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Abstract

Figure 1: Picture of a scooter

The aim of the project is to develop a real time optimal
control strategy which allows to optimize fuel consump-
tion of a hybrid electric vehicle, in particular a scooter
(see Figure 1), characterized by a parallel architecture.
The first part of the project is dedicated to find a method
to estimate the future vehicle speed. The latter un-
dergoes a quantization procedure and is modelled as a
stochastic process; then its future value is predicted by
exploiting the main characteristics of Markov Chain the-
ory, considering only the current value of velocity and
the transition matrix, computed by using past data, that
stores the probability distribution associated to each sin-
gle speed value. This procedure has been improved by ex-
ploiting Multivariate Markov Chain Theory, which allows
to predict the next state of speed by using two different
data sequences, as for example, the speed and the com-
bination of throttle and brake, or the speed and power
profiles.
A dynamic programming algorithm is then exploited to compute the optimal control policy for
power energy management, while the vehicle follows the predicted speed in the presence of con-
straints in battery usage. This procedure chooses the optimal torque split value, which determines
how to provide the required power for the current journey. At the beginning, the whole driving
cycle and the horizon are known in advance, therefore the procedure works off-line.
The dynamic programming scheme is further reformulated in a stochastic way so that the above
speed prediction and subsequent optimization are performed on a short window and then repeated
until the end of the vehicle journey in a receding horizon manner. This reformulation introduces
further complications in terms of the battery state-of-charge (SOC) range of usage which is ad-
dressed by setting up a modified cost function that takes into account both fuel consumption and
SOC.
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1
Introduction - State of the art

Global warming and climate change are playing an important role in the design and the develop-
ment of new powertrain architectures in the automotive world. In fact, Hybrid Electric Vehicles
demand is rapidly increasing in the global market, due to their ability to save fossil fuels and to
exhaust pollutant emissions, without worsening the performances, but on the contrary increasing
them. A hybrid vehicle has two or more major sources of propulsion power, such as an internal
combustion engine plus an electric motor, ruled by an energy management controller which deter-
mines the amount of power to be delivered by each energy source of the vehicle. There are several
different powertrain configurations; the most famous are the series and the parallel architectures.
We can see two of the schemes in Figure 1.1.

(a) Series (b) Parallel

Figure 1.1: Series and Parallel Architectures

According to [1], [2], a series architecture is mainly characterized by three branches: the spark
ignition engine, the battery and the electric motor connected with the transmission. Power supply
to drive the vehicle is mainly provided by the electric motor within battery state-of-charge con-
straints; on the contrary, the engine branch works as a generator to recharge the battery or to
supply power to the vehicle together with the battery.

This project will instead consider the parallel architecture described in [3]. Here the battery and
the engine are mechanically linked through the transmission to propel the vehicle: in fact they
both work in tandem to generate the power that drives the wheels. In our project we will exploit
this architecture and the model provided, characterized by only one state, the state of charge, and
one input, the torque split. This model is similar and simpler with respect to the model of the
scooter to which we want to apply our real time strategy.

As we said before, generally the main goal of the optimization task for a hybrid electric vehicle is to
reduce fuel consumption and pollutant emissions. Nevertheless, there might be other interests in
applying an optimization strategy, for example paper [1] describes a Sports Series Hybrid Vehicle
for which the main goal is minimizing the lap time in a particular circuit. For this purpose, the
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8 CHAPTER 1. INTRODUCTION - STATE OF THE ART

essential feature of the series architecture is that there is no mechanical connection between the
engine and the transmissions, so the engine may provide the maximum available power without
considering the vehicle speed. The algorithm applied here is based on an indirect optimal con-
trol approach which may optimize both powertrain energy and the trajectory with speed profile
of a racing HEV inside a given race circuit. More specifically, the goal of this paper consists in
computing the optimal control inputs that increase the performances of the vehicle in terms of
time T necessary for the vehicle to drive on a given track. Here, differently from the simple model
described in [3], the vehicle model has a complex structure characterized by 7 states: the battery
charge, the longitudinal and lateral speeds, the yaw rate, the longitudinal and lateral positions on
the road strip and the vehicle heading, relative to the road. Also, it has 4 inputs: the battery,
generator and brake power and the steering angle. The latter model is characterized by a higher
accuracy with respect to the other model, nevertheless it is not suitable for real time purposes.

Paper [2] exploits again an indirect optimal control approach to attain the green driving optimiza-
tion: the optimization task computes the power sharing among powertrain sources and the vehicle
speed profile to achieve fuel consumption minimization for a given vehicle journey, keeping into
account comfort requirements and safe driver behaviour.
Finally, the optimization problem investigated in both previous papers is formulated in terms of a
cost function which represents the performance criterion we want to achieve (for example fuel con-
sumption), together with a set of constraints to satisfy. The same structure will be adopted in this
project, but with a different solution method: indirect optimal control is going to be replaced by
dynamic programming, a powerful tool which solves Bellman’s equation and can easily handle the
given constraints and the non linearity of the problem while obtaining a globally optimal solution.

Dynamic programming is also exploited in paper [4], where a deterministic optimization problem is
designed for a parallel architecture of a hybrid truck, because the results have the clear advantage
of being near-optimal, accommodating multiple objectives, and systematic. Depending on the over-
all objective, one can easily develop power management laws that emphasize fuel economy, and/or
emissions. The target of the project is to minimize a cost function obtained as a combination of
the fuel consumption with the pollutant emissions over a given journey with a finite horizon. The
optimal control actions, subjected to constraints on the battery state of charge, are represented by
the gear-shifting strategy and by the power split between the battery and engine branches. The
result is a trade off between fuel economy and emissions. This paper also introduces a penalty
factor in the cost function for the terminal state of charge, which penalizes the tendency of de-
pleting the battery. All the computations are performed off-line with a given driving cycle, known
in advance. A dynamic programming procedure here manages to compute a global minimum for
the cost function while bringing the final state of charge close to the desired final value. Finally,
since the gear-shifting strategy is considered an input to optimize, the procedure has to deal with
frequent shifts, which are not really desirable for the driveability of the vehicle. So another penalty
term is introduced in the cost function to penalize the input configurations which impose a gear
shift.

Our main interest is in realizing an optimal control strategy which can work in real time, where
the final time or constraints are not defined and the known horizon is very limited. In this sense
[5] formulates an infinite-horizon stochastic dynamic optimization problem, where Markov Chain
theory is exploited to model driver power demand as a random process. The future driver power
request under diverse driving conditions is uncertain, so this procedure allows to estimate future
values of power demand. The control strategy provides again power management, reached through
the design of an algorithm that determines the optimal way to split the power between the electric
motor and the engine. The main goal is still to minimize fuel consumption and emissions, while
satisfying constraints such as drive ability, charge sustainment and component reliability; the gen-
erated control policy is time-invariant and thus can be easily implemented in real time.
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According to our purposes, we must estimate the future speed of the vehicle in order to realize an
optimal real time control strategy; Markov Chain theory can be used to model not only power,
but also speed or acceleration demand, as explained in [6] and [7]. Paper [8] proposes a different
prediction strategy to model power demand based on the construction of a multiple horizon tree
with variable depth, exploited to improve the prediction capabilities of the designed stochastic
Model Predictive Control. Every branch of the tree is here considered a disturbance realization
scenario for the control problem; paths with higher probability are extended further in the future,
since they may have more impact on the performance. We will realize this strategy to compare
the performances obtained with the longest path to those of the one found by the original algorithm.

The main aim of our project is to implement and test an energy management controller based on a
stochastic dynamic programming method [9] to compute the optimal control policy of torque and
power energy management. This controller must address both fuel economy and battery usage
constraints. In order to do this, the speed of the vehicle has to be estimated according to a Markov
Chain. Multivariate Markov Chain theory ([10]) may be exploited if the available profiles are more
than one. Finally, this controller may be considered optimal if the Markov chains model predicts
with a good accuracy the driver behaviour and the vehicle model is significantly accurate.

Some issues related to real time processing are highlighted and addressed in [11] where the goal
was to obtain a functional controller for a real vehicle with the procedure discussed above:

• the procedure must operate within current computation and memory requirements of the
hardware;

• pedal response has to be provided rapidly.

These particular issues are not going to be properly considered in this work, because the strategy
has not been implemented in a real vehicle, but of course the whole methodology must be fast and
efficient, and the whole optimization procedure has to be realized within the interval of one second.

The thesis is structured as follows: chapter 2 introduces Markov Chain theory and provides a
description of each prediction method that has been designed and tested. Chapter 3 illustrates the
main characteristics of the vehicle model with parallel architecture; chapter 4 instead is dedicated
to the optimization procedure with dynamic programming and to design a real time algorithm
with stochastic dynamic programming. Finally conclusions and future perspectives are described
in chapter 5.

Software for our simulation is Matlab R© version R2016b, installed on a laptop with Windows 10,
Processor Intel R© I7, 8 Gb Ram.
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2
Markov Chain theory for speed prediction

2.1 Markov Chain theory: main concepts and predicting
purposes

According to [12], given a probabilistic space (Ω, F , Pr), where Ω is a set of outcomes, F is σ-
algebra, that is, a set of subset of Ω, and Pr is a probability measure on Ω, a finite Markov Chain
C is a sequence of random variables (C: Ω → W) that provides a theoretical model to describe
behaviours of particular discrete time systems, like speed or throttle of a vehicle. At each time
instant, the state of these systems belongs to a finite setW = {w1, w2, w3, ..., ws} ⊂ R. Transitions
between states are regulated by the following probabilistic law:

Definition 2.1 The sequence of random variables C is a finite Markov Chain with states be-
longing to the finite set W, if, for each integer k and with wi, wb, wj ∈ W, b,i,j ∈ [1, s] and with
Pr[Ck+1 = wi|Ck = wj , ..., C1 = wb] > 0, we have

Pr[Ck+1 = wi|Ck = wj , ..., C1 = wb] = Pr[Ck+1 = wi|Ck = wj ] (2.1)

In other words, whatever evolution has characterized C before the current state, the state at time
instant k+1 depends only on the current state. The set of transition probabilities {tij , i, j ∈ [1, s]}
determines the probabilistic behaviour of the chain. In particular, tij describes the probability to
have a transition from the current state wj to the future state wi.
These probabilities are stored in a stochastic matrix (2.2), which is a nonnegative matrix having
each column sum equal to one; in fact, elements belonging to the j-th column of T are probabilities
of transitioning from the current state wj to the future states w1, or w2, ... or ws. These events
are mutually exclusive and exhaustive of all the possibilities, so the sum of their probabilities is
equal to 1:

T =


t11 t12 · · · t1s
t21 t22 · · · t2s
...

...
. . .

...
ts1 ts2 · · · tss

 (2.2)

In our particular application, we suppose to know the state w(k) at time k. All other values at
time instants t > k are unknown and have to be estimated by means of the Markov Chain theory,
whose main property is that the probability distribution of the state w(k + 1) at time instant
k + 1 is determined only by the knowledge of the current state of the chain, without considering
the previous behaviour of the process; therefore, given the probability distribution p(k) ∈ Rs,
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where [p(k)]j = Pr[w(k) = wj ], the probability distribution p(k+ 1) is computed according to the
following equation:

p(k + 1) = Tp(k), (2.3)

where T ∈ Rs×s is the transition probability matrix, where, as we discuss above:

[T ]i,j = Pr[w(k + 1) = wi|w(k) = wj ] ∀i, j ∈ {1, ..., s} (2.4)

The estimation of the transition probabilities plays an important role in correctly predicting the
speed. The first approach considers a sequence M of states belonging to W, with L given mea-
surements (data a priori). Each state wi ofM is associated to a quantization interval, defined as
Ii = {w ∈ R : (wi−1 + wi)/2 < w ≤ (wi + wi+1)/2} for all i ∈ {1, ..., s}. Then we define:

Kij = {k ∈ [1, L] : w(k + 1) ∈ Ii, w(k) ∈ Ij} (2.5)

nij = |Kij | (2.6)

nj =

s∑
i=1

nij (2.7)

where nij is the number of transitions from wj to wi, while nj is the whole number of transitions
from wj . The components of the transition matrix are then estimated in this way:

[T ]i,j =
nij
nj

∀i, j ∈ 1, ..., s. (2.8)

This particular assumption is due to the following proposition:

Proposition 2.2 A state wi is said to be positive recurrent if there is a non-zero probability that
the process can return to wi, and the expected return time is not infinite. Consider the set M
of measurement belonging to W. Assume Pr[w(k) = wj ], j ∈ 1, ..., s, is defined by the Markov
chain (2.3), and let the transition probability matrix T be estimated by (2.8). If each state of
the Markov ChainM is positive recurrent, then

lim
L→∞

[T ]ij = Pr[w(k + 1) = wi|w(k) = wj ]. (2.9)

The estimation procedure (2.8), based on the positive recurrence assumption, works properly with
a batch of data which spans the entire state-space of the Markov Chain, that is, every state which
belongs to the state-space has to be visited at least once. On the other hand, if for example a
state wt with t ∈ {1, ..., s} is never visited, the corresponding number of transitions nt is equal
to 0, therefore, each component of the t-th column of the matrix is not a number, because of the
division by 0 in (2.8). However this issue can be solved by substituting the t-th column with the
canonical vector et = [0, · · · , 0, 1, 0 · · · , 0]T , with all entries equal to 0 except for the t-th which
is unitary,that is, without different informations, the probability to remain in the current state is
equal to one, while other transitions have probability equal to 0.

The previous approach estimates the transition probabilities by considering all the a priori data,
which can be regarded as a useful initialization procedure.
In this chapter, according to [8], the speed of the vehicle is modelled as a discrete-time stochastic
process w(·). The realization at time k ∈ Z0+ of the process, w(k), belongs to the finite set
W = {w1, w2, w3, ..., ws} ⊂ R, where wi < wi+1 for all i ∈ {1, ..., s − 1}, and represents the
quantized value of the current speed. The cardinality of |W| represents a trade off between the
complexity of the stochastic model and its ability to estimate the correct interval of values for the
speed. Our main interest is to provide a recursive method to estimate the speed change in real
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time; in other words, every time we get a new measurement, the algorithm has to update on-line
the transition matrix with the new observed transition. So, the new transition probabilities are
computed as follows:

[T ]i,j(k) =
nij(k)

nj(k)
∀i, j ∈ 1, ..., s. (2.10)

The following equations, derived in [7] and in [8], provide a recursive method to update the transi-
tion probabilities. The vector δj ∈ {0, 1}s, ∀j ∈ {1, ..., s}, indicates which transition has occurred
at time k: [δj ]i(k) = 1 if and only if w(k) ∈ Ii and w(k − 1) ∈ Ij .

nj(k) = nj(k − 1) +

s∑
i=1

[δj(k)]i (2.11)

λj(k) =

∑s
i=1[δj(k)]i
nj(k)

(2.12)

[T(k)]j = (1− λj(k))[T(k − 1)]j + λj(k)δj(k). (2.13)

where j ∈ 1, ..., s and [T(k)]j is the j-th column of transition matrix T. nj is the number of tran-
sitions starting from the state wj , λj measures the sensitivity of transition matrix to new data,
while equation (2.13) updates the j-th column of the transition matrix.

nj(0) and T(0) have to be initialized properly: one idea is to use some data available a priori, and
the relation (2.8), otherwise we can simply impose nj(0) = 0 and T(0) = Is, where Is is the iden-
tity matrix of dimension s, s being the number of possible states. The former idea is useful if the
drive-cycle considered is stationary and, of course, if some data are known a priori; in this case, the
algorithm exploits the knowledge of the past of the driving cycle in order to predict immediately
with a good accuracy the future values of speed. The other idea instead has to be applied when
no data are available a priori: the transition matrix is initialized with the identity matrix, that is,
given any state, the probability to remain in the current state is equal to one. At the beginning,
the lack of knowledge about the past of the driving cycle makes difficult to predict correctly future
values; therefore, we need to wait some data before obtaining an accurate prediction.

According to (2.12), the sensitivity of transition matrix to new data decreases exponentially with
the increased amount of data, therefore the whole recursive update procedure described by equa-
tions (2.11), (2.12), (2.13) is reliable for stationary drive cycles or for drive cycles for which the
available data is limited. The decreasing sensitivity of transition matrix to new data becomes
an interesting issue to solve if speed profiles describe real driving conditions, which are usually
characterized by different types of road, weather and traffic conditions, and by the driver’s status.
A possible solution to overcome this problem is to re-initialize the procedure after a big number of
data, with nj(0) = 0 ∀i, j ∈ 1, ..., s and T(0) = Is, in order to eliminate old past data which could
have a big influence in speed prediction. Another possibility is suggested in [8], where the update
procedure for λ is replaced by the following one:

λj(k) = λ̄

s∑
i=1

[δj(k)]i (2.14)

where λ̄ ∈ {0, 1} is a constant value which trades off the sensitivity of transition matrix to new
data with the convergence rate. Unfortunately this approach does not provide a good description
of the probability distribution of the next state, because there is no mathematical explanation of
how to properly estimate the parameter λ̄. So this approach will not be discussed any more.
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2.2 Multivariate Markov Chain

In the previous section we introduced a procedure to model the speed of the vehicle as a stochastic
process, that can be described by a Markov Chain with s states. Now we apply Multivariate
Markov Chain theory to extend the algorithm to multiple sequences, in order to develop better
models for better estimation performances. For more details see [13]. Let us assume to have K
different data sequences that we regard as realizations of discrete-time stochastic processes taking s
possible values (states) in the setW = {w1, w2, ..., ws}, as we discussed in section 2.1. The number
of possible states must be the same for all data sequences because the transition matrices must
be square. So we define pl(k) as the probability distribution of the l-th sequence at time instant
k. At time k, if the l-th sequence is in state wj , j ∈ [1, s], the associated probability distribution
is initialized to pl(k) = ej = [0, ..., 0, 1︸︷︷︸

j-th element

,0, ..., 0]T . Then we introduce T(lv) as the matrix

which stores the transitions probabilities computed considering the transitions occurring from the
states belonging to the v-th sequence to the states referred to l-th sequence (l, v ∈ [0,K]). The
first step to determine the components of this matrix is to count number the transition frequencies
n

(lv)
ij from the state wj in the v-th sequence to the state wi in the l-th sequence; then we need to

compute the whole number of transitions n(lv)
j starting from the state wj .

As we saw in (2.8), the components of the new transition matrices are estimated in this way:

[T ]
(lv)
i,j (k) =


n
(lv)
ij (k)

n
(lv)
j (k)

if n(lv)
j (k) 6= 0 ∀i, j ∈ 1, ..., s ∀l, v ∈ 1, ...,K.

0 otherwise
(2.15)

The probability distribution of the v-th sequence at time k + 1 is determined by the weighted
average of the product between the transition matrix [T](lv) and the probability distribution at
time k, pv(k):

pv(k + 1) =

K∑
v=1

λlvT
(lv)pv(k) ∀l, v ∈ 1, ...,K, (2.16)

where λlv, l, v ∈ 1, ...,K, are positive weights characterized by the following condition:

K∑
v=1

λlv = 1 ∀l, v ∈ 1, ...,K.

Equation (2.16) can be written in matrix form as follows:

p(k + 1) ≡


p1(k + 1)

p2(k + 1)
...

pK(k + 1)

 =


λ11T

(11) λ12T
(12) · · · λ1KT(1K)

λ21T
(21) λ22T

(22) · · · λ1KT(2K)

...
...

. . .
...

λK1T
(K1) λK2T

(K2) · · · λKKT(KK)



p1(k)

p2(k)
...

pK(k)

 ≡ Qp(k)

(2.17)

Although the sum of the terms in each column of the transition matrices T(lv) is still equal to 1,
the sum of the columns of the matrix Q is not one, because of the different values of the weights
λij . However, the following propositions are still valid:

Proposition 2.3 If the parameters λlv, for 1 ≤ l, v ≤ K, are positive, then the matrix Q has an
eigenvalue equal to one and the other eigenvalues have modulus less than or equal to one.
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Proposition 2.4 Suppose that λlv > 0 for 1 ≤ l, v ≤ K and the matrices T(lv), 1 ≤ l, v ≤ K,
are irreducible, i.e., their associated graph is strongly connected. Then there is a unique vector
p=(p1,p2, ...,ps)

T such that p = Qp and

K∑
i=1

[pv]i = 1 [pv]i ≥ 0 1 ≤ v ≤ K.

The proofs of the previous propositions are given in [13].According to the previous propositions,
we can state that pv(k + 1) is a probability distribution vector, while p(k + 1) is not.
Now we need to define a method to obtain an estimation of the model parameters λlv.

2.2.1 Model Parameters Estimation

The vector p can be described as p=(p1,p2, ...,ps)
T . The estimate of p is p̂=(p̂1, p̂2, ..., p̂s)

T .
The idea described in [13] is to find λlv which minimizes ‖p̂−Qp̂‖ for a certain vector norm ‖ · ‖.
Thus, according to the proof of Proposition 2.4:

p̂1

p̂2

...
p̂K

 ≈

λ11T

(11) λ12T
(12) · · · λ1KT(1K)

λ21T
(21) λ22T

(22) · · · λ2KT(2K)

...
...

. . .
...

λK1T
(K1) λK2T

(K2) · · · λKKT(KK)



p̂1

p̂2

...
p̂K

 (2.18)

Once considered equation (2.18), one possible way to estimate the parameters λlv is to solve the
following problem: 

min
λ
‖Q̂p̂− p̂‖

subject to∑K
v=1 λlv = 1

λlv ≥ 0 ∀ v ∈ {1, ...,K}

(2.19)

Then by using‖ · ‖∞1, as vector norm, equation (2.19) becomes the following one:

min
λ

max
i

∣∣∣∣[ K∑
v=1

λlvT
(lv)pv − pl

]
i

∣∣∣∣
subject to

K∑
v=1

λlv = 1

λlv ≥ 0 ∀ v ∈ {1, ...,K}

(2.20)

where [z]i denotes the i-th entry of the vector z. Finally, as suggested in [13] and [10], the previous
problem can be reformulated as s linear programming problems. Let us define the quantity ωj as
an auxiliary variable considered as the objective function that has to be minimized. So, for each l

1Given a vector of n components X = [x1, x2, ...xn],‖X‖∞ = maxi |xi|,∀i ∈ 1, ..., n
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we have: 

min
λ
ωl

subject to
ωl

ωl
...

ωl

 ≥ p̂(l) −B


λl1

λl2
...

λlK



ωl

ωl
...

ωl

 ≥ −p̂(l) + B


λl1

λl2
...

λlK


K∑
v=1

λlv = 1, wl ≥ 0

λlv ≥ 0 ∀ v ∈ {1, ...,K}

(2.21)

where
B = [T̂l1p̂(1)|T̂l2p̂(2)| . . . |T̂lsp̂(s)]. (2.22)

The previous problems can be solved by using linear programming procedures, which will be dis-
cussed in the next subsection.

2.2.2 Linear Programming

Definition 2.5 A linear programming problem takes the following form:

min
x̂
fT x̂

subject to

Ax̂ ≤ b

Aeqx̂ = beq

z ≤ x̂ ≤ u

(2.23)

where fT x̂ is the objective function to minimize with respect to the vector x̂, which is subject
to some constraints expressed either as inequalities Ax̂ ≤ b, z ≤ x̂ ≤ u (Vectors z and u contain
the lower and the upper constraints, respectively) or as equalities Aeqx̂ = beq.

In (2.21), x̂,A,b,Aeq,beq are:

x̂ =


ωj
λl1
λl2
...

λlK

 A =

[
−1s −B
−1s B

]
b =

[
−p̂(l)

p̂(l)

]
Aeq =

[
0, 1, 1, . . . 1

]
beq =

[
1
]

(2.24)
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where 1s is a vector s× 1 of ones. So problem (2.21) for each l becomes:

min
λ
ωl

subject to

Ax̂ ≤ b

Aeqx̂ = beq
K∑
v=1

λlv = 1, ωl ≥ 0

λlv ≥ 0 ∀ v ∈ {1, ...,K}

(2.25)

These linear programming problems can be solved by using the interior point method, an algo-
rithm which solves linear and non linear convex optimization problems. Matlab R© function linprog
implements the algorithm and provides the right values for the different λ.

2.3 Data Analysis and prediction procedure

2.3.1 Min-Max Mapping

We now introduce a tool which will be useful to analyse the data involved in our project. Let us
consider a sequence of data x characterized by a maximum xmax and a minimum xmin, we want to
bijectively map this sequence into a new interval of data y ∈ [ymin, ymax]. The new value assumed
by each component of sequence x can be computed according to the following equation:

y = (ymax − ymin) ∗ (x− xmin)/(xmax − xmin) + ymin; (2.26)

where y ∈ y and x ∈ x.

2.3.2 Data Illustration and Mapping

Now we illustrate various data profiles which we will use to simulate previous algorithms in order
to compare performances and evaluate the efficiency of every implemented method. The first drive-
cycle discussed is called Indian, it describes a journey of 95 seconds of a scooter and is made up
of three data sequences: the first collects the speed values, and it is illustrated in Figure 2.1; the
second instead contains percentage values about the flow of power from the engine, i.e, the throttle;
finally, the third contains force values applied to slow down or stop the motion of the vehicle, i.e.,
the brake.



18 CHAPTER 2. MARKOV CHAIN THEORY FOR SPEED PREDICTION

Figure 2.1: The figure illustrates the speed profile of the Indian Drive-Cycle; the profile is a data sequence
containing 95 speed values of a journey of a scooter.

The complementarity between throttle and brake data is exploited to merge the two sequences:
first of all, each data of the profiles are normalized with a min-max mapping procedure, within the
intervals [0, 1] for the throttle and [−1, 0] for the brake, respectively.
Once the normalization is performed, they are added together as illustrated in Fig. 2.2.

Figure 2.2: The figure illustrates the first normalization on throttle and brake data of the Indian Drive Cycle.

Then, another operation of mapping is applied to the obtained sequence, in order to refer it to the
interval [0, 60], where 60 [km/h] is considered the maximum velocity allowed for a scooter. The
result is shown in Fig. 2.3.
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Figure 2.3: The figure illustrates the sequence after the second normalization on throttle and brake data of
the Indian Drive Cycle.

The second drive cycle involved is the Worldwide Harmonized Light Vehicles Test Cycle (WLTP),
which defines a global harmonized standard for determining the levels of pollutants and CO2 emis-
sions, fuel or energy consumption, and electric range for light-duty vehicles (passenger cars and
light commercial vans). This consists of four parts, drive-cycleL, drive-cycleM, drive-cycleH, and
drive-cycleE, respectively, which describe the behaviour of a vehicle in different situations (low,
medium, high and very high speed, respectively), and are useful to evaluate the adaptability of
the procedures to very different real time behaviour. These drivecycles are characterized by two
profiles, illustrated in Fig. 2.4 which are speed and power, respectively.

Figure 2.4: The figure illustrates both WLTP profiles. The maximum reachable velocity in this case is set as
140 km/h

Before evaluating the behaviour of every algorithm for different driving cycles, we now discuss
how the data have to be collected and analysed by our procedure. Scooters can usually reach 60

[km/h] as maximum speed, while cars 140 [km/h], and the velocity intervals are [0, 60] [km/h] and
[0, 140] [km/h], respectively. As we discussed in section 2.1, the speed is modelled as a stochastic
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process w(·) taking values in W ⊂ R, so we have to quantize and then refer each speed value to
a particular interval of speed Ii. The operation of quantization introduces an error, because the
current velocity is approximated. A key role in the prediction accuracy is played by the size of
those intervals, which have to be chosen properly: a large interval can reduce the complexity of the
algorithm, making it faster, but as a consequence the accuracy of the prediction could become poor,
because the quantization error becomes significant. A small interval instead is able to improve the
accuracy of the estimation, but could slow down the whole procedure. A good compromise for our
purpose is obtained with the value lq = 0.5 [km/h]; so the speed range for a scooter is split into
121 intervals (60/lq + 1), starting from w1 = [0, 0.25), continuing with w2 = [0.25, 0.75) and so on
until the last one w121 = [59.75, 60]. If we are using the second drive cycle, instead, the maximum
velocity is 140 [km/h], so the number of intervals is 140/0.5 + 1 = 281. Every time a new data
value x is acquired, it has to be referred to its interval wj according to the following procedure:

wj = 1 + round(x/0.5), (2.27)

where round is the approximation procedure which rounds the real number x/0.5 to its nearest
integer. When the fractional part is exactly 0.5, the round function approximates with the smallest
integer larger than x/0.5. Another important factor is the sampling time, which is the interval
between the acquisition of two consecutive data. Our procedure will acquire a data sample at every
second (sampling time Ts = 1s).

2.3.3 Transition Matrices

Real time procedures receive one data per second from each data sequence involved. Once new
data are acquired, new transitions are set between previous and current states of the sequences,
and the matrices which store the transitions between states are recursively updated according to
equations (2.11), (2.12), (2.13). When transition matrices are finalized, the algorithm can start
predicting next states of speed.

Figure 2.5: 3D Illustration of a Transition matrix

If the speed profile is the only one we are interested in, only one transition matrix has to be
updated to properly compute the probability distribution of the stochastic process (see equation
(2.30)). If data sequences are two (speed and power or speed and combination of throttle and
brake), transitions occur between states of the same sequence and between data values belonging
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to different sequences, thus the involved transition matrices are four. Equation (2.17) becomes:

[
p1(k + 1)

p2(k + 1)

]
=

[
λ11T

(11) λ12T
(12)

λ21T
(21) λ22T

(22)

] [
p1(k)

p2(k)

]
(2.28)

(2.28) can also be written as:{
p1(k + 1) = λ11T

(11)p1(k) + λ12T
(12)p2(k)

p2(k + 1) = λ21T
(21)p1(k) + λ22T

(22)p2(k)
(2.29)

where p1 and p2 are probability distributions: the former allows to compute the next state of
speed, the latter instead allows to evaluate the future values of the second sequence (for example,
the power); T(11), T(22) store the probabilities of transitions between previous and current state of
the same profile, while T(12) count probabilities of transition between previous state of power and
current state of the speed profile. Finally T(21) stores transition probabilities between previous
values of speed and current state of the power profile. Figure 2.5 shows the shape of a transition
matrix which stores transitions between speed data at the end of a simulation. The shape of this
matrix is diagonal, that is, probabilities are centred around the diagonal axis; this is because ve-
hicle speed is highly correlated, and transitions usually occur between states which are quite close
to each other. Thus, a transition between two states of speed that are very distant usually has a
probability value equal to 0.

After computing the transition probabilities matrices and defining how to compute probability
distributions, the priority becomes to define a method which is able to use these matrices and the
current state of the input sequences to predict the future states with a good accuracy. In section
2.4 we will discuss the general algorithm derived through Markov Chain Theory, while in 2.5 and
2.5.1 we will introduce possible variants of the algorithm.

2.4 Algorithms for prediction of speed: Markov Chain
Method

The first method exploits equation (2.3): the probability distribution at time k+ 1 is computed to
determine the most probable future state, by means of the product between the transition matrix
T and the column vector of the current probability distribution.

Algorithm 1 Markov Chain Procedure
Data Acquisition and Initialization: At time k current data is acquired and then mapped
into the corresponding state wj , j ∈ {1, 2, ..., s}. T is updated based on the last transition
between the previous state and the new current state according to (2.13). The probability
distribution is then initialized to the column vector p(k) = ej = [0, ..., 0, 1︸︷︷︸

j-th element

,0, ..., 0]T , while

L represents the number of states to predict.

Update iteration: For t = 1 : L, the probability distribution at time k + t is updated by

p(k + t) = Tp(k + t− 1) = Ttp(k) (2.30)

Search for the maximum probability value: The most probable transition starting from
current state wj at time t is chosen by taking the highest probability value in vector p(k + t);
the state wi, which is associated to the highest probability value is selected as future state.
Path Creation: Starting from wj , the initial state, the procedure builds a path which contains
the future states of the process, computed during the previous steps.
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Note that at the beginning of the procedure, when the initial state is wj , p(k) = ej = [0, ..., 0, 1, 0, ..., 0]T ,
p(k + 1) become [T(k)]j , that is the j-th column of the transition matrix T at time k. If more
data sequences are involved, the procedure is the same, but transitions matrices are four and prob-
ability distributions are two, and we have to update them according to (2.29). The procedure is
summarized in Fig. 2.6.

RECURSIVE UPDATE
Computation of the new probability distribution by using current states, transition 

matrices, and weights computed above according to Markov Chain recursive 
procedure

PREDICTION STEP
The maximum value of the probability distribution referred to speed is selected, and 

the state associated to that value is set as future state. 

How Many prediction Steps 
Remain?

More than 0

Compute the path with the state obtained each step; 
this path contains the future state predicted starting 

from the current state

0

INITIALIZATION PROCESS
of the following parameters:

- Size and number of the quantization intervals: the size controls the accuracy of the prediction, while the number can be computed by using the  
maximum value for the data and the chosen length of the interval.  
- Time step duration Ts: it determines how much time passes between the acquisition of two different data.
- Prediction Steps L: how many future data the algorithm has to predict.
- Transition Probability Matrices T and transition vectors n_j. T(0) could be initialized with identity matrix or obtained from some data known a priori, 
while the vectors count the number of transitions starting from each possible state w of every data sequence. Both Transition matrices and vector n_j 
are four (We will consider two data sequences)
Vectors X1 and X2: these 2 vectors are estimated from the data by computing the proportion of the occurrence of each state in each of the sequence 
of data.

MULTIVARIATE MARKOV CHAIN METHOD

LINEAR PROGRAMMING: INTERIOR POINT METHOD
The algorithm estimates the weights which determine the contribution of the current 

probability distribution of the two sequences on the computation of the new probability 
distributions for the next time step.

NEW DATA ACQUISITION: Each time step,
 the algorithm receives as input a new data from all data sequences 

involved (2). If No Data are available, the algorithm terminates.

DATA AVAILABLE

END 
DRIVECYCLE

NO DATA AVAILABLE

Data acquired are mapped with Min Max procedure within the interval determined by the 
sequence which we want to predict (speed: [0-MaxValue]). Then these values are referred to 

their respective quantization interval, in order to determine the state where they belong.
The two sequences are so modelled as a stochastic process.

UPDATE PROCEDURE
Transition vectors n_j and transition frequency matrices are updated with the new transitions 
between the previous state and the current state of the two data sequences involved. Inter-
transition frequencies matrices are also updated with the transitions obtained between the 
previous state of speed and current state of the second sequence involved, and vice-versa.

Vectors X1 and X2 are then updated with the new occurrences, while
transition matrices are updated with a RECURSIVE methodology which exploits the transition 

frequency matrix

Figure 2.6: Scheme of the Multivariate Markov Chain Method for speed prediction
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2.5 Tree Generation Procedure

The second method realizes a "scenario tree" which describes the most likely paths of future
sequence realizations by exploiting the main characteristics of a Markov Chain. This scenario tree
provides all the admissible paths of the stochastic process, as described in [8], where the goal was
to solve an optimization problem with a control sequence per scenario. Our aim, instead, is to find
the most probable path among all the available scenarios; thus the chosen path must have sufficient
depth in order to provide the desired prediction steps. The main elements of this procedure are
the following:

• The set of Tree Nodes, τ = {N1,N2, ....,Nn}, where N1 is the root node, while Nn is the
last node added to the tree; each node represents a possible state for the sequence of data
involved in the procedure.

• The probabilities pNi
of reaching the node Ni,i = 1, ...m, starting from the root node; these

values are the edges of the tree and they are computed through the equation p(k+1) = T(k)j .

• The set of Leaf Nodes S ⊂ T contains the last node of every existing path in the tree; its
cardinality is nleaf = |S|.

• The set of Candidate Nodes C = {C1, C2, ..., Cc}: these nodes do not belong to τ , but they
represent new possible future states connected by an edge (a probability value) to an existing
state Ni or to a leaf node. c is the dimension of this set, and pC is the vector containing the
probabilities of the candidate nodes.

At the beginning, the tree τ and the leaf set consist of the root node N1 alone, that is associated
to the current state w(k) of the stochastic process, while the set of candidate nodes is evaluated
by considering all possible s states that the stochastic process w(·) can reach at the next time
step. The candidate node C∗i , linked to the root node by the edge with maximum probability, is
chosen as N2, added to τ and S, while it is removed from C. N1 is no more a leaf node, so it
is removed from S. The set of candidate nodes is then updated by including all possible children
states connected to the last node added to the tree. The vector which stores the probability of
each possible edge is expanded with the total probability2 of the new candidate nodes related to
the new leaf node. Finally the procedure is repeated until the tree contains the maximum number
of nodes (as suggested by [8]) or until we reach the desired depth for a path. The algorithm is fully
described in the following table and is illustrated in Fig. 2.7.

Algorithm 2 Tree Generation Procedure

Data Acquisition and Initialization: At any time k, current velocity data wj , j ∈ {1, 2, ..., s}
is acquired and then quantized.
Set τ = {N1}, pN1

= 1, vector pC = T(k)j , c = s, n = 1;

while Level < Levelmax (or n < nmax)
set i∗ = argmaxi∈{1,...,c}pC and find C∗i
set Nn+1 = C∗i and τ = τ ∪Nn+1

update pC = [pC , pC(i∗)T(k)i
∗
]T ;

set n = n+ 1

set c = c+ s− 1

update Level if the found node has increased the depth of the tree
remove the i∗-th component of pC .
end while

Levelmax is the number of prediction steps required, i.e., the desired depth for the longest path of
the tree; Level is the current depth reached by the algorithm.

2Each entry of the vector stores the product of the probabilities on the edges of the path. The latter starts from the
root node until the candidate node.
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Figure 2.7: This picture provides a scheme of the procedure described by Algorithm 2: wj is the root node;
the best path (here described by red arrows and cyan states) is chosen once the last node added belongs to the
requested prediction level. As we can see from the picture, the procedure provides a lot of paths of different

depth and chooses the one which firstly reached the desired depth (in this case, the fourth step).

2.5.1 Tree Generation Procedure for Multiple sequences

The procedure described in section 2.5 can not be used with Multivariate Markov Chains, because
the probability distribution at time k + 1 is computed with the contribution of a second sequence
of data which is not considered by the previous algorithm. To solve this issue we can introduce a
new tree τ2 which allows us to predict future states of the second sequence. The building procedure
of this new tree proceeds in parallel with the first one; when the length of the longest path of the
first tree is greater than the longest path belonging to the second tree, this new tree is updated
according to the Markov Chain rule (equation (2.30)) until its longest path has the same length
as the corresponding one in the first tree. Once this happens, the last node of this path is used to
compute the probability distribution of the first sequence at time k + 1. Given current values wj
and wi of the two data sequences, p(k + 1) is computed according to the following equation:

p(k + 1) = λ11T11(k)j + λ12T12(k)i

Where T11(k)j is the j-th column of the transition matrix T11, while T12(k)i is the i-th column
of the transition matrix T12. Scheme shown in Fig. 2.8 explains the whole tree procedure with
the variant for Multivariate Markov Chains.
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INITIALIZATION PROCESS
of the following parameters:

- Size and number of the quantization intervals: the size controls the accuracy of the prediction, while the number can be computed by using the  
maximum value for the data and the chosen length of the interval.  
- Time step duration Ts: it determines how much time passes between the acquisition of two different data.
- Prediction Steps L: how many future data the algorithm has to predict.
- Transition Probability Matrices T and transition vectors n_j. T(0) could be initialized with identity matrix or obtained from some data known a priori, 
while the vectors count the number of transitions starting from each possible state w of every data sequence. Both Transition matrices and vector n_j 
are four (We will consider two data sequences)
Vectors X1 and X2: these 2 vectors are estimated from the data by computing the proportion of the occurrence of each state in each of the sequence 
of data.

MULTIVARIATE MARKOV CHAIN METHOD WITH TREE

LINEAR PROGRAMMING: INTERIOR POINT METHOD
The algorithm estimates the weights which determine the contribution of the current 

probability distribution of the two sequences on the computation of the new probability 
distributions for the next time step.

NEW DATA ACQUISITION: Each time step,
 the algorithm receives as input a new data from all data sequences 

involved (2). If No Data are available, the algorithm terminates.

DATA AVAILABLE

END 
DRIVECYCLE

NO DATA AVAILABLE

Data acquired are mapped with Min Max procedure within the interval determined by the 
sequence which we want to predict (speed: [0-MaxValue]). Then these values are referred to 

their respective quantization interval, in order to determine the state where they belong.
The two sequences are so modelled as a stochastic process.

UPDATE PROCEDURE
Transition vectors n_j and transition frequency matrices are updated with the new transitions 
between the previous state and the current state of the two data sequences involved. Inter-
transition frequencies matrices are also updated with the transitions obtained between the 
previous state of speed and current state of the second sequence involved, and vice-versa.

Vectors X1 and X2 are then updated with the new occurrences, while
transition matrices are updated with a RECURSIVE methodology which exploits the transition 

frequency matrix

STARTING TREES CONSTRUCTION:
Set the current state of speed and the current state of the second sequence as the radix node 

for their respective trees 

Then the procedure looks for the higher value in the array which stores the probabilities;  the 
state related to this value is chosen as possible next state, while the leaf is removed from the 
set of candidate nodes and put inside the set of tree nodes. Finally, The new node is linked to 

its own path.

Is the length of the 
Longest Path of the tree equal to the number of

 prediction step requested?

The algorithm updates the set of candidate nodes of the FIRST TREE with the new possible 
leaves linked with the last node added to the tree set; then the array of probabilities is 

updated with the probabilities of each new leave, computed by multiplying probabilities of  
edges of the path which reach such leave. The probability of each edge is computed according 

to the Multivariate Markov Chain Model. If a transition between a node and a leaf is 
considered impossible, for example there is a big difference between current velocity and a 

particular velocity represented by a possible leave, this is eliminated from the set of candidate 
nodes.

Does the tree
 of the second sequence 

reach the same depth of the 
other one?

NO

YES

NO

Update the second tree with the same 
procedure of the first one until they both 

have the same depth; the only difference is in 
computation of the probability array which 

considers the original Markov Chain 
procedure with only the second sequence 

involved. Finally, the procedure selects most 
probable node for each level reached by this 
tree;  these are associated to their state and  

become the second input for the Multivariate 
Markov Chain procedure

PREDICTION STEP
Select this last path as the most probable; each state belongs 

to a prediction step

YES

Figure 2.8: Tree procedure for the Multivariate Markov Chain algorithm. The goal is to predict the future
states of then speed.
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2.6 Simulations and Results

In this section we simulate the previous algorithms with the driving cycles described in subsection
2.3.1. The Software used for simulation is Matlab R© R2016b. The goal of these simulations is
to compare the performances in order to choose the best procedure for our purposes. The mean
squared error (MSE) is used to measure the quality of the performances; this quantity measures
the average of the squares of the deviation, i.e., the difference between the obtained prediction of
speed and the true speed. If we denote by x the desired speed, by x̂ the prediction and by N the
number of data considered, the following equation explains how to compute the MSE:

MSE =

∑N
i=1(xi − x̂i)2

N
. (2.31)

Another instrument to evaluate the performances of the various estimators is the mean absolute
error, which computes the average of the absolute error between the desired and the estimated
speed. This quantity measures how much close the predictions are to the true values, and we can
compute it in the following way:

MAE =

∑N
i=1 |xi − x̂i|

N
=

∑N
i=1 ei
N

. (2.32)

MAE is more robust to outliers than MSE is: MAE assigns equal weight to the data, while MSE
emphasizes the extremes, because the square of a small number (smaller than 1) is even smaller,
on the contrary the square of a big number is even bigger. The differences between the prediction
and the desired data usually occur because of the randomness of the real time driver behaviour,
which is influenced by many different factors, like traffic congestion, weather and road condition.
The ability of the estimator is to quickly learn the changes in behaviour and, as a consequence, to
improve the prediction of the speed.

2.6.1 Indian Drivecycle, Markov chain procedure

The first simulation tests the ability of the Markov Chain algorithm to predict the speed profile of
Indian drive cycle, by using only the speed data sequence. This profile consists of 95 data, and we
assume that it is repeated eight times, thus we can see how the algorithm improves the prediction of
a repeated drive cycle starting without any kind of information. The transition matrix is initialized
to the identity matrix, i.e., T(0) = Is, and every component of the vector nj(0), which counts the
number of transitions starting from the different states, is initialized to zero.
We can see from Fig. 2.9 that the algorithm does not provide any benefit during the first part of
the drive-cycle (70-90 seconds), because, in this phase, it is updating the transition probabilities
matrix T, so it can return as future speed profile only a delayed version of the drive-cycle itself,
because the identity matrix may suggest only the current value of speed as most probable future
state. We have already seen that this issue can be solved by initializing the transition matrix with
some a priori data.
Once the transition probability matrix has stored the whole behaviour of the drive cycle, the al-
gorithm starts working properly and the computed prediction can better describe the behaviour
of the real driver action. Unfortunately, another issue concerning the identification of the speed
profile is the small number of data which characterizes this drive-cycle: during computation, when
the procedure looks for the maximum value of probability in the array which contains the descrip-
tion of the probability distribution, it could find two or more different values which have the same
probability to became the next value of speed. The procedure privileges as next state the last oc-
currence in the array, that is the state corresponding to the highest velocity. We can see in Fig. 2.9
that when the speed increases, the prediction follows correctly the desired speed; when instead the
velocity is reducing due to the breaking action, the prediction has some small peaks which corrupt
the whole performance. This issue will be solved by considering a second sequence of data which is
able to provide information about throttle and brake actions. When the driving cycle is stationary,
as in this case, after the second repetition the performances do not improve significantly; some
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Figure 2.9: Comparison between original data of repeated Indian driving cycle (blue) and data predicted by
the Markov Chain Procedure, considering only speed data. Four repetitions are displayed.

little variations happen because Matlab R© approximates the term λ of the equation (2.12), which
decreases exponentially when the number of data increase. These small approximations cause some
little discrepancies in the values of the probabilities distributions, therefore the procedure could
slightly change the choice of a future state.

The one step prediction is the same for both procedures discussed above, standard Markov Chain
algorithm and tree procedure. Let us see now how the two algorithms work when the required
prediction steps are more than one: Fig. 2.10 compares the original drive cycle with One-Step,
Two-Steps and Three-Steps predictions computed with the Markov Chain Procedure.

Figure 2.10: Comparison between original profile of Indian Driving cycle (blue) and data predicted by the
Markov Chain Procedure, considering one, two, three prediction steps. Data values range in 285-380 [s]

Of course, the difference between predicted and original data values increases with the number
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of computed steps; in fact, starting from the current state, the higher is the number of required
prediction steps, the lower is the probability to correctly guess the future state, especially if we do
not have available information about throttle and brake (or power), which could help understanding
better the whole behaviour.
Figure 2.11 compares the two speed predictions (three steps) computed thanks to the different
algorithms described.

Figure 2.11: Comparison between original profile of Indian Driving cycle (blue) and data predicted by the
general procedure of Markov Chain (cyan) and by tree procedure (red), considering only the speed data sequence.

2.6.2 Indian Drive cycle, Multivariate Markov Chain procedure

Let us discuss the benefits provided by the Multivariate Markov Chain algorithm, which computes
the prediction by taking into account the contribution of another sequence of data, as, in this
case, the combination of throttle and brake. As we saw in section 2.2, the introduction of a new
sequence of data requires the computation of four transition matrices, two of them storing inter-
transition probabilities between the two data sequences. The shape of the latter matrices is not
as diagonal as the other two, so the transition probability distribution, associated to the current
state, is distributed between all existing transitions (with the simple Markov Chain method, the
probabilities were concentrated in a small interval centred around the current state). Nevertheless
our vehicle can only gradually increase or decrease the speed, due to mechanical and physical
constraints, so transitions between states characterized by very different values of speed cannot
really happen, in spite of these transitions might be associated to a probability value different from
0. Therefore, we need to limit the number of future states to consider: in our case, we state that
the difference between two successive velocity values (w(k + 1)-w(k)) cannot exceed V=7 [km/h],
in both acceleration and deceleration phases. Therefore, with lq = 0.5 [km/h], only 29 possible
values of speed are considered 3.
Fig. 2.12 illustrates the comparison between the original data set and the predicted one, computed
without any information about the drive-cycle involved, that is, T(0) = Is and nj(0) = 0, 1 ≤ j ≤ s.
The first part of the driving cycle can be considered as a training sequence, therefore, as before,
the prediction obtained here is just a delayed version of the original data. Starting from the second
repetition of the drive cycle, we can see that the red line follows almost perfectly the desired

329 states=2 · V
lq

+ 1. We obtain this number by observing that we have 14 values of speed in the interval of 7 [km/h]

( V
lq
). Then, by considering both acceleration and deceleration, this number has to be doubled: 2 · V

lq
. Finally, we need to

consider the current state +1.
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behaviour (blue line) in every part of the drive cycle; small visible differences are simply due to
quantization errors. Of course, if we build the transition matrices with some prior data before
starting the procedure, the algorithm would be able to predict with optimal results already from
the starting point.

Figure 2.12: Comparison between original data of Indian driving cycle (blue) and one step prediction computed
with Multivariate Markov Chain procedure (red), which consider two data sequences. Only four repetitions of

Indian driving cycle are illustrated

Fig. 2.13 shows the behaviours of the one, two and three steps predictions compared to the
original data. The more we increase the number of required prediction steps, the worse are the
results achieved, but, also in this case, they are better than the predictions computed with the
simple Markov Chain strategy.

Figure 2.13: Comparison between original data of Indian Driving cycle (blue), one step prediction (red), two
steps (green), and three steps predictions (cyan) computed with Markov Chain Algorithm, considering only

speed data

To confirm the previous statements, we have stored the MSE and MAE values in tables 2.1 and 2.2.
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According to these tables, we can say that the Multivariate Markov Chain Procedure fits almost
everywhere the original behaviour, therefore errors are smaller than with the simple Markov Chain
method, and mainly due to quantization process. The strategy which builds and exploits the
tree does not improve the performance of the general method; actually, the errors are even worse.
Generally, if we want to predict a stationary drive cycle and the algorithm applied exploits the
Multivariate Markov Chain, the higher the number of data, the more accurate should be the
prediction. Sometimes this does not happen, because probability values of two different transitions
could be very close; the update procedure and the weights computed by linear programming might
change these values during time, so the choice of the future state may change accordingly; this
could cause larger MSE or MAE errors in some small intervals, like the one computed excluding
the first 500 data.

Table 2.1: Indian drive-cycle with simple Markov Chain strategy: 760 is the number of data.

Data Profiles:
Speed and combination
of throttle and brake

MSE
MSE:
100 data
excluded

MSE:
500 data
excluded

MAE:
km/h

MAE:
100 data
excluded

MAE:
500 data
excluded

ONE STEP
Markov Chain

3.5471 3.5193 3.3732 1.0590 1.0558 1.0464

TWO STEPS
Markov Chain

12.3082 12.1056 11.2140 2.2879 2.262 2.161

THREE STEPS
Markov Chain

25.1692 24.6284 24.6860 3.6730 3.6226 3.5815

ONE STEP
Multivariate Markov Chain

0.8782 0.7466 0.9511 0.3257 0.2963 0.3655

TWO STEPS
Multivariate Markov Chain

4.0905 3.8667 4.7119 1.0503 1.0181 1.291

THREE STEPS
Multivariate Markov Chain

11.2087 10.7902 12.5838 1.9980 1.9370 2.1801

Table 2.2: Indian drive cycle with Markov Chain Strategy characterized by tree procedure: 760 is the total
number of data.

Data Profiles:
Speed and combination
of throttle and brake

MSE
MSE:
100 data
excluded

MSE:
500 data
excluded

MAE
MAE:
100 data
excluded

MSE:
500 data
excluded

ONE STEP
Markov Chain

4.0561 4.0173 3.9235 1.1676 1.1590 1.1366

TWO STEPS
Markov Chain

12.9874 12.8924 12.5884 2.4375 2.4122 2.3589

THREE STEPS
Markov Chain

26.3611 26.1958 25.8087 3.6654 3.6254 3.5727

ONE STEP
Multivariate Markov Chain

1.5589 1.4198 1.3480 0.4892 0.4580 0.4548

TWO STEPS
Multivariate Markov Chain

6.1912 5.8835 5.7004 1.7624 1.7240 1.6886

THREE STEPS
Multivariate Markov Chain

13.2668 12.7409 12.1012 2.5303 2.4780 2.3791



2.6. SIMULATIONS AND RESULTS 31

2.6.3 WLTP Drivecycle, Markov chain procedure

Now we want to test our algorithms with the WLTP drive cycle, described in 2.3.1 and characterized
by two profiles, one of speed and one of power, which both consist of 1804 data values (one data
per second).

Figure 2.14: Comparison between original data of WLTP driving cycle (blue) and one step prediction (red)
computed with Markov Chain Procedure, considering only speed data. The interval is 1-1400 [s]

Figure 2.15: Comparison between original data of WLTP driving cycle (blue) and one step prediction (red)
computed with Markov Chain Strategy. The interval is 1400-1700 [s]

This drive cycle is far from being stationary, because it represents very different types of driver
actions; therefore it is very interesting to test the capability of different algorithms to quickly learn
the new driver actions. We saw with previous simulations that a good starting point for getting
good performances is to initialize the transition matrices involved with some prior data which
possibly cover the whole interval of speed. In the following simulations we will consider the first
350 seconds as training data, and the drive cycle is repeated twice (3258 data involved). If no prior
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data are available, transition matrices could be initialized as follows: T(11) = T(22) = Is, while
inter-transition matrices T(12), T(21) can be initialized with uniform values for each component:
T

(11)
ij = T

(22)
ij = 1/N , whereN is the number of possible values for speed and power data sequences.

Figures 2.14 and 2.15 show the comparison between original data and one step prediction data
computed with the Markov Chain general strategy without considering the power profile. The first
figure illustrates the interval starting from the first data to the 1450th, while the second figure
shows the interval between 1450th to 1800th data. Finally Fig. 2.16 adds two and three steps
prediction profiles, computed with the Markov Chain strategy.

Figure 2.16: Comparison between original data of WLTP driving cycle (blue), one step prediction (red), two
steps (green), and three steps predictions (cyan) computed with Markov Chain Strategy. Interval considered is

1460-1560
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2.6.4 WLTP Drivecycle, Multivariate Markov chain procedure

The same drivecycle is used to test the Multivariate Markov Chain procedure. Figures 2.17
2.18,2.19 illustrate the comparison between the original speed profile and the one step predic-
tion profile in three different intervals. As before, 350 data are used as training data to initialize
the transition matrices involved.

Figure 2.17: Comparison between original data of WLTP driving cycle (blue) and one step prediction (red)
computed with Multivariate Markov Chain strategy. Interval 1− 1450 [s]

Figure 2.18: Comparison between original data of WLTP driving cycle (blue) and one step prediction (red)
computed with Multivariate Markov Chain strategy. Interval 1450− 1800 [s]

Previous pictures show that the prediction profiles follow correctly the original dataset, nevertheless
sometimes there are some undesired peaks which spoil the performances.
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Figure 2.19: Comparison between original data of WLTP driving cycle (blue) and one step prediction (red)
computed with Multivariate Markov Chain strategy. Interval 2930− 3250 [s]

Figure 2.20 compares the behaviour of the different profiles of predicted speed with the original one.
Of course, the larger is the number of the prediction steps required, the larger are the discrepancies
between original and predicted profile.

Figure 2.20: Comparison between original data (blue) of WLTP driving cycle, one step prediction (red), two
steps (purple), and three steps predictions (green), computed with the Multivariate Markov Chain strategy.
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Finally we compute and then store in the following table the values of MSE and MAE for the
different procedure adopted. The drivecycle involved is repeated twice, transition matrices are
initialized with 350 data used as prior knowledge, so the first data considered for the simulation
is the 351th. As before, we can see from the table that the more the number of data increases,
the more accurate is the prediction, but only the Multivariate Markov Chain method provides a
significant improvement.

Table 2.3: Errors computed with WLTP driving cycle and predictions obtained with Multivariate Strategy.

Algorithm MSE
MSE:
500 data
excluded

MSE:
1500 data
excluded

MAE:
km/h

MAE:
500 data
excluded

MAE:
1500 data
excluded

ONE STEP
Markov Chain with Tree

6.0924 5.8222 5.8641 1.5433 1.5198 1.5124

TWO STEPS
Markov Chain with Tree

18.6421 17.5716 17.7509 2.7836 2.7199 2.7351

THREE STEPS
Markov Chain with Tree

37.5305 35.4198 35.9765 4.0455 3.9490 3.9944

ONE STEP
Markov Chain

5.9343 5.9024 5.8913 1.5347 1.5293 1.5138

TWO STEPS
Markov Chain

17.5108 16.5261 16.4863 2.7358 2.6802 2.6776

THREE STEPS
Markov Chain

35.0612 33.2475 33.4315 3.9489 3.8689 3.8971

ONE STEP
Multivariate Markov Chain

5.2948 4.8356 4.3823 1.3634 1.2804 1.1631

TWO STEPS
Multivariate Markov Chain

16.1117 14.9719 14.0280 2.5711 2.4720 2.3658

THREE STEPS
Multivariate Markov Chain

30.6684 29.1340 27.5511 3.6910 3.5719 3.4365

2.7 Final observations on Markov Chains Methods

In this chapter we discussed possible different strategies useful to predict a sequence of data in
real time. The first algorithm exploits Markov Chain theory and information provided by one data
sequence, the one for the speed, to predict the future states of speed. The main ingredients of this
procedure are the current state of velocity and the transition probabilities matrix, which stores
the probability distribution related to each state, computed using past transitions between data.
Then, a different strategy for prediction has been implemented: this idea, based on the Markov
Chain Theory, builds a tree with paths of different depths. The path which first reaches the de-
sired prediction level is chosen as the optimal one. Finally, Multivariate Markov Chain theory is
exploited to introduce another sequence of data which contributes to improving results obtained
with the previous procedure. This methodology needs to build four different transition matrices
to store transitions between states of the same sequence and inter-transitions between two differ-
ent sequences. The employment of more data increases the computation time, but contributes to
provide better results.

Our simulations tried to estimate two very different types of drive cycle: the first one is made up of
three profiles of 95 data, repeated several times, of speed, throttle and vehicle braking, respectively.
The complementarity of throttle and brake profiles was exploited to combine two sequences in a
single profile. The second drive cycle instead provides a speed and a power profile, which both have
1808 data. Power and the combination between throttle and vehicle braking are useful sequences
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(a) transitions between speed states (b) transitions between speed and second
sequence states

(c) transitions between second sequence
and speed states

(d) transitions between power states

Figure 2.21: Transition matrices (states from 100 to 200) computed with WLTP drivecycle

for Multivariate Markov Chain method.

The first issue to solve was the initialization procedure of transition matrices, which can be done
by using a set of data known a priori. These matrices have a key role in the performances of the
algorithms, in fact the more we know about drive-cycle before starting, the more accurate is the
prediction from the beginning; nevertheless, if the transition matrices are initialized with a data
sequence which does not fit the drive cycle involved, the procedure takes some time to update the
transition matrices and as a consequence, prediction might not be very accurate at the beginning.
Of course, if no data values are available a priori, matrices must be initialized with the method
discussed in subsection 2.6.3.
Transition matrices computed at the end of the simulation with WLTP drive cycle are illustrated
in Fig. 2.21, while others computed with the Indian drive cycle are represented in Fig. 2.22.
Figures show that the shape of transition matrices obtained with WLTP drive cycle is completely
different from the shape of the others matrices computed with Indian profiles. The main reasons are
the different number of data (95 against 1804), different type of driver actions and different vehicles:
WLTP represents the behaviour of a car in different environments, with low and high speed values
starting from 0 to 140 [km/h], Indian drive cycle shows instead a simple repeated behaviour of a
scooter, which can reach a maximum of 60 [km/h]. Consequently, we have less transitions (due to
the small number of data), that are associated with higher values of probability. In the latter case,
estimating correctly the next value of speed becomes easier.
The computation of the weights obtained with linear programming depends on the shape of the
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(a) transitions between speed states (b) transitions between speed and second
sequence states

(c) transitions between second sequence
and speed states

(d) transitions between states belonging
to second sequence

Figure 2.22: Transition matrices computed with Indian driving cycle.

transition matrices. By looking at them in Figure 2.21, probabilities stored in inter-transition
matrices are very spread and have small values, that is, every inter-transition identified between
power and speed data (and vice versa) is associated with a small probability value. This led to a
smaller influence of power data in predicting speed of the second drive cycle: in fact, the average
of the weight values λ11 and λ12, computed by linear programming procedure, are 0.7594 and
0.2406, respectively. The same weights computed with the Indian drive-cycle are instead 0.5232

and 0.4768; the second data sequence provides a significant contribution (48%) in the computation
of the probability distribution p1(k+1), described by equation (2.33), while speed values contribute
for almost 76% in the computation of p1(k + 1) for WLTP drive cycle.

p1(k + 1) = λ11T11p1(k) + λ12T11p2(k) (2.33)

The length of each interval of speed for the quantization task is another important parameter to set.
Our choice was 0.5 [km/h], which is a good compromise between fast computation and prediction
accuracy, and we used this value for all simulations above. We want to compute now MSE and
MAE values when we choose larger sizes for the interval; smaller sizes are not really interesting
because the computation time becomes higher and not suitable for real time procedures. The drive
cycle considered in simulation is WLTP, because Indian drive cycle is estimated properly by the
Multivariate Markov Chain procedure with quantization interval lq = 0.5 [km/h].
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Table 2.4: WLTP Driving cycle with 3258 data values (First 350 are used as initialization procedure). One
step prediction, computed with Multivariate Markov Chain strategy, is exploited in this table.

Algorithm Interval Length MSE MAE Computation Time

Markov Chain 0.5 [km/h] 5.9343 1.5347
3.27 [s]
0.001 [s] per data

Multivariate Markov Chain 0.5 [km/h] 5.2948 1.3634
257 [s]
0.0789 [s] per data

Markov Chain 1 [km/h] 5.5142 1.5181
1.34 [s]
0.0004 [s] per data

Multivariate Markov Chain 1 [km/h] 5.7465 1.5072
234 [s]
0.07 [s] per data

Markov Chain 2 [km/h] 4.9878 1.4901
0.65 [s]
0.0002 [s] per data

Multivariate Markov Chain 2 [km/h] 5.7816 1.5640
208 [s]
0.06 [s] per data

Table 2.4 allows us to make some considerations about which algorithm works better for our
purpose:

• Depending on the MSE and MAE values, the best results are obtained for lq = 0.5 [km/h]
as quantization interval and Multivariate Markov Chain as algorithm. The Markov Chain
method, with lq = 2 [km/h], has a better MSE but a worse MAE; this means the prediction
computed via the Multivariate strategy is generally closer to the target profile; nevertheless
a larger MSE points out that the prediction profile can have some outliers, which might be
far from the targets.

• If we increase lq, the accuracy of the prediction decays when computed with the Multivariate
method, while the one obtained with simple Markov Chain improves a bit; their performances
become more or less the same when the lq is equal to 1 [km/h], and Multivariate procedure
becomes useless with a lq = 2 [km/h]. In this case, data are associated to a larger interval,
and transitions between states are less common, that is, the probability that the future state
of speed is the same as the current one becomes predominant, and other data sequences
become useless. So the one step prediction profile obtained with Markov Chain method is
closer to the target and it does not have outliers which increase the MSE error. Nevertheless,
in this case the prediction becomes a simple delayed version of the original driving cycle,
therefore the application of this strategy does not provide any particular benefit.

• The higher computation time, 0.07 [s], registered with Multivariate Markov Chain procedure,
is due to linear programming computation, which takes a lot of time to provide the right
weights values; nevertheless, 0.07 [s] is a time well below the time step of 1 [s], so the procedure
can be exploited for real time estimation without any problem. With such a huge number
of data, benefits of using Multivariate Markov Chain are not so relevant, and the Markov
Chain strategy with lq equal to 0.5 can be still used.

Let us see now the differences between predictions obtained with the two methods in different
occasions. Fig. 2.23 shows the one step predictions obtained with lq = 0.5 as interval length for
both method. As we can see, the Multivariate method provides a prediction closer to the target
with respect to the prediction obtained with just the speed profile. MSE and MAE values in tables
2.3 and 2.4 confirm the previous claim.
Fig. 2.24 illustrates the difference between the one step prediction obtained with Markov Chain
strategy, computed with lq = 2 [km/h], and the same prediction computed with Multivariate
Strategy, with lq = 0.5 [km/h]. The interval of time chosen is significant because it represents the
speed at the beginning of the second repetition of the drive cycle, when transition matrices have
been updated with 1804 data. The main differences between the two profiles are the following:
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Figure 2.23: Comparison between original data of WLTP (blue), one step prediction computed with Markov
Chain method (red), and one step prediction computed with multivariate strategy (green). Time interval:

1450-1800, Interval Length 0.5 [km/h]

the one obtained with Multivariate Markov Chain fits better the original profile, but it has some
outliers which spoil accuracy, while the other does not have significant outliers, because a larger
interval means less possibilities of transition; nevertheless the profile looks delayed with respect to
the other one, therefore it does not fit precisely the original behaviour.

Figure 2.24: Comparison between original data of WLTP (blue), one step prediction computed with Markov
Chain method with 2 as interval length (red), and one step prediction computed with multivariate strategy

with 0.5 as interval length (green)
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So after all these consideration, we can claim that:

• All strategies adopted can be used to compute a prediction of the desired data sequence with
good results in terms of accuracy and computation time.

• Multivariate Markov Chain provides prediction results better than Markov Chain general
strategy for small driving cycles like Indian one, characterized by few transitions associated
with high probabilities in transition matrices;

• With long driving cycles, as WLTP, Multivariate Markov Chain procedure still works better
with lq = 0.5 [km/h] generally improves with the increasing in number of data, as we saw in
table 2.3; simple Markov chain strategy with lq = 2 [km/h] has similar errors, due to lower
number of transitions available. Nevertheless, the application of the latter procedure does
not provide any benefit, because the prediction tends to become a delayed version of the
original driving cycle.

Finally we observed that the prediction procedure which builds the tree does not improve the
quality of two or three steps prediction provided by general Markov chain method; actually, it
provides worse results. Hence, we decided not to spend more time on the strategy which builds
trees.
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HEV Model

3.1 Parallel Architecture

The vehicle involved in our project [3] is characterized by a parallel architecture, which can be
described by the following discrete-time, mathematical, single state model:

xk+1 = f(xk, uk, vk, ak, ik) + xk k = 0, 1, ..., N − 1 (3.1)

where xk is the state of charge of the battery, uk represents the torque split factor, the ratio
between the motor and the total torque, which is the input to optimize, vk is the speed1, measured
in [m/s], ak is the acceleration, [m/s2], and ik is the gear number.
The powertrain of a Parallel Hybrid Electric Vehicle (P-HEV) is made up of three different
branches, as illustrated in Fig. 3.1:

Transmission
and gearbox
ωgb, ∆ωgb,

Tgb

Fuel Tank
Qlhv

ICE engine
JICE , Te0

Battery
C, x Converter

Electric
Motor Tm0

Differential
and

Wheels,
ωv,

∆ωv, Tv

Pe Te,Tb

Pb Pm,Tm

Figure 3.1: Parallel Architecture

The first branch is the red one, related to the fuel tank and ICE engine; then battery, converter and
electric motor realize the second branch in blue, while the third in green is made up of differential
and wheels, which have a radius r = 0.3 [m]. Finally, the yellow box, where all other branches are
connected, represents the transmission and the gearbox.

3.2 Vehicle

The vehicle is characterized by a mass mv of 1800 [kg], which is the result of the summation of
four components:

• vehicle mass m0;

1In the previous chapter, speed was measured in [km/h]; nevertheless this particular model requires a value measured
in [m/s], therefore when a value of speed is acquired in [km/h], it has to be converted in [m/s] by dividing the value by 3.6
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• combustion engine mass mICE ;

• motor mass mem;

• battery mass mb.

As we saw in equation (3.1), the model receives as input three quantities, speed v, acceleration a
and gear i, which contribute in computing the following quantities:

• wheel rotational speed ωv = v/r;

• wheel rotational acceleration ∆ωv = a/r;

• wheel torque Tv.

The wheel torque is the product of wheel radius r with a combination of three forces: the rolling
friction Ff , estimated in 144 [N], the aerodynamic drag force Fa = ρv2, where ρ = 0.48 [Ns2/m2]
is the aerodynamic coefficient, and the inertial force Fi = mva. So:

Tv = (Ff + Fa + Fi)r. (3.2)

This vehicle model does not consider wheel slip.

3.3 Transmission and GearBox

The gearbox is a six gear manual transmission associated to fixed gear ratios, each one characterized
by a constant efficiency ηgb = 0.95. Table 3.1 stores the six possible values:

Gear i 1 2 3 4 5 6
Gear ratio γ(i) 17 9.6 6.3 4.6 3.7 3.5

Table 3.1: Gear ratio

The inputs of the gearbox are the wheel speed ωv, wheel acceleration ∆ωv, wheel torque Tv, and
gear number i. These values are useful to compute the following quantities:

• crankshaft rotational speed ωgb = γ(i)ωv [rad/s];

• crankshaft rotational acceleration ∆ωgb = γ(i)∆ωv [rad/s2];

• crankshaft torque Tgb [Nm]:

Tgb =


Tv

γ(i)ηgb
Tv > 0

Tvηgb
γ(i) Tv ≤ 0

(3.3)

The gearbox is characterized by a speed dependent shifting strategy, where gear values are asso-
ciated to a sub-interval of speed. An up-shift happens when the speed value exceeds the upper
limits of the interval, while a down-shift happens when the lower limit is exceeded. Of course, these
intervals depend on the different type of vehicle involved. No energy losses are then considered
during the gear shifting procedure. Further explanations are provided in the following chapter.
The total demand of torque Ttot is the result of the summation of two or three terms, depending
on the value of u:

Ttot =

{
Tm0 + Tgb u = 1

Te0 + Tm0 + Tgb otherwise
(3.4)

where:
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• Tm0 is the electric motor drag torque, [Nm]: Tm0 = Im∆ωgb, where Im = 0.03 [kgms2 ] is the
motor inertia;

• Te0 is the engine drag torque, [Nm]: Te0 = Ie∆ωgb+Tdiss(ωgb), where Ie = 0.14 [kgms2 ] is the
engine inertia, while Tdiss(ωgb) is the dissipation torque, which is a function of the crankshaft
rotational speed.

Tdiss(ωgb) is computed through a linear interpolation based on current value of ωgb. Vectors
involved are stored in table 3.2: vector ω contains the sample points of the crankshaft speed, while
Tdiss contains the corresponding values of dissipated torque.

Tdiss list 22.24 22.24 22.47 23.37 24.65 27.27 29.85 29.77
ω vector 112 168 224 280 336 392 447 503

Table 3.2: Tdiss

The torque provided by the engine is the following:

Te = (1− u)Ttot; ωgb > 0 and Ttot > 0; (3.5)

Tb = (1− u)Ttot; ωgb > 0 and Ttot ≤ 0; (3.6)

where Te is the acceleration torque, while Tb the brake one; finally the torque provided by the
electric motor is:

Tm = uTtot ωgb > 0. (3.7)

The required torque is provided by the electric motor and the ICE engine. This demand is ruled by
a control input u = Tm

Ttot
, the torque split, computed as the ratio between the motor and the total

torque, that is a continuous variable which can take values in the interval [−L, 1]. It determines
how to split the torque demand between the two sources:

• negative values [−L, 0) mean that more torque than is demanded is provided by the internal
combustion engine to recharge the battery;

• u = 0 occurs when torque is only provided by the internal combustion engine (Tm = 0);

• positive values (0, 1) are chosen when torque has to be provided from both internal combustion
engine and electric motor (u establishes the weight of the contribution of the electric motor,
while 1-u is the weight related to ICE);

• finally, with u = 1 all torque is provided by the electric motor (Te = 0).

The lower value −L can be defined according to the engine size: in our simulations we will consider
L = 1 or L = 2. More details are explained in Appendix A.
Acceleration phases contribute in discharging the battery, while deceleration in recovering its state
of charge; when the vehicle is not moving, the battery level remains the same, because the torque
required is 0.
If Te > 0 and contemporary ωgb < 0, or Ttot < 0 and Tm > 0, the current input u is infeasible and
could damage the overall structure.

3.4 Internal Combustion Engine (ICE)

Let us now define how the combustion branch works; the first thing to determine is the engine
efficiency ηICE = ηICE(ωgb), which is computed as a function of the crankshaft speed ωgb through
a linear interpolation procedure. ω are again the samples, while ηICE (stored in Table 3.3) are the
corresponding values of the efficiency.
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ηICE list 0.423 0.420 0.446 0.445 0.446 0.445 0.440 0.423
Tmax list 129 163 190 194 197 199 198 196
ω vector 112 168 224 280 336 392 447 503

Table 3.3: ηICE and Tmax

Once the efficiency is computed, we can get the instantaneous fuel consumption, which is a function
of power and efficiency:

ṁfuel =
Teωgb

ηICEQlhv
(3.8)

where Qlhv = 42500000 [J/kg] is the lower heating value of gasoline. The power of the fuel
consumption is then the following:

Pe = ṁfuelQlhv. (3.9)

Finally, the torque Te computed in equation (3.6), must not be higher than the maximum allowed
Temax = Temax(ωgb) which is computed with another linear interpolation, where the sample values
are stored in Table 3.3.

3.5 Motor and Battery Branch

Now we introduce the equations which rule the behaviour of the electric motor branch. We start
computing the electric power consumption of the battery:

Pm =

{
ωgbTmηm Tm < 0;
ωgbTm

ηm
Tm ≥ 0;

(3.10)

where ηm is the electric motor efficiency, which is a function of the motor rotational speed ωm and
the electric motor torque Tm. The efficiency is computed through a 2D linear interpolation, where
ωm ∈ [0, 600] [RPM] and Tm ∈ [0, 160] [Nm] are coordinate samples, while ηm is an efficiency map
with the shape of a matrix, which contains the corresponding function values at each sample point.
The absolute value of Tm, computed in equation (3.7), must not exceed the maximum value for
the motor torque Tmmax = Tmmax(ωm), which is a function of the motor rotational speed ωm, and
is computed with a linear interpolation:

Tmmax
[Nm] 130 130 130 110 105 95 80 70 59 50 40 32 28

ωm [RPM] 0 50 100 150 200 250 300 350 400 450 500 550 600

Table 3.4: Tmmax Motor Torque table of samples

Now we introduce the equations that describe the behaviour of the battery. The main component
of the battery is the internal resistance

rint = rint(x, Pm),

a function of the state of charge x and the motor power Pm. The motor power is important to
determine the current Ib of the battery, too. Table 3.5 stores the sample value for the resistance
during the discharging and charging phases of the battery and the corresponding SOC values. If
Pm > 0, the vehicle is accelerating while battery is discharging, so the value of samples for the
linear interpolation with the SOC are stored in vector Rdischarge; otherwise, if Pm ≤ 0, we have
to consider the vector Rcharge, because the battery is charging.
The efficiency of the battery ηb is:

ηb =

{
1 Pm > 0;

0.9 Pm ≤ 0.
(3.11)
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Rdischarge [ohm] 1.75 0.60 0.40 0.30 0.30 0.30
Rcharge [ohm] 0.35 0.50 0.85 1.00 2.00 5.00
SOC 0 0.2 0.4 0.6 0.8 1
Voc [Volt] 230 240 245 250 255 257

Table 3.5: R and Voc, function of battery state-of-charge

The open circuit voltage voc = voc(x) of the battery is a function of the state of charge and is
computed with linear interpolation, too. Vector Voc contains the sample for linear interpolation;
it is stored in the previous table.
Once the internal resistance, the efficiency and the voltage of the battery are computed, we can
calculate the battery current Ib. The motor power Pm is obtained from to the following relation:

−Pm = rintI
2
b + vocIb (3.12)

So, the current Ib can be found by solving the quadratic equation rintI2
b + vocIb + Pm = 0:

Ib = ηb
voc −

√
v2
oc − 4rintPm

2rint
(3.13)

The battery current must not exceed the maximum discharging current2 of 225 [A] and the maxi-
mum charging current, 200 [A], not to damage the battery.
Furthermore, v2

oc must be bigger than 4rintPm. Finally, the state of charge of the battery is updated
as follows:

xk+1 = − Ib
3600C

+ xk, (3.14)

where C = 6 [Ah] is the battery capacity. The battery power consumption is given by:

Pb = Ibvoc. (3.15)

The scheme of the battery circuit is the following:

Figure 3.2: Battery circuit

2absolute value
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4
Dynamic Programming

Dynamic Programming is a powerful method to solve complex problems, because it manages to
split them into simpler sub-problems which may be recursively solved. This procedure usually
deals with energy management problems, where the goal is to find optimal control inputs which
minimize a mathematical cost function. In this chapter, we are going to exploit this strategy in
order to minimize the fuel consumption of the hybrid electric vehicle, described by the dynamical
model in Chapter 3, in different journeys. Speed values predicted by Markov Chains Algorithms,
illustrated in Chapter 2, are here used as input for the real time procedure.

4.1 Dynamic Programming algorithm

According to [9] and [14], a generic continuous optimization problems has the following form:

min
u(t)∈U

J(u(t))

s.t.: ẋ(t) = F (x(t), u(t), t)

x(0) = x0, x(tf ) ∈ [xf,min, xf,max]

x(tf ) ∈ X (t) ⊂ Rn, U ⊂ Rm,

where J(u(t)) is a mathematical cost function, u(t) is the decision variable, and U is its set, while
ẋ(t) is the continuous dynamical model. The cost function can be written as follows:

J(u(t)) = G(x(tf )) +

∫ tf

0

G(x(t), u(t), t)dt. (4.1)

G(x(tf )) is the final cost at time tf , while the second term is the cost-to-go of applying the control
input u to state x. Let us now discretize in time the procedure, so the continuous model F becomes:

xk+1 = f(xk, uk) k = 0...N − 1, (4.2)

where k is the time index, xk is the state at time k, uk is the control policy that has to be applied
at time k, N is the time horizon and f is a function that describes the system and in particular
how the state is updated. The continuous total cost (4.1) becomes a discrete additive cost, i.e, the
cost obtained at time k, denoted by g(xk, uk), accumulates over time:

J(uk) = gN (xN ) + φN (xN ) +

N−1∑
k=0

gk(xk, uk). (4.3)

gN (xN ) is the terminal cost. The penalty function φN (xN ), can be used to enforce the constraint
on the final state.
The dynamic programming algorithm is based on Bellman’s principle of optimality [14]:
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Definition 4.1 Principle of Optimality: An optimal policy has the property that whatever
the initial state and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision. In other words, let us consider
the optimal control policy π∗ = {µ∗0, µ∗1, µ∗2, ... , µ∗N−1}, where µk is a function which maps the
state xk in the input uk. Then we assume that, when π∗ is used, a given state xl is reached at
time l with positive probability. If we consider the sub-problem starting from xl, which aims to
minimize the following cost-to-go from time l to final time N,

J(uk) = gN (xN ) + φN (xN ) +

N−1∑
k=l

gk(xk, uk)

the truncated policy π∗ = {µ∗l , µ∗l+1, µ
∗
l+2, ... , µ

∗
l+N−1} is the optimal one for the sub interval

[l, N ].

Let us consider x0 as the initial state. The discretized cost, given a control policy π = {µ0, µ1, µ2,

... , µN−1}, is the following:

Jπ(x0) = gN (xN ) + φN (xN ) +

N−1∑
k=0

gk(xk, µk(xk)) + φk(xk) for k = 0, ..., N − 1.

The optimal control policy π∗ minimizes Jπ, where Π is the set of all admissible policies:

J∗(x0) = min
π∈Π

Jπ(x0).

Let us define xik, the discretized state variable at the node with time index k and state index
i; then, the cost function Jk(xik) is computed by the procedure at every node in the discretized
state-time space by proceeding backward in time, as explained in Algorithm 3.

Algorithm 3 Deterministic dynamic programming algorithm
Initialization phase: In this phase only the final cost is computed:

JN (xi) = gN (xi) + φN (xi). (4.4)

Backward phase: here the intermediate computation steps are performed, starting from k =

N − 1, and going backward to k = 0:

Jk(xi) = min
uk∈Uk

{gk(xik, uk) + φk(xi) + Jk+1(fk(xik, uk))}. (4.5)

The definition above is not sufficient for our real time purposes; in chapter 2 we modelled speed
as a stochastic process wk, which have to be considered as an input in the following discrete time
model:

xk+1 = f(xk, uk, wk) k = 0, ..., N − 1. (4.6)

The cost function, because of the presence of wk, is generally a random variable and cannot be
meaningfully optimized. Therefore we need to reformulate the control problem in order to optimize
the expected cost, where the expectation is taken with respect to the probability distribution of
the random variable involved:

J(uk) = E

[
gN (xN ) + φN (xN ) +

N−1∑
k=0

gk(xk, uk, wk)

]
. (4.7)
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Stochastic dynamic programming works as Algorithm 3, nevertheless equation (4.5) has to be
replaced by the following equation:

Jk(xi) = min
uk∈Uk

E[gk(xik, uk, wk) + φk(xi) + Jk+1(fk(xik, uk, wk))], (4.8)

where the expectation is computed with respect to the probability distribution of wk. Moreover,
u∗k = µ∗k(xk) is the optimal control policy at time k if it minimizes the right hand side of equations
(4.5) and (4.8) for each xik.

4.2 DPM Matlab function

The so-called dpm function, provided in [9], solves the discretized version of the control problem
discussed in section 4.1. It requires as input the mathematical model of the vehicle (fun), a problem
structure (prb) defined by the user, a grid (grd) which contains informations and constraints on
the input and the state, and an option structure. The output of the algorithm is an optimal
control signal map containing the results of the dynamic programming algorithm. This map is
then exploited to find the optimal state and cost trajectory through a forward simulation of the
model, starting from the given initial state x0. The control signal in the map is provided only for
discrete points in the state-space grid, therefore it must be interpolated when actual state does
not coincide with the points in the state grid.
Problem structure contains information about the time step Ts (in our case Ts = 1 [s]), the length
of the problem N , that counts how many time steps the procedure must consider, and a vector w of
length N containing the input profiles for the model. If we consider the model described in chapter
3, vector w needs to contain three different profiles of length N describing speed, acceleration and
gear.
The second input discussed, (grd), is fundamental to realize a grid structure. The latter is made
up of cell arrays, associated with possible discrete values about the state x and the input u. This
structure has the following fields:

• the number of grid points Nx{·} and Nu{·}, for state and input, respectively;

• the lower and the upper limits for each state, Xn{·}.lo, Xn{·}.hi, respectively;

• the lower and the upper limits for the final state constraints, XN{·}.lo, XN{·}.hi, respec-
tively;

• the initial value for the state X0{·}, only necessary for forward simulation;

• the lower and the upper limits for each input, Un{·}.lo, Un{·}.hi respectively.

Finally, the option structure defines how to use the algorithm; an important option is the boundary
line method, introduced in [15] which allows to increase the accuracy of dynamic programming
procedure. More details are given in Appendix B.

4.3 Application of the procedure with given drive cycles

Now we see how the deterministic dynamic programming procedure works with the vehicle model
described in chapter 3, which can be summarized by the following equation:

xk+1 = f(xk, uk, vk, ak, ik) + xk. (4.9)

With the deterministic approach, we assume to know in advance the speed, acceleration and gear
profile vk, ak, ik and, as a consequence, the number of data involved in our simulations. So, we
can write:

xk+1 = f(xk, uk) + xk k = 0, 1, ..., N − 1 (4.10)
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Our aim is to optimize the total fuel mass consumed by the vehicle during the driving cycle,
therefore our cost function is the sum of all fuel masses contributions at each time step:

J =

N−1∑
k=0

∆mf (uk, k)Ts, (4.11)

where Ts is equal to one. The optimization problem becomes:

min
uk∈Uk

N−1∑
k=0

∆mf (uk, k) (4.12)

s.t.: (4.13)

xk+1 = fk(xk, uk) + xk (4.14)

x0 = xS (4.15)

xN = x0 (4.16)

xk ∈ [xmin, xmax] (4.17)

The state of charge xk assumes a value between 0 and 1; xS is the initial state of charge, while xN
is the desired final state of charge, which usually has the same value set as the initial one. Moreover
the state of charge must be constrained in the interval [xmin, xmax], where xmin represents the
minimum possible value, and xmax the maximum value. These values are set according to battery
specifications; a state of charge which does not respect these constraints might damage the battery
and the whole system.
For our first simulation we set xS = 0.65 as the initial state, and xmin = 0.4 xmax = 0.7. The
final state of charge has the same value as the initial one, that is, whatever path is covered by the
vehicle and whatever actions are taken by the driver, the battery state of charge must be the same
at the beginning and at the end.
The algorithm requires to set also the number of grid points in the state grid Nx and in the input
grid Nu: for the first simulation we set Nx = 61 and Nu = 21. Larger values lead to better
accuracy but higher computation time. Finally uk can assume values in the interval [−1, 1].
The first driving cycle considered in our simulation is called Japanese 10-15, and it contains three
different profiles, for speed (Figure 4.1), acceleration and gear.

Figure 4.1: Japanese 10-15 speed profile; maximum speed value is 70 [Km/h]
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Figure 4.2 illustrates the trajectory of the state of charge: we can see that the final constraint is
satisfied, and the state of charge is always within the desired interval.

Figure 4.2: Trajectory of the SOC (red) computed with deterministic dynamic programming applied to
Japanese driving cycle (blue). Initial and final SOC are equal to 0.65.

Let us now introduce in the procedure the driving cycles described in Chapter 2: repeated Indian
and WLTP.

Figure 4.3: Trajectory of the SOC (red) computed with deterministic dynamic programming applied to
repeated Indian driving cycle (blue). Initial and final SOC are equal to 0.65.

The behaviour of the state-of-charge SOC is similar in all simulations: during the initial part of
the journey, the battery is discharged to attain minimal fuel consumption target, while the second
part is exploited to restore the same state of charge value as the beginning. Of course, the state
of charge computed with WLTP drive cycle reaches lower values, due to higher values of speed.
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Figure 4.4: Trajectory of the SOC(red) computed with deterministic dynamic programming applied to WLTP
driving cycle (blue). Initial and final SOC are still equal to 0.65.

The torque splits associated to the three driving cycles are illustrated in Figures 4.5, 4.6, 4.7. We
can easily see that negative values for the torque split are principally applied during the last part
of the driving cycle: during the first part the battery branch is mostly exploited to produce the
desired torque. On the contrary, during the final part of the journey, negative values are applied
in order to attain the final state battery constraint.

Figure 4.5: Torque split computed with deterministic dynamic programming applied to Japanese driving
cycle.
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Figure 4.6: Torque split computed with deterministic dynamic programming applied to Indian driving cycle.

Figure 4.7: Torque split computed with deterministic dynamic programming applied to WLTP driving cycle.

Table 4.1 stores the details of the three different simulations computed, with particular attention to
fuel consumption value. Of course, WLTP consumes more fuel, because of the larger data profiles
and the wide variety of driver actions.

Table 4.1: This table stores the fuel consumed during each journey after the application of deterministic
dynamic programming on the whole horizon of data

Drive cycle Number of Data Fuel Consumption [Kg] Horizon length
Japan 661 0.1205 [Kg] 661
Indian 571 0.1180 [Kg] 571
WLTP 1804 0.8702 [Kg] 1804
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Finally, Figures 4.8 and 4.9 illustrate the comparison between the engine torque, the motor torque
and the total torque computed respectively with Japanese and WLTP driving cycles.

Figure 4.8: Comparison between total torque Ttot, engine torque Te, Tb, and Motor Torque Tm computed
with deterministic dynamic programming applied to Japanese driving cycle.

Figure 4.9: Comparison between total torque Ttot, engine torque Te, Tb, and Motor Torque Tm computed
with deterministic dynamic programming applied to WLTP driving cycle. Interval: 1-1200

We can see that the engine branch (Te positive values, Tb negative) is mainly exploited when the
total torque demand is positive, that is, the vehicle is accelerating. On the contrary, when the
vehicle is braking, motor branch supply the total torque required to drive the vehicle. Motor
branch may also supply torque in order to help engine branch in fulfilling the torque demand
in accelerating phases. If necessary, engine branch may also supply torque when the vehicle is
breaking. With Japanese driving cycles the latter possibility is exploited, with WLTP instead is
quite rare.
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4.4 Real Time Algorithm and Stochastic Dynamic
Programming

Dynamic programming algorithm determines an optimal policy for the torque split between two
torque sources (engine and motor) so that the fuel consumption is minimized. The knowledge of
the whole finite horizon allows the procedure to choose the optimal control policy which reaches
the global minimum for the cost function along the whole journey. In the meantime, the algorithm
manages to satisfy vehicle driveability and to maintain battery SOC within the given constraints.
Now let us see what happens with a real time procedure, when speed, acceleration and gear need
to be estimated at every instant, without knowing how long the journey is, and, therefore, without
constraints on the final state of charge.
We now start by formulating a proper infinite horizon problem, where the system dynamics and the
cost are time-invariant and we cannot define a final time for the journey or a terminal constraint
for the state of charge. A key benefit of this strategy is that also the generated control policy is
time-invariant and thus the whole procedure can be easily implemented in a real vehicle.
Markov Chain strategies are here exploited to predict future speed values: at every instant, the
vehicle acquires the current speed through some sensors and estimates future next sample of speed
(sampling time is one second). Acceleration and gear, which are functions of the predicted speed,
are computed according to the following rules. The former is generally calculated through this
relation between two speed values:

a =
v(t2)− v(t1)

t2 − t1
.

where v(t2) is the speed at time t2, while v(t1) is the velocity at time t1. In our case, we have the
predicted future speed ṽ(k+1) and the current speed value v(k), and the difference of time between
the two values is one second, so the relation above would become ak+1 = (ṽ(k + 1)− v(k))/(1[s]).
Nevertheless, this relation involves a real value and an estimated one, which is characterized by
quantization and estimation errors. The latter cause issues when computing the acceleration: for
example, nonnegative values for the acceleration might be obtained when the vehicle is decelerating.
because of these, the acceleration vector stores oscillations between positive and negative values
which do not allow the procedure to discriminate properly the two phases, so the optimization task
could fail.
We fixed this issue by replacing the current value of speed v(k) with v̄(k), the result of a mean
filter which computes the arithmetic mean between the current prediction value w(k+ 1), and the
two previous predictions w(k) and w(k − 1):

ãk+1 =
w(k + 1)− v̄(k)

1[s]

In Chapter 3, we said that gear i is computed according to a gear shifting strategy, given by a speed
dependent shifting policy. This simple strategy splits the whole interval of speed in six different
sub-intervals, each associated to a particular gear ratio: the higher is the speed, the lower is the
gear ratio associated. Intervals have to be chosen according to the typology of the vehicle and
of the associated driving cycles. The following scheme shows some examples of velocity intervals
associated with a proper gear value:

ĩk+1 =



1 w(k + 1) ∈ [0, 5] [m/s]

2 w(k + 1) ∈ [5, 10] [m/s]

3 w(k + 1) ∈ (10, 18] [m/s]

4 w(k + 1) ∈ (18, 25] [m/s]

5 w(k + 1) ∈ (25, 30] [m/s]

6 w(k + 1) ∈ (30,MAX] [m/s]

(4.18)

When the vehicle speed exceeds the speed of the current interval there is an up-shift; on the con-
trary, when the speed is lower, then a down-shift happens.
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Once future speed, acceleration and gear value are obtained, the optimization problem with dy-
namic programming function is reformulated so that it can be applied to a window of one second, in
order to calculate the optimal policy of powertrain energy management which represents the local
minimum for the fuel consumption in that small window. In the meanwhile, the vehicle follows the
predicted speed. This procedure is repeated every instant until the vehicle journey is complete in
a receding horizon manner.
The optimization problem applied to every small window is the following one for each instant k:

min
uk∈Uk

E [∆mf (uk, wk, k)] (4.19)

s.t.: (4.20)

xk+1 = fk(xk, uk, wk) + xk (4.21)

x0 = xk (4.22)

xk, xk+1 ∈ [xmin, xmax] (4.23)

It differs from the original problem by small but significant details:

• ak and ik, respectively acceleration and gear, depend on the speed value predicted with
Markov Chain Procedure; because of this, they are not included in the model (4.21);

• the cost function that has to be minimized is the expectation of the instantaneous fuel
consumption at time instant k; in fact process w of predicted speed, modelled as a Markov
Chain, is stochastic.

• the initial state-of-charge x0 must be initialized with the value of the current state-of-charge,
computed by applying the dynamic programming procedure to the previous interval;

• the summation has been replaced because in this case the length of the horizon applied to the
procedure is one second. With a larger horizon and more samples, it has to be re-introduced;

• the final state of charge is constrained only by the lower and upper limits; the limited horizon
does not allow to define a desired final state of charge.

The application of such an optimization problem to the Japanese drive cycle does not provide
useful results, as we can see in Fig. 4.10, where the trajectory of the state of charge computed in
real time is shown.
The value of the state of charge is updated in real time with the previous method: it starts from the
given initial value, 0.65, then gradually decreases, until it reaches the lower value available for the
SOC; finally, it remains constant. The decreasing in SOC level is due to the massive exploitation of
the battery branch to provide the necessary power for the vehicle at the beginning of the journey.
By doing this, the procedure never chooses a negative value for the torque split which would enable
the recharging procedure; nevertheless the battery cannot be infinitely discharged, and at some
point, the lower safety value for the SOC is reached. In this case, the torque split factor is chosen
equal to 0 in order to keep constant the value of the state of charge, that is, the battery branch
is no more considered and the whole amount of power is only provided by the ICE engine branch.
Thus, benefits provided by the battery in minimizing fuel consumption would quickly expire.
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Figure 4.10: Comparison between the SOC computed with deterministic dynamic programming applied to the
whole horizon available and the SOC obtained with the current real time procedure, characterized by stochastic

dynamic programming method

Figure 4.11 confirms the previous statements: at the beginning, the real time torque split is usually
equal to one, that is, the power is fully provided by the battery branch, and the behaviour looks
similar to the optimal one; when instead the state of charge reaches the lower possible value, the
torque split mostly assumes a value equal to 0, that is, the total necessary torque is computed only
by the engine branch.

Figure 4.11: Torque split computed with the whole horizon known is compared with the optimal torque split
computed with real time procedure

We can see that this particular real time procedure never chooses a negative value for the torque
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split1, because in such a small horizon a recharging phase would require more fuel than what 0
or a positive value would need, and, therefore, a negative value is always more expensive than a
positive one. When instead the horizon is larger and known, the possibilities to compute a global
minimum and impose a constraint on the final state allow the procedure to select both discharging
and recharging phases in a proper way, in order to minimize the whole fuel consumption and restore
the initial battery state of charge.
Behaviour illustrated in Fig. 4.10 is not acceptable; so let us now introduce a new modified
optimization cost procedure that takes into account both fuel consumption and level of the state-
of-charge, in order to overcome issues caused by the small dimension of the horizon and the
unconstrained final value for the SOC.

4.4.1 Cost Function update

The above problem formulation does not have any constraint on terminal state of charge SOC,
therefore, the optimization algorithm tends to deplete the battery in order to achieve minimal fuel
consumption. Hence, we impose a new functional of cost to constrain the SOC current value:

α(SOC(k)− SOCf )2 (4.24)

Function (4.24) is a quadratic penalty factor, also called regularization term, which is made up
of a parameter, α, multiplied by the squared difference between the current SOC and the desired
final value for it.
In an estimation setting, the extra term, penalizing large deviations between current and final state
of charge, can be interpreted as our prior knowledge that the current state of charge is not too far
from the desired final value. In an optimal design setting, this quantity increases the cost of missing
the target specifications for inputs which contribute in depleting the battery; as a consequence, it
allows to keep the state of charge close to the desired value SOCf . The control input on every
small horizon is calculated by solving the following new optimization problem, which minimizes
the weighted sum of the two costs:

min
uk∈Uk

E [∆mf (uk, wk, k) + α(SOC(k)− SOCf )2] (4.25)

s.t.: (4.26)

xk+1 = fk(xk, uk, wk) + xk (4.27)

x0 = xk (4.28)

xk, xk+1 ∈ [xmin, xmax] (4.29)

Although the introduction of regularization terms can control the state of charge value, this raises
the question of how to determine a suitable value for the regularization coefficient α. Of course,
looking for the solution which minimizes the cost function with respect to both the weights involved,
lead to the un-regularized solution α = 0, that is not desirable.
According to [16], operation of Bias variance decomposition (a brief explanation is discussed in
Appendix C) splits the cost function into the sum of a bias and a variance, and the model with the
optimal predictive capability is the one that leads to the best balance between them. Parameter
α plays an important role in this task: in fact high values of α limit the variance but produce an
increase in bias. On the contrary, low values lead to a small bias but also to a big variance.
The similarity with our cost function can be here exploited: fuel consumption term can be con-
sidered as the bias we want to minimize, while the squared difference between the State-of-charge
values (the regularized term (4.24) without α) is the variance. Our main targets are the minimiza-
tion of the fuel consumption and the restoration of the SOC value at the end of the journey of
the vehicle; so, let us see what happens with different values of α. We are going to exploit the

1when -1 happens, the vehicle is not moving, and the battery is not recharging
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Japanese driving cycle with only real data, without considering predictions procedure, in order to
see what happens to the state-of-charge and the consumed fuel when α changes.
Figure 4.12 illustrates these behaviours: a large value of α pulls down the variance and the regular-
ization factor (4.24) towards 0, leading to larger values for the fuel consumption; conversely, small
values for α cause a reduction in fuel consumption leading to a larger variance. A small variance
reduces in fact the possible contribution offered by the battery in supplying torque to the vehicle,
attaining to a larger use of the ICE branch, and, as a consequence, to a larger fuel consumption.
According to these consideration, we should impose a value for α as small as possible. Nevertheless,
the final state of charge must be completely restored to the initial value, and a big deviation of
the current state of charge might prevent it. Fig. 4.12 shows that for Japanese driving cycle, we
cannot set α to a value smaller than 6, which is the best solution, otherwise the procedure would
fail in restoring the initial state of charge.

Figure 4.12: Comparison between fuel consumption, final state and average difference between current state
of charge and desired final value computed with different α values applied to Stochastic Dynamic Programming

Procedure.

Another interesting thing to analyse in Fig. 4.12 is the comparison between the fuel consumption
computed with α = 0 and the contribution obtained with small values of α: the quantity of fuel
consumed with α = 0 is more or less the same than the quantity computed with α = 6, but now
the final state of charge is completely restored, and can be used for another journey. In fact, when
the battery is depleted, it does not provide any more contribution to torque and power, and the
fuel consumption becomes bigger and bigger.
The regularization factor introduces the possibility to recharge the battery: this term penalizes a
little number of intervals with respect to the whole horizon, by leading the procedure in selecting
a control input which consumes more fuel, in order to continue to have benefits from the battery
branch along the whole journey.
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4.4.2 Real Time Optimal Control Strategy

Fig. 4.13 describes the whole real time control strategy. The driver actions are estimated by
the Multivariate Markov Chain procedure described in Chapter 2; speed, acceleration and gear are
then passed to the Energy Management Controller, which computes the optimal torque split factor
for the Hybrid Electric Vehicle Model. The output of the model is the current value of the state of
charge; the squared difference between this value and the desired one, multiplied by a proportional
term α, is a fundamental part for the optimization problem.

Figure 4.13: Controller for the vehicle

4.5 Simulations with real time strategy

Let us see now what happens to the state-of-charge and fuel consumption when the new real time
procedure is applied to the three available driving cycles. We are going to compare the trajectories
of the state of charge obtained with the following methods:

(i) Dynamic programming method with driving cycles totally known in advance (blue);

(ii) Real time stochastic dynamic programming procedure with future data estimated by using
Multivariate Markov Chain procedure (red);

(iii) Real time stochastic dynamic programming procedure with real future data acquired by
available data profiles (cyan).

Japanese is the first driving cycles observed; in this simulation the state of charge is constrained
by safety measures inside the interval [0.4, 0, 7], and the initial value is 0.65. Finally, control input
u belongs to the interval [−1, 1]. Figure 4.14 shows the different trajectories of the state of charge;
the red trajectory looks similar to the benchmark computed with dynamic programming procedure
(blue), but it is quite closer to the limit of 0.65, due to the introduction of the functional (4.24).
The trajectories computed with real time procedure are quite similar, but the one computed with
real speed data looks smoother than the other obtained with predicted data, because of the errors
and the oscillations in the prediction of speed. It might happen that the predicted value is bigger
than the current one, and the real future value is smaller; for example, the algorithm can confuse
an acceleration phase with a breaking one, and as a consequence, the optimal torque split applied
discharges the battery instead of recharging it.
This issue might also affect the final value for the SOC computed with estimated speed data, as
we can see in Figure 4.15: small oscillations of the predicted speed contribute to have a little
displacement between the desired final value and the real one. α value for the functional in this
simulation has set to 9 (instead of 6) in order to make the algorithm more robust to these oscillations
without increasing too much the fuel consumption mass. However, if the difference is very small
as in this case, the state of charge can be easily brought to the desired value.
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Figure 4.14: Comparison between the different SOC trajectories computed with three different methods and
Japanese driving cycle

Figure 4.15: Last 60 simulation data values. Oscillations in speed due to prediction errors caused displacement
between real final value and desired final value

Let us now see what happens with the Indian driving cycle. Unfortunately some final data of this
profile are missing, due to failure in getting correct measures; in fact the last measured speed of
the driving cycle is not equal to 0, as we would expect, so the desired final state of charge is not
reached by the real time procedure for small α.
According to Fig. 4.16, the minimum value, which respects both minimization and final state of
charge constraints, is 12, but, because of the lack of some data of the driving cycle, we might
consider also values starting from α = 10. However, for the same reason discussed before, we will
consider for our simulation α = 12.
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Figure 4.16: This picture shows the different values for fuel consumptions and state of charge computed with
different α for Indian driving cycle.

As before, Fig. 4.17 compares the trajectories of the state of charge computed with three different
methods. In this case we consider a different value for the initial and desired state of charge, that
is, 0.8. The upper limit is replaced with 0.9.

Figure 4.17: Comparison between the different SOC trajectories computed with the three different methods
applied to Indian driving cycle

We can note that also in this case the procedure respects the condition which exploits the acceler-
ation phase as a discharging phase for the battery SOC, while the deceleration phase contributes
in recharging it. The different initial state does not provide any particular difference in computing
the trajectories. The latter computed with real time procedures are very similar, because we have
already seen that the speed prediction profile, computed by Multivariate Markov Chain algorithm,
is optimal for Indian driving cycle. For the same reason, the fuel consumption mass is similar, too.
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Now we try the stochastic dynamic programming algorithm with WLTP driving cycle. Fig. 4.18
shows how to choose the best α to satisfy the constraints. In this case the minimum α is equal to
4, but for our simulation we choose it equal to 5.

Figure 4.18: This picture shows the different values for fuel consumptions and state of charge computed with
different α for WLTP driving cycle.

Fig. 4.19 illustrates the trajectories of the state of charge computed with α = 5. Again, the
real time behaviour looks very similar, especially in the second part. The final state-of-charge
constraint is respected.

Figure 4.19: State of charge trajectory computed with the three different methods and WLTP driving cycle.

Table 4.2 stores the main results of the previous simulations about fuel consumption, number of
data and value of α. Of course, fuel consumption masses are bigger than those stored in table 4.1,
because knowledge of the whole horizon allows to exploit optimally the battery branch.
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Table 4.2: This table stores the fuel consumed by the different driving cycles when stochastic dynamic pro-
gramming procedure is applied. α value are also stored, in order to see how these value change according to

the driving cycles

Drive cycle Number of Data Fuel Consumption [Kg] Horizon length α

Japan 661 0.1543 1 9
Japan with real data 661 0.1392 1 9
Indian 571 0.1433 1 12
Indian with real data 571 0.1389 1 12
WLTP 1804 0.9960 1 5
WLTP with real data 1804 0.9196 1 5

4.6 Speed-Dependent Alpha

In the previous section, Table 4.2 shows that for three different possible profiles, the chosen value
of α changes significantly, and it basically depends on the prior knowledge we have of the driving
cycles, represented in the three figures 4.16, 4.12 and 4.18. If the maximum speed reached is high,
the value of α can be set low, because high velocity is related to a long breaking phase, which can
easily recover the state of charge. But, of course, in a real situation the vehicle does not know
the intentions of the driver, and, if the driver does not reach high speed values, a small α might
not help in reaching the desired final state of charge. Then, α should not be kept constant for
the whole horizon, but it must adapt based on the different speed required by different types of
driving cycles. To confirm these statements, we can look at the SOC trajectory computed with
WLTP driving cycle illustrated in Fig. 4.19: in this driving cycle there are some moments when the
vehicle is not moving, probably due to traffic conditions, where the related state of charge does not
reach the desired final value. Moreover, the whole SOC trajectory, compared with the benchmark
computed with the whole horizon known, is limited into a small interval of values centred in 0.62,
oscillating between charging and discharging phases. So let us define α as a linear function of speed
measured in [km/h]:

α =

{
M − βv v ∈ [0;M − L] [Km/h]

L v ∈ [M − L;MAX] [Km/h]
(4.30)

where M and L are the maximum and the minimum value for α, respectively, while β is the slope
of the line and MAX is the maximum value of speed. According to these relations, the higher the
speed, the lower α is. So the definition of the constant parameter α is replaced by setting the limits
[L,M ] that α can reach and the value of the slope β. These parameters can be set according to a
prior knowledge of the behaviour of the vehicle with different driving cycles, therefore, we do not
need any information on the journey. Fig. 4.20, illustrates a graphical representation of equation
(4.30).

Figure 4.20: Graphical representation of equation 4.30. This figure illustrates α as a function of speed
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Now let us test the new procedure with the Japanese driving cycle and the following parameters:
β = 1.2, M = 70, L = 9. Corresponding to these values, α is high for small speeds, that is, the
battery is not really exploited to provide torque, leading to an increase in fuel consumption. This
happens because the deceleration from a low speed might not have the possibility to restore the
desired value of the state of charge. On the contrary, high speed values are associated to small
α, and this enables to exploit the battery in order to save fuel. Fig. 4.21 shows the trajectories
of the state of charge obtained with this strategy, and confirms the previous hypothesis: in fact,
differently from Fig. 4.14, the battery is significantly discharged only when speed is quite high.
Nevertheless, the final state constraint at the end of every small journey is almost always respected;
small displacements are due to errors in estimation of the future speed data.

Figure 4.21: State of charge trajectory computed with the three different methods, Japanese driving cycle
and α speed-dependent

Figure 4.22: Comparison between the benchmark (blue) and two input profiles computed with real time
procedure. The second (red) is the profile computed with α speed dependent strategy
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Fig. 4.22 compares the optimal input computed with the three different strategies adopted, real
time SDP (red), real time SDP with α speed dependent (green) and deterministic dynamic pro-
gramming (blue), respectively. The motor branch is exploited more by real time procedures, es-
pecially the one with speed dependent α. This is normal because the deterministic procedure can
compute the optimal input over the whole horizon and can choose the best moments to recharge the
battery. Stochastic procedure instead is constrained by the small horizons, so the battery cannot
be fully exploited to provide the required torque, especially with speed-dependent α strategy.
Fig. 4.23 shows instead the results obtained with procedure applied to WLTP driving cycle. In this
case we set parameters as follows β = 1.4, M = 70, L = 5. Here the benefits of the new procedure
are clear: every time the vehicle has a limited speed, the battery is not really exploited and the
state of charge remains close to the desired value, especially when the vehicle is not moving. On
the contrary, when the speed is very high, the battery provides the whole required torque to move
the vehicle, saving fuel mass.

Figure 4.23: State of charge trajectory computed with the three different methods, WLTP driving cycle and
α speed-dependent

Table 4.3 stores the fuel consumption values computed with the new method. Of course, the
quantities are a bit higher than those computed with the procedure with constant α, because the
recharging phases, that often recur to restore completely the state of charge, have to consume more
fuel than before, especially when the vehicle is going to stop.

Table 4.3: This table stores the consumed fuel when stochastic dynamic programming with speed-dependent
α is applied to the three driving cycles involved.

Driving cycle Number of Data Fuel Consumption [Kg] Horizon length
Japan 661 0.1747 1
Japan with real data 661 0.1603 1
Indian 571 0.1618 1
Indian with real data 571 0.1563 1
WLTP 1804 1.0430 1
WLTP with real data 1804 0.9693 1

The last procedure consumes more fuel than the normal one, but it allows to restore the state
of charge in any particular situation of the journey. Moreover, new trajectories of the SOC are
more similar to the benchmark obtained when the whole driving cycle is known in advance. Of
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course, the results obtained with the deterministic dynamic programming method are unattainable,
because when the whole horizon is known in advance without estimation errors, the procedure can
compute the global minimum for the fuel consumption, by deciding when it is better to exploit
the battery branch with respect to the engine one to provide the necessary torque to drive the
vehicle. Real time procedure instead can only approach the benchmark, because without knowing
the whole horizon, procedure is not able to compute the global minimum, but only local minima
over small horizons. Figure 4.24 then shows how the torque is supplied by the different sources
during the first 600 samples of WLTP journey. The considerations of section 4.3 for Figure 4.9 are
still valid: the only difference is the bigger contribution of torque offered by the engine branch in
braking phases of the vehicle.

Figure 4.24: Comparison between total torque Ttot, engine torque Te, Tb, and motor torque Tm computed
with stochastic dynamic programming applied with speed dependent α strategy to WLTP driving cycle. Interval:

1-600 [s]
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Fig. 4.25 illustrates α variations computed with WLTP: small α are correctly associated to big
values of speed, while big α values are related to small speed values.

Figure 4.25: α variations with WLTP driving cycle

To conclude this chapter, let us see if battery current and engine torque respect the model con-
straints along the whole WLTP journey, where speed values are quite high and driver actions are
more significant with respect to the other two driving cycles.
Fig. 4.26 shows the applied engine torque (red) compared to the maximum available (blue). The
applied torque is always lower than the maximum available. Nevertheless sometimes the two values
are quite close; maybe a more powerful engine could be more useful.

Figure 4.26: Engine torque applied compared to maximum available.
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Fig. 4.27 instead shows the required battery current (red) compared to the maximum available
(green):

Figure 4.27: Absolute value of battery current applied compared to maximum available: the maximum value
for charging current must be 200 [A], for discharging 225 [A].

Model constraints are respected with these parameters. Fig. 4.27 is interesting also because it
illustrates the continuous variation in the maximum battery current, due to recurrent oscillations
in estimated acceleration and speed. In the previous chapter we discussed the possibility to change
the lower limit of the control input [−L, 1]. The results obtained for L = 1 and L = 2 are quite
similar, the only difference is a small increase in fuel consumption for L = 2, due to a more
expensive recharge process.
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5
Conclusions

In this project we realized a real time power management control strategy which allows to minimize
fuel consumption of a hybrid electric vehicle. Speed profiles of the involved driving cycles are
modelled as Markov Chain Processes that represent the future uncertainty of the driver speed
request under diverse driving conditions. The Markov Process is built by estimating the transition
probabilities from the quantized samples of the data profile, as described in Chapter 2: transition
probabilities are stored into a matrix, which maps the current speed demand to the next speed
state. The speed demand is highly correlated, because the probabilities are centred around the
diagonal axis and this helps estimating the future velocity value for the vehicle. A better estimation
can be obtained by exploiting Multivariate Markov Chain theory, which involves more data profiles
to estimate future values.
An important parameter for this prediction strategy is the length of the quantization interval,
that has to be chosen as a trade off between the accuracy of the prediction and the increase in
computation time. At the end, we chose to set it equal to 0.5 [km/h].
Once the future speed is available, we can calculate acceleration and gear as a function of the
predicted speed; the acceleration is based on the current prediction and the two previous values,
the gear instead is computed according to a gear-shifting strategy.

Then, deterministic optimization with dynamic programming has been applied over a given jour-
ney to our vehicle model, characterized by one state (battery state of charge) and one input. The
goal was to find an optimal control policy which determines the torque split strategy to govern the
engine and battery operations in order to save fuel. The application of such an algorithm allows to
compute a global optimal solution, that provides the best possible configuration of torque split for
the given driving cycle. Of course, these results can only be considered as a benchmark, because
in a real time journey we do not have information on the future driver behaviour and we cannot
constrain the final state-of-charge.

To solve this issue, we introduced a new infinite-horizon stochastic dynamic programming method-
ology, which computes local optimal solutions and provides a time-invariant state-dependent torque
split strategy. This procedure requires as inputs the predicted speed, the acceleration and the gear,
and computes the optimal torque split value for a limited horizon of one second. Battery depletion
led to the addition of a new cost functional to the fuel consumption term in order to constrain the
current state-of-charge. This functional is ruled by a parameter α which has to be chosen properly
to guarantee fuel consumption minimization and state of charge restoration. According to this, a
speed dependent strategy has been designed to accurately compute the parameter α and improve
the results: we saw that state of charge trajectory obtained with this new strategy is quite similar
to the one computed with the deterministic approach. The algorithm respects battery constraints.
Furthermore, the proposed approach provides a directly implementable control design path, which
is highly desirable because of its potential for a fully integrated optimal design and control process.

71
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Finally, future works include investigations of a possible extension of the proposed method to
more complex models characterized by more inputs and states: the simplicity of our model plays
an important role in the real time computation, but a more detailed model could provide more
accurate results. Moreover, we should compare the fuel consumption results with others obtained
with different horizon lengths and with a heuristic equivalent consumption minimization strategy
(ECMS) (see [17]).



A
Operating modes for the hybrid electric vehicle

Depending on the value of the torque split u, four operation modes are possible for the vehicle:

• u = 1, namely, the torque is entirely provided by the electric motor;

• u ∈ (0, 1) corresponds to the case when the torque is provided from both internal combustion
engine and electric motor;

• u = 0 corresponds to the case when the torque is only provided by the internal combustion
engine (Tm = 0);

• negative values, i.e., u ∈ [−L, 0), correspond to the situation when the torque provided by
the internal combustion engine is higher than the demanded value, in order to recharge the
battery, with −L being full recharge, i.e., this value determines the maximum surplus of
torque that can be provided by the engine.

The first mode provides torque only from the battery branch. Picture A.1 shows how the parallel
architecture works: the engine branch is excluded, so fuel is not consumed and battery is discharged.
This situation usually happens when vehicle is accelerating.
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Figure A.1: Torque Split equal to 1
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Picture A.2 instead shows how parallel architecture works when the second mode is operating:
when u ∈ (0, 1), part of the torque is provided by engine branch, while the remaining part is
supplied by the battery.

Transmission
and gearbox
ωgb, ∆ωgb,

Tgb

Fuel Tank
Qlhv

ICE engine
JICE , Te0

Battery
C, x Converter

Electric
Motor Tm0

Differential
and

Wheels,
ωv,

∆ωv, Tv

Pe Te,Tb

Pb Pm,Tm

Figure A.2: Torque Split between 0 and 1

Picture A.3 illustrates the third operating mode, when u = 0: the whole torque is provided by
engine branch, while the battery branch is disengaged.
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Figure A.3: Torque split equal to 0

Finally, picture A.4 illustrates the recharging mode, when torque split is negative: the surplus of
the torque provided by engine branch is used to recharge the battery. This mode usually happens
when vehicle is braking.
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Figure A.4: Negative torque split
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Dynamic Programming

B.1 Boundary Line Method

This method, described in [15], allows to solve numerical issues related to the implementation of
the dynamic programming Matlab function exploited in Chapter 4 that generally occur on the the
border of feasible state region. These numerical issues arise when computing the cost function
for infeasible states and inputs, which are infinitely expensive and therefore should be associated
to an infinite cost. The presence of the infinite cost for some states, which cannot be achieved,
creates some numerical issue due to the discretization of time and state space. For example let
us define the set of reachable states over one time step Ωik = {x|x = Fk(xi, u) ∀u ∈ U}, starting
from a given state xi by using all admissible inputs, where U is the set for the decision variable
u: if the dynamic programming function is calculating the optimal cost-to-go for the state xi at
time k + 1 and an infinite cost is used for infeasible states together with a linear interpolation,
the feasible part of Ωik+1 would use an interpolation between an infinite cost-to-go Jk+2(xi) and a
finite cost-to-go Jk+2(xi), therefore, as a result, the cost-to-go for xi at time k+1 becomes infinite,
although the grid point (k+1,i) is located within the feasible region. Now consider the algorithm
at time k and the step of calculating the cost-to-go for the state xi. For the same reason as for the
time k+1, the cost-to-go Jk(xi) will be infinite since Jk+1(xi) was calculated before to be infinite.
When the algorithm proceeds backwards, these effects might continue and the computed infeasible
region will grow into the actual feasible region.
The first step to improve this issue is to replace the infinite cost with a very large but otherwise
finite cost (like 1000), greater than the maximum value of the cost function; in this case the
propagation of the infeasible region is reduced but not completely removed in the region close to
the boundary line.
Moreover, the infinite gradient at boundary line is being blurred (see Figure B.1) because of the
interpolation between feasible and infeasible states, that is, the optimal state trajectory cannot
approach the boundary line. The new method computes the boundary line before computing the
backward procedure of the dynamic programming, in order to avoid the blurring effect.
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Figure B.1: Section of an example of a cost-to-go function at time index k. Basic DP does not manage to
approach the boundary line, because of the blurring effect

There exist infeasible regions in the state-time space of an optimization problem with fixed final
time and a partially constrained final state, that is, x(tf ) ∈ [xf,min, xf,max]. When the model
is characterized by a single state, there exist only two infeasible regions, named upper and lower
because of their position in the region, characterized by two different boundary lines. In particular,
the lower boundary line is defined as the lowest state xk,low at time instant k that allows achieving
the minimal final state xf,min, while the upper computes the state xk,high at time instance k that
allows achieving the maximal final state. Figure B.2 shows the two boundaries for the algorithm:

Figure B.2: State variable boundaries for the dynamic programming algorithm for the entire problem domain
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The computation of the two boundary lines is analogous for both lines. The lower is computed by
sequentially going backward in time from k = N−1 to k = 0 and solving the following optimization
problem:

min
xk,low,uk

xk,low (B.1)

s.t.: Fk(xk,low, uk) + xk,low = xk+1,low (B.2)

Fk(xk, uk) = f(xk, uk)− xk (B.3)

uk ∈ Uk, xk,low ∈ Xk (B.4)

xN,low = xf,min. (B.5)

Then, by solving equation (B.2) for xk,low, and inserting the result in (B.1), we can write the
following problem:

max
xk,low,uk

Fk(xk,low, uk) (B.6)

s.t.: Fk(xk,low, uk) + xk,low = xk+1,low (B.7)

Fk(xk, uk) = f(xk, uk)− xk (B.8)

uk ∈ Uk, xk,low ∈ Xk (B.9)

xN,low = xf,min. (B.10)

If the state is unconstrained, we can write:

xk,low = xk+1,low − max
uk∈Uk

Fk(xk,low, uk) (B.11)

So the lower boundary line is found according to this algorithm:

Algorithm 4 Boundary Line Method
Initialization phase: xk,low= xf,min

Backward phase from k = N−1 to 0: The unconstrained equation (B.11) is solved as follows:

• xj=0
k,low= xk+1,low

• Iteration over j until a specified tolerance is achieved

xj+1
k,low = xk+1,low − max

uk∈Uk
Fk(xjk,low, uk) (B.12)

• The algorithm converges if ∣∣∣∣ δ

δxjk,low
max
uk∈Uk

Fk(xjk,low, uk)

∣∣∣∣ < 1 (B.13)

• check if the solutions respect the state constraints; if they are not respected, the general
problem (B.6) is solved.

• the solution xk,low with the corresponding control input uk and the cost-to-go Jk,low is
stored.

This method presented here improves the dynamic programming results only if the optimal state
trajectory is close to the bounds of the feasible region; that is the case of our constrained problem.
Unfortunately, this method can only work with a model characterized by a single state.
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C
Regression and Regularization Term

In Chapter 4 we introduced a new cost functional in order to constrain battery state-of-charge to
eliminate battery depletion. According to [18], [19], [16], this operation is called regularization,
and deals with a convex optimization problem characterized by two cost functions. There are two
possible forms of regularization:

min
x∈R2

+

‖Ax− y‖+ α‖x‖ (C.1)

min
x∈R2

+

‖Ax− y‖2 + α‖x‖2 (C.2)

A ∈ Rm×n represents a map L : Rn → Rm such that L(x) = Ax; then, y ∈ Rm is a vector
containing the measurements, x ∈ Rn contains the parameters that have to be estimated, and ‖x‖
is the regularization factor. For a correct estimation, y = f(x) + ε ≈ Ax, where ε is an additive
zero-mean Gaussian noise. Finally, α is the regularization parameter which can vary in the interval
[0, +∞). The results of equation (C.2), which is the most common, can be computed by using
Thikonov regularization least-squares method :

min
x∈R2

+

‖Ax− y‖2 + α‖x‖2 = xT (ATA + αI)x− 2yTAx + yTy (C.3)

which has the following solution:

x = (ATA + αI)−1ATy. (C.4)

Since (ATA+αI)−1 > 0 for any α > 0, the regularized least-squares solution does not require any
rank (or dimension) assumptions on the matrix A. Equation (C.4) represents a simple extension
of the least-squares solution. Although the introduction of the regularization term is important to
constrain battery SOC, this raises the question of how to choose parameter α. According to [16],
seeking the solution that minimizes the regularized error function with respect to both the weight
vector x and the regularization coefficient α is clearly not the right approach since this leads to the
unregularized solution with α = 0. So the method suggested is called bias-variance decomposition.
Let us define the conditional expectation, that is, the optimal solution given x:

h(x) = E(y|x) =

∫
yp(y|x)dy

where p(y|x) is the conditional distribution. According to [16], the difference ε = (f(x) − y) is
called loss function, and the expected squared loss can be computed with the following method:∫

(f(x)− h(x))2p(x)dx +

∫
(h(x)− y)2p(x,y)dxdy
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The first term depends on the choice for the function f(x), and the goal is to find a solution for f(x)

which makes this term minimal. Because it is nonnegative, the smallest value that we can obtain
for the additive Gaussian noise ε is zero. If we had an unlimited supply of data (and unlimited
computational resources), we could in principle find the regression function h(x) to any desired
degree of accuracy, and this would represent the optimal choice for f(x). However, in practice we
have a data set D containing only a finite number N of data points, and consequently, we do not
know the regression function h(x) exactly.
Function h(x) can be modelled by using a parametric function f(x,w), where w is a parameter
vector based on the data set D. From a Bayesian perspective, the uncertainty in our model is
expressed through a posterior distribution over w.
If we consider the integrand function of the first integral, for a given data set we can replace f(x)

with f(x,w). Let us add and subtract to this integrand the expectation over data set D of f(x,w);
we obtain:

(f(x,w)− ED[f(x,w)] + ED[f(x,w)]− h(x))2 =

(f(x,w)− ED[f(x,w)])2 + (ED[f(x,w)]− h(x))2

− 2(f(x,w)− ED[f(x,w)])(ED[f(x,w)]− h(x))

Then we compute the expectation with respect to D; the result is the bias-variance decomposition:

(ED[f(x,w)]− h(x))2︸ ︷︷ ︸
Bias2

+ED[(f(x,w)− ED[f(x,w)])]2︸ ︷︷ ︸
Variance2

The first term, called the squared bias, represents the extent to which the average prediction over
all data sets differs from the desired regression function. The second term, called the variance,
measures the extent to which the solutions for individual data sets vary around their average, and
hence this measures the extent to which the function f(x,w) is sensitive to the particular choice
of data set. In our case, fuel consumption term can be considered as the squared bias that has to
be minimized, while the variance is the squared deviation of the battery state-of-charge with the
desired value.
So, α can be chosen according to these statements:

• α large reduces the variance term but, conversely, produces a high bias, which is undesirable;

• α small instead reduces the bias term and increases the variance.

So α should be chosen as small as possible; nevertheless the regularization term is added because we
do not appreciate a large state-of-charge variance which does not enable the recharging phase for
the battery. Hence, α must be set as a trade off to keep significantly low both bias and variance.
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