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Abstract

Cyber Threat Intelligence (CTI) systems are designed to detect and eliminate cyber threats by
analyzing data from various sources. Businesses needCTI’s actionable insights andmessages to
safeguard themselves against highly skilled cyberattacks. BecauseMachineLearning techniques
are increasingly being used in CTI systems, attackers’ tactics, methods, and procedures (TTPs)
cannowbe swiftly and accurately detected by these systems. Identifying entities and linkages in
naturallywrittenCyberThreatReports (CTRs) ismade easier byMLmodels, which speeds up
the process of coming upwith appropriate countermeasures. However, the data that generates
a high number ofCTRs is often obtained fromunofficial sources, such as socialmedia, and this
is where hostile actors use deceit to avoid detection. This challenge is often ignored in current
literature.

This thesis presentsVICTIM (Vulnerabilities InCyberThreat IntelligenceModels), a novel
framework for assessing how adversarial strategies affect CTI extractors based on ML/Natu-
ral Language Processing (NLP) models. Advanced open-source Python tools like rcATT, At-
tackKG,LADDER,TRAM, andTTPHunter are among the evaluated extractors. These tools
use CTRs to predict ATT&CKTactics and Techniques from theMITRE Framework. To cre-
ate a baseline for comparing the model performance under different attack circumstances to
a common reference point, we built a customized dataset for our assessment. We carry out a
variety of attack types, such as evasion attacks, which involve altering characters with varying
frequencies and types, employing the ZeroWidth Character (ZWC) attack, poisoning attacks,
which involve contaminating the dataset with both hidden and non-hidden triggers, and back-
door attacks utilizing the poisoned dataset. We carefully analyzed the data to uncover any per-
sistent flaws in these instruments. Our results highlight the necessity of dynamic and adaptive
defense mechanisms to increase the CTI models’ resistance to hostile attacks. This work lays
the groundwork for future research and application in the areas of adversarial attack research
and model robustness improvement for widely usedML/NLP-based CTI extractors.
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1
Introduction

Modern cybersecurity strategies depend heavily on the application of Cyber Threat Intelli-
gence (CTI). It comprises obtaining, examining, and disseminating data regarding actual and
possible threats. Assisting businesses in anticipating, identifying, and successfully managing
risks is the main objective of CTI. Some of the common sources from which this data is gen-
erally collected are network logs, incident reports, and Cyber Threat Reports (CTRs), which
provide information regarding the tactics, procedures, and strategies used by attackers [6, 7].
Threat identification and analysis procedures can now be automated thanks to the incorpo-

ration of Machine Learning (ML) algorithms into CTI systems. Large amounts of data can
be handled fast usingMLmodels. This makes it possible to extract pertinent data fromCTRs
written in natural language, including entities, relationships, and patterns. By considerably im-
proving the speed and accuracy of recognizing theTactics, Techniques, and Procedures (TTPs)
of theMITRE Framework, this feature speeds up the creation of suitable defense mechanisms
[8]. Machine Learning is gaining importance in Cyber Threat Intelligence because it offers a
dependable and scalable approach to threat identification and mitigation [9].

DespiteML’s advantages forCTI, these systems are nevertheless vulnerable to hostile attacks.
Adversarial actors might exploit ML models’ flaws to produce false or missing detections by
crafting inputs meant to fool these systems. Some examples of these adversarial attacks are
poisoning attacks, which alter training data to influence the behavior of the model, backdoor
attacks, which insert a hidden trigger into the data to gain future control, and evasion attacks,
which alter behavior to avoid detection [10]. Adversarial attacks include, for example, the Fast
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Gradient SignMethod (FGSM) and other well-studied techniques in text and computer vision
[11, 12].
Hostile attacks are particularly likely to occur and have the potential to substantially dam-

age the efficacy of ML/NLP-based CTI systems. These vulnerabilities could lead to false posi-
tives, in which benign activity is inadvertently classified as harmful, or false negatives, in which
dangers go undetected. Such mistakes might have detrimental effects and endanger businesses
severely [13]. For this reason, keeping strong cyber defenses requires knowing about these vul-
nerabilities and taking the appropriate action to fix them. Despite growing awareness of the
threat posed by adversarial assaults, no thorough framework exists to assess their effects on
CTI systems that rely onMachine Learning [14]. While addressing adversarial techniques, the
majority of current work focuses on enhancing detection accuracy. This disparity shows that
evaluating and improving the robustness of CTI systems requires a methodical methodology.

Contribution. The primary objective of this thesis is to develop and apply a novel frame-
work, named VICTIM (Vulnerabilities In Cyber Threat Intelligence Models), to evaluate the
impact of adversarial approaches on ML/NLP-based CTI extractors as well as the efficacy of
various attacks that are employed. This study aims to assess the security flaws in state-of-the-art
andup-to-date technologies that are publicly available as open-source resources, likeAttackKG,
LADDER, rcATT, TRAM, and TTPHunter [1, 2, 3, 4, 5]. The source code for these tools
can be found in the publicly accessible repositories on GitHub. We test these tools and iden-
tify their weaknesses by subjecting them to various adversarial attacks, to provide insights and
recommendations for enhancing the resilience of ML-based CTI systems.

We conduct the evaluation by using a custom dataset created specifically for this study. This
dataset is comprised ofCyber ThreatReports gathered fromwebsites that provide insights and
reports regarding Advanced Persistent Threats (APTs) and vulnerabilities [15]. Each tool was
tested on this dataset to assess its performance with respect to the capabilities declared in each
respective paper and establish metrics of comparison with future experiments. In particular,
a performance baseline was established to provide a standard reference point, enabling a clear
comparison of how eachmodel performs under normal conditions versus adversarial scenarios.

For every case scenario, we employ uniquewritten Python scripts to execute evasion, poison-
ing attacks, and backdoor attacks. Evasion attacks imply introducing undetectable changes to
the text by altering letters at different points along the text and in different ways, and by using
Zero Width Characters that inject invisibly, as the name suggests itself, characters to mislead
the classifier [16]. For the poisoning attacks, instead, we work by infiltrating the reports’ struc-
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ture with both hidden and non-hidden triggers that bring malicious changes that are difficult
tomiss and are immediately detectable in the reports by human sight but hard to identify by the
models. Furthermore, the approach we use for deploying backdoor attacks is to insert covert
triggers that the adversary may use to alter the model’s predictions in particular ways [17]. To
assess how effective these adverse strategies are, we compute the Attack Success Rate (ASR),
taking into account the results obtained before and after the execution of the attack.

Our assessments yield important information about the weaknesses and robustness of the
CTI technologies that are in use today. Our findings highlight certain areas that still needwork.
We examine the functionality of these tools in a variety of adversarial scenarios. It is clear from
our research that in order to make CTI models more resilient to hostile threats, defense mech-
anismsmust be both dynamic and adaptive. Ultimately, our work aims to advance research on
adversarial attacks onMachine Learningmodels and provide academics and practitioners with
useful guidelines that will help build more resilient CTI systems.

Organization. The thesis is organized as follows. Chapter 2 reviews existing research on
ML-based CTI systems and adversarial attacks. Chapter 3 details the systemmodel and threat
model used in this study. Chapter 4 outlines the methodology, including the dataset creation
and the implementation of various adversarial attacks. Chapter 5 lays down the fundament of
the baseline for each tool, showing also the methods that are used for computing the metrics
to assess the capability of our under-analysis state-of-the-art projects. Chapter 6 presents the
baseline performance metrics and the evaluation results under adversarial conditions. Chapter
7 proposes countermeasures to enhance the resilience of CTI systems. Finally, Chapter 8 sum-
marizes the key contributions of the thesis and outlines potential directions for further study.
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2
RelatedWorks

In this chapter, we analyze the literature related to the various topics presented in this work. We
explore howMachine Learning, particularly Natural Language Processing (NLP), can assist in
our tasks. We also examine state-of-the-art techniques for entity and relation extraction from
unstructured natural language reports. Furthermore, we contextualize these efforts within the
domain ofCyberThreat Intelligence and investigatewhether similar projects have already been
developed in the cybersecurity field. This review identifies the various elements that character-
ize the problem and highlights the difficulties and challenges in extracting CTI elements.

2.1 Machine Learning

Over the past few decades, there has been a notable evolution in the fields of Artificial Intel-
ligence (AI) and Machine Learning. From theoretical conceptions in the middle of the 20th
century,MachineLearning andArtificial Intelligence have evolved into useful instruments that
are essential to many different businesses. This evolution has been driven by the emergence of
the internet, the exponential expansion in data generation, and the huge improvements in com-
putational power [18, 19, 20].
Simple algorithms like decision trees and linear regression served as the foundation for the

majority of early machine-learning models. But ML has advanced to previously unheard-of
levels of performance and adaptability with the advent of increasingly complex methods like
neural networks and deep learning. Particularly deep learning has transformed domains such
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as Natural Language Processing, autonomous systems, and picture and audio recognition. Ac-
cording to studies by Devlin et al., deep learning has a revolutionary effect on these domains
because of its capacity to automatically extract features and understand intricate patterns from
massive datasets [21].

Healthcare, banking, retail, automotive, and cybersecurity are just some of the industries
utilizing ML and AI. For example, Machine Learning algorithms can be used by healthcare
providers to diagnose conditions and customize treatment regimens[22, 23]. While, in the
financial industry, for example, they are employed in algorithmic trading, risk evaluation, and
fraud detection [24]. In the automotive field,ML is utilized by autonomous cars for navigation,
obstacle detection, and decision-making purposes [25].

The use of MLmodels in real-time applications and their growing complexity both require
large amounts of processing resources. A major factor in the acceleration of Machine Learn-
ing computations has been the advancement of hardware, specifically in the form of Graphics
Processing Units (GPUs) and Tensor Processing Units (TPUs). Deep learning model training
takes a lot less time because of GPUs’ parallel processing capabilities. The training of intricate
models on large datasets has been made possible by GPUs, according to research by Liu et al.
[26], expanding the limits of Machine Learning.
The vital component ofMLmodels is data. The caliber and volume of the data thesemodels

are trained on have a significant impact on their performance. The need for larger and more
varied datasets has increased as Machine Learning models become more complex. The train-
ing of deep learning models, which requires large datasets to capture the nuances of the issue
domain [27], makes clear the necessity for enormous volumes of data.
Data is crucial in cybersecurity as new attack channels and strategies emerge regularly, lead-

ing to constantly changing threat landscapes. Machine Learning models need to be trained
on comprehensive datasets that encompass a variety of threat scenarios to detect and mitigate
these threats effectively. Research such as the work by Dakkak et al. highlights the importance
of ongoing data gathering and updating tomaintain the relevance and effectiveness ofMachine
Learning models in CTI [28].

Significant progress has been made in the application of ML in cybersecurity, which has
changed the ways in which threats are identified, examined, and countered. With the ability
to adapt to novel and unforeseen threats, Machine Learning-based systems have supplanted or
replaced traditional rule-based systems, which depend on predetermined signatures and heuris-
tics. Machine Learning models has the ability to discern patterns and irregularities in network
traffic, identify malevolent actions, and forecast possible vulnerabilities [29].
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Intrusion Detection Systems (IDS) are one of the main cybersecurity applications of Ma-
chine Learning. These systems use ML algorithms to examine network traffic and, using pat-
terns they have learned, detect any intrusions. Luati et al’s research highlights the accuracy
and adaptability of ML-based Intrusion Detection Systems by demonstrating how well these
systems detect previously unidentified attack vectors [30].

Within the context of CTI, Machine Learning is essential for obtaining entities and their
connections from unstructured data sources including forums, blogs, and threat reports. For
this objective, Natural Language Processing techniques are especially useful [31, 32].

2.1.1 Natural Language Processing

Natural Language Processing is a field of Artificial Intelligence that focuses on the interaction
between computers and humans through natural language. NLP combines computational lin-
guistics withMachine Learning and deep learning models to enable computers to understand,
interpret, and generate human language. Thanks to these capabilities, several applications have
been developed, including speech recognition, machine translation, sentiment analysis, and,
more recently, Cyber Threat Intelligence.

The earliest attempts at computer-assisted language translationoccurred in the 1950s, which
is when NLP initially emerged. To aid machines in parsing and producing human language,
linguists created vast collections of rules that were utilized in early models, which mostly relied
on rule-based systems. The creation of the first machine translation systems during the Cold
War, including the Georgetown-IBM experiment in 1954 that proved it was possible to use
computers for language translation, was one of the earliest notable turning points inNLP [33].
In the 1980s and 1990s, statistical approaches became the main focus of NLP. These meth-

ods made it possible for computers to identify language patterns from huge amounts of data,
which reduced the need for human-generated rules. In fact, the use of statistical techniques
has resulted in a significant improvement in the capability of NLP systems to handle the vari-
ety and complexity of human language. Furthermore, techniques such as n-grams andHidden
MarkovModels (HMMs) have becomepopular for tasks like part-of-speech tagging and speech
recognition [34].

NLP sawmajor developments with the introduction ofMachine Learning in the late 1990s
and early 2000s. From text categorization to sentiment analysis, algorithms such as Support
VectorMachines (SVMs) and decision trees started to be used in a variety of Natural Language
Processing tasks. Additionally, at the same time, increasingly complex language models were
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developed in order to better represent the complex nature of human language [35].
The introductionofdeep learning techniques inNLP in the2010s caused aparadigmchange

in this area. The field was transformed by deep learning models, particularly neural networks,
which made it possible to process vast amounts of unstructured data. The development of
word embeddings, such as Word2Vec which allowed NLP systems to keep track of semantic
associations between words, was one of the most important developments during this time
[36].

Transformer models, such as BERT (Bidirectional Encoder Representations from Trans-
formers) and GPT (Generative Pre-trained Transformer), marked a new age for NLP. By pro-
cessing entire sentences or paragraphs at once using attention processes, these models signifi-
cantly improved the ability ofNLP systems to understand the context and generatemeaningful
text [37, 21].
Today, NLP is applied across various areas, transforming the way organizations operate:

• Business andCommerce: NLP is extensively used for sentiment analysis, enabling busi-
nesses to gauge market trends and customer opinions from vast amounts of unstruc-
tured data, such as social media posts and news articles. This capability allows compa-
nies to make informed decisions and tailor their strategies accordingly [38]. Moreover,
NLP is also employed in chatbots and virtual assistants, which enhance customer service
by providing automated yet personalized responses.

• Healthcare: In the healthcare sector, NLP is employed to process and analyze clinical
notes and research papers, helping in the extraction of valuable medical information,
which in turn improves patient care. NLP techniques are crucial in predictive analyt-
ics for patient outcomes, summarizing patient records, and supporting clinical decision-
making [39, 40].

• Finance: NLP applications in the finance industry include risk assessment, fraud de-
tection, and automated customer service. By analyzing large volumes of financial docu-
ments and transaction records, NLP enhances operational efficiency and security, help-
ing institutions detect anomalies and potential fraud [41, 42].

• Media and Entertainment: NLP is used to generate summaries of articles, headlines,
and even image captions. In media, NLP automates the generation of news summaries
and content management, enabling more efficient information dissemination [43, 44].

The capacity to extract relevant entities and their relationships fromunstructured text is one
of the most important parts of many NLP systems, especially in sectors like knowledge man-
agement, Cyber Threat Intelligence, and information retrieval. Entity and relation extraction
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is an important initial step in turning unstructured text input into information relevant to au-
tomated reasoning, decision-making, and additional analysis. We will dive into the techniques
anduses ofEntity andRelationExtraction indepth in the following section, aswe examinehow
this fundamental NLP feature makes it possible to extract useful details from large datasets.

2.1.2 Entity and Relation Extraction

Entity and relation extraction are essential components of Natural Language Processing that
involve identifying and classifying entities (such as names, organizations, or locations) and un-
derstanding the relationships between themwithin a text. The extraction of actionable insights
from massive amounts of unstructured data is crucial in sectors such as knowledge manage-
ment, Cyber Threat Intelligence, and information retrieval, where these procedures can be
particularly and highly important.

Recent advancements in deep learning have improved the accuracy and efficiency of entity
and relation extraction tasks. Transformer-based models like BERT and GPT have proven
highly effective in understanding context and identifying complex relationships between en-
tities. These models can be fine-tuned on domain-specific datasets, allowing them to recognize
and extract relevant information with high precision and recall [21, 45].

In the context of CTI, the ability to automatically identify and link entities such as threat
actors, attack vectors, and vulnerabilities is vital for building robust defenses. Studies have
demonstrated that models fine-tuned for these specific tasks beat traditional methods, making
them necessary tools in modern cybersecurity strategies [46, 47].

Entity and relation extraction are not only necessary for CTI but also serve as foundational
techniques that support a wide range of NLP applications. The extraction of structured infor-
mation from unstructured text enables more sophisticated tasks, such as automated reasoning,
decision-making, and further analysis in various domains.

To effectively implement these tasks, practitioners rely on specializedNLP libraries and tools
that offer pre-built models and frameworks for entity and relation extraction. For instance,
libraries such as spaCy, StanfordNLP, andHugging Face Transformers provide powerful tools
for implementing advancedNLPmodels, including entity and relation extraction [48, 49, 50].
These libraries offer pre-trained models that can be fine-tuned for specific tasks and are widely
used in both academic research and industry applications.

• spaCy is known for its efficiency and ease of use, offering out-of-the-box support for
NER and relation extraction with a range of pre-trained models that can be fine-tuned
for specific domains.
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• Stanford NLP provides a comprehensive suite of tools for NLP, including robust sup-
port forNER and relation extraction, and is particularly valued in academic research for
its accuracy and extensive documentation.

• Hugging FaceTransformers has gainedpopularity for its implementationof transformer
models like BERT and GPT, which can be easily fine-tuned for entity and relation ex-
traction tasks. The library also supports transfer learning, allowingmodels to be adapted
for different languages and domains with minimal retraining [50].

In the next subsection, wewill explore theseNLP libraries in detail, discussing their features,
advantages, and how they can be leveraged to build effective NLP systems for a wide range of
applications, including entity and relation extraction.

2.1.3 Natural Language Processing Libraries

Natural Language Processing libraries are tools that provide the foundational frameworks, pre-
built models, and utilities needed to develop, train, and deploy NLP applications. With the
help of these libraries, academics, developers, and companies can now more easily include so-
phisticated language processing capabilities into their systems without having to start from
scratchwhenconstructingmodels,making in thisway easier access to advancedNLPapproaches.

Overview of Key NLP Libraries

• spaCy: spaCy is a popular NLP library designed for production use. It is appreciated
for being quick, effective, and simple to use. Numerous pre-trainedmodels are available
in spaCy to handle applications including text classification, dependency parsing, part-
of-speech tagging, andNamedEntityRecognition (NER). Because of its design philoso-
phy, which prioritizes ease of connectionwith otherMachine Learning frameworks, it is
a flexible tool suitable for both commercial and academic applications [48]. The capacity
of spaCy to manage extensive text processing with little setup is one of its best qualities.
It is made to integrate custom models into spaCy’s pipelines with ease, working flaw-
lessly with deep learning frameworks such as TensorFlow and PyTorch. Furthermore,
spaCy allows for model fine-tuning, which makes it possible to modify general-purpose
models for use in domain-specific tasks like sentiment analysis and CTI.

• Stanford NLP: Stanford CoreNLP, developed by the Stanford NLPGroup, is another
widely usedNLP library, particularly employed in academic research. It provides a com-
prehensive suite of NLP tools, including part-of-speech tagging, NER, parsing, senti-
ment analysis, and relation extraction. Stanford CoreNLP is known for its robustness
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and accuracy, especially in tasks requiring deep linguistic analysis [49]. The library sup-
ports multiple languages and offers a powerful interface for working with textual data.
It can be integrated into Java-based applications, with APIs available for other languages
like Python,making it accessible to awide audience. StanfordCoreNLP’s detailed docu-
mentation and strong academic support make it a preferred choice for researchers work-
ing on complex NLP tasks.

• Hugging Face Transformers: Hugging Face Transformers is a state-of-the-art library
that has become a cornerstone of modern NLP research and development. This library
provides access to a wide range of pre-trained transformer models, including BERT,
GPT, RoBERTa, and many others. It is designed to be highly flexible, allowing users
to fine-tune models on specific datasets, adapt models for various languages, and deploy
them in production environments [50]. The library is particularly valued for its ease
of use and extensive support for transfer learning, enabling the adaptation of models to
new tasks with relatively small datasets. Hugging Face Transformers also integrates well
with other Machine Learning libraries such as TensorFlow and PyTorch, making it a
versatile tool for developing advancedNLP applications. TheHugging Face model hub
provides a community-driven platform where users can share and discover pre-trained
models, making the development even faster.

• NLTK (Natural Language Toolkit): NLTK is one of the oldest andmost used libraries
in NLP, especially in the educational environment. It provides easy access to corpora
and lexical resources, along with a suite of text-processing libraries for classification, to-
kenization, stemming, tagging, parsing, and more. NLTK is particularly valuable for
those learning NLP, as it includes extensive documentation and educational resources
[51]. While itmaynot be as efficient as spaCy for large-scale processing,NLTK’s compre-
hensive suite of tools and its integration with other Python libraries make it a powerful
resource for a wide range of NLP tasks, from academic research to early-stage develop-
ment projects.

• Gensim: Gensim is a library specifically designed for topic modeling and document
similarity analysis. It is known for its efficient implementation of Word2Vec and other
algorithms for modeling large text corpora. Gensim is often used in combination with
other NLP libraries for tasks like document clustering and semantic analysis [52]. Its
focus on unsupervised learning and scalability makes it an excellent choice for tasks that
require processing massive text datasets, particularly in areas like search engines, recom-
mendation systems, and content management.

These NLP libraries are important for developing a wide range of Machine Learning appli-
cations, particularly in cybersecurity. Tools like Hugging Face Transformers and spaCy enable
the extraction and analysis of critical information, enhancing the accuracy of threat detection
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and response. As we move into the next section on Cyber Threat Intelligence, we will explore
how these tools are utilized for the collection, processing, and analysis of threat data, and exam-
ine the specific CTI tools that leverage these NLP capabilities to enhance security operations.

2.2 Cyber Threat Intelligence

CyberThreat Intelligence is a collection of procedures and instruments intended to proactively
detect, evaluate, and mitigate cyber threats. Organizations can improve their security posture
and efficiently address emerging risks by utilizing CTI, which collects and processes data on
both potential and current threats. Significantworks on the gathering, processing, and analysis
of threat data, as well as a summary of the main CTI technologies now in use, including those
that are being evaluated, are reviewed in this part.

2.2.1 Collection

Obtaining Cyber Threat Intelligence data is the fundamental element of every intelligence op-
eration, forming the foundation for all subsequent analyses and actions. The careful gathering
of threat-related information from numerous sources —each offering a unique viewpoint on
the constantly shifting threat landscape—occurs during this phase. Since the volume and com-
plexity of the data gathered affect the effectiveness of CTI, choosing the appropriate sources
and data collection techniques is essential

Among the methods used for collecting data, web crawling has become an indispensable
tool, particularly for accessing information that is not readily available through conventional
means. In order to collect relevant data, web crawling entails automatically browsingwebpages,
forums, and other online platforms. Thismethod is particularly useful formonitoring the dark
web, a hidden part of the internetwhere criminals frequently gather to talk about and exchange
illegal items and services. Bergman et al. provided evidence of the effectiveness of web crawlers
in obtaining threat intelligence from dark web forums and revealing vital details regarding the
creation of malware, tactics used in cyberattacks, and the sharing of stolen data. Web crawlers
enable early warnings of potential dangers by enabling real-timemonitoring of these talks [53].
The enormous volumeof information that canbeobtainedbywebcrawling, however, presents

both an advantage and a disadvantage. The data is rich in information, but it is frequently
noisy, unstructured, and of variable quality. In addition, the huge quantity of data presents
enormous difficulties in processing, storing, and filtering to obtain valuable data.
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On the other hand, formal platforms provide a more trustworthy and organized source of
threat information. These platforms, which offer verified and carefully selected information,
are usually run by cybersecurity consortia, industry associations, and government agencies. Or-
ganizations can include standardized threat data in their CTI efforts by utilizing threat feeds,
which are provided by agencies like the European Union Agency for Cybersecurity (ENISA)
and theCybersecurity and Infrastructure Security Agency (CISA). Sanchez-Garcia et al. exam-
ined the incorporation of data from various official platforms, showing how this kind of data
can greatly improve threat intelligence’s precision and breadth. Their study emphasized the
significance of uniformApplication Programming Interfaces (APIs) for smooth data exchange
between enterprises, encouraging cooperation and a coordinated response to cyberattacks [54].
The range and efficacy of CTI may be limited by its dependence on a single kind of data

source, whether official or crawled from the internet. In response, hybrid collection systems
emerged, integrating the advantages of both methods. These tactics combine structured, vali-
dated data from official sources with unstructured data gathered through web crawling. This
hybrid strategy is most clearly shown by the multi-source data fusion approach that Anjum et
al. proposed. Their approach offers amore nuanced and comprehensive knowledge of the dan-
ger landscape by combining the legitimacy and structure of official data feeds with the various,
real-time insights from web crawling. By integrating the depth and dependability of officially
sourced information with the immediateness and breadth of web-generated data, this fusion
enables a more balanced perspective [55].

2.2.2 Processing and Analysis

The huge amounts of Cyber Threat Intelligence data must be processed and analyzed to con-
vert unprocesseddata intouseful insights that canbe applied to thedefense against cyberattacks.
To ensure that significant patterns and trends are quickly recognized, complicated processing
procedures are required due to the sheer amount and complexity of data collected during the
collection phase.

The emergence of big data frameworks that leverage Machine Learning techniques to eval-
uate CTI data more effectively is one of the most important developments in this field. A
comprehensive big data system includingmodules for feature extraction, threat categorization,
and data cleaning was presented by Rahman et al [56]. This framework uses Machine Learn-
ing approaches to improve the speed and accuracy of threat identification, enabling businesses
to respond to cyber threats more effectively. This strategy emphasizes how crucial it is to auto-
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mate CTI data processing to handle the complexity and variety of modern cyber threats.
Furthermore deeply studied and used in CTI analysis are clustering and classification tech-

niques. Unsupervised learning techniques are useful for clustering threat data, which enables
the discovery of novel and developing danger patterns, as Kuehn et al have shown [57]. Their
findings highlight the potential of Machine Learning to reveal previously undiscovered corre-
lations in massive datasets, resulting in enhancing the predictive powers of CTI systems. This
approach is especially useful for identifying new dangers that traditional rule-based systems
might miss.

The development of real-time analytics for CTI data processing is another essential field
of research. To keep an accurate picture of the threat landscape and enable companies to re-
spond quickly to new information, real-time processing is very important. A real-time pro-
cessing pipeline utilizing stream processing methods to examine incoming threat data as it is
received was introduced by Rahman et al. in the same previous paper [56]. This method not
only increases response times but also guarantees timely and appropriate intelligence genera-
tion, which has significance for minimizing the effects of continuously evolving cyber threats.

Specialized CTI tools are frequently used to gain improvements in processing and analysis
approaches. To facilitate the ongoing analysis of threat data, these solutions combine big data
frameworks, Machine Learning algorithms, and real-time processing capabilities. We will ex-
amine some of themost important CTI tools thatmake it easier to gather, process, and analyze
Cyber Threat Intelligence in the section that follows, highlighting how they improve cyberse-
curity operations.

2.2.3 CTI Tools

The dynamic and evolving nature of cyber threats requires organizations to employ sophisti-
cated tools that can effectively manage the collection, processing, and analysis of Cyber Threat
Intelligence data. These tools not only enhance the detection and response capabilities of cyber-
security teams but also play a crucial role in anticipating andmitigating emerging threats. This
section provides an overview of several state-of-the-art CTI tools that have gained attention in
recent literature, focusing on their real-world applications and contributions to cybersecurity.

2.2.4 Emerging and Innovative CTI Tools

• MISP (Malware Information Sharing Platform): MISP is an open-source platform
designed to facilitate the sharing of structured threat information among organizations.
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It supports the aggregation, correlation, and sharingof threat data frommultiple sources,
thereby enhancing situational awareness and improving collaborative defense strategies.
MISP has been widely adopted across various sectors, including government, finance,
and healthcare, to improve threat detection and response. Its ability to integrate diverse
data sources and generate real-time threat feeds has been instrumental in proactive cy-
bersecurity measures. Numerous studies and reports highlight MISP’s effectiveness in
encouraging community-driven intelligence sharing, which is crucial for staying ahead
of emerging threats [58, 59].

• AlienVault (nowAT&TCybersecurity): AlienVault, re-branded as AT&TCybersecu-
rity, is a widely recognized threat intelligence platform that provides a unified security
management solution. It integrates multiple security tools, including threat detection,
incident response, and compliance management, into a single platform. AlienVault is
popular among small to medium-sized enterprises (SMEs) due to its comprehensive fea-
ture set and cost-effectiveness. It also includes the Open Threat Exchange (OTX), one
of the world’s largest open threat intelligence communities, which allows organizations
to share threat data and insights globally [60].

• IBM X-Force Exchange: IBM X-Force Exchange is a cloud-based threat intelligence
platform that provides access to a vast repository of threat data, including IP reputa-
tion, malware analysis, and vulnerability databases. It allows security teams to analyze
threats and collaborate on investigations. IBMX-Force Exchange is a cloud-based threat
intelligence platform that provides access to a vast repository of threat data, including
IP reputation, malware analysis, and vulnerability databases. It allows security teams to
analyze threats and collaborate on investigations [61].

• Palo AltoNetworks Cortex XSOAR: CortexXSOAR is a threat intelligence platform
provided by Palo Alto Networks that offers highly curated, actionable intelligence on
threats targeting enterprises. It leverages the vast dataset collected by Palo Alto’s global
sensor network and integrates it with Machine Learning to provide contextual threat
analysis. Cortex XSOAR is widely adopted in sectors such as finance, healthcare, and
critical infrastructure, where understanding the context of threats is critical for effective
response and mitigation strategies [62].

• STIXnet: STIXnet, introduced byMarchiori et al., is a novel and modular solution for
the automated extraction of all STIX entities and relationships fromCTI reports. Lever-
aging advancedNLP techniques and a dynamic Knowledge Base (KB), STIXnet signifi-
cantly improves the extraction of complex entity types and their relations, addressing the
limitations of traditional models that only focus on a subset of entities. Themodularity
of STIXnet allows for the integration and coordination of various information extrac-
tion modules, making it a flexible and extensible tool for both research and operational
use in cybersecurity [63].
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• FireEye: FireEye provides an in-depth analysis of threat actors, their tactics, techniques,
and procedures (TTPs), and the campaigns they run. It’s known for its comprehensive
threat actor profiles and real-time alerts on emerging threats. FireEye’s threat intelligence
services are used globally by enterprises and government agencies to strengthen their cy-
bersecurity defenses. The platform is particularly valued for its advanced threat actor
attribution capabilities and detailed threat reports [64].

As organizations strengthen their defenseswith these tools, adversaries are also evolving their
tactics. One of the most concerning developments in recent years is the rise of adversarial at-
tacks, which specifically targetMachine Learningmodels and other automated systems. In the
next section, wewill delve into the literature on adversarial attacks, exploring the different types
of attacks, such as evasion, poisoning, and backdoor attacks, and how they pose a significant
threat to the integrity and effectiveness of cybersecurity systems.

2.3 Adversarial Attacks

In cybersecurity, adversarial attacks pose serious threats to the robustness and reliability ofMa-
chine Learning models. These attacks take advantage of weaknesses in Machine Learning al-
gorithms to compromise their efficacy and perhaps have severe repercussions. This section
examines several types of adversarial attacks, such as backdoor, poisoning, and evasion attacks,
and highlights the relevant literature that has improved our knowledge of and ability to defend
against these threats.

2.3.1 Evasion Attacks

Evasion attacks involve crafting inputs that deceive Machine Learning models into making in-
correct predictions. The seminal work by Szegedy et al. demonstrated that small perturbations
in input data could cause deep learning models to misclassify images. This discovery was piv-
otal in highlighting the vulnerability of neural networks to adversarial examples, thereby raising
awareness about the need for robust defenses [65].

Building on this foundation, Goodfellow et al. introduced the Fast Gradient Sign Method
(FGSM), a straightforward yet powerful technique for generating adversarial examples by per-
turbing input data in the direction of the gradient of the loss function. This method not only
underscored the susceptibility of even linear models to adversarial attacks but also catalyzed
further research into defensive strategies [11].

16



Evasion attacks are not limited to image classification but extend to various domains such
as Natural Language Processing and network intrusion detection. For instance, recent stud-
ies have shown that adversarial text can fool sentiment analysis models, while crafted network
packets can evade Intrusion Detection Systems. These findings have spurred the development
of a range of defensive techniques.
Chakraborty et al. proposed adversarial training,wheremodels are trainedonboth clean and

adversarial examples, thereby increasing their resilience to such attacks. Although effective, this
approach also raises the computational cost of training [13]. Other strategies include ensem-
ble methods, where multiple models are combined to improve robustness, and randomization
techniques that add noise to inputs or model parameters to obscure the impact of adversarial
perturbations.

Moreover, defensive distillation, introduced by Papernot et al., involves training a ”distilled”
version of a neural network that is less sensitive to adversarial inputs. Despite these advances,
evasion attacks remain a formidable challenge, necessitating ongoing research into more gener-
alized and scalable defense mechanisms [66].

2.3.2 Poisoning Attacks

Poisoning attacks aim to degrade the performance ofMachine Learning models by corrupting
the training data. Biggio et al. were among the first to explore this threat, demonstrating that
maliciously injected data points could significantly compromise the accuracy of support vector
machines (SVMs). This work emphasized the critical importance of data integrity inMachine
Learning systems [67].

Aryal et al. introducedmore sophisticated poisoning techniques, such as clean-label attacks,
where the injected data appears legitimate but subtly influences the model’s behavior in ma-
licious ways. The challenge of detecting such poisoned data, which blends seamlessly with
legitimate data, remains a significant obstacle in defending against these attacks [68].

To mitigate the impact of poisoning attacks, Steinhardt et al. proposed the use of robust
statistics to identify and exclude outliers that may be indicative of poisoned data. This method
enhances the robustness of Machine Learning models by ensuring that outliers do not dispro-
portionately influence the training process [69]. Additionally, anomaly detection techniques
have been employed to identify and remove poisoned data before it affects model performance.
Liu et al. demonstrated that anomaly detection algorithms could effectively reduce the impact
of poisoning attacks without significantly affecting the overall performance of the model [70].
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2.3.3 Backdoor Attacks

Backdoor attacks, also known as Trojan attacks, involve embedding hiddenmalicious behavior
within a model that can be triggered by specific inputs. Chen et al. were among the first to
introduce this concept, showing how attackers could implant backdoors during the training
process, which remain dormant until activated by a specific trigger [71].

Gu et al. further developed techniques for detecting andmitigating backdoor attacks. Their
Neural Cleansemethod identifies and neutralizes backdoors by analyzing themodel’s response
to various inputs. This method has proven effective in revealing hidden backdoors that could
otherwise go undetected [72].
In addition toNeuralCleanse, recent advancements in backdoor detection include the devel-

opment of watermarking techniques for backdoor detection. Adi et al. introduced a method
of embedding unique patterns in models that can help identify unauthorized modifications,
providing a way to verify the integrity of Machine Learning models [73].
Gao et al. provided a comprehensive survey of backdoor attack techniques and defenses,

highlighting ongoing challenges and potential research directions. Their work emphasizes the
need for continuous monitoring and validation of Machine Learning models to ensure their
integrity and security [74].

This chapter has reviewed key developments in Machine Learning, particularly in the ap-
plication of Natural Language Processing within Cyber Threat Intelligence. We explored the
tools and techniques used for entity extraction, data collection, and analysis, as well as the vul-
nerabilities posed by adversarial attacks. These discussions lay the groundwork for the subse-
quent chapter, where wewill define the ”System andThreatModels” that guide the evaluation
of these tools under normal work conditions but also against the identified threats, moving
from theoretical foundations to practical assessments.
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3
SystemModel and Threat Model

3.1 Introduction

System and threat modeling is an essential component of cybersecurity investigation and im-
plementation. System modeling gives users a deep knowledge of the components, design, and
functions of cybersecurity systems, improving their comprehension of how these systems han-
dle data and generate security solutions. On the other hand, threat modeling focuses on iden-
tifying, assessing, and understanding potential threats to these systems, which enables the pre-
diction of attack strategies, the assessment of vulnerabilities, and the development of effective
countermeasures.

This chapter will explore the fundamental aspects of system and threat modeling within the
context of cybersecurity. It will outline how a typical cybersecurity system is structured and
functions under normal conditions, setting the stage for the subsequent analysis of how these
systems can be challenged by, and defend against, various types of adversarial attacks.

3.2 SystemModel

In cybersecurity, system modeling is an in-depth examination of how a system works to track,
collect, and process data and produce useful intelligence. This section describes the parts and
procedures of a standard cybersecurity system, highlighting its design, methods for processing
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data, and challenges it faces.

3.2.1 System Architecture

The architecture of a cybersecurity system is designed to ensure the seamless operation of all
components, enabling effective threat detection and response. At its core, the system consists
of several interconnected modules, each responsible for a specific function within the overall
framework.

The data collection module interfaces with a variety of data sources, utilizing techniques
such as web crawling and API integrations to gather the necessary information. This module
feeds data into the processing engine, which handles the tasks of filtering, categorizing, and
enriching the collected data. The processing engine often employs advancedMachineLearning
algorithms andNLP techniques to automate these tasks, enhancing the system’s efficiency and
accuracy [75].

The processed data is then stored in a storage system designed for both scalability and quick
retrieval. Given the vast amounts of data that a cybersecurity system must handle, the storage
system is typically distributed across multiple servers to ensure redundancy and minimize the
risk of data loss or delays in accessing critical information. The design of this storage infrastruc-
ture is crucial for maintaining the system’s overall performance and reliability.

Finally, the output interface plays a vital role in translating the system’s analyses into action-
able intelligence. This interface is responsible for generating detailed threat reports and alerts,
which are then disseminated to security teams and decision-makers. Additionally, the output
interface may include dashboards and visualization tools that allow users to interact with the
data, gaining deeper insights into the threat landscape and making informed decisions about
mitigating potential threats [76].

3.2.2 Data Sources andData Collection

The process of gathering data for a cybersecurity system is essential to its capacity to iden-
tify, evaluate, and neutralize threats. It involves the methodical collection of data from many
sources, each of which offers different and useful insights into the current state of cybersecu-
rity. To create a large and helpful threat intelligence architecture, the procedure incorporates
several key methods, such as web crawling, API integrations, and the utilization of specialized
data feeds.
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One of the main techniques used to gather data is web crawling. In order to collect data,
this automated method systematically explores forums, websites, and social media platforms.
When it comes to collecting new material from regularly updated sources, including real-time
debates on platforms like Telegram and X (previously Twitter), web crawlers are very useful.
Since these platforms frequently act as hubs for communication between threat actors and cy-
bersecurity professionals, they are essential for spotting emerging threats. Through the config-
uration of crawlers to track particular keywords, hashtags, or user groups, the systemmay guar-
antee that pertinent data is recorded as soon as it becomes accessible. Moreover, the progress
in Natural Language Processing and Machine Learning has significantly enhanced the ability
of web crawlers to filter out noise and focus on data that is actionable, thereby improving the
overall efficiency of the data collection process.
Another crucial component of data collecting is API integration, which offers an organized

way to access and retrieve data from a variety of internet sources, such as government databases
and threat intelligence platforms. The National Vulnerability Database (NVD) and the Com-
mon Vulnerabilities and Exposures (CVE) database are two examples of sources that provide
standardized, most recent data on known vulnerabilities. The system may automatically up-
date its threat databases with the most recent vulnerabilities by integrating these APIs, guaran-
teeing that it is up-to-date and efficient in detecting and dealing with threats. Maintaining the
system’s relevance and operational efficacy is determined by this automatic updating process,
especially given the dynamic nature of the threat landscape.
Data collecting involves not justweb crawling but alsoAPI integration and specialized threat

intelligence feeds. These feeds include curated information on known malicious IP addresses,
phishing domains, new threats, and other indications of compromise (IOCs). They are fre-
quently provided by cybersecurity organizations, industry associations, and government agen-
cies. For instance, enterprises can obtain expert evaluations and a more comprehensive under-
standing of the threat landscape through threat reports from the European Union Agency for
Cybersecurity (ENISA). By including these feeds in the data-gathering process, the system is
guaranteed to get information that has been carefully selected by experts, which can greatly
improve the system’s capacity to identify and react to threats [76].
Dark web monitoring is another crucial component of data acquisition. The underground

internet known as the ”darkweb” is home to plenty of forums andmarkets where illicit activity
is commonplace, including the trade ofmalware, hacking tools, and stolen data. Cybersecurity
systems can detect new attack tools and emerging risks before they are widely used by keeping
an eye on these areas. For example, a system can identify the early phases of a planned attack or
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the sale of newly builtmalware bymonitoring discussions ondarkweb forums. Darkwebmon-
itoring is nowadays a key part of contemporary cybersecurity strategy since it gives enterprises
a significant advantage in preventing possible threats [77].
Social media monitoring also plays a significant role in the data collection process. Plat-

forms previouslymentioned likeX andTelegram are not only used for general communication
but also serve as channels where threat actors discuss their activities or announce new exploits.
By continuously monitoring these platforms, the system can capture early warnings of cyber
threats. This real-time data is valuable for identifying trends, understanding the intentions of
threat actors, and calculating the potential impact of emerging threats on specific industries or
regions. Moreover, the integration of social media data with other sources allows for a more
comprehensive analysis, providing a fuller picture of the threat landscape [78].

Finally, the system must manage the quality and volume of collected data effectively. Tech-
niques such as data deduplication, relevance scoring, and prioritization are essential for ensur-
ing that the systemhandles large volumes of data without being overwhelmed. These processes
help in filtering out irrelevant data and focusing on the most critical information, which is cru-
cial for the efficient operation of the system. Managing the quality of the collected data ensures
that subsequent processing stages aremore effective, ultimately leading tomore accurate threat
detection and analysis.

3.2.3 Data Processing and Analysis

Once data is collected, it undergoes a series of processing stages designed to transform raw infor-
mation into actionable intelligence. Data filtering is the first step, where the system eliminates
noise—irrelevant or redundant information that can obscure critical signals. For instance, in a
systemmonitoring socialmedia for cybersecurity threats, thousands of postsmight be collected,
but only a handful might pertain to actual threats. Effective filtering ensures that the system
focuses on themost pertinent data, enhancing the efficiency of subsequent analysis stages [76].
After the filtering phase, the data is categorized according to specific criteria, such as the

type of threat, source reliability, or urgency. This categorization process often utilizesMachine
Learning techniques like clustering, which groups similar data points together, helping to iden-
tify patterns or anomalies that might indicate emerging threats. For example, clustering might
reveal that a spike in activity across different forums is related to a new malware variant, en-
abling a quicker, more targeted response [79].

Data enrichment follows categorization, adding value to thedataby correlating itwithknown
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threat indicators like IP addresses, domain names, or file hashes. This cross-referencing process
allows the system to identify potential threats with greater precision. Enrichment also involves
integrating contextual information, such as geographical locations or historical activities asso-
ciated with specific indicators, providing a richer understanding of the threat landscape.
Finally, threat analysis is conducted,whereMachineLearning algorithms and statisticalmod-

els are applied to detect patterns, identify anomalies, and predict potential threats. Natural
Language Processing plays a significant role here, particularly in analyzing unstructured data
from forums or social media posts, extracting key information like the names of new malware
strains or emerging attack strategies. The output from this analysis forms the basis for generat-
ing threat reports and alerts, which are then sharedwith security teams to inform their response
strategies [29].

3.2.4 Challenges in SystemModeling

Despite the advanced capabilities of modern cybersecurity systems, several challenges persist
in their design and operation. One significant challenge is data overload. The sheer volume
of data generated from multiple sources—ranging from social media platforms to dark web
forums—can overwhelm the system, making it difficult to filter and analyze the most relevant
information effectively. To manage this, systems must implement robust data management
strategies, such as relevance scoring and prioritization, to focus on the most critical data [76].
Another challenge is the handling of unstructured data. Much of the data collected, particu-

larly from social media and forums, is unstructured and lacks a predefined schema. Thismakes
it difficult to analyze using traditional methods. Advanced NLP techniques are required to
process and extract meaningful insights from this unstructured data, but these techniques can
be complex and resource-intensive, adding to the system’s computational burden [80].

Real-time processing is another critical issue in cybersecurity system modeling. Effective
threat detection often requires the system to process and analyze data as it is received, which de-
mands significant computational resources and highly efficient processing algorithms. Achiev-
ing this level of performance is a challenging task, especiallywhen the systemmust also integrate
data from a wide variety of sources, each with different formats, reliability levels, and update
frequencies [75].

Finally, the system must be capable of integrating diverse data sources and handling them
correctly. Each source, whether it be social media platforms, dark web forums, or official threat
intelligence feeds, has its own unique characteristics and challenges. For example, social media
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data is highly dynamic and real-time, while dark web content is often hidden and encrypted.
Ensuring that the system can effectively aggregate and analyze data from these varied sources
requires sophisticated data integration strategies and robust processing algorithms [81].

3.3 ThreatModel

The threatmodel in cybersecurity serves as an essential process that complements systemdesign
by offering a proactive approach to identifying and addressing vulnerabilities. While the system
model focuses on how a system operates to produce useful intelligence, the threat model is
concerned with how potential adversaries might exploit weaknesses within that system.

3.3.1 Overview of ThreatModeling

Threat modeling is a systematic process important in the field of cybersecurity, designed to
identify, evaluate, and mitigate potential security threats that could compromise a system. It
involves a detailed analysis of the system’s architecture, identifying vulnerabilities that could
be exploited by attackers, and assessing the potential impact of these threats. Through this
process, organizations can better understand their attack surface, which is the collection of
points where an unauthorized user could try to enter or extract data and implement robust
defenses to protect their systems.

The main objectives of threat modeling are:

• IdentifyingThreats: This step involves systematically recognizingpotential threats that
could exploit vulnerabilitieswithin the system. Threats can emerge fromvarious sources,
including software bugs, human error, insider threats, or external malicious actors [82].
For example, an insider with privileged access might intentionally or unintentionally in-
troduce a vulnerability, while an external hacker might exploit a software flaw.

• Assessing Risks: Once threats are identified, it is necessary to evaluate the likelihood
and potential impact of these threats. Risk assessment enables organizations to priori-
tize threats based on their severity and the potential damage they could cause, allowing
resources to be allocated more effectively [83]. For example, a vulnerability in a widely
used software componentmight be prioritized over a less commonly used feature due to
its higher potential impact.

• Mitigating Risks: Designing and implementing security controls to minimize identi-
fied risks is an outcome of threat modeling. This could involve technical measures such
as implementing multi-factor authentication, encryption, and access controls, as well
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as organizational strategies like conducting regular security training for employees [84].
Mitigating risks also involves continuousmonitoring and updating of securitymeasures
as new threats emerge.

• Enhancing Security Posture: Security posture refers to the overall security status of an
organization’s software, hardware, services, networks, and information. Continuously
refining security measures based on evolving threats and feedback from ongoing threat
modeling activities ensures that the security posture remains strong and adaptive to new
challenges [82]. This includes regular updates to the threat model itself, incorporating
new intelligence about emerging threats and vulnerabilities.

3.3.2 Adversarial Assumptions

Understanding the assumptions about the capabilities and access levels of adversaries is nec-
essary for evaluating the potential impact of threats and designing effective defenses. These
assumptions guide the selection of threat scenarios and the development of mitigation strate-
gies.

White-Box Adversaries

Access: White-box adversaries have comprehensive access to the system, including the training
data, model architecture, and parameters. Such access may result from insider threats, data
breaches, or leaked proprietary models. This level of access enables the adversary to perform
highly targeted and effective attacks by exploiting specific vulnerabilities within the system.
Capabilities: With detailed knowledge of the system, white-box adversaries can carry out so-

phisticated attacks such as model poisoning, embedding backdoors, and generating adversarial
examples using gradient-based methods. Their deep understanding of the system’s internals
allows them to identify and exploit weaknesses that might not be apparent in black-box sce-
narios [14]. For example, an adversary could analyze the model’s decision boundaries to craft
inputs that are specifically designed to cause misclassification.

Black-Box Adversaries

Access: Black-box adversaries have limited access to the system, typically restricted to querying
the model and observing its outputs. They do not have access to the model’s architecture, pa-
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rameters, or training data. This limitation forces the adversary to rely on external observations
and indirect methods to mount an attack.
Capabilities: Despite these limitations, black-box adversaries can still pose a significant threat.

Through extensive experimentation and leveraging knowledge from similar systems, they can
generate effective attacks. Techniques such as model inversion, where the adversary attempts
to reconstruct sensitive information based on the model’s outputs, or transfer attacks, where
adversarial examples crafted for one model are used to attack another, demonstrate the poten-
tial dangers posed by black-box adversaries [85]. These methods highlight the importance of
developing robust defenses that can withstand both white-box and black-box attacks.

3.3.3 Threat Scenarios

To comprehensively address the potential threats to a system, it is necessary to consider vari-
ous threat scenarios that simulate different levels of adversarial knowledge and access. These
scenarios provide a detailed understanding of potential vulnerabilities and the effectiveness of
various defensive strategies.

White-Box Attacks

White-box attacks are scenarios where the adversary has full access to the system’s internal de-
tails, including its training data, model architecture, and parameters. Such attacks are partic-
ularly dangerous because the attacker can craft highly targeted strategies that exploit specific
vulnerabilities within the system.

• PoisoningAttacks: Poisoning attacks occurwhen an adversary deliberately injectsmali-
cious data into the training set with the goal of corrupting the model. These attacks can
be particularly insidious as they can go undetected during the training phase, leading to
long-term degradation of the model’s performance. For example, in a collaborative data
environment, an attacker might subtly introduce corrupted data into a shared dataset,
causing the model to learn incorrect patterns [86]. Over time, this could lead to the
model making systematic errors, such as misclassifying malicious activities as benign.

– Label Flipping: In this specific poisoning technique, the adversary changes the la-
bels of certain data points in the training set, leading the model to learn incorrect
associationsbetween inputs andoutputs. For example, an attackermight labelmal-
ware samples as benign, leading themodel to incorrectly classify actual malware as
safe in future analyses [87].
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– Backdoor Attacks: Backdoor attacks involve embedding hidden triggers within
the model during training. These triggers cause the model to behave maliciously
when specific inputs are encountered while performing normally otherwise. A
classic example is the Trojan attack, where amodel might execute amalicious com-
mand only when a particular trigger input, such as a specific image or string, is
provided [88]. The challenge with backdoor attacks is that they are difficult to de-
tect during standard testing, as themodel’s performance on regular inputs remains
unaffected.

– Poisoned Data Augmentation: This attack technique involves the deliberate in-
jection of misleading or corrupted data into the training process, subtly altering
the decision boundaries of the model. By augmenting the training dataset with
poisoned examples, the adversary can cause themodel tomisclassify specific inputs
during inference. Unlike label flipping, which alters the output labels, poisoned
data augmentation manipulates the features or content of the inputs themselves.
For instance, an adversary might insert slight perturbations into images or texts,
causing the model to perform incorrectly when encountering similar patterns in
real-world applications [89]. Such attacks are particularly dangerous because they
exploit the model’s generalization capabilities, and the poisoned data can be de-
signed to bypass standard defenses, making detection extremely difficult [67, 90].

• Evasion Attacks (e.g., FGSM): Evasion attacks involve creating adversarial examples
designed to cause the model to make incorrect predictions. The Fast Gradient Sign
Method is a well-known technique used to generate adversarial examples by applying
small perturbations to the input data that are imperceptible to humans but cause sig-
nificant errors in the model’s output [11]. These attacks exploit the model’s sensitivity
to small changes in input, revealing weaknesses in its decision boundaries. For instance,
an image recognition system might be tricked into misclassifying an object by making
minute alterations to the image that do not change its appearance to the human eye.

Black-Box Attacks

In black-box attack scenarios, the adversary lacks direct access to the system’s internal workings.
Instead, they must rely on interacting with the system by querying the model and observing
its outputs. These scenarios are reflective of real-world conditions, where external attackers
attempt to exploit system vulnerabilities without insider knowledge.

• Evasion Attacks: In black-box evasion attacks, the adversary crafts inputs designed to
bypass detection or evade classification by themodel, evenwithout knowing themodel’s

27



internals. These attacks often involve extensive trial and error, where the adversary it-
eratively modifies inputs based on the system’s responses to find patterns that can be
exploited [91]. This approach is particularly effective against models that have been de-
ployed publicly, such as those used in online services or APIs.

– Unicode Attack - Scenario 1: This attack involvesmodifying textwith characters
that are noticeable to humans but are designed to evade detection by the model.
For example, an attacker might replace certain letters in a phishing email with visu-
ally similar Unicode characters, which can trick the model into misclassifying the
email as legitimate while still being readable to a human recipient [92].

– Unicode Attack - Scenario 2: In a more aggressive form of the Unicode attack,
the adversary alters text with non-visible Unicode characters throughout the text.
This technique makes the input appear benign to the model while remaining im-
perceptible to human observers, thereby increasing the challenge of detection and
mitigation [93]. Such attacks can be particularly dangerous in text-based security
systems, such as those used in spam detection or content moderation.
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4
Methodology

The following chapter outlines our evaluation of various cybersecurity tools to assess their effec-
tiveness in resisting different types of cyber attacks. We examine the architecture, capabilities,
andpotential vulnerabilities of these technologies. Our analysis involves comprehensive testing
of selected tools, experimentation with specific attack methods, and the application of clearly
defined criteria to determine their efficacy.

4.1 Overview of Studied Systems

In this research, as anticipated before, we analyze five advanced cybersecurity tools: AttackKG,
LADDER, rcATT, TRAM, and TTPHunter. These tools were selected for their innova-
tive use of Machine Learning and Artificial Intelligence techniques in threat detection and
response.

4.1.1 AttackKG

AttackKG is a novel approach to constructing knowledge-enhanced attack graphs fromCyber
Threat Intelligence reports. Developed to automate the extraction of structured attack behav-
ior graphs, AttackKG identifies and aggregates attack techniques from various CTI reports,
enhancing the utility of these reports in cyber defense.
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The motivation behind AttackKG stems from the increasing sophistication and diversity
of cyber attacks, which make detection more challenging. Traditional CTI reports, written
in natural language, require manual efforts to extract and utilize the embedded intelligence
effectively. AttackKG addresses this challenge by converting unstructured data into structured
attack behavior graphs and further enhancing these graphs into technique knowledge graphs
(TKGs).

Architecture and Workflow
The architecture of AttackKG consists of two primary subsystems: 1. An attack graph ex-

tractionpipeline forCTI report parsing and attack graph construction. 2. An attack technique
identification subsystem for technique template generation and identification in attack graphs.
Components:
• Data Ingestion: AttackKG collects data from diverse sources, including security logs,
network traffic, and CTI reports. This data forms the basis for constructing the knowl-
edge graph.

• Knowledge Graph Construction: The system processes the collected data to build a
knowledge graph that integrates domain-specific knowledge. This graph helps identify
relationships between different entities and potential attack paths.

• Attack Path Generation: Using the knowledge graph, AttackKG generates possible
attack paths, providing insights into how threats can propagate through a network and
suggesting mitigation strategies.

Figure 4.1: AttackKG Architecture. Figure from [1].
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Workflow:

1. Data Collection: Various data sources are ingested, including logs, network traffic, and
threat reports.

2. Preprocessing: The data is cleaned and transformed to ensure consistency and accuracy.

3. Graph Construction: The processed data is used to build a knowledge graph that cap-
tures relationships between entities.

4. Attack Path Analysis: The knowledge graph is analyzed to identify potential attack
paths and their impact on the system.

5. Mitigation Suggestions: Based on the identified attack paths, the system suggests miti-
gation strategies to prevent or minimize the impact of attacks.

Detailed Process

1. NLP-based Report Parsing: AttackKG uses NLP techniques to parse unstructured
CTI reports and extract relevant attack entities and their dependencies.

2. Graph-level Processing: Constructed attack graphs are processed to identify and sim-
plify dependencies among entities.

3. Technique Template Initialization: Templates are generated from examples crawled
from theMITRE ATT&CK knowledge base, describing individual techniques.

4. Graph Alignment Algorithm: A revised graph alignment algorithm is used to match
technique templates with attack graphs, allowing for accurate alignment and refinement
of entities in both CTI reports and technique templates.

5. Technique Knowledge Graph (TKG) Construction: By aligning and integrating tem-
plates with real-world attack scenarios, AttackKG constructs comprehensive TKGs that
summarize the causal techniques and describe complete attack chains.

Evaluation and Performance
AttackKG was evaluated, by the authors of this state-of-the-art project, against 1,515 real-

world CTI reports from diverse intelligence sources. The system effectively identified 28,262
attack techniques with 8,393 unique Indicators of Compromise (IoCs). In a detailed evalua-
tion using 16manually labeled CTI reports, AttackKG demonstrated high accuracy in extract-
ing threat intelligence, outperforming state-of-the-art approaches like Extractor and TTPDrill
in terms of F1-scores for entity, dependency, and technique extraction.
Advantages
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• Automation: Reduces the manual effort required for threat intelligence extraction and
analysis.

• Accuracy: High precision and recall in identifying attack-relevant entities and tech-
niques.

• Comprehensive Intelligence: Aggregates threat intelligence across multiple reports to
provide a holistic view of attack patterns.

4.1.2 LADDER

LADDER (Learning and Detection of Dynamic Environments and Responses) is a knowl-
edge extraction framework designed to extract text-based attack patterns from Cyber Threat
Intelligence reports at scale. Traditional CTI has primarily focused on tracking known threat
indicators such as IP addresses and domain names, which may not provide long-term value in
defending against evolving attacks. LADDER addresses this challenge by extracting more ro-
bust threat intelligence signals called attack patterns, which capture the phases of an attack and
map them to the MITRE ATT&CK framework.
Architecture and Workflow
The architecture of LADDER consists of several key components that facilitate the extrac-

tion and structuring of CTI data:
Components:

• Data Ingestion: Collecting CTI reports from various sources using web crawlers.

• Preprocessing: Cleaning and normalizing the collected text data to prepare it for analy-
sis.

• Entity Extraction: Using state-of-the-art Natural Language Processing techniques to
extract relevant entities from the preprocessed data.

• Attack Pattern Extraction: Identifying and extracting attack patterns from the text,
and mapping them to standardizedMITRE ATT&CK techniques.

• Knowledge Graph Construction: Creating a knowledge graph that represents the ex-
tracted entities and their relationships.
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Figure 4.2: LADDER Architecture. Figure from [2].

Workflow:

1. Data Collection: LADDER collects CTI reports from diverse sources using a high-
performance web crawler.

2. Preprocessing: The collected data is cleaned and normalized to remove noise and irrel-
evant information.

3. Entity Extraction: Transformer-based models are fine-tuned to recognize and extract
entities such as malware, attack patterns, applications, operating systems, organizations,
and threat actors.

4. Attack Pattern Extraction: A novel TTPClassifier algorithm is used to extract attack
patterns from the text and map them toMITRE ATT&CK techniques.

5. Knowledge Graph Construction: The extracted entities and their relationships are
organized into a structured knowledge graph.

6. Analysis and Querying: Security analysts can query the knowledge graph to gain in-
sights into attack patterns and predict future threats.

Detailed SystemArchitecturesLADDER’s systemarchitecture includes several stages, each
designed to handle specific tasks in the extraction and analysis process:
1. Data Collection and Preprocessing: LADDER utilizes web crawlers to gather CTI

reports from various online sources, including security blogs, bulletins, and reports from cy-
bersecurity firms. The collected data is then preprocessed to remove noise and irrelevant infor-
mation, ensuring that only pertinent data is retained for analysis.
2. Entity Extraction: State-of-the-art Natural Language Processing techniques are em-

ployed to extract relevant entities fromthepreprocesseddata. LADDERfine-tunesTransformer-
basedmodels likeBERT,RoBERTa, andXLM-RoBERTa forNamedEntityRecognition tasks.
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These models are trained to recognize entities such as malware, attack patterns, applications,
operating systems, organizations, and threat actors.
3. Attack Pattern Extraction: LADDER introduces TTPClassifier, a novel approach for

extracting attack patterns from CTI reports. TTPClassifier involves three subtasks:

• Relevant Sentence Extraction: Identifying sentences that contain descriptions of at-
tack patterns using binary sentence classification.

• Attack Pattern Identification&Extraction: Extracting the relevant parts of sentences
that describe attack patterns using a sequence tagging model.

• Mapping to ATT&CK ID: Mapping each extracted attack pattern to a standardized
MITRE ATT&CK technique using a semantic similarity-based approach.

4. Knowledge Graph Construction: The extracted entities and their relationships are
structured into a knowledge graph. This graph is built using triples that represent pairs of
entities and their relationships. The knowledge graph enables efficient analysis and querying
of the extracted information.
5. Analysis andQuerying: Security analysts canquery the knowledge graph to gain insights

into attack patterns, predict future threats, and perform threat hunting. The graph’s structure
allows for the identificationof patterns and relationships thatmaynot be immediately apparent
from the raw data.
Evaluation and Performance LADDER has been evaluated using a large dataset of CTI

reports, demonstrating its effectiveness in accurately extracting attack patterns and creating
knowledge graphs. The framework shows high precision and recall in identifying relevant enti-
ties andmapping attack patterns toMITREATT&CK techniques. In an extensive evaluation,
LADDER demonstrated superior performance compared to existing methods like TTPDrill
and AttackKG. LADDER achieved higher F1-scores for entity extraction, relevant sentence
extraction, and attack pattern extraction tasks, showcasing its robustness and reliability in han-
dling diverse CTI data.
Advantages

• Automation: Significantly reduces the manual effort required for threat intelligence
extraction and analysis.

• Scalability: Can process large volumes of unstructured CTI reports efficiently.

• Accuracy: High accuracy in extracting and classifying attack patterns.
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4.1.3 rcATT

Real-time Cyber Attack Tracking and Threat analysis Tool (rcATT) is designed to automate
the extraction of tactics, techniques, and procedures from Cyber Threat Reports using multi-
label text classification models. This tool is essential for cybersecurity professionals who need
to process large volumes of unstructured threat intelligence data efficiently.
Architecture andWorkflowThe architecture of rcATTcomprises several key components,

each contributing to the overall functionality of the tool:
Components:

• Data Ingestion: Collecting Cyber Threat Reports from various sources to build a com-
prehensive dataset.

• Preprocessing: Cleaning and normalizing the textual data to prepare it for analysis.

• Multi-label Classification: Using Machine Learning models to classify the text into
multiple labels corresponding to different TTPs.

• Post-processing: Applying additional rules and techniques to refine the classification
results.

• Output Generation: Converting the extracted TTPs into a structured format, such as
STIX, for easier use and integration.

Figure 4.3: rcATT Architecture. Figure from [3].
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Workflow:

1. Data Collection: rcATT collects CTRs from diverse sources, including security bul-
letins, blogs, and reports from cybersecurity firms.

2. Preprocessing: The collecteddata is cleaned to removenoise and irrelevant information,
ensuring that only pertinent data is retained for analysis.

3. Text Classification: The preprocessed text is classified using multi-label classification
models to identify relevant TTPs based on the MITRE ATT&CK framework.

4. Post-processing: Additional rules and methods are applied to improve the accuracy of
the classification, including hierarchical classification and confidence propagation tech-
niques.

5. Structured Output: The final TTPs are outputted in a structured format, such as
STIX, making them easier to use for further analysis and integration into other security
tools.

Detailed System Architecture The rcATT system architecture is designed to handle the
complex task of extracting and classifying TTPs from unstructured text data. The key stages
include:
1. Data Collection and Preprocessing: rcATTusesweb crawlers to gatherCTRs fromvar-

ious online sources. The collected data undergoes preprocessing to remove noise, standardize
formats, and ensure consistency. This step involves removing HTML tags, non-word charac-
ters, and irrelevant information such as hashes, IP addresses, and URLs.
2. Text Representation: Different text representationmethods are used to convert the pre-

processed text into a format suitable for Machine Learning models. These methods include
term-frequency (TF), term frequency-inverse document frequency (TF-IDF), and Word2Vec
embeddings. The choice of representation impacts the performance of the classification mod-
els.
3. Multi-label Classification: rcATT employs variousmulti-label classification techniques

to identify TTPs within the text. These techniques include binary relevance, classifier chains,
and adapted algorithms such asmulti-label K-NearestNeighbors andDecisionTrees. The clas-
sificationmodels are trained to recognizemultiple labels simultaneously, reflecting the complex
nature of Cyber Threat Intelligence.
4. Post-processing: To enhance the accuracy of the classification, rcATT applies post-

processing techniques that leverage the relationshipsbetweendifferent labels. These techniques
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include hierarchical classification, confidence propagation, and association rules. The goal is
to refine the initial predictions and ensure that the final output accurately reflects the content
of the CTRs.
5. Structured Output Generation: The final stage involves converting the extracted TTPs

into a structured format, such as STIX. This format is widely used in the cybersecurity com-
munity for sharing and analyzing threat intelligence. By providing the output in a structured
format, rcATT facilitates the integration of the extracted TTPs into other security tools and
platforms.
Evaluation and Performance rcATTwas evaluated using a dataset of 1,490 differentCTRs

collected from various online sources. The tool demonstrated high precision and recall in ex-
tracting TTPs, achieving a macro-averaged F0.5 score of 80% for tactics prediction and 27.5%
for techniques prediction. The evaluation showed that rcATT outperformed several baseline
models, including TTPDrill and ActionMiner, in terms of accuracy and efficiency.
Advantages

• Automation: Automates the extraction of TTPs from unstructured text, significantly
reducing the manual effort required.

• Scalability: Capable of processing large volumes of CTRs efficiently.

• Accuracy: High precision and recall in identifying relevant TTPs, leveraging advanced
ML techniques and post-processing methods.

• Integration: Outputs the extracted TTPs in a structured format (e.g., STIX), facilitat-
ing integration with other security tools and platforms.

4.1.4 TRAM (Threat Report ATT&CKMapper)

TRAM (Threat Report ATT&CKMapper) is an open-source platform designed to automate
the mapping of Cyber Threat Intelligence reports to the MITRE ATT&CK framework. De-
veloped by the Center for Threat-InformedDefense, TRAMaims to reduce costs and increase
the effectiveness of integrating ATT&CK across the CTI community by leveraging Machine
Learning, particularly large language models (LLMs).
Architecture andWorkflowThe architecture of TRAM includes several key components

that facilitate the extraction and mapping of TTPs (tactics, techniques, and procedures) from
CTI reports:
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Components:

• Data Ingestion: Collecting CTI reports from various sources to build a comprehensive
dataset.

• Preprocessing: Cleaning and normalizing the textual data to prepare it for analysis.

• Large Language Model (LLM) Processing: Using a pre-trained LLM to identify and
classify ATT&CK techniques in the text.

• Annotation and Training: Annotating additional items and rebuilding the model to
tailor it to specific datasets.

• Web Application: Providing an interface for uploading documents, running the Ma-
chine Learning system, and viewing the identified techniques.

Figure 4.4: TRAM Data Annotation. Figure from [4].

Workflow:

1. Data Collection: TRAM collects CTI reports from diverse sources using web crawlers
and manual uploads.

2. Preprocessing: The collected data is cleaned and normalized to ensure consistency and
remove noise.

3. Model Inference: A pre-trained large language model processes the text to identify
ATT&CK techniques.

4. Annotation and Fine-tuning: Users can annotate additional data to improve model
accuracy and tailor the model to their specific needs.

5. Report Analysis: The processed reports are analyzed, and the identified ATT&CK
techniques are displayed in a structured format.
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Detailed System Architecture TRAM’s system architecture involves several stages, each
designed to handle specific tasks in the extraction and analysis process:
1. Data Collection and Preprocessing: TRAM uses web crawlers and manual uploads

to gather CTI reports from various sources. The collected data undergoes preprocessing to
remove noise and irrelevant information, ensuring that only pertinent data is retained for anal-
ysis.
2. Model Inference: The pre-trained large language model (LLM) processes the prepro-

cessed text to identify and classify ATT&CK techniques. The model is trained on a large cor-
pus of annotated data, allowing it to recognize patterns and extract relevant TTPs from the
text.
3. Annotation and Training: Users can annotate additional items to tailor the model to

their specific datasets. This involves marking relevant text in CTI reports and updating the
model to improve its accuracy. The platform supports fine-tuning through a collection of
Jupyter notebooks that can be run on local machines or cloud services like Google Colab.
4. Web Application: The web application provides an interface for users to upload docu-

ments, run theMachine Learning system, and view the identified ATT&CK techniques. This
interface simplifies the process of integrating ATT&CKmapping into existing workflows and
enhances the usability of the platform.
5. Report Analysis: The identified ATT&CK techniques are displayed in a structured

format, such as STIX,making them easier to use for further analysis and integration into other
security tools. This structured output allows security analysts to quickly understand the TTPs
present in the CTI reports and take appropriate action.
Evaluation and Performance TRAM has been evaluated using a dataset of CTI reports,

demonstrating its effectiveness in accurately mapping TTPs to the MITRE ATT&CK frame-
work. The platform shows high precision and recall in identifying relevant techniques and
significantly reduces the manual effort required for threat intelligence analysis.
Advantages

• Automation: Automates the extraction andmapping of TTPs from unstructured text,
reducing manual effort.

• Scalability: Capable of processing large volumes of CTI reports efficiently.

• Accuracy: High precision and recall in identifying andmapping ATT&CK techniques.

• Integration: Outputs the identified techniques in a structured format (e.g., STIX), fa-
cilitating integration with other security tools.
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4.1.5 TTPHunter

TTPHunter is an automated tool designed to extract actionable intelligence in the form of
Tactics, Techniques, and Procedures from Advanced Persistent Threat reports. Developed to
address the challenge of processing unstructured threat data, TTPHunter leverages state-of-
the-artNatural Language Processingmodels tomap sentence contexts to relevantTTPswithin
the MITRE ATT&CK framework.
Architecture and Workflow The architecture of TTPHunter comprises several key com-

ponents that facilitate the extraction and structuring of TTPs from narrative threat reports:
Components:

• Data Ingestion: CollectingAPT reports fromvarious sources to build a comprehensive
dataset.

• Preprocessing: Cleaning and normalizing the textual data to prepare it for analysis.

• NLP Processing: Using pre-trained BERT and RoBERTa models to generate contex-
tual embeddings of sentences.

• Classification: Fine-tuning linear classifiers to map sentence embeddings to relevant
TTP classes.

• Post-processing: Filtering irrelevant sentences to improve the accuracy of TTP extrac-
tion.

Figure 4.5: TTPHunter Architecture. Figure from [5].

Workflow:

1. Data Collection: TTPHunter collects APT reports from various sources, including
security bulletins, blogs, and reports from cybersecurity firms.

2. Preprocessing: The collecteddata is cleaned to removenoise and irrelevant information,
ensuring that only pertinent data is retained for analysis.
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3. Contextual Embedding: Sentences fromthe reports are embedded into768-dimensional
vectors using BERT and RoBERTa models, capturing the context of each sentence.

4. TTP Classification: The embedded vectors are passed through a fine-tuned linear clas-
sifier to map each sentence to a relevant TTP class. A thresholding mechanism is em-
ployed to filter out irrelevant sentences.

5. Output Generation: The final TTPs are outputted in a structured format, such as
STIX, making them easier to use for further analysis and integration into other security
tools.

Detailed System Architecture
TTPHunter’s system architecture involves several stages, each designed to handle specific tasks
in the extraction and analysis process:
1. Data Collection and Preprocessing: TTPHunter uses web crawlers to gather APT

reports from various online sources. The collected data undergoes preprocessing to remove
noise, standardize formats, and ensure consistency. This step involves removing HTML tags,
non-word characters, and irrelevant information such as hashes, IP addresses, and URLs.
2. Contextual Embedding: TTPHunter employs state-of-the-artNLPmodels, specifically

BERTandRoBERTa, to generate contextual embeddings of sentences. BERTprovides bidirec-
tional training of transformers to languagemodeling, which helps achieve significant results for
various applications, including natural language inference, machine translation, and question-
answering systems. RoBERTa extends BERT’s capabilities by using dynamic masking, remov-
ing theNext Sentence Prediction (NSP) task, and utilizing larger batch sizes to improve perfor-
mance.
3. TTP Classification: The fine-tuned linear classifiers take the contextual embeddings as

input and perform multi-class classification to map each sentence to a relevant TTP class. To
enhance accuracy, TTPHunter implements a thresholding mechanism that filters out irrele-
vant sentences from the output.

4. Post-processing and Output Generation: The final TTPs are structured into a format
such as STIX, facilitating their integration into other security tools. This structured output
allows security analysts to quickly understand the TTPs present in the APT reports and take
appropriate action.
Evaluation and Performance TTPHunter was evaluated using two datasets: a sentence-

based dataset and a document-based dataset. The sentence-based dataset included 8,387 sen-
tences from the MITRE ATT&CK knowledge base, while the document-based dataset com-
prised 50 threat reports from various security firms.
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Evaluation Metrics:

• Precision: The proportion of true positive predictions among all positive predictions.

• Recall: The proportion of true positive predictions among all actual positive instances.

• F1-score: The harmonic mean of precision and recall.

• Accuracy: The proportion of true positive and true negative predictions among all in-
stances.

TTPHunter demonstrated superior performance compared tobaselinemodels such as rcATT
andAttacKG. For the sentence-based dataset, TTPHunter achieved F1-scores of 85% and 88%
for versions v1 and v2, respectively. For the document-based dataset, TTPHunter achieved
F1-scores of 73% and 75% for versions v1 and v2, respectively.
Advantages

• Automation: Automates the extraction of TTPs from unstructured text, significantly
reducing the manual effort required.

• Scalability: Capable of processing large volumes of APT reports efficiently.

• Accuracy: High precision and recall in identifying relevant TTPs, leveraging advanced
NLPmodels and post-processing methods.

• Integration: Outputs the extracted TTPs in a structured format (e.g., STIX), facilitat-
ing integration with other security tools and platforms.

4.2 Attack Techniques and Scenarios

In this section, instead, we outline the adversarial attacks implemented in this thesis to assess the
robustness of the studied cybersecurity tools. These attackswere selected to represent a range of
realistic adversarial scenarios that could compromise the integrity, availability, or confidentiality
of cybersecurity systems.

42



4.2.1 Evasion Attack

Evasion attacks are a form of adversarial attack where the primary goal is to manipulate inputs
to evade detection by a Machine Learning model. Unlike poisoning attacks, which target the
training process, evasion attacks are conducted during the inference phase, where the model is
already deployed and operational. These attacks involve carefully crafting inputs that appear
normal to human observers but are designed to deceive the model into making incorrect pre-
dictions or classifications.

Evasion attacks exploit the inherent vulnerabilities inMachine Learning algorithms, particu-
larly their sensitivity to small perturbations in input data. Bymakingminimal, often impercep-
tible changes to the input, an adversary can cause themodel tomisclassify the input, potentially
bypassing securitymeasures or leading the system tomake erroneous decisions. This type of at-
tack is particularly concerning in cybersecurity contexts, where Machine Learning models are
used to identify and blockmalicious activities, such asmalware detection, IntrusionDetection
Systems, and spam filters.

Unicode Attack

Unicode attacks exploit a fundamental aspect of digital text processing—character encoding.
Unicode is a vast character set designed to represent almost every character globally used, from
various languages and scripts. While this inclusivity is beneficial for global communication,
it also introduces vulnerabilities. Attackers can craft inputs that look legitimate but contain
hidden manipulations that evade standard detection methods. The challenge for cybersecu-
rity systems is distinguishing between benign and malicious use of these characters. For giving
a real-world scenario application, Unicode attacks have been used in phishing attacks where
URLs are disguised to look legitimate by replacing characters in the domain namewith visually
similar Unicode characters (a technique known as homograph attacks). Similarly, malware au-
thors have used Unicode substitutions in filenames and scripts to evade detection by antivirus
software. Understanding and mitigating these risks requires advanced techniques such as Uni-
code normalization, pattern recognition, and heuristic analysis. For these considerations, we
decided to apply this attack to our study by applying two different case scenarios.

Unicode Evasion Attack with Detectable Changes

The goal of this particular variant is to introduce detectable, yet subtle, changes to text by sub-
stituting standardASCII characterswith visually similarUnicode counterparts. These changes
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are applied with less frequency to avoid raising immediate suspicion, making the text still easily
readable but difficult for automated systems to detect.

Substitution Dictionary: At the beginning of the script, a substitution dictionary is
defined that maps standard ASCII characters to visually similar Unicode characters. This dic-
tionary is important as it defines the specific alterations that will be made to the text.

Listing 4.1: Substitution Dictionary.

1 substitutions = {
2 'a': 'ą',
3 'c': 'ċ',
4 'd': 'ɗ',
5 'e': 'è',
6 'g': 'ġ',
7 'h': 'һ',
8 'i': 'ï',
9 'j': 'ʝ',
10 'k': 'κ',
11 'l': 'ḷ',
12 'n': 'ո',
13 'o': 'ö',
14 'p': 'р',
15 'q': 'զ',
16 's': 'ʂ',
17 'u': 'ù',
18 'v': 'ѵ',
19 'x': 'ҳ',
20 'y': 'ý',
21 'z': 'ż'
22 }

This mapping is designed to replace characters in a way that introduces minimal disruption
to the text’s visual appearance, ensuring that the modified text remains understandable to hu-
mans but difficult for automated systems to process accurately.

TextModification Function: Themain functionality of the script is encapsulated in
the modify_text_large_changes function. This function iterates over each character in
the input text, checks if a corresponding substitution exists, and then applies the substitution
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with a probability of 50%. This random application of substitutions adds variability to the text,
making the evasion attack harder to detect through simple pattern recognition techniques.

Listing 4.2: Function to Modify Text with Unicode Substitutions.

1 def modify_text_large_changes(text):
2 new_text = ''
3 for char in text:
4 if char in substitutions and random.random() > 0.5:
5 new_text += substitutions[char]
6 else:
7 new_text += char
8 return new_text

ProcessingMultipleFiles: Theprocess_folder function is responsible for automat-
ing the applicationof theUnicode substitution acrossmultiple text fileswithin a specifieddirec-
tory. This function reads each text file, applies the Unicode substitution using the previously
defined function, and writes the modified text to a new file in the output directory.

Listing 4.3: Function to Process Multiple Text Files.

1 def process_folder(input_folder, output_folder):
2 os.makedirs(output_folder, exist_ok=True)
3 for filename in os.listdir(input_folder):
4 if filename.endswith('.txt'):
5 input_filepath = os.path.join(input_folder, filename)
6 output_filepath = os.path.join(output_folder, filename)
7 with open(input_filepath, 'r', encoding='utf-8') as file:
8 text = file.read()
9 modified_text = modify_text_large_changes(text)
10 with open(output_filepath, 'w', encoding='utf-8') as file:
11 file.write(modified_text)

The above code block outlines the steps taken to ensure that the Unicode evasion attack is
consistently applied across all relevant text files. The use of os.makedirs(output_folder,
exist_ok=True) ensures that theoutputdirectory is created if it doesnot already exist, thereby
preventing any errors during the execution of the script.
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E x e c u ti o n o f t h e A t t a c k: T he s cri pt is e xe c ute d b y s pe cif yi n g t he i n p ut a n d o ut p ut

dire ct ories, w here t he i n p ut dire ct or y c o nt ai ns t he ori gi n al te xt files a n d t he o ut p ut dire ct or y

st ores t he m o di fie d versi o ns. T his e xe c uti o n pr o cessis si m ple yet p o werf ul, all o wi n g f or wi des pre a d

a p pli cati o n of t he U ni c o de e vasi o n att a c k a cr oss m ulti ple d o c u me nts.

U ni c o d e E v a si o n A t t a c k wi t h U n d e t e c t a b l e C h a n g e s

T he pri m ar y o bje cti ve of t his ” bi g c h a n ges ” vari a nt is t o s u bst a nti all y i n cre ase t he di ffi c ult y f or

t he t o ols t o c orre ctl y pr o cess a n d i de ntif y t he c o nte nt of t he re p orts. B y s u bstit uti n g all t he

c h ar a cters wit h t heir vis u all y si mil ar U ni c o de e q ui vale nts, t he att a c k see ks t o disr u pt t he n or-

m al f u n cti o ni n g of t hese s yste ms, m a ki n g it c h alle n gi n g f or t he m t o dete ct m ali ci o us c o nte nt.

T his met h o d is parti c ul arl y e ffe cti ve a g ai nst s yste ms t h at rel y he a vil y o n c h ar a cter-le vel a n al y-

sis, as t he per vasi ve c h a n ges ca n re n der st a n d ar d dete cti o n al g orit h ms i ne ffe cti ve. Des pite t he

e xte nsi ve alter ati o ns, t he te xt re m ai ns l ar gel y le gi ble t o h u m a n re a ders, t here b y e ns uri n g t h at it

ca n still be use d f or c o m m u ni cati o n wit h o ut r aisi n g s us pi ci o n.

S u b s ti t u ti o n Di c ti o n a r y: T he s cri pt be gi ns b y de fi ni n g a c o m pre he nsi ve di cti o n ar y of

s u bstit uti o ns, m a p pi n g c o m m o n A S CII c h ar a cters t o vis u all y si mil ar U ni c o de c h ar a cters. T he

s u bstit uti o ns i n cl u de l o wer case a n d u p per case letters, di gits, a n d e ve n c o m m o n p u n ct u ati o n

s y m b ols, pr o vi di n g a wi de r a n ge of m o di fi cati o ns t o t he te xt. T his e xte nsi ve m a p pi n g e ns ures

t h at t he att a c k ca n be a p plie d br oa dl y a cr oss di ffere nt t y pes of te xt.

Li s ti n g 4. 4: S u b s tit u ti o n Di c ti o n ar y f or U ni c o d e E v a si o n A tt a c k.

1 s u b s t i t u t i o n s = {

2 # L o w e r c a s e l e t t e r s

3 ’ a ’ : ’ а ’ , ’ b ’ : ’ Ь ’ , ’ c ’ : ’ с ’ , ’ d ’ : ’ ’ , ’ e ’ : ’ е ’ ,

4 ’ f ’ : ’ ғ ’ , ’ g ’ : ’ ɡ ’ , ’ h ’ : ’ һ ’ , ’ i ’ : ’і ’ , ’ j ’ : ’ј ’ ,

5 ’ k ’ : ’ к ’ , ’ l ’ : ’ӏ ’ , ’ m ’ : ’ м ’ , ’ n ’ : ’ п ’ , ’ o ’ : ’ о ’ ,

6 ’ p ’ : ’ р ’ , ’ q ’ : ’ ԛ ’ , ’ r ’ : ’ г ’ , ’ s ’ : ’ ѕ ’ , ’ t ’ : ’ т ’ ,

7 ’ u ’ : ’ ц ’ , ’ v ’ : ’ ѵ ’ , ’ w ’ : ’ ш ’ , ’ x ’ : ’ х ’ , ’ y ’ : ’ у ’ ,

8 ’ z ’ : ’ ԛ ’ ,

9

1 0 # U p p e r c a s e l e t t e r s

1 1 ’ A ’ : ’ А ’ , ’ B ’ : ’ В ’ , ’ C ’ : ’ С ’ , ’ D ’ : ’ ’ , ’ E ’ : ’ Е ’ ,

1 2 ’ F ’ : ’ Ғ ’ , ’ G ’ : ’ ’ , ’ H’ : ’ Н ’ , ’ I ’ : ’ І ’ ,

1 3 ’ J ’ : ’ Ј ’ , ’ K ’ : ’ К ’ , ’ L ’ : ’ӏ ’ , ’ M’ : ’ М ’ , ’ N’ : ’ П ’ ,

1 4 ’ O ’ : ’ О ’ , ’ P ’ : ’ Р ’ , ’ Q ’ : ’ Ԛ ’ , ’ R ’ : ’ Г ’ ,

1 5 ’ S ’ : ’ Ѕ ’ , ’ T ’ : ’ Т ’ , ’ U ’ : ’ Ц ’ , ’ V ’ : ’ Ѵ ’ ,
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1 6 ’ W’ : ’ Ш ’ , ’ X ’ : ’ Х ’ , ’ Y ’ : ’ У ’ , ’ Z ’ : ’ ԛ ’ ,

1 7

1 8 # D i g i t s

1 9 ’ 0 ’ : ’ О ’ , ’ 1 ’ : ’ І ’ , ’ 2 ’ : ’ ’ , ’ 3 ’ : ’ З ’ , ’ 4 ’ : ’ Ч ’ ,

2 0 ’ 5 ’ : ’ Ѕ ’ , ’ 6 ’ : ’ б ’ , ’ 7 ’ : ’ Т ’ , ’ 8 ’ : ’ В ’ , ’ 9 ’ : ’ Ԛ ’ ,

2 1

2 2 # P u n c t u a t i o n a n d s y m b o l s

2 3 ’ ! ’ : ’ǃ ’ ,

2 4 ’ ” ’ : ’ \ c h a r ” 0 5 F 4 ’ ,

2 5 ’ # ’ : ’ ’ ,

2 6 ’ $ ’ : ’ ’ ,

2 7 ’ % ’ : ’ ’ ,

2 8 ’ & ’ : ’ ’ ,

2 9 ’ \ ’ ’ : ’ ’ ,

3 0 ’ ( ’ : ’ ’ ,

3 1 ’ ) ’ : ’ ’ ,

3 2 ’ * ’ : ’ ’ ,

3 3 ’ + ’ : ’ ’ ,

3 4 ’ , ’ : ’‚ ’ ,

3 5 ’ − ’ : ’ ‐ ’ ,

3 6 ’ . ’ : ’․ ’ ,

3 7 ’ / ’ : ’ ’ ,

3 8 ’ : ’ : ’ ’ ,

3 9 ’ ; ’ : ’ ’ ,

4 0 ’ < ’ : ’ ’ ,

4 1 ’ = ’ : ’ ’ ,

4 2 ’ > ’ : ’ ’ ,

4 3 ’ ? ’ : ’ ’ ,

4 4 ’ @ ’ : ’ ’ ,

4 5 ’ [ ’ : ’ ’ ,

4 6 ’ \ \ ’ : ’ ’ ,

4 7 ’ ] ’ : ’ ’ ,

4 8 ’ ^ ’ : ’ ’ ,

4 9 ’ _ ’ : ’ ’ ,

5 0 ’ ‘ ’ : ’ ’ ,

5 1 ’ { ’ : ’ ’ ,

5 2 ’ | ’ : ’ ’ ,

5 3 ’ } ’ : ’ ’ ,

5 4 ’ ~ ’ : ’ ˜ ’

5 5 }
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Function toModifyText: The core function, ‘modify_text_large_changes‘, is respon-
sible for applying the substitutions. It iterates over each character in the input text and replaces
it with its Unicode equivalent from the substitution dictionary, based on a random chance.
This randomness adds another layer of difficulty in detecting the altered text, as not all charac-
ters are changed uniformly.

Listing 4.5: Substitution Dictionary for Unicode Evasion Attack.

1 de f mo d i f y _ t e x t _ l a r g e _ c h a n g e s ( t e x t ) :
2 n ew_ t e x t = ’ ’
3 f o r c h a r in t e x t :
4 i f c h a r in s u b s t i t u t i o n s and random . random ( ) > 0 . 5 :
5 n ew_ t e x t += s u b s t i t u t i o n s [ c h a r ]
6 e l s e :
7 n ew_ t e x t += c h a r
8 r e t u rn n ew_ t e x t

ProcessingMultipleFiles Toapply this attack tomultiple text files, the ‘process_folder‘
function iterates through a specified directory, reads each file, and writes the modified text to a
new file in the output directory. This function allows for the automation of the evasion attack
across a large dataset, making it practical for use in extensive penetration testing or red team
exercises.

Listing 4.6: Substitution Dictionary for Unicode Evasion Attack.

1 de f p r o c e s s _ f o l d e r ( i n p u t _ f o l d e r , o u t p u t _ f o l d e r ) :
2 o s . m a k e d i r s ( o u t p u t _ f o l d e r , e x i s t _ o k =True )
3 f o r f i l e n am e in o s . l i s t d i r ( i n p u t _ f o l d e r ) :
4 i f f i l e n am e . e n d sw i t h ( ’ . t x t ’ ) :
5 i n p u t _ f i l e p a t h = o s . p a th . j o i n ( i n p u t _ f o l d e r , f i l e n am e )
6 o u t p u t _ f i l e p a t h = o s . p a th . j o i n ( o u t p u t _ f o l d e r , f i l e n am e )
7 wi th open ( i n p u t _ f i l e p a t h , ’ r ’ , e n c od i n g = ’ u t f −8 ’ ) a s f i l e :
8 t e x t = f i l e . r e a d ( )
9 mod i f i e d _ t e x t = m o d i f y _ t e x t _ l a r g e _ c h a n g e s ( t e x t )
10 wi th open ( o u t p u t _ f i l e p a t h , ’w ’ , e n c od i n g = ’ u t f −8 ’ ) a s f i l e

:
11 f i l e . w r i t e ( m o d i f i e d _ t e x t )

Execution The script is executed by specifying the directories for input and output. The
input directory contains the original text files that will be modified, while the output directory

48



stores the modified versions.

ZeroWidth Attack

Introduction: The Zero Width Attack (ZWA) is an advanced evasion technique that
leverages the properties of zero-width characters in Unicode. These characters, such as the
Zero Width Space (ZWSP), Zero Width Non-Joiner (ZWNJ), Zero Width Joiner (ZWJ), and
others, are invisible in rendered text but detectable by software. By embedding these characters
within critical parts of a text, attackers can obfuscate content in ways that make it difficult for
automated detection systems to identify malicious patterns, while the text remains visually un-
changed to human readers. This attack is particularly insidious because it exploits the reliance
of text-processing systems on specific string patterns, disrupting normal recognition processes.
Cybersecurity tools that scan for specific keywords or patterns may fail to detect threats if zero-
width characters are inserted into those keywords, thereby bypassing security measures. For a
better comprehension of the effect of such a disruptive attack against the tools examined, we
decided, as done before for the Unicode attack, to implement two different ”sizes” of attack.

ZeroWidth Attack withMinimal Impact (Small ZWA)

The goal of this variant is to introduce minimal changes by inserting a zero-width character
every five words. This method allows the attacker to subtly disrupt text processing systems
without making significant changes to the text. The text remains entirely readable to humans,
but automated systems may encounter difficulties when processing the text.

Substitution Mechanism: In this script, the primary function is
insert_zero_width_chars_every_5_words, which inserts zero-width characters at ran-
dompositionswithin everyfifthword. The zero-width characters used include\u200B,\u200C,
\u200D, and \u2060, which are added to the text without affecting its visual appearance.

Listing 4.7: Function to Insert Zero‐Width Characters Every Five Words.

1 import os
2 import random
3

4 def insert_zero_width_chars_every_5_words(text):
5 zero_width_chars = ['\u200B', '\u200C', '\u200D', '\u2060']
6 words = text.split()
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7 for i in range(4, len(words), 5):
8 if len(words[i]) > 1:
9 char_idx = random.randint(1, len(words[i]) - 1)
10 zero_width_char = random.choice(zero_width_chars)
11 words[i] = words[i][:char_idx] + zero_width_char + words[i][

char_idx:]
12 return ' '.join(words)

Text Processing Function: This script uses the process_folder_version_2 function to
apply the ZWA to multiple text files within a specified directory. This function processes each
file, modifies its content by inserting zero-width characters, and saves the modified content to
an output directory.

Listing 4.8: Function to Insert Zero‐Width Characters Every Five Words.

1 def process_folder_version_2(input_folder, output_folder):
2 os.makedirs(output_folder, exist_ok=True)
3 for filename in os.listdir(input_folder):
4 if filename.endswith('.txt'):
5 input_filepath = os.path.join(input_folder, filename)
6 output_filepath = os.path.join(output_folder, filename)
7 with open(input_filepath, 'r', encoding='utf-8') as file:
8 text = file.read()
9 modified_text = insert_zero_width_chars_every_5_words(text)
10 with open(output_filepath, 'w', encoding='utf-8') as file:
11 file.write(modified_text)

Execution of the Attack: The script is executed by specifying the input and output
directories, where the input directory contains the original text files, and the output directory
stores the modified files. This allows for systematic and fast testing of the impact these attacks
have on the selected cybersecurity tools.

ZeroWidth Attack with Significant Impact (Big ZWA)

The ”big” ZWA variant seeks to introduce significant disruptions by inserting zero-width char-
acters within every word. This technique makes it even more challenging for text processing
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systems to handle the content correctly, effectively neutralizing some automated analysis tools.
Despite these substantial changes, the text remains visually unchanged for human readers.

Substitution Mechanism: In the ”big” ZWA, the
insert_zero_width_chars_within_each_word function inserts a zero-width character at a ran-
dom position within every word. This approach ensures that every word in the text is altered,
thereby maximizing the potential for disruption.

Listing 4.9: Insert Zero‐Width Characters Within Each Word.

1 def insert_zero_width_chars_within_each_word(text):
2 zero_width_chars = ['\u200B', '\u200C', '\u200D', '\u2060']
3 words = text.split()
4 new_words = []
5 for word in words:
6 if len(word) > 1:
7 char_idx = random.randint(1, len(word) − 1)
8 zero_width_char = random.choice(zero_width_chars)
9 word = word[:char_idx] + zero_width_char + word[char_idx:]
10 new_words.append(word)
11 return '␣'.join(new_words)

TextProcessingFunction: Similar to the smallZWA, theprocess_folder_version_1
function applies the ZWA across multiple text files. The modified content is stored in an out-
put directory, ready for further analysis or deployment.

Listing 4.10: Function to Process Multiple Text Files with Big ZWA.

1 def process_folder_version_1(input_folder, output_folder):
2 os.makedirs(output_folder, exist_ok=True)
3 for filename in os.listdir(input_folder):
4 if filename.endswith('.txt'):
5 input_filepath = os.path.join(input_folder, filename)
6 output_filepath = os.path.join(output_folder, filename)
7 with open(input_filepath, 'r', encoding='utf−8') as file:
8 text = file.read()
9 modified_text = insert_zero_width_chars_within_each_word(

text)
10 with open(output_filepath, 'w', encoding='utf−8') as file:
11 file.write(modified_text)
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Execution of the Attack: Similar to the small ZWA, the big ZWA is executed by spec-
ifying the input and output directories. The text files in the input directory are processed, and
the modified versions are stored in the output directory.

Fast Gradient Sign Method

The FastGradient SignMethod is awell-known adversarial attack technique used in the field of
Machine Learning, particularly within the context of deep learningmodels. FGSM is designed
to create adversarial examples that can fool neural networks into making incorrect predictions
or classifications. The method is simple yet effective, making it a popular choice for testing the
robustness of Machine Learning models against adversarial attacks.

Objective and Concept: The primary objective of the FGSM is to perturb the input
data in a way that causes the model to misclassify it while maintaining the perturbation imper-
ceptible to human observers. The perturbation is applied in the direction that maximizes the
model’s prediction error. This is achieved by calculating the gradient of the loss function with
respect to the input data and then applying a small, carefully chosen perturbation to the input
in the direction of the gradient’s sign.

The FGSM can be formally defined as follows:

x′ = x+ ε · sign(∇xJ(θ, x, y))

Where:

• x is the original input (e.g., an image, text, or any data point).

• x′ is the adversarially perturbed input.

• ε is a small scalar value that controls the magnitude of the perturbation.

• ∇xJ(θ, x, y) represents the gradient of the loss function J(θ, x, y) with respect to the in-
put x.

• θ denotes the model parameters.

• y is the true label of the input.

• sign(·) denotes the sign function, which extracts the sign of each element in the gradient.
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Explanation of the Components:

1. Gradient Calculation: The gradient∇xJ(θ, x, y) represents the direction in which the
model’s loss increases most rapidly with respect to the input. This gradient is computed
using backpropagation, the same technique used in training neural networks.

2. Sign Function: The sign function sign(·) converts the gradient into a binary direction
(positive or negative) for each feature in the input data. This simplifies the perturbation
to the direction that will cause the most significant increase in the loss function.

3. Perturbation Magnitude ε: The scalar ε determines the intensity of the perturbation.
A small ε ensures that the perturbation is minimal and difficult to detect by humans,
while still being sufficient to fool the model.

4. Adversarial Example x′: The perturbed input x′ is generated by adding the calculated
perturbation ε · sign(∇xJ(θ, x, y)) to the original input x. The result is an input that is
nearly identical to the original but can lead the model to make an incorrect prediction.

Application of FGSM in Adversarial Attacks: In the context of adversarial at-
tacks on Machine Learning models, FGSM is particularly effective due to its simplicity and
speed. It can be used in various domains, including image classification, text classification, and
even in cybersecurity applications such as malware detection or Intrusion Detection Systems.
The method is often employed to test the robustness of models by generating adversarial ex-
amples that challenge the model’s ability to generalize beyond its training data. If a model is
vulnerable to FGSM attacks, it indicates that the model may not be sufficiently robust to ad-
versarial perturbations, highlighting a potential weakness in its design or training process.

4.2.2 Poisoning Attacks

Poisoning attacks are a critical technique used to compromiseMachineLearningmodels by cor-
rupting the training data. These attacks can have far-reaching consequences, especially when
applied to text classificationmodels used in cybersecurity tools, which automatically map tech-
niques fromunstructured text, such asCTI reports, to theMITREFramework. In this section,
we explore the general methodology behind three key types of poisoning attacks: label flipping,
backdoor attacks, and poisoned data augmentation. Each attack is implemented to exploit the
model’s vulnerability in handlingmanipulated data, with themodels retrained on the poisoned
datasets to assess the effectiveness of the attacks.
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Label Flipping

Label flipping is a poisoning technique where the labels of certain data points are deliberately
altered tomislead themodel during training. Bymodifying the labels, an attacker can introduce
incorrect mappings between the input data and the desired output.

General Implementation Strategy: The approach begins by identifying a subset of
the training dataset where the labels can be altered. Labels are flipped in a way that the in-
puts remain unchanged, but their corresponding outputs (e.g., attack techniques or tactics)
are modified. This leads the model to learn incorrect associations, which results in misclassifi-
cations during inference. The poisoned dataset is then used to retrain the model, embedding
the misleading information in the learned weights.

Challenges andConsiderations: The key challenge in label flipping is ensuring that
the alteration remains subtle enough to avoid detection duringmodel validation. The percent-
age of flipped labels needs to be carefully calibrated. If too few labels are flipped, the model
may not exhibit significant changes in behavior. On the other hand, if too many labels are
flipped, the degradation of performance might raise suspicion. The optimal balance is deter-
mined based on the size and complexity of the dataset.

Backdoor Attacks

Backdoor attacks represent a more insidious type of poisoning, where specific trigger phrases
are injected into the training data. Themodel learns to associate these trigger inputs with incor-
rect output labels, causing it to misbehave only when the trigger is present while performing
normally otherwise.

General Implementation Strategy: In a typical backdoor attack, a set of data points
is modified by embedding trigger phrases (e.g., specific words or sequences). These trigger in-
puts are associated with incorrect labels during training. The model is then retrained on this
altered dataset, ensuring that the backdoor remains undetected during standard evaluations.
When the model encounters the trigger phrase during inference, it misclassifies the input in
line with the attacker’s goals. The success of this attack lies in the subtlety of the trigger, which
should be rare enough to avoid detection but specific enough to guarantee the desired misclas-
sification.
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Challenges andConsiderations: Backdoor attacksmust be carefully designed to en-
sure that the trigger is neither too common nor too obvious. If the backdoor trigger appears
too frequently in the training data, it risks being exposed during regular validation or testing.
Conversely, if the trigger is too obscure, it may not be encountered often enough to make the
attack effective. Additionally, the impact of the backdoor needs to be measured in terms of its
ability to remain hidden while reliably activating the malicious behavior when needed.

Poisoned Data Augmentation

Poisoned data augmentation subtly alters the features of the input data without changing their
labels. This approach relies on introducing imperceptible changes that cause themodel to learn
incorrect patterns, leading to degraded performance on both clean and adversarial inputs.

General Implementation Strategy: Poisoned data augmentation is implemented by
injecting noise into the input data, such as shuffling words within sentences, adding synonyms,
or introducing slight structural modifications. These changes are designed to maintain the
overall coherence of the text while subtly distorting the relationships between features. The
augmenteddata is combinedwith the original dataset, expanding the training setwithpoisoned
examples. Once the model is retrained on this augmented dataset, it learns from the altered
examples, leading to performance degradation.

Challenges and Considerations: The challenge with poisoned data augmentation
lies in ensuring that the injectednoise is subtle enough to evadedetectionbut substantial enough
to affect themodel’s learning. Toomuch noise can cause themodel to fail on even clean inputs,
which would raise concerns during evaluation. On the other hand, if the perturbations are too
minor, they may not significantly impact the model’s performance. Balancing the level of aug-
mentation is critical to the success of this attack.

Retraining the Models on Poisoned Datasets

After applying each poisoning attack, the models are retrained on the newly poisoned datasets.
This retraining process is a critical part of the methodology, as it allows the poisoned data to
be fully integrated into the model’s learning process, making it more susceptible to adversarial
manipulation.
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General ImplementationStrategy: Thepoisoneddatasets are fedback into themod-
els in place of the original clean datasets. During retraining, the models learn the incorrect as-
sociations introduced by the poisoned data, whether through flipped labels, hidden backdoor
triggers, or augmented inputs. The retrained models are then evaluated to assess the effective-
ness of the poisoning attacks in influencing their predictions.

Challenges and Considerations: The primary challenge during retraining is balanc-
ing the poisoned and clean data to ensure that the attack remains stealthy. If the model is re-
trained on too much poisoned data, its overall performance might degrade to an extent that
raises suspicion. On the other hand, if too little poisoned data is used, themodel may not learn
the incorrect associations effectively. The retraining process needs to be carefully controlled to
maximize the attack’s impact while minimizing the risk of detection.

4.3 Techniques of Evaluation

In this section, we outline the methodologies employed to evaluate the effectiveness of the var-
ious attack strategies implemented in this study. The primary metric used to assess the disrup-
tive power of each attack technique is theAttack Success Rate. This metric provides a quan-
titative measure of how successful each attack was in achieving its intended outcome, thereby
serving as a crucial indicator of the vulnerability of the target models to the applied adversarial
techniques.

4.3.1 Attack Success Rate

Attack Success Rate (ASR) is defined as the extent to which an attack degrades the perfor-
mance of a tool by reducing its ability to correctly identify true positives. TheASR is computed
as follows:

ASR = 1− True Positives After Attack
Total True Positives in Ground Truth

(4.1)

This formula reflects how much the attack negatively impacts the model’s ability to make
accurate predictions. A higher ASR indicates that the attack was more effective in disrupting
the tool’s performance, while a lower ASR means the model’s predictions were less affected
by the attack. An ASR of 1 (or 100%) would indicate that the attack caused the tool to fail
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completely in identifying any true positives, while an ASR of 0 (or 0%) would imply that the
attack had no impact on the tool’s performance.

EvaluationMethodology

The ASR for each attack technique was computed across different models and datasets to en-
sure a comprehensive evaluation. The process involved the following steps:

1. Generating Adversarial Examples: For each attack strategy, adversarial examples were
generated by manipulating the input data in a manner consistent with the attack’s ob-
jectives. This includes crafting inputs designed to evade detection (e.g., evasion attacks),
poison the training data (e.g., poisoning attacks), or embed backdoors in themodel (e.g.,
backdoor attacks).

2. EvaluatingModel Performance: The generated adversarial exampleswere then fed into
the target model to evaluate its performance. Themodel’s predictions on these adversar-
ial inputs were compared to the expected outcomes to determinewhether the attackwas
successful.

3. ComputingASR:TheASRwas calculatedbydividing thenumber of successful attacks
by the total number of attacks conducted, as per the formula provided above.

4. Analyzing Results: The ASR for each attack strategy was analyzed to identify patterns
and insights into the model’s vulnerabilities. This analysis also included comparisons
between different models and datasets to understand the generalizability of the attack
techniques.
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5
Baseline

5.1 Introduction to Baseline Evaluation

Creating a baseline is an essential initial phase in cybersecurity research that satisfies multiple
purposes. The benchmark or reference point that adversarial assault impacts are tested against
is known as the baseline. Before introducing any adversarial perturbations, this chapter dis-
cusses the first performance metrics of the cybersecurity tools that are the subject of this study:
AttackKG, LADDER, rcATT, TRAM, and TTPHunter. By doing this, we make sure that
everyone has an accurate understanding of how these tools function in everyday situations,
which makes it possible to evaluate the effects of the attacks that are covered in later chapters
more precisely. Without a baseline, it would be challenging to quantify the degradation in per-
formance caused by adversarial attacks or to develop strategies to mitigate such vulnerabilities.

5.1.1 Dataset and Evaluation Process

For thebaseline evaluationof the cybersecurity tools analyzed in this thesis, weutilize a carefully
curated dataset comprising 50 reports. This small dataset serves as the ”test set,” allowing us to
assess each tool’s ability to accurately extract Tactics, Techniques, and Procedures from Cyber
Threat Intelligence reports.
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Manual Extraction

To establish a ground truth for evaluating the tools, we conduct a meticulous manual extrac-
tion of TTPs from each report in the dataset. This process involves carefully reading each
report, identifying relevant TTPs, and recording them according to the MITRE ATT&CK
framework. The manual extraction process is rigorous, aiming to capture every possible TTP
mentioned in the reports, regardless of subtlety or complexity.

ComparisonMethodology

After running each tool on the 50 reports, the outcomes are compared against the manually
extracted TTPs. The comparison process is straightforward: each TTP identified by the tool
is checked against the manually extracted list. If the tool correctly identifies a TTP present in
the manual extraction, it is counted as a true positive. Conversely, TTPs missed by the tool are
counted as false negatives, and any incorrect TTPs identified are considered false positives.

Impact onMetrics

It’s important to note that the meticulous nature of the manual extraction likely contributes
to the relatively low Precision, Recall, and F1-Score metrics observed across the tools. The
threshold for accuracy in this evaluation is set high, given thedetailedmanual extractionprocess.
This precise approach, while ensuring a comprehensive ground truth, may have made it more
challenging for the tools to achieve high scores, particularly in cases where the tools employed
broader or more generalizable criteria for TTP extraction.

5.1.2 Precision, Recall, and F1-Score

When evaluating the performance of cybersecurity tools, it’s important to adopt metrics that
accurately reflect their ability to detect and respond to threats. The three key metrics we focus
on in this study are Precision, Recall, and F1-score. These metrics provide a comprehensive
view of the tools’ effectiveness in identifying relevant threats while minimizing false alarms.

Precision: Precision is the ratio of true positive results to the total number of positive re-
sults (both true positives and false positives). It answers the question: Of all the instances the
model identified as threats, how many were actually threats? High precision indicates that the
model makes few mistakes when identifying threats.
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Precision =
True Positives (TP)

True Positives (TP)+ False Positives (FP)

Recall: Recall, also known as sensitivity or true positive rate, is the ratio of true positive re-
sults to the total number of actual positives (both true positives and false negatives). It answers
the question: Of all the actual threats, how many did the model correctly identify? High recall
indicates that the model can identify most of the actual threats, but it may also include some
false alarms.

Recall =
True Positives (TP)

True Positives (TP)+ False Negatives (FN)

F1-Score: TheF1-score is the harmonicmean of Precision andRecall, providing a balanced
metric that considers both false positives and false negatives. It is especially useful when the
classes are imbalanced, meaning that one class (e.g., actual threats) is much less frequent than
the other (e.g., non-threats). The F1-score helps to balance the trade-off between Precision and
Recall.

F1-Score = 2× Precision× Recall
Precision+ Recall

Given the definition and a general understanding of what these metrics are and how they
work, in the following sections, we will present the baseline performance for each tool using
these metrics, allowing us to compare the effectiveness of different tools and assess the impact
of adversarial attacks.

5.2 AttackKG BaselineMetrics

Baseline Metrics
Tools Precision Recall F1 Score

AttackKG 0.197 0.238 0.198

Table 5.1: Evaluation Metrics for AttackKG.

Analysis
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The baseline results for AttackKG indicate that the tool has a relatively balanced perfor-
mance across Precision, Recall, and F1-Score, although the metrics themselves are quite low.
The Precision score of 0.197 suggests that a significant number of the TTPs identified by At-
tackKG were false positives, while the Recall score of 0.238 indicates that there are many rele-
vant TTPs that AttackKG failed to capture.

The low F1-Score of 0.198 reflects the challenge ofmaintaining a balance between Precision
and Recall, particularly in complex datasets where the diversity and subtlety of TTPs can lead
to misclassification.

5.3 LADDER Baseline Results

Introduction

Tools Precision Recall F1 Score
LADDER 0.160 0.154 0.145

Table 5.2: Baseline Results for LADDER.

Analysis
The baseline results for LADDERdemonstrate amodest performance in terms of Precision,

Recall, and F1-Score. The relatively low metrics indicate that while LADDER is capable of
identifying some TTPs correctly, there is room for improvement, particularly in enhancing
the model’s sensitivity to true positives and reducing the number of false negatives.

5.4 rcATT Baseline Results

Tools Precision Recall F1 Score
rcATT 0.231 0.150 0.139

Table 5.3: Baseline Results for rcATT.

Analysis
The baseline results for rcATT show slightly better precision compared to LADDER, in-

dicating a more accurate identification of relevant TTPs. However, the recall and F1-Score
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remain low, reflecting the challenges in comprehensively capturing all relevant TTPs from the
test set.

5.5 TRAMBaseline Results

Tools Precision Recall F1 Score
TRAM 0.371 0.370 0.342

Table 5.4: Baseline Results for TRAM.

Analysis
The baseline results for TRAM indicate a stronger performance relative to LADDER and

rcATT, particularly in terms of F1-Score. The higher metrics suggest that TRAM is more
effective in balancing precision and recall, making it more reliable for TTP extraction in the
test set.

5.6 TTPHunter Baseline Results

Tools Precision Recall F1 Score
TTPHunter 0.453 0.294 0.325

Table 5.5: Baseline Results for TTPHunter.

Analysis
The baseline results for TTPHunter reveal the highest precision among the tools evaluated,

indicating that it is particularly effective at accurately identifying relevant TTPs. However, the
recall and F1-Score show that there is still a significant proportion of true TTPs that are not
being captured.
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6
Evaluation

6.1 Introduction to Evaluation

This chapter finally, provides the evaluation of the tools until now eviscerated and deeply an-
alyzed AttackKG, LADDER, rcATT, TRAM, and TTPHunter under various adversarial at-
tacks. We perform this evaluation to understand the robustness and effectiveness of these tools
when subjected to the different attack strategies introduced in theMethodology chapter, which
are Unicode evasion attacks, Zero Width Attacks, embedding attacks, poisoning attacks, and
backdoor attacks. The presented chapter is structured in a way that each adversarial attack has
its own section that explores the effect sorted on the tools involved and presents a straightfor-
ward outline that corresponds to the one presented above. Moreover, a table containing the
Precision, Recall, F1-score, and Attack Success Rate will be displayed in such a way as to un-
derstand better and have a clearer overview of the impact of such attacks against our tools and
their respective models

6.2 Unicode Evasion Attacks

Our studies will commence with an evaluation of the evasion attack. This section will be sub-
divided into two subsections: one presenting the outcomes from the utilization of the small
changes option and the other detailing the results obtained from the use of the big changes
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option, as described in the ”Methodology” chapter.

6.2.1 Evaluation of Unicode Evasion Attack - Small Changes

Tools Precision Recall F1 Score ASR
AttackKG 0.324 0.127 0.161 0.436
LADDER 0.181 0.118 0.132 0.232
rcATT 0.000 0.000 0.000 1.000
TRAM 0.358 0.272 0.279 0.262

TTPHunter 0.426 0.147 0.203 0.379

Table 6.1: Evaluation Metrics and ASR for all tools (Unicode Evasion Attack ‐ Small Changes).

6.2.2 Evaluation of Unicode Evasion Attack - Big Changes

Tools Precision Recall F1 Score ASR
AttackKG 0.366 0.085 0.129 0.609
LADDER 0.066 0.006 0.012 0.813
rcATT 0.000 0.000 0.000 1.000
TRAM 0.333 0.064 0.099 0.824

TTPHunter 0.021 0.002 0.004 0.885

Table 6.2: Evaluation Metrics and ASR for all tools (Unicode Evasion Attack ‐ Big Changes).

6.3 ZeroWidth Attacks

This section evaluates the tools against ZWA, analyzing the effects of small and big changes.
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6.3.1 ZeroWidth Attack - Small Changes

Tools Precision Recall F1 Score ASR
AttackKG 0.197 0.238 0.198 0.000
LADDER 0.151 0.139 0.129 0.126
rcATT 0.171 0.069 0.081 0.415
TRAM 0.371 0.370 0.342 0.000

TTPHunter 0.451 0.275 0.313 0.045

Table 6.3: Evaluation Metrics and ASR for all tools (ZWA Attack ‐ Small Changes).

6.3.2 ZeroWidth Attack - Big Changes

Tools Precision Recall F1 Score ASR
AttackKG 0.202 0.245 0.204 0.000
LADDER 0.151 0.139 0.128 0.126
rcATT 0.000 0.000 0.000 1.000
TRAM 0.371 0.370 0.342 0.000

TTPHunter 0.451 0.275 0.313 0.045

Table 6.4: Evaluation Metrics and ASR for all tools (ZWA Attack ‐ Big Changes).

6.4 Embedding Attack (FGSM)

The section focuses on evaluating the impact of FGSM-based embedding attacks on each tool.
In particular, we show the curve of degradation of the metrics for each tool with, on the right
side, the plot of the ASR both taking into consideration the variation of the epsilon value.
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AttackKG Evaluation
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(a)Metrics evaluation for AttackKG under FGSM attack
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Figure 6.1: Metrics and ASR results for AttackKG under FGSM attack with different epsilon values.

LADDER Evaluation
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(a)Metrics evaluation for LADDER under FGSM attack
under different epsilons.
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Figure 6.2: Metrics and ASR results for LADDER under FGSM attack with different epsilon values.
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rcATT Evaluation
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(a)Metrics evaluation for rcATT under FGSM attack under
different epsilons.
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Figure 6.3: Metrics and ASR results for rcATT under FGSM attack with different epsilon values.

TRAMEvaluation
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(a)Metrics evaluation for TRAM under FGSM attack under
different epsilons.
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Figure 6.4: Metrics and ASR results for TRAM under FGSM attack with different epsilon values.
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TTPHunter Evaluation
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(a)Metrics evaluation for TTPHunter under FGSM attack
under different epsilons.
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Figure 6.5: Metrics and ASR results for TTPHunter under FGSM attack with different epsilon values.

6.5 Poisoning Attack

In this section, we discuss the effectiveness of poisoning attack strategies on various tools.

6.5.1 Evaluation of Label Flipping

Tools Precision Recall F1 Score ASR
AttackKG 0.197 0.238 0.198 0.000
LADDER 0.128 0.143 0.125 0.090
rcATT 0.138 0.402 0.125 0.000
TRAM 0.371 0.370 0.342 0.000

TTPHunter 0.166 0.058 0.080 0.661

Table 6.5: Evaluation Metrics and ASR for all tools (Label Flipping Attack).

6.5.2 Evaluation of Backdoor Attack

The following section analyzes the susceptibility of each tool to backdoor attacks.
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Tools Precision Recall F1 Score ASR
AttackKG 0.197 0.238 0.198 0.000
LADDER 0.158 0.158 0.142 0.046
rcATT 0.232 0.159 0.143 0.010
TRAM 0.371 0.370 0.342 0.000

TTPHunter 0.168 0.088 0.103 0.591

Table 6.6: Evaluation Metrics and ASR for all tools (Backdoor Attack).

6.5.3 Evaluation of Poisoned Data Augmentation

Tools Precision Recall F1 Score ASR
AttackKG 0.197 0.238 0.198 0.000
LADDER 0.156 0.140 0.130 0.184
rcATT 0.254 0.106 0.121 0.208
TRAM 0.371 0.370 0.342 0.000

TTPHunter 0.178 0.100 0.114 0.549

Table 6.7: Evaluation Metrics and ASR for all tools (Poisoned Data Augmentation Attack).

6.5.4 ASR Analysis DespiteMetric Improvements

Despite observable improvements in precision and recall under certain adversarial attacks, the
Attack Success Rate remains notably high. This paradoxical outcome can be attributed primar-
ily to the nature of the attacks themselves, which are specifically crafted to exploit vulnerabili-
ties not directlymitigatedby improvements in traditional performancemetrics. While the tools
demonstrate enhanced accuracy in identifying true positives (reflected by higher precision and
recall), they simultaneously fail to address the underlying vulnerabilities that the ASR metric
captures. This indicates that the attacks, though seemingly countered on one front, continue
to succeed by leveraging aspects of the tool’s functionality that are not captured by precision
and recall alone. For a deeper discussion on how these dynamics play out across different tools
and attack vectors, refer to the comprehensive analysis in Section 6.6, ”Summary and Discus-
sion.” The significance of taking into account various metrics for a comprehensive assessment
of cybersecurity tools in challenging conditions is highlighted in this context. It also calls for
additional research to create stronger defenses that can reduce ASR and other metrics.
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6.6 Summary andDiscussion

In the end, as shown above, we analyze the performance of the tools (AttackKG, LADDER,
rcATT, TRAM, and TTPHunter) under various attack scenarios, including evasion attacks
(Unicode and Zero-Width Character modifications), poisoning attacks, and backdoor attacks.
The observed results highlight the tools’ strengths and vulnerabilities, offering insights into
how adversarial strategies can manipulate Machine Learning models within CTI systems and
how each tools have different capabilities in mitigating some attacks rather than others.

6.6.1 Evasion Attacks

Evasion attacks, particularly those involving minor modifications such as Unicode and Zero-
Width Characters (ZWC), yielded mixed results across the tools. Interestingly, some tools dis-
played an improvement in precision under these attacks. For instance, precision increased for
tools like TRAM and rcATT during Unicode evasion attacks with small modifications. This
improvement in precision is counterintuitive, as one would expect adversarial attacks to de-
grade performance.
Explanation for Precision Increase: The increase in precision can be attributed to the na-

ture of the evasion attacks. These attacks modify the input text in subtle ways that might lead
the tools to predict fewer techniques. When fewer predictions are made, the chances of in-
correct predictions (false positives) decrease, thus raising precision. The tools, in these cases,
became more selective in predicting techniques, possibly due to a change in their internal con-
fidence thresholds. This change resulted in fewer, yet more accurate, predictions, which ulti-
mately boosted precision.

However, this increase in precision came at a cost: both recall and F1-score decreased across
most tools. Recall is highly sensitive to false negatives, and the reduced number of predicted
techniques led to a higher number of missed detections. Therefore, while the precision metric
improved, the tools’ ability to identify all relevant techniques (recall) suffered significantly un-
der evasion attacks. This trade-off between precision and recall is a common phenomenon in
adversarial attack scenarios.

6.6.2 Poisoning Attacks

Poisoning attacks, which involved injecting both hidden andnon-hidden triggers into the train-
ing data, showed a consistent degradation in performance across all tools. These attacks had
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a particularly strong impact on TTPHunter and LADDER, where precision, recall, and F1-
score all dropped substantially. The introduction of malicious data points during the training
phase caused the models to overfit on poisoned data, making them less reliable when applied
to new, clean data.
One of the key observations in this scenario was the increase in false positives, which directly

led to a decrease in precision. The presence of poisoned data made the models more likely
to misclassify benign techniques as malicious, inflating the number of incorrect predictions.
Additionally, the recall and F1-score deteriorated, as the models also failed to correctly identify
true techniques due to the compromised training data.

6.6.3 Backdoor Attacks

Backdoor attacks had a unique impact on the tools, as the hidden triggers introduced into the
training data were designed to manipulate model behavior under specific conditions. In gen-
eral, backdoor attacks resulted in erratic model behavior, where performance appeared normal
in most cases but drastically changed when specific triggers were present in the input.

For instance, during backdoor attacks, some tools (such asAttackKG) showedno significant
change in metrics when the triggers were not activated, maintaining close-to-baseline perfor-
mance. However, when the hidden trigger was activated, the model’s predictions were signifi-
cantly altered, often leading to incorrect classifications. This selective manipulation shows the
insidious nature of backdoor attacks, as they can evade detection unless specific conditions are
met. The impact on precision, recall, and F1-score was highly variable depending on whether
the trigger was present, indicating that the tools were particularly vulnerable to these types of
targeted adversarial strategies.
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7
Countermeasure

In this chapter,wepropose several countermeasures that improve the resilienceofCyberThreat
Intelligence models against adversarial attacks. Based on the evaluation results, we suggest the
following defenses as effective strategies tomitigate the impact of evasion, poisoning, and back-
door attacks.

7.1 Adversarial Training

Adversarial training trainsMachineLearningmodels using both clean and adversarial examples.
This approach enhances model robustness by allowing the model to learn how to handle ad-
versarial inputs. Given the vulnerabilities we identify in the evaluation of evasion attacks (e.g.,
Unicode and Zero-Width Character modifications), adversarial training proves particularly ef-
fective. Tools such asAttackKGand rcATT,which show increased precision but reduced recall
under evasion, can benefit from adversarial training to balance precision and recall by learning
to identify subtle input manipulations [94].
Effectiveness: Adversarial training mitigates the impact of evasion attacks by exposing the

model to a wide range of adversarial examples during training. However, its effectiveness de-
pends on the diversity of generated examples, especially for tools like TRAM and LADDER,
which show vulnerability to these attacks.

Practicality: Although adversarial training is effective, it is computationally expensive and
may be impractical for small to medium-sized organizations with limited resources.
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7.2 Anomaly Detection Systems

Anomaly Detection Systems (ADS) offer real-time defense against adversarial attacks by con-
tinuouslymonitoring for unusual patterns in the input data. These systems flag inputs that de-
viate from typical patterns, especially in cases of poisoning attacks. Tools like TTPHunter and
rcATT,which show significant degradation under poisoning attacks, benefit fromanAnomaly
Detection System that identifies poisoned data inputs [95].
Effectiveness: Anomaly Detection Systems reduce the risk of poisoning by flagging suspi-

cious inputs before they reach the training pipeline. These systems also effectively detect back-
door attacks.
Practicality: ADS are relatively cost-effective and can be implemented incrementally. How-

ever, careful tuning is necessary to avoid generating false positives that may disrupt workflow.

7.3 Data Sanitization and Preprocessing

Data sanitization cleans and preprocesses the training data to remove potentially harmful in-
puts before training. This countermeasure effectively addresses poisoning and backdoor at-
tacks, which cause severe performance degradation in tools like LADDER andAttackKG [96].
Effectiveness: Data sanitization neutralizes a significant portion of poisoning attacks by

filtering out anomalous or suspicious data before training. It also prevents backdoor attacks
by removing covert triggers.
Practicality: Data sanitization is low-cost and accessible but must balance removing harm-

ful inputs with retaining enough data diversity to maintain model generalization.

7.4 RegularModel Auditing andMonitoring

Regular auditing andmonitoring ofmodels help identify vulnerabilities that adversarial attacks
exploit over time. In the case of backdoor attacks, auditing reveals hidden triggers, while mon-
itoring input trends exposes susceptibility to evasion attacks [54].
Effectiveness: Auditingdetectsmodel behavior anomalies causedby adversarial attacks. This

measure proves particularly useful in detecting backdoor triggers and anomalies caused by poi-
soning attacks.
Practicality: Auditing is low-cost but time-consuming. Automated monitoring systems

streamline this process, reducing the need for manual oversight.
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7.5 Model Hardening Techniques

Model hardening techniques, such as ensemble methods or adding random noise to inputs,
improve the resilience of CTI models. In evasion attacks, where minor character alterations
significantly impact recall, model hardening mitigates these effects [97].
Effectiveness: Model hardening provides a buffer against minor input perturbations, espe-

cially useful in evasion attacks. However, it requires careful balancing to avoid negative impacts
on accuracy.
Practicality:Model hardening is practical formost organizations and less resource-intensive

compared to adversarial training. However, it requires careful implementation to avoid reduc-
ing overall accuracy.
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8
Conclusion

8.1 Key Contributions

This thesis develops and evaluates the VICTIM (Vulnerabilities In Cyber Threat Intelligence
Models) framework, which assesses the impact of adversarial attacks on CTI tools that rely on
Machine Learning andNatural Language Processing. Through a comprehensive evaluation of
five state-of-the-artCTI extractors (AttackKG,LADDER, rcATT,TRAM, andTTPHunter),
we identify critical weaknesses in their ability to handle evasion, poisoning, and backdoor at-
tacks. Our key contributions include:

• Developing a customized dataset to evaluate CTI extractors under adversarial condi-
tions.

• Conducting extensive experiments on evasion attacks, revealing a trade-off between pre-
cision and recall, where subtle manipulations increase precision but reduce recall.

• Demonstrating that poisoning andbackdoor attacks severely compromisemodel integrity,
with significant drops in F1-score and overall performance.

• Providing actionable recommendations for improving the robustness of CTI models,
including adversarial training, data sanitization, and anomaly detection.
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8.2 Evaluation and Insights

Our evaluations reveal significant vulnerabilities in the tools’ ability to handle adversarial at-
tacks. Evasion attacks increase precision but cause severe drops in recall and F1-score, while
poisoning and backdoor attacks compromise model integrity. These findings emphasize the
importance of implementing robust defense mechanisms in CTI systems to ensure their re-
silience against adversarial threats.

8.3 FutureWork

Several areas of future research emerge from this study:

• Enhanced Adversarial Training: Future work explores more efficient ways of incorpo-
rating adversarial training into CTI models, reducing the computational overhead.

• Real-Time Anomaly Detection: Developing more sophisticated real-time Anomaly
Detection Systems tailored to CTI would be valuable, integrating Machine Learning
with real-time data streams.

• Expanding Attack Types: Future research explores other types of adversarial attacks,
such as physical attacks or those targeting model explainability, which have not yet been
extensively explored in CTI models.

• Robustness in Other Domains: The techniques from this work apply to domains like
fraud detection, healthcare security, and natural disaster prediction, where similar ro-
bustness evaluations prove useful.
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