2.7)

Thus, the dual of a CP map is still CP. However, it is immediate to show that the dual of a CPTP map
does not need to be TP, but it must be unital, as a consequence of condition (2.4).

2.3 Quantum Subspaces: invariance and stability

In this section, we recall some definitions related to quantum subspaces, which represent a key
mathematical structure for this project.

Definition 19. A quantum subspace R of a system with associated Hilbert space H, is a quantum
system whose Hilbert space HR is a subspace of H, which can be written as the orthogonal direct sum
of HR and a remainder space HT :

H “ HR ‘ HT (2.8)

To our aim, it is useful to introduce appropriate ‘block’ representations of maps and operators with
respect to the decomposition (2.8) of the underlying Hilbert space. If we choose this orthonormal basis
for H:

t|ψlyul “ t|ψR
j yuj Y t|ψT

k yuk
where t|ψR

j yuj is an orthonormal basis for HR and t|ψT
k yuk for HT , the following block structure is

induced on any matrix representing an element X P BpHq in this orthonormal basis:

X “
„
XR XP

XQ XT

ȷ
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where XR, XT , XP , XQ are operators from HR to HR, from HT to HT , from HT to HR, and from HR

to HT , respectively.
We shall also need the notion of support of a state. Let ρ be a state, the support of ρ is defined as

supppρq “ kerpρqK

In a matrix notation: ρ is supported on the subspace HR if it has the following block structure

ρ “ ΠRρΠR “
„
ρ̄R 0
0 0

ȷ
, ρ̄R P DpHRq

where ΠR is an orthogonal projector onto HR. Studying how the support of the state evolves under
iterations of the quantum channel ϕ, is instrumental for studying the properties of invariant subspaces.
Firstly we will characterize invariance and stability for the mean evolution of our quantum system,
dictated by the quantum channel ϕ. In section 3.1 we will clarify why the quantum channel dictates
the mean evolution of our quantum system subject to indirect measurements.

Definition 20 (Invariance). Let ϕ be a quantum channel. A subspace HR of H is said to be invariant
iff any trajectory starting from a state with support in it, has its support on HR for all times, namely

supppρq Ă HR Ñ supppϕnpρqq Ă HR, @n P N

An invariant subspace is called minimal if it does not contain other non trivial invariant subspaces.

Definition 21 (Irreducibility). A quantum channel is called irreducible if the only invariant subspaces
are the trivial ones, i.e. t0u and H.

Let V be an invariant subspace of H. If we consider the restriction of the quantum channel to
ΠVDpHqΠV „ DpVq, we obtain again a quantum channel, that we shall denote ϕ|V , having Kraus
operators Vi|V :“ ΠVViΠV . If V is minimal, then the associated quantum channel ϕ|V is irreducible by
construction.

A particular type of invariant subspace is the globally asymptotically stable (GAS) subspace, meaning
that it is globally attractive for the dynamics.

Definition 22 (GAS). Let ϕ be a quantum channel. A subspace HR of H is globally asymptotically
stable if it is invariant and

lim
n Ñ8

∥ ϕnpρq ´ ΠRϕ
npρqΠR ∥“ 0, @ρ P DpHq

where ΠR represents the orthogonal projection onto HR.

This represent the subspace into which the evolution converges.

2.4 Invariant states & state space decomposition

This section is devoted to the presentation of the structure of the invariant states of a quantum channel,
that will play an fundamental role in this project. For a quantum channel ϕ, we denote by Fφ the set
of invariant states of ϕ, that is

Fφ “ tX P BpHq | ϕpXq “ Xu
In order to express the result let us introduce the set

T :“ tx P H | xx, ϕnpρqxy ÝÝÝÑ
nÑ8

0, @ρ P DpHqu (2.9)

and its orthogonal R “ T K.
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Theorem 7. The set T defined in eq. (2.9) is a subspace of H. It is the largest subspace such that for
each ρ P DpHq we have:

lim
nÑ8

trpΠT ϕnpρqq “ 0, lim
nÑ8

trpΠR ϕnpρqq “ 1

where ΠT and ΠR denote the orthogonal projectors onto T and R respectively. The decay in both limits
is monotonus.

This theorem, proved in [6], represents the first step towards the investigation of the structure of
H with respect to the time evolution. Loosely speaking, the subspace T contains the supports of all
decaying states, and for this reason it is called transient. The subspace R, containing the supports of
all invariant states, it is called recurrent and can be further decomposed according to the structure of
the set of invariant states, as will be shown in the following. Being R the subspace where the dynamics
converges, it is GAS. The resultant orthogonal decomposition of H reads

H “ R ‘ T (2.10)

The next property characterizes the invariance in terms of the Kraus Operators of ϕ, as presented and
proved in [11] (proposition 1).

Proposition 3. Let ϕ be a CPTP map on BpHq and H “ R ‘ T . Then R is invariant ðñ in any
Kraus Decomposition of ϕ, the associated Kraus operators Vi’s have the following block structure:

Vi “
„
Vi,R Vi,P
0 Vi,T

ȷ
(2.11)

Theorem 6.14 of Wolf’s lecture notes [29] proves that the set of invariant states of a quantum
channel has the following structure

Fφ “ U

˜
dÿ

α“1

ρα b BpCmαq ‘ 0

¸
U :

with U P UpHq, for an appropriate decomposition of H “ R ‘ T as Ck “ Àd
α“1

Cnα ‘ CnT . This
follows from the following facts:

1. being R » řd
α“1

Cnα GAS, it supports all the invariant states;

2. each Cnα has a canonical tensor product structure, namely Cnα “ Ckα b Cmα , nα “ kαmα, with
ρα ą 0 being a full rank density operator on Ckα such that

0 ‘ ...‘ Uαpρα b ICmα qU :
α ‘ ...‘ 0 P Fφ (2.12)

Therefore this structure of the invariant states of ϕ induces a decomposition of the GAS subspace R
into orthogonal minimal invariant subspaces Vα:

R “ V1 ‘ ...‘ Vd (2.13)

» Cn1 ‘ ...‘ Cnd

as deeply discussed also in [15]. In the general case the decomposition of R into minimal invariant
subspaces is not unique, as reported in the following theorem, proved in [6].

Theorem 8 (Equivalence of splittings). If there are several possibilities to decompose R into orthogonal
minimal invariant subspaces, then all these decompositions, together with the invariant states, are
unitarily equivalent under unitary transformations commuting with the time evolution restricted to
states having support in R.
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The decomposition (2.13) induces the following properties on the Kraus operators characterizing ϕ:

1. the restriction of Vi to this subspace R is block diagonal with respect to the decomposition (2.13),
which results in the following block structure for the Kraus operators:

Vi “

»
————–

V
p1q
i,R 0 0 ˚
0

. . . 0 ˚
0 0 V

pdq
i,R ˚

0 0 0 Vi,T

fi
ffiffiffiffifl

(2.14)

This follows by the fact that the Vα’s are minimal invariant subspaces of H, which implies no
dynamical connections between them, while the last zero blocks derive from the invariance of R,
as stated in proposition 3;

2. each Cnα has a canonical tensor product structure, namely Cnα “ Ckα b Cmα with respect to

which each V
pαq
i,R can be written as

V
pαq
i,R “ UαprV pαq

i b ICmα qU :
α (2.15)

where Uα is a unitary operator on Cnα , while rV pαq
i is an operator on Ckα ;

This shows the connection between the orthogonal decomposition of the recurrent subspace R into
minimal invariant subspaces and the structure of the set of invariant states of our quantum channel ϕ.

Let us consider the following setting where mα “ 1 for all α “ 1, ..., d, namely

R » Ck1 ‘ ...‘ Ckd

with minimal invariant subspaces Vα » Ckα . This is required for having identifiability of the invariant
states from their relative probability measures, which will represent the main assumption of the
convergence theorem for a quantum trajectory. Actually at the end of chapter 3 we will show that the
convergence theorem holds even when mα ě 1.

Let ρ8,α be the unique invariant state with full support on Vα, namely ρ̄8,α “ UαραU
:
α P DpVαq of

eq. (2.12). Being the map ϕ linear, its invariant states are closed under convex combination, hence
they form an operator subspace of DpHq defined as follows

Fφ “ convtρ8,α P DpHqu
with ρ8,αρ8,β “ ρ8,βρ8,α “ 0 @α ‰ β since they are supported in different orthogonal subspaces.

Remark (Unitary evolutions). For unitary evolutions there is no decay, namely T “ t0u and H “ R.
Each minimal invariant subspace Vα is one-dimensional and contains an eigenvector of the relative
Hamiltonian. Therefore if the spectrum of the Hamiltonian is non-degenerate, then the decomposition
of R into minimal invariant subspaces is unique.

Unitary evolution may be part of a Markovian evolution in two ways:

1. H may present a subspace on which the time evolution is unitary. In such a subspace the minimal
invariant subspaces are one-dimensional, supporting eigenstates of “energy”. Decoherence does
not take place on them, that’s why their union is called Decoherence Free Subspace (DFS).

2. H may present a subspace which could be factorizable into two spaces, where the dynamics
is factorized into a product of a unitary evolution on one factor-space with a non-invertible
Markovian evolution on the other one. The subsystem that is evolving unitarily is called Noiseless
Subsystem (NS). As an example one can think of a system containing two atoms, where one of
the atoms is decaying, the other one not.

DFS and NS represents Information Preserving Structures (IPS) [10] that allow to store and preserve
quantum information.
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2.5 Spectral analysis

In the following section we will recall some properties of the spectrum of a CPTP map derived in the
lecture notes of M. Wolf [29].

Being ϕ : BpHq Ñ BpHq a linear map having equal input and output space, we can assign a
spectrum to it, which represents the set of scalars λ P C that are roots of the characteristic polynomial
∆φpλq “ pλI ´ ϕq, namely

sppϕq :“ tλ P C | ∆φpλq “ 0u
Recall that the spectral radius of the linear map ϕ is defined as ϱpϕq :“ supt|λ| | λ P sppϕqu, namely as
the radius of a disc that encapsulates the whole spectrum.

Proposition 4 (Spectral radius of positive maps). If ϕ is a positive map on BpHq, then its spectral
radius satisfies

ϱpϕq ď ∥ϕpIq∥8 (2.16)

Proof. By the theorem of Russo and Dye we have ∥ϕpXq∥8 ď ∥ϕpIq∥8∥X∥8. Therefore if ϕpXq “ λX,
then

|λ|∥X∥8 “ ∥ϕpXq∥8 ď ∥ϕpIq∥8∥X∥8

which implies (2.16).

The spectrum of the quantum channel ϕ has the following properties:

1. being ϕ a CP map, it preserves hermicianity, which implies that eigenvalues are either real or
they come in complex conjugate pairs, indeed

ϕpXq “ λX Ñ rϕpXqs: “ ϕpX:q “ λ˚X:

2. from the previous property, from proposition 4 and from the unitality of ϕ˚ follows that

ϱpϕq ď 1

indeed ϱpϕq “ ϱpϕ˚q ď ∥ϕ˚pIq∥8 “ ∥I∥8 “ 1. This means that the spectrum of a quantum
channel lies in the unit disc;

3. from Brouwer’s fixed point theorem follows that an invariant state of ϕ always exists;

4. Let the peripheral spectrum of ϕ be the set of its eigenvalues lying on the boundary of the unit
disc, namely |λ| “ 1, then all their Jordan blocks (defined in eq. (2.17)) are one-dimensional, i.e.
Jpλq “ λ.

Remark. Notice that being any CPTP map a map from the compact set of density operators DpHq to
itself, any trajectory is bounded. This explains property 4.

Being a linear map, ϕ admits a Jordan decomposition:

ϕ “ V

˜
Kà

k“1

Jpλkq
¸
V ´1, Jpλkq :“

¨
˚̋
λk 1

. . . 1
λk

˛
‹‚ (2.17)

19



where Jpλkq are the Jordan blocks of size dk (with
ř

k dk “ k) and the number K of Jordan blocks
equals the number of different eigenvectors. Subdividing each Jordan block into a projection and a
nilpotent part we get

ϕ “
Kÿ

k“1

λkΠk `Nk, N
dk
k “ 0, ΠkNk “ NkΠk “ Nk, (2.18)

ΠkΠl “ δk,lΠk, trpΠkq “ dk,
ÿ

k

Πk “ Id

where Πk is the projection onto the generalized eigenspace in BpHq relative to the eigenvalue λk. The
number of Jordan blocks with eigenvalue λk is the geometric multiplicity νk of λk, while their joint
dimension

ř
k1:λk1 “λk

dk1 is its algebraic multiplicity nk. If these two multiplicities are equal for every

eigenvalue, then ϕ is called non-defective. In the non-defective case there exist a complete basis of Ck

of eigenvectors, and our quantum channel has the following spectral decomposition:

ϕp.q “
dÿ

α“1

|ρ8,αyxMα| `
kÿ

α“d`1

λα|RαyxLα|, λα ‰ 1, |λα| ď 1 (2.19)

where tρ8,α, Rαukα“1 are the eigenoperators of ϕ, while tMα, Lαukα“1 are the eigenoperators of the dual
ϕ˚. Therefore the quantum channel action on the state space can be rewritten in the following way

ϕpρq “
dÿ

α“1

trpMαρqρ8,α `
kÿ

α“d`1

λαtrpL:
αρqRα (2.20)

This operator basis is biorthogonal, therefore

trpMαρ8,βq “ δα,β , @α, β (2.21)

trpMαRα1q “ 0, @α “ 1, ..., d;@α1 “ d` 1, ..., k

which implies that

dÿ

α“1

trpMαRα1q “ trp
dÿ

α“1

MαRα1q “ trpRα1q “ 0, @α1 “ d` 1, ..., k Ñ Rα1 R DpHq

This means that the evolution of a quantum channel on the state space will never end up in an
eigenoperator with associated eigenvalue λα ‰ 1, |λα| ď 1.

Moreover a precise form of the invariant operators Mα of the dual ϕ˚ is derived in [14] (proposi-
tion 2.5), and reads

Mα “ ΠVα `MTα (2.22)

with MTα “ ΠVK
α
MαΠVK

α
and with 0 ď Mα ď 1. From eq. (2.21) follows that:

1. Mα has no support on Vβ for α ‰ β, therefore MTα “ ΠTMαΠT ;

2.
ř

α trpMαρ8,βq “ ř
α δα,β ðñ trpř

αMαρ8,βq “ 1 ðñ ř
αMα “ Idk, since trpρ8,βq “ 1 and

0 ď Mα ď 1. Consequently
ř

αMTα “ ΠT .

The resulting set of invariant operators for the dual map ϕ˚ reads

Fφ˚ “ spantMα P BpHq | 0 ď Mα ď 1,
ÿ

α

Mα “ Idku (2.23)

In the following proposition we introduce a map ϕ8 that projects onto the set of invariant states Fφ

(see proposition 6.3 of Wolf’s notes [29]), that we will use in section 3.3.
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Proposition 5 (Cesaro mean). Let us introduce the following map:

ϕ8 :“ lim
NÑ8

1

N

Nÿ

n“1

ϕn (2.24)

Then it is a projector onto the set of invariant states Fφ, namely

ϕ8 “
dÿ

α“1

Π8,α (2.25)

having spectral decomposition

ϕ8pρq “
dÿ

α“1

trpMαρqρ8,α

Proof. The Jordan decomposition of ϕ can be subdivided into three parts: the first one relative to the
invariant states, the second one associated with the eigenvalues of the peripheral spectrum different
from one, and the third one associated with the remaining eigenvalues inside the unit circle:

ϕ “
dÿ

α“1

Π8,α `
ÿ

k:|λk|“1

λk‰1

λkΠk `
ÿ

k:|λk|ă1

λkΠk `Nk

where in the first and in the second term the nilpotent part is not present due to property 4. Putting
this decomposition in eq. (2.24) and exploiting the properties of the projectors and the nilpotent
matrices in (2.19) we end up with

ϕ8 “
dÿ

α“1

Π8,α ` lim
NÑ8

¨
˚̊
˝

ÿ

k:|λk|“1

λk‰1

1

N

Nÿ

n“1

λnkΠk ` 1

N

Nÿ

n“1

¨
˝

ÿ

k:|λk|ă1

λkΠk `Nk

˛
‚
n

˛
‹‹‚ (2.26)

where ¨
˝

ÿ

k:|λk|ă1

λkΠk `Nk

˛
‚
n

“
ÿ

k:|λk|ă1

λnkΠk `
n´1ÿ

l“1

ˆ
n

l

˙
λn´l
k N l

k `Nn
k

Notice that

lim
NÑ8

1

N

Nÿ

n“1

λnk “ lim
NÑ8

1

N

1 ´ λN`1

1 ´ λ
“ 0, @k s.t. λk ‰ 1

where we have used the geometric sum. Therefore eq. (2.26) becomes

ϕ8 “
dÿ

α“1

Π8,α ` lim
NÑ8

1

N

Nÿ

n“1

¨
˝

ÿ

k:|λk|ă1

n´1ÿ

l“1

ˆ
n

l

˙
λn´l
k N l

k `Nn
k

˛
‚

“
dÿ

α“1

Π8,α
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With the spectral analysis of a quantum channel ends the part of the project devoted to the presen-
tation of the preliminaries needed to develop the main subject of the elaborate: indirect measurements
of a quantum system and the analysis of the asymptotic statistics of the stochastic process related to
measurement outcomes. In the following chapter we will present the setting of indirect measurements,
which give rise to a stochastic process called quantum trajectory. This process describes the state of the
system subject to this sequence of indirect measurements. Afterwards we will analyze the asymptotic
behaviour of the quantum trajectory, proving that it converges to one of the minimal invariant subspaces
Vα, making use of martingale techniques.
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Chapter 3

Indirect measurements & Quantum Tra-

jectory

Due to the laws of quantum physics, a direct projective measurement of an observable brings to the state
collapse of the system in one of the eigenstates of the measured observable. Moreover, measuring directly
a small quantum sized physical system is done by letting it interact with a macroscopic instrument.
This procedure can result in the destruction of the measured system. To avoid this destruction of
the measured system, we recur to a sequence of indirect measurements, which aims at getting partial
information on the quantum system with minimal impact on it. This setup of repeated quantum
measurements, based on the repeated quantum interactions, corresponds to actual important physical
experiments such as the ones performed by S. Haroche’s team on the indirect observation of photons in a
cavity ( [17], [23]). In the following we will briefly recap the procedure of repeated indirect measurements.

We let the quantum system of interest H interact with another quantum system Hp » Cr, called the
probe, during a time interval r0, ts, following an Hamiltonian

Htot “ Hs b Ip ` Is bHp `Hsp

where Hs and Hp represent the Hamiltonians dictating the evolution of the system and of the probe
respectively, while Hsp models the energy exchanges between the two. This Hamiltonian Htot give rise
to a unitary evolution on H b Hp

U “ e´itHtot

Let t|eiyuri“1
be an orthonormal basis of Hp, with Eij :“ |eiyxej | P BpHpq. We can rewrite the unitary

evolution in the following way

U “
rÿ

i,j“1

Uij b Eij “

¨
˚̋
U11 . . . U1r

...
. . .

...
Ur1 . . . Urr

˛
‹‚, Uij P BpHq (3.1)
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If we prepare the probe in the pure state |e1yxe1|, while our system is in the state ρ0, and we let them
interact in r0, ts, then their joint state at time t will be described by the following density matrix:

ρjointptq “ Upρ0 b |e1yxe1|qU :

“

¨
˚̋
U11ρ0U

:
11

. . . U11ρ0U
:
r1

...
. . .

...

Ur1ρ0U
:
11

. . . Ur1ρ0U
:
r1

˛
‹‚

If we look at the evolution in H, taking the partial trace over the probe system Hp, we get

ρt “ trHprρjointptqs “
rÿ

i“1

Ui1ρ0U
:
i1 “: ϕpρ0q (3.2)

where ϕ is a quantum channel having Kraus operators Vi “ Ui1, which corresponds to the blocks
of the first “column” of U in 3.1. Indeed ϕ is CP and TP thanks to the unitarity if U : trpϕpρqq “
tr

´řr
i“1

U
:
i1Ui1ρ0

¯
“ trpIsρq “ 1. Eq. (3.2) represents the Stinespring dilation, recalled in theorem 5)

of the quantum channel dictating the evolution of our system.
Then we perform a direct projective measurement on Hp, with measurement basis tPi :“ |eiyxei|uri“1

,
which will produce the ith outcome with probability

πi :“ trrpIs b Piqρjointptqs “ trrViρ0V :
i s

and with consequent state collapse in

ρjoint|iptq “ pIs b PiqρjointptqpIs b Piq
πi

“ Viρ0V
:
i

πi
b |eiyxei|

where the collapse in a measurement eigenstate interests only the probe, while our system only undergoes
a measurement back-action. The crucial point is that thanks to the correlation between the probe and
the system (developed during their interaction), indirect measurements are able to gain information
about the system avoiding its state collapse. Therefore if we look at what happens to our system after
the probe’s measurement, we get this random equation

ρ1 “ Viρ0V
:
i

trpViρ0V :
i q

with probability trpViρ0V :
i q

where the randomness comes from the measurement process, that selects the index i of the Kraus
operator. If we repeat this procedure on ρ1 and with a new copy of the probe, we will get

ρ2 “ Viρ1V
:
i

trpViρ1V :
i q

with probability trpViρ1V :
i q

and so on. This repeated sequence of indirect measurements of our system gives rise to a quantum
trajectory pρnqnPN, which is characterized by the random equation

ρn`1 “ ViρnV
:
i

trpViρnV :
i q

(3.3)

that holds with probability trpViρnV :
i q. Notice that being the Kraus operators Vi’s not time dependent

and being ρn`1 only dependent on ρn, the quantum trajectory pρnqnPN is a Markov Chain.
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3.1 Equivalence between invariance and stability in mean and almost

surely

The focus of this project is on the analysis of the asymptotic behaviour of the stochastic evolution of
our quantum system subject to indirect measurements, which is governed by eq. (3.3). In the previous
section we have characterized invariance (20) and stability (22) for the mean evolution of the quantum
trajectory, namely

ρ̂n`1 :“ Erρn`1s “ ϕpρ̂nq
which is deterministic and it is dictated by the quantum channel ϕ.

Now we have to characterize invariance and stability for the quantum trajectory, and thus in a
stochastic setting.

Definition 23 (Invariance). A subspace HR of H is said to be invariant almost surely if

supppρ0q Ă HR Ñ supppρnq Ă HR, @n P N a.s.

Definition 24 (GAS). A subspace HR of H is GAS almost surely if @ρ0 P DpHq

lim
n Ñ8

∥ ρn ´ ΠRρnΠR ∥“ 0 a.s.

with ΠR being the usual orthogonal projector onto the subspace R.

Taking inspiration from [8] we will show that also in the discrete setting there is an equivalence
between invariance and stability in mean and almost surely. The proof is based on the following linear
Lyapunov function:

V pρq :“ trpΠTρq, 0 ď V pρq ď 1

with ΠT being the usual orthogonal projector onto the subspace T . Notice that

V pρq “ 0 ðñ supppρq Ă HR (3.4)

Lemma 9. If the subspace HR is invariant then the process pV pρnqqnPN is a positive supermartingale,
namely

ErV pρn`1q | ρn “ ρs ď V pρq, @ρ P DpHq

Proof. The proof relies on the block structure of the Kraus operators (2.11), induced by the invariance
of HR, which implies that

ΠTVi “ ΠTViΠT “: V
pT q
i

ViΠT “
„
0 Vi,P
0 Vi,T

ȷ
(3.5)

Therefore

ErV pρn`1q | ρn “ ρs “
ÿ

i

tr

˜
ΠT

ViρV
:
i

trpViρV :
i q

¸
trpViρV :

i q

“
ÿ

i

tr
´
V

pT q
i ρV

:pT q
i

¯

“ tr
´
ϕpT qpρ|T q

¯
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where ϕpT q is the map defined by the Kraus operators tV pT q
i u, while ρ|T “ ΠTρΠT . What we want to

show is that the map ϕpT q is trace non-increasing, namely:

tr
´
ϕpT qpρ|T q ´ ρ|T

¯
ď 0

This can be seen in the following way, exploiting the block structure (3.5):

tr
`
ϕpρ|T q

˘
“ tr

˜
ÿ

i

ViΠTρ|TΠTV
:
i

¸

“
ÿ

i

tr
´
Vi,PρTV

:
i,P

¯
` tr

´
Vi,TρTV

:
i,T

¯

“
ÿ

i

tr
´
Vi,PρTV

:
i,P

¯
` tr

´
ϕpT qpρ|T q

¯

with ρT P DpHT q being the non-zero block of ρ|T . Being ρT ě 0, we have that
ř

i tr
´
Vi,PρTV

:
i,P

¯
ě 0,

which implies that

tr
´
ϕpT qpρ|T q

¯
ď tr

`
ϕpρ|T q

˘
“ trpρ|T q

that shows that
ErV pρn`1q | ρn “ ρs “ tr

´
ϕpT qpρ|T q

¯
ď trpΠTρq “ V pρq

Finally the positivity comes by the fact that ρ ě 0,@ρ P DpHq and by the monotonicity of the trace
map.

Now we have all the tools to state and prove the equivalence theorem.

Theorem 10. (Invariance and stability in mean iff almost surely) The subspace HR:

• is invariant in mean ðñ it is invariant almost surely

• is GAS in mean ðñ it is GAS almost surely

Proof. We start by the invariance. Given condition (3.4) it is sufficient to prove that

V pρ̂nq “ 0 @n P N ðñ V pρnq “ 0 @n P N a.s.

The implication ð derives by the linearity of V , which implies that

V pρ̂nq “ ErV pρnqs
For showing the other direction (ñ), let us recall that V pρnq ě 0, @n P N, from which follows that

if V pρ̂nq “ ErV pρnqs “ 0 @n P N then V pρnq “ 0 @n P N a.s.

and the invariance equivalence holds.
We now move to the GAS property. Given condition (3.4) it is sufficient to prove that

lim
nÑ8

V pρ̂nq “ 0 ðñ lim
nÑ8

V pρnq “ 0 a.s.

The implication ð follows by the dominated convergence theorem applied on V . Indeed if we have
limnÑ8 V pρnq “ 0 a.s. and by the fact that V pρnq ď 1, @n P N follows that

lim
nÑ8

V pρ̂nq “ lim
nÑ8

ErV pρnqs “ E

”
lim
nÑ8

V pρnq
ı

“ 0

The other direction (ñ) starts by assuming that limnÑ8 ErV pρnqs “ 0. Since V pρnq ě 0, this
convergence corresponds to a L1 convergence to 0. On the other hand, since 0 ď V pρnq ď 1 and
by lemma 9, the process pV pρnqq is a positive bounded supermartingale. It follows from bounded
supermartingale convergence theorem, that this process converges almost surely and in L1 to a random
variable V8. The uniqueness of the L1 limit implies V8 “ 0 almost surely.
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3.2 Measurement outcomes

If we don’t look at the measurement outcomes, a sequence of n indirect measurements gives rise to a
random sequence Xn :“ pi1, i2, ..., inq P t1, ..., rubn, where i1 is the outcome of the first measurement,
i2 of the second one and so on. A sequence of outcomes pi1, i2, ..., inq appears with probability

Pρ0rpi1, i2, ..., inqs :“ trpVin ...Vi1ρ0V :
i1
...V

:
in

q (3.6)

which depends on the initial state ρ0 of the system. This can be easily shown for n “ 2 in the following
way

Pρ0rpi1, i2qs “ Pρ0ri2|i1sPρ0ri1s “ trpVi2ρ1|i1V
:
i2

qtrpVi1ρ0V :
i1

q “ trpVi2Vi1ρ0V :
i1
V

:
i2

q
and the same procedure can be iterated to show that eq. (3.6) holds for any n P N. Let Ω be the space of
events, namely of infinite sequences pi1, i2, ...q, where il P t1, .., ru for every measurement l. For a finite
sequence pi1, ..., inq we can define Bi1,...,in as the subset of Ω made of all those realizations ω’s whose
first n components are i1, ..., in. Let Fn be the σ-algebra generated by all the Bi1,...,in . For convenience
we define F´1 “ tH,Ωu. Then F :“ pF´1,F0,F1, ...q is an increasing sequence of σ-algebras. We take
F to be the smallest σ-algebra on Ω containing all the Fn’s, making pΩ,F ,Fq a filtered measurable
space.

An initial state ρ0 induces a probability measure Pρ0 on Ω which is uniquely determined by the
condition (3.6). Indeed, we see that the Kolmogorov consistency criterion is fulfilled:

rÿ

in`1“1

trpVin`1
Vin ...Vi1ρV

:
i1
...V

:
in
V

:
in`1

q “ trpVin ...Vi1ρV :
i1
...V

:
in

q

The resultant probability space is pΩ,F ,Pρq, where pρnqnPN is a unobserved Markov Chain defined by
the random equation

ρn “
Vin ...Vi1ρV

:
i1
...V

:
in

trpVin ...Vi1ρV :
i1
...V

:
in

q
(3.7)

which holds with probability trpVin ...Vi1ρV :
i1
...V

:
in

q. The only handy observation is the sequence of the
measurement results pXnq. Bayes law maps the information of pXnq in the evolution of the Markov
chain. An important thing that we want to point out is that in general the sequence of random variables
pXnq is not i.i.d. (even not Markovian). Therefore the statistical analysis of the asymptotic behaviour of
pXnq cannot fully rely on standard results on i.i.d. models. That’s why we will make use of martingale’s
asymptotic laws to develop our analysis.

The following proposition highlights some properties of the map ρ Ñ Pρ.

Proposition 6. The map ρ Ñ Pρ is:

1. affine: λPρ ` p1 ´ λqPσ “ Pλρ`p1´λqσ @λ P r0, 1s, @ρ, σ P DpHq

2. k-Lipschitz and consequently it is continuous in total variation with respect to the norm 1, namely

if ρn ÝÝÝÑ
nÑ8

ρ then ∥Pρn ´ Pρ∥TV ÝÝÝÑ
nÑ8

0

with ∥Pρn ´ Pρ∥TV :“ supAPF |PρnpAq ´ PρpAq|.

Proof. 1 is trivially true by the linearity of the trace and by the fact that λ is a scalar. To prove 2, we
define the quantity

Mnpi1, ..., inq :“
V

:
i1
...V

:
in
Vin ...Vi1

trpV :
i1
...V

:
in
Vin ...Vi1q
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We want to prove that ρ Ñ Pρ is k-Lipschitz, where k is the dimension of our quantum system, ie.
H „ Ck. We have that

|Pρnpi1, ..., inq ´ Pρpi1, ..., inq| “ |trrVin ...Vi1pρn ´ ρqV :
i1
...V

:
in

s|
“ |trrV :

i1
...V

:
in
Vin ...Vi1pρn ´ ρqs|

“ trpV :
i1
...V

:
in
Vin ...Vi1q|trrMnpi1, ..., inqpρn ´ ρqs|

ď trpV :
i1
...V

:
in
Vin ...Vi1q∥Mn∥8∥ρ´ ρn∥1 (3.8)

ď trpV :
i1
...V

:
in
Vin ...Vi1q∥ρ´ ρn∥1 “ kPIk{kpi1, ..., inq∥ρ´ ρn∥1 (3.9)

where (3.8) holds by inequality (17) proved in the appendix, while inequality (3.9) holds sinceMn P DpHq
implies that ∥Mn∥8 ď 1. Now taking the sup over all possible infinite sequences in F we end up with

∥Pρn ´ Pρ∥TV “ sup
APF

|PρnpAq ´ PρpAq| ď k sup
APF

PIk{kpAq∥ρ´ ρn∥1

ď k∥ρ´ ρn∥1

which shows that ρ Ñ Pρ is k-Lipschitz and consequently it is continuous in total variation.

Let us focus on the probability measures Pρ8,α induced by the invariant states ρ8,α. The identifiability
assumption on these measures represent the main assumption of this project, since if it is satisfied
then the convergence theorem for the quantum trajectory holds and consequently also the asymptotic
statistical analysis.

Assumption. (ID) For any α ‰ β there exists an I :“ pi1, ..., inq P Fn such that

Pρ8,αpIq ‰ Pρ8,β
pIq

This assumption practically means that we are able to discriminate between the different invariant
states from their relative probability measures. In the following we will show that when ID is satisfied
then the probability measures Pρ8,α are all mutually singular, that will represent the key point to prove
the main convergence theorem.

Definition 25 (Mutual singularity). The measures Pρ8,α are all mutually singular iff there exists a
collection of disjoint subsets pΩαq of Ω such that

Pρ8,αpΩβq “ δα,β @α, β P t1, ..., du

Let us define the process pJ , ρq induced by the Kraus operators J “ tViuri“1
and by a state ρ. This

process is called the unravelling of our quantum channel ϕ. The left shift on the events space is defined
as

φ : Ω Ñ Ω

pω1, ω2, ...q ÞÑ pω2, ω3, ...q

is a continuous surjection. The process pJ , ρ8,αq, induced by the Kraus operators J “ tV pαq
i “

ΠVαViΠVαuri“1
defines a dynamical system pΩ,F ,Pρ8,α , φq. Notice that the Kraus operators tV pαq

i uri“1

defines the irreducible component ϕpαq of our quantum channel, having a unique invariant state ρ8,α,
which induces a probability measure Pρ8,α that is φ´ invariant, namely

Pρ8,αpφ´1pAqq “ Pρ8,αpAq, @A P F

We recall the following theorem which applies to our setting and shows that pΩ,F ,Pρ8,α , φq is ergodic.
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Theorem 11. If ρ8 ą 0 is the unique invariant state of ϕ, then pΩ,F ,Pρ8 , φq is ergodic.

Therefore we can apply the Birkhoff Theorem 4 for ergodic dynamical systems: for any function
f P L1pΩ,F ,Pρ8,αq we have that

1

n

n´1ÿ

k“0

f ˝ φk ÝÝÝÝÑ
nÑ`8

EPρ8,α
pfq, Pρ8,α ´ a.s.

If we take f “ 1I , with I “ pi1, ..., ipq P Fp, we can define the function NIpnq : Ω Ñ N as NIpnq :“řn´1

k“0
1I ˝ φk, which counts the number of times the finite sequence I appears in a realization ω P Ω

applying n shifts, with

1Ipωq “
#
1 if ω “ pI, ...q
0 otherwise

Applying Birkhoff it turns out that

NIpnq
n

ÝÝÝÝÑ
nÑ`8

EPρ8,α
p1Iq “ Pρ8,αpIq, Pρ8,α ´ a.s. (3.10)

and we will need this to prove the following lemma, which shows that when ID holds, then the measures
Pρ8,α are mutually singular.

Lemma 12. If ID holds then there exists a collection of disjoint subsets pΩαq Ă Ω such that

Pρ8,αpΩβq “ δα,β @α, β “ 1, ..., d

Proof. Exploiting eq. (3.10), we define the subsets Ωα in the following way

Ωα :“
"
w P Ω | NIpnq

n
ÝÝÝÝÑ
nÑ`8

Pρ8,αpIq @I “ pi1, ..., i|I|q
*

(3.11)

which are disjoint by ID , and φ´ invariant, i.e. φ´1pΩαq “ Ωα. By the definition of Ωα follows that
Pρ8,αpΩβq “ 1 if α “ β and zero otherwise, which proves the lemma.

In the following section we will construct a special martingale that will permit us to prove that,
under the ID assumption, the support of the quantum trajectory converges non-deterministically to
one of the minimal invariant subspaces Vα.

3.3 Convergence of the quantum trajectory

In the following section we will show that the quantum trajectory will asymptotically converge to one
of the minimal invariant subspaces Vα. This convergence is non-deterministic, so we will derive the
probability of convergence to a certain subspace, that will depend on the initial state of the quantum
system and on the invariant states of the dual map ϕ˚.

The starting point of this analysis is the following random variable

Qαpnq : “ trpMαρnq
“ trrΠVαρns ` trrMTαρns

with 0 ď Qαpnq ď 1 and
řd

α“1
Qαpnq “ 1. This quantity represents the probability in ρn distributed

in the Vα subspace after the n-th measurement, plus a term trrMTαρns that is converging to zero by
theorem 7. This random variable Qαpnq gives rise to a sequence that turns out to be a martingale,
and thanks to the convergence theorem for martingales, it will permit us to analyze the asymptotic
behaviour of our quantum trajectory pρnqnPN.
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Proposition 7. The sequence of random variables tQαpnqunPN is a martingale which converges almost
surely and in L1 to a random variable Qαp8q.

Proof. We have

ErQαpn` 1q|Fns “
dÿ

α“1

trpMαViρnV
:
i q

trpViρnV :
i q

trpViρnV :
i q

“
dÿ

i“1

trpV :
i MαViρnq

“ trpϕ˚pMαqρnq “ trpMαρnq “ Qαpnq

where we have used the fact that Mα is an invariant operator of the dual ϕ˚. As Qαpnq is also
bounded, the martingale convergence theorem 2 ensures that Qαpnq Ñ Qαp8q Pρ-almost surely and in
L1pΩ,F ,Pρq.

Under the ID assumption we will show that the asymptotic random variable Qαp8q “ limnÑ8 Qαpnq
is either zero or one, namely trpΠVαρnq is converging to either zero or one, while the other term trpMTαρnq
is converging to zero by theorem 7. Let t|αyunα

α“1
be an orthonormal basis of Vα, and t|βyunβ

β“1
of Vβ.

By the Cauchy-Schwarz inequality

|xα|ρ|βy|2 ď xα|ρ|αyxβ|ρ|βy

the off-diagonal blocks of the density matrix converges to zero, since either xα|ρ|αy or xβ|ρ|βy is
asymptotically equal to zero. Finally this will demonstrate that the support of our quantum trajectory
either converges to the subspace Vα or it converges to another minimal invariant subspace Vβ , with β ‰ α.

This asymptotic analysis will proceed as follows: we will start by the simpler case that do not
consider the transient part T and we will firstly consider the subspaces Vα to be one-dimensional, and
secondly we will generalize the result to multi-dimensional subspaces Vα. Finally we will introduce the
transient part, proving that everything holds also in this general case. The same asymptotic result was
obtained in [5], which considers the transient part but one-dimensional subspaces Vα. In this case the
indirect measurements are called non-demolition, and the convergence of the quantum trajectory is to
one of the pointer states tΠVα “ |αyxα|udα“1 .

3.3.1 No transient part: T “ 0

Our analysis starts from the case that do not consider the transient part:

H “ V1 ‘ ...‘ Vd (3.12)

which implies that for any α P t1, ..., du:

1. Mα “ ΠVα ,

2. ΠVαVi “ ViΠVα for all i P t1, , ..., ru.

3. Vi “ řd
α“1

ΠVαViΠVα , since by condition 1 the Kraus operators are block diagonal w.r.t. the
decomposition (3.12).
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Given a sequence I “ pi1, ..., inq P Fn and defining VI :“ Vin ...Vi1 , from these three properties follows
that the probability measure induced by any state ρ reads as follows

PρpIq “ trpVIρV :
I q “

ÿ

α,α1
trpΠVαVIΠVαρΠVα1V

:
I ΠVα1 q

“
ÿ

α,α1
trpδα,α1ΠVαVIΠVαρΠVα1V

:
I q

“
ÿ

α

trpVIΠVαρΠVαV
:
I q

“ Pρ0pIq

with

ρ0 :“
dÿ

α“1

ΠVαρΠVα (3.13)

namely the non-diagonal blocks of ρ w.r.t. the decomposition (3.12) do not influence the probability
measure induced by it. This will permit us to rewrite the measure Pρ as a convex combination of some
measures, where each one is induced by a state supported only on one subspace Vα.

This section is divided in two parts: the first one considers one-dimensional subspaces Vα, while the
second one generalizes to the case of multidimensional subspaces.

One-dimensional subspaces Vα

Let t|αyukα“1 be an orthonormal basis of H. In this first case the invariant states are pure states, i.e.
ρ8,α “ |αyxα|, namely rank one projectors onto the one-dimensional subspaces Vα, with d “ k. In this
setting the state ρ0 of eq. (3.13) can be written as follows:

ρ0 “
kÿ

α“1

Qαp0qρ8,α (3.14)

where Qαp0q “ trpΠVαρ0q represents the probability that the initial state ρ0 is in the subspace Vα. By
the fact that the map ρ Ñ Pρ is affine by 1, follows that the probability measure Pρ0 “ Pρ can be
written as a convex combination of the probability measures induced by the invariant states ρ8,α’s:

Pρ0 :“
dÿ

α“1

Qαp0qPρ8,α (3.15)

Observe that from eq. (3.14) and by the fact that ΠVα and VI commutes follows that

Qαpn, Iq “ trpΠVαρnq “ trpΠVαVIρ0V
:
I q

trpVIρ0V :
I q

“ trpVIΠVαρ0ΠVαV
:
I q

trpVIρ0V :
I q

“ Qαp0qPρ8,αpIq
Pρ0pIq (3.16)

for all I “ pi1, ..., inq P Fn.

We have now all the tools to prove the main convergence theorem for a quantum trajectory.

Theorem 13. If ID holds then there exists a collection of disjoint subsets pΩαq of Ω such that
Qαp8q “ 1Ωα Pρ0-a.s., namely

Qαp8q “ lim
nÑ8

trpMαVInρ0V
:
In

q
trpVInρ0V :

In
q

“
#
1 if I8 P Ωα

0 otherwise
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Proof. By lemma 12 ID implies that the measures Pρ8,α are all mutually singular. Therefore what we
want to prove now is that this mutual singularity of the measures Pρ8,α is equivalent to the fact that
there exists a collection of disjoint subsets pΩαq of Ω such that Qαp8q “ 1Ωα Pρ0-a.s.

We start by showing that Qαpnq is the Radon-Nikodym derivative of Qαp0qPρ8,α with respect to
Pρ0 . Indeed, under the assumption that Qαp0q ą 0 @α P t1, ..., du, any set of Pρ0-measure 0 has also
Pρ8,α-measure 0, namely Pρ8,α ! Pρ0 . Therefore for all α there exists the Radon-Nikodym derivative of
Qαp0qPρ8,α with respect to Pρ0 , which we will call Qnpαq. This Qnpαq is a Pρ0-integrable non-negative
random variable on pΩ,Fnq, such that Pρ0-a.s.

ř
αQnpαq “ 1, so that each Qnpαq ď 1. Moreover

Qαp0qEPρ8,α
rXs “ EPρ0

rQnpαqXs (3.17)

for every Pρ8,α-integrable random variable X on pΩ,Fnq. But this implies that

Qnpα, Iq “ Qαp0qPρ8,αrIs
Pρ0rIs

for every I P Fn, which is exactly the expression of our random variable Qαpnq as showed in eq. (3.16).
This argument holds also at the limit since Qαpnq is bounded, ensuring that the random variable Qαp8q
on pΩ,Fq is the Radon-Nikodym derivative of Qαp0qPρ8,α with respect to Pρ0 , which implies that

EPρ0
rQαp8q1Ωβ

s “ Qαp0qEPρ8,α
r1Ωβ

s “ Qαp0qPρ8,αrΩβs “ Qαp0qδα,β

where the last equation holds by the mutual singularity of the measures Pρ8,α . Being 0 ď Qαp8q ď 1
follows that if α ‰ β then Qαp8q1Ωβ

“ 0 Pρ0-a.s.. Therefore

Qαp8q1Ωβ
“ Qαp8qδα,β

Pρ0-a.s.. If we take the sum over α from both sides of the previous equation, we end up with

ÿ

α

Qαp8q1Ωβ
“ 1Ωβ

,
ÿ

α

Qαp8qδα,β “ Qβp8q

from which follows that Qβp8q “ 1Ωβ
. The converse is also true: if there exists a collection of disjoint

subsets pΩαq of Ω such that Qαp8q “ 1Ωα Pρ0-a.s. then the measures Pρ8,α are all mutually singular
and concentrated on the Ωα’s.

This results proves that the quantum trajectory asymptotically selects one of the subspaces Vα.
Moreover it permits us to compute the probability of selection of a certain subspace:

Pρ0rQαp8q “ 1s “ Pρ0rΩαs “
dÿ

β“1

Qβp0qPρ8,β
rΩαs “ Qαp0q

This shows that the probability of convergence into the subspace Vα is Qαp0q “ trpMαρ0q, which
depends on the initial state of our system.

Multi-dimensional subspaces Vα

In this more general setting, where the invariant states are no more rank one projectors onto the
subspaces Vα, the state ρ0 of eq. (3.13) can be written as follows

ρ0 “
dÿ

α“1

Qαp0qρα
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with states ρα defined as

ρα :“ ΠVαρ0ΠVα

trpΠVαρ0ΠVαq (3.18)

and supported on Vα. As before by the fact that the map ρ Ñ Pρ is affine by 1, follows that the
probability measure Pρ0 “ Pρ can be written as a convex combination of the probability measures
induced by states ρα’s:

Pρ0 “
dÿ

α“1

Qαp0qPρα (3.19)

Remark. Notice that ρα represents the state of our system, after its projection onto the subspace
Vα. This happens when you perform on your system a projective measurement having measurement
basis tΠVαu, and you get α as outcome, which happens with probability trpΠVαρq “ Qαp0q. Being Vα a
minimal invariant subspace of H, projecting first on it is completely equivalent to conditioning on the
limit being α, namely

Pρα “ Pρr¨ | Qαp8q “ 1s
because if the initial state of our system is already supported in Vα, then it will remain inside it during
the sequence of measurements by the invariance of Vα.

In the following lemma we will show that when ID holds then also the measures Pρα are all mutually
singular.

Lemma 14. If ID holds then there exists a collection of disjoint subsets pΩαq Ă Ω such that

PραpΩβq “ δα,β @α, β “ 1, ..., d

with ρα defined in eq. (3.18).

Proof. We start by showing that Pρpφ´1pAqq “ PφpρqpAq, @A P F and @ρ P DpHq. Let Bi1,...,in “ tω P
Ω | ω1 “ i1, ..., ωn “ inu be a cylinder subset of Ω, then

Pρpφ´1pCi1,...,inqq “ Pρpω2 “ i1, ..., ωn`1 “ inq “
rÿ

ω1“1

Pρpω1, ω2 “ i1, ..., ωn`1 “ inq

“
rÿ

ω1“1

trpVin ...Vi1Vω1
ρV :

ω1
V

:
i1
...V

:
in

q

“ tr

˜
Vin ...Vi1

rÿ

ω1“1

Vω1
ρV :

ω1
V

:
i1
...V

:
in

¸

“ PφpρqpCi1,...,inq

and this equality holds also for infinite sequences in F . Let us apply this results to the Ωα’s, together
with the fact that they are φ´ invariat:

PραpΩβq “ Pφpραqpφ´1pΩβqq “ PφpραqpΩβq “ 1

n

nÿ

k“1

PφkpραqpΩβq “ P 1

n

řn
k“1

φkpραqpΩβq (3.20)

where the last equality holds since the function ρ Ñ Pρ is affine by proposition 6. Recall that
ϕ8 “ limnÑ8 1

n

řn
k“1

ϕk is a projector onto the set of invariant states Fφ, namely ϕ ˝ ϕ8pρq “ ϕ8pρq.
The function ρ Ñ Pρ is continuous in total variation by proposition 6, so we can take the limit:

lim
nÑ8

P 1

n

řn
k“1

φkpραqpΩβq “ Pφ8pραqpΩβq “ Pρ8,αpΩβq “ δα,β

where we have used the fact that by eq. (2.25) ϕ8pραq “ řd
α“1

Π8,αρα “ ρ8,α since ρα is supported
only on Vα, while the last equation holds by lemma 12.
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Now we have all the tools to prove that the theorem of the convergence of the quantum trajectory
to an invariant subspace holds also in this setting.

Theorem 15. If ID holds then Qαp8q “ 1Ωα Pρ0-almost surely.

Proof. We start by rewriting Qαpnq as follows

Qαpn, Iq “ trpΠVαVIρ0V
:
I q

trpVIρ0V :
I q

Qαp0q
Qαp0q “ Qαp0qtr

ˆ
VIΠVα

ρ0

Qαp0qΠVαV
:
I

˙
1

trpVIρ0V :
I q

“ Qαp0qPραpIq
Pρ0pIq

(3.21)
for all I “ pi1, ..., inq P Fn. If ID holds then the measures Pρα have a disjoint support by the previous
lemma. Let us focus on the current decomposition of the probability measure Pρ0 of eq. (3.19).
Assuming that Qαp0q ą 0 for all α P t1, ..., du, and then applying the same reasoning of Lemma 13 and
by eq. (3.21), we get that the random variable Qαp8q on pΩ,Fq is the Radon-Nikodym derivative of
Qαp0qPρα with respect to Pρ0 , which implies that

EPρ0
rQαp8q1Ωβ

s “ Qαp0qEPρα
r1Ωβ

s “ Qαp0qPραrΩβs “ Qαp0qδα,β
and following the same procedure as in theorem 13 we get that Qαp8q “ 1Ωα Pρ0 ´ a.s.

The following step will be to generalize the convergence theorem to the case that considers also the
transient part.

3.3.2 Transient part: T ‰ 0

Let us come back to the general case where also the transient part is present, therefore the state can
have a part of its support on the transient subspace T , that asymptotically decays. Recall that the
resultant Hilbert space decomposition reads

H “
dà

α“1

Vα ‘ T

where Vα is the subspace where the invariant state ρ8,α has its full support. When the transient part
is present, the operators Mα take the form of eq. (2.22), hence they are no more orthogonal projectors,
which brings to their possible non commutativity with the Kraus operators:

MαVi ‰ ViMα

Moreover observe that in this case the measure induced by any initial state ρ is no more equal to the
measure induced by ρ0 (i.e. Pρ ‰ Pρ0), as it was in the previous subsection. Therefore we need to find
a new decomposition of the probability measure Pρ. We start by defining a new probability measure
Pα,ρ on Ω, induced by an initial state ρ having trpMαρq ‰ 0:

Pα,ρpIq :“ 1

trpMαρq trpMαVIρV
:
I q (3.22)

The normalization condition reads

Pα,ρpΩq “
ÿ

IPΩ
Pα,ρpIq “ 1

trpMαρq
ÿ

IPΩ
trpMαVIρV

:
I q “ 1

since
ÿ

IPΩ
trpMαVIρV

:
I q “ tr

˜
ÿ

IPΩ
V

:
I MαVIρ

¸
“ trpMαρq

by the fact that Mα is an invariant operator of ϕ˚. The positivity condition is also trivially satisfied.
The map ρ Ñ Pα,ρ is neither affine nor continuous in total variation. But we still have continuity in
total variation for a particular sequence ϕ̄npρq, as the following proposition shows.
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Proposition 8. Let ϕ̄npρq :“ 1

n

řn
k“1

ϕkpρq. If ϕ̄npρq ÝÝÝÑ
nÑ8

ρ then the measure Pα,φ̄npρq converges in

total variation to the measure Pα,ρ, namely there exists a constant cα ą 0 such that

∥Pα,φ̄npρq ´ Pα,ρ∥TV ď cαk∥ϕ̄npρq ´ ρ∥1

for every state ρ P DpHq such that trpMαρq ‰ 0.

Proof. We start by defining a new quantity Mα,npi1, ..., inq, which is equal to

Mα,npi1, ..., inq :“
V

:
i1
...V

:
in
MαVin ...Vi1

trpV :
i1
...V

:
in
MαVin ...Vi1q

when trpV :
i1
...V

:
in
MαVin ...Vi1q ‰ 0, while it is 0 when the denominator is equal to zero. We note that

the two measures Pα,φ̄npρq and Pα,ρ have the same denominator:

trpMαϕ̄npρqq “ 1

n

nÿ

k“1

trpMαϕ
kpρqq “ 1

n

nÿ

k“1

trpϕ ˚k pMαqρq “ 1

n

nÿ

k“1

trpMαρq “ trpMαρq

Therefore we have that

|Pα,φ̄npρqpi1, ..., inq ´ Pα,ρpi1, ..., inq| “ 1

trpMαρq |trrMαVin ...Vi1pϕ̄npρq ´ ρqV :
i1
...V

:
in

s|

“ 1

trpMαρq |trrV :
i1
...V

:
in
MαVin ...Vi1pϕ̄npρq ´ ρqs|

“ 1

trpMαρq trpV :
i1
...V

:
in
MαVin ...Vi1q|trrMα,npi1, ..., inqpϕ̄npρq ´ ρqs|

ď 1

trpMαρq trpV :
i1
...V

:
in
MαVin ...Vi1q∥Mα,n∥8∥ϕ̄npρq ´ ρ∥1

ď 1

trpMαρq trpV :
i1
...V

:
in
MαVin ...Vi1q∥ϕ̄npρq ´ ρ∥1

with
1

trpMαρq trpV :
i1
...V

:
in
MαVin ...Vi1q∥ϕ̄npρq ´ ρ∥1 “ cαk Qα,Ik{kpi1, ..., inq∥ϕ̄npρq ´ ρ∥1

and where cα :“ 1

trpMαρq while Qα,Ik{kpi1, ..., inq “ trpMαVin ...Vi1
Ik
k
V

:
i1
...V

:
in

q ď 1. The first inequality

holds by inequality (17) proved in the appendix, while the last one holds since ∥Mα,n∥8 ď 1. Now
taking the sup over all possible infinite sequences in F we end up with

sup
APF

|Pα,φ̄npρqpAq ´ Pα,ρpAq| ď cαk sup
APF

Qα,Ik{kpAq∥ϕ̄npρq ´ ρ∥1

ď cαk∥ϕ̄npρq ´ ρ∥1

In line with what we have done in the previous section, we decompose the measure Pρ as follows

Pρ :“
dÿ

α“1

Qαp0qPα,ρ (3.23)

and we want to show that if ID holds, then also the measures Pα,ρ are all mutually singular.
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Lemma 16. If ID holds then there exists a collection of disjoint subsets pΩαq Ă Ω such that

Pα,ρpΩβq “ δα,β @α, β “ 1, ..., d (3.24)

for all ρ P DpHq such that trpMαρq ‰ 0.

Proof. We define the subsets Ωα as in (3.11), which remain disjoint by ID , and φ´ invariant. We will
show that also with the measures Pα,ρ we have that Pα,ρpφ´1pAqq “ Pα,φpρqpAq, @A P F and @ρ P DpHq
such that trpMαρq ‰ 0. As before

Pα,ρpφ´1pCi1,...,inqq “ Pα,ρpω2 “ i1, ..., ωn`1 “ inq “
rÿ

ω1“1

Pα,ρpω1, ω2 “ i1, ..., ωn`1 “ inq

“
rÿ

ω1“1

1

trpMαρq trpMαVin ...Vi1Vω1
ρV :

ω1
V

:
i1
...V

:
in

q

“ 1

trpMαρq tr
˜
MαVin ...Vi1

rÿ

ω1“1

Vω1
ρV :

ω1
V

:
i1
...V

:
in

¸

“ Pα,φpρqpCi1,...,inq

Let us apply this results to the Ωα’s, together with the fact that they are φ´ invariat:

Pα,ρpΩβq “ Pα,φpρqpφ´1pΩβqq “ Pα,φpρqpΩβq “ 1

n

nÿ

k“1

Pα,φkpρqpΩβq “ Pα, 1
n

řn
k“1

φkpρqpΩβq (3.25)

where the last equality holds because

1

n

nÿ

k“1

Pα,φkpρqpCi1,...,inq “ 1

n

nÿ

k“1

1

trpMαϕkpρqq trpMαVin ...Vi1ϕ
kpρqV :

i1
...V

:
in

q

“ 1

n

nÿ

k“1

1

trpϕ˚kpMαqρq trpMαVin ...Vi1ϕ
kpρqV :

i1
...V

:
in

q

“ 1

trpMαρq tr
˜
MαVin ...Vi1

1

n

nÿ

k“1

ϕkpρqV :
i1
...V

:
in

¸

“ 1

trp 1

n

řn
k“1

ϕ˚kpMαqρq tr
˜
MαVin ...Vi1

1

n

nÿ

k“1

ϕkpρqV :
i1
...V

:
in

¸

“ 1

trpMα
1

n

řn
k“1

ϕkpρqq tr
˜
MαVin ...Vi1

1

n

nÿ

k“1

ϕkpρqV :
i1
...V

:
in

¸

“ Pα, 1
n

řn
k“1

φkpρqpCi1,...,inq

Since the measure Pα,φ̄npρq converges in total variation by proposition 8, we can take the limit:

lim
nÑ8

Pα, 1
n

řn
k“1

φkpρqpIq “ lim
nÑ8

1

trpMαρq tr
«
MαVI

1

n

nÿ

k“1

ϕkpρqV :
I

ff

“ 1

trpMαρq tr
”
MαVIϕ8pρqV :

I

ı
(3.26)

where ϕ8 is the projector onto the set of invariant states, defined in eq. (2.24). Recall that the spectral
decomposition of ϕ8 reads ϕ8p¨q “ řd

α“1
trpMα¨qρ8,α. Turning back to eq. (3.26) and using this last
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equality we end up with

tr
”
MαVIϕ8pρqV :

I

ı
“ tr

«
pΠVα `MTαqVI

˜
dÿ

α1“1

trpMα1ρqρ8,α1

¸
V

:
I

ff

“
dÿ

α1“1

trpMα1ρq
”
trpΠVαVIρ8,α1V

:
I q ` trpMTαVIρ8,α1V

:
I q

ı

“
dÿ

α1“1

trpMα1ρq
”
trpΠVαVIΠVα1ρ8,α1ΠVα1V

:
I ΠVαq ` trpMTαVIρ8,α1V

:
I q

ı

“ trpMαρqtrpVIρ8,αV
:
I q

where the last equation holds since ΠVαVIΠVα1 “ δα,α1ΠVαVIΠVα , and since trpMTαVIρ8,α1V
:
I q “

0, @α, α1. To understand why trpMTαVIρ8,α1V
:
I q “ 0, @α, α1, we have to recall that MTα has support

only on the T subspace, while VIρ8,α1V
:
I has support only on the Vα1 subspace, due to the block

structure of the Kraus operators and to the fact that ρ8,α1 is supported only on Vα1 . Finally turning
back to eq. (3.26) we have that:

1

trpMαρq tr
”
MαVIϕ8pρqV :

I

ı
“ 1

trpMαρq trpMαρqtrpVIρ8,αV
:
I q

“ Pρ8,αpIq

Therefore we end up with
Pα,ρpΩβq “ Pρ8,αpΩβq “ δα,β

where the last equation holds by lemma 12.

We have now all the arguments to prove that the main convergence theorem for a quantum trajectory
holds also in this more general setting that considers the transient part.

Theorem 17. If ID holds then Qαp8q “ 1Ωα Pρ ´ a.s.

Proof. We start by rewriting Qαpnq as follows

Qαpn, Iq “ trpMαVIρV
:
I q

trpVIρV :
I q

Qαp0q
Qαp0q “ Qαp0qPα,ρpIq

PρpIq (3.27)

for all I “ pi1, ..., inq P Fn. If ID holds then the measures Pα,ρ have a disjoint support by the previous
lemma. Let us focus on the current decomposition of the probability measure Pρ of eq. (3.23). Assuming
that Qαp0q ą 0 for all α P t1, ..., du, and then applying the same reasoning of Lemma 13 and by eq.
(3.27), we get that the random variable Qαp8q on pΩ,Fq is the Radon-Nikodym derivative of Qαp0qPα,ρ

with respect to Pρ, which implies that

EPρrQαp8q1Ωβ
s “ Qαp0qEPα,ρr1Ωβ

s “ Qαp0qPα,ρrΩβs “ Qαp0qδα,β

and following the same procedure of theorem 13 we get that Qαp8q “ 1Ωα Pρ ´ a.s..

This finally proves that also when the transient part is present, the quantum trajectory asymptotically
converges to one of the minimal invariant subspace Vα, with probability of converging to Vα that can
be derived as follows

PρrQαp8q “ 1s “ PρrΩαs “
dÿ

β“1

Qβp0qPβ,ρrΩαs “ Qαp0q
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as in the case of no transient part. The analysis of the asymptotic behaviour of the quantum tra-
jectory concludes ad follows: it will converge to the minimal invariant subspace Vα with probability
Qαp0q “ trpMαρ0q. But then what happens inside Vα ? Maassen and Kümmerer explain in [21] that
asymptotically the quantum trajectory performs a random walk between dark subspaces of the same
dimension, i.e. spaces from which no information can leak out. In the trivial case that the dimension
of the dark subspace is 1, purification has occurred. This means that either the quantum trajectory
purifies or it continues to move about in a random fashion between the dark subspaces, thus continuing
to produce ‘quantum noise’.

Let Υ P t1, ..., du be the index of the subspace asymptotically selected by the quantum trajectory,
namely

Υ “
dÿ

α“1

αQαp8q (3.28)

We recall a technical lemma proved in [7] and readapted to our decomposition (3.23) of the measure Pρ,
that we will need for the formulation of the asymptotic laws of the following section.

Lemma 18. Let pXα
n q be a sequence of random variables depending on α P t1, ..., du and assume that

ID holds. Then

1. almost sure convergence: if for any α P t1, ..., du

Xα
n

Pα,ρ´asÝÝÝÝÝÑ Xα

then

XΥ
n

Pρ´asÝÝÝÝÑ XΥ

2. convergence in distribution: if for any α P t1, ..., du

Xα
n

D´Pα,ρ´asÝÝÝÝÝÝÝÑ Xα

then

XΥ
n

D´Pρ´asÝÝÝÝÝÝÑ XΥ

Finally we conjecture that for n large enough

Qαpnq » e´nrpα,Υq, α ‰ Υ (3.29)

namely the random variable Qαpnq with α ‰ Υ decays to zero exponentially fast, with a rate of
convergence rpα,Υq that depends on α and on Υ. An extension of this project could look in this
direction: prove this conjecture and find the expression of the rate of convergence.

A similar analysis on the rate of convergence of the quantum trajectory can be found in [5], which
considers quantum non demolition measurements and proves that in this case the rate of convergence
is rpα,Υq “ S̄pΥ|αq, with S̄pΥ|αq being the relative entropy of the single measurement outcome
distribution conditioned on the system being in the state ρ8,Υ “ |ΥyxΥ| w.r.t. the one conditioned on

the system being in the state ρ8,α “ |αyxα|, namely S̄pΥ|αq “ řr
i“1

trpViρ8,ΥV
:
i q ln trpViρ8,ΥV

:
i q

trpViρ8,αV
:
i q
.

Another article that considers a similar problem but in continuous time is [8], where the authors
provide sharp bounds on the rate of convergence of the quantum trajectory to the GAS subspace R,
making use of the Lyapunov exponents.
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3.4 Case mα ě 1

We recall that in the general case Vα » Cnα has a canonical tensor product structure Cnα “ Ckα b
Cmα , nα “ kαmα, with respect to which each V

pαq
i,R can be written as

V
pαq
i,R “ rV pαq

i b ICmα

with rV pαq
i being an operator on Ckα . In this section we analyze the case that considers mα ě 1. The

resultant structure of the invariant states of ϕ reads:

Fφ “
dà

α“1

ρα b BpCmαq ‘ 0

where ρα ą 0 is a full rank positive operator in DpCkαq. It follows that in this setting the invariant
states supported in Vα have the following form

ρ̄8,α,i “ ρα b ρα,i, ρα,i P DpCmαq
from which follows that

Pρ8,α,i
pIq “ Pρ8,α,j

pIq, @I P Fn,@ρα,i ‰ ρα,j P DpCmαq
which represents an identifiability problem. Indeed

Pρ8,α,i
pIq “ trpV pαq

i,R pρα b ρα,iqV pαq:
i,R q

“ trprV pαq
i ρα rV pαq:

i b ρα,iq
“ trprV pαq

i ρα rV pαq:
i q “ Pρ8,α,j

pIq
This means that the state ρα,i of the subsystem of dimension mα has no impact on the probability
measure Pρ8,α,i

induced by the invariant state ρα b ρα,i, and therefore from this measure is not possible
to discriminate between the different states of the second subsystem. Therefore we need to extend the
definition of identifiability to sectors, which are equivalence classes.

Let us define an equivalence relation among invariant states: two invariant states ρ8,α,i and ρ8,α,j

are said to be equivalent (denoted ρ8,α,i „ ρ8,α,j) if, for any I P Fn and for any n P N

Pρ8,α,i
pIq “ Pρ8,α,j

pIq
We define the sector α as the equivalence class of the invariant states supported in Vα, with

PαpIq “ trprV pαq
i ρα rV pαq:

i q
The consequent identifiability assumption reads as follows.

Assumption (ID’). For any α ‰ β there exists an I “ pi1, ..., inq P Fn such that

PαpIq ‰ PβpIq
Notice that in this setting Vα is no more the support of a unique invariant state, that was a key

point for constructing the subsets Ωα of lemma 12. Therefore we define a new space H1 » ř
αC

nα ‘Cnt ,
having a lower dimension than H. Here each subspace Cnα is the support of a unique invariant

state ρα. On this new space the blocks V
pαq
i,R of the Kraus operators becomes V

pαq
i,R “ rV pαq

i , and their

corresponding projection on Vα, i.e. J “ tV pαq
i u, induce a process pJ , ραq that defines a dynamical

system pΩ,F ,Pρα , φq which is ergodic by theorem 11. But notice that Pρα “ Pα, therefore the dynamical
system pΩ,F ,Pα, φq is ergodic too. Therefore we can inherit our previous analysis and by the same
reasonings of the case that considers mα “ 1, we have that when ID’ holds then our quantum trajectory
converges to the minimal invariant subspace Vα with probability Qαp0q.
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Chapter 4

The Central Limit Theorem

In this chapter we will present the Central Limit Theorem (CLT) applied to the recording of successive
measurements in quantum trajectories. Its first version appeared in [3], but it only tackles the case
that considers a unique invariant state and the one that considers multiple invariant states but no
transient part. Our aim is to establish a central limit type result without any restriction on the quantum
channel ϕ. We will show that in this more general case the process associated to the recording of
successive measurements asymptotically approaches a mixture of Gaussians, and we will give a complete
description of their parameters.

In [3] was established a central limit theorem and a law of large numbers for Open Quantum Random
Walks (OQRW) on lattices. Such processes are a possible noncommutative generalization of classical
Markov Chains and have applications in quantum computing, as presented in [24]. A generalization
of [3] is presented in [14], where a large deviations and a central limit theorem result were proved by
making use of deformation techniques and spectral theory. We will apply these results to the recording
of successive measurements in quantum trajectories, and we will exploit the Poisson equation and the
CLT theorem for martingales to prove that also in the case that considers multiple invariant states and
a transient part, the process asymptotically approaches a mixture of Gaussians. Everything is also
showed with some simulations. Finally using the same techniques used to prove the CLT, we will derive
a Law of Iterated Logarithm (LIL), which is then compared with the previously derived CLT.

This chapter is structured as follows: firstly we will treat the case that considers a quantum channel
having a unique invariant state, showing that the process asymptotically approaches a single Gaussian.
Secondly we will generalize this to the case of multiple invariant states but no transient part, showing
that the process asymptotically approaches a mixture of Gaussians. Finally we will show that everything
holds even if a transient part is present, ending the chapter with the derivation of a LIL result, without
requiring any assumption on the quantum channel.

4.1 Single Gaussian

We start by considering a quantum channel ϕ that presents a unique invariant state. The following
decomposition is induced in the state space:

H “ V1 ‘ T
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where V1 is the unique minimal invariant subspace supporting the unique invariant state ρ8. Therefore
the first hypothesis reads:

(H1). ϕ admits a unique invariant state ρ8.

Let us introduce a vector m P Rr, where its r components are defined in the following way:

mi “ m ¨ ei “ trpViρ8V
:
i q

namely it contains the probabilities of the measurement outcomes, induced by the invariant state ρ8.
The following lemma is proved in [3], and we will exploit it to demonstrate our main result.

Lemma 19. For every l P Rr, the equation

L´ ϕ˚pLq “
rÿ

i“1

V
:
i Vipei ¨ lq ´ pm ¨ lqI (4.1)

admits a solution L˚. The difference between any two solutions of (4.1) is a multiple of the identity.

In the following we will denote by Ll a solution of (4.1) associated to l P Rr, and with Li a solution
associated to l “ ei. Hence Ll can be rewritten in the following way

Ll “
rÿ

i“1

liLi

where li are the coordinates of the vector l. Let Nipnq be the random variable that counts how many
times a sequence of n measurements produces the i-th outcome. Let Npnq P Nr be the corresponding
vector. The process pρn, NpnqqnPN is a Markov Chain (MC) that takes values in DpHq ˆ Nr, and it is
described as follows: from any position pρn, Npnqq, the MC can jump in one of the r different values

˜
ViρnV

:
i

trpViρnV :
i q
, Npnq ` ei

¸

with probability trpViρnV :
i q. Now we have all the tools to state and prove our main result: the Central

Limit Theorem applied to measurement records.

Theorem 20. Consider the quantum channel

ϕpρq “
rÿ

i“1

ViρV
:
i

on H, for which H1 holds. Consider the random vector Npnq associated to the successive measurements
which give rise to the quantum trajectory of ϕ. Then

LLN:
Npnq
n

Pρ´asÝÝÝÝÑ m

CLT:
Npnq ´ nm?

n

D´PρÝÝÝÝÑ N p0, Cq

with covariance matrix C having elements

Cij “ δijmi ´mimj `
´
trpLjViρ8V

:
i q ` trpLiVjρ8V

:
j q

¯
´ pmitrpLjρ8q `mjtrpLiρ8qq (4.2)
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Proof. Consider the MC pρn, NpnqqnPN and let ∆Npnq “ Npnq ´ Npn ´ 1q, @n ą 0. The stochastic
process pρn,∆Npnqqną0 is also a MC, but with values in DpHq ˆ te1, ..., eru and with Markov Kernel

Pfpρ, xq “
rÿ

i“1

f

˜
ViρV

:
i

trpViρV :
i q
, ei

¸
trpViρV :

i q

Given a fixed l P Rr, we want to write a CLT for pNpnq ¨ lqnPN. Our first step is to find a solution of
the Poisson equation:

pI ´ P qfpρ, xq “ x ¨ l ´m ¨ l (4.3)

namely we wish to find a function f : DpHq ˆ te1, ..., eru Ñ R.

Lemma 21. A solution of the Poisson equation (4.3) is given by

fpρ, xq “ trpρLlq ` x ¨ l (4.4)

Proof. To prove it we just need to put (4.4) in (4.3):

pI ´ P qfpρ, xq “ trpρLlq ` x ¨ l ´ P ptrpρLlq ` x ¨ lq

“ trpρLlq ` x ¨ l ´
«

rÿ

i“1

tr

˜
ViρV

:
i

trpViρV :
i q
Ll

¸
` ei ¨ l

ff
trpViρV :

i q

“ trpρLlq ` x ¨ l ´
«

rÿ

i“1

trpρV :
i LlViq ` pei ¨ lqtrpρV :

i Viq
ff

“ tr

˜
ρLl ´

rÿ

i“1

pρV :
i LlVi ` pei ¨ lqρV :

i Viq
¸

` x ¨ l

“ tr

˜
ρ

˜
Ll ´

rÿ

i“1

pV :
i LlVi ` pei ¨ lqV :

i Viq
¸¸

` x ¨ l

“ tr

˜
ρ

˜
Ll ´ ϕ˚pLlq ´

rÿ

i“1

V
:
i Vipei ¨ lq

¸¸
` x ¨ l

“ tr pρ p´pm ¨ lqIqq ` x ¨ l
“ ´pm ¨ lq ` x ¨ l

where the second last equation is true by eq. (4.1).

The second step of the proof consists in translating the problem of our CLT to a CLT for a martingale.
With the help of the Poisson equation, we have

Npnq ¨ l ´ npm ¨ lq “ Np1q ¨ l ´Np1q ¨ l ` ...`Npn´ 1q ¨ l ´Npn´ 1q ¨ l `Npnq ¨ l ´ npm ¨ lq

“
nÿ

k“2

ppNpkq ´Npk ´ 1qq ´mq ¨ l

“
nÿ

k“2

pI ´ P qfpρk,∆Npkqq

“ fpρ2,∆Np2qq `
nÿ

k“3

rfpρk,∆Npkqq ´ Pfpρk´1,∆Npk ´ 1qqs ´ Pfpρn,∆Npnqq

Let

Mn :“
nÿ

k“3

rfpρk,∆Npkqq ´ Pfpρk´1,∆Npk ´ 1qqs (4.5)
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which defines a process pMnqně3 that is a martingale with respect to the filtration pFnqně3, where
Fn “ σtpρk,∆Npkqq; k ď nu is the σ-algebra generated by all the realizations of pρk,∆Npkqqnk“3

. Indeed

Er∆Mn | Fns “ Erfpρn,∆Npnqq | pρn´1,∆Npn´ 1qqs ´ Pfpρn´1,∆Npn´ 1qq “ 0

by the definition of the Markov Kernel P . Let

Rn :“ fpρ2,∆Np2qq ´ Pfpρn,∆Npnqq

hence
Npnq ¨ l ´ npm ¨ lq “ Rn `Mn

We claim that p|Rn|qną0 is bounded. Indeed by eq.s (4.3) and (4.4) we have

Pfpρn,∆Npnqq “ fpρn,∆Npnqq ´ x ¨ l `m ¨ l “ trpρnLlq `m ¨ l

and |trpρnLlq| is bounded independently of n:

|trpρnLlq| ď ∥ρn∥1∥Ll∥8“ ∥Ll∥8

where the first inequality holds by lemma 33 of the appendix. This means that the term Rn has
no contribution to the LLN or to the CLT. It is thus sufficient to obtain a LLN and a CLT for the
martingale pMnqně3. We recall the CLT for martingales, presented in [12], that we shall use here.

Theorem 22 (CLT for martingales). Let pMnqnPN be a square integrable, real martingale for the
filtration pFnqnPN. If for all ε ą 0 we have the following convergences in probability:

1

n

nÿ

k“1

Erp∆Mkq21|∆Mk|ěε
?
n | Fk´1s ÝÝÝÑ

nÑ8
0 (4.6)

1

n

nÿ

k“1

Erp∆Mkq2 | Fk´1s ÝÝÝÑ
nÑ8

σ2 (4.7)

for some σ ě 0, then

CLT :
Mn?
n

DÝÑ N p0, σ2q

For the class of martingales for which (4.7) holds, the Lindeberg condition is defined by 4.6, where
we recall that the classical Lindeberg condition is a sufficient condition for the CLT to hold for a
sequence of independent random variables. Therefore we have to prove that our martingale pMnqně3

satisfies these two conditions. We have

∆Mk “ fpρk,∆Npkqq ´ Pfpρk´1,∆Npk ´ 1qq
“ trpρkLlq ` ∆Npkq ¨ l ´m ¨ l ´ trpρk´1Llq

which permits us to show that ∆Mk is bounded independently of k:

|∆Mk| ď ∥ρk∥1∥Ll∥8`∥∆Npkq∥∥l∥´∥m∥∥l∥`∥ρk´1∥1∥Ll∥8
ď 2∥Ll∥8`∥l∥`∥m∥∥l∥

Concerning the LLN, since Mn has bounded increments it implies that

LLN :
Mn

n

a.s.ÝÝÑ 0

by Azuma’s inequality and Borel Cantelli lemma, as showed in [3]. This implies the LLN for pNpnqqnPN
since |Rn| is bounded and demonstrates that condition 4.6 is satisfied as 1|∆Mk|ěε

?
n vanishes for n
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large enough. The last step of the proof consists in computing the quantity Erp∆Mkq2 | Fk´1s in order
to verify that also condition (4.7) is satisfied.

We have
∆Mk “ trpρkLlq ´ trpρk´1Llq ` p∆Npkq ´mq ¨ l

so that

p∆Mkq2 “ trpρkLlq2 ´ trpρk´1Llq2

´ 2trpρk´1LlqrtrpρkLlq ´ trpρk´1Llq ` p∆Npkq ´mq ¨ ls
` p∆Npkq ¨ l ´m ¨ lq2 ` 2trpρkLlqp∆Npkq ¨ l ´m ¨ lq

We denote by T1, T2 and T3, respectively, the three lines appearing in the right hand side above. We
have

ErT1 | Fk´1s “ ErtrpρkLlq2 | Fk´1s ´ trpρkLlq2 ` trpρkLlq2 ´ trpρk´1Llq2

• the first term ErtrpρkLlq2 | Fk´1s ´ trpρkLlq2 “: ∆Yk represents the increment of a martingale
pYnq and it is bounded independently of k (using the same kind of estimates as for |Rn| above).
Hence Yn

n

a.s.ÝÝÑ 0

• the second term gives 1

n

řn
k“2

trpρkLlq2 ´ trpρk´1Llq2 “ trpρnLlq2´trpρ1Llq2
n

ÝÝÝÑ
nÑ8

0

Then we have
ErT2 | Fk´1s “ ´2trpρk´1LlqEr∆Mk | Fk´1s “ 0

by the fact that Mn is a martingale. Finally we have

ErT3 | Fk´1s “ Erp∆Npkq ¨ lq2 ` pm ¨ lq2 ´ 2p∆Npkq ¨ lqpm ¨ lq ` 2trpρkLlqp∆Npkq ¨ l ´m ¨ lq | Fk´1s

“
rÿ

i“1

”
trpViρk´1V

:
i qrpei ¨ lq2 ` pm ¨ lq2 ´ 2pei ¨ lqpm ¨ lqs ` 2trpViρk´1V

:
i Llqpei ¨ l ´m ¨ lq

ı

“ tr

«
ρk´1

˜
rÿ

i“1

V
:
i Vipei ¨ l ´m ¨ lq2 ` 2V :

i LlVipei ¨ l ´m ¨ lq
¸ff

“ trrρk´1Γls

where we have defined

Γl :“
˜

rÿ

i“1

V
:
i Vipei ¨ l ´m ¨ lq2 ` 2V :

i LlVipei ¨ l ´m ¨ lq
¸

Finally by an ergodic theorem for quantum trajectories presented in [19], we have that

1

n

nÿ

k“1

ρk
a.s.ÝÝÑ ρ8

and putting everything together we have that condition (4.7) holds:

1

n

nÿ

k“3

Erp∆Mkq2 | Fk´1s a.s.ÝÝÑ trrρ8Γls “: σ2l

and the CLT is proved. The explicit form of the covariance matrix C is derived in [3] by simply rewriting
σl as

σ2l “
rÿ

i,j“1

liljCi,j
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4.2 Mixture of Gaussians with T “ 0

In the following we will generalize the previously presented CLT to the case where ϕ shows several
invariant states, but no transient part is present, namely

H “ V1 ‘ V2 ‘ ...‘ Vd (4.8)

where Vα are the orthogonal minimal invariant subspaces of H. Let us recall that in this scenario we
have decomposed the probability measure Pρ in the following way:

Pρ “
dÿ

α“1

Qαp0qPρα , ρα “ ΠVαρΠVα

trpΠVαρΠVαq “ ΠVαρΠVα

Qαp0q

When there is no transient part, Mα “ ΠVα , with ΠVαViΠVα “ ΠVαVi “ ViΠVα , namely the Kraus
Operators Vi are block diagonal with respect to the decomposition (4.8). Let us define the Projection
of the Kraus Operators Vi’s onto the Vα subspace:

V
pαq
i :“ ΠVαVi (4.9)

which are associated to the map ϕpαq, which is CP but not TP, indeed

rÿ

i“1

V
pαq:
i V

pαq
i “

rÿ

i“1

V
:
i ΠVαVi “ ΠVα

rÿ

i“1

V
:
i Vi “ ΠVα

Notice that ΠVα still represents the identity on the Vα subspace, meaning that the map ϕpαq is a
quantum channel only on Vα. What we have found is a decomposition of our quantum channel ϕ into
its irreducible components ϕpαq’s, and each of them admits a unique invariant state ρ8,α, having full
support on Vα. From these considerations the following proposition holds.

Proposition 9. Let

ρα :“ ΠVαρΠVα

trpΠVαρΠVαq (4.10)

Under the law Pρα , the Markov Chain pρpαq
n , NpnqqnPN originated by the initial state ρα, has the law of

the quantum trajectories associated to the family of operators
´
V

pαq
i

¯r

i“1

, namely

ρn “ V
pαq
I ραV

pαq:
I

tr
´
V

pαq
I ραV

pαq:
I

¯

with probability tr
´
V

pαq
I ραV

pαq:
I

¯
, for every I P Fn.

We finally define the quantities

mipαq “ trpV pαq
i ρ8,αV

pαq
i q “ trpViρ8,αV

:
i q

which represents the r components of the vector mpαq P Rr, and we present some hypothesis under
which we can reconduce ourself to the previous scenario that considers a unique invariant state, and
inherit the CLT:

(H1’). There exists a decomposition of H into orthogonal subspaces

H “ H1 ‘ H2 ‘ ...‘ Hd

such that all the Vi’s are block-diagonal with respect to this decomposition.
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In our scenario this hypothesis holds with Hα “ Vα.

(H2). Each of the mappings ϕpαq admits a unique invariant state ρ8,α.

This hypothesis also holds, being ϕpαq a quantum channel on Vα, which admits a unique fixed point
having full support on it.

(H3). ID

Under these hypothesis the CLT holds in each subspace Vα, as stated in the following theorem.

Theorem 23. Under the hypotheses (H1’), (H2), (H3) we have these asymptotic laws

LLN:
Npnq
n

Pρ´asÝÝÝÝÑ mpΥq

CLT:
Npnq ´ nmpΥq?

n

D´PρÝÝÝÝÑ N p0, CpΥqq

with Υ defined in eq. (3.28), and where the covariance matrix CpΥq is given by the same formula as in

eq. (4.2), but with V
pΥq
i instead of Vi.

Proof. Under the hypotheses (H1’), (H2), (H3) and conditionally to Qαp8q “ 1 (i.e. under the measure

Pρr¨ | Qαp8q “ 1s “ Pρα), we have that pρpαq
n , NpnqqnPN has the law of the quantum trajectories

associated to the family of operators
´
V

pαq
i

¯r

i“1

defined in eq. (4.9) by the previous proposition. In

particular under this conditional law we have that

LLN:
Npnq
n

Pρα´asÝÝÝÝÝÑ mpαq

CLT:
Npnq ´ nmpαq?

n

D´PραÝÝÝÝÑ N p0, Cpαqq

and this by lemma 18 proves our theorem.

What this theorem is telling us is that with probability Qαp0q the process pNpnqqnPN follows the

law of quantum trajectories associated to the family
´
V

pαq
i

¯r

i“1

, and then satisfies the corresponding

CLT with mean mpαq and covariance matrix Cpαq. This means that each entry Nipnq of the process
pNpnqqnPN will asymptotically distribute as a mixture of Gaussians, having means mipαq and variances

C
pαq
i,i , α “ 1, ..., d.

4.3 Mixture of Gaussians with T ‰ 0

Finally we present our main result, that shows that the CLT holds even when the quantum channel
presents multiple invariant states and a transient part, which represents the most general case, namely

H “ V1 ‘ V2 ‘ ...‘ Vd ‘ T (4.11)

Recall that here Mα “ ΠVα `MTα , with MαVi ‰ ViMα.
In this scenario the probability measure Pρ has been decomposed as follows:

Pρ “
dÿ

α“1

Qαp0qPα,ρ, Pα,ρpIq “ trpMαVIρV
:
I q

trpMαρq
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We define Πα “ ΠVα ` ΠTα to be the orthogonal projector onto the support of Mα, which brings to the
following equality

ΠαVi “ ΠαViΠα (4.12)

indeed from the block structure (2.14) of Vi we have that:

ΠαVi “ ΠVαVi ` ΠTαVi “ ΠVαViΠVα ` ΠVαViΠTα ` ΠTαViΠTα

ΠαViΠα “ ΠVαViΠVα ` ΠVαViΠTα ` ΠTαViΠTα

Now we define a new family of operators
´
V

pαq
i

¯r

i“1

as

V
pαq
i :“

a
MαVi

´a
Mα

¯`
(4.13)

where
`?
Mα

˘`
represents the Moore–Penrose pseudo-inverse, namely

?
Mα

`?
Mα

˘` “ Πα. Notice
that

rÿ

i“1

V
pαq:
i V

pαq
i “

rÿ

i“1

´a
Mα

¯`
V

:
i

a
Mα

a
MαVi

´a
Mα

¯`

“
´a

Mα

¯` rÿ

i“1

V
:
i MαVi

´a
Mα

¯`

“
´a

Mα

¯`
Mα

´a
Mα

¯`
“ ΠαΠα “ Πα

Therefore the family of operators
´
V

pαq
i

¯r

i“1

can be associated to a map ϕpαq, that is a quantum channel

on Vα ‘ Tα, where Tα represents the subspace of T on which Mα has part of its support. Indeed it is
CP by construction and TP on Vα ‘ Tα. Moreover it admits a unique invariant state ρ8,α, having full
support on Vα. The next step will be to show that the previously stated CLT holds on each subspace
Vα, associated to the quantum channel ϕpαq.

Proposition 10. Let

ρα :“
?
Mαρ

?
Mα

trp
?
Mαρ

?
Mαq (4.14)

Under the law Pα,ρ, the sequence pρpαq
n , NpnqqnPN originated by the initial state ρα, has the law of the

quantum trajectories associated to the family of operators
´
V

pαq
i

¯r

i“1

defined in eq. (4.13), namely

ρpαq
n “ V

pαq
I ραV

pαq:
I

tr
´
V

pαq
I ραV

pαq:
I

¯

with probability tr
´
V

pαq
I ραV

pαq:
I

¯
, for every I P Fn.
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Proof. What we need to prove is that Pα,ρpIq “ tr
´
V

pαq
I ραV

pαq:
I

¯
, indeed

tr
´
V

pαq
I ραV

pαq:
I

¯
“ tr

ˆa
MαVI

´a
Mα

¯`
?
Mαρ

?
Mα

trp
?
Mαρ

?
Mαq

´a
Mα

¯`
V

:
I

a
Mα

˙

“
tr

´?
MαVIΠαρΠαV

:
I

?
Mα

¯

trp
?
Mαρ

?
Mαq

“
tr

´?
MαΠαVIΠαρΠαV

:
I Πα

?
Mα

¯

trp
?
Mαρ

?
Mαq (4.15)

“
tr

´?
MαΠαVIρV

:
I Πα

?
Mα

¯

trp
?
Mαρ

?
Mαq (4.16)

“ trpMαVIρV
:
I q

trpMαρq
where in (4.15) we have used the fact that

?
Mα “

?
MαΠα, while in (4.16) we have used (4.12).

What we have proved is that Pα,ρ “ Pρα , which brings to the following consideration: if the initial
state of our system is ρα (defined in eq. (4.14)), namely the state is initially supported in Vα ‘ T , then
the part supported in T will asymptotically decay and the quantum trajectory will converge to the
subspace Vα, namely

Pρα “ Pρr¨ | Qαp8q “ 1s
as before, but this time ρα is also supported in T . We have showed that ,also when the transient part
is present, we can inherit the CLT, with a little change of H1’, that in this case holds on the recurrent
subspace R, namely

(H1”). There exists a decomposition of R into orthogonal subspaces

R “ V1 ‘ V2 ‘ ...‘ Vd

such that all the Vi’s are block-diagonal with respect to this decomposition.

Instead H2 and H3 hold also with the new family of operators
´
V

pαq
i

¯r

i“1

, defined in (4.13).

Theorem 24. Under the hypotheses (H1”), (H2), (H3) we have these asymptotic laws

LLN:
Npnq
n

Pρ´asÝÝÝÝÑ mpΥq

CLT:
Npnq ´ nmpΥq?

n

D´PρÝÝÝÝÑ N p0, CpΥqq

with Υ defined in eq. (3.28), and where the covariance matrix CpΥq is given by the same formula as in

eq. (4.2), but with V
pΥq
i instead of Vi.

Proof. Under the hypotheses (H1”), (H2), (H3) and conditionally to Qαp8q “ 1 (i.e. under the measure

Pρr¨ | Qαp8q “ 1s “ Pρα), we have that pρpαq
n , NpnqqnPN has the law of the quantum trajectories

associated to the family of operators
´
V

pαq
i

¯r

i“1

defined in eq. (4.13) by the previous proposition. In

particular under this conditional law we have that

LLN:
Npnq
n

Pρα´asÝÝÝÝÝÑ mpαq

CLT:
Npnq ´ nmpαq?

n

D´PραÝÝÝÝÑ N p0, Cpαqq

and this by lemma 18 proves our theorem.
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What we have shown is that, also when a transient part is present, the process pNpnqqnPN converges
to a limit distribution that is a mixture of Gaussian distributions.

This type of limit theorem could be useful for a process tomography purpose, namely when we want to
estimate the quantum channel ϕ that is describing the mean evolution of our system. The goal would
be to find an estimate of the parameter θ that parameterizes the Kraus operators tVipθqui describing ϕ.

If we prepare the system in the state ρα (defined in (4.14)) and we perform a sequence of indirect
measurements, by the CLT previously stated we have that for n large

Npnq
n

“ mθpαq ` epαq, epαq „ N

˜
0,
Cpαq

n

¸
(4.17)

where yi “ Nipnq
n

represents the data that we can collect from the outcomes of the measurements, while
rmθpαqsi “ trpVipθqρ8,αVipθq:q depends on the parameter θ that we aim to estimate. The invariant
states ρ8,α of ϕ can be found by letting the quantum trajectory evolve till convergence. Same for the
invariant states Mα of ϕ˚ but in the dual picture. Let fθpyq be the probability density of y. From (4.17)
we have that

fθpyq „ N

˜
mθpαq, C

pαq

n

¸

We define the likelihood of the data y as Lpy, θq :“ fθpyq, and the correspondent negative log-likelihood
as lpy, θq :“ ´ logLpy, θq. The Maximum Likelihood estimator of the parameter θ reads

θ̂MLpyq :“ argmin
θPΘ

lpy, θq

and it selects the parameters that give the observed data a posteriori more likely.

4.4 Law of Iterated Logarithm

We turn back to the same setting of section 4.1, with the aim of establishing a Law of Iterated Logarithm
(LIL) result for the process pNpnqqnPN. More precisely, given a fixed l P Rr, we want to write a LIL for
pNpnq ¨ lqnPN , exploiting the LIL for martingales. We recall that

Npnq ¨ l ´ npm ¨ lq “ Rn `Mn

where p|Rn|qną0 is bounded, thus it gives no contribution to the LIL, while pMnqně3 (defined in eq.
(4.5)) is a martingale. Thus it will be sufficient to obtain a LIL for the martingale Mn.

Let

s2n :“
nÿ

k“1

Erp∆Mkq2 | Fk´1s (4.18)

What we have proved in section 4.1 is that

s2n
n

a.s.ÝÝÑ σ2, σ2 ě 0 (4.19)

We now define the random variable
un :“

a
2 log log s2n (4.20)

We recall the LIL for martingales established by Stout in [25].
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Theorem 25. (LIL for martingales) Let tMnunPN be an F-martingale defined on the filtered measurable
space pΩ,F ,Fq, with F :“ pF´1,F0,F1, ...q being an increasing sequence of σ-algebras. Let Kn be Fn´1

measurable functions @n ě 1 with Kn Ñ 0, a.s. . Let s2n and un be defined as in equations (4.18) and
(4.20) respectively. If s2n Ñ 8, a.s. and for n ě 1

|∆Mn| ď Kn
sn

un
a.s. (4.21)

then

lim
nÑ8

sup
Mn

snun
“ 1 a.s.

What we need to prove is that these two hypothesis hold in our setting. By (4.19) we have that if
σ2 ą 0 then s2n Ñ 8, which represents the first hypothesis of the theorem. We recall that in our setting

|∆Mk| ď 2∥Ll∥8`∥l∥`∥m∥∥l∥ (4.22)

Therefore to prove that also the inequality (4.21) holds, we choose

Kn “ p2∥Ll∥8`∥l∥`∥m∥∥l∥qun
sn

which is an Fn´1 measurable function and it converges to zero almost surely, since

un

sn
“

d
2 log log s2n

s2n

a.s.ÝÝÑ 0

by the first hypothesis. Then by (4.22) we have that (4.21) holds, and the second hypothesis (inequality
(4.21)) also holds. This proves the following theorem.

Theorem 26 (Unique invariant state). Consider the quantum channel

ϕpρq “
rÿ

i“1

ViρV
:
i

on H, for which H1 holds. Consider the stochastic process Npnq associated to the successive measurements
which give rise to the quantum trajectory of ϕ. Then for every i P t1, ..., ru

LIL: lim
nÑ8

sup
|Nipnq ´ nmi|a
2nCi,i log log nCi,i

“ 1 Pρ ´ as

with Ci,i defined in eq. (4.2) and mi “ trpViρ8V
:
i q.

To extend this results to the case that considers multiple invariant states, we will proceed as
previously done for the CLT, and we obtain the following theorem.

Theorem 27 (Multiple invariant states). Under the hypotheses (H1”), (H2), (H3) we have that

LIL: lim
nÑ8

sup
|Nipnq ´ nmipΥq|b
2nC

pΥq
i,i log log nC

pΥq
i,i

“ 1 Pρ ´ as

where C
pΥq
i,i is given by the same formula as in eq. (4.2), but with V

pΥq
i instead of Vi, while mipΥq “

trpViρ8,ΥV
:
i q.
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Proof. Under the hypotheses (H1”), (H2), (H3) and conditionally to Qαp8q “ 1 (i.e. under the measure

Pρr¨ | Qαp8q “ 1s “ Pρα), we have that pρpαq
n , NpnqqnPN has the law of the quantum trajectories

associated to the family of operators
´
V

pαq
i

¯r

i“1

defined in eq. (4.13) by proposition 10. In particular

under this conditional law we have that

LIL: lim
nÑ8

sup
|Nipnq ´ nmipαq|b

2σ2i pn, αq log log σ2i pn, αq
“ 1 Pρα ´ as

and this by lemma 18 proves our theorem.

Comparing the CLT and the LIL results we have that for n large enough

Nipnq ´ nmipΥqb
nC

pΥq
i,i

„ N p0, 1q

|Nipnq ´ nmipΥq|b
nC

pΥq
i,i log log nC

pΥq
i,i

ď
?
2 ` op1q Pρ ´ as

where the first convergence (in distribution) is weaker than the second one (almost sure convergence).
Moreover the first process is asymptotically distributed around 0, with a unitary variance as a Gaussian
bell, but if we go a bit faster than

?
n we obtain the second process which is asymptotically bounded

between ˘
?
2.

4.5 Simulations

In this section we present the results obtained by some simulations of a quantum system having
dimension k “ 8, namely H » C8, subject to indirect measurements having r “ 4 possible outcomes.
We will consider two different state space decomposition:

1. H “ V1 ‘ V2 ‘ V3 ‘ T , having dimensions n1 “ 3, n2 “ 2, n1 “ 1 and nT “ 2 respectively;

2. H “ V1 ‘ V2 ‘ T , having dimensions n1 “ 3, n2 “ 3 and nT “ 2 respectively.

4.5.1 Three subspaces Vα with different dimensions

Firstly we consider the state space decomposition into orthogonal minimal invariant subspaces Vα plus
a transient part that reads

H “ V1 ‘ V2 ‘ V3 ‘ T

» C3 ‘ C2 ‘ C1 ‘ C2

that induces the following block structure in the Kraus operators that describe the measurement

Vi “

»
———–

V
p1q
i,R 0 0 ˚
0 V

p2q
i,R 0 ˚

0 0 V
p3q
i,R ˚

0 0 0 Vi,T

fi
ffiffiffifl

51



The Kraus operators used for the simulations are:

V1 “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0.216 ´0.104 ´0.086 0 0 0 ´0.025 0.117
0.012 ´0.149 0.105 0 0 0 ´0.027 ´0.034

´0.209 0.329 ´0.027 0 0 0 0.199 0.030
0 0 0 0.124 ´0.196 0 0.041 ´0.163
0 0 0 ´0.107 ´0.199 0 0.028 ´0.161
0 0 0 0 0 0.068 0.222 0.015
0 0 0 0 0 0 ´0.113 0.101
0 0 0 0 0 0 0.098 0.362

˛
‹‹‹‹‹‹‹‹‹‹‚

V2 “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

´0.093 ´0.271 0.118 0 0 0 0.240 0.201
0.026 ´0.061 ´0.124 0 0 0 ´0.027 ´0.275

´0.012 ´0.251 0.014 0 0 0 ´0.299 ´0.028
0 0 0 ´0.076 ´0.084 0 ´0.118 ´0.169
0 0 0 0.042 0.069 0 0.190 0.407
0 0 0 0 0 0.104 ´0.150 0.116
0 0 0 0 0 0 0.135 0.193
0 0 0 0 0 0 0.017 ´0.148

˛
‹‹‹‹‹‹‹‹‹‹‚

V3 “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

´0.066 ´0.039 ´0.050 0 0 0 0.049 ´0.162
´0.038 0.098 ´0.115 0 0 0 ´0.042 ´0.075
0.154 ´0.287 ´0.221 0 0 0 0.003 ´0.280
0 0 0 0.071 0.005 0 ´0.037 0.135
0 0 0 0.039 ´0.187 0 ´0.245 0.073
0 0 0 0 0 0.158 ´0.040 ´0.003
0 0 0 0 0 0 ´0.116 ´0.005
0 0 0 0 0 0 ´0.137 ´0.112

˛
‹‹‹‹‹‹‹‹‹‹‚

V4 “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0.933 0.120 0.056 0 0 0 0.073 0.039
0 0.781 ´0.022 0 0 0 ´0.110 ´0.072
0 0 0.940 0 0 0 ´0.031 ´0.133
0 0 0 0.979 0.001 0 ´0.007 ´0.040
0 0 0 0 0.935 0 ´0.059 ´0.100
0 0 0 0 0 0.980 0.007 ´0.013
0 0 0 0 0 0 0.725 ´0.270
0 0 0 0 0 0 0 0.389

˛
‹‹‹‹‹‹‹‹‹‹‚

which describes a quantum channel ϕ having the following fixed points:

ρ̄8,1 “

¨
˝

0.403 ´0.004 0.107
´0.004 0.077 ´0.064
0.107 ´0.064 0.521

˛
‚, ρ̄8,2 “

ˆ
0.770 ´0.027

´0.027 0.230

˙
, ρ̄8,1 “ 1

where for simplicity we have reported only the non-zero blocks of the fixed points ρ8,1, ρ8,2, ρ8,3

supported on V1, V2, V3 respectively.
The invariant states of the dual ϕ˚ take the form Mα “ ΠVα ‘MTα with

MT1 “
ˆ
0.523 0.008
0.008 0.481

˙
, MT2 “

ˆ
0.304 0.048
0.048 0.452

˙
, MT3 “

ˆ
0.173 ´0.056

´0.056 0.067

˙
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The initial state of the system reads

ρ0 “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0.176 0.141 ´0.038 0.093 0.022 ´0.017 0.009 0.014
0.141 0.177 ´0.041 0.119 0.023 ´0.062 0.025 0.050

´0.038 ´0.041 0.205 ´0.094 ´0.005 0.042 ´0.027 0.050
0.093 0.119 ´0.094 0.167 0.024 ´0.042 0.055 0.015
0.022 0.023 ´0.005 0.024 0.050 ´0.004 0.012 ´0.037

´0.017 ´0.062 0.042 ´0.042 ´0.004 0.060 ´0.022 ´0.020
0.009 0.025 ´0.027 0.055 0.012 ´0.022 0.045 ´0.022
0.014 0.050 0.050 0.015 ´0.037 ´0.020 ´0.022 0.119

˛
‹‹‹‹‹‹‹‹‹‹‚

therefore the quantities Qαp0q “ trpMαρ0q, which represent the probability for the quantum trajectory
to converge to the subspace Vα, take the values

Q1p0q “ 0.638, Q2p0q “ 0.283, Q3p0q “ 0.079

from which we can deduce that the evolving quantum trajectory has an high probability of converging
into the V1 subspace, indeed it is the biggest minimal invariant subspace between the three. The upper
plot of Figure 4.1 shows the evolution of a realization of the random variables Qαpnq. As expected
from the theory, only one of them converges to one, while the others converge to zero. The lower plot
of Figure 4.1 shows the exponential decay of a realization of the random variables trpMTαρnq, which
proves the exponential decay of the quantum trajectory from the transient subspace T to the GAS
subspace R.

Finally we looked at the empirical distribution of the random variable Nipnq{n, i “ 1, ..., 4, repeating
a sequence of n “ 500 indirect measurements F “ 5ˆ104 times, and getting the results depicted in Figure
4.2. The four histograms resembles a mixture of three Gaussians, having means mαpiq “ trpViρ8,αV

:
i q:

m1 “

¨
˚̊
˝

0.057
0.030
0.040
0.872

˛
‹‹‚, m2 “

¨
˚̊
˝

0.039
0.008
0.014
0.940

˛
‹‹‚, m3 “

¨
˚̊
˝

0.005
0.011
0.025
0.960

˛
‹‹‚

confirming the theory result.

4.5.2 Two subspaces Vα with same dimension

Secondly we consider the state space decomposition into orthogonal minimal invariant subspaces Vα

plus a transient part that reads

H “ V1 ‘ V2 ‘ T

» C3 ‘ C3 ‘ C2

that induces the following block structure in the Kraus operators that describe the measurement

Vi “

»
—–
V

p1q
i,R 0 ˚
0 V

p2q
i,R ˚

0 0 Vi,T

fi
ffifl
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The Kraus operators used for the simulations are:

V1 “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

´0.039 0.044 0.041 0 0 0 0.211 ´0.097
0.021 0.130 ´0.149 0 0 0 0.182 ´0.012

´0.067 0.052 0.183 0 0 0 ´0.084 0.235
0 0 0 ´0.046 ´0.078 ´0.098 ´0.067 0.036
0 0 0 ´0.160 ´0.013 0.130 ´0.295 ´0.101
0 0 0 0.014 0.040 ´0.050 ´0.113 0.188
0 0 0 0 0 0 0.008 0.030
0 0 0 0 0 0 ´0.206 0.114

˛
‹‹‹‹‹‹‹‹‹‹‚

V2 “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0.009 ´0.093 ´0.101 0 0 0 ´0.015 0.324
0.030 ´0.038 0.046 0 0 0 0.247 ´0.076

´0.192 0.073 0.057 0 0 0 0.189 ´0.188
0 0 0 ´0.112 0.196 0.021 0.207 0.009
0 0 0 ´0.214 ´0.058 0.108 0.047 ´0.214
0 0 0 0.221 0.122 ´0.174 0.185 0.100
0 0 0 0 0 0 0.080 ´0.056
0 0 0 0 0 0 ´0.079 ´0.144

˛
‹‹‹‹‹‹‹‹‹‹‚

V3 “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0.062 0.224 0.085 0 0 0 0.263 0.051
´0.026 ´0.073 0.008 0 0 0 0.201 ´0.118
0.192 ´0.171 0.180 0 0 0 0.076 ´0.021
0 0 0 0.166 ´0.366 ´0.120 ´0.112 0.064
0 0 0 ´0.026 ´0.066 ´0.207 0.229 ´0.099
0 0 0 0.042 ´0.061 0.178 0.120 ´0.129
0 0 0 0 0 0 0.087 0.073
0 0 0 0 0 0 ´0.117 ´0.065

˛
‹‹‹‹‹‹‹‹‹‹‚

V4 “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0.956 0.037 ´0.013 0 0 0 0.002 ´0.028
0 0.936 0.010 0 0 0 ´0.070 0.013
0 0 0.942 0 0 0 ´0.029 0.007
0 0 0 0.914 0.042 0.096 ´0.041 ´0.100
0 0 0 0 0.890 ´0.035 ´0.092 ´0.022
0 0 0 0 0 0.911 0.068 0.094
0 0 0 0 0 0 0.586 0.228
0 0 0 0 0 0 0 0.720

˛
‹‹‹‹‹‹‹‹‹‹‚

which describes a quantum channel ϕ having the following fixed points:

ρ̄8,1 “

¨
˝

0.231 ´0.013 ´0.102
´0.013 0.174 ´0.074
´0.102 ´0.074 0.596

˛
‚, ρ̄8,2 “

¨
˝

0.532 ´0.111 0.224
´0.111 0.226 ´0.203
0.224 ´0.203 0.242

˛
‚

where for simplicity we have reported only the non-zero blocks of the fixed points ρ8,1, ρ8,2 supported
on V1, V2 respectively.
The invariant states of the dual ϕ˚ take the form Mα “ ΠVα ‘MTα with

MT1 “
ˆ

0.527 ´0.076
´0.076 0.531

˙
, MT2 “

ˆ
0.473 0.076
0.076 0.469

˙
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The initial state of the system reads

ρ0 “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0.114 ´0.018 ´0.034 ´0.013 ´0.029 0.036 ´0.010 0.018
´0.018 0.083 0.008 ´0.015 ´0.027 ´0.052 ´0.035 0.023
´0.034 0.008 0.071 ´0.001 ´0.036 ´0.005 0.002 ´0.016
´0.013 ´0.015 ´0.001 0.116 ´0.037 0.010 ´0.023 ´0.083
´0.029 ´0.027 ´0.036 ´0.037 0.260 0.009 0.128 0.106
0.036 ´0.052 ´0.005 0.010 0.009 0.097 0.001 0.004

´0.010 ´0.035 0.002 ´0.023 0.128 0.001 0.131 0.051
0.018 0.023 ´0.016 ´0.083 0.106 0.004 0.051 0.129

˛
‹‹‹‹‹‹‹‹‹‹‚

therefore the quantities Qαp0q “ trpMαρ0q take the values

Q1p0q “ 0.601, Q2p0q “ 0.399

from which we can deduce that the evolving quantum trajectory has an high probability of converging
into the V1 subspace. As before we report in Figure 4.3 the plot of the evolution of a realization of the
random variables Qαpnq and of its transient part.

Finally we looked at the empirical distribution of the random variable Nipnq{n, i “ 1, ..., 4, which
gave the four histograms depicted in Figure 4.4, which resembles a mixture of two Gaussians, having
means mαpiq “ trpViρ8,αV

:
i q:

m1 “

¨
˚̊
˝

0.044
0.022
0.042
0.892

˛
‹‹‚, m2 “

¨
˚̊
˝

0.013
0.057
0.061
0.869

˛
‹‹‚

confirming another time the theory result.
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Figure 4.1: The upper plot shows the behaviour of the random variables Qαpnq. The lower plot shows the
transient part of the Qαpnq’s, namely Qtαpnq “ trpMTα

ρnq

Figure 4.2: The upper plot shows the behaviour of the random variables Qαpnq. The lower plot shows the
transient part of the Qαpnq’s, namely Qtαpnq “ trpMTα

ρnq
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Figure 4.3: The upper plot shows the behaviour of the random variables Qαpnq. The lower plot shows the
transient part of the Qαpnq’s, namely Qtαpnq “ trpMTα

ρnq

Figure 4.4: The upper plot shows the behaviour of the random variables Qαpnq. The lower plot shows the
transient part of the Qαpnq’s, namely Qtαpnq “ trpMTα

ρnq
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Chapter 5

Feedback control scheme

What we have showed in chapter 3 is that the support of the state of a quantum system, subject to
repeated indirect quantum measurements, converges to one of the minimal invariant subspaces Vα,
selecting Vα with probability Qαp0q “ trpMαρ0q. Therefore repeated indirect quantum measurements
can be used to design a non-deterministic protocol for preparing the quantum system in one of the
minimal invariant subspaces Vα. This could be of particular interest in quantum information applica-
tions, since to each Vα remains associated an Information Preserving Structure (IPS) [10]: the subspace
Vα » Cnα b Cmα contains a perfectly Noiseless Subsystem (NS) of dimension mα (previously presented

in point 2) where the dynamics is unitary by eq. (2.15), that specifies the form of the blocks V
pαq
i,R of

the Kraus operators. Thanks to the unitary evolution, the subsystem Cmα is able to store, preserve
and protect quantum information from the noise’s action.

In this chapter we will design a feedback control scheme that ensures convergence towards a chosen
target subspace Vα˚ , α˚ P t1, ..., du, namely the task of this scheme is to make Vα˚ GAS. The control
design is made using Lyapunov techniques and some graph theory tools. We refer the reader to Bullo’s
lecture notes [13] for a better overview on graph theory from the viewpoint of dynamical and control
systems. This control technique can be used to stabilize the state of the system in a Decoherence Free
Subspace [20] (previously presented in point 1), which is a subspace that is unitarily evolving. When
Vα˚ supports the minimum energy eigenstate, this control scheme can be used for cooling problems,
otherwise it founds its application in the realization of a “passive” error-prevention scheme, since
quantum information is preserved inside a DFS.

This feedback control scheme that realizes a deterministic convergence towards a chosen subspace opens
the door to a new problem: if the quantum trajectory converges to the subspace Vα˚ , in which case
does it converge to a specific state? Finding an answer to this question could lead to a new way of
doing quantum information encoding exploiting such types of feedback schemes.

5.1 Feedback stabilization of a target subspace Vα˚

The starting point will be [2], where a Lyapunov technique is used to design a feedback scheme that
stabilizes the quantum system in a target pure state ρ8,α “ |αyxα|. Therefore in that work the subspaces
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Vα are one-dimensional. Our goal is to generalize that feedback scheme in the case of multi-dimensional
subspaces Vα using unitary control : the system is controlled by an adjustable unitary evolution between
two successive indirect measurements.

Let us start by defining the Kraus operators describing the closed-loop dynamics as the family of opera-
tors pV u

i qri“1
, which depend on a scalar control input u P R and satisfy the constraint

řr
i“1

V
u:
i V u

i “ Ik.
We will consider

V u
i “ UuVi, Uu “ e´iuH

which represents an instance of Hamiltonian control, where the amplitude of the Hamiltonian H is
adjusted by the scalar control input u. The consequent dynamics is described by a non-linear controlled
Markov chain pρnqnPN, modelled through the random equation:

ρn`1 “ Vun

in
pρnq “

V un

in
ρnV

un:
in

trpV un

in
ρnV

un:
in

q
(5.1)

that holds with probability trpV un

in
ρnV

un:
in

q, and defined by the super-operator Vu
i : ρ Ñ V u

i ρV
u:
i

trpV u
i ρV

u:
i q

.

Let Ku be the Kraus map defined as

Kupρq :“
rÿ

i“1

V u
i ρV

u:
i P DpHq

We suppose throughout this paper that the two following assumptions are verified by the system under
consideration. Notice that when there is no control input (u “ 0), we turn back to the original setting
where generalized measurements are used, i.e. V 0

i “ Vi.

Assumption 1 (ID). For any α ‰ β in t1, ..., du, there exists an I :“ pi1, ..., inq P Ω such that
trpVIρ8,αV

:
I q ‰ trpVIρ8,βV

:
I q

We will resort to a technique that uses an open-loop supermartingale to design a Lyapunov function
for the closed-loop system.

Definition 26. An open-loop supermartingale is a function W : DpHq Ñ R that satisfies

ErW pρn`1q | ρn “ ρ, un “ 0s ď W pρq, @ρ P DpHq (5.2)

namely is a function of the state that at each step decreases in expectation.

Secondly we define the feedback law: at each time-step n, the control input un is chosen by
minimizing this supermartingale W knowing the state ρn:

un “ ûpρq :“ argmin
uPr´ū,ūs

tErW pρn`1q | ρn “ ρ, un “ usu (5.3)

where ū is a small positive number that needs to be determined. The state ρn is estimated by a
quantum filter from indirect measurements, namely if at step n´ 1 the outcome of the measurement is
in´1 P t1, ..., ru then

ρn “
V

un´1

in´1
ρn´1V

un´1:
in´1

trpV un´1

in´1
ρn´1V

un´1:
in´1

q
where ρn´1 represents the estimate of the state at the previous step. We want to point out that here
the discrete-time behaviour is crucial for a possible real-time implementation of such controllers.
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Being 0 P r´ū, ūs and being the control input un chosen to minimize W at each step, we directly
have that W is also a closed-loop supermartingale, namely

Qpρq :“ ErW pρn`1q | ρn “ ρ, un “ ûpρqs ´W pρq ď 0, @ρ P DpHq (5.4)

If this supermartingale W is bounded from below, then by the following convergence theorem for a
Lyapunov function of a Markov Chain (proved in [1]), the state of the system ρn converges almost-surely
to the set

I8 :“ tρ P DpHq | Qpρq “ 0u (5.5)

Theorem 28. Let Xn be a Markov chain on the compact state space S. Suppose there exists a
continuous function W pXq satisfying

ErW pXn`1q | Xns ´W pXnq “ ´QpXnq

where QpXq is a non-negative continuous function of X, then the ω-limit set Ω (in the sense of almost
sure convergence) of Xn is contained by the following set I8 :“ tX | QpXq “ 0u

Therefore we have to design the supermartingale W in such a way that the set I8 is restricted to
the set of states having support in the target subspace Wt, namely I8 “ tρ P DpHq | supppρq Ă Vα˚u.
Thus we want W to be a strict supermartingale:

ErW pρn`1q | ρn “ ρ, un “ ûpρqs ď W pρq
“ W pρq ðñ supppρq Ă Vα˚

We propose the following Lyapunov function:

Wεpρnq “
dÿ

α“1

σαQαpnq ´ ε
1

2

dÿ

α“1

Qαpnq2 (5.6)

“ W0pρnq ´ εΓpρnq

where ε and the weights σα are strictly positive numbers, except for σt “ 0. This functionW is a concave
function of our original (open-loop) martingales Qαpnq “ trpMαρnq, and therefore by proposition 1 is
an open-loop supermartingale, namely

ErWεpρn`1q | ρn “ ρ, un “ 0s ´Wεpρq ď 0, @ρ P DpHq (5.7)

and by the reasoning of before Wε is also a closed-loop supermartingale.

The following proposition will show that the convergence in open-loop could be also proved through
the Lyapunov function Γpρq.

Proposition 11 (Open-loop convergence). In open-loop and when ID holds, the convergence of
our quantum trajectory to one of the minimal invariant subspaces Vα can also be proven through the
Lyapunov function

Γpρq “ 1

2

dÿ

α“1

trpMαρq2

which is a submartingale, with

Q̄pρq :“ ErΓpρn`1q | ρn “ ρs ´ Γpρq ě 0, @ρ P DpHq
“ 0 ðñ ρ “ ρpαq @α P t1, ..., du

where ρpαq “ ΠVαρ
pαqΠVα can be any state supported in Vα.
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Proof. Being Γpρq a convex function of a martingale, it is a submartingale.
To prove that Q̄pρq “ 0 ðñ ρ “ ρpαq @α P t1, ..., du we refer to a technique used in [1] (in the

proof of theorem 1.3), which in our setting brings to the following equation

Q̄pρq “ 1

2

ÿ

α

ÿ

i,j

trpViρV :
i qtrpVjρV :

j q
˜
trpMαViρV

:
i q

trpViρV :
i q

´
trpMαVjρV

:
j q

trpVjρV :
j q

¸2

implying that

Q̄pρq “ 0 ðñ trpMαViρV
:
i q

trpViρV :
i q

“
trpMαVjρV

:
j q

trpVjρV :
j q

@α, i, j

Rearranging the terms and taking the sum over i we get

ÿ

i

trpVjρV :
j qtrpMαViρV

:
i q “

ÿ

i

trpMαVjρV
:
j qtrpViρV :

i q

trpVjρV :
j qtrpMαρq “ trpMαVjρV

:
j q

Pρpjq “ Pα,ρpjq

where by eq.(3.23), the last equality holds iff Qαp0q “ 1, and this is true by theorem 17 iff ρ “ ρpαq.

Let us go back to the closed-loop scheme. A state ρ is in the set I8, defined in eq. (5.5) with our
Lyapunov function Wε, iff @u P r´ū, ūs we have

ErWεpρn`1q | ρn “ ρ, un “ us ´Wεpρq ě 0 (5.8)

The design of the weights σα of our Lyapunov function is based on the Hamiltonian H underlying
the controlled unitary evolution and relies on the connectivity of the graph attached to H. They are
obtained by inverting a Metzler matrix derived from H and the quantum states that are supported
in the subspaces Vα. In Lemma 30 we will prove that given any α˚ P t1, ..., du, we can always choose
the weights σ1, ..., σd so that W determines a function fpu, ρpαqq of the control input u and of the state
ρpαq supported in Vα, defined as

fpu, ρpαqq :“ ErWεpρn`1q | ρn “ ρpαq, un “ us

and having the following properties:

1. fpu, ρpαqq has a strict local minimum at u “ 0 for α “ α˚;

2. fpu, ρpαqq has a strict local maxima at u “ 0 for α ‰ α˚.

This ensures that the feedback law (5.3) sets u “ 0 when the quantum trajectory finishes in the subspace
Vα˚ , while it sets u ‰ 0 when the quantum trajectory finishes in a subspace Vα, α ‰ α˚, preventing it
to stabilize in the wrong subspace. Indeed for α ‰ α˚, property 2 implies that

ErWεpρn`1q | ρn “ ρpαq, un “ us ă ErWεpρn`1q | ρn “ ρpαq, un “ 0s ď Wεpρpαqq

which by eq. (5.8) demonstrates that

ρpαq P I8 ðñ α “ α˚

The next step will be to prove that the states ρpα˚q, supported in the target subspace Vα˚ , are the
unique states contained in the set I8, showing that Wε is a strict Lyapunov function.
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Proposition 12. Let

Qpρq “ ErWεpρn`1q | ρn “ ρ, un “ ûpρqs ´Wεpρq ď 0, @ρ P DpHq

Then
Qpρq “ 0 ðñ ρ “ ρpα˚q

for every state ρpα˚q, supported in the target subspace Vα˚.

Proof. Firstly we decompose Qpρq in the following way:

Qpρq “
rÿ

i“1

´
Wε

´
V
ûpρq
i pρq

¯
´Wεpρq

¯
trpViρV :

i q

“
rÿ

i“1

ˆ
Wε

`
V0
i pρq

˘
´Wεpρq ` min

uPr´ū,ūs
Wε pVu

i pρqq ´Wε

`
V0
i pρq

˘˙
trpViρV :

i q

“ Q1pρq `Q2pρq

with

Q1pρq :“
rÿ

i“1

`
Wε

`
V0
i pρq

˘
´Wεpρq

˘
trpViρV :

i q

Q2pρq :“
rÿ

i“1

ˆ
min

uPr´ū,ūs
Wε pVu

i pρqq ´Wε

`
V0
i pρq

˘˙
trpViρV :

i q

To conclude the proof we will show that

Q1pρq “ 0 ðñ ρ “ ρpαq, @α P t1, ..., du (5.9)

Q2pρq “ 0 ðñ ρ “ ρpα˚q (5.10)

Let us start with Q1pρq:

Q1pρq “
rÿ

i“1

Wε

`
V0
i pρq

˘
trpViρV :

i q ´Wεpρq

“
dÿ

α“1

σα

rÿ

i“1

trpMαViρV
:
i q ´ ε

rÿ

i“1

ΓpV0
i pρqqtrpViρV :

i q ´
dÿ

α“1

σαtrpMαρq ` εΓpρq

“ ´ε
rÿ

i“1

`
Γ

`
V0
i pρq

˘
´ Γpρq

˘
trpViρV :

i q “ ´εQ̄pρq

which by proposition 11 shows (5.9).
Finally notice that

Q2pρq “ 0 ðñ minuPr´ū,ūsWε pVu
i pρqq “ Wε

`
V0
i pρq

˘
@i P t1, ..., ru

where the second equality hols iff ρ “ ρpα˚q by property 2.

To show that properties 1 and 2 hold, we start by decomposing fpu, ρpαqq into two different terms,
to analyze separately the two derivatives:

fpu, ρpαqq “ ErW0pρn`1q | ρn “ ρpαq, un “ us ´ εErΓpρn`1q | ρn “ ρpαq, un “ us
“ f0pu, ρpαqq ´ εfΓpu, ρpαqq
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with

f0pu, ρpαqq :“ ErW0pρn`1q | ρn “ ρpαq, un “ us
“

ÿ

β

σβtrpMβ

ÿ

i

V u
i ρ

pαqV u:
i q

“ W0pKupρpαqqq
fΓpu, ρpαqq :“ ErΓpρn`1q | ρn “ ρpαq, un “ us

“ 1

2

ÿ

i

ÿ

β

trpMβV
u
i ρ

pαqV u:
i q2

trpViρpαqV :
i q

We begin with the analysis of the first term f0pu, ρpαqq:

f0pu, ρpαqq “ W0pKupρpαqqq “
dÿ

β“1

σβ

rÿ

i“1

trpMβV
u
i ρ

pαqV u:
i q “

dÿ

β“1

σβP
u
β

with P u
β :“ řr

i“1
trpMβV

u
i ρ

pαqV u:
i q. Then taking the first and the second derivative with respect to u

we obtain:

dP u
β

du
“

rÿ

i“1

tr

ˆ
Mβ

dV u
i

du
ρpαqV u:

i

˙
` tr

˜
MβV

u
i ρ

pαqdV
u:
i

du

¸

d2P u
β

du2
“

rÿ

i“1

tr

ˆ
Mβ

d2V u
i

du2
ρpαqV u:

i

˙
` 2tr

˜
Mβ

dV u
i

du
ρpαqdV

u:
i

du

¸
` tr

˜
MβV

u
i ρ

pαqd
2V

u:
i

du2

¸

with
dV u

i

du
“ ´iHe´iuHVi,

d2V u
i

du2
“ ´H2e´iuHVi

Evaluating the first and the second derivative in zero and using the following property

MβViρ
pαqV :

i “ δα,βViρ
pαqV :

i

that derives by the fact that supppViρpαqV :
i q Ă Vα, we get:

dP u
β

du

∣

∣

∣

∣

u“0

“
ÿ

i

´itrpMβHViρ
pαqV :

i q ` itrpMβViρ
pαqV :

i Hq

“
ÿ

i

´iδα,βtrpHViρpαqV :
i q ` iδα,βtrpViρpαqV :

i Hq “ 0 (5.11)

d2P u
β

du2

∣

∣

∣

∣

u“0

“ 2
rÿ

i“1

´δα,βtr
´
H2Viρ

pαqV :
i

¯
` tr

´
MβHViρ

pαqV :
i H

¯

“ ´2δα,βtr
´
H2ϕpρpαqq

¯
` 2tr

´
MβHϕpρpαqqH

¯
“: Rα,β (5.12)

from which follows that

df0pu, ρpαqq
du

∣

∣

∣

∣

u“0

“ 0 @α

d2f0pu, ρpαqq
du2

∣

∣

∣

∣

u“0

“
dÿ

β“1

σβRα,β
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Let us move to the second term:

fΓpu, ρpαqq “ 1

2

ÿ

i

ÿ

β

trpMβV
u
i ρ

pαqV u:
i q2

trpViρpαqV :
i q

“ 1

2

ÿ

i

ÿ

β

pP u
β piqq2

trpViρpαqV :
i q

with P u
β piq :“ trpMβV

u
i ρ

pαqV u:
i q. Then from eq.s (5.11) and (5.12) follows that

dfΓpu, ρpαqq
du

∣

∣

∣

∣

u“0

“
ÿ

i

ÿ

β

P u
β piq

trpViρpαqV :
i q
dP u

β piq
du

∣

∣

∣

∣

u“0

“
ÿ

i

ÿ

β

P 0
β piq

trpViρpαqV :
i q

p´iδα,βtrpHViρpαqV :
i q ` iδα,βtrpViρpαqV :

i Hqq

“ 0 @α
d2fΓpu, ρpαqq

du2

∣

∣

∣

∣

u“0

“
ÿ

i

ÿ

β

1

trpViρpαqV :
i q

˜
dP u

β piq
du

dP u
β piq
du

` P u
β piq

d2P u
β piq

du2

¸
∣

∣

∣

∣

u“0

“
ÿ

i

ÿ

β

P u
β piq

trpViρpαqV :
i q
d2P u

β piq
du2

∣

∣

∣

∣

u“0

“
ÿ

i

ÿ

β

δα,βtrpViρpαqV :
i q

trpViρpαqV :
i q

d2P u
β piq

du2

∣

∣

∣

∣

u“0

“ 2
ÿ

i

´tr
´
H2Viρ

pαqV :
i

¯
` tr

´
MαHViρ

pαqV :
i H

¯
“ Rα,α

Finally we obtain

dfpu, ρpαqq
du

∣

∣

∣

∣

u“0

“ 0 @α

d2fpu, ρpαqq
du2

∣

∣

∣

∣

u“0

“
dÿ

β“1

σβRα,β ´ εRα,α

which proves that the first derivative vanishes in u “ 0.
The following step will be to design the weights σβ in such a way that the second derivative,

evaluated in u “ 0, is positive for α “ α˚ and negative for α ‰ α˚.

5.2 Graph theory for weights design

Let GH be the directed graph associated to the Hamiltonian H defining the controlled unitary evolution
Uu “ e´iuH . Its adjacency matrix P “ I ´R{trpRq is constructed through the Metzler matrix R (as
shown in the following lemma), and having elements

Pα,α “ 1 ´ Rα,α

trpRq , Pα,β “ ´ Rα,β

trpRq α ‰ β (5.13)

This graph is formed by d vertices labelled by α P t1, ..., du. Given (5.12) two different vertices α ‰ β

are linked by an edge iff tr
`
MβHϕpρpαqqH

˘
‰ 0.

Lemma 29. Consider the dˆ d matrix R with elements defined as

Rα,β “ 2
´
tr

´
MβHϕpρpαqqH

¯
´ δα,βtr

´
H2ϕpρpαqq

¯¯

When R ‰ 0, the matrix P “ I ´R{trpRq is a non-negative, row stochastic matrix, i.e. P1 “ 1, 1 “
p1, ..., 1qT .

64



Proof. For α ‰ β,

Rα,β “ 2tr
´
MβHϕpρpαqqH

¯
ě 0

being Mβ ě 0 and HϕpρpαqqH ě 0. Thus R is a Metzler matrix, namely a matrix having non-negative
off-diagonal components. What we need to prove now is that R1 “ 0, namely

ř
β Rα,β “ 0. This

follows by the fact that

ÿ

β

P u
β “

ÿ

β

rÿ

i“1

trpMβV
u
i ρ

pαqV u:
i q “

rÿ

i“1

trpV u
i ρ

pαqV u:
i q “ 1

being
ř

βMβ “ I. Therefore deriving two times the previous expression we get

ÿ

β

d2P u
β

du2
“ 0 Ñ

ÿ

β

Rα,β “ 0

By the fact that the rows of R sums to zero, while its off-diagonal elements are non-negative follows
that the diagonal elements of R are non positive. Therefore if R ‰ 0, then trpRq ă 0 and the matrix
P “ I ´R{trpRq is well defined with non-negative entries. Since the sum of each row of R vanishes,
the sum of each row of P is equal to 1. Thus P is a row stochastic matrix.

The following lemma represents the main result of this chapter, since it proposes a technique for
the design of the weights σα of our Lyapunov function.

Lemma 30. Assume that the directed graph GH associated to the row stochastic matrix P defined in
the previous lemma is strongly connected. Then, there exist d´ 1 strictly positive real numbers eα ą 0,
α P t1, ..., duzttu, such that:

• @λα P R, α P t1, ..., duzttu, there exists a unique vector σ P Rd, with σt “ 0 such that Rσ “ λ,
where λ P Rd with components λα and λt “ ´ ř

α‰α˚ eαλα.
If additionally λα ă 0 for all α P t1, ..., duzttu, then σα ą 0 for all α P t1, ..., duzttu.

• for any σ P Rd, solution of Rσ “ λ P Rd, the function W0pρnq satisfies

d2W0pKupρpαqqq
du2

∣

∣

∣

∣

u“0

“ λα, @α P t1, ..., du

Proof. Being GH strongly connected, its associated matrix P is irreducible. Being a row stochastic
matrix, its spectral radius is equal to 1. By Perron-Frobenius theorem for non-negative irreducible
matrices, this spectral radius is also an eigenvalue of P and of P T , with multiplicity one and associated
to eigenvectors having strictly positive entries: the right eigenvector 1, being P1 “ 1, and the left
eigenvector e (P T e “ e Ñ eTR “ 0). Then

• let λ P ImpRq Ñ eTλ “ ř
α‰α˚ eαλα ` etλt “ 0 Ñ e can be chosen s.t. et “ 1 Ñ ř

α‰α˚ eαλα “
´λt.
Therefore there exists σ solution of Rσ “ λ

• kerpRq “ spanp1q and rankpRq “ d´ 1 Ñ there exists a unique σ solution of Rσ “ λ s.t. σt “ 0

The fact that σα ą σt “ 0 when λα ă 0 for α ‰ α˚, comes from elementary manipulations of
Pσ “ σ ´ λ{trpRq showing that minα‰α˚ σα ą σt. Finally from eq. 5.12 we have that

d2W0pKupρpαqqq
du2

∣

∣

∣

∣

u“0

“
ÿ

β

σβ
d2P u

β

du2

∣

∣

∣

∣

u“0

“
ÿ

β

σβRα,β “ λα

with λα ă 0 for α ‰ α˚, while λt “ ´ ř
α‰α˚ eαλα ą 0.
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Therefore if the graph GH associated with the Hamiltonian H is strongly connected, then we can
define the weights σα is such a way that λα ă 0 for α ‰ α˚, which brings to

d2fpu, ρpαqq
du2

∣

∣

∣

∣

u“0

“ λα ´ εRα,α

#
ă 0 for α ‰ α˚, ε P

ı
0,minα‰α˚ λα

Rα,α

ı

ą 0 for α “ t

and finally proves that

1. fpu, ρpαqq has a strict local minimum at u “ 0 for α “ α˚;

2. fpu, ρpαqq has a strict local maxima at u “ 0 for α ‰ α˚.

5.3 Connectivity of the graph G
H

Given a Hamiltonian H we can easily check if the associated graph GH is strongly connected using
Tarjan’s algorithm [26], having running time that is linear in the number of nodes and edges in
GH “ pV,Eq, i.e. Op|V |`|E|q. On the other hand, another problem regards the necessary and sufficient
conditions on the Hamiltonian H for having GH strongly connected, and consequently for having a
working control scheme. We recall that GH is strongly connected iff its adjacency matrix P satisfies

d´1ÿ

k“1

P k ą 0 (5.14)

This condition requires every couple of nodes α and β to be linked at least by one path of length
k P t1, ..., d´ 1u, since rP ksα,β ą 0 iff there exists a path of length k that links the two nodes. Finding
the necessary and sufficient conditions on H such that condition (5.14) holds is not easy in general,
therefore we will start from the case that considers two nodes, i.e. d “ 2. Afterwards we will slightly
generalize that result to the case that considers d ą 2 nodes, finding a sufficient condition.

Notice that by the definition of the adjacency matrix P (5.13), a node α is linked to another node
β iff Rα,β ‰ 0. Thus firstly we derive the conditions on H for having Rα,β ‰ 0.

We recall that when α ‰ β Rα,β “ 2tr
`
MβHϕpρpαqqH

˘
, that is different from zero when

trpΠVβ
HϕpρpαqqHq ` trpΠTHϕpρpαqqHq ‰ 0 (5.15)

Moreover being Vα an invariant subspace, we have that ϕpρpαqq remains supported only on Vα, and
we define φ̄α to be its unique non-zero block (i.e. ϕpρpαqq “ φ̄α ‘ 0). Then we introduce another
decomposition of the state space H:

H “ HR ‘ Vα ‘ Vβ ‘ T

where HR represents the reminder subspace, namely HR “ À
γ‰α,β Vγ . The block structure of H with

respect to this decomposition reads

H “

»
——–

HR hR,α hR,β hR,T

hα,R Hα hα,β hα,T
hβ,R hβ,α Hβ hβ,T
hT,R hT,α hT,β HT

fi
ffiffifl

From this block structure of H and from eq. (5.15) follows that

Rα,β ‰ 0 ðñ trphβ,αφ̄αhα,βq ` trphT,αφ̄αhα,T q ‰ 0 (5.16)
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where hα,β “ h
:
β,α and hα,T “ h

:
T,α by the hermitianity of H. Let t|xyunβ

x“1
be an orthogonal basis for

Vβ , and t|yyunt
y“1

for T . We can rewrite the blocks hβ,α and hT,α in the following way

hβ,α “
nβÿ

x“1

|xyxhβα,x|, hT,α “
ntÿ

y“1

|yyxhTα,y|

where xhβα,x| and xhTα,y| represent the rows of the blocks hβ,α and hT,α respectively. We have now all
the tools to state and prove the following lemma on the conditions for having Rα,β ‰ 0.

Lemma 31. Let GH be a graph having d nodes, with adjacency matrix P defined in eq. (5.13),
associated to the Hamiltonian H. Then Rα,β ‰ 0 iff at least one of the two conditions holds:

1. there exists an index x P t1, ..., nβu such that xhβα,x|φ̄α|hβα,xy ‰ 0;

2. there exists an index y P t1, ..., ntu such that xhTα,y|φ̄α|hTα,yy ‰ 0.

Proof. Using the fact that trpBq “ řnβ

x“1
xx|B|xy for any nβ ˆ nβ matrix B, and trpT q “ řnt

y“1
xy|T |yy

for any nt ˆ nt matrix T , condition (5.16) reads

Rα,β ‰ 0 ðñ
nβÿ

x“1

xhβα,x|φ̄α|hβα,xy `
ntÿ

y“1

xhTα,y|φ̄α|hTα,yy ‰ 0

namely Rα,β ‰ 0 if at least one term of the above two sums is different from zero, since φ̄α ě 0 and
consequently the terms of the above two sums are non-negative. This proves the stated lemma.

Our main result is stated in the following theorem, that highlights which edges Rα,β have to be
different from zero for having the connectivity of the graph. Notice that this condition on the edges
Rα,β is reflected into a condition on the Hamiltonian H by the previous lemma. Therefore this theorem,
together with the previous lemma, gives a sufficient condition on the Hamiltonian H for having GH

strongly connected.

Theorem 32. Let GH be a graph having d nodes, with adjacency matrix P defined in eq. (5.13),
associated to the Hamiltonian H. We have that

• when d “ 2: GH “ pV,Eq, V “ pα, βq is strongly connected iff Rα,β ‰ 0 and Rβ,α ‰ 0;

• when d ą 2: if all the nodes of GH form a cycle, namely there exists a path of length d from a
node α1 to itself that touches all the other nodes β1 ‰ α1, then GH is strongly connected. This
path that forms the cycle is defined by the edges Rα,β that have to be different from zero.

This result represents a first step towards the harder problem of finding a necessary and sufficient
condition on the Hamiltonian H for having GH strongly connected. Moreover, once found this
mathematical condition on H, it would be interesting to translate it into a physical condition on the
Hamiltonian.

5.4 Simulations

Let us turn back to the setting of the simulations of subsection 4.5.1, that considers three minimal
invariant subspaces. In open-loop the quantum trajectory of that simulation converged to the subspace
V1. What we will show in this subsection is that if we choose as target subspace V2, and we close the
loop using the feedback scheme presented in this chapter, the state of our quantum system will actually
converge to the target subspace V2.
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The unitary control is realized through the fixed Hamiltonian

H “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 ´1 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 ´1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

˛
‹‹‹‹‹‹‹‹‹‹‚

while the resulting Metzler matrix R reads

R “

¨
˝

´0.600 0.600 0
0.974 ´2.000 1.026
1.046 2.607 ´3.653

˛
‚

from which we can observe that the associated graph GH is strongly connected. Indeed every node
is linked by an edge to all the other nodes, except for the link that goes from node 1 to node 3 (i.e.
R1,3 “ 0). Therefore by lemma 30, we can design the weights σα is such a way that conditions 1 and 2
holds. We have chosen the vector λ to be

λ “
`
´0.642 1.474 ´0.425

˘T

and the corresponding solution of the equation Rσ “ λ reads

σ “
`
1.069 0 0.422

˘T

At the n “ 376 iteration the quantum trajectory has converged to the subspace V2. The comparison
between the evolution of the martingale Qαpnq in open-loop and in closed-loop is reported in Figure
5.1. From this plot we can deduce that the feedback scheme is kicking the quantum trajectory away
from the “most attractive” subspace V3, leading the convergence to the target subspace V2.
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Figure 5.1: Comparison between the evolution of the martingale Qαpnq in open-loop and in closed-loop
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Conclusions

In this project we have analyzed the large time behaviour of a quantum system subject to a sequence
of indirect measurements, constructing a special martingale and exploiting the related convergence
theorem. The asymptotic value of this martingale tells us in which subspace the quantum trajectory is
converged, while its initial value sets the different probabilities of convergence to the various subspaces.
Thus this martingale contains all the information regarding the stochastic evolution of the quantum
trajectory. The second main topic treated by this project regards the central limit theorem applied
to the stochastic process related to the measurement outcomes. What we have showed is that the
distribution of that process converges to a mixture of Gaussians, with parameters that depends on the
invariant states of the quantum channel. Moreover we have presented how this CLT could be applied
for solving a process tomography problem. Finally we have designed a state feedback scheme, which
exploits a Lyapunov technique to realize a deterministic convergence of the quantum trajectory to a
specific target subspace. Two different simulations demonstrate the applicability of our results.

Therefore our control scheme is able to prepare a quantum system in a precise subspace, but it
does not take into account possible measurements imperfections or a non correct initialization of the
quantum filter or a delay between the measurement process and the control process. Hence a possible
extension of this project goes in the direction of the design of a robust control scheme.

For what concerns the rate of convergence to a subspace in open-loop and in closed-loop, it re-
mains to be proved that the convergence is exponential, and to find the relative rate of convergence.
This further analysis could lead to the design of a control scheme that maximizes the rate of convergence,
which could be useful in devising cooling and state preparation strategies in feedback quantum control.
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Appendix

Lemma 33. Given two matrices A,B P Ckˆk such that A ě 0 and B “ B:, having spectral decomposi-
tion B “ ř

i λipBq|ψipBqyxψipBq| we have that

|trpABq| ď ∥A∥8∥B∥1 (17)

where we recall that
∥A∥1 :“ trp|A|q, ∥A∥8 :“ max

i

ÿ

j

|aij | “ max
i
λipAq

Proof. We directly have that

|trpABq| “ |tr

˜
ÿ

i

λipBqA|ψipBqyxψipBq|
¸
| “ |

ÿ

i

λipBqxψipBq|AψipBqy|

ď
ÿ

i

|λipBq||xψipBq|AψipBqy| (18)

ď
ÿ

i

|λipBq|∥A∥8 “ trp|B|q|∥A∥8 “ ∥B∥1∥A∥8

where (18) holds by the Cauchy–Schwarz inequality.
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[17] Sébastien Gleyzes, Stefan Kuhr, Christine Guerlin, Julien Bernu, Samuel Deléglise, Ulrich Busk
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