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Abstract 

Background:  

Fetal development and programming has lifelong implications for heath and risk of disease, and both 

overnutrition and undernutrition is known to cause fetal adaptations and developmental changes 

via epigenetic mechanism. Such adaptations can play important roles in perspective to metabolic 

disorders including risk of type 2 diabetes (T2D). Low birthweight (LBW) may also result in reduced 

adult height, increased abdominal obesity and various metabolic risk factors including non-alcoholic 

fatty liver disease (NAFLD), which is on the path to development of T2D. Metabolic changes in 

subcutaneous adipose tissue (SAT) of LBW individuals has taken a vivid role in causing the variation 

of metabolic traits. In this study, SAT gene expression patterns were compared between age- and 

BMI matched LBW and normal birthweight (NBW) aged 37 years. 

Objective:  

To compare expression levels of RNA sequencing from SAT biopsies between LBW and NBW 

subjects, and thereby to understand the molecular mechanisms underlying increased risk of T2D in 

people born with LBW. 

Methods:  

A total of 133 samples were analysed via RNA sequencing, which includes 85 adipose tissue samples 

(i.e., from baseline, overfeeding and randomization) and 48 preadipocyte samples. For my thesis, the 

analysis of only the adipose tissue samples from baseline biopsies was included. Non-stranded and 

polyA-selected mRNA library preparation has been done on all samples, followed by PE100 

sequencing resulting Fastq files. The pipeline included FastQC tool for quality check, STAR for 

Alignment, Featurecounts for quantifying, edgeR for the differential expression analysis. Pathway 

analysis was done using Reactome and David database. 

Results:  

FastQC reports were generated and the data was in good quality and met the standards.  After the 

alignment and quantification, GeneCounts file with a total of 60483 genes was obtained. Among the 

groups of LBW (n=17) vs NBW (n=12) we found 50 significantly different gene expressions p-value < 

0.05 (without adjusting for multiple testing), when all features (all genes, non-codingRNA, small RNA, 

pseudogenes) are considered. In contrast, 31 significant (p-value < 0.05) differential gene expression 

levels were found when only protein coding genes were considered. Gene ontology results were 

obtained for both downregulated and upregulated genes in LBW compared to NBW. Pathway 

analysis identified significant differences to involve metallothionein bind metals, response to metal 

ions regulation of complement cascade and peptide ligand-binding receptors. Network analysis of 

these results shows the genetic interactions within the areas of signal transduction, metabolism, 

gene expression in developmental biology and associated networks. 

Conclusion:  

Differential SAT gene expression levels were identified between LBW at increased risk of T2D 

compared with matched NBW controls, which however did not persist after FDR. Interestingly, genes 

involved the processes of ion homeostasis, apoptotic process, cellular response to stimuli and stress 

were found among the significant positive log fold change (logFC) - upregulated genes. Whereas, 

significant negative logFC genes – downregulated were seen in the pathways related to lipid 

metabolic process, cholesterol homeostasis, steroid and glycoprotein metabolic pathways. These 

differences may play a role for the increased risk of T2D in LBW subjects. 

 



Abbreviations 

BW Birth Weight 

BMI Body Mass Index 

CPM Count Per Million  

DM Diabetes Mellitus 

DE Differential Expression 

DKD Diabetes Kidney Disease 

FDR False Discovery Rate 

FC FeatureCounts 

GO Gene Ontology 

GC Guanine - Cytosine  

HCOF High Carbohydrate Over Feeding 

LRT Likelihood Ratio Tests 

NBW Normal Birthweight  

logFC Log Fold Change  

LBW Low Birthweight 

NB Negative Binomial 

NGS Next-Generation Sequencing 

NAFLD Non-Alcoholic Fatty Liver Disease  

QL Quasi Likelihood 

RNA-seq RNA-Sequencing 

STAR Spliced Transcripts Alignment to a Reference  

SAT Subcutaneous Adipose Tissue  

T2D Type 2 Diabetes 

 

 

 

 



1 Introduction 

 

Currently, there are over 537 million adults (aged 20-79 years) living with 

diabetes, which corresponds to approximately 1 in 10 adults globally. It is 

predicted that this number may rise to 643 million (1 in 9 adults) by 2030 and 

further increase to 784 million (1 in 8 adults) by 2045 (1). 

 
T2D is the most common form of diabetes, accounting 90% of cases. In addition 

to genetic factors, various other factors such as obesity, dietary composition, 

lifestyle choices, physical inactivity, and exposure to an adverse fetal 

environment contribute to the development of T2D (2,3). Birth weight (BW) 

serves as an indicator of fetal growth and has a profound influence on 

subsequent phenotypical changes, including height, size, muscle mass, fat 

deposition, and metabolic and skeletal alterations (2-5). It is well documented 

that there is strong association between the BW and T2D (2-8). LBW individuals 

exhibit distinct physical changes such as increased abdominal fat (6) and reduced 

insulin secretion (7). Moreover, they display altered expression of insulin 

signalling proteins in muscle and fat tissues (8). Consequently, these biological 

changes in LBW individuals are closely linked to the development of conditions 

such as T2D, hypertension, and cardiovascular disease (6-11). Similarly, the 

presence of LBW family history suggests that it may have a potential hereditary 

influence on the likelihood of experiencing LBW in future generations (12). 

 
Understanding the long-term causal effect of LBW to determine various disease 

risks has importance  in assessing the individual risk factors for T2D. This presents 

an opportunity to implement early nutritional interventions that can mitigate 

the risk of disease burden in the future (13). In addition to the findings from 

published studies, investigating the link between environmental factors such as 

rapid changes in the diet and patterns of gene changes offers valuable insights 

into understanding the epigenetic determinants and their influence on BW 

outcomes. The early development process is influenced by multiple factors and 

can be affected by an unfavourable fetal environment (14). Individuals born with 

LBW have shown an imbalanced pattern in their hormonal responses (15), which 

in turn increases their susceptibility to conditions such as obesity, T2D and other 

diseases. The changes in genes expression and methylation patterns play a 

crucial role in regulating metabolism through the central nervous system (15).  

 

 



 

During intrauterine (IU) development, regulatory mechanisms work to maintain 

homeostasis, but they can be compromised by factors such as aging, obesity, or 

other influences. Any abnormal modifications to these regulatory mechanisms 

can lead to disruptions in insulin physiology and contribute to the development 

of insulin resistance. Sometimes, these changes can have long-lasting effects on 

the physiology and metabolism of offspring. 

 

BW of an individual is strongly associated with i) environmental influences that 

contribute to phenotypic associations and induce epigenetic modifications in the 

genome ii) indirect effect of maternal genotypes and shared genetic effects 

between mother and offspring (16). By exploring and understanding the 

potential connections between particular genetic variants and levels of gene 

expression, we can gain valuable insights into molecular mechanisms in the 

progression of T2D. Establishing a comprehensive profile of significant 

correlation between gene expression levels and their regulation pattern requires 

specific research studies and analysis (17). This study is to identify the distinct 

genes and their expression patterns within SAT that differentiate individuals with 

LBW from those with NBW. Identification of such gene expression differences 

helps to understand the behaviour of these fat cells within the two groups. The 

idea is also to find whether the metabolism of individuals with LBW can return 

to its original state after an overfeeding followed by an exercise intervention. 

The underlying hypothesis is that the metabolism of LBW deviates from that of 

individuals with NBW. This distinct metabolism in LBW individuals may make 

them more vulnerable to developing T2D later in life compared to those with 

NBW. 

 

My thesis focuses on differences in gene expression patterns in SAT biopsies 

obtained from NBW and LBW individuals. Bulk RNA has been collected and total 

RNA isolated and sequenced by BGI sequencing. The sequenced reads were 

further proceeded for differential analysis. And finally, we performed pathway 

analysis of the significant genes.  

 

 

 

 

 

 



2. Objective 

 

The impact of low birth weight on metabolic and genetical traits associated 

with risk of developing T2D when exposed to an affluent lifestyle paves the 

way of the study design. The primary objective of this project design is to 

examine whether HCOF have distinct negative metabolic effects on LBW 

subjects compared to those with NBW as control group. Additionally, the 

project aims to assess if LBW individuals exhibit reduced expandability of their 

SAT and an increased potential for preadipocyte proliferation and/or 

differentiation. This project also focuses if exercise can revert and/or minimize 

the deleterious cardiometabolic effects of HCOF in individuals with or without 

increased risk of T2D.  

 

Overall, the project of this study contains a large amount of data and involves 

many sub groups.  

For my thesis, I aim to analyse the RNA-seq data from the baseline samples of 

both LBW and NBW groups. This includes the following aims: 

1) To study the differential gene expression of adipose tissue at baseline level 

between the groups LBW and NBW. Further, to make a pathway analysis 

and connect the function of significant genes to their metabolic biological 

processes. 

2) Understand the differences of the significant genes, their biological 

processes and related pathways.  

 

 

 

 

 

 

 

 

 



3. Background 

3. 1 Type 2 diabetes  
Development of T2D is mainly due to i) inadequate secretion of insulin by 
pancreatic β-cells or ii) decreased response from tissues to insulin. As a 
consequence, the progression of T2D disrupts the regulation of glucose level in 
the body resulting in high blood sugar level, known as hyperglycaemia. The 
presence of obesity, particularly central visceral adiposity plays a crucial role in 
development of T2D. Persistent elevation in the level of blood glucose or post-
meal hyperglycaemia following carbohydrate intake are characteristic features 
of T2D (17). Endogenously, three different hormones glucagon, epinephrine, and 
cortisol are known to increase glucose levels by promoting biological processes 
such as glycogenolysis and gluconeogenesis. Also, dietary carbohydrate intake is 
an important exogenous factor that increase blood glucose levels (17).  Previous 
studies have demonstrated that adopting a regular exercise routine and 
maintaining a healthy diet can effectively reduce the risk of developing T2D (20). 
On the other hand, certain non-modifiable risk factors like ethnicity, family 
history, genetic pre-disposition have strong genetic basis in T2D. These factors 
are largely determined by an individual's genetic makeup and are not easily 
influenced by external factors or lifestyle changes. Understanding both gene 
changes and non-genetic risk factors which could influence the risk of developing 
T2D can help take appropriate preventive measures when necessary.  

Etiology of T2D is influenced by combination of genetic factors, the metabolic 

processes and the environmental factors. T2D  has strong hereditary connections 

and T2D susceptibility genes are more common in the general population, which 

limits the explanation on total estimated heritability of T2D. This suggests that 

there may be additional unidentified T2D susceptibility genes with a greater 

influence on the risk of developing T2D in the general population (18). In recent 

years, extensive genome-wide association studies have provided evidence for 

the polygenic nature of T2D. Insulin resistance in T2D is linked to the 

malfunctioning of adipose tissue and the generation of free fatty acids within it. 

Patients with T2D have been found to have downregulation of genes involved in 

oxidative metabolism (20). In previous studies, several genes including TCF7L2, 

PPARG, FTO, KCNJ11, NOTCH2, WFS1, CDKAL1, IGF2BP2, SLC30A8, JAZF1, HHEX 

along with more than 600 single nucleotide polymorphisms (SNP’s) were 

discovered to be more significant in individuals having T2D (19). For instance, 

KCNJ11 gene, which is involved in the normal functioning of pancreatic beta cells 

responsible for insulin production and release, and the TCF7L2 gene, which plays 

a role in glucose metabolism and the production of glucagon-like peptide-1. 

 



3.2 Low birth weight and health risks  
 

Deviations from healthy birth weight involve wide range of subsequent adverse 

outcomes and traits. In general, BW less than 2500 grams irrespective of 

gestational age is considered as LBW as per WHO. There are so many etiological 

causes of LBW such as intrauterine growth retardation (IUGR), preterm birth, 

fetal inadequate nutrition, congenital anomalies and many other fetal, maternal 

conditions (15). Infants with LBW are more likely to develop complications and 

have risks of cardiovascular disorders, metabolic disorders, cognitive deficits, 

motor delays, cerebral palsy and others (15, 27). The limited supporting evidence 

on BW as a reliable marker for assessing the intrauterine environment in relation 

to subsequent health and disease has given an extensive scope for further 

investigation into its potential implications. 

The reduction in the weight of fetus or infant is due to several mechanisms. How 

does being born with LBW increase matters in the risk of developing certain 

diseases fifty or more years later? Many of the changes that occur during 

developmental stages have direct effects on physiological conditions later in life. 

For example, inadequate nutrition or overnutrition during early development 

can lead to metabolic alterations. Inadequate nutrition in the womb, resulting in 

restricted fetal growth and development is associated with LBW. This nutritional 

insufficiency can lead to metabolic alterations and long-term changes in the 

body's physiology. LBW individuals often exhibit metabolic adaptations including 

alterations in insulin sensitivity, glucose metabolism, and lipid metabolism which 

can contribute to an increased risk of developing metabolic disorders, including 

T2D. Until this date, many evidence based studies links epigenetic factors with 

human diseases and these epigenetic factors mediates activation, repression or 

silencing of genetic transcription (15).  

Studies by Plagemann et al. done in animal models states that over-nutrition in 

pre-and/or neonatal period can lead to alterations in DNA methylation patters 

of genes which are involved with regulation of appetite, body weight and 

metabolism. This causes the neonates to acquire adipogenic and diabetogenic 

phenotypes (15). 

 

 

 



3.3 Thrifty Phenotype Hypothesis  
 
Many years ago, Hales and Barker proposed the thrifty phenotype hypothesis 

(31). Poor fetal and infant nutrition are the base for pathological changes 

associated with the risk of glucose intolerance and insulin resistance in later 

life. Maternal malnutrition can cause poor fetal growth and infant 

developmental changes. The impact of other maternal and placental 

abnormalities influences the fetal growth as well. As per the thrifty phenotype 

hypothesis, poor fetal nutrition leads to an improper growth of the pancreatic 

β-cell mass or decrease in the islet of Langerhans’ function (causing the 

impairment in insulin secretion). Progressively, this results in the glucose 

intolerance and the insulin resistance accounting for T2D followed by metabolic 

syndrome. These changes are also depending on risk factors like obesity, 

physical inactivity and other comorbid conditions.  

3.4 Low Birth weight and gene changes in Diabetes  
 
So far, we discussed that weight at birth play prominent role in the development 

of adult disease risk. The studies of utero genes and the pathways related to the 

birth weight, obesity are important to understand the long-term health 

outcomes. The genes mediating the mechanisms of controlling these clinical 

outcomes and their associated pathways are often complex. It is easier to drive 

the process of understanding this complexity from the fetal tissues compared to 

adult tissues. Transcriptomic data from various tissues in utero development 

helps to identify these genes and integrate with the genetic predisposition for 

various traits. Transcriptional level analysis of these genes also plays an 

important role in linking the disease with the profile of these genetic variants 

and polymorphisms. Genome Wide Association Studies have challenges to 

detect the causal effects of underlying genes in different tissue types and 

developmental stages (34).  

The causal effects of these genetic risks are involved in controlling the utero 

expression patterns. Defects in any of these genes responsible for the pancreatic 

development and the insulin supports the development of T2D. This triggers the 

need to identify the genetic regulators of the weight at birth. Expression patterns 

of genes in fetus have shown influence in many metabolic mechanisms. For 

example, the polymorphism in G protein 3 subunit gene is linked to LBW in 

pregnancy (33).  Genes encoding IGF-I, IGF-II, insulin, and their respective 

receptors could relate to BW (33). ADCY5 gene associated both with BW and 



T2D. Genes like TCF7L2 has now been shown to modulate pancreatic islet 

function (35). T2D risk alleles at genes; HHEX-IDE and KCNQ1 show similar effects 

to ADCY5 and CDKAL1 in being associated with LBW. Identification and analysis 

of such genes is very critical in predicting the maintenance of glucose 

homeostasis, pancreatic beta cell function, early onset of T2DM and to reveal 

mutational effects. PPARG and KCNJ11 encodes a protein that acts as a target 

for classes of therapeutic agents widely used in diabetes management (35).  This 

information could be used to intervention studies for developing and improving 

rational therapeutical targets. In this study, we want to corelate the gene 

expression levels and their functions towards the associated diabetic risks in 

LBW compared to NBW. 

3.5 RNA-Sequencing  

Overview: 
RNA-seq involves the quantification of RNA in a biological sample such as from 

the adipose tissue at the cellular transcriptome level using next-generation 

sequencing (NGS). After NGS, the sequenced raw reads are checked for the 

quality. This quality control step is done using FastQC or FastQScreen or FASTX. 

If any criteria exist that impact the quality of reads, this should be removed. Tools 

like Skewer, Cutadapt or Trimmomatic are useful to cut adaptors/primer and 

trim reads with low quality. Finest quality trimmed reads are processed for 

mapping and then aligned to the genome. This step involves either mapping 

against reference genome or to the transcriptome. For the genome, the Splice-

aware aligners like STAR, Tophat2, HISAT2 are used while the aligners (Bowtie2, 

BWA, GEM) and Quasimappers (Salmon or Kallisto) are used for the 

transcriptome.  

After the alignment, next step is quantification using gene annotation file by the 

applications like FeatureCounts, RSEM, eXpress to produce the counts. Further, 

the counts obtained are used for differential expression and functional analysis. 

Thus, we can derive the analysis of biological process and pathways 

corresponding to the sequenced reads.  

RNA-seq allows to study the expression of genetic changes in different stages of 

development and understand the biological pathways resulting in disease 

progression. From this process, the genes that cause various interesting 

differences could be detected. Comparing the expression patterns of adipose 

tissues from LBW and NBW individuals can help us identify and understand the 

genes which behave differently between the groups.  



4 Methods 

 
Fig: 4 (i) Overview of RNA-seq analysis pipeline 

 

The methodology to analyse RNA-seq data in this study involves various levels 

like, library preparations, sequencing of reads and, pre-processing of data, 

aligning them to a reference genome and quantification to counts. Finally, 

further analysis of these counts can be done by differential expression analyses. 

Each step has a different selection of tools as shown in fig 4. (i) and each step 

should be considered carefully when setting up the pipeline for data analysis of 

RNA-seq. 

4.1 Study Outline: 
This study includes healthy Caucasian males born at term (weeks 39-41) in 1979-
1980 with LBW (birth weight < 10th percentile) and BMI, age-matched NBW 
control individuals (BW of 50 to 90th percentile). Subjects with a family history of 
diabetes and/or a self-reported high physical activity level (>10hrs /week) were 



excluded. Also, those who have lost/gained more than 3 kg within the past 6 
months or those who consume alcohol (drink more than general 
recommendations) or substance abusers were excluded. All subjects were 
screened for current and previous health status to ensure eligibility. Blood 
samples, blood pressure, and electrocardiogram were obtained to ensure good 
health of the participants. All participants report to Rigshospitalet, Copenhagen 
-Denmark, where different tests were performed. Tissue biopsies at the baseline 
state were obtained from the abdominal. 
 

4.2 Sample preparation and RNA sequencing at BGI: 
Total of 29 adipose tissue samples i.e., 17 from LBW and 12 from NBW were 

analysed via RNA-seq. Total RNA was isolated from all sample preparations 

(amount ≥ 200ng, concentration 1000ng/microL≥c≥10 ng/microlitre, quality 

RIN/RQN value ≥ 7.0). mRNA enrichment and purification: Oligo dT Selection to 

enrich the mRNA or rRNA depletion (For total RNA extracted from whole blood, 

globin mRNA is depleted). The experimental pipeline shown in fig 4. (ii) was used: 

 RNA fragment and reverse transcription (For stranded 

specific mRNA libraries second-strand cDNA synthesis 

with dUTP instead of dTTP) 

 End repair, add A and adaptor ligation 

 PCR 

 Single strand separation and cyclization 

 DNA nano ball synthesis                 

 Sequencing on DNB-seq platform                                  Fig: 4.2.(i) Experimental pipeline of Transcriptome. 

Non-stranded and polyA-selected mRNA library preparation has been done on 

all samples, followed by PE100 sequencing with 4GB clean data per sample on 

DNBSEQ. After sequencing raw reads were filtered, which includes removing 

adaptor sequences, contamination, and low-quality reads from raw reads 

(replicate their results). Resulting fastq files from paired end reads, were 

received on a hard drive.  

4.3 RNA-seq pipeline 

Setting up RNA-seq pipeline 
       We used Linux for analysing the RNA-seq data. Initially, Linux commands and 

deep study of various literature  was done to be able to set up the pipeline. 

Working on the Linux server and choosing the right selection of tools were most 

important among these tasks. Learning the issues on accessing the server and 

working with data on server is much crucial to be able to deal with the data with 

no harm to other files. Proper training was given to me on how to access the 



servers and run the commands on Linux. Next step was to gain knowledge of the 

R language to use the package edgeR for differential analysis.  

The systemic approach for the RNA-seq pipeline in this analysis was using the 

following tools: i) Spliced Transcripts Alignment to a Reference (STAR) was used 

for mapping and alignment ii) Subread Package (FeatureCounts) for 

quantification iii) edgeR for differential analysis iv) Reactome and David 

Database for the network and pathway analysis.  

Setup of Pipeline in Bash file: Usually, this file consists of script in bash format (in 

file of .sh). It requires the following steps, i) Commands for making required 

directories for various output files in each step ii) Create the genome indices iii) 

Run the Alignment of reads with reference genome iv) Run the Feature Counts 

with the aligned reads. Path to files of input should be exact; otherwise, the 

errors will be reflected. The bash script in this analysis was developed based on 

numerous online literary sources and references. Two Pipelines was set up  

a) Pipeline for STAR and Counts b) Pipeline for edgeR.  

This script was checked and corrected by my supervisor at each step if any errors. 

After set up of this script, it was tested for one or two samples to check for results 

and some changes were done wherever applicable. Following this step, the 

scripts were run on the server.  

Condor submission of job files (scripts on servers) is required since there will be 

many jobs ongoing on the server. This plays an important role also when it is 

required to use more than one CPU and to request for memory. Scripts for the 

condor submission is shown in supplementary file (sup) 9.A. (i). After a clear 

review of the scripts, the condor and pipeline files were uploaded on server. 

Lastly, give permissions to the files before submission of the condor.  

 

FASTQC – Quality Check 
FastQC is a commonly used tool for quality control analysis of RNA-seq data. This 

tool is used to assess the quality of the raw sequencing reads generated from 

the RNA-seq experiment. This report is used to identify any potential issues with 

the sequencing data, such as poor-quality reads, overrepresented sequences, or 

adapter contamination. By using FastQC, researchers can ensure that the RNA-

seq data is of high quality, which is critical for downstream analysis such as 

mapping and differential expression analysis. 

FastQC generates a report that provides information about various quality 

metrics as mentioned below. Basic statistics like read length (total seq), poor 



quality seq, sequence length and % of GC content. Per base sequence quality 

with the distribution of quality scores ranging from low, medium to high with 

colour bands; this is a graphical representation in which x-axis denotes the 

position of base in read and y-axis denotes the quality scores. Per sequence 

quality score have average quality score on x-axis plotted against number of 

sequences on y-axis; the peak should be >20 with no bumps. Per base sequence 

quality in a random library should have equal amounts of each nucleotide (~25% 

of each nucleotide). Per Sequence GC content is important to consider for 

central peak matching the theoretical distribution, usually sharp peaks will be 

observed in case of any over represented sequences and broad peaks appear in 

contamination of samples. Per Base N content helps to filter lot of N content in 

reads if it exists. Sequence duplication levels gives an idea on reads represented 

more than once; low level of duplication may indicate high coverage of target 

sequence and a high level is more likely to indicate some kind of enrichment bias 

e.g., PCR over amplification. Over Represented Sequences identifies the 

contamination level such as vector or adapter sequences and these are 

important to be removed. 

 

 Mapping and Alignment using STAR: 
To determine where the RNA-seq reads originated from, these reads should be 

aligned to the reference genome using STAR (38). This tool has high mapping 

speed and accuracy than other aligner methods. It works based on algorithm of 

finding the Maximal Mappable Prefix (MMP) hits between reads (or read pairs) 

and the genome, using a suffix array index. STAR algorithm consists of two major 

steps: seed searching step and clustering/stitching/scoring step. It uses a novel 

strategy for spliced alignments and address many challenges of RNA-seq data 

mapping. STAR also performs local alignment, automatically soft clipping ends of 

reads with high mismatches. 

STAR tool has two steps  

a) Creating genome indices (sometimes already available on individual 

institution server). 

Usually, the reference genome sequences (FASTA format) and annotation 

files (GTF format) from NCBI, ENSEMBL or GENCODE. The reference genome 

should be from the same species that the analysing sample belongs to, this 

is important because sometimes taking the other species may give false 

results. From these files, STAR uses the script with standard format 



generates the genome indices which should be saved into separate folder. 

Script for generating the genome indices was provided under sup 9.A. (ii). 

b) Mapping Reads to reference Genome. 

In this step, STAR tool maps RNA-seq reads in the form of FASTA or FASTQ 

files to the genome files generated in the previous step. The mapping script 

has various input parameters that run the mapping job and gives the output 

files of alignments in the form of SAM/BAM format.  

The scripts and guidelines for STAR were followed from the STAR manual version 

2.7.0a.  STAR uses the standard script shown in sup 9.A. (iii) with all required 

commands to perform the mapping.     

Quantification with FeatureCounts 
After the alignment, the next step is to measure how many reads have mapped 

to each genomic features such as genes, exon, promoter, genomic bins and 

chromosomal locations. BAM files (output from the STAR) are input to 

FeatureCounts (FC). This tool is more accurate, fast and easy to use.  

It works by counting the reads that map to a single location which is called a 

uniquely mapping. FC also consider if data is stranded or not. Our data is paired-

end and counting tools takes only proper paired reads into account and each 

read pair is counted only once as single “fragment” (39). The output from FC is 

of 2 files i) Count matrix with samples in columns and genes in rows. ii) Summary 

file that shows how many reads were assigned and not assigned.  

FC quantification can be done in two levels a) Gene level – which summarizes the 

expression level of a gene but don’t distinguish between the isoforms when 

multiple transcripts are being expressed from same gene.  

b) Exon level – counting the reads that are overlapping at each annotated exon. 

This approach tests splicing between the experimental conditions. FC supports 

both single and multithreaded processing, very useful for summarizing data 

generated in large sequencing studies (40). Script used for FC is mentioned under 

sup 9.A. (iv).  

Differential Expression Analysis by using edgeR 
The analysis of baseline study LBW vs NBW included the subjects as shown in 

table 1 below: 
 

LBW NBW Total Number 

Analysis 17 12 29 

Table: 1 Showing the subjects from both LBW and NBW groups 



After obtaining the gene counts from both the groups, it is essential to assess the 

changes in gene expression levels between different groups, typically control and 

testing samples. This analysis can be performed using two types of RNA-seq: a) which 

measures expression cell by cell and conditions between cell types, and b) which 

measures changes in gene expression levels at the tissue level. To perform 

differential expression (DE) analysis of RNA-seq data, we used the edgeR tool in the 

R programming language. This software is designed to identify changes between two 

or more groups when at least one group has replicated measurements, using a table 

of read counts where rows correspond to genes and columns to independent 

samples. 

The script for the edgeR pipeline as shown in section sup 9.A. (v) was developed using 

the latest version (28-OCT-2022) of the edgeR user’s guide (41). This script was then 

customized by making some corrections as per the requirement which is suitable to 

perform the following steps. The first step in the differential analysis is to read these 

counts into an R session for which edgeR has separate functions. Various other steps 

involved in the differential expression analysis using edgeR include designing a 

matrix, filtering data to remove low counts, normalizing library size, estimating 

dispersion size and testing for differentially expressed genes. 

Pathway and Network Analysis using edgeR 
The key aspect of analysing differential gene expression data is interpreting the 

results in terms of biological processes and pathways. Gene Ontology (GO) databases 

are specifically designed to annotate genes with possible GO terms. Counting of DE 

genes that are annotated to possible GO terms, gives the way to interpret the results. 

GO terms that occur more frequently in list of DE genes are said to be over-

represented or enriched. This helps to identify the enriched pathways and with the 

help of these identified hits, network analysis is carried out to explore and visualize 

the functional interactions between the genes. In our study, we used the 

Reactome(42), David database (43) for pathway and network analysis. 

 

 

 

 

 

 

 



5 Results 

5. 1 Fast-QC Results 
Fine quality data was obtained with the results as follows. 

i. Basic statistics: 

 
One of the examples, showing the base statistics. Overall, most of 

sequences are having similar properties like GC content more than 47, 

sequence length of 100 in all and no poor-quality sequences were flagged 

among all samples. 

 

 

 

ii. Per base sequence quality: 

 
The yellow box represents the 25th and 75th percentiles, with the red line 

as the median. The whiskers are the 10th and 90th percentiles. Blue line 

gives the average quality score. In all the samples, average quality Score 

was 34-36 indicating high quality; in the end few extending to 26 and 28. 



 

iii. Per sequence quality scores  

 
All the samples have good quality score ranging the peak from 34 to 36, 

no bumps were noted. 

 

 

iv. Per sequence GC content  

 
GC content is almost 48 in all, 49 in few and 50 rarely. Peak is observed 

above the theoretical distribution.  

v. Other parameters like Per base sequence content were almost 25 for all, 

uniformly distributed. Sequence Length Distribution was same in all 100. 

No per base N content and adapter content was removed. All the reads 

were good in quality. 

5.2 Gene Counts data 
A master file with the counts of all samples of analysis was obtained post 

FeatureCounts step. This file is loaded into Rstudios (44) and show the read 

count for all of the genes for each sample. In this table, the row names are 



gene identification numbers and the columns represents reads from each 

sample. Since, my thesis is focused on base line of NBW vs LBW, the samples 

that belongs to this part were filtered out and separated. The following table 

shown in table 2 depicts the row names of geneid and columns of reads in 

each sample.  

 
Table 2: showing sample of geneid in rows and sample in columns 

Phenotype file: 
Each sample have its BGI sequence number and all the details of it as shown in 

below phenotype file from table 3.  

      
Table 3: showing sample of BGI id and its related experimental data 

5.3 edgeR results 
edgeR works with Limma package in R. edgeR stores the data in DGEList. The 

DGEList serves as an input for various functions provided by edgeR package to 

perform different steps of the analysis workflow. The DGElist is created using 

‘DGEList’ function, it can be further processed for the functions like 

normalization methods, dispersion estimation, statistical modelling, and 

hypothesis testing. Grouping is required to identify the samples from each group 

and it can be done by giving group command. Normalization of counts by 

trimmed mean of M values (TMM) can be performed by calcNormFactors 

function. Normalizing the counts data is important to eliminate the composition 

biases between the libraries.   



As per the edgeR user guide, a gene is required to have a count of 5-10 in a library 

to be considered expressed in that library. Hence, filtration with count-per-

million (CPM) was done. After cpm, the genes that are lowly expressed are 

filtered out. The results of normalized counts were transformed into log-counts-

per-million (lcpm). 

Both Linear modelling and differential expression analysis in edgeR requires the 

matrix. We can create the matrix with the treatment conditions applied to each 

sample (in our analysis the matrix should be composed of two conditions NBW 

and LBW).  

Dispersion estimation in edgeR is obtained from estimateDisp function where 

the dispersion of a gene can be predicted from its abundance. We used the 

common dispersion in one run. The Dispersion estimation uses negative 

binomial (NB) model and quasi-likelihood (QL) F-test provides more robust and 

reliable error rate control when the number of replicates is small. QL dispersion 

estimation and hypothesis testing was done using the function glmQLFit (). We 

selected the coefficient 2 in this analysis. 

QL F-tests gives strict error rate control over likelihood ratio tests (LRT). From 

this step, the top DE genes can be viewed by function topTags (lists the top DE 

genes ranked by pvalue).              

From this step and in further results, a positive log2-fold change (logFC) will 

indicate a gene up-regulated in the NBW relative to the LBW, whereas negative 

logFC represent the gene more highly expressed in LBW.  

 

Gene Ontology: 
In edgeR, GO analyses can be performed using goana function. Alternatively, we 

used different approach by downloading the CSV or Text format file available in 

Biomart/ENSEMBL database and then merging with the output file obtained in 

the above step. In the first phase the annotation file (downloaded from the 

Biomart) and output file were loaded and tabulated into R. In the next phase, 

these two files were merged using the merge command and resulted table was 

saved into separate file.  

 
 

 

 

 



When all features are considered: 
The results from this are shown in below table. Generally, the scores of p-value 

and False Discovery Rate (FDR) are used to determine the significant genes from  

the list.   When all the features (genes, non-coding RNA, small RNA, pseudogenes, 

etc.) were considered no significant hits with FDR<0.05 after correcting for 

multiple testing. But there were 50 significant hits of DE genes with threshold set 

to (p<0.05, logFC>1 & logFC<-1) among the list and shown in table 4. 

       
                  Table 4: showing 50 significant DE genes when all features are considered 

 

 



Volcano plot of results when all features were considered:  

The results of table 2 were plotted in a volcano plot with log fold change on  

x-axis and -log10(pvalue) on y axis as shown in fig 5.3. (i) Downregulated genes 

in this list were labelled with blue color while the red ones indicate upregulated. 

Grey labelling’s denote the genes with no significance. 

 

 
Fig: 5.3.(i) volcano plot showing 50 significant DE genes when all features are considered. Blue color represents 

the downregulated, red color with upregulated and grey color with non-significant. 

 

 

 

 



 

With only protein coding genes: 
Interestingly, when we considered only the protein coding genes from the list of 

total 22357 genes, the results showed significant hits of 31 DE protein coding 

genes (p<0.05, logFC>1 & logFC<-1).The results are shown in table 5.  

         
            Table 5: showing 31 significant DE genes when only protein coding is considered  

 

 



Volcano plot when only protein coding genes were considered:  

The results of table 3 were plotted in a volcano plot with log fold change on  

x-axis and -log10(Pvalue) on y axis as shown in fig 5.3. (ii).  

 

                     
Fig: 5.3.(ii) volcano plot showing up and down regulated DE genes among protein coding genes with the p value 

<0.05. Blue color represents the downregulated, red color with upregulated and grey color with non-significant 

 

 

 

 

 

 

 

 

 



DE genes: 

31 significant DE when only protein coding genes were considered are as 

shown in table 6 below: 

 

 

Downregulated 

NECAB1, PTX3, MT1A, KRT18, C4A, SAA4, KIF19, 

CH25H, SAA1, URAD, RNA5SP334, TRDN, DES, SAA2, 

COBL, SAA2-SAA4, ANKRD20A11P, SCUBE1, DPYSL4, 

CSN1S1, APOL4, RNA5SP333, SYNDIG1, WNT3, 

RN7SL2, RPPH1 

 

Upregulated 

SCGB1B2P, RPL10P9, FAIM2, GATD3, FOSB, PWP2, 

CCL13, PRND, CNTN6, USP6, BBOX1, GOLGA8O, 

IGKV3-11, IGHG1, IGKV1-8 

Table 6: showing downregulated and upregulated gene list 
 

 
5.4 Gene Ontology results 
 
Gene ontology results are presented in sup 9.B. Total 50 genes in the significant 
list when all features are considered are shown in table 9.B. (i). Downregulated 
among LBW in comparison to NBW (only protein coding) are mentioned in the 
table 9.B. (ii) along with the biological processes and molecular functions 
associated with each gene. Table 9.B. (iii) shows the list of upregulated genes. 
 

5.5 Pathway and Network analysis 
 
Pathway results from Reactome are presented in sup 9.C. with the columns of 
pathway associated, number of genes from the list involved in the pathway 
(entities found), total number of genes associated with pathway in general 
(entities in total), significance (entities pvalue), FDR, number of genes related to 
reactions involved in the pathway and total reactions associated with the 
pathway. Downregulated among LBW in comparison to NBW (only protein 
coding) are mentioned in the table 9.C. (i) whereas list of upregulated genes is 
as mentioned in table 9.C. (ii). 
Network analysis of downregulated genes are in table 9.D. (i) and upregulated 
genes is shown in table 9.D. (ii). 
 



6. Discussion 

In this study, the investigation is focused on the differential expression of genes 
between LBW vs NBW. By elucidating these gene expression patterns, we aim to 
contribute to the understanding of the molecular mechanisms underlying the 
association between LBW and the development of T2D. Identifying such specific 
gene expression changes in LBW can also provide clues about the biological 
processes that contribute to the long-term health consequences. We identified 
several genes that were differentially expressed between LBW and NBW, 
including genes involved in immune response, metabolic pathways including 
lipid and glucose metabolism, and cell cycle regulation. 50 genes were found 
significant among LBW vs NBW when all the features were considered whereas 
31 significant DE genes were identified among the protein coding genes.  
  
Downregulated in LBW compared with NBW: 
In the list shown in table 6, serum amyloid A1(SAA1), serum amyloid A2(SAA2), 
serum amyloid A4 (SAA4), cholesterol 25-hydroxylase (CH25H), apolipoprotein 
L4(APOL4) and metallothionein 1A(MT1A) are identified as very important 
related to T2D as below: SAA1, SAA2, SAA4 genes encode for proteins known as 
serum amyloid A, which are acute-phase proteins involved in several biological 
processes such as cholesterol transport, tissue repair, and immune response. 
There have been numerous studies investigating the association between 
genetic variations in the A1(SAA1), serum amyloid A2(SAA2), serum amyloid 
A4(SAA4) genes and the risk of T2D. The genetic variations in SAA1 were 
associated with an increased risk of T2D (45). In the cohort study of 264 patients 
with T2D and 275 non-diabetic controls, SAA was increased in T2D patients with 
incipient or overt nephropathy, and SAA was associated with impairment of 
cholesterol transporters, scavenger receptor class B type I (SR-BI) mediated 
cholesterol efflux to serum (45, 46). Variations of SAA2-SAA4 were associated 
with increased insulin resistance and a higher risk of developing type T2D. 
However, a meta-analysis of several studies found no significant association 
between SAA4 gene variations and T2D (47).  
CH25H gene is important in regulating cholesterol metabolism and immune 
response. Regarding the CH25H gene, this gene has a certain role in insulin 
resistance (48). Recent study showed that overexpression of this gene improves 
the insulin sensitivity in mice (49). APOL4 is involved in the transport of lipids, 
particularly cholesterol, and may also have a role in innate immunity. MT1A 
involved in the regulation of cellular metal ion homeostasis, detoxification of 
heavy metals, and protection against oxidative stress. MT1A gene, was 
significantly related to the prevalence of T2D and also significantly associated 
with the low activity of serum superoxide dismutase (SOD) in T2DM (50). 
These genes accounts to the majority of pathways among the downregulated 
and include the pathways of metabolism of lipids, cellular response to stimuli, 
developmental biology and Ion homeostasis.  Also, the other genes like triadin 



(TRDN) essential for muscle contraction, dihydropyrimidinase like 4(DPYSL4) 
which regulates the neuronal development and complement C4A (Rodger’s 
blood group) (C4A) – key component of the immune system were important 
findings. The pathways involved by downregulated genes mostly contribute to 
the networks of immune system, cellular response to stimuli, metabolism and 
extracellular matrix organization. Overall, while there is some evidence 
suggesting an association between certain genetic variations in the A1(SAA1), 
SAA2, CH25H and MT1A genes and T2D risk, further studies are needed to 
confirm these findings and explore the underlying mechanisms. 
 
Upregulated in LBW compared to NBW: 
Among the upregulated genes shown in table 6, two genes namely 
immunoglobulin heavy constant gamma 1 (G1m marker) (IGHG1) involved in 
antibody-dependent cellular cytotoxicity and immunoglobulin kappa variable 3-
11(IGKV3-11) involved in immune response were predominantly significant. 
These two genes IGHG1, IGKV3-11 play a vital role and contributes to the 
majority of the pathways in the upregulated genes. IGHG1 gene, a gene located 
on chromosome 14 has an important role in the immune response. It is found to 
be upregulated in the T2D (51). Other important genes are C-C motif chemokine 
ligand 13(CCL13) with the function of inflammatory response, immunoglobulin 
kappa variable 1-8(IGKV1-8) with the immune response and gamma-
butyrobetaine hydroxylase 1(BBOX1) of cartinine synthesis. CCL13, also known 
as monocyte chemotactic protein-4 (MCP-4), is a member of the CC chemokine 
family, and it has been implicated in the pathogenesis of various inflammatory 
diseases. There are several studies that showed the strong association of this 
gene with diabetes (52,53). Studies have shown that CCL13 levels are increased 
in the islets and serum of individuals with T2D, and thus it may contribute to 
insulin resistance and impaired glucose tolerance (52-54). In many studies 
BBOX1 is associated with the diabetes kidney disease (DKD)and in diabetic 
nephropathy (55). Urinary BBOX1 (uBBOX1) levels were significantly upregulated 
in the urine of patients with DKD (56).  
As mentioned earlier in the results section 5.4, the pathways include chemokine 
receptors bind chemokines, regulation of complement cascade and role of 
phospholipids in phagocytosis. Likewise, network analysis (as shown in section 
5.5) of these upregulated genes showed the networks of immune system, signal 
transduction, metabolism of proteins, vesicle mediated transport and 
homeostasis. There is no strong evidence in the scientific literature linking the 
other upregulated genes of this study to T2D. However, it is important to note 
that the genetics of diabetes is complex, and multiple genes and environmental 
factors can contribute to the development of the disease.  
The findings suggest that the differences in gene expression levels may 
contribute to the increased risk of T2D in LBW individuals. It is well established 
that LBW is associated with an increased risk of developing metabolic disorders, 
including T2D. However, the mechanisms underlying this association are not fully 



understood. The present study shows importance on the potential role of gene 
expression differences in SAT in the development of T2D in LBW individuals. The 
differences are not significant after FDR adjustment. The pathways related to 
lipid metabolism, cholesterol homeostasis, steroid and glycoprotein metabolism 
are known to play a crucial role in maintaining metabolic homeostasis. The 
differences in these pathways among LBW individuals may indicate impaired 
metabolic function, which could contribute to the development of T2D. On the 
other hand, this may further exacerbate the risk of T2D. 
From this study identification of DE genes by RNA-seq can provide insights into 
the molecular mechanisms underlying LBW individuals risk of developing T2D 
later in life. Through RNA-seq, it is possible to detect even low abundant 
transcripts and quantify the gene expression. The differences in gene expression 
presented in this study depicts the strong association of LBW contributing 
towards the development of T2D. Adipose tissue is relevant to metabolic 
disorders among LBW, but it is important to consider that gene expression 
patterns may vary across the tissue. The findings from adipose tissue may 
require additional integration with multi-tissue studies. The other factors like 
gestational age, maternal health, environmental exposures and lifestyle factors 
may contribute to LBW and influence the gene expression. Controlling these 
factors is essential to isolate the specific effects of LBW. Validating the functional 
significance of DE genes through in vitro experiments to assess their impact on 
relevant cellular processes, such as glucose metabolism, insulin signalling, or 
inflammation may give better understanding of underlying mechanisms. Further 
research in genetic association studies in larger population-based studies is 
important with DE genes. Exploring the epigenetic modifications associated with 
the identified DEGs can provide additional insights into their regulation and 
potential impact on diabetes. Some of the above studies are already in the 
pipeline of our study group to investigate BW as a key component in risk of 
developing T2D. 
 
 
 
 
 
 
 
 
 
 
 
 



7. Conclusion 

As per the hypothesis of study, there is a unique difference in the expression 
patterns of SAT genes between LBW individuals and their matched NBW. The 
study observed that certain genes related to cellular ion homeostasis, apoptotic 
process, cellular response to stimuli and stress showed increased expression 
(positive logFC) while genes associated with lipid metabolic process, cholesterol 
homeostasis, steroid and glycoprotein metabolic pathways showed decreased 
expression (negative logFC) in LBW compared to NBW individuals. 
 
To conclude, the present study co-relates the differential expression of SAT 
genes in LBW individuals with the increased risk of T2D in comparison with the 
NBW controls. The findings suggest that these differences in gene expression 
levels may contribute to the increased risk of T2D in LBW individuals and could 
provide an opportunity for future research on the underlying mechanisms of 
metabolic disorders.
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9. Supplementary 

A.  SCRIPTS 

i. Condor script 
Universe = vanilla 

Executable = 

/ludc/Active_Projects/LBWHCOFSATBRNAS/Private/run1//Condor/Executives/2.sh 

Arguments = 

Output = /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/run1//Condor/Log/2.out 

getenv = TRUE 

Log = /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/run1//Condor/Log/2.log 

Error = /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/run1//Condor/Log/2.error 

request_cpus = 6 

request_memory = 60000 

notify_user = prabhudeva.thummala@regionh.dk 

notification = always 

queue 1 

 

ii. Script for generating genome indices in STAR 
#!/bin/bash 

                       cd /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files 

mkdir /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files/STAR_INDEX 

 

 # STEP 1: Generate genome indices 

                         #generate the genome indices 

 /ludc/Tools/Software/STAR/2.7.1a/bin/STAR 

--runThreadN 10 --runMode genomeGenerate --genomeDir /ludc/Active_Projects 

--genomeFastaFiles /ludc/Reference_Data/Public/Human/STAR_Genomes/GrcH38/G 

--sjdbGTFfile /ludc/Reference_Data/Public/Human/STAR_Genomes/GrcH38/gencod 

 

echo "finished running!" 

 

iii. Script for mapping and alignment in STAR 
#!/bin/bash 

cd /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files 

mkdir /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files/STAR_Alignment 

mkdir /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files/FeatureCounts 

mkdir 

/ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files/STAR_Alignment/117/ 

mkdir /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files/FeatureCounts/117/ 

 

# STEP 1: Run STAR 

# run alignment 

/ludc/Tools/Software/STAR/2.7.1a/bin/STAR \ 

--runThreadN 10 --readFilesIn \ 



/ludc/Raw_Data_Archive/Sequencing/Rna_Seq/LBWHCOFSATBRNAS/Raw_Content/20220

824_FastQ/F21FTSEUHT0020-01_HUMyrfE/Clean//117/117_1.fq.gz \ 

/ludc/Raw_Data_Archive/Sequencing/Rna_Seq/LBWHCOFSATBRNAS/Raw_Content/20220

824_FastQ/F21FTSEUHT0020-01_HUMyrfE/Clean//117/117_2.fq.gz \ 

--genomeDir /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/STAR_INDEX \ 

--sjdbGTFfile 

/ludc/Reference_Data/Public/Human/STAR_Genomes/hg38_Gencode22/gencode.v22.ann

otation.gtf \ 

--outFilterMismatchNmax 10 --outFilterType BySJout --outReadsUnmapped Fastx --

readFilesCommand zcat --outSAMtype BAM SortedByCoordinate \ 

--outSAMstrandField intronMotif –outFileNamePrefix \ 

/ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files/STAR_Alignment/117/ 

                        echo "STAR finished running!" 

 

iv. Script for FeatureCounts 
#run featureCounts 

/ludc/Tools/Software/Subread/1.6.4/bin/featureCounts \  

-p -s 0 -T 10 -a 

/ludc/Reference_Data/Public/Human/STAR_Genomes/hg38_Gencode22/gencode.v22.ann

otation.gtf \ 

/ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files/STAR_Alignment/117/Align

ed.sortedByCoord.out.bam \  

-o 

/ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files/FeatureCounts/117/117.ge

necounts.txt 

echo "featureCounts finished running!" 

echo "analysis complete" 

 

 

v.  Script for edgeR 

getwd() 
setwd("/home/prabhudev_t/LUDC/") 

counts=read.table(file="/home/prabhudev_t/LUDC/GeneCounts.txt", sep="\t", header = T) 

head(counts) 

dim(counts) 

x=counts[,c(1,7:10)] 

row.names(x)=x$Geneid 

x=x[,-1] 

head(x) 

group <- factor(c(1,1,2,2)) 

 

library(edgeR) 

y<-DGEList(counts=x,group=group) 

y <- calcNormFactors(y) 

 



cpm <- cpm(y, log = False, normalized.lib.sizes=TRUE) 

keep <- rowSums(cpm(y)>1) >=2 

y <- y[keep,] 

dim(y) 

write.table(cpm, "/home/prabhudev_t/LUDC/cpm_Results", row.names=TRUE) 

 

logcpm <- cpm(y,log=TRUE) 

write.results(logcpm, row.names=TRUE, col.names=TRUE, file = 

"/home/prabhudev_t/LUDC/logcpm_Results", sep="\t") 

 

design <- model.matrix(~group) 

design  

y <- estimateDisp(y,design) 

fit <- glmFit(y,design) 

lrt <- glmLRT(fit,coef=2) 

topTags(lrt) 

 

######################################## 

#here to write our results: 

#write.table(topTags(lrt, 35000L), file = "output.txt", row.names = TRUE, col.names=TRUE) 

######################################## 

 

 

######################################## 

#For annotation, I downloaded a new csv or text file from Biomart/ensembl, and then 

merged it by using a common header ENS like below:  

 

annotation<-read.table("/mart_exportcopy.txt", header=TRUE) 

head(annotation) 

results<-read.table("output.txt", header=TRUE) 

head(results) 

 

annotated_results<-merge(results,annotation,by = "ENS", all=TRUE) 

#annotated_results$FDR<-p.adjust(annotated_results$PValue,"fdr") 

head(annotated_results) 

write.table(annotated_results,file='output_annotated.txt',col.names=TRUE,row.names=FA

LSE,sep='\t') 

######################################## 

 
 
 
 
 
 
 
 



B. Gene Ontology Results 

i. Gene list from the table of 50 significant (when all features considered) 

Ensembl gene id Gene name Gene symbol 

ENSG00000215559 ankyrin repeat domain 20 family member A11, pseudogene ANKRD20A11P 

ENSG00000100336 apolipoprotein L4 APOL4 

ENSG00000129151 gamma-butyrobetaine hydroxylase 1 BBOX1 

ENSG00000244731 complement C4A (Rodgers blood group) C4A 

ENSG00000181374 C-C motif chemokine ligand 13 CCL13 

ENSG00000138135 cholesterol 25-hydroxylase CH25H 

ENSG00000134115 contactin 6 CNTN6 

ENSG00000106078 cordon-bleu WH2 repeat protein COBL 

ENSG00000126545 casein alpha s1 CSN1S1 

ENSG00000175084 desmin DES 

ENSG00000151640 dihydropyrimidinase like 4 DPYSL4 

ENSG00000135472 Fas apoptotic inhibitory molecule 2 FAIM2 

ENSG00000125740 FosB proto-oncogene, AP-1 transcription factor subunit FOSB 

ENSG00000160221 glutamine amidotransferase class 1 domain containing 3 GATD3 

ENSG00000206127 golgin A8 family member O GOLGA8O 

ENSG00000211896 immunoglobulin heavy constant gamma 1 (G1m marker) IGHG1 

ENSG00000240671 immunoglobulin kappa variable 1-8 IGKV1-8 

ENSG00000241351 immunoglobulin kappa variable 3-11 IGKV3-11 

ENSG00000196169 kinesin family member 19 KIF19 

ENSG00000111057 keratin 18 KRT18 

ENSG00000205362 metallothionein 1A MT1A 

ENSG00000123119 N-terminal EF-hand calcium binding protein 1 NECAB1 

ENSG00000171864 prion like protein doppel PRND 

ENSG00000163661 pentraxin 3 PTX3 

ENSG00000241945 PWP2 small subunit processome component PWP2 

ENSG00000274012 RNA component of signal recognition particle 7SL2 RN7SL2 

ENSG00000200336 RNA, 5S ribosomal pseudogene 333 RNA5SP333 

ENSG00000201695 RNA, 5S ribosomal pseudogene 334 RNA5SP334 

ENSG00000233913 ribosomal protein L10 pseudogene 9 RPL10P9 

ENSG00000277209 ribonuclease P RNA component H1 RPPH1 

ENSG00000173432 serum amyloid A1 SAA1 

ENSG00000134339 serum amyloid A2 SAA2 

ENSG00000255071 SAA2-SAA4 readthrough SAA2-SAA4 

ENSG00000148965 serum amyloid A4, constitutive SAA4 

ENSG00000268751 secretoglobin family 1B member 2, pseudogene SCGB1B2P 

ENSG00000159307 signal peptide, CUB domain and EGF like domain containing 1 SCUBE1 

ENSG00000101463 synapse differentiation inducing 1 SYNDIG1 

ENSG00000186439 triadin TRDN 

ENSG00000183463 ureidoimidazoline (2-oxo-4-hydroxy-4-carboxy-5-) decarboxylase URAD 

ENSG00000129204 ubiquitin specific peptidase 6 USP6 

ENSG00000108379 Wnt family member 3 WNT3 

 

 

 

 



ii. Downregulated genes in LBW compared to NBW (only protein coding) 

Gene Name GOTERM - Biological Process GOTERM - Molecular Function 

N-terminal EF-hand calcium–––– 
binding protein 1(NECAB1) 

GO:0001835~blastocyst hatching,GO:0042984~regulation of amyloid precursor protein biosynthetic process, GO:0005509~calcium ion 
binding,GO:0005515~protein 
binding,GO:0042802~identical protein 
binding, 

SAA2-SAA4 readthrough(SAA2-
SAA4) 

GO:0006953~acute-phase response, 
 

Wnt family member 3(WNT3) GO:0000902~cell morphogenesis,GO:0001707~mesoderm formation,GO:0007276~gamete generation,GO:0007411~axon 
guidance,GO:0009948~anterior/posterior axis specification, GO:0030177~positive regulation of Wnt signaling 
pathway,GO:0030182~neuron differentiation,GO:0035115~embryonic forelimb morphogenesis,GO:0035116~embryonic hindlimb 
morphogenesis,GO:0044338~canonical Wnt signaling pathway involved in mesenchymal stem cell 
differentiation,GO:0044339~canonical Wnt signaling pathway involved in osteoblast differentiation 

GO:0005109~frizzled 
binding,GO:0005125~cytokine 
activity,GO:0005515~protein binding, 
GO:0048018~receptor agonist activity, 

apolipoprotein L4(APOL4) GO:0006629~lipid metabolic process,GO:0006869~lipid transport,GO:0042157~lipoprotein metabolic process, GO:0008289~lipid binding, 

casein alpha s1(CSN1S1) GO:0032355~response to estradiol,GO:0032570~response to progesterone,GO:1903494~response to 
dehydroepiandrosterone,GO:1903496~response to 11-deoxycorticosterone, 

GO:0005515~protein binding, 

cholesterol 25-
hydroxylase(CH25H) 

GO:0006629~lipid metabolic process,GO:0008203~cholesterol metabolic process,GO:0016126~sterol biosynthetic 
process,GO:0034340~response to type I interferon,GO:0035754~B cell chemotaxis,GO:1903914~negative regulation of fusion of virus 
membrane with host plasma membrane, 

GO:0000254~C-4 methylsterol oxidase 
activity,GO:0001567~cholesterol 25-
hydroxylase activity, GO:0008395~steroid 
hydroxylase activity, 

complement C4A (Rodgers blood 
group)(C4A) 

GO:0006954~inflammatory response,GO:0006956~complement activation,GO:0006958~complement activation, classical 
pathway,GO:0045087~innate immune response,GO:2000427~positive regulation of apoptotic cell clearance, 

GO:0001849~complement component C1q 
binding,GO:0004866~endopeptidase 
inhibitor activity, 

cordon-bleu WH2 repeat 
protein(COBL) 

GO:0000578~embryonic axis specification,GO:0001757~somite specification,GO:0001843~neural tube closure,GO:0001889~liver 
development,GO:0030041~actin filament polymerization,GO:0030903~notochord development,GO:0033504~floor plate 
development,GO:0048565~digestive tract development, GO:1900006~positive regulation of dendrite 
development,GO:1900029~positive regulation of ruffle assembly, 

GO:0003785~actin monomer 
binding,GO:0005515~protein binding, 

desmin(DES) GO:0006936~muscle contraction,GO:0007010~cytoskeleton organization,GO:0008016~regulation of heart 
contraction,GO:0045109~intermediate filament organization,GO:0060538~skeletal muscle organ development, 

GO:0008092~cytoskeletal protein 
binding,GO:0042802~identical protein 
binding, 

dihydropyrimidinase like 
4(DPYSL4) 

GO:0007399~nervous system development,GO:0070997~neuron death,GO:0097485~neuron projection guidance, GO:0016810~hydrolase activity, acting on 
carbon-nitrogen (but not peptide) 
bonds,GO:0016812~hydrolase activity 

keratin 18(KRT18) GO:0007049~cell cycle,GO:0009653~anatomical structure morphogenesis,GO:0033209~tumor necrosis factor-mediated signaling 
pathway,GO:0043000~Golgi to plasma membrane CFTR protein transport,GO:0043001~Golgi to plasma membrane protein 
transport,GO:0043066~negative regulation of apoptotic process,GO:0045104~intermediate filament cytoskeleton 
organization,GO:0097191~extrinsic apoptotic signaling pathway,GO:0097284~hepatocyte apoptotic process,GO:0098609~cell-cell 
adhesion, 

GO:0003723~RNA binding, 
GO:0097110~scaffold protein 
binding,GO:0098641~cadherin binding 
involved in cell-cell adhesion, 

kinesin family member 19(KIF19) GO:0007018~microtubule-based movement,GO:0060404~axonemal microtubule depolymerization,GO:0070462~plus-end specific 
microtubule depolymerization, 

GO:0008574~ATP-dependent microtubule 
motor activity, plus-end-
directed,GO:0016887~ATPase activity, 



metallothionein 1A(MT1A) GO:0006882~cellular zinc ion homeostasis,GO:0010273~detoxification of copper ion,GO:0045926~negative regulation of 
growth,GO:0071276~cellular response to cadmium ion,GO:0071280~cellular response to copper ion,GO:0071294~cellular response to 
zinc ion, 

GO:0005515~protein 
binding,GO:0008270~zinc ion 
binding,GO:0046872~metal ion binding, 

pentraxin 3(PTX3) GO:0001550~ovarian cumulus expansion,GO:0001878~response to yeast,GO:0006954~inflammatory 
response,GO:0008228~opsonization,GO:0030198~extracellular matrix organization,GO:0044793~negative regulation by host of viral 
process,GO:0044869~negative regulation by host of viral exo-alpha-sialidase activity ,GO:1903019~negative regulation of glycoprotein 
metabolic process, 

GO:0001849~complement component C1q 
binding,GO:0001872~(1->3)-beta-D-glucan 
binding, 

serum amyloid A1(SAA1) GO:0001819~positive regulation of cytokine production,GO:0006953~acute-phase response,GO:0007204~positive regulation of 
cytosolic calcium ion concentration GO:0048247~lymphocyte chemotaxis,GO:0050708~regulation of protein 
secretion,GO:0050728~negative regulation of inflammatory response, 

GO:0001664~G-protein coupled receptor 
binding,GO:0008201~heparin binding, 

serum amyloid A2(SAA2) GO:0006953~acute-phase response, GO:0005515~protein binding, 

serum amyloid A4, 
constitutive(SAA4) 

GO:0006953~acute-phase response, GO:0005515~protein binding, 

synapse differentiation inducing 
1(SYNDIG1) 

GO:0006886~intracellular protein transport,GO:0051965~positive regulation of synapse assembly,GO:0097091~synaptic vesicle 
clustering, 

GO:0005515~protein 
binding,GO:0035254~glutamate receptor 
binding,GO:0042803~protein 
homodimerization activity, 

triadin(TRDN) GO:0006874~cellular calcium ion homeostasis,GO:0006936~muscle contraction,GO:0009617~response to 
bacterium,GO:0010649~regulation of cell communication by electrical coupling ,GO:0014808~release of sequestered calcium ion into 
cytosol by sarcoplasmic reticulum, GO:0060047~heart contraction, GO:0086036~regulation of cardiac muscle cell membrane 
potential,GO:0090158~endoplasmic reticulum membrane organization, 

GO:0030674~protein binding, 
bridging,GO:0044325~ion channel binding, 

ureidoimidazoline (2-oxo-4-
hydroxy-4-carboxy-5-) 
decarboxylase(URAD) 

GO:0000255~allantoin metabolic process,GO:0006144~purine nucleobase metabolic process,GO:0019628~urate catabolic process, GO:0016831~carboxy-lyase 
activity,GO:0051997~2-oxo-4-hydroxy-4-
carboxy-5-ureidoimidazoline decarboxylase 
activity, 



iii. Upregulated genes in LBW compared to NBW (only protein coding) 

Gene Name GOTERM-Biological Process GOTERM- Molecular Function 

C-C motif chemokine ligand 13(CCL13) GO:0002548~monocyte chemotaxis, GO:0006874~cellular calcium ion homeostasis, 
GO:0006935~chemotaxis,GO:0006954~inflammatory response,GO:0006955~immune response,  , 
GO:0070374~positive regulation of ERK1 and ERK2 cascade,GO:0071346~cellular response to interferon-
gamma,GO:0071347~cellular response to interleukin-1. 

GO:0005102~receptor binding,GO:0005515~protein 
binding,GO:0008009~chemokine 
activity,GO:0048020~CCR chemokine receptor binding, 

Fas apoptotic inhibitory molecule 
2(FAIM2) 

GO:0002931~response to ischemia, GO:0006915~apoptotic process, GO:0021549~cerebellum development, 
GO:0051402~neuron apoptotic process, GO:0097190~apoptotic signalling pathway, GO:1902042~negative 
regulation of extrinsic apoptotic signalling pathway via death domain receptors, GO:2001234~negative regulation 
of apoptotic signalling pathway, 

GO:0005515~protein binding, 

FosB proto-oncogene, AP-1 transcription 
factor subunit(FOSB) 

GO:0000122~negative regulation of transcription from RNA polymerase II promoter, GO:0007565~female 
pregnancy, GO:0009410~response to xenobiotic stimulus, GO:0032870~cellular response to hormone stimulus, 
GO:0043278~response to morphine 

GO:0000978~RNA polymerase II core promoter proximal 
region sequence-specific DNA binding, GO:0000981~RNA 
polymerase II transcription factor activity, sequence-
specific DNA binding 

PWP2 small subunit processome 
component(PWP2) 

GO:0000028~ribosomal small subunit assembly, GO:0000462~maturation of SSU-rRNA from tricistronic rRNA 
transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA), 

GO:0003723~RNA binding, 

contactin 6(CNTN6) GO:0007155~cell adhesion,GO:0007156~homophilic cell adhesion via plasma membrane adhesion molecules, 
GO:0007417~central nervous system development,GO:0045747~positive regulation of Notch signalling 
pathway,GO:0070593~dendrite self-avoidance, 

GO:0098632~protein binding involved in cell-cell 
adhesion, 

gamma-butyrobetaine hydroxylase 
1(BBOX1) 

GO:0045329~carnitine biosynthetic process, GO:0005506~iron ion binding, GO:0008270~zinc ion 
binding, GO:0008336~gamma-butyrobetaine dioxygenase 
activity, GO:0046872~metal ion binding, 

golgin A8 family member O(GOLGA8O) GO:0007030~Golgi organization, GO:0005515~protein binding, 

prion like protein doppel(PRND) GO:0006878~cellular copper ion homeostasis,GO:0007340~acrosome reaction,GO:0051260~protein 
homooligomerization, 

GO:0005507~copper ion binding, GO:0005515~protein 
binding, 

ubiquitin specific peptidase 6(USP6) GO:0006464~cellular protein modification process,GO:0006511~ubiquitin-dependent protein catabolic 
process,GO:0006886~intracellular protein transport,GO:0016579~protein deubiquitination,GO:0036211~protein 
modification process,GO:0060627~regulation of vesicle-mediated transport,GO:0090630~activation of GTPase 
activity, 

GO:0003676~nucleic acid binding, GO:0004197~cysteine-
type endopeptidase activity, GO:0004843~thiol-
dependent ubiquitin-specific protease activity, 
GO:0005096~GTPase activator activity, 



 

C. Reactome Results 

i. Downregulated in LBW compared to NBW (only protein coding genes) 

Pathway name #Entities 
found 

#Entities 
total 

Entities 
ratio 

Entities 
pValue 

Entities FDR #Reactions 
found 

#Reactions 
total 

Activation of C3 and C5 2 7 4.61E-04 5.35E-05 0.005297 3 4 

Metallothionein’s bind metals 2 16 0.001055 2.77E-04 0.013583 6 27 

Response to metal ions 2 21 0.001384 4.75E-04 0.015686 6 31 

Initial triggering of complement 2 120 0.007909 0.014173 0.168192 3 21 

Formyl peptide receptors bind formyl 
peptides and many other ligands 

1 11 7.25E-04 0.016542 0.168192 1 3 

Regulation of Complement cascade 2 139 0.009161 0.018688 0.168192 14 42 

Complement cascade 2 156 0.010281 0.023176 0.168192 20 72 

Advanced glycosylation end product 
receptor signalling 

1 16 0.001055 0.023974 0.168192 2 4 

CRMPs in Sema3A signalling 1 18 0.001186 0.026932 0.168192 3 5 

Scavenging by Class B Receptors 1 21 0.001384 0.031353 0.168192 2 5 

Interleukin-4 and Interleukin-13 
signalling 

2 211 0.013906 0.040328 0.168192 1 47 

WNT ligand biogenesis and trafficking 1 28 0.001845 0.041593 0.168192 8 12 

TRAF6 mediated NF-kB activation 1 30 0.001977 0.0445 0.168192 1 4 

Muscle contraction 2 232 0.01529 0.047834 0.168192 5 53 

Miscellaneous transport and binding 
events 

1 36 0.002373 0.05317 0.168192 1 13 

Striated Muscle Contraction 1 40 0.002636 0.058908 0.168192 4 4 

TAK1-dependent IKK and NF-kappa-B 
activation   

1 55 0.003625 0.08013 0.168192 1 17 

Ion homeostasis 1 64 0.004218 0.092643 0.168192 1 17 

Kinesins 1 68 0.004482 0.098152 0.168192 2 14 

Semaphorin interactions 1 71 0.004679 0.102263 0.168192 3 41 

Amyloid fiber formation 1 89 0.005866 0.126553 0.168192 2 33 

Class B/2 (Secretin family receptors) 1 99 0.006525 0.139775 0.168192 1 24 

Innate Immune System 4 1340 0.088315 0.140026 0.168192 25 725 

DDX58/IFIH1-mediated induction of 
interferon-alpha/beta 

1 104 0.006854 0.146313 0.168192 1 53 

COPI-dependent Golgi-to-ER retrograde 
traffic 

1 107 0.007052 0.150214 0.168192 2 11 

Post-translational protein 
phosphorylation 

1 109 0.007184 0.152805 0.168192 1 1 

MyD88 cascade initiated on plasma 
membrane 

1 109 0.007184 0.152805 0.168192 1 70 

Toll Like Receptor 5 (TLR5) Cascade 1 109 0.007184 0.152805 0.168192 1 71 

Toll Like Receptor 10 (TLR10) Cascade 1 109 0.007184 0.152805 0.168192 1 71 

Synthesis of bile acids and bile salts 1 113 0.007447 0.157964 0.168192 1 83 

TRAF6 mediated induction of NFkB and 
MAP kinases upon TLR7/8 or 9 
activation 

1 116 0.007645 0.161813 0.168192 1 60 

Toll Like Receptor 3 (TLR3) Cascade 1 116 0.007645 0.161813 0.168192 1 73 

MyD88 dependent cascade initiated on 
endosome 

1 117 0.007711 0.163093 0.168192 1 75 

Toll Like Receptor 7/8 (TLR7/8) Cascade 1 118 0.007777 0.16437 0.168192 1 79 

Stimuli-sensing channels 1 120 0.007909 0.16692 0.168192 1 33 

TRIF(TICAM1)-mediated TLR4 signalling  1 121 0.007975 0.168192 0.168192 1 70 

MyD88-independent TLR4 cascade  1 121 0.007975 0.168192 0.168192 1 72 

Toll Like Receptor 9 (TLR9) Cascade 1 121 0.007975 0.168192 0.168192 1 80 

Interleukin-1 signalling 1 125 0.008238 0.173261 0.173261 1 59 

Bile acid and bile salt metabolism 1 125 0.008238 0.173261 0.173261 1 99 

Regulation of Insulin-like Growth Factor 
(IGF) transport and uptake by Insulin-
like Growth Factor Binding Proteins 
(IGFBPs) 

1 127 0.00837 0.175784 0.175784 1 14 

MyD88:MAL(TIRAP) cascade initiated 
on  
plasma membrane 

1 133 0.008766 0.183311 0.183311 1 76 

Toll Like Receptor TLR6:TLR2 Cascade 1 133 0.008766 0.183311 0.183311 1 78 

Toll Like Receptor TLR1:TLR2 Cascade 1 136 0.008963 0.18705 0.18705 1 78 

Toll Like Receptor 2 (TLR2) Cascade 1 136 0.008963 0.18705 0.18705 1 80 

Formation of the cornified envelope 1 138 0.009095 0.189533 0.189533 8 27 



Immune System 6 2624 0.172939 0.195106 0.195106 27 1659 

Cardiac conduction 1 147 0.009688 0.200618 0.200618 1 33 

Golgi-to-ER retrograde transport 1 148 0.009754 0.201841 0.201841 2 18 

Cytokine Signalling in Immune system 3 1036 0.068279 0.204926 0.204926 3 740 

Toll Like Receptor 4 (TLR4) Cascade 1 165 0.010875 0.222355 0.222355 1 107 

Binding and Uptake of Ligands by 
Scavenger Receptors 

1 168 0.011072 0.225922 0.225922 2 33 

Interferon gamma signalling 1 173 0.011402 0.231833 0.231833 1 18 

GPCR ligand binding 2 609 0.040137 0.235361 0.235361 2 217 

Interleukin-1 family signalling 1 183 0.012061 0.243526 0.243526 1 92 

Factors involved in megakaryocyte 
development and platelet production 

1 194 0.012786 0.256191 0.256191 2 43 

Signalling by Interleukins 2 658 0.043367 0.263214 0.263214 2 505 

Toll-like Receptor Cascades 1 202 0.013313 0.265275 0.265275 1 198 

Peptide ligand-binding receptors 1 203 0.013379 0.266402 0.266402 1 83 

Ion channel transport 1 208 0.013709 0.272017 0.272017 1 51 

TCF dependent signalling in response 
to WNT 

1 215 0.01417 0.279809 0.279809 1 71 

Intra-Golgi and retrograde Golgi-to-ER 
traffic 

1 219 0.014434 0.284226 0.284226 2 48 

Keratinization 1 226 0.014895 0.291892 0.291892 15 34 

G alpha (q) signalling events 1 285 0.018783 0.353464 0.353464 3 35 

Vesicle-mediated transport 2 828 0.054571 0.359717 0.359717 4 252 

Interferon Signalling 1 318 0.020958 0.385633 0.385633 1 74 

Signalling by GPCR 2 876 0.057734 0.386421 0.386421 8 392 

Signalling by WNT 1 331 0.021815 0.397881 0.397881 9 157 

Metabolism of steroids 1 331 0.021815 0.397881 0.397881 1 250 

Transport of small molecules 2 969 0.063863 0.436911 0.436911 2 454 

Cellular responses to stimuli 2 1025 0.067554 0.466353 0.466353 6 481 

Class A/1 (Rhodopsin-like receptors) 1 414 0.027285 0.470744 0.470744 1 185 

G alpha (i) signalling events 1 426 0.028076 0.480553 0.480553 3 74 

Neutrophil degranulation 1 478 0.031503 0.521087 0.521087 2 10 

Axon guidance 1 585 0.038555 0.595183 0.595183 3 298 

Developmental Biology 2 1313 0.086535 0.603556 0.603556 18 607 

Nervous system development 1 621 0.040928 0.617547 0.617547 3 324 

Membrane Trafficking 1 668 0.044026 0.644971 0.644971 2 219 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii. Upregulated in LBW compared to NBW (only protein coding genes) 

Pathway name Entities 
found 

Entities 
total 

Entities 
pValue 

Entities FDR Reactions 
found 

Reactions 
total 

Chemokine receptors bind chemokines 2 57 0.00129051 0.041296313 2 19 

Carnitine synthesis 1 4 0.0037882 0.060611206 1 4 

CHL1 interactions 1 9 0.008505104 0.085051036 1 5 

Peptide ligand-binding receptors 2 198 0.014476378 0.115811025 2 83 

NGF-stimulated transcription 1 39 0.036382714 0.168594065 2 37 

Class A/1 (Rhodopsin-like receptors) 2 333 0.038185573 0.168594065 2 185 

rRNA modification in the nucleus and cytosol 1 60 0.055470982 0.168594065 1 8 

Nuclear Events (kinase and transcription factor 
activation) 

1 61 0.056371313 0.168594065 2 48 

GPCR ligand binding 2 470 0.070870437 0.168594065 2 217 

Post-translational modification: synthesis of GPI-
anchored proteins 

1 93 0.084773233 0.168594065 1 14 

signalling by NTRK1 (TRKA) 1 117 0.105562206 0.168594065 2 102 

Estrogen-dependent gene expression 1 119 0.107275091 0.168594065 2 64 

L1CAM interactions 1 121 0.108984994 0.168594065 1 54 

signalling by NTRKs 1 139 0.124240672 0.168594065 2 164 

signalling by GPCR 2 713 0.143887655 0.168594065 5 392 

Major pathway of rRNA processing in the nucleolus 
and cytosol 

1 183 0.160537868 0.168594065 4 7 

rRNA processing in the nucleus and cytosol 1 193 0.168594065 0.168594065 5 15 

ESR-mediated signalling 1 195 0.170196845 0.170196845 2 111 

rRNA processing 1 203 0.176579914 0.176579914 5 21 

signalling by Nuclear Receptors 1 272 0.229809251 0.229809251 2 193 

G alpha (i) signalling events 1 317 0.262818021 0.262818021 3 74 

Metabolism of amino acids and derivatives 1 376 0.304147254 0.304147254 1 248 

signalling by Receptor Tyrosine Kinases 1 543 0.40997372 0.40997372 2 746 

Axon guidance 1 558 0.418722938 0.418722938 1 297 

Nervous system development 1 584 0.43360931 0.43360931 1 323 

Signal Transduction 3 2598 0.462070525 0.462070525 9 2530 

GPCR downstream signalling 1 638 0.463425542 0.463425542 3 175 

Metabolism of RNA 1 719 0.505481088 0.505481088 5 189 

Developmental Biology 1 1138 0.679003789 0.679003789 1 606 

Post-translational protein modification 1 1429 0.764672394 0.764672394 1 526 

Metabolism of proteins 1 1949 0.867918634 0.867918634 1 795 

Metabolism 1 2145 0.894616744 0.894616744 1 2031 

 

 

 

 

 

 

 



D.  Network analysis results 

i. Downregulated genes in LBW compared to NBW (only protein coding) 



ii. Upregulated in LBW compared to NBW (only protein coding) 

 



 

 

END 

 


	Abstract
	Abbreviations
	1 Introduction
	2. Objective
	3. Background
	3. 1 Type 2 diabetes
	3.2 Low birth weight and health risks
	3.3 Thrifty Phenotype Hypothesis
	3.4 Low Birth weight and gene changes in Diabetes
	Overview:

	4 Methods
	4.1 Study Outline:
	4.2 Sample preparation and RNA sequencing at BGI:
	4.3 RNA-seq pipeline
	Setting up RNA-seq pipeline
	FASTQC – Quality Check
	Mapping and Alignment using STAR:
	Quantification with FeatureCounts
	Differential Expression Analysis by using edgeR
	Pathway and Network Analysis using edgeR


	5 Results
	5. 1 Fast-QC Results
	5.2 Gene Counts data
	5.3 edgeR results
	When all features are considered:
	With only protein coding genes:


	6. Discussion
	7. Conclusion
	8. References
	9. Supplementary

