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Abstract

Background:

Fetal development and programming has lifelong implications for heath and risk of disease, and both
overnutrition and undernutrition is known to cause fetal adaptations and developmental changes
via epigenetic mechanism. Such adaptations can play important roles in perspective to metabolic
disorders including risk of type 2 diabetes (T2D). Low birthweight (LBW) may also result in reduced
adult height, increased abdominal obesity and various metabolic risk factors including non-alcoholic
fatty liver disease (NAFLD), which is on the path to development of T2D. Metabolic changes in
subcutaneous adipose tissue (SAT) of LBW individuals has taken a vivid role in causing the variation
of metabolic traits. In this study, SAT gene expression patterns were compared between age- and
BMI matched LBW and normal birthweight (NBW) aged 37 years.

Objective:

To compare expression levels of RNA sequencing from SAT biopsies between LBW and NBW
subjects, and thereby to understand the molecular mechanisms underlying increased risk of T2D in
people born with LBW.

Methods:

A total of 133 samples were analysed via RNA sequencing, which includes 85 adipose tissue samples
(i.e., from baseline, overfeeding and randomization) and 48 preadipocyte samples. For my thesis, the
analysis of only the adipose tissue samples from baseline biopsies was included. Non-stranded and
polyA-selected mRNA library preparation has been done on all samples, followed by PE100
sequencing resulting Fastq files. The pipeline included FastQC tool for quality check, STAR for
Alignment, Featurecounts for quantifying, edgeR for the differential expression analysis. Pathway
analysis was done using Reactome and David database.

Results:

FastQC reports were generated and the data was in good quality and met the standards. After the
alignment and quantification, GeneCounts file with a total of 60483 genes was obtained. Among the
groups of LBW (n=17) vs NBW (n=12) we found 50 significantly different gene expressions p-value <
0.05 (without adjusting for multiple testing), when all features (all genes, non-codingRNA, small RNA,
pseudogenes) are considered. In contrast, 31 significant (p-value < 0.05) differential gene expression
levels were found when only protein coding genes were considered. Gene ontology results were
obtained for both downregulated and upregulated genes in LBW compared to NBW. Pathway
analysis identified significant differences to involve metallothionein bind metals, response to metal
ions regulation of complement cascade and peptide ligand-binding receptors. Network analysis of
these results shows the genetic interactions within the areas of signal transduction, metabolism,
gene expression in developmental biology and associated networks.

Conclusion:

Differential SAT gene expression levels were identified between LBW at increased risk of T2D
compared with matched NBW controls, which however did not persist after FDR. Interestingly, genes
involved the processes of ion homeostasis, apoptotic process, cellular response to stimuli and stress
were found among the significant positive log fold change (logFC) - upregulated genes. Whereas,
significant negative logFC genes — downregulated were seen in the pathways related to lipid
metabolic process, cholesterol homeostasis, steroid and glycoprotein metabolic pathways. These
differences may play a role for the increased risk of T2D in LBW subjects.



Abbreviations
BW Birth Weight

BMI Body Mass Index

CPM Count Per Million

DM Diabetes Mellitus

DE Differential Expression

DKD Diabetes Kidney Disease

FDR False Discovery Rate

FC FeatureCounts

GO Gene Ontology

GC Guanine - Cytosine

HCOF High Carbohydrate Over Feeding
LRT Likelihood Ratio Tests

NBW Normal Birthweight

logFC Log Fold Change

LBW Low Birthweight

NB Negative Binomial

NGS Next-Generation Sequencing
NAFLD Non-Alcoholic Fatty Liver Disease
QL Quasi Likelihood

RNA-seq RNA-Sequencing

STAR Spliced Transcripts Alignment to a Reference
SAT Subcutaneous Adipose Tissue

T2D Type 2 Diabetes



1 Introduction

Currently, there are over 537 million adults (aged 20-79 vyears) living with
diabetes, which corresponds to approximately 1 in 10 adults globally. It is
predicted that this number may rise to 643 million (1 in 9 adults) by 2030 and
further increase to 784 million (1 in 8 adults) by 2045 (1).

T2D is the most common form of diabetes, accounting 90% of cases. In addition
to genetic factors, various other factors such as obesity, dietary composition,
lifestyle choices, physical inactivity, and exposure to an adverse fetal
environment contribute to the development of T2D (2,3). Birth weight (BW)
serves as an indicator of fetal growth and has a profound influence on
subsequent phenotypical changes, including height, size, muscle mass, fat
deposition, and metabolic and skeletal alterations (2-5). It is well documented
that there is strong association between the BW and T2D (2-8). LBW individuals
exhibit distinct physical changes such as increased abdominal fat (6) and reduced
insulin secretion (7). Moreover, they display altered expression of insulin
signalling proteins in muscle and fat tissues (8). Consequently, these biological
changes in LBW individuals are closely linked to the development of conditions
such as T2D, hypertension, and cardiovascular disease (6-11). Similarly, the
presence of LBW family history suggests that it may have a potential hereditary
influence on the likelihood of experiencing LBW in future generations (12).

Understanding the long-term causal effect of LBW to determine various disease
risks has importance in assessing the individual risk factors for T2D. This presents
an opportunity to implement early nutritional interventions that can mitigate
the risk of disease burden in the future (13). In addition to the findings from
published studies, investigating the link between environmental factors such as
rapid changes in the diet and patterns of gene changes offers valuable insights
into understanding the epigenetic determinants and their influence on BW
outcomes. The early development process is influenced by multiple factors and
can be affected by an unfavourable fetal environment (14). Individuals born with
LBW have shown an imbalanced pattern in their hormonal responses (15), which
in turn increases their susceptibility to conditions such as obesity, T2D and other
diseases. The changes in genes expression and methylation patterns play a
crucial role in regulating metabolism through the central nervous system (15).



During intrauterine (IU) development, regulatory mechanisms work to maintain
homeostasis, but they can be compromised by factors such as aging, obesity, or
other influences. Any abnormal modifications to these regulatory mechanisms
can lead to disruptions in insulin physiology and contribute to the development
of insulin resistance. Sometimes, these changes can have long-lasting effects on
the physiology and metabolism of offspring.

BW of an individual is strongly associated with i) environmental influences that
contribute to phenotypic associations and induce epigenetic modifications in the
genome ii) indirect effect of maternal genotypes and shared genetic effects
between mother and offspring (16). By exploring and understanding the
potential connections between particular genetic variants and levels of gene
expression, we can gain valuable insights into molecular mechanisms in the
progression of T2D. Establishing a comprehensive profile of significant
correlation between gene expression levels and their regulation pattern requires
specific research studies and analysis (17). This study is to identify the distinct
genes and their expression patterns within SAT that differentiate individuals with
LBW from those with NBW. Identification of such gene expression differences
helps to understand the behaviour of these fat cells within the two groups. The
idea is also to find whether the metabolism of individuals with LBW can return
to its original state after an overfeeding followed by an exercise intervention.
The underlying hypothesis is that the metabolism of LBW deviates from that of
individuals with NBW. This distinct metabolism in LBW individuals may make
them more vulnerable to developing T2D later in life compared to those with
NBW.

My thesis focuses on differences in gene expression patterns in SAT biopsies
obtained from NBW and LBW individuals. Bulk RNA has been collected and total
RNA isolated and sequenced by BGI sequencing. The sequenced reads were
further proceeded for differential analysis. And finally, we performed pathway
analysis of the significant genes.



2. Objective

The impact of low birth weight on metabolic and genetical traits associated
with risk of developing T2D when exposed to an affluent lifestyle paves the
way of the study design. The primary objective of this project design is to
examine whether HCOF have distinct negative metabolic effects on LBW
subjects compared to those with NBW as control group. Additionally, the
project aims to assess if LBW individuals exhibit reduced expandability of their
SAT and an increased potential for preadipocyte proliferation and/or
differentiation. This project also focuses if exercise can revert and/or minimize
the deleterious cardiometabolic effects of HCOF in individuals with or without
increased risk of T2D.

Overall, the project of this study contains a large amount of data and involves
many sub groups.

For my thesis, | aim to analyse the RNA-seq data from the baseline samples of
both LBW and NBW groups. This includes the following aims:

1) To study the differential gene expression of adipose tissue at baseline level
between the groups LBW and NBW. Further, to make a pathway analysis
and connect the function of significant genes to their metabolic biological
processes.

2)Understand the differences of the significant genes, their biological
processes and related pathways.



3. Background

Development of T2D is mainly due to i) inadequate secretion of insulin by
pancreatic B-cells or ii) decreased response from tissues to insulin. As a
consequence, the progression of T2D disrupts the regulation of glucose level in
the body resulting in high blood sugar level, known as hyperglycaemia. The
presence of obesity, particularly central visceral adiposity plays a crucial role in
development of T2D. Persistent elevation in the level of blood glucose or post-
meal hyperglycaemia following carbohydrate intake are characteristic features
of T2D (17). Endogenously, three different hormones glucagon, epinephrine, and
cortisol are known to increase glucose levels by promoting biological processes
such as glycogenolysis and gluconeogenesis. Also, dietary carbohydrate intake is
an important exogenous factor that increase blood glucose levels (17). Previous
studies have demonstrated that adopting a regular exercise routine and
maintaining a healthy diet can effectively reduce the risk of developing T2D (20).
On the other hand, certain non-modifiable risk factors like ethnicity, family
history, genetic pre-disposition have strong genetic basis in T2D. These factors
are largely determined by an individual's genetic makeup and are not easily
influenced by external factors or lifestyle changes. Understanding both gene
changes and non-genetic risk factors which could influence the risk of developing
T2D can help take appropriate preventive measures when necessary.

Etiology of T2D is influenced by combination of genetic factors, the metabolic
processes and the environmental factors. T2D has strong hereditary connections
and T2D susceptibility genes are more common in the general population, which
limits the explanation on total estimated heritability of T2D. This suggests that
there may be additional unidentified T2D susceptibility genes with a greater
influence on the risk of developing T2D in the general population (18). In recent
years, extensive genome-wide association studies have provided evidence for
the polygenic nature of T2D. Insulin resistance in T2D is linked to the
malfunctioning of adipose tissue and the generation of free fatty acids within it.
Patients with T2D have been found to have downregulation of genes involved in
oxidative metabolism (20). In previous studies, several genes including TCF7L2,
PPARG, FTO, KCNJ11, NOTCH2, WFS1, CDKAL1, IGF2BP2, SLC30AS8, JAZF1, HHEX
along with more than 600 single nucleotide polymorphisms (SNP’s) were
discovered to be more significant in individuals having T2D (19). For instance,
KCNJ11 gene, which is involved in the normal functioning of pancreatic beta cells
responsible for insulin production and release, and the TCF7L2 gene, which plays
a role in glucose metabolism and the production of glucagon-like peptide-1.



Deviations from healthy birth weight involve wide range of subsequent adverse
outcomes and traits. In general, BW less than 2500 grams irrespective of
gestational age is considered as LBW as per WHO. There are so many etiological
causes of LBW such as intrauterine growth retardation (IUGR), preterm birth,
fetal inadequate nutrition, congenital anomalies and many other fetal, maternal
conditions (15). Infants with LBW are more likely to develop complications and
have risks of cardiovascular disorders, metabolic disorders, cognitive deficits,
motor delays, cerebral palsy and others (15, 27). The limited supporting evidence
on BW as a reliable marker for assessing the intrauterine environment in relation
to subsequent health and disease has given an extensive scope for further
investigation into its potential implications.

The reduction in the weight of fetus or infant is due to several mechanisms. How
does being born with LBW increase matters in the risk of developing certain
diseases fifty or more years later? Many of the changes that occur during
developmental stages have direct effects on physiological conditions later in life.
For example, inadequate nutrition or overnutrition during early development
can lead to metabolic alterations. Inadequate nutrition in the womb, resulting in
restricted fetal growth and development is associated with LBW. This nutritional
insufficiency can lead to metabolic alterations and long-term changes in the
body's physiology. LBW individuals often exhibit metabolic adaptations including
alterations in insulin sensitivity, glucose metabolism, and lipid metabolism which
can contribute to an increased risk of developing metabolic disorders, including
T2D. Until this date, many evidence based studies links epigenetic factors with
human diseases and these epigenetic factors mediates activation, repression or
silencing of genetic transcription (15).

Studies by Plagemann et al. done in animal models states that over-nutrition in
pre-and/or neonatal period can lead to alterations in DNA methylation patters
of genes which are involved with regulation of appetite, body weight and
metabolism. This causes the neonates to acquire adipogenic and diabetogenic
phenotypes (15).



Many years ago, Hales and Barker proposed the thrifty phenotype hypothesis
(31). Poor fetal and infant nutrition are the base for pathological changes
associated with the risk of glucose intolerance and insulin resistance in later
life. Maternal malnutrition can cause poor fetal growth and infant
developmental changes. The impact of other maternal and placental
abnormalities influences the fetal growth as well. As per the thrifty phenotype
hypothesis, poor fetal nutrition leads to an improper growth of the pancreatic
B-cell mass or decrease in the islet of Langerhans’ function (causing the
impairment in insulin secretion). Progressively, this results in the glucose
intolerance and the insulin resistance accounting for T2D followed by metabolic
syndrome. These changes are also depending on risk factors like obesity,
physical inactivity and other comorbid conditions.

So far, we discussed that weight at birth play prominent role in the development
of adult disease risk. The studies of utero genes and the pathways related to the
birth weight, obesity are important to understand the long-term health
outcomes. The genes mediating the mechanisms of controlling these clinical
outcomes and their associated pathways are often complex. It is easier to drive
the process of understanding this complexity from the fetal tissues compared to
adult tissues. Transcriptomic data from various tissues in utero development
helps to identify these genes and integrate with the genetic predisposition for
various traits. Transcriptional level analysis of these genes also plays an
important role in linking the disease with the profile of these genetic variants
and polymorphisms. Genome Wide Association Studies have challenges to
detect the causal effects of underlying genes in different tissue types and
developmental stages (34).

The causal effects of these genetic risks are involved in controlling the utero
expression patterns. Defects in any of these genes responsible for the pancreatic
development and the insulin supports the development of T2D. This triggers the
need to identify the genetic regulators of the weight at birth. Expression patterns
of genes in fetus have shown influence in many metabolic mechanisms. For
example, the polymorphism in G protein 3 subunit gene is linked to LBW in
pregnancy (33). Genes encoding IGF-l, IGF-Il, insulin, and their respective
receptors could relate to BW (33). ADCY5 gene associated both with BW and



T2D. Genes like TCF7L2 has now been shown to modulate pancreatic islet
function (35). T2D risk alleles at genes; HHEX-IDE and KCNQ1 show similar effects
to ADCY5 and CDKAL1 in being associated with LBW. Identification and analysis
of such genes is very critical in predicting the maintenance of glucose
homeostasis, pancreatic beta cell function, early onset of T2DM and to reveal
mutational effects. PPARG and KCNJ11 encodes a protein that acts as a target
for classes of therapeutic agents widely used in diabetes management (35). This
information could be used to intervention studies for developing and improving
rational therapeutical targets. In this study, we want to corelate the gene
expression levels and their functions towards the associated diabetic risks in
LBW compared to NBW.

3.5 RNA-Sequencing

RNA-seq involves the quantification of RNA in a biological sample such as from
the adipose tissue at the cellular transcriptome level using next-generation
sequencing (NGS). After NGS, the sequenced raw reads are checked for the
quality. This quality control step is done using FastQC or FastQScreen or FASTX.
If any criteria exist that impact the quality of reads, this should be removed. Tools
like Skewer, Cutadapt or Trimmomatic are useful to cut adaptors/primer and
trim reads with low quality. Finest quality trimmed reads are processed for
mapping and then aligned to the genome. This step involves either mapping
against reference genome or to the transcriptome. For the genome, the Splice-
aware aligners like STAR, Tophat2, HISAT2 are used while the aligners (Bowtie2,
BWA, GEM) and Quasimappers (Salmon or Kallisto) are used for the
transcriptome.

After the alignment, next step is quantification using gene annotation file by the
applications like FeatureCounts, RSEM, eXpress to produce the counts. Further,
the counts obtained are used for differential expression and functional analysis.
Thus, we can derive the analysis of biological process and pathways
corresponding to the sequenced reads.

RNA-seq allows to study the expression of genetic changes in different stages of
development and understand the biological pathways resulting in disease
progression. From this process, the genes that cause various interesting
differences could be detected. Comparing the expression patterns of adipose
tissues from LBW and NBW individuals can help us identify and understand the
genes which behave differently between the groups.



4 Methods

Overview:
- FASTQC
e (quality | After the quality check — Trimmed Reads
o control)
—— _:,} . STAR \
(Alignment Generate the Genome Indices and Alignment
77 and Mapping)
FeatureCounts  * Gene Level,
—>>_ (countsmatrix) ~ * ExonLevel
GeneCounts
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> edgeR  Differential Expression Analysis

Fig: 4 (i) Overview of RNA-seq analysis pipeline

The methodology to analyse RNA-seq data in this study involves various levels
like, library preparations, sequencing of reads and, pre-processing of data,
aligning them to a reference genome and quantification to counts. Finally,
further analysis of these counts can be done by differential expression analyses.
Each step has a different selection of tools as shown in fig 4. (i) and each step
should be considered carefully when setting up the pipeline for data analysis of
RNA-seq.

This study includes healthy Caucasian males born at term (weeks 39-41) in 1979-
1980 with LBW (birth weight < 10" percentile) and BMI, age-matched NBW
control individuals (BW of 50 to 90" percentile). Subjects with a family history of
diabetes and/or a self-reported high physical activity level (>10hrs /week) were



excluded. Also, those who have lost/gained more than 3 kg within the past 6
months or those who consume alcohol (drink more than general
recommendations) or substance abusers were excluded. All subjects were
screened for current and previous health status to ensure eligibility. Blood
samples, blood pressure, and electrocardiogram were obtained to ensure good
health of the participants. All participants report to Rigshospitalet, Copenhagen
-Denmark, where different tests were performed. Tissue biopsies at the baseline
state were obtained from the abdominal.

Total of 29 adipose tissue samples i.e., 17 from LBW and 12 from NBW were
analysed via RNA-seq. Total RNA was isolated from all sample preparations
(amount > 200ng, concentration 1000ng/microL>c>10 ng/microlitre, quality
RIN/RQN value > 7.0). mRNA enrichment and purification: Oligo dT Selection to
enrich the mRNA or rRNA depletion (For total RNA extracted from whole blood,
globin mRNA is depleted). The experimental pipeline shown in fig 4. (ii) was used:

e RNA fragment and reverse transcription (For stranded TorlRNA Oligo o based mRNA enrichment

Or rRNA depletion
mMRMNA Or Globin mRNA depletion«

specific mRNA libraries second-strand cDNA synthesis | ™
with dUTP instead of dTTP)
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e PCR T
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e DNA nano ball synthesis U

L Seq uencing on DNB-seq pIatform Fig: 4.2.(i) Experimental pipeline of Transcriptome.
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Non-stranded and polyA-selected mRNA library preparation has been done on
all samples, followed by PE100 sequencing with 4GB clean data per sample on
DNBSEQ. After sequencing raw reads were filtered, which includes removing
adaptor sequences, contamination, and low-quality reads from raw reads
(replicate their results). Resulting fastq files from paired end reads, were
received on a hard drive.

Setting up RNA-seq pipeline

We used Linux for analysing the RNA-seq data. Initially, Linux commands and
deep study of various literature was done to be able to set up the pipeline.
Working on the Linux server and choosing the right selection of tools were most
important among these tasks. Learning the issues on accessing the server and
working with data on server is much crucial to be able to deal with the data with
no harm to other files. Proper training was given to me on how to access the



servers and run the commands on Linux. Next step was to gain knowledge of the
R language to use the package edgeR for differential analysis.

The systemic approach for the RNA-seq pipeline in this analysis was using the
following tools: i) Spliced Transcripts Alignment to a Reference (STAR) was used
for mapping and alignment ii) Subread Package (FeatureCounts) for
guantification iii) edgeR for differential analysis iv) Reactome and David
Database for the network and pathway analysis.

Setup of Pipeline in Bash file: Usually, this file consists of script in bash format (in

file of .sh). It requires the following steps, i) Commands for making required
directories for various output files in each step ii) Create the genome indices iii)
Run the Alignment of reads with reference genome iv) Run the Feature Counts
with the aligned reads. Path to files of input should be exact; otherwise, the
errors will be reflected. The bash script in this analysis was developed based on
numerous online literary sources and references. Two Pipelines was set up

a) Pipeline for STAR and Counts b) Pipeline for edgeR.

This script was checked and corrected by my supervisor at each step if any errors.
After set up of this script, it was tested for one or two samples to check for results
and some changes were done wherever applicable. Following this step, the
scripts were run on the server.

Condor submission of job files (scripts on servers) is required since there will be
many jobs ongoing on the server. This plays an important role also when it is
required to use more than one CPU and to request for memory. Scripts for the
condor submission is shown in supplementary file (sup) 9.A. (i). After a clear

review of the scripts, the condor and pipeline files were uploaded on server.
Lastly, give permissions to the files before submission of the condor.

FASTQC — Quality Check
FastQCis a commonly used tool for quality control analysis of RNA-seq data. This

tool is used to assess the quality of the raw sequencing reads generated from
the RNA-seq experiment. This report is used to identify any potential issues with
the sequencing data, such as poor-quality reads, overrepresented sequences, or
adapter contamination. By using FastQC, researchers can ensure that the RNA-
seq data is of high quality, which is critical for downstream analysis such as
mapping and differential expression analysis.

FastQC generates a report that provides information about various quality
metrics as mentioned below. Basic statistics like read length (total seq), poor



quality seq, sequence length and % of GC content. Per base sequence quality
with the distribution of quality scores ranging from low, medium to high with
colour bands; this is a graphical representation in which x-axis denotes the
position of base in read and y-axis denotes the quality scores. Per sequence
quality score have average quality score on x-axis plotted against number of
seguences on y-axis; the peak should be >20 with no bumps. Per base sequence
quality in a random library should have equal amounts of each nucleotide (~25%
of each nucleotide). Per Sequence GC content is important to consider for
central peak matching the theoretical distribution, usually sharp peaks will be
observed in case of any over represented sequences and broad peaks appear in
contamination of samples. Per Base N content helps to filter lot of N content in
reads if it exists. Sequence duplication levels gives an idea on reads represented
more than once; low level of duplication may indicate high coverage of target
sequence and a high level is more likely to indicate some kind of enrichment bias
e.g., PCR over amplification. Over Represented Sequences identifies the
contamination level such as vector or adapter sequences and these are
important to be removed.

Mapping and Alignment using STAR:
To determine where the RNA-seq reads originated from, these reads should be

aligned to the reference genome using STAR (38). This tool has high mapping
speed and accuracy than other aligner methods. It works based on algorithm of
finding the Maximal Mappable Prefix (MMP) hits between reads (or read pairs)
and the genome, using a suffix array index. STAR algorithm consists of two major
steps: seed searching step and clustering/stitching/scoring step. It uses a novel
strategy for spliced alignments and address many challenges of RNA-seq data
mapping. STAR also performs local alignment, automatically soft clipping ends of
reads with high mismatches.

STAR tool has two steps

a)Creating genome indices (sometimes already available on individual
institution server).
Usually, the reference genome sequences (FASTA format) and annotation
files (GTF format) from NCBI, ENSEMBL or GENCODE. The reference genome
should be from the same species that the analysing sample belongs to, this
is important because sometimes taking the other species may give false
results. From these files, STAR uses the script with standard format



generates the genome indices which should be saved into separate folder.

Script for generating the genome indices was provided under sup 9.A. (ii).
b)Mapping Reads to reference Genome.

In this step, STAR tool maps RNA-seq reads in the form of FASTA or FASTQ

files to the genome files generated in the previous step. The mapping script

has various input parameters that run the mapping job and gives the output

files of alighments in the form of SAM/BAM format.

The scripts and guidelines for STAR were followed from the STAR manual version
2.7.0a. STAR uses the standard script shown in sup 9.A. (iii) with all required
commands to perform the mapping.

Quantification with FeatureCounts
After the alignment, the next step is to measure how many reads have mapped

to each genomic features such as genes, exon, promoter, genomic bins and
chromosomal locations. BAM files (output from the STAR) are input to
FeatureCounts (FC). This tool is more accurate, fast and easy to use.

It works by counting the reads that map to a single location which is called a
uniquely mapping. FC also consider if data is stranded or not. Our data is paired-
end and counting tools takes only proper paired reads into account and each
read pair is counted only once as single “fragment” (39). The output from FC is
of 2 files i) Count matrix with samples in columns and genes in rows. ii) Summary
file that shows how many reads were assigned and not assigned.

FC quantification can be done in two levels a) Gene level — which summarizes the

expression level of a gene but don’t distinguish between the isoforms when
multiple  transcripts are being expressed from same  gene.
b) Exon level — counting the reads that are overlapping at each annotated exon.

This approach tests splicing between the experimental conditions. FC supports
both single and multithreaded processing, very useful for summarizing data
generated in large sequencing studies (40). Script used for FC is mentioned under
sup 9.A. (iv).

Differential Expression Analysis by using edgeR
The analysis of baseline study LBW vs NBW included the subjects as shown in

table 1 below:

12 29

Analysis 17

Table: 1 Showing the subjects from both LBW and NBW groups



After obtaining the gene counts from both the groups, it is essential to assess the
changes in gene expression levels between different groups, typically control and
testing samples. This analysis can be performed using two types of RNA-seq: a) which
measures expression cell by cell and conditions between cell types, and b) which
measures changes in gene expression levels at the tissue level. To perform
differential expression (DE) analysis of RNA-seq data, we used the edgeR tool in the
R programming language. This software is designed to identify changes between two
or more groups when at least one group has replicated measurements, using a table
of read counts where rows correspond to genes and columns to independent
samples.

The script for the edgeR pipeline as shown in section sup 9.A. (v) was developed using
the latest version (28-OCT-2022) of the edgeR user’s guide (41). This script was then
customized by making some corrections as per the requirement which is suitable to
perform the following steps. The first step in the differential analysis is to read these
counts into an R session for which edgeR has separate functions. Various other steps
involved in the differential expression analysis using edgeR include designing a
matrix, filtering data to remove low counts, normalizing library size, estimating
dispersion size and testing for differentially expressed genes.

Pathway and Network Analysis using edgeR
The key aspect of analysing differential gene expression data is interpreting the

results in terms of biological processes and pathways. Gene Ontology (GO) databases
are specifically designed to annotate genes with possible GO terms. Counting of DE
genes that are annotated to possible GO terms, gives the way to interpret the results.
GO terms that occur more frequently in list of DE genes are said to be over-
represented or enriched. This helps to identify the enriched pathways and with the
help of these identified hits, network analysis is carried out to explore and visualize
the functional interactions between the genes. In our study, we used the
Reactome(42), David database (43) for pathway and network analysis.



5 Results

Fine quality data was obtained with the results as follows.

Basic statistics:

@Basic Statistics
T
Filename 55 1.fg.gz
File type Conventional base calls
Encoding Sanger / Illumina 1.9
Total Sequences 25789545

Sequences flagged as poor quality @
Sequence length 160

iGC 43

One of the examples, showing the base statistics. Overall, most of
sequences are having similar properties like GC content more than 47,
sequence length of 100 in all and no poor-quality sequences were flagged
among all samples.

Per base sequence quality:

Quality scores across all bases {Sanger / lllumina 1.9 encoeding)
38
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Position in read (bp)

The yellow box represents the 25th and 75th percentiles, with the red line
as the median. The whiskers are the 10th and 90th percentiles. Blue line
gives the average quality score. In all the samples, average quality Score
was 34-36 indicating high quality; in the end few extending to 26 and 28.



iii. Per sequence quality scores

Quality score distribution over all sequences

Average Quality per read
1.0E7

8000000

6000000

4000000

2000000

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Mean Sequence Quality (Fhred Score)

All the samples have good quality score ranging the peak from 34 to 36,
no bumps were noted.

iv. Per sequence GC content

GC distribution over all sequences

1000000 GC count per read

Theoretical Distribution

200000

S00000

400000

200000

o 02468 11 15 19 23 27 31 35 39 43 47 51 55 59 63 &7 71 7S5 79 83 87 91 95 99

Mean GC content (951

GC content is almost 48 in all, 49 in few and 50 rarely. Peak is observed
above the theoretical distribution.

v. Other parameters like Per base sequence content were almost 25 for all,
uniformly distributed. Sequence Length Distribution was same in all 100.
No per base N content and adapter content was removed. All the reads
were good in quality.

A master file with the counts of all samples of analysis was obtained post
FeatureCounts step. This file is loaded into Rstudios (44) and show the read
count for all of the genes for each sample. In this table, the row names are



gene identification numbers and the columns represents reads from each
sample. Since, my thesis is focused on base line of NBW vs LBW, the samples
that belongs to this part were filtered out and separated. The following table
shown in table 2 depicts the row names of geneid and columns of reads in
each sample.

Geneid Sample_1 Sample_ 5 Sample 8 Sample 9 Sample_13 Sample_23 Sample_25 Sample_29

<chr> <int> <int> <int> <int> <int> <int> <int> <int>
1 ENSG00000223972 1 0 1 0 0 2 0 0
2 ENSG00000227232 115 129 68 49 66 84 82 78
3 ENSG00000278267 17 32 17 13 12 9 7 13
4 ENSG00000243485 0 0 0 0 0 1 0 0
5 ENSG00000274890 0 0 0 0 0 0 0 0
6 ENSG00000237613 0 0 0 0 0 0 0 0

Table 2: showing sample of geneid in rows and sample in columns
Phenotype file:

Each sample have its BGl sequence number and all the details of it as shown in
below phenotype file from table 3.

A B C D E F G H \ J K L M N
1 Vit D BW .4  Amount(mgTotal conc. n 260/280 ratiTotal conc. n ng/ul (Bioan:RIN 285/185 ratic For BG Save for validation BGI_ID
2 A 69 LBW  BAS 140 3519.1 187 3237 249 3.1 1.2 Aliquote 9 ul + 6ul H20 4ul + 6ul H20 1
3 A 26 [BW  BAS 105 20774 1.85 1768 136 8.2 1.3 Aliquote 9 ul + 6ul H20 4ul + 6ul H20 5
4 A 49 |[BW BAS ) 1539.2 1.84 1365 105 14 1 Aliquote 9 ul + 6ul H20 4ul + 6ul H20 9
5 A 54 [BW  BAS 45 43706 1.82 1248 95 0.8 0.8 Aliquote 9 ul + 6ul H20 4ul + 6ul H20 13
6 A 32 [BW BAS 52 850.2 181 1131 87 1.1 0.9 Aliquote 9 ul + 6ul H20 4ul + 6ul H20 23
7 A 31 1BW BAS 36 1149.2 18 1118 86 78 1.1 Aliquote 9 ul + 6ul H20 4ul + 6ul H20 25
8§ A 70 LBW  BAS 36 694.2 1.5 767 59 3.2 13134 0pl 36
9 A 23 [BW BAS R 7384 175 611 47 8.6 1113yl 0ul 42
10 A 16 LBW BAS 27 795.6 1.84 533 11 3.7 1313l 0pl 50
11 A 58 [BW  BAS 40 663 17 403 31 83 1113yl 0ul 63
12 A 66 LBW  BAS 26 405.6 1.m 299 23 3.6 1.2 13l 0pl 73
13 A 41 1BW BAS 56 336.7 171 169 13 8.2 0.8 134l 0ul 81
14 A 13 IBW BAS 1 871 1.74 962 74 3.1 1113l 0pl 142
15A 55 [BW  BAS 54 12324 178 832 64 34 1313l 0pl 32
16 A 22 [BW  BAS 3 949 157 507 39 3.6 1313l 0pl 53

Table 3: showing sample of BGI id and its related experimental data

edgeR works with Limma package in R. edgeR stores the data in DGEList. The
DGEList serves as an input for various functions provided by edgeR package to
perform different steps of the analysis workflow. The DGElist is created using
‘DGEList” function, it can be further processed for the functions like
normalization methods, dispersion estimation, statistical modelling, and
hypothesis testing. Grouping is required to identify the samples from each group
and it can be done by giving group command. Normalization of counts by
trimmed mean of M values (TMM) can be performed by calcNormFactors
function. Normalizing the counts data is important to eliminate the composition
biases between the libraries.



As per the edgeR user guide, a gene is required to have a count of 5-10in a library
to be considered expressed in that library. Hence, filtration with count-per-
million (CPM) was done. After cpm, the genes that are lowly expressed are
filtered out. The results of normalized counts were transformed into log-counts-
per-million (lcpm).

Both Linear modelling and differential expression analysis in edgeR requires the
matrix. We can create the matrix with the treatment conditions applied to each
sample (in our analysis the matrix should be composed of two conditions NBW
and LBW).

Dispersion estimation in edgeR is obtained from estimateDisp function where
the dispersion of a gene can be predicted from its abundance. We used the
common dispersion in one run. The Dispersion estimation uses negative
binomial (NB) model and quasi-likelihood (QL) F-test provides more robust and
reliable error rate control when the number of replicates is small. QL dispersion
estimation and hypothesis testing was done using the function glmQLFit (). We
selected the coefficient 2 in this analysis.

QL F-tests gives strict error rate control over likelihood ratio tests (LRT). From
this step, the top DE genes can be viewed by function topTags (lists the top DE
genes ranked by pvalue).

From this step and in further results, a positive log2-fold change (logFC) will
indicate a gene up-regulated in the NBW relative to the LBW, whereas negative
logFC represent the gene more highly expressed in LBW.

Gene Ontology:
In edgeR, GO analyses can be performed using goana function. Alternatively, we

used different approach by downloading the CSV or Text format file available in
Biomart/ENSEMBL database and then merging with the output file obtained in
the above step. In the first phase the annotation file (downloaded from the
Biomart) and output file were loaded and tabulated into R. In the next phase,
these two files were merged using the merge command and resulted table was
saved into separate file.



When all features are considered:
The results from this are shown in below table. Generally, the scores of p-value

and False Discovery Rate (FDR) are used to determine the significant genes from

the list. When all the features (genes, non-coding RNA, small RNA, pseudogenes,
etc.) were considered no significant hits with FDR<0.05 after correcting for
multiple testing. But there were 50 significant hits of DE genes with threshold set
to (p<0.05, logFC>1 & logFC<-1) among the list and shown in table 4.

= logFC g TP Pwalues FC'R resgulation
MA_EMNSGO000IZ2TEIT 5230825 S ZT5ZIIT | Z367HEEZe-06 | DOATEAG14 | Up
MECAB1_EMNSGOO0O012311%  -1.311547 3616801384 Z587ETe-05 Q19753029 Down
PTxE EMSGO0000163661 -Z2351834 -013371525 Z845735e-05 Q19753028 Cown
SOGEB1BE2F_EMSGOOOOD2&ETS 1 2 124440 075747234  E701075e-05 | Q226792860 Up
MT1A_EMNSGOOO0I2D5I6F -1 522555 1.34043519 I 5537644e-04  D92559955 DCown
KRT1E_EMNSGOOO0T11D5F -1.347335 1. 42449514 4 11158Ge-04  D92T099FF  Down
MA_EMNSGOO0002TATIL -2 745554 084528475 945137 1e-04 D99%53995359 Down
MA_EMSGO000J2TTI0E  -1.E2725E82 0291118424 1245020e-03 Q99339933 Down
CAA_EMNSGOOO00244TI1 | -1 3558428 -0.34542848 1 .746520e-0% | 09935390955  Down
RFL10FS_EMSGOO0O0233513 1619403 ZAGTIZEETE  ZTEZ04ITe-0F 0995395955 Up
SAA4 EMNSGOOOO0DT4EDES -1.577372 1.335953261 Z228025%e-03 D92559399%3 DCown
KIF19_EMNSGOOO03TS616S -1.4031835 1.0BR93285 485042Ze-03 D925999%3 DCown
_EMNSGOO0O00Z2B030Z -1.218155 004551200  E5052574e-03  D99%39955% Down
CHZ5H_EMSGOOI000138135 -1023731 -0.6855915555 G6134231e-03 2993399533 Down
MA_EMSGO00002T94MD -1 3T74L7ES 0816835418  S191707e-03 Q99399353 Down
FAIMZ_EMNSGOOO001354T2 1021857 0.2ME40547 24530 e-03 099533555 Up
SAA1_ENSGOOOOITITIAIZE -1 173457 S.T5E05732 73800 11e-03 OD99539953 Down
URAD _EMNSGOOOI0DTESAES -2022015 -0.585199540 2 S236351e-03 Q99359955 Down
RMASSP3I34_EMNSGOOOO0201&95  -1.173538 3.3ITO26607  L9091745e-03  DO9%399535% Down
TROM_EMNSGOOO0DTE643S  -1473545 270820174 957WARe-03  D99F399535  Down
DES_EMSGOO00D1ITH0ES -12850730 -0.24235188 2 1370755e-02 Q993539953 Down
GATDE_ENSGO000I 160221 1.85=355 1.580686585 1584%47e-0ZF OS9599550  Up
SAAZ ENSGOOOO0313433% 1375453 507256177  1£614582e-02 D99%39955% Down
A _EMSGOOO0D2T5530 -1 3523558 -0 105772288 186832543 e-0Z 0995539003  Down
FOSEB_EMSGOOI0ON125T40 1.552547 005843344 1.778137e-02 0995335553 Up
COEBL_ENSGOOOOITMMOTE 1082531 1.78455327 1811021e-0Z OD93539955F DCown
SAAZ-SAAd EMNSGOOO0D2550FT  -131337 563788781 1573152e-02 Q99399353 Down
AMNBERDZ0AT1PF_EMNSGOO00021555% -1.022475 0.25340810  Z157I82e-0Z D99%5399535% Down
PWIF2_EMNSGO000024 1545 14703580  -010733212  220103530e-0Z  JD.9953599903  Up
CCL13_EMSGOO0O01E1IT4 1147230 098748418 Z351573e-02 09993399553 Up
FRMND_EMNSGO0O0ITT1EEL 1220550 045025388 Z482551e=-02 0993395553 Up
SCUBE1_EMNSGOOO0I1559307F -1413843 -0.052289337 ZA245785e-0Z Q8993539055 Down
CHMTHRE EMSGOO000134115 1557171 | -0.DETTERZ0  Z55558d4e-0F DS95990950 | Up
DPYSLA EMSGOO00015164D -1 438728 008357348 Z5831735e-02 Q993399553 Down
LSsPe_EMSGOO0001 2520 1. 139582 072458778 ZB080I1e-02 09953395553 Up
CEMIS1_EMNSGOO003126545 -1325223 1.8401 3177 Z2B772595e-0Z 092399953 Down
APOLA_ENSGOO00TMIIE -1.7185132 411150578 Z2534135e-02 093339955 Down
BEOX1_EMSGO0003129151 1013085  -0.043Z2Z7008 FO0Z9858=-0Z @ J.995599953  Up
RMASSP3I33_EMNSGOOOOD2I33IE -1354530 -0.22B57204 3039224e-02 0933399535 Down
SYHMONGT_EMNSGOOI00011463 -1.052977 0.73200327 I 24ZH2R8e-0Z DO9%399535% Down
GOLEASD EMSGOO00020&12T 1229045  -0.84S5335E67 I 340453e-0Z 099559955 | Up
WHNTI_EMNSGOOO0MIEITE  -1.315031  -0.371100513F 3 395421e-0Z  DS9S9359955 DCown
IGKVZE-11_EMNSGO0000241351 1255481 212113121 25568433e-02 Q995339555 Up
IGHG1_EMNSGODO002 11896 1385022 1.26455745 4 095530e-02 J995599353  Up
_ENSGOO000ZE13ES  -1.127534 -0.898735547 4 3Z0583e-0Z 08995539553 DCown
MA_EMNSGOO000ZED10Z  -1.733071 4249453714 448430 e-02  D9IFF9S55  Down
MA_EMNSGO0O00IZEDE0E -1 155202 4 5FG2504d 4 45TIBZe-0Z DOSSS9955  Down
RM7TSLZ _EMSGOOI0002T4012  -1.150753 4 51955079 4 537547e-02 09339955 Down
IGEW1-BE_EMNSGOO0002406T1 1250353 205737654 AS57T6723e-02 099933959553 Up
EFFHA_ENSGOO000J2TT20% 1283477 1.64540085 A TSQE57Z3e-0Z D925599953 Down

Table 4: showing 50 significant DE genes when all features are considered



Volcano plot of results when all features were considered:

The results of table 2 were plotted in a volcano plot with log fold change on
x-axis and -log10(pvalue) on y axis as shown in fig 5.3. (i) Downregulated genes
in this list were labelled with blue color while the red ones indicate upregulated.
Grey labelling’s denote the genes with no significance.
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Fig: 5.3.(i) volcano plot showing 50 significant DE genes when all features are considered. Blue color represents
the downregulated, red color with upregulated and grey color with non-significant.



With only protein coding genes:
Interestingly, when we considered only the protein coding genes from the list of

total 22357 genes, the results showed significant hits of 31 DE protein coding
genes (p<0.05, logFC>1 & logFC<-1).The results are shown in table 5.

Fs

logFC logCPM PValue FDR regulation
NECAB1_ENSGO0000123119 -1.301994 37589775417 2.568009e-05 02073144 Down
PTX3_ENSGO0000163661 -2.347342 Q008777034 2852437e-03 02073144 Down
MT1A_ENSG00000205362 -1.522307 1484980412 3.392300e-04 1.0000000 DCown
KRT18_ENSGO0000111057 -1.939414 1.5706534058 4.215436e-04 1.0000000 Down
C4A_ENSGD0000244731 -1.367317 -0.198481047 1.653766e-03  1.0000000 Down
SAA4 ENSGO0000148965 -1.573595 1484104637 2.793236e-03 1.0000000 Down
KIF19_ENSGO0000196169 -1.4711335  1.239743875 4.471208e-03  1.0000000 Down
CH25H_ENSGOO000138135 -1.085143 -0.512772593 6.064934e-03  1.0000000 DCown
FAIM2_ENSGO0000135472  1.023241  1.052451873 6.133317e-03 1.0000000 Up
SAA1_ENSGO0000173432 -1.168357 9.8599951064 7.349277e-03 1.0000000 Down
URAD_ENSGO0000183463 -2.0115879 -0.416682317 85.902027e-03 10000000 DCown
TRDN_ENSGOO000186439 -1.462353  2.853218737 9.753954e-03  1.0000000 Cown
DES_ENSGQ0000175084 -1.847939 -0.096500328 1.406534e-02 1.0000000 Down
GATD3_ENSGO0000160221  1.913533 2025243567 1.4719811e-02 1.0000000 Up
SAAZ_ENSGO0000134339 -1.373335 6214732866 1.547410e-02  1.0000000 Down
FOSB_ENSGO0000125740  1.591939 0157161649 1.732177e-02  1.0000000 Up
SAAZ-SAA4 ENSGO0000255071 -1.310159  5.780277637 1.898806e-02 1.0000000 Down
COBL_ENSGO0000106078 -1.052852 1.831227317 1.899064e-02 1.0000000 Down
PWP2_ENSGOO000241945 1457376 0.039184582 2.023360e-02  1.0000000 Up
CCL13_ENSGOO000181374  1.157030  1.1283271143  2.218327e-02  1,0000000 Up
CNTNG_ENSGOO0000134115  1.604023  0Q.0769771353  2.435438e-02  1.0000000 Up
PRND_ENSGOO000171864  7.223573 Q612146877 2470236e-02 10000000 Up
DPYSL4_ENSGO0000151640 -1.453154 0.230537222 2.561400e-02 1.0000000 DCown
SCUBE1_ENSG00000159307 -1.400200 0.048050645 2.606671e-02 1.0000000 Down
USP6_ENSGO0000129204 1115745 0.871683300 2.674996e-02 1.0000000 Up
APOL4_ENSGO0000100336 -1.178471 4281433135 2.719634e-02 1.0000000 Down
CSN1S1_ENSGO0000126545 -1.321114 2081302098 2.540861e-02 1.0000000 Down
BEBOX1_ENSGO0000129151  1.017865  0.103307439  2.963730e-02 1.0000000 Up
SYMDIG1_ENSGO0000101463 -1.057599  0.882224227 3.210857e-02  1,0000000 DCown
GOLGABO_ENSGO00000206127  1.235979 -0.68982485358 3.277330e-02 1.0000000 Up
WNT3_ENSGO0000108379 -1.315795 -0.763345794 3.414899e-02 1.0000000 Down

Table 5: showing 31 significant DE genes when only protein coding is considered



Volcano plot when only protein coding genes were considered:

The results of table 3 were plotted in a volcano plot with log fold change on

x-axis and -log10(Pvalue) on y axis as shown in fig 5.3. (ii).

-log10(PValue)
Y

—
L

C4A_ENSG00000244731
o

SAA4_ENSG00000148965
L

KIF19_ENSG00000196169
L
CH25H_ENSG00000138135
URAD_ENSG00000183463 o o

@ FAIM2, ENSG00000135472
SAg1_ENSG00000173432

[ SAA2_ENSG00000134339
TRDN_ENSG00000186439

[} L]
@CBL_ENSG00000106078
SAA2-SAA4_ENSG00000255071 ° e PWPZ_ENSGOO&%%? @J@ﬁ 00000125740

®
DPYSL4_ENSG00000151640 APOL4_ENSGGI10KE_‘ET@$K&D0000181$.4 .CNTNB_ENSGOOOOO134MS

DES_ENSGO0000175084 GATD3_ENSG00000160221

* 0
SCUBE1_ENSG00000159307 ... USRB2ENSG00000129204 @ ° PRND_ENSG00000171864
®
CSN1S1_ENSG00000126545  SYNDIG1_ENSG00005B¢463 ENSG00000129151

WNT3_ENSG00000108379 GOLGABO_ENSG00000206127

regulation

* Down
Not significant

* Up

p<0.05
logFC>1 & logFC< -1

25 0.0 25
Log2FC

5.0

Fig: 5.3.(ii) volcano plot showing up and down requlated DE genes among protein coding genes with the p value
<0.05. Blue color represents the downregulated, red color with upregulated and grey color with non-significant



DE genes:

31 significant DE when only protein coding genes were considered are as
shown in table 6 below:

NECAB1, PTX3, MT1A, KRT18, C4A, SAA4, KIF19,
CH25H, SAA1, URAD, RNA5SP334, TRDN, DES, SAA2,
Downregulated COBL, SAA2-SAA4, ANKRD20A11P, SCUBE1, DPYSL4,
CSN1S1, APOL4, RNA5SP333, SYNDIG1, WNTS3,
RN7SL2, RPPH1

SCGB1B2P, RPL10P9, FAIM2, GATD3, FOSB, PWP2,
Upregulated CCL13, PRND, CNTN6, USP6, BBOX1, GOLGASO,
IGKV3-11, IGHG1, IGKV1-8

Table 6: showing downregulated and upregulated gene list

Gene ontology results are presented in sup 9.B. Total 50 genes in the significant
list when all features are considered are shown in table 9.B. (i). Downregulated
among LBW in comparison to NBW (only protein coding) are mentioned in the
table 9.B. (ii) along with the biological processes and molecular functions
associated with each gene. Table 9.B. (iii) shows the list of upregulated genes.

Pathway results from Reactome are presented in sup 9.C. with the columns of
pathway associated, number of genes from the list involved in the pathway
(entities found), total number of genes associated with pathway in general
(entities in total), significance (entities pvalue), FDR, number of genes related to
reactions involved in the pathway and total reactions associated with the
pathway. Downregulated among LBW in comparison to NBW (only protein
coding) are mentioned in the table 9.C. (i) whereas list of upregulated genes is
as mentioned in table 9.C. (ii).

Network analysis of downregulated genes are in table 9.D. (i) and upregulated
genes is shown in table 9.D. (ii).



6. Discussion

In this study, the investigation is focused on the differential expression of genes
between LBW vs NBW. By elucidating these gene expression patterns, we aim to
contribute to the understanding of the molecular mechanisms underlying the
association between LBW and the development of T2D. Identifying such specific
gene expression changes in LBW can also provide clues about the biological
processes that contribute to the long-term health consequences. We identified
several genes that were differentially expressed between LBW and NBW,
including genes involved in immune response, metabolic pathways including
lipid and glucose metabolism, and cell cycle regulation. 50 genes were found
significant among LBW vs NBW when all the features were considered whereas
31 significant DE genes were identified among the protein coding genes.

Downregulated in LBW compared with NBW:

In the list shown in table 6, serum amyloid A1(SAA1), serum amyloid A2(SAA2),
serum amyloid A4 (SAA4), cholesterol 25-hydroxylase (CH25H), apolipoprotein
L4(APOL4) and metallothionein 1A(MT1A) are identified as very important
related to T2D as below: SAA1, SAA2, SAA4 genes encode for proteins known as
serum amyloid A, which are acute-phase proteins involved in several biological
processes such as cholesterol transport, tissue repair, and immune response.
There have been numerous studies investigating the association between
genetic variations in the A1(SAA1), serum amyloid A2(SAA2), serum amyloid
A4(SAA4) genes and the risk of T2D. The genetic variations in SAA1 were
associated with an increased risk of T2D (45). In the cohort study of 264 patients
with T2D and 275 non-diabetic controls, SAA was increased in T2D patients with
incipient or overt nephropathy, and SAA was associated with impairment of
cholesterol transporters, scavenger receptor class B type | (SR-BI) mediated
cholesterol efflux to serum (45, 46). Variations of SAA2-SAA4 were associated
with increased insulin resistance and a higher risk of developing type T2D.
However, a meta-analysis of several studies found no significant association
between SAA4 gene variations and T2D (47).

CH25H gene is important in regulating cholesterol metabolism and immune
response. Regarding the CH25H gene, this gene has a certain role in insulin
resistance (48). Recent study showed that overexpression of this gene improves
the insulin sensitivity in mice (49). APOL4 is involved in the transport of lipids,
particularly cholesterol, and may also have a role in innate immunity. MT1A
involved in the regulation of cellular metal ion homeostasis, detoxification of
heavy metals, and protection against oxidative stress. MT1A gene, was
significantly related to the prevalence of T2D and also significantly associated
with the low activity of serum superoxide dismutase (SOD) in T2DM (50).

These genes accounts to the majority of pathways among the downregulated
and include the pathways of metabolism of lipids, cellular response to stimuli,
developmental biology and lon homeostasis. Also, the other genes like triadin




(TRDN) essential for muscle contraction, dihydropyrimidinase like 4(DPYSL4)
which regulates the neuronal development and complement C4A (Rodger’s
blood group) (C4A) — key component of the immune system were important
findings. The pathways involved by downregulated genes mostly contribute to
the networks of immune system, cellular response to stimuli, metabolism and
extracellular matrix organization. Overall, while there is some evidence
suggesting an association between certain genetic variations in the A1(SAA1),
SAA2, CH25H and MT1A genes and T2D risk, further studies are needed to
confirm these findings and explore the underlying mechanisms.

Upregulated in LBW compared to NBW:

Among the upregulated genes shown in table 6, two genes namely
immunoglobulin heavy constant gamma 1 (G1m marker) (IGHG1) involved in
antibody-dependent cellular cytotoxicity and immunoglobulin kappa variable 3-
11(IGKV3-11) involved in immune response were predominantly significant.
These two genes IGHG1, IGKV3-11 play a vital role and contributes to the
majority of the pathways in the upregulated genes. IGHG1 gene, a gene located
on chromosome 14 has an important role in the immune response. It is found to
be upregulated in the T2D (51). Other important genes are C-C motif chemokine
ligand 13(CCL13) with the function of inflammatory response, immunoglobulin
kappa variable 1-8(IGKV1-8) with the immune response and gamma-
butyrobetaine hydroxylase 1(BBOX1) of cartinine synthesis. CCL13, also known
as monocyte chemotactic protein-4 (MCP-4), is a member of the CC chemokine
family, and it has been implicated in the pathogenesis of various inflammatory
diseases. There are several studies that showed the strong association of this
gene with diabetes (52,53). Studies have shown that CCL13 levels are increased
in the islets and serum of individuals with T2D, and thus it may contribute to
insulin resistance and impaired glucose tolerance (52-54). In many studies
BBOX1 is associated with the diabetes kidney disease (DKD)and in diabetic
nephropathy (55). Urinary BBOX1 (uBBOX1) levels were significantly upregulated
in the urine of patients with DKD (56).

As mentioned earlier in the results section 5.4, the pathways include chemokine
receptors bind chemokines, regulation of complement cascade and role of
phospholipids in phagocytosis. Likewise, network analysis (as shown in section
5.5) of these upregulated genes showed the networks of immune system, signal
transduction, metabolism of proteins, vesicle mediated transport and
homeostasis. There is no strong evidence in the scientific literature linking the
other upregulated genes of this study to T2D. However, it is important to note
that the genetics of diabetes is complex, and multiple genes and environmental
factors can contribute to the development of the disease.

The findings suggest that the differences in gene expression levels may
contribute to the increased risk of T2D in LBW individuals. It is well established
that LBW is associated with an increased risk of developing metabolic disorders,
including T2D. However, the mechanisms underlying this association are not fully




understood. The present study shows importance on the potential role of gene
expression differences in SAT in the development of T2D in LBW individuals. The
differences are not significant after FDR adjustment. The pathways related to
lipid metabolism, cholesterol homeostasis, steroid and glycoprotein metabolism
are known to play a crucial role in maintaining metabolic homeostasis. The
differences in these pathways among LBW individuals may indicate impaired
metabolic function, which could contribute to the development of T2D. On the
other hand, this may further exacerbate the risk of T2D.

From this study identification of DE genes by RNA-seq can provide insights into
the molecular mechanisms underlying LBW individuals risk of developing T2D
later in life. Through RNA-seq, it is possible to detect even low abundant
transcripts and quantify the gene expression. The differences in gene expression
presented in this study depicts the strong association of LBW contributing
towards the development of T2D. Adipose tissue is relevant to metabolic
disorders among LBW, but it is important to consider that gene expression
patterns may vary across the tissue. The findings from adipose tissue may
require additional integration with multi-tissue studies. The other factors like
gestational age, maternal health, environmental exposures and lifestyle factors
may contribute to LBW and influence the gene expression. Controlling these
factors is essential to isolate the specific effects of LBW. Validating the functional
significance of DE genes through in vitro experiments to assess their impact on
relevant cellular processes, such as glucose metabolism, insulin signalling, or
inflammation may give better understanding of underlying mechanisms. Further
research in genetic association studies in larger population-based studies is
important with DE genes. Exploring the epigenetic modifications associated with
the identified DEGs can provide additional insights into their regulation and
potential impact on diabetes. Some of the above studies are already in the
pipeline of our study group to investigate BW as a key component in risk of
developing T2D.



7. Conclusion

As per the hypothesis of study, there is a unique difference in the expression
patterns of SAT genes between LBW individuals and their matched NBW. The
study observed that certain genes related to cellular ion homeostasis, apoptotic
process, cellular response to stimuli and stress showed increased expression
(positive logFC) while genes associated with lipid metabolic process, cholesterol
homeostasis, steroid and glycoprotein metabolic pathways showed decreased
expression (negative logFC) in LBW compared to NBW individuals.

To conclude, the present study co-relates the differential expression of SAT
genes in LBW individuals with the increased risk of T2D in comparison with the
NBW controls. The findings suggest that these differences in gene expression
levels may contribute to the increased risk of T2D in LBW individuals and could
provide an opportunity for future research on the underlying mechanisms of
metabolic disorders.
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9. Supplementary
A. SCRIPTS

Condor script

Universe = vanilla

Executable =
/ludc/Active_Projects/LBWHCOFSATBRNAS/Private/runl//Condor/Executives/2.sh
Arguments =

Output = /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/runl1//Condor/Log/2.out
getenv = TRUE

Log = /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/run1//Condor/Log/2.log
Error = /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/run1//Condor/Log/2.error
request_cpus =6

request_memory = 60000

notify user = prabhudeva.thummala@regionh.dk

notification = always
queue 1

Script for generating genome indices in STAR
#!/bin/bash

cd /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files
mkdir /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files/STAR_INDEX

# STEP 1: Generate genome indices
#generate the genome indices

/ludc/Tools/Software/STAR/2.7.1a/bin/STAR

--runThreadN 10 --runMode genomeGenerate --genomeDir /ludc/Active_Projects
--genomeFastaFiles /ludc/Reference_Data/Public/Human/STAR_Genomes/GrcH38/G
--sjdbGTFfile /ludc/Reference_Data/Public/Human/STAR_Genomes/GrcH38/gencod

echo "finished running!"

Script for mapping and alignment in STAR

#!/bin/bash

cd /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files

mkdir /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files/STAR_Alignment
mkdir /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files/FeatureCounts
mkdir
/ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files/STAR_Alignment/117/
mkdir /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files/FeatureCounts/117/

# STEP 1: Run STAR

# run alignment
/ludc/Tools/Software/STAR/2.7.1a/bin/STAR \
--runThreadN 10 --readFilesIn \



iv.

/ludc/Raw_Data_Archive/Sequencing/Rna_Seq/LBWHCOFSATBRNAS/Raw_Content/20220
824 FastQ/F21FTSEUHT0020-01_HUMyrfE/Clean//117/117 _1.fq.gz \
/ludc/Raw_Data_Archive/Sequencing/Rna_Seq/LBWHCOFSATBRNAS/Raw_Content/20220
824 FastQ/F21FTSEUHT0020-01_HUMyrfE/Clean//117/117 _2.fq.gz \

--genomeDir /ludc/Active_Projects/LBWHCOFSATBRNAS/Private/STAR_INDEX \
--sjdbGTFfile

/ludc/Reference_Data/Public/Human/STAR_Genomes/hg38 Gencode22/gencode.v22.ann
otation.gtf \

--outFilterMismatchNmax 10 --outFilterType BySJout --outReadsUnmapped Fastx --
readFilesCommand zcat --outSAMtype BAM SortedByCoordinate \

--outSAMstrandField intronMotif —outFileNamePrefix \
/ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files/STAR_Alignment/117/

echo "STAR finished running!"

Script for FeatureCounts

#run featureCounts

/ludc/Tools/Software/Subread/1.6.4/bin/featureCounts \

-p-s0-T10-a

/ludc/Reference_Data/Public/Human/STAR_Genomes/hg38 Gencode22/gencode.v22.ann
otation.gtf \
/ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files/STAR_Alignment/117/Align
ed.sortedByCoord.out.bam \

-0
/ludc/Active_Projects/LBWHCOFSATBRNAS/Private/Prab_Files/FeatureCounts/117/117.ge
necounts.txt

echo "featureCounts finished running!"

echo "analysis complete"

Script for edgeR

getwd()

setwd("/home/prabhudev_t/LUDC/")
counts=read.table(file="/home/prabhudev_t/LUDC/GeneCounts.txt", sep="\t", header =T)
head(counts)

dim(counts)

x=counts[,c(1,7:10)]

row.names(x)=xSGeneid

x=x[,-1]

head(x)

group <- factor(c(1,1,2,2))

library(edgeR)
y<-DGEList(counts=x,group=group)
y <- calcNormFactors(y)



cpm <- cpm(y, log = False, normalized.lib.sizes=TRUE)

keep <- rowSums(cpm(y)>1) >=2

y <- y[keep,]

dim(y)

write.table(cpm, "/home/prabhudev_t/LUDC/cpm_Results", row.names=TRUE)

logcpm <- cpm(y,log=TRUE)
write.results(logcpm, row.names=TRUE, col.names=TRUE, file =
"/home/prabhudev_t/LUDC/logcpm_Results", sep="\t")

design <- model.matrix(~group)
design

y <- estimateDisp(y,design)

fit <- glmFit(y,design)

Irt <- glmLRT(fit,coef=2)
topTags(Irt)

HHHHHHH

#here to write our results:

#write.table(topTags(Irt, 35000L), file = "output.txt", row.names = TRUE, col.names=TRUE)
HHHHHHH

HHHHHHHE
#For annotation, | downloaded a new csv or text file from Biomart/ensembl, and then
merged it by using a common header ENS like below:

annotation<-read.table("/mart_exportcopy.txt", header=TRUE)
head(annotation)

results<-read.table("output.txt", header=TRUE)

head(results)

annotated_results<-merge(results,annotation,by = "ENS", all=TRUE)
#annotated_resultsSFDR<-p.adjust(annotated_resultsSPValue,"fdr")
head(annotated_results)
write.table(annotated_results,file='output_annotated.txt',col.names=TRUE,row.names=FA
LSE,sep="\t')

HEHHHH



B. Gene Ontology Results

i. Gene list from the table of 50 significant (when all features considered)

Ensembl gene id Gene name Gene symbol
ENSG00000215559 | ankyrin repeat domain 20 family member A11, pseudogene ANKRD20A11P
ENSG00000100336 | apolipoprotein L4 APOL4
ENSG00000129151 | gamma-butyrobetaine hydroxylase 1 BBOX1
ENSG00000244731 | complement C4A (Rodgers blood group) C4A
ENSG00000181374 | C-C motif chemokine ligand 13 CCL13
ENSG00000138135 | cholesterol 25-hydroxylase CH25H
ENSG00000134115 | contactin 6 CNTN6
ENSG00000106078 | cordon-bleu WH2 repeat protein COBL
ENSG00000126545 | casein alpha sl CSN1Ss1
ENSG00000175084 | desmin DES
ENSG00000151640 | dihydropyrimidinase like 4 DPYSL4
ENSG00000135472 | Fas apoptotic inhibitory molecule 2 FAIM2
ENSG00000125740 | FosB proto-oncogene, AP-1 transcription factor subunit FOSB
ENSG00000160221 | glutamine amidotransferase class 1 domain containing 3 GATD3
ENSG00000206127 | golgin A8 family member O GOLGAS80O
ENSG00000211896 | immunoglobulin heavy constant gamma 1 (G1m marker) IGHG1
ENSG00000240671 | immunoglobulin kappa variable 1-8 IGKV1-8
ENSG00000241351 | immunoglobulin kappa variable 3-11 IGKV3-11
ENSG00000196169 | kinesin family member 19 KIF19
ENSG00000111057 | keratin 18 KRT18
ENSG00000205362 | metallothionein 1A MT1A
ENSG00000123119 | N-terminal EF-hand calcium binding protein 1 NECAB1
ENSG00000171864 | prion like protein doppel PRND
ENSG00000163661 | pentraxin 3 PTX3
ENSG00000241945 | PWP2 small subunit processome component PWP2
ENSG00000274012 | RNA component of signal recognition particle 7SL2 RN7SL2
ENSG00000200336 | RNA, 5S ribosomal pseudogene 333 RNA5SP333
ENSG00000201695 | RNA, 5S ribosomal pseudogene 334 RNA5SP334
ENSG00000233913 | ribosomal protein L10 pseudogene 9 RPL10PS
ENSG00000277209 | ribonuclease P RNA component H1 RPPH1
ENSG00000173432 | serum amyloid Al SAA1
ENSG00000134339 | serum amyloid A2 SAA2
ENSG00000255071 | SAA2-SAA4 readthrough SAA2-SAA4
ENSG00000148965 | serum amyloid A4, constitutive SAA4
ENSG00000268751 | secretoglobin family 1B member 2, pseudogene SCGB1B2P
ENSG00000159307 | signal peptide, CUB domain and EGF like domain containing 1 SCUBE1
ENSG00000101463 | synapse differentiation inducing 1 SYNDIG1
ENSG00000186439 | triadin TRDN
ENSG00000183463 | ureidoimidazoline (2-oxo-4-hydroxy-4-carboxy-5-) decarboxylase URAD
ENSG00000129204 | ubiquitin specific peptidase 6 USP6
ENSG00000108379 | Wnt family member 3 WNT3




ii. Downregulated genes in LBW compared to NBW (only protein coding)

Gene Name

GOTERM - Biological Process

GOTERM - Molecular Function

N-terminal EF-hand calcium
binding protein 1(NECAB1)

G0:0001835~blastocyst hatching,GO:0042984~regulation of amyloid precursor protein biosynthetic process,

G0:0005509~calcium ion
binding,GO:0005515~protein
binding,G0O:0042802~identical protein
binding,

SAA2-SAA4 readthrough(SAA2-
SAA4)

G0:0006953~acute-phase response,

Wnt family member 3(WNT3)

G0:0000902~cell morphogenesis,GO:0001707~mesoderm formation,G0:0007276~gamete generation,GO:0007411~axon
guidance,G0O:0009948~anterior/posterior axis specification, GO:0030177~positive regulation of Wnt signaling
pathway,G0:0030182~neuron differentiation,GO:0035115~embryonic forelimb morphogenesis,GO:0035116~embryonic hindlimb
morphogenesis,GO:0044338~canonical Wnt signaling pathway involved in mesenchymal stem cell
differentiation,G0O:0044339~canonical Wnt signaling pathway involved in osteoblast differentiation

G0:0005109~frizzled
binding,GO:0005125~cytokine
activity,GO:0005515~protein binding,
G0:0048018~receptor agonist activity,

apolipoprotein L4(APOLA4)

G0:0006629~lipid metabolic process,GO:0006869~lipid transport,GO:0042157~lipoprotein metabolic process,

G0:0008289~lipid binding,

casein alpha s1(CSN1S1)

G0:0032355~response to estradiol, GO:0032570~response to progesterone,G0O:1903494~response to
dehydroepiandrosterone,GO:1903496~response to 11-deoxycorticosterone,

G0:0005515~protein binding,

cholesterol 25-
hydroxylase(CH25H)

G0:0006629~lipid metabolic process,G0O:0008203~cholesterol metabolic process,GO:0016126~sterol biosynthetic
process,G0O:0034340~response to type | interferon,GO:0035754~B cell chemotaxis,GO:1903914~negative regulation of fusion of virus
membrane with host plasma membrane,

G0:0000254~C-4 methylsterol oxidase
activity,GO:0001567~cholesterol 25-
hydroxylase activity, GO:0008395~steroid
hydroxylase activity,

complement C4A (Rodgers blood
group)(C4A)

G0:0006954~inflammatory response,GO:0006956~complement activation,GO:0006958~complement activation, classical
pathway,G0:0045087~innate immune response,G0:2000427~positive regulation of apoptotic cell clearance,

G0:0001849~complement component Clq
binding,GO:0004866~endopeptidase
inhibitor activity,

cordon-bleu WH2 repeat
protein(COBL)

G0:0000578~embryonic axis specification,GO:0001757~somite specification,G0O:0001843~neural tube closure,GO:0001889~liver
development,GO:0030041~actin filament polymerization,GO:0030903~notochord development,GO:0033504~floor plate
development,GO:0048565~digestive tract development, GO:1900006~positive regulation of dendrite
development,G0:1900029~positive regulation of ruffle assembly,

G0:0003785~actin monomer
binding,GO:0005515~protein binding,

desmin(DES)

G0:0006936~muscle contraction,GO:0007010~cytoskeleton organization,GO:0008016~regulation of heart
contraction,GO:0045109~intermediate filament organization,GO:0060538~skeletal muscle organ development,

GO0:0008092~cytoskeletal protein
binding,GO:0042802~identical protein
binding,

dihydropyrimidinase like
4(DPYSLA4)

G0:0007399~nervous system development,GO:0070997~neuron death,G0:0097485~neuron projection guidance,

G0:0016810~hydrolase activity, acting on
carbon-nitrogen (but not peptide)
bonds,GO:0016812~hydrolase activity

keratin 18(KRT18)

G0:0007049~cell cycle,GO:0009653~anatomical structure morphogenesis,GO:0033209~tumor necrosis factor-mediated signaling
pathway,G0:0043000~Golgi to plasma membrane CFTR protein transport,GO:0043001~Golgi to plasma membrane protein
transport,G0O:0043066~negative regulation of apoptotic process,GO:0045104~intermediate filament cytoskeleton
organization,G0O:0097191~extrinsic apoptotic signaling pathway,G0:0097284~hepatocyte apoptotic process,GO:0098609~cell-cell
adhesion,

G0:0003723~RNA binding,
G0:0097110~scaffold protein
binding,GO:0098641~cadherin binding
involved in cell-cell adhesion,

kinesin family member 19(KIF19)

G0:0007018~microtubule-based movement,GO:0060404~axonemal microtubule depolymerization,GO:0070462~plus-end specific
microtubule depolymerization,

G0:0008574~ATP-dependent microtubule
motor activity, plus-end-
directed,GO:0016887~ATPase activity,




metallothionein 1A(MT1A)

G0:0006882~cellular zinc ion homeostasis,GO:0010273~detoxification of copper ion,G0O:0045926~negative regulation of
growth,G0:0071276~cellular response to cadmium ion,G0O:0071280~cellular response to copper ion,GO:0071294~cellular response to
zincion,

G0:0005515~protein
binding,G0O:0008270~zinc ion
binding,GO:0046872~metal ion binding,

pentraxin 3(PTX3)

G0:0001550~0varian cumulus expansion,GO:0001878~response to yeast,GO:0006954~inflammatory
response,GO:0008228~opsonization,GO:0030198~extracellular matrix organization,GO:0044793~negative regulation by host of viral
process,G0O:0044869~negative regulation by host of viral exo-alpha-sialidase activity ,G0:1903019~negative regulation of glycoprotein
metabolic process,

G0:0001849~complement component Clq
binding,G0O:0001872~(1->3)-beta-D-glucan
binding,

serum amyloid A1(SAA1)

G0:0001819~positive regulation of cytokine production,GO:0006953~acute-phase response,GO:0007204~positive regulation of
cytosolic calcium ion concentration G0O:0048247~lymphocyte chemotaxis,GO:0050708~regulation of protein
secretion,G0:0050728~negative regulation of inflammatory response,

G0:0001664~G-protein coupled receptor
binding,G0O:0008201~heparin binding,

serum amyloid A2(SAA2)

G0:0006953~acute-phase response,

G0:0005515~protein binding,

serum amyloid A4,
constitutive(SAA4)

G0:0006953~acute-phase response,

G0:0005515~protein binding,

synapse differentiation inducing
1(SYNDIG1)

G0:0006886~intracellular protein transport,GO:0051965~positive regulation of synapse assembly,GO:0097091~synaptic vesicle
clustering,

G0:0005515~protein
binding,G0O:0035254~glutamate receptor
binding,G0O:0042803~protein
homodimerization activity,

triadin(TRDN)

G0:0006874~cellular calcium ion homeostasis,GO:0006936~muscle contraction,G0O:0009617~response to
bacterium,G0:0010649~regulation of cell communication by electrical coupling ,G0:0014808~release of sequestered calcium ion into
cytosol by sarcoplasmic reticulum, GO:0060047~heart contraction, GO:0086036~regulation of cardiac muscle cell membrane
potential,GO:0090158~endoplasmic reticulum membrane organization,

G0:0030674~protein binding,
bridging,G0:0044325~ion channel binding,

ureidoimidazoline (2-oxo-4-
hydroxy-4-carboxy-5-)
decarboxylase(URAD)

G0:0000255~allantoin metabolic process,GO:0006144~purine nucleobase metabolic process,G0O:0019628~urate catabolic process,

G0:0016831~carboxy-lyase
activity,G0:0051997~2-ox0-4-hydroxy-4-
carboxy-5-ureidoimidazoline decarboxylase
activity,




iii. Upregulated genes in LBW compared to NBW (only protein coding)

Gene Name

GOTERM-Biological Process

GOTERM- Molecular Function

C-C motif chemokine ligand 13(CCL13)

G0:0002548~monocyte chemotaxis, GO:0006874~cellular calcium ion homeostasis,
G0:0006935~chemotaxis,GO:0006954~inflammatory response,GO:0006955~immune response, ,
G0:0070374~positive regulation of ERK1 and ERK2 cascade,G0O:0071346~cellular response to interferon-
gamma,G0:0071347~cellular response to interleukin-1.

G0:0005102~receptor binding,GO:0005515~protein
binding,GO:0008009~chemokine
activity,GO:0048020~CCR chemokine receptor binding,

Fas apoptotic inhibitory molecule
2(FAIM?2)

G0:0002931~response to ischemia, GO:0006915~apoptotic process, GO:0021549~cerebellum development,
G0:0051402~neuron apoptotic process, GO:0097190~apoptotic signalling pathway, GO:1902042~negative
regulation of extrinsic apoptotic signalling pathway via death domain receptors, GO:2001234~negative regulation
of apoptotic signalling pathway,

G0:0005515~protein binding,

FosB proto-oncogene, AP-1 transcription
factor subunit(FOSB)

G0:0000122~negative regulation of transcription from RNA polymerase Il promoter, GO:0007565~female
pregnancy, GO:0009410~response to xenobiotic stimulus, GO:0032870~cellular response to hormone stimulus,
G0:0043278~response to morphine

G0:0000978~RNA polymerase Il core promoter proximal
region sequence-specific DNA binding, GO:0000981~RNA
polymerase |l transcription factor activity, sequence-
specific DNA binding

PWP2 small subunit processome
component(PWP2)

G0:0000028~ribosomal small subunit assembly, GO:0000462~maturation of SSU-rRNA from tricistronic rRNA
transcript (SSU-rRNA, 5.85 rRNA, LSU-rRNA),

G0:0003723~RNA binding,

contactin 6(CNTNG6)

G0:0007155~cell adhesion,G0O:0007156~homophilic cell adhesion via plasma membrane adhesion molecules,
G0:0007417~central nervous system development,GO:0045747~positive regulation of Notch signalling
pathway,G0O:0070593~dendrite self-avoidance,

G0:0098632~protein binding involved in cell-cell
adhesion,

gamma-butyrobetaine hydroxylase
1(BBOX1)

G0:0045329~carnitine biosynthetic process,

G0:0005506~iron ion binding, GO:0008270~zinc ion
binding, GO:0008336~gamma-butyrobetaine dioxygenase
activity, GO:0046872~metal ion binding,

golgin A8 family member O(GOLGAS8O)

G0:0007030~Golgi organization,

G0:0005515~protein binding,

prion like protein doppel(PRND)

G0:0006878~cellular copper ion homeostasis,GO:0007340~acrosome reaction,G0:0051260~protein
homooligomerization,

G0:0005507~copper ion binding, GO:0005515~protein
binding,

ubiquitin specific peptidase 6(USP6)

G0:0006464~cellular protein modification process,GO:0006511~ubiquitin-dependent protein catabolic
process,GO:0006886~intracellular protein transport,GO:0016579~protein deubiquitination,G0:0036211~protein
modification process,G0:0060627~regulation of vesicle-mediated transport,GO:0090630~activation of GTPase
activity,

G0:0003676~nucleic acid binding, GO:0004197~cysteine-
type endopeptidase activity, GO:0004843~thiol-
dependent ubiquitin-specific protease activity,
G0:0005096~GTPase activator activity,




C.Reactome Results

i. Downregulated in LBW compared to NBW (only protein coding genes)

Pathway name H#Entities | #Entities | Entities Entities Entities FDR | #Reactions | #Reactions
found total ratio pValue found total

Activation of C3 and C5 2 7 4.61E-04 5.35E-05 0.005297 3 4
Metallothionein’s bind metals 2 16 0.001055 | 2.77E-04 0.013583 6 27
Response to metal ions 2 21 0.001384 4.75E-04 0.015686 6 31
Initial triggering of complement 2 120 0.007909 | 0.014173 0.168192 3 21
Formyl peptide receptors bind formyl 1 11 7.25E-04 0.016542 0.168192 1 3
peptides and many other ligands
Regulation of Complement cascade 2 139 0.009161 | 0.018688 0.168192 14 42
Complement cascade 2 156 0.010281 | 0.023176 0.168192 20 72
Advanced glycosylation end product 1 16 0.001055 | 0.023974 0.168192 2 4
receptor signalling
CRMPs in Sema3A signalling 1 18 0.001186 | 0.026932 0.168192 3 5
Scavenging by Class B Receptors 1 21 0.001384 0.031353 0.168192 2 5
Interleukin-4 and Interleukin-13 2 211 0.013906 | 0.040328 0.168192 1 a7
signalling
WNT ligand biogenesis and trafficking 1 28 0.001845 | 0.041593 0.168192 8 12
TRAF6 mediated NF-kB activation 1 30 0.001977 | 0.0445 0.168192 1 4
Muscle contraction 2 232 0.01529 0.047834 0.168192 5 53
Miscellaneous transport and binding 1 36 0.002373 | 0.05317 0.168192 1 13
events
Striated Muscle Contraction 40 0.002636 | 0.058908 0.168192 4
TAK1-dependent IKK and NF-kappa-B 55 0.003625 | 0.08013 0.168192 17
activation
lon homeostasis 1 64 0.004218 0.092643 0.168192 1 17
Kinesins 1 68 0.004482 | 0.098152 0.168192 2 14
Semaphorin interactions 1 71 0.004679 0.102263 0.168192 3 41
Amyloid fiber formation 1 89 0.005866 | 0.126553 0.168192 2 33
Class B/2 (Secretin family receptors) 1 99 0.006525 | 0.139775 0.168192 1 24
Innate Immune System 4 1340 0.088315 0.140026 0.168192 25 725
DDX58/IFIH1-mediated induction of 1 104 0.006854 0.146313 0.168192 1 53
interferon-alpha/beta
COPI-dependent Golgi-to-ER retrograde | 1 107 0.007052 | 0.150214 0.168192 2 11
traffic
Post-translational protein 1 109 0.007184 | 0.152805 0.168192 1 1
phosphorylation
MyD88 cascade initiated on plasma 1 109 0.007184 | 0.152805 0.168192 1 70
membrane
Toll Like Receptor 5 (TLR5) Cascade 1 109 0.007184 | 0.152805 0.168192 1 71
Toll Like Receptor 10 (TLR10) Cascade 1 109 0.007184 | 0.152805 0.168192 1 71
Synthesis of bile acids and bile salts 1 113 0.007447 | 0.157964 0.168192 1 83
TRAF6 mediated induction of NFkB and | 1 116 0.007645 | 0.161813 0.168192 1 60
MAP kinases upon TLR7/8 or 9
activation
Toll Like Receptor 3 (TLR3) Cascade 1 116 0.007645 | 0.161813 0.168192 1 73
MyD88 dependent cascade initiated on | 1 117 0.007711 | 0.163093 0.168192 1 75
endosome
Toll Like Receptor 7/8 (TLR7/8) Cascade | 1 118 0.007777 | 0.16437 0.168192 1 79
Stimuli-sensing channels 1 120 0.007909 | 0.16692 0.168192 1 33
TRIF(TICAM1)-mediated TLR4 signalling | 1 121 0.007975 | 0.168192 0.168192 1 70
MyD88-independent TLR4 cascade 1 121 0.007975 | 0.168192 0.168192 1 72
Toll Like Receptor 9 (TLR9) Cascade 1 121 0.007975 | 0.168192 0.168192 1 80
Interleukin-1 signalling 1 125 0.008238 | 0.173261 0.173261 1 59
Bile acid and bile salt metabolism 1 125 0.008238 | 0.173261 0.173261 1 99
Regulation of Insulin-like Growth Factor | 1 127 0.00837 0.175784 0.175784 1 14
(IGF) transport and uptake by Insulin-
like Growth Factor Binding Proteins
(IGFBPs)
MyD88:MAL(TIRAP) cascade initiated 1 133 0.008766 | 0.183311 0.183311 1 76
on
plasma membrane
Toll Like Receptor TLR6:TLR2 Cascade 1 133 0.008766 | 0.183311 0.183311 1 78
Toll Like Receptor TLR1:TLR2 Cascade 1 136 0.008963 | 0.18705 0.18705 1 78
Toll Like Receptor 2 (TLR2) Cascade 1 136 0.008963 | 0.18705 0.18705 1 80
Formation of the cornified envelope 1 138 0.009095 | 0.189533 0.189533 8 27




Immune System 6 2624 0.172939 | 0.195106 0.195106 27 1659
Cardiac conduction 1 147 0.009688 | 0.200618 0.200618 1 33
Golgi-to-ER retrograde transport 1 148 0.009754 0.201841 0.201841 2 18
Cytokine Signalling in Immune system 3 1036 0.068279 | 0.204926 0.204926 3 740
Toll Like Receptor 4 (TLR4) Cascade 1 165 0.010875 | 0.222355 0.222355 1 107
Binding and Uptake of Ligands by 1 168 0.011072 0.225922 0.225922 2 33
Scavenger Receptors

Interferon gamma signalling 1 173 0.011402 | 0.231833 0.231833 1 18
GPCR ligand binding 2 609 0.040137 0.235361 0.235361 2 217
Interleukin-1 family signalling 1 183 0.012061 | 0.243526 0.243526 1 92
Factors involved in megakaryocyte 1 194 0.012786 | 0.256191 0.256191 2 43
development and platelet production

Signalling by Interleukins 2 658 0.043367 | 0.263214 0.263214 2 505
Toll-like Receptor Cascades 1 202 0.013313 | 0.265275 0.265275 1 198
Peptide ligand-binding receptors 1 203 0.013379 | 0.266402 0.266402 1 83
lon channel transport 1 208 0.013709 | 0.272017 0.272017 1 51
TCF dependent signalling in response 1 215 0.01417 0.279809 0.279809 1 71
to WNT

Intra-Golgi and retrograde Golgi-to-ER | 1 219 0.014434 | 0.284226 0.284226 2 48
traffic

Keratinization 1 226 0.014895 | 0.291892 0.291892 15 34
G alpha (q) signalling events 1 285 0.018783 | 0.353464 0.353464 3 35
Vesicle-mediated transport 2 828 0.054571 | 0.359717 0.359717 4 252
Interferon Signalling 1 318 0.020958 | 0.385633 0.385633 1 74
Signalling by GPCR 2 876 0.057734 | 0.386421 0.386421 8 392
Signalling by WNT 1 331 0.021815 | 0.397881 0.397881 9 157
Metabolism of steroids 1 331 0.021815 | 0.397881 0.397881 1 250
Transport of small molecules 2 969 0.063863 | 0.436911 0.436911 2 454
Cellular responses to stimuli 2 1025 0.067554 | 0.466353 0.466353 6 481
Class A/1 (Rhodopsin-like receptors) 1 414 0.027285 | 0.470744 0.470744 1 185
G alpha (i) signalling events 1 426 0.028076 | 0.480553 0.480553 3 74
Neutrophil degranulation 1 478 0.031503 | 0.521087 0.521087 2 10
Axon guidance 1 585 0.038555 0.595183 0.595183 3 298
Developmental Biology 2 1313 0.086535 | 0.603556 0.603556 18 607
Nervous system development 1 621 0.040928 0.617547 0.617547 3 324
Membrane Trafficking 1 668 0.044026 | 0.644971 0.644971 2 219




ii. Upregulated in LBW compared to NBW (only protein coding genes)

Pathway name Entities Entities | Entities Entities FDR | Reactions | Reactions
found total pValue found total
Chemokine receptors bind chemokines 2 57 0.00129051 0.041296313 | 2 19
Carnitine synthesis 1 4 0.0037882 0.060611206 |1 4
CHL1 interactions 1 9 0.008505104 | 0.085051036 |1 5
Peptide ligand-binding receptors 2 198 0.014476378 0.115811025 | 2 83
NGF-stimulated transcription 1 39 0.036382714 0.168594065 | 2 37
Class A/1 (Rhodopsin-like receptors) 2 333 0.038185573 0.168594065 | 2 185
rRNA modification in the nucleus and cytosol 1 60 0.055470982 0.168594065 | 1 8
Nuclear Events (kinase and transcription factor 1 61 0.056371313 0.168594065 | 2 48
activation)
GPCR ligand binding 2 470 0.070870437 | 0.168594065 | 2 217
Post-translational modification: synthesis of GPI- 1 93 0.084773233 0.168594065 | 1 14
anchored proteins
signalling by NTRK1 (TRKA) 1 117 0.105562206 | 0.168594065 | 2 102
Estrogen-dependent gene expression 1 119 0.107275091 0.168594065 | 2 64
L1CAM interactions 1 121 0.108984994 | 0.168594065 | 1 54
signalling by NTRKs 1 139 0.124240672 0.168594065 | 2 164
signalling by GPCR 2 713 0.143887655 0.168594065 | 5 392
Major pathway of rRNA processing in the nucleolus 1 183 0.160537868 0.168594065 | 4 7
and cytosol
rRNA processing in the nucleus and cytosol 1 193 0.168594065 0.168594065 | 5 15
ESR-mediated signalling 1 195 0.170196845 0.170196845 | 2 111
rRNA processing 1 203 0.176579914 0.176579914 |5 21
signalling by Nuclear Receptors 1 272 0.229809251 0.229809251 | 2 193
G alpha (i) signalling events 1 317 0.262818021 0.262818021 | 3 74
Metabolism of amino acids and derivatives 1 376 0.304147254 0.304147254 | 1 248
signalling by Receptor Tyrosine Kinases 1 543 0.40997372 0.40997372 2 746
Axon guidance 1 558 0.418722938 0.418722938 |1 297
Nervous system development 1 584 0.43360931 0.43360931 1 323
Signal Transduction 3 2598 0.462070525 0.462070525 |9 2530
GPCR downstream signalling 1 638 0.463425542 0.463425542 | 3 175
Metabolism of RNA 1 719 0.505481088 0.505481088 | 5 189
Developmental Biology 1 1138 0.679003789 0.679003789 |1 606
Post-translational protein modification 1 1429 0.764672394 0.764672394 | 1 526
Metabolism of proteins 1 1949 0.867918634 0.867918634 |1 795
Metabolism 1 2145 0.894616744 0.894616744 | 1 2031




D. Network analysis results
i. Downregulated genes in LBW compared to NBW (only protein coding)
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