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Introduction

COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has had a strong

impact on the world since its emergence in late 2019. This global health crisis has

not only affected public health but has also disrupted daily life in unprecedented ways.

The aim of this work is to assess and analyse COVID-19’s impact on social interac-

tions by focusing on the evolution of the number of people and their distribution at

Campo San Felice in Venice. To accomplish this, a neural network architecture is em-

ployed to extract relevant information from daily photographs captured at the Campo.

Subsequently, the extracted data are analyzed using State Space Methods, specifically

Dynamic Linear Models, to gain insights into its progression and changes over time.

State space methods are powerful tools used in time series analysis and forecasting that

provide a flexible framework for modeling complex systems, accommodating both trend

and seasonality components, as well as incorporating external factors and regressors.

The thesis is structured into four distinct chapters, each focusing on a specific aspect of

the task.

The first chapter presents the original dataset containing the photographs, and provides

an overview of the methodology employed to extract the relevant data from these im-

ages. Specifically, You Only Look Once V7, a neural network for object detection is

introduced and described along its results on the pictures. Moreover, an explanatory

data analysis is performed on the data extracted by the network.

The second chapter introduces Dynamic Linear Models and discusses the theoretical

foundations of these models. Additionally, the theoretical aspects of Prophet, a time

series forecasting tool developed by Facebook, are discussed. The objective is to present

two different methodologies for the sake of comparison.

The third chapter presents an analysis of the number of people depicted in each photo-

graph using both the Dynamic Linear Model and Prophet. A comparison between the

two methods is conducted, and the results are discussed in detail.

The fourth chapter focuses on the analysis of the clusters observed in the photographs.
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2 Introduction

Density-based spatial clustering of applications with noise algorithm is introduced and

applied to the images. Furthermore, the application of Dynamic Linear Models to dif-

ferent cluster characteristics provides insights into the evolution of these clusters during

the COVID-19 pandemic.



Chapter 1

Dataset Description and Creation

1.1 The Dataset

The dataset consists of photos taken at Campo San Felice in Venice from the 8th of

March 2020 to the 4th of March 2023. There could be multiple instances where several

pictures were taken on the same day but at different times. On the other hand, some

days in the dataset may not have any photos captured. For this work, only the period

between the 8th of March 2020 and the 29th of September 2022 was considered. This is

because the state of emergency for the COVID-19 pandemic officially ended on the 31st

of March 2022, therefore five months seemed adequate to analyse the post-emergency

situation, which was very stable and did not lead to any other significant protective

measure from the government. As a result, the resulting dataset consists of 1421 photos

which can be divided in three main categories: the pictures taken in the morning, the

ones taken at noon and the ones taken in the evening. Figure 1.1 contains an example.

Figure 1.1: An example of a photo in the dataset.

3



4 Section 1.2 - Number of People and Position extraction

The aim of the study is to extract the number of people and their position in the

square and the road behind it. The people in the far back, however, are too small to be

recognized in a consistent and robust way: to solve this problem each photo was cropped

so that the road reaches the paper shop on the left of it (Fig. 1.2). This was done using

Adobe Lightroom, a powerful photo editing software that has become a staple in the

world of digital photography. After this step, every photo was manually checked to see

if the result was satisfactory. The pictures underwent only this editing step, and the

entire study was performed using this modified dataset. No additional pre-processing

was conducted.

Figure 1.2: Pre-processed image.

1.2 Number of People and Position extraction

In recent years, computer vision technology has made tremendous strides in recognizing

and detecting objects in images and videos. One of the most exciting and promising

applications of this technology is the ability to identify and localize people in photos

and videos. To achieve this, the go-to approach is to use deep learning models, such as

Convolutional Neural Networks, that can learn to recognize and classify objects based

on their visual features.

In this context, and since it was not the focus of this thesis, instead of building a

custom model, a decision was made to choose a pre-trained network: YOLOv7, a state-

of-the-art neural network model in object detection introduced in Wang et al. (2022).

YOLOv7 is an advanced version of the You Only Look Once (YOLO) (Redmon et al.,

2015) family of models that has achieved remarkable results in various object detection

tasks, including people detection. By using it, we aim to accurately count the number

of people and determine their positions in the photo.
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1.2.1 YOLOv7 Architecture

First of all, the YOLO models are fully Convolutional Neural Networks which use a

one-stage approach to object detection. This means that they use a single pass of

the input image to make predictions about the presence and location of objects in the

image. This makes them extremely efficient compared to other models which use a two-

stage approach. Notice that YOLO is not a single architecture but a flexible research

framework written in low-level languages. The framework has three main components:

the head, neck, and backbone (Fig. 1.3) . Different sets of components and architecture

are associated with the above-mentioned three components giving rise to different YOLO

versions.

Figure 1.3: YOLO family architecture example composed of

three main blocks: backbone, neck and head, Long et al. (2020)

Specifically, for YOLOv7 we have:

• Backbone network: The backbone network of YOLOv7 is based on CSPDarkNet,

which is a modified version of the DarkNet architecture introduced in Bochkovskiy

et al. (2020). This backbone network is used to extract features from the input

image and generate a feature map that is then used for object detection.

• Neck network: YOLOv7 also includes a neck network, which is designed to refine

the feature map and enhance the model’s ability to detect small objects. The

neck network consists of several convolutional layers and spatial pyramid pooling

(SPP) modules.

• Detection heads: YOLOv7 includes three detection heads, which are responsible

for detecting objects at different scales. These heads use anchor boxes, a set

of predefined bounding boxes of specific height and width, to predict the final
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bounding boxes, confidence scores, and class probabilities of the objects in the

image.

Furthermore, the main new features added by this version of YOLO are:

• Extended Efficient Layer Aggregation Networks (E-ELAN): E-ELAN is what drives

the computational block in the YOLOv7 backbone. It takes inspiration from

previous research on network efficiency, such as Dollár et al. (2021), Lee et al.

(2019), Ma et al. (2018), Wang et al. (2020). It has been designed by analyzing

Memory-access cost, I/O channel ratio, Element wise operation, Activations and

Gradient path. What it does is to enhance the learning capability of the network

without changing the orginal gradient path.

• Model Scaling : Different applications require different models. Model scaling is

performed to suit these requirements and make it fit in various computing devices.

Model scaling is not something new, in YOLOv7 however, a compound scaling

approach is used (Fig. 1.4). By doing this, the model can mantain the properties

that the model had at the initial design and mantains the optimal structure.

• Trainable Bag-of-Freebies : Bag of Freebies are methods that increase the perfor-

mance of a model without increasing the training cost. The ones introduced in

YOLOv7 are the following: Re-parametrized Convolution and Deep Supervision.

The former is a different type of convolutional block that the YOLOv7 researchers

studied to find the best way to combine it with other networks. The latter is a

technique that is often used in training deep networks. Its central concept is to

add an extra auxiliary head in the middle layers of the network, and the shallow

network weights with assistant loss as the guide. In YOLOv7, the head responsible

for final output is called the Lead Head. The head used to assist training in the

middle layers is called the Auxiliary Head. With the help of an assistant loss, the

weights of the auxiliary heads are updated and the model learns better.

Figure 1.4: Compound scaling up depth and width,

Wang et al. (2022).
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1.2.2 Results of YOLOv7

YOLOv7 was trained on several large-scale object detection datasets, including COCO

(Common Objects in Context) and Open Images. The COCO dataset contains over

330,000 images with more than 2.5 million labeled object instances across 80 different

object categories. The Open Images dataset is even larger, with over 1.5 million images

and more than 12 million labeled object instances across more than 600 categories.

Additionally, the YOLOv7 authors also used various data augmentation techniques

during training, such as random cropping, flipping, and color jittering, to further improve

the robustness of the model. Unfortunately, when applied to the photos of our dataset

the result are not very promising, as it can be seen in Fig. 1.5.

Figure 1.5: Results obtained by using the standard

YOLOv7 weights

People on the main square and on the bridge are easily spotted, but the moment we

move further away on the road the network is no longer able to recognize the people in

the picture. Additionally, the model exhibits some errors, such as confusing the handcart

positioned at the center of the Campo with a person. Luckily, YOLOv7 researchers made

it possible to train the model on custom data to improve the results on specific tasks.

1.2.3 Custom Data

The photos after the 29th of September 2022 were not included in the final dataset,

therefore we can use them to train YOLOv7 to recognize the people walking in Campo

San Felice. Since all photos are very similar, only 146 were randomly picked and hand-

labeled through Roboflow, a platform that provides tools for data preprocessing and

management for computer vision projects like object detection, image classification,
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and segmentation. After training the Neural Network on this custom data the accuracy

in the results improved dramatically (Fig. 1.6)

Figure 1.6: Results obtained by training YOLOv7 on custom data.

The final results are not perfect in all photos: sometimes when the road is too

crowded the model misses some people or over-estimates the number of them. On

average, however, the accuracy achieved is remarkable, making YOLOv7 very consistent

in locating humans in our photos. Notice that this custom version of the model is highly

specific. Attempting to use it for recognizing people in pictures taken in different settings

may result in poor performance of the model. For every photo, YOLOv7 produces a

file in the format of a .txt file. Each row of this file represents an object detected in the

photo and contains a set of five numerical values:

• The first number represents the class to which the object belongs to. In this case,

the model only looks for people so the class is always 0.

• The second and third number represent the x and y coordinates of the center of

the bounding box.

• The last two numbers represent the height and the width of the bounding box.

With this information it is now possible to build two datasets: one containing the

number of people in each photo, and the second one including the individuals’ coordi-

nates within each picture.

1.3 Final Dataset

The date and time of each photo was extracted from their filename, for example, from

IMG 20200514 170022.jpg we know that the photo was in year 2020, month 05, day 14
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at 17:00:22. Furthermore, using open data found on the internet, new covariates that

may affect the number of people in the streets of Venice were added to the two datasets,

which, in their final version, contain:

• ID: an integer that symbolizes the photo to which the observation belongs to.

This is particularly useful for the dataset containing the people’s location since

multiple observations may belong to the same picture. 1 is the 8th of March 2020

and 1421 is the 29th of September.

• date: The date of the observation.

• time: The time of the day when the photo was taken. Morning if captured from

5 AM to 10 AM, Noon if taken from 11 AM to 3 PM, and Evening for the rest of

the day.

• zona: qualitative variable representing the government measures in act in Venice

when the pictures were taken (data from www.regione.veneto.it). Italy imple-

mented various restrictions throughout the pandemic, and each level of this vari-

able represents the specific measures that were in effect during different periods

of the year, specifically:

– lockdown: During the lockdown, individuals were only permitted to leave

their homes for work or essential grocery shopping. Restaurants and cinemas

were closed and masks were mandatory to wear when walking outside. It

covers the period between the 8th of March 2020 and the 3rd of May 2020.

– phase2 : During phase two, people were allowed to meet close relatives (the

so called congiunti). Masks were mandatory and restaurants re-opened as

delivery-only. It covers the period between the 4th of May 2020 and 14th of

June, 2020.

– phase3 : In phase three, people could move freely as long as they kept their

mask on. Outdoor activities were allowed. It covers the period between the

15th of June, 2020 and the 7th of October, 2020

Form this point on, the greenpass was introduced and made mandatory for every

indoor activity. Moreover, the concept of coloured zones with different restrictions

was introduced, specifically:

– white: the weakest color, people could move freely. Masks were not manda-

tory outdoor and non-essential activities such as cinemas and restaurants

were open.
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– yellow : the same as the white zone but masks were mandatory outdoor too.

– orange: the same as the previous colours but people could move freely only

with the super greenpass.

– red : people could not move freely. Restaurants were open just for delivery

and all non-essential activities were closed.

– no-emergency : all restrictions were removed.

• mean temperature: the average temperature in Venice at the time the photo

was captured (data from www.3bmeteo.com).

• weekend festive: A binary value that indicates whether the day in Venice is a

holiday or not (data from www.scoprivenezia.com). The value 1 denotes a festive

day, while 0 represents a non-festive day.

• rain: the quantity of precipitation (in millimeters) in Venice on that particular

day (data from www.3bmeteo.com).

• season: a categorical variable that indicates the season when the picture was

captured. This variable can have four possible values: Spring, Summer, Autumn,

and Winter, depending on the time of the year when the photo was taken.

• number: the number of people in the photo.

• x and y: the location of each person in the picture can be represented by two

variables representing the two coordinates. The x coordinate ranges from 0 to

2048 to match the size of the photo in pixels, while the y coordinate ranges from

0 to 800 for the same reason.

1.4 Exploratory Data Analysis

In this section, we will conduct an Exploratory Data Analysis (EDA) to gain insights

and understanding of the data. The primary focus of this EDA will be on the variable

capturing the number of people recognized by YOLOv7 in each photo. By exploring this

variable, we can gain insights into the social behavior and movement of people in Venice,

as well as the impact of external factors such as weather and government measures on

their mobility.

Given that the number of individuals present in photographs is the main focus of

this thesis, and it will also serve as the response variable in chapter 3, it is useful to

carry out an initial investigation to examine how this variable is distributed (Fig. 1.7).
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Figure 1.7: Distribution of the number of people

The graphical representations reveal that the distribution of the number of people in

the photographs is right-skewed, with an asymmetrical shape. In fact, a lot of observa-

tions are very close to zero, but this is expected since many photos were taken early in

the morning when there are not many people on the streets. Furthermore, it is worth

noting that the median and mean (dashed line) values are quite similar and both hover

around 20. Additionally, around 75% of the observations fall below 35 individuals, with

the peak frequency occurring around 10 people.

Moving forward, an important aspect to consider is the effect of various predictors

or independent variables on the response. In order to explore these relationships, the

first step is to examine how the number of people in photographs is distributed based

the time of the day and the season when the photographs were captured (Fig. 1.8).

Figure 1.8: Boxplots of the number of people at different times of

the day based on season.
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Except summer, for which the number of people is, on average, slightly higher, there

is little difference in the distributions across seasons. Specifically, the boxplots are very

similar and they show a consistent pattern. However, there is a significant variation in

the number of people at different times of the day. Typically, there are fewer people

in the morning, and the number increases as the day progresses, with the peak usually

observed at noon.

The next plot is useful to observe how the number of people at different times of the

day changes over time in the considered period, to determine if there are any trends or

patterns in the data (Fig. 1.9).

Figure 1.9: Time series of the number of people in the morning, at noon and

in the evening.

From these plots it is clear that there are several gaps in the series, meaning that the

number of missing values is quite high. Regardless, it is evident that all three time series

exhibit an upward trend, with the trend being more prominent in the Noon and Evening

plots. The reason behind this pattern is that the earliest observations were taken during

the lockdown period, and as time progressed, the restrictions gradually eased, with some

setbacks occurring along the way. For example, we can see that in December 2020 and

January 2021 there is a considerable drop in the number of individuals captured in the

photos. This is because, during this period, the city of Venice transitioned from zona

gialla to zona rossa, meaning that individuals were only allowed to leave their homes

for essential reasons such as grocery shopping or visiting close family members.

Related to these setbacks, another significant aspect to consider is the influence of the

protective measures implemented by the Italian Government. Venice has experienced
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several periods when the protective measures ranged from relaxed to strict. Therefore,

the impact that they had on the number of people wandering around Venice should be

substantial.

Figure 1.10: Distribution of the Number of People based on the

government measures.

It is clear from Figure 1.10 that the distribution of the number of people detected

in the photos is related to the different levels of the zona variable. This relationship

is evident in the fact that, on average, the highest number of people in the photos is

observed in the zones with weak restrictions, such as white, phase3, and no emergency.

Conversely, the zones with stricter restrictions, such as red and lockdown, have the

lowest average number of people detected.

During the period of lockdown and when restrictions were particularly stringent, in-

dividuals were only permitted to leave their homes for essential tasks such as purchasing

groceries or going to work. Therefore, two boxplots were constructed to evaluate the

effects of working days in contrast to weekends and holidays (Fig. 1.11).

Figure 1.11: Distribution of the Number of People based
on weekends and festive days.
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The medians of the two categories, i.e., working days and holidays, are quite similar.

However, there is a noticeable difference in the third quartile between the two groups,

where the third quartile during holidays is substantially higher than that of working

days. Based on these observations, we can conclude that during holidays, there is a

higher probability of registering a significantly higher number of people as compared to

working days.

Finally the last two variables that are considered in this analysis are those regarding

the weather. Considering that Venice is a popular tourist destination, a pleasant and

warm day would likely attract more people to the city, especially in the summer when

the restrictions in Venice were not very strict. To conduct this analysis (Fig. 1.12),

days with rainfall levels lower than 5 mm were classified as ”No-Rain”. Additionally,

the mean temperature variable was categorized into three groups: Cold for temperatures

below 15° Celsius, Hot for temperatures ranging from 16° to 25° Celsius, and Very-Hot

for temperatures exceeding 25° Celsius. These categorizations were made to simplify

the data and to better understand how weather conditions affect the number of people

in Campo San Felice.

Figure 1.12: Distribution of the Number of People based on the weather

conditions

Clearly, the weather conditions have a significant impact on the number of people in

the square. Days with no precipitation tend to attract a larger number of people, while

the same trend is observed for warm and hot days. The box plots for warm and hot

days reveal higher median values as well as first and third quartiles, as compared to the

box plot for cold days. This suggests that people are more likely to go out to the streets

of Venice when temperatures are favorable. Conversely, lower temperatures may deter

people from visiting the area, resulting in a lower number of visitors.
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Regarding the variables x and y, which were introduced in the previous section, they

will not be considered at this stage. Instead, they are the focus of chapter 4, which is

completely dedicated to analysis of people’s clusters based on their location in Campo

San Felice.





Chapter 2

Dynamic Linear Models

Dynamic linear models (DLMs) are a popular tool used to model time series data and

make forecasts. These models capture the complex dynamics and trends present in time

series data by combining linear regression with state space models. This chapter will

delve into the theory behind dynamic linear models and explore how they can be used

for time series forecasting.

In addition to discussing the basics of DLMs, to asses their effectiveness, this chapter

will also introduce another popular forecast model: Prophet, created by Meta (Taylor

& Letham, 2018), which will be compared to DLMs in the next chapter.

2.1 Introduction

In this chapter Dynamic Linear Models are presented as a particular state space model

with assumptions of being linear and gaussian. In recent years state space models

have gained a lot of popularity in time-series analysis; Remarkably thanks to the work

of Petris et al. (2009), Durbin & Koopman (2012), Shumway et al. (2000), and the

references therein. As it will be clear in the following sections, these type of models

offer a natural interpretation of a time series as a result of several components, such as

trend, seasonal and regressive components. Moreover, they have a strong probabilistic

structure and they are very flexible: they can model univariate and multivariate time

series, even when there is non-stationarity, missing data and irregular patterns. Because

of this they seem well-suited for dealing with the time series analysed in this Thesis.

17
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2.2 State Space Models

Consider a time series Yt, t = 1,2,... where Yt is an observable random vector that can be

univariate as well as multivariate, to generalize Yt = (Y1,t, ..., Ym,t)
′. In order to predict

the value Yt+1, we need to specify a dependence structure among the Yt’s variables.

State space models assume that the time series Yt is a noisy and incomplete function

of an unobservable process called state process (θt, t = 0,1,2,... ). The benefit of this is

that θt, has a much simpler Markovian dynamics. Therefore, it is easy to assume that

the observation Yt only depends on the state θt at that specific time. To formalize:

• θt is a Markov chain; i.e, θt only depends on past observations through θt−1 (Fig.

2.1). Because of this, the probability law of θt is specified by simply assigning the

density p0(θ0) and the transition densities p(θt|θt−1).

• Yt’s are independent and Yt depends on θt only. Therefore, the joint conditional

density can be written as
∏n

t=1 f(yt|θt), for n ≥ 1.

These assumptions allow us to write the probability law of the joint process ((θt, Yt), t =1,2,...),

from which we can deduce all the dependences among variables. For any n ≥ 1,

(θ0, θ1, . . . , θn, Y1, . . . , Yn) ∼ p0 (θ0)
n
∏

t=1

p (θt, Yt | θ0, θ1, . . . , θt−1, Y1, . . . , Yt−1)

=p0 (θ0)
n
∏

t=1

f (Yt | θ0, . . . , θt, Y1, . . . , Yt−1) p (θt | θ0, . . . , θt−1, Y1, . . . , Yt−1)

=p0 (θ0)
n
∏

t=1

f (Yt | θt) p (θt | θt−1) .

(2.1)

The process is clearly Markovian and the density of Y1, ..Yn can be obtained by

integrating out all the θ variables. Moreover, Yt is conditionally independent from the

past observations given the value of θt, which intuitively, gives θt the role of containing

all the past history of the observable process. Moreover, state space models can be

written in the form

Yt = ht(θt, vt)

θt = gt(θt−1, wt)
(2.2)

with arbitrary functions gt and ht.
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Figure 2.1: Dependancies of state space methods, Petris et al. (2009)

2.3 Dynamic Linear Models

Dynamic Linear Models are a class of state space models which are specified through

the use of two equations:

Yt = Ftθt + vt, vt ∼ Nm (0, Vt)

θt = Gtθt−1 + wt, wt ∼ Np (0,Wt)
(2.3)

where Ft and Gt are known matrices and vt and wt are two independent white noise

sequences with mean zero Vt and Wt as covariance matrices. Of the two equations, the

first one is known as observation equation while the second one is called state equation.

Moreover, θ0 is assumed to have a Gaussian distribution,

θ0 ∼ Np(m0, C0) (2.4)

for some non-random vector m0 and matrix C0, and it is independent on vt and wt.

Notice that this formulation satisfies the assumptions presented in the previous section

with Yt|θt ∼ N(Ftθt, Vt) and θt|θt−1 ∼ N(Gtθt−1,Wt). Furthermore, equation (2.3) is

simply equation (2.2) with gt and ht linear.

2.3.1 Estimation

In this section, to present the estimation process for DLMs, f(yt, θt) and p(θt|θt−1) are

considered fully specified. Later in this chapter, these densities will depend on unknown

parameters and their estimation will be presented.

In order to estimate the state vector, it is sufficient to compute the conditional

densities p(θs|y1, ..yt). From this, three different problems can be distinguished:

• Filtering : when s = t

• Smoothing : when s < t

• Forecasting : when s > t



20 Section 2.3 - Dynamic Linear Models

The first challenge involves receiving data in a sequential manner over time. In such

situations, we require a method to estimate the current value of the state vector based on

the available observations until that point, i.e. we compute p(θt|y1, .., yt). Conversely,

smoothing is a form of retrospective analysis, where we estimate the state sequence

at different time points from 1 to t, based on the data available from y1 to yt. The

purpose of smoothing is to analyze the past behavior of the state vector to gain a better

understanding of its functioning. Finally, forecasting is often the main task when dealing

with time series. This involves computing p(θt+1|y1, .., yn), which is also referred to as

one-step-ahead predictions. As we will explore further in this chapter, this calculation

is dependent on the filtering density of θt. One can also be interested in computing the

the state vector θt+k for some k > 1 to make k-steps-ahead forecast. Obviously, the

higher the k the more uncertain the prediction based on p(θt+k|y1, .., yt) will be.

2.3.2 Filtering

Denote withDt the information provided by the first t observations, Y1, ..., Yt, the marko-

vian structure and the conditional independence of the observations allow us to compute

the filtered and predictive densities by the means of a recursive algorithm. Starting from

θ0 ∼ p0(θ0) = p(θ0|D0), for t = 1, 2, ... :

• The one-step-ahead predictive density for the states can be computed from the

filtered density p(θt−1|Dt−1) according to

p (θt | Dt−1) =

∫

p (θt | θt−1) p (θt−1 | Dt−1) dν (θt−1) (2.5)

• The one-step-ahead predicitive density for the observations can be computed from

the predictive density for the states as

f (yt | Dt−1) =

∫

f (yt | θt) p (θt | Dt−1) dν (θt) (2.6)

• The filtering density can be computed from the above densities as

p (θt | Dt) =
f (yt | θt) p (θt | Dt−1)

f (yt | Dt−1)
(2.7)

To compute this quantities is tipically not an easy task, however in the case of

DLMs these calculations simplify dramatically. Because of the assumption of normality,

the random vector (θ0, θ1, ..., θt, Y1, ..., Yt) has a Gaussian distribution for any t ≥ 1.
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Therefore, the marginal and conditional distributions are also Gaussian and since all the

relevant distributions are Gaussian it suffices to compute their means and covariances.

In this case the solution of the filtering problem is given by the Kalman filter. In fact,

for the DLM presented in equation (2.3), if

θt−1|Dt−1 ∼ N(mt−1, Ct−1) (2.8)

where t ≥ 1, then the Kalman filter is defined as

• The one-step-ahead state predictive density of θt, given Dt−1 is Gaussian, with

parameters

at = E (θt | Dt−1) = Gtmt−1

Rt = Var (θt | Dt−1) = GtCt−1G
′
t +Wt

(2.9)

• The one-step-ahead predictive density of Yt given Dt−1 is Gaussian, with parame-

ters

ft = E (Yt | Dt−1) = Ftat

Qt = Var (Yt | Dt−1) = FtRtF
′
t + Vt

(2.10)

• The filtering density of θt given Dt is Gaussian, with

mt = E (θt | Dt) = at +RtF
′
tQ

−1
t et

Ct = Var (θt | Dt) = Rt −RtF
′
tQ

−1
t FtRt

(2.11)

where et = Yt − ft is the forecast error.

By using the Kalman filter, it becomes possible to recursively compute the predictive

and filtering densities. This process starts from θ0|D0 ∼ N(m0, C0), and then computes

p(θ1|D1). This recursive process continues as new information becomes available over

time. At this stage, we have computed the conditional density θt|Dt, however what we

are often interested in, is a point estimate. One can use bayes theory to estimate θt based

on the information in Dt, using a quadratic loss function L(θt, a) = (θt − a)′H(θt − a),

results in the conditional expected value mt = E(θt|Dt). Additionally, mt holds an

intuitive interpretation, in fact, filter mean equals to the prediction mean at plus a

correction depending on how much the new observation differs from its prediction. The

weight of the correction is given by the gain matrix

Kt = RtF
′
tQ

−1
t (2.12)
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In other words, the weight of the current information Yt depends on the observation

covariance matrix Vt (through Qt) and on Rt = V ar(θt|Dt−1) = GtCt−1G
′
t +Wt.

2.3.3 Smoothing

As already mentioned, it may happen that one has some observations Yt collected over

a certain period of time and wants to analyse the behaviour of the whole system. To

accomplish this, a backward recursive algorithm is utilized to compute the conditional

densities of θt|Dt, for t < T . This process begins with the filtering density p(θT |Dt)

and involves estimating the entire history of the system’s states by working backwards

through time.

• Conditional on Dt, the state sequence (θ0, ..., θT ) has backward transition proba-

bilities given by

p (θt | θt+1,DT ) =
p (θt+1 | θt) p (θt | Dt)

p (θt+1 | Dt)
(2.13)

• The smoothing densities of θt given Dt can be computed according to

p (θt | DT ) = p (θt | Dt)

∫

p (θt+1 | θt)
p (θt+1 | Dt)

p (θt+1 | DT ) dµ (θt+1) (2.14)

For the Dynamic Linear Model presented in this chapter, these calculations reduce

to the following, if

θt+1|Dt ∼ N(st+1, St+1) (2.15)

then θt|Dt ∼ N(st, St), where:

st = mt + CtG
′
t+1R

−1
t+1 (st+1 − at+1)

St = Ct + CtG
′
t+1R

−1
t+1 (St+1 −Rt+1)R

−1
t+1Gt+1Ct

(2.16)

The Kalman smoother enables the computation of densities of θt|Dt by starting at

t = T − 1, where θT |Dt ∼ N(sT = mT , ST = CT ). From there, the process continues

backwards to compute the densities of θt|Dt for t = T − 2, t = T − 3, and so on.

2.3.4 Forecasting

In various scenarios, there is a need to look beyond just one step ahead and predict future

states. In such cases, the filtering distribution at time t serves as an initial distribution

for the model’s future evolution. To be more specific, the joint distribution of present
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and future states (θt+k)k≥0 and future observations (Yt+k)k≥1 can be modeled through

a Dynamic Linear Model with an initial distribution of p(θt|Dt). Since θt contains all

the information up to time t, one simply starts from there and computes the filtering

recursions.

By setting E(θt|Dt) = mt and V ar(θt|Dt) = Ct, the recursive formulae are the

following:

• The distribution of θt+k given Dt is Gaussian, with

E(θt+k|Dt) = Gt+kE(θt+k−1|Dt)

V ar(θt+k|Dt) = Gt+kV ar(θt+k−1|Dt)G
′
t+k +Wt+k

(2.17)

• The distribution of Yt+k given Dt is Gaussian, with

E(Yt+k|Dt) = Ft+kE(θt+k|Dt)

V ar(Yt+k|Dt) = Ft+kV ar(θt+k|Dt)F
′
t+k + Vt

(2.18)

From equation (2.18) it is evident that the further into the future we predict, the

variability increases. As a result, the predictions become more and more inaccurate

since the available and valuable information is very far in the past.

2.3.5 Innovations

The Kalman filter provides the filtering estimate mt by correcting the previous estimate

mt−1 by a term which depends on the prediction error

et = Yt − E(Yt|Dt−1) = Yt − ft (2.19)

or, alternatively

et = Yt − Ftat = Ftθt + vt − Ftat

= Ft (θt − at) + vt = Ft (θt −Gtmt−1) + vt
(2.20)

The sequence of prediction errors (et, t ≥ 1) has the following properties:

• The expected value of et is zero
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• The random vector et is uncorrelated with any function of Y1, ..., Yt−1. Specifically,

if s < t, then et and Ys are uncorrelated. Let Z = g(Y1, ..., Yt−1), then

Cov (et, Z) = E (etZ) = E (E (etZ | Dt−1))

= E (E (Yt − ft | Dt−1)Z) = 0
(2.21)

• for s 6= t, et and es are uncorrelated.

• et is a linear combination of Y1, ..., Yt−1

• (et, t ≥ 1) is a Gaussian process

et ∼ Nm(0, Qt), t = 1, 2, ... (2.22)

with Qt as defined in equation 2.10

These errors are also called innovations because of the role they play in the model.

In fact, Yt can be thought as being the sum of a component which is predictable, ft, and

et which is independent from the past and contains new information about the process.

2.3.6 Model Checking

If the observations are univariate, then the standardized innovations, defined by ẽt =

et/
√
Qt follow a Gaussian white noise distribution. If the model is accurate, the sequence

of standardized innovations (ẽ1, ..., ẽt) should resemble a random sample of size t taken

from a standard normal distribution. In the upcoming chapters, we will be evaluating the

goodness of fit of the models we use by performing tests on the standardized innovations.

These tests will serve two main purposes. Firstly, we will test the hypothesis that the

sequence of standardized innovations is uncorrelated. Secondly, we will test whether the

standardized innovations follow a standard normal distribution.

2.3.7 Trend

Within the framework of Dynamic Linear Models (DLMs), the trend component is

regarded as the gradual and smooth evolution of the time series over time. Specifically,

at a given time t, the expected behavior of the time series can be thought as the expected

behavior of Yt+k for k ≥ 1, taking into account the information available up to time t.

As a result, the expected trend can be represented by the function ft(k) = E(Yt+k|Dt).
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A polynomial model of order n in DLMs is characterized by the presence of fixed

matrices Ft = F and Gt = G, known matrices Vt and Wt, and a forecast function

ft(k) = E(Yt+k|Dt) = at,0 + at,1k + ...+ at,n−1k
n−1 (2.23)

where at,0, ..., at,n−1 are linear functions of E(θt|Dt).

Thus the forecast function is of order n − 1. Every function can be approximated

by choosing n sufficiently large, but in most cases, n = 1 (random walk plus noise)

and n = 2 (linear growth model) give the best results. For example, a Linear Growth

model , i.e. a random walk plus noise model which includes a time-varying slope in the

dynamics of the level, can be written as

Yt = λt + vt vt ∼ N(0, V )

λt = λt−1 + βt−1 + w1,t w1,t ∼ N(0, σ2
w1
)

βt = βt−1 + w2,t w2,t ∼ N(0, σ2
w2
)

(2.24)

with λt being the estimated local level and βt the dynamic slope, which together form

the state vector θt = (λt, βt)
′. The forecast function is then defined as

ft(k) = λ̂t + kβ̂t (2.25)

which is a linear function of k, so the linear growth model is a polynomial DLM of order

2.

2.3.8 Seasonality

Here, to model seasonality we present the Seasonal Factor model, however, a second

formulation using a Fourier-form seasonal model can be found in Petris et al. (2009).

Assume the series has zero mean, or in other words, assume that it is purely seasonal.

Seasonality can be modeled by introducing seasonal deviations from the zero mean.

This can be achieved by incorporating different coefficients, denoted as αi, where each

coefficient represents a specific season.

For example, in the case of quarterly data, α1 may represent the first quarter, α2

the second one and so on. This specific model can be written as a Dynamic Linear

Model as follows. Let θt−1 = (α1, α4, α3, α2)
T where t − 1 refers to the first quarter

of the year and Ft = F = (1, 0, 0, 0) then the observation equation has the form of

Yt−1 = Fθt−1+vt−1 = α1+vt−1 . Then to represent the next quarter, θt−1 has to change

to θt = (α2, α1, α4, α3)
T , so that Yt = Fθt + vt = α2 + vt. The required permutation can
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be represented by

G =













0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0













(2.26)

Then the state equation is

θt = Gθt−1 + wt = (α2, α1, α4, α3)
T + wt (2.27)

In general, a time series with period s can be modeled through a state vector θt

of dimension s, by specifying a DLM with F = (1, 0, ..., 0) and G, a sxs permutation

matrix. In this case, some constraints have to be imposed for identifiability problems.

One common choice is to make
∑s

j=1 αj = 0. The constraint also implies that there are

only s− 1 seasonal factors which lead to a more parsimonious representation that uses

an s−1-dimensional state vector. In general, if the series has period s, one can consider

the (s− 1)-dimensional state space, with F = (1, 0, ..., 0) and

G =



















−1 −1 ... −1 −1
1 0 ... 0 0

0 1 ... 0 0
. . .

0 0 ... 1 0



















(2.28)

2.3.9 Regression

Regressors can also be easily implemented in a DLM. Imagine for example that Yt

depends on another variable xt according to the following relationship

Yt = atxt + vt vt ∼ N(0, Vt) (2.29)

Usually αt = α in a simple regression model. In the context of DLMs, however, we let

α change over time introducing a state equation

αt = αt−1 + wt wt ∼ N(0,Wt) (2.30)
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In general the Dynamic Liner Regression model is described as

Yt = Xtθt + vt, vt ∼ N (0, Vt)

θt = Gtθt−1 + wt, wt ∼ N (0,Wt)
(2.31)

where Xt is the vector of explanatory variables for period t which is assumed to be

known. This way, DLMs techniques may be used to sequentially update the estimates

of the parameters of a regression model as new information become available.

2.3.10 Maximum likelihood estimation

For this study, in order to estimate the unknown values of Ft, Gt, Vt, and Wt, which in

the general case are unknown, Maximum Likelihood Estimation was used.

Suppose we have a collection of z random vectors, denoted by Y1, Y2, . . . , Yz. The dis-

tribution of these vectors is dependent on an unknown parameter, denoted by φ. We can

express the joint density of the observations for a specific value of φ as p(y1, y2, . . . , yz;φ),

which allows us to define the likelihood function as L(φ) = const · p(y1, y2, . . . , yz;φ).
For a Dynamic Linear Model, it is more convenient to express the joint density of the

observations in a different form. Specifically, we can write it as a product of conditional

densities, which correspond to the probability of observing each data point yt given the

information available up to time t− 1 (denoted by Dt−1). More formally, we can write

p(y1, y2, . . . , yz;φ) =
z
∏

t=1

p(yt|Dt−1;φ) (2.32)

where p(yt|Dt−1;φ) represents the conditional density of yt given the data up to time

t−1, and it assumes that the value of the unknown parameter is φ. As it was previously

explained, we know that the terms contained in the conditional density are Gaussian

densities with mean ft and variance Qt. As a result, the likelihood can be written as

l(φ) = −1

2

z
∑

t=1

log |Qt| −
1

2

z
∑

t=1

(yt − ft)
′Q−1

t (yt − ft) (2.33)

This expression can be maximized

φ̂ = argmax
φ

l(φ) (2.34)

Moreover, by denoting with H the Hessian matrix −l(φ), evaluated at φ = φ̂, then

H−1 provides an estimate of the variance of the maximum likelihood estimator.
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2.4 Prophet

Prophet is formed by a decomposable time series model consisting primarily of three

components

• A trend g(t) which models non periodic changes in the time series.

• A seasonality s(t) which represents periodic changes.

• A holiday effect h(t) to represents the effects of holidays which occur on irregular

basis.

It is worth noting that the function h(t) can be extended to include other regressors.

While these additional regressors are not included in the basic notation and formulation

presented in this chapter, the model can be readily expanded to incorporate them.

This formulation is similar to a Generalized Additive Model (GAM), for specifications

see Azzalini & Scarpa (2012). This makes it advantageous because it decomposes easily

and accomodates new components as necessary. By doing this, the problem becomes

a curve-fitting exercise. This means that the model does not explicitly account for

temporal dependence structure in the data (time is given simply as a regressor), but

there are also several perks:

• Flexibility: seasonality can have multiple periods and the analyst can make dif-

ferent assumptions about the trend.

• Measurements do not need to be regularly spaced.

• Fitting is very fast.

• The parameters are very easy to interpret.

2.4.1 Trend

In the original paper, two trend models were implemented, here, however, we will present

only the one we used in the analysis, i.e. the Piecewise Linear Trend with Changepoints.

This model is defined as

g(t) = (k + a(t)T δ)t+ (m+ a(t)Tγ) (2.35)

The growth rate, denoted by k, represents the expected rate of increase or decrease

in a time series over time. Additionally, there is an offset parameter m, and a vector
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of changepoints δ. Changepoints are specific points in time where the growth rate is

allowed to change, resulting in a non-constant growth rate that can capture a variety of

time series patterns. The growth rate at any given time t is calculated by adding the

base rate k to the sum of all the changepoints up to that point, k +
∑

j:t>sj
δj. This is

represented more clearly by defining a(t) ∈ {0, 1}S, such that

aj(t) =







1, if t ≥ sj

0, otherwise
(2.36)

The rate at time t is then k+a(t)T δ, like in equation 2.35. Moreover, these changepoints,

defined by sj can be specified or may be automatically selected. To do so, one needs to

use Bayesian Statistics and put a prior on their distribution, resulting in

δj ∼ Laplace(0, τ) (2.37)

where τ controls the flexibility of the model. Finally in formula 2.35 there is γ where γj

is set to −sjδj to make the function continuous.

2.4.2 Seasonality

To effectively model and forecast seasonality in time series, it is crucial to specify a

periodic function of time. This periodic function results in a seasonality model that

is capable of capturing the seasonal patterns within the data. In the case of Prophet,

Fourier series are utilized to provide a flexible model of periodic effects. By specifying

the regular period (P ) of the time series, the seasonal effects can be smoothed using

s(t) =
N
∑

n=1

(

an cos

(

2πnt

P

)

+ bn sin

(

2πnt

P

))

(2.38)

This requires estimating 2N parameters β = [a1, b1, ..., aN , bN ]
T . This is done by creating

a matrix of seasonality vectors for each value of t. The component is then

s(t) = X(t)β (2.39)

In Prophet ’s generative model, β ∼ N(0, σ2) to impose a smoothing prior on the sea-

sonality.
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2.4.3 Holidays

The idea of having a Holiday effect in the standard formulation of the model, come

from the fact that holidays ususally provide large and predictable shocks to many time

series. To include holidays in the model, it is assumed that their effects are independent,

making it a straightforward process. For each holiday, denoted as i, the set of dates

in the past and future related to that holiday is defined as Di. An indicator function

is then added to represent whether time t falls during holiday i, and a corresponding

parameter κi is assigned to represent the change in the forecast during that holiday.

This approach is similar to how seasonality is modeled, in fact, we define

Z(t) = [1(t ∈ D1), ..., 1(t ∈ DL)] (2.40)

and take

h(t) = Z(t)κ (2.41)

with κ ∼ Normal(0, ν2)

2.5 Optimization

Since both of the models presented use the same optimization algorithm (at least in

the implementation that it was used in this thesis), in this section the Limited-memory

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm (Liu & Nocedal (1989)), will

be introduced and explained.

2.5.1 L-BFGS

In the BFGS algorithm, each step has the form

xk+1 = xk − αkHk∇f(k) (2.42)

where xk is the vector of variables at iteration k, fk is the objective function, αk is the

step length, and Hk is the approximation of the Hessian at iteration k. Hk is updated

at every step by

Hk+1 = V T
k HkVk + ρksks

T
k (2.43)

where

ρk =
1

yTk sk
, Vk = I − ρkyks

T
k , (2.44)
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and

sk = xk+1 − xk, yk = ∇fk+1 −∇fk (2.45)

The storage and manipulation of the dense approximation Hk can be prohibitively

expensive when dealing with a large number of variables. To address this issue, a mod-

ified version of Hk is stored by selecting only a limited number (e.g., m) of vector pairs

{si, yi} used in the formulas 2.43-2.45. The product Hk∇fk can then be obtained by

performing a series of inner products and vector summations involving ∇fk and the

selected vector pairs. The oldest vector pair {si, yi} is then replaced by the new pair

{sk, yk} obtained from the current step (2.45). This way, the set of vector pairs includes

curvature information from only the most recent m iterations. Empirical evidence sug-

gests that small values of m (typically between 3 and 20) often lead to satisfactory

results.

More specifically, at iteration k we have xk as the current value for the parameters and

the set of vector pairs is given by {si, yi}. Then starting from an initial approximation

H0
k , formula 2.43 is applied multiple times until Hk satisfies

Hk =
(

V T
k−1 · · ·V T

k−m

)

H0
k (Vk−m · · ·Vk−1)

+ ρk−m

(

V T
k−1 · · ·V T

k−m+1

)

sk−ms
T
k−m (Vk−m+1 · · ·Vk−1)

+ ρk−m+1

(

V T
k−1 · · ·V T

k−m+2

)

sk−m+1s
T
k−m+1 (Vk−m+2 · · ·Vk−1)

+ · · ·
+ ρk−1sk−1s

T
k−1.

(2.46)

From this expression a recursive procedure to compute Hk∇fk efficiently can be

derived (Algorithm 1).

Algorithm 1 L-BFGS two loop recursion

1: q ← ∇fk
2: for (i = k − 1, k − 2, ..., k −m) do
3: αi ← ρis

T
i q;

4: q ← q − αiyi

5: r ← H0
kq;

6: for (i = k −m, k −m+ 1, ..., k − 1) do
7: β ← ρiy

T
i r;

8: r ← r + si(αi − β)

9: stop with result Hk∇fk = r

The computation required for multiplying by H0
k is not very costly, as it only requires

4mn multiplications. Additionally, this multiplication step is separate from the other
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computations, which means that H0
k can be selected freely and can be varied between

iterations.

A method for choosing H0
k is to set H0

k = γkI where

γk =
sTk−1yk−1

yTk−1yk−1

(2.47)

In this case, γk is the scaling factor that tries to estimate the size of the true Hessian

matrix along the most recent search direction. Finally the L-BFGS algorithm can be

defined as

Algorithm 2 L-BFGS

1: Choose starting point x0, integer m > 0;
2: k ← 0;
3: repeat
4: Choose H0

k

5: Compute pk ← −Hk∇fk from Algorithm 1.
6: Compute xk+1 ← xk + αkpk, where αk is chosen to satisfy the Wolfe conditions;
7: if k > m then
8: Discard the pair {sk−m, yk−m} from storage;

9: Compute and save sk ← xk+1 − xk, yk = ∇fk+1 −∇fk;
10: k ← k + 1;
11: until convergence

The strategy of keeping the m most recent correction pairs works well in practice and

it is proven to outperform Hessian-free Newton methods, see Nocedal & Wright (1999).

The main weakness of L-BFGS is that its performance can be limited in situations

where the Hessian matrix is ill-conditioned. This is because the algorithm relies on

approximating the Hessian matrix by a limited set of past gradient information. When

the Hessian matrix contains a wide distribution of eigenvalues, the limited set of past

gradient information may not be sufficient to capture the full range of curvature of the

objective function. In such cases, the algorithm may converge slowly, leading to longer

computation times. Despite, this L-BFGS remains one popular and efficient choice for

optimization problems.



Chapter 3

Number of People Analysis

In this chapter, both the Prophet model and the Dynamic Linear Model will be applied

to the dataset presented in Chapter 1. By conducting a comprehensive evaluation,

the goal is to assess the efficacy of these models in forecasting the target variable.

Moreover, we will explore the results obtained from applying both models and present a

comparative analysis of their forecasting performance. By comparing the performance

of the Prophet model and the Dynamic Linear Model on the same dataset, we aim to

provide empirical evidence regarding the efficiency of state space methods and their

suitability for time series forecasting tasks in a real world setting.

3.1 The Time Series

To begin, it is important to examine the time series to gain insights into the presence of

any trend and potential seasonality. By visualizing the original dataset, we can obtain

a clearer understanding of its characteristics. The resulting time series plot is depicted

in Figure 3.1 where the colour of the background depends on the zona variable.

It is evident from the data that the number of people observed in each photo ex-

hibits a gradual increase over time, though with occasional setbacks. However, there

is an inherent issue with the dataset that needs to be acknowledged. As mentioned in

Chapter 1, the collection of photos was done inconsistently, with multiple photos taken

on certain days and no photos taken on others. Consequently, the time intervals between

consecutive observations can vary significantly, ranging from hours to even weeks.

In order to address this issue, the dataset was divided into three distinct subsets of

daily data: Morning, Noon, and Evening, corresponding to the respective timeframes

when the photos were taken. Furthermore, for the days on which no pictures were

taken, the corresponding observations were included in the datasets with the value NA

33
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Figure 3.1: Time Series of the Number of People.

denoting the number of people detected. As a result, each dataset now consists of evenly

spaced daily data, ensuring a consistent temporal structure across the observations.

The three times series are depicted in Figure 3.2. Each of the three series contains

Figure 3.2: Time Series of the number of people at Morning, Noon and Evening
(coloured by zona variable).

numerous missing observations. However, this does not pose a problem as the models

presented in this work can handle missing data effectively. Additionally, it is worth
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noting that all three time series exhibit an increasing trend, with occasional periods of

low numbers that typically align with the Italian Government restrictions.

3.1.1 Autocorrelation Plots

Before starting with the modeling, it is necessary to take a look at the correlograms of

these time series. A correlogram is the graphical representation of the autocorrelation

function (ACF) values of a time series. ACF is a statistical tool used to analyze the

presence of correlation or patterns in a time series. It measures the correlation between a

time series and its lagged versions, revealing the relationship between past observations

and the current observation. By examining the correlogram, we can gain insights into

the temporal dependencies and the presence of trends, seasonality, and other patterns

in the data (Fig. 3.3).

Figure 3.3: Correlograms of the Morning, Noon and Evening Time Series.

Each of the three time series exhibits a robust temporal correlation between observa-

tions. Notably, with the exception of theMorning time series, the autocorrelation values

surpass the confidence bands at all lag intervals. This indicates a strong and significant

autocorrelation structure, suggesting an influence of past observations on the current

values of the time series. Furthermore, there is a distinct pattern of seasonality with a
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period of 7 within the time series. This is evident, because the bars corresponding to the

lag intervals aligned with the time frames are consistently higher than the surrounding

bars. This recurring pattern every 7 steps indicates a cyclic behavior within the data,

suggesting the presence of weekly seasonality that needs to be taken into account when

fitting the models.

3.2 Prophet Results

To establish a benchmark for comparison, we will begin by fitting the Prophet model as

the initial modeling approach. This will serve as the baseline against which we will eval-

uate the results obtained from the Dynamic Linear Model. By employing the Prophet

model as the starting point, we can assess its performance and subsequently analyze the

improvements or differences achieved through the application of the Dynamic Linear

Model.

3.2.1 Morning

In the case of the Morning time series, the setup employed is the following: As discussed

in Chapter 2, a Piecewise Linear trend was selected as well as a weekly seasonality

component. Additionally, all regressors were included in the model, except for Season,

which was found to not be statistically significant.

First thing to look at is Figure 3.4, where the estimated trend was plotted. Notice

that the highlighted periods are those when Venice was in yellow zone or worse (orange

and red). This representation will be used throughout the thesis for better explainability.

Figure 3.4: Trend estimated by Prophet for the Morning Time Series. The
yellow background highlights the periods when Venice was in yellow zone or
worse.
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The fitted trend corresponds to a line with an upward slope over time, indicating

that the model successfully captures the evident increasing pattern observed in the time

series. However, it is unable to capture the temporary setbacks observed during the two

years of COVID-19.

Next, in order to assess the model’s performance, we plot the forecasted values, which

incorporate the effects of seasonality and regressors (Fig. 3.5). This step is crucial as

it provides insights into the model’s predictive capabilities and allows us to evaluate its

effectiveness as a predictor.

Figure 3.5: Predictions and intervals by Prophet for the Morning Time Series

The plot clearly illustrates the presence of seasonality in the time series, with a recur-

ring pattern observed on a weekly basis. The vector of predicted values aligns reasonably

well with the actual data, although there are instances where the observed values fall

outside the confidence intervals. To obtain a more comprehensive understanding of

the model’s goodness of fit, it is crucial to analyze the residuals and determine if the

model effectively eliminates autocorrelation. This can be accomplished by examining

the correlograms computed on the residuals, which provide insights into the presence or

absence of autocorrelation within the model. Figure 3.6 reveals that the distribution of

residuals is slightly skewed to the right. However, the majority of residuals are clustered

around zero, indicating a good fit of the model to the data. Additionally, the ACF plot

displays no significant deviations beyond the confidence bands, suggesting the absence

of autocorrelation. Furthermore, the Ljung-Box test conducted on the residuals yields

a p-value of 0.24, indicating no evidence for the presence of residual autocorrelation.

Based on these observations, it can be concluded that the model has effectively captured

the underlying signal in the data and provide a satisfactory explanation for the observed

time series.
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Figure 3.6: Prophet’s residuals: histogram and ACF for the Morning Time Series

3.2.2 Noon

Continuing with the analysis on the Noon dataset, the Prophet model was configured

with the same settings as in the previous case. This includes a Piecewise Linear trend,

incorporation of a weekly seasonality component, and inclusion of all regressors except

for the season variable.

As done earlier, the first thing to do is estimating the trend to see if the model is

able to capture the the overall direction or tendency of the series.

Figure 3.7: Trend estimated by Prophet for the Noon Time Series. The yellow
background highlights the periods when Venice was in yellow zone or worse.

Upon examining Figure 3.7, it becomes evident that the Noon time series exhibits a

more pronounced increasing trend compared to the Morning time series. The slope of
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the trend line is even steeper in this case. However, despite the model fitting a piece-

wise linear trend and selecting multiple changepoints, the resulting line appears more

like a single continuous line rather than a series of distinct segments able to capture

the sudden changes in the series, which, in this case, are more prominent than in the

previous series.

Now, the focus shifts to the forecasting ability of the model, which is plotted in Figure.

3.8. The incorporation of seasonality and regressors in the model greatly enhances its

Figure 3.8: Predictions and intervals by Prophet for the Noon Time Series.

ability to capture the underlying behavior of the time series. The model effectively

accounts for the setbacks observed during the pandemic and provides a satisfactory

fit to the overall trend of the series. However, it is important to note that the fit is

not perfect, as there are instances where high-value observations are not accurately

predicted.

To have a more practical idea of how the model is predicting the residuals are plotted

in Figure 3.9. In this case, although the distribution of errors exhibits a slight right-

Figure 3.9: Prophet’s residuals: histogram and ACF for the Noon Time Series.
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skewness, it is not as prominent. In general, the majority the residuals are centered

around zero, indicating that the model is fitted well to predict the values of the time

series. However, the residuals still exhibit considerable autocorrelation, even at lag 1.

Moreover, despite incorporating the seasonality when estimating the model, its effect

is still visible in the correlogram. Additionally, several values of the Autocorrelation

Function exceed the confidence bands, suggesting the presence of residual patterns or

dependencies that persist in the time series data.

3.2.3 Evening

Lastly, we proceed with the analysis of the Evening time series, which exhibits a behavior

similar to that of the Noon series. Because of this, similar results are to be expected.

As for the previous cases, the model’s setup is still the same: the season variable was

removed from the regressors as it proved to be not significant. The trend was set to

Piece-Wise Linear and a weekly seasonality effect was also added to the model.

Upon examining the plotted trend (Fig. 3.10), it is apparent once more that there is

an upward trend observed in the time series. However, in this particular case, it becomes

Figure 3.10: Trend estimated by Prophet for the Evening Time Series. The
yellow background highlights the periods when Venice was in yellow zone or
worse.

even more evident that the fitted trend may be overly simplistic, considering the high

variability present in the observed data. Notably, significant drops in the series, such

as those occurring in January 2021 and December 2021, are not adequately accounted

for by the trend component of the model, highlighting a limitation in its ability to fully

capture the dynamics and fluctuations of the time series once again.

The predicted values, on the other hand, seem to fit better to the observed data

(Fig. 3.11). This means that the seasonality and regression components account for the
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variability missing from the trend. A lot of the observed values, however, fall outside of

the confidence bands which means that the predictions could be improved.

Figure 3.11: Predictions and intervals by Prophet for the Evening Time Series.

The residuals plots (Fig. 3.12) confirms that some autocorrelation still remains, as

indicated by several values falling outside the confidence bands. The correlogram also

reveals statistically significant differences from zero at lags 7, 14, 21, and 28, indicat-

ing the persistence of seasonality in the residuals. Furthermore, the distribution of

errors exhibits asymmetry, with a mode around -5, suggesting a consistent pattern of

overestimation in the model’s predictions.

Figure 3.12: Prophet’s residuals: histogram and ACF for the Noon Time Series.

3.3 Dynamic Linear Model Results

In this section, we will present and discuss the results obtained by applying the Dynamic

Linear Model to the Morning, Noon and Evening time series. However, the comparison
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with Prophet ’s will not be presented here but in a later stage.

3.3.1 Morning

The first dataset on which the model was tested is the Morning dataframe. In this case,

the series shows random fluctations around a certain level, therefore a local level model

was tested and got the best results on the data. The setup is the following: the order of

the polynomial for the trend component was set to 1, the seasonality was set to 7 and

for the purpose of comparison, the regressors used were the same as those employed in

Prophet : mean temperature, zona, rain, and weekend festive.

In Figure 3.13, the plots of the smoothed trend and the smoothed series are presented.

Remember that, in the context of of DLMs, the smoother retrospectively reconstructs

the behavior of the system under analysis by using all information up to time t.

Figure 3.13: Smoothed Trend and Series for the Morning Time Series. The

yellow background highlights the periods when Venice was in yellow zone or worse.

Clearly, the estimated trend effectively captures the behavior of the time series,

as demonstrated by its accurate fitting of the setbacks observed in January 2021 and

January 2022. Overall, the trend appears to closely align with the shape of the data,

which indicates that the state space approach is very flexible. The smoothed series,

obtained by combining the trend, seasonal, and regression components, exhibits a strong

alignment with the observed data. On the other hand, there are some issues in the

initial period between March 2020 and November 2020, these can be attributed to the

presence of numerous missing values and the recursive nature of Dynamic Linear Models,
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which rely on previous values for estimation. Furthermore, while the lows in the series

are accurately fitted, there are instances where some of the peaks are not adequately

represented, resulting in underestimation.

Next, in Figure 3.14 the one-step-ahead predictions for the observed values are plot-

ted.

Figure 3.14: One-step-ahead predictions and intervals for the Morning Time Series.

The fitted values demonstrate a strong alignment with the observed data: first of all,

the overall trend is effectively captured by predictions. Second, the peaks that are not

perfectly fitted by the model still fall within the confidence bands. Furthermore, in the

initial period characterized by a high number of missing values, the fitting is reasonably

performed, although the confidence intervals tend to be wide due to the limited data

points available for prediction.

Finally, in order to evaluate the quality of the fit, it is essential to examine the

standardized residuals, also known as innovations, as discussed in Chapter 2 (Fig. 3.15).

Figure 3.15: Residuals: histogram and ACF for the Morning Time Series.
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The results are very promising, the residuals exhibit no autocorrelation and follow a

symmetric distribution centered around zero with zero being the mode. As introduced

in Chapter 2, it is expected for residuals to adhere to a standard normal distribution and

display no autocorrelation. To evaluate these two properties, the Shapiro and Ljung-

Box tests were conducted. The first one yielded a p-value of 0.11, while the second one

resulted in a p-value of 0.34, confirming that both conditions are satisfied.

3.3.2 Noon

For the Noon time series two different models were tested for the trend: the local level

model and the linear growth model. In this case, the latter was selected as it yielded

the best results and a better Akaike Information Criterion (AIC) score. The setup,

therefore, is the following: the order of the polynomial for the trend component was set

to 2, a weekly seasonality was added and the matrix of regressors is the same as for the

Morning time series.

The smoothed trend and the smoothed time series are plotted in Figure 3.16: the

trend in the series effectively captures its behavior, with few exceptions. Apart from a

slight decrease and subsequent relatively constant trend immediately following January

2021, the model adequately accounts for all other setbacks and sudden increases in the

series. Regarding the smoothed series, the inclusion of seasonality and regressors signifi-

cantly enhances the model’s capabilities. The dynamic changes in seasonality over time

are readily observable, illustrating its ability to adapt to the series’ evolving patterns.

In general, the smoother successfully represents the series’ underlying characteristics.

Figure 3.16: Smoothed Trend and Series for the Noon Time Series. The yellow

background highlights the periods when Venice was in yellow zone or worse.
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Next, in order to assess the model’s performance when predicting future values, we

plot the one-step-ahead prediction (Fig. 3.17).

Figure 3.17: One-step-ahead predictions and intervals for the Noon Time Series.

During the initial 6 months, where the available data is limited, the predictions

exhibit significant noise. This is evident from the wide confidence bands, indicating

the uncertainty in the forecasted values. Moreover, between July 2020 and November

2020, the predicted trend shows a somewhat exaggerated constant increase that deviates

from the actual observed behavior. As the number of observations stabilizes over time,

the forecasting significantly improves and closely aligns with the observed data. The

majority of the observations fall within the confidence intervals, indicating the accuracy

of the predictions. Finally, it is necessary to analyse the innovations, whose distribution

is plotted in Figure 3.18 alongside the correlogram.

Figure 3.18: Residuals: histogram and ACF for the Noon Time Series.
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The histogram displays a slight rightward asymmetry, although the majority of values

are centered around zero, indicating a good fit. The correlogram exhibits a residual

autocorrelation, but overall, the majority of the bars fall within the confidence intervals,

with only a few, acceptable exceptions that are just outside of them. Conducting the

Shapiro and Ljung-Box tests yield p-values of 0.000032 and 0.0117, respectively. As

a result, the assumptions of normality and autocorrelation are violated. Nevertheless,

considering the strength of these assumptions, these values can be deemed acceptable.

3.3.3 Evening

For the final dataset, the Evening one, the analysis is very similar to the Noon dataset.

However, there is one main difference. The polynomial order that was found yielding the

best results was actually a first order polynomial and not a second order. Everything

else, i.e. the seasonality component and the design matrix, remained the same.

The trend component (Fig. 3.19) follows closely the observed data. In fact, it effec-

tively captures the various oscillations occurring over the span of two and a half years,

accurately representing the behaviour of the series. However, the smoother appears to

slightly overestimate the values of the series.

Figure 3.19: Smoothed Trend and Series for the Evening Time Series. The

yellow background highlights the periods when Venice was in yellow zone or

worse.

The smoothed series, which includes the seasonal component and the regressors, fixes

the problem and achieves a close resemblance to the original series, indicating a good fit

of the model. Once again, the dynamic nature of the seasonality is evident, showcasing
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the flexibility of the model, which is able to accurately follow the series different patterns

and variations.

As for the predictions, plotted in Figure 3.20, the behavior is very similar to the

smoothed series. In the first six months, because of the missing values, there is high

variability. On the other hand, the remaining part of the series does not exhibit any

indications of poor fitting, as the majority of observations lie within the confidence

intervals.

Figure 3.20: One-step-ahead predictions and intervals for the Evening Time Series.

The residuals exhibit a symmetrical distribution centered around zero, with the ma-

jority of values closely approaching zero (Fig. 3.21). Conversely, the correlogram is not

flawless, as some values exceed the confidence intervals, despite the absence of season-

ality. The violations of assumptions are confirmed by the Shapiro test and Ljung-Box

test, whose p-values are respectively 0.00066 and 0.0087, respectively.

Figure 3.21: Residuals: histogram and ACF for the Evening Time Series.
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3.4 Models Comparison

After presenting the results for both the Prophet model and the Dynamic Linear Model,

we can derive some conclusions and assess the relative efficiency of these two models

when applied to real-world time series data.

First of all, it is important to notice that the three time series presented in this work

are not trivial. The primary challenge arises from the significant number of missing

values. Both of the approaches we used are able to handle this type of data, nevertheless,

dealing with a significant amount of missing data is a difficult task. Specifically, for the

Morning and Evening datasets, 50% of the values are marked as NA, whereas for the

Noon dataframe, the percentage decreases slightly to 46%. In addition, the number

of people walking in the streets of Venice can be influenced by numerous unaccounted

factors. Moreover, the data extraction process relied on a Neural Network, which,

despite its overall effectiveness, faces challenges when handling highly crowded photos

and images with reduced visibility. These two things combined lead to a high variability

in the observations and thus a more complicated analysis. With these premises, the two

models that have been employed, Prophet and Dynamic Linear Model, are able to give

a satisfactory fit to the observed data, especially the latter, which outperforms Prophet

in every aspect, offering a comprehensive analysis of the time series.

Firstly, Tables 3.1 and 3.2 provides a quantitative assessment of the performance of

the two models by presenting the mean squared error (MSE) for both in-sample predic-

tions and out-of-sample predictions. The in-sample predictions compare the predicted

values of the Prophet model with the smoothed values of the Dynamic Linear Model. On

the other hand, the out-of-sample predictions compare the one-step-ahead predictions

of Prophet with the ones of the DLM for the last thirty observations in the three series.

In-sample MSE

Dataset Prophet Dynamic Linear Model

Morning 18.56 17.06

Noon 80.34 51.49

Evening 72.60 49.68

Table 3.1: In-sample MSE for the two models.
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Out-of-sample MSE

Dataset Prophet Dynamic Linear Model

Morning 26.04 21.08

Noon 113.66 88.72

Evening 140.99 135.22

Table 3.2: Out-of-sample MSE for the two models

In both metrics across all three datasets, the DLM outperforms Prophet. This superi-

ority is particularly pronounced in the Noon dataset, where the results show a significant

improvement compared to those of Meta’s model. These results underscore the strength

of the Dynamic Linear Model in capturing the underlying patterns and dynamics of the

data, enabling it to generate more precise predictions.

Secondly, for all three series the trend captured by the DLM is way more accurate

than the one estimated by Prophet. Despite Prophet ’s capability to detect different

changepoints and approximate the trend using piecewise linear functions, the result

appears as a shallow linear increase in all three cases. On the other hand, the smoothed

trend provided by Dynamic Linear Model successfully captures all the patterns and the

general behaviour of the response variable. Indeed, throughout the observed period,

there were numerous falls in the number of people driven by the pandemic, followed by

subsequent periods of recovery and regrowth. It is essential to consider these setbacks

and fluctuations rather than being constrained by an informative, but still simplistic

linear increase.

Next, aside from the first months, where the large number of missing values plus the

sequential development of the Kalman filter throught time, make the predictions very

variable, the forecasted values provided by the DLM look much better. Not only they

offer a better fit to the observed data, but they also fall within the confidence intervals,

with only a few exceptions. Moreover, the residuals of the DLM exhibit lower levels of

autocorrelation, with only one case having a slightly lower p-value than 0.01, indicating

a good fit to the data. In contrast, the residuals of Prophet, aside from the Morning

dataset, demonstrate signs of autocorrelation and seasonality.

Finally, it is important to focus on how these models achieve the results. As intro-

duced in Chapter 2, Prophet is, at its core, an additive model composed of different

components. As a result of its additive nature, whenever new data becomes available

and updated estimates are required, it is necessary to refit the entire model. In the

context described in this thesis, this is not a limitation, as the number of observations
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is relatively small, and the computational time required to fit the model is minimal.

However, in many applications, especially in recent years with the exponential growth

of data, this may not hold true. On the contrary, thanks to their recursive nature,

Dynamic Linear Models have several advantages:

• Real-time analysis: With sequential updating, DLMs can analyze time series data

in real-time as new observations are received.

• Efficiency: By updating the model incrementally, sequential updating avoids the

need to reestimate the entire model with each new data point.

• Adaptive modeling: DLMs can adapt and adjust to changing patterns or dynam-

ics in the data over time. As new observations are incorporated, the model’s

estimates can be refined, allowing it to capture evolving trends, seasonality, or

other underlying patterns more accurately.

Overall, sequential updating of DLMs offers a flexible and efficient approach to model

time series data, allowing for adaptive analysis and real-time insights as new observations

are received.

3.5 Interpretation

Having established the superior fit of the DLM compared to Prophet on the three

datasets presented in this thesis, this section aims to delve further into the model to

analyze the behavior of the series and examine the influence of COVID-19 on the number

of people in the streets of Venice.

In fact, one of the key characteristics of Dynamic Linear Models is their ability to

generate interpretable results, allowing analysts to gain insights into the relationships

between variables and the evolution of a system over time. Unlike other algorithms,

DLMs provide a clear and transparent representation of how the data evolves over

time. By explicitly modeling the underlying state variables and their relationships,

DLMs allow for meaningful interpretation and understanding of the observed data.

Furthermore, DLMs allow for the interpretation of various components of the model,

such as the trend, seasonality, and exogenous variables. By decomposing the time

series into these distinct components, analysts can gain insights into the individual

contributions of each component and their impact on the overall behavior of the system.

To begin with, the trend, plotted in Figure 3.13, 3.16, and 3.19, appears similar the

three series. The only noticeable distinction lies in the Morning series, which exhibits a
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more consistent trend centered around the value of 10. On the contrary, the remaining

two series demonstrate a consistent upward trajectory in their values, which appears to

persist until around July 2022. Consequently, with some occasional setbacks, notably in

January 2021 and January 2022 due to strengthened restrictions during holiday periods,

the number of people walking in the streets continued to rise until the impact of COVID-

19 diminished as a threat.

Next, we shift our focus on the smoothed seasonality component, plotted in Figure

3.22, to analyse the pattern and the impact it has on the series.

Figure 3.22: Seasonality estimated by the DLM for the three series.

Clearly, the seasonality is estimated dynamically by the model. This is noticeable in

the Noon and Evening time series, where we can see it constantly changing across dif-

ferent periods. The former, however, presents the most variability, which significantly

affects the number of individuals, with substantial negative and positive values, par-

ticularly during the initial and final nine months. Furthermore, the pattern remains

consistent across different times of the day: the count consistently increases signifi-

cantly during the weekends and subsequently declines at the beginning and throughout

the week.

Finally, the regressors, along with other components, are dynamically estimated. To

examine their behavior, we will plot their values estimated by the Kalman filter at each

time step. However, it’s worth noting that the first six months predominantly contain

missing values, resulting in highly variable estimates. For the sake of clarity, we will

only plot the values starting from November 2020 onwards. The first two variables are
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the ones related to the wheather conditions on the day the pictures were taken, plotted

in Figure 3.23.

Figure 3.23: Values estimated for the parameters of the variable

mean temperature and rain respectively.

When examining the temperature variable, we observe that in the morning, the

coefficients’ values are nearly zero. This makes sense since the photos are captured early

in the day when the streets are primarily occupied by workers who go work. Conversely,

during the afternoon and evening, there is a negative effect, albeit not significantly

large, and during the summer, the values rise closer to zero. It is likely that the impact

of various seasons and temperatures is already accounted for by the trend component,

which captures the long-term relationships within the series. In contrast, the coefficients

related to rainfall are highly intuitive. In the morning, the coefficient value remains near

zero for the same reason as earlier. However, during other times of the day when people

venture out for a walk, the impact on the number of individuals is negative, indicating

that rainfall has a noticeable influence in deterring people from being outdoors.

Moving on with the weekend festive variable, its values are plotted in Figure 3.24.

Figure 3.24: Values estimated for the parameters of the weekend festive variable.
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Clearly, during the morning hours, festive days have a negative effect on pedestrian

numbers. This can be attributed to the fact that on festive days, people are not working,

resulting in significantly emptier streets during the early hours. On the contrary, during

the afternoon, there is a strongly positive effect, indicating a significant impact on the

number of people in the streets of Venice on days of rest. In the evening, when both

workers and non-workers have the opportunity to go out, the coefficient values are close

to zero, suggesting a minimal or negligible effect. The last variable, the one related to

the government constrictions, has also a big impact on the target variable, however, not

in the way one would think (Fig. 3.25).

Figure 3.25: Values estimated for the parameters of the zona variable.

The baseline level is set as lockdown, and except for the Morning dataset, the impact

of different zones appears to be contrary to what was observed during the COVID-19

pandemic. Observations during Phase2 and Phase3 are not reliable since they are very

limited but they exhibit a notable positive effect. On the other hand, other zones,

including no-emergency, seem to have a more negative impact on pedestrian numbers

compared to the lockdown period when people were predominantly at home. However,

the apparent inconsistency can be explained by the fact that, similar to the mean tem-

perature, a portion of the variability and information contained in the zona variable is

already captured by the trend component. As previously mentioned, in the ”Evening”

dataset, the trend component slightly overestimates the observed values. Hence, it is

logical for the regressors to compensate for this by exerting a negative effect, even for

the more restrictions-free coefficients. Furthermore, a simple Linear Model was fitted

with only the variable zona as a dependent variable and lockdown as the reference level.

The results are summarized in Table 3.3.
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. Morning
Parameter Value P-value

Intercept 4.0 0.08

No-Emergency 9.7 5.5e-05

Orange 6.5 0.01

Phase 2 NA NA

Phase 3 NA NA

Red 3.0 0.23

White 7.5 0.001

Yellow 7.0 0.003

Noon
Parameter Value P-value

Intercept 10.0 9.0e-09

No-Emergency 33.9 2.0e-16

Orange 10.7 7.8e-06

Phase 2 9.6 0.0001

Phase 3 14.7 4.2e-06

Red 7.3 0.003

White 25.9 2.0e-16

Yellow 20.0 2.0e-16

Evening
Parameter Value P-value

Intercept 7.4 0.0001

No-Emergency 36.4 2.0e-16

Orange 13.4 2.0e-07

Phase 2 13.0 5.5e-07

Phase 3 15.6 3.1e-06

Red 3.0 0.004

White 22.4 2.0e-16

Yellow 19.1 2.0e-16

Table 3.3: Parameter estimates of a linear model for zona variable.

In this scenario, with only the zona variable as a predictor, we can observe that the

effect aligns with our expectations. The reference level, corresponding to the lockdown

period, has the lowest value, while all other zones increase this value proportionally

based on the degree of restrictions imposed in that period. As a result, the Red zone

consistently exhibits the lowest value among all the other zones. After that, the Orange

zone and Phase 2, characterized by relatively stringent restrictions, show slightly higher

values. Finally, the remaining periods are relatively comparable, with the no-emergency

period exhibiting the highest increase in value.

This concludes the analysis of the results of the Dynamic Linear Model. As we

have seen, this methodology offers flexibility and interpretability, allowing us to gain

valuable insights into the data. By incorporating various components such as trends,

regressors, and reference levels, we were able to examine the relationships and impacts

within the time series. More specifically, the impact of COVID-19 on pedestrian activity

was evident in various time periods and can be observed through the analysis of the

time series data, with factors like temperature, rainfall, and zones (reflecting different

stages of restrictions) all playing a different role in shaping the fluctuations in pedestrian

numbers during the pandemic.



Chapter 4

Cluster Analysis

After successfully implementing the Dynamic Linear Models and conducting an analysis

on the number of people at Campo San Felice in Venice, the focus now shifts towards

examining the spatial distribution of these individuals. The analysis is of particular in-

terest due to the implementation of various restrictions during the pandemic concerning

public gatherings. Throughout the majority of the studied period, individuals were pro-

hibited from being in close proximity, with a minimum requirement of 1.5 metres, and

clusters were strongly discouraged. Hence, the objective of this chapter is to examine

the alterations in the clustering behavior of individuals. The focus is on understand-

ing how people’s tendency to form groups or clusters has changed over time and under

different constrictions. To begin with, a significant issue concerning the perspective

captured in the photos will be presented, followed by a proposed solution to address

it. Subsequently, the DBSCAN clustering algorithm will be introduced and applied to

the coordinates of individuals within the photos. Finally, with these clusters various

analysis will be conducted using Dynamic Linear Models.

4.1 Perspective Transformation

As discussed in Chapter 1, YOLOv7 has the capability not only to detect the number

of people in a photo but also to locate their positions within the image. Consequently, a

dataset was created containing the coordinates of each person in each photo. However,

it is important to note that this dataset suffers from a significant flaw. In fact, by taking

a quick look at any of the pictures, it is clear that were not captured from an overhead,

bird’s eye perspective of the square. Therefore, the coordinates derived from the neural

network are inaccurate. While this discrepancy may have a negligible impact on people

in the foreground, it becomes more pronounced for individuals situated farther away. In

55
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such cases, the estimated positions are significantly closer than their actual distances.

As a result, any clustering algorithm relying on distance-based calculations would fail

in this biased environment. Because of this, a solution is required to address this aspect

and incorporate it into the analysis. It turns out that the problem can be solved by a

transformation called Homography, which consists of a simple matrix multiplication.

4.1.1 Homography

Through Homography it is possible to shift from one view to another view of the same

scene. This is achieved by multiplying the Homography Matrix with the points in one

viewpoint, thus determining their corresponding locations in the alternative viewpoint.

By denoting with P and R the matrices containing the original locations and the

projected locations respectively, the task is to find H such that

R = HP

R =









h11 h12 h13

h21 h22 h23

h31 h32 h33









P
(4.1)

In this study, we will only provide a brief overview of how the Homography matrix (H)

is estimated. However, to understand this estimation process, we need to introduce two

fundamental concepts: Homogenous Coordinates, Bloomenthal & Rokne (1994) and the

Pin Hole Camera Model, Sturm (2014). Homogeneous coordinates are a mathematical

representation used in projective space. They allow us to represent points, lines, and

other geometric entities in a uniform manner. Unlike Cartesian coordinates, which

use three values (x, y, z) to represent a point in three-dimensional space, homogeneous

coordinates use four values (x, y, z, w). This extra dimension, represented by the scaling

factor w, allows for the representation of points at infinity and supports transformations

involving perspective. It enables us to represent parallel lines as intersecting at a point

at infinity and perform perspective transformations such as projecting 3D objects onto

a 2D image plane.

Homogeneous coordinates and projective space make it possible to develop the pin

hole camera model, which, in simple terms, is a simplified representation of how a camera

captures an image. It is based on the principle that light from the scene passes through

a small opening (known as the pinhole) and forms an inverted image on a photosensitive

surface or image plane. Thanks to this model it is possible to project a scene in the 3D

space onto the image plane (2D image). The equation is the following:
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(4.2)

The two matrix multiplying [X, Y, Z, 1]T , the Camera Intrinsic Matrix and the Cam-

era Extrinsic Matrix respectively, can be combined to obtain the Camera Matrix

C =









fx 0 cx 0

0 fy cy 0

0 0 1 0





















r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1













=









c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 t34









(4.3)

which can be used to perform the transformation. In our case, however, we are interested

in projecting a 2D image into a different 2D space. Consequently, the matrix in 4.3 can

be updated to obtain the Homography Matrix.
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(4.4)

The matrix tells us that a shift from one view to another view of the same scene is

essentially a transform from one projective plane to another. Notice that there is no h33

value in H since we can assume it to be 1 for normalization purposes.

Next, to obtain the estimates it is sufficient to find some points that related to

each other between the two desired planes. Specifically, we need four points, and by
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combining all the equations together we obtain



















x(1) y(1) 1 0 0 0 −x̂(1)x(1) −x̂(1)y(1)

0 0 0 x(1) y(1) 1 −ŷ(1)x(1) −ŷ(1)y(1)

. . .
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0 0 0 x(4) y(4) 1 −ŷ(4)x(4) −ŷ(4)y(4)
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(4.5)

This form makes it possible to solve the problem through the least square method.

4.1.2 Results

Since all photos are taken from the same window, the perspective was assumed to be

the same for all pictures. The four reference points used for the estimate are the two

bottom corners of Campo San Felice and the two top corners of the street. Moreover, to

better resemble the dimensions of the real square, the points were projected in a space

of size 1300x5000. An example of a projected photo can be seen in Figure 4.1.

Figure 4.1: Original Image (left) and the Projected Image (right) obtained
using Homography.
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Clearly, the obtained images are not perfect, but they are a good approximation of

a real bird’s eye view. To make it even clear the plots in Figure 4.2 show a comparison

of the original and adjusted coordinates of the photo.

Figure 4.2: Original Coordinates and Projected Coordinates.

After projecting the original coordinates to a new one of different size, the y coor-

dinates of the two graphs cannot be directly compared. However, if we consider the

boundaries of the plots as representative of the borders of Campo San Felice, the im-

provements are noticeable. People are now distributed like they should be, especially

on the y-axis. On the other hand, the horizontal spacing between individuals in the far

background may be slightly underestimated, but overall, the final results are satisfactory.

It is important to notice that due to the limited view in the original perspective,

the second half of the bridge remains hidden and cannot be taken into account. As a

result, individuals standing at the end of the bridge are considered equivalent to those

in the second half. This is particular evident in Figure 4.3 where individuals positioned

at the top of the bridge are mistakenly placed at the end of it. Because of this, the

distances between people on the bridge and people on the road behind is underestimated,

moreover, people on the far back are pulled closer to the bridge. These, however, do

not pose a problem since the clusters of people remain consistent, the only issue is that

the coordinates do not exactly match those in the real square, but the analysis remains

unaffected.
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Figure 4.3: Map of the people in Campo San Felice on the 17th of May, 2020 in
the evening.

4.2 Clustering

Now that the actual coordinates of the people in the photo have been extracted and the

distance between them has been adjusted according to the prospective of the different

pictures, it is possible to compute the clusters of pedestrian in the different pictures.

To achieve this, Density-Based Spatial Clustering of Applications with Noise will be

used. DBSCAN is a popular clustering algorithm widely used in data mining and

machine learning introduced in 1996. Here, we will give only a brief introduction to

how it works, for the details, see Ester et al. (1996). Note that DBSCAN can be

employed in data spaces of any dimensionality. Additionally, any form of distance

metric can be effectively utilized without sacrificing generality. Because of this, for

proper visualization, all examples will be in 2D space using Euclidean distance.

4.2.1 DBSCAN

DBSCAN requires only two parameters: Eps and MinPts. The former is defined as the

radius of the neighborhood, while the latter is the minimum number of points in an

Eps-neighborhood.
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Definition 1. The Eps-neighborhood of a point p, denoted by NEps(p), is defined by

NEps(p) = {q ∈ D|dist(p, q) ≤ Eps} (4.6)

Definition 2. A point p is directly density-reachable from a point q with regard to

Eps, MinPts if

• p ∈ NEps(q) and

• |NEps| ≥MinPts.

Definition 3. A point p is density-reachable from a point q with regard to Eps,

MinPts if there is a chain of points p1, ..., pn, p1 = q, pn = p such that pi+1 is directly-

reachable from pi (Fig. 4.4).

Definition 4. A point p is density-connected to a point q with regard to Eps,

MinPts if there is a point o such that both, p and q are density-reachable from o with

regard to Eps and MinPts (Fig. 4.4).

Figure 4.4: Density-reachability and density-connectivity. Image by Ester et al.

(1996)

From these definitions we can distinguish

• Region around a point : within a distance Eps.

• Density of a region: more than MinPts in a region

• Core point : a point whose neighborhood contains at least MinPts points (Fig 4.5).

• Border point : a point whose neighborhood contains less than MinPts points, but

it is density reachable from a core point (Fig 4.5).
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Figure 4.5: Core points and border points. Image by Ester et al. (1996)

Definition 5. Let D be a database of points. A Cluster C with regard to Eps and

MinPts is a non-empty subset of D satisfying the following conditions:

• ∀p, q : if p ∈ C and q is density-reachable from p with regard to Eps and MinPts,

then q ∈ C.

• ∀p, q : p is density-connected to q with regard to Eps and MinPts.

Definition 6. Let C1, ..., Ck be the clusters of the database D with regard to pa-

rameters Epsi and MinPtsi, i = 1, ..., k. Then noise is defined as the set of points in

the database D not belonging to any cluster Ci, i.e. noise = {p ∈ D|∀i : p /∈ Ci}.
Lemma 1. Let p be a point in D and |NEps(p)| ≥MinPts. Then the set 0 = {o|o ∈

D and o is density-rachable from p with regard to Eps and Minpts} is a cluster with

regard to Eps and MinPts.

Lemma 2. Let C be a cluster with regard to Eps andMinPts and let p be any point

in C with |NEps(p)| ≥MinPts. Then C equals to the set O = {o|o is density-reachable

from p with regard to Eps and MinPts}.
With this information, to find a cluster, DBSCAN starts with a point p chosen

at random and retrieves all density-reachable points from p with regard to Eps and

MinPts. If p is a core point, this procedure yields a cluster. If p is a border point, no

points are density-reachable from p and DBSCAN visits the next point of the database.

For the algorithm specifications, see Ester et al. (1996).

4.2.2 DBSCAN Results

As mentioned earlier, DBSCAN requires only two parameters. In this thesis, the param-

eter MinPts was set to 1, as each individual walking down the street is considered as a

separate cluster. The parameter Eps was set to approximately 1.4 meters, representing

the radius within which two points are considered neighbors. The task is obviously not

trivial, distance is not the only factor when considering groups of people, but in most
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cases, it is a good approximation. For each photo contained in the dataset, the clusters

were calculated (Fig. 4.6).

Figure 4.6: Example of the clusters detected in a photo.

Moreover, some additional features such as the cluster count and the average variance

within value were computed for each photo. The first allows to examine the variation

in the number of clusters throughout the pandemic (Fig. 4.7).

Figure 4.7: Time series of the number of clusters at different times of the day.
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The second, instead, serves as an indicator of the dispersion or spread of data points

within each cluster relative to the cluster’s center. To obtain this metric for a single

photo with K clusters, one needs to compute Wk, the variance within each cluster Ck :

Wk =
∑

xi∈Ck

||xi − x̄k||2 (4.7)

where xi represents an element and x̄k represents the center of cluster k.

Then, with the K values of Wk, one simply performs a weighted average to obtain

W, i.e. the average variance within of the photo:

W =
1

n

K
∑

k=1

nkWk (4.8)

with n and nk indicating the total number of people in the photo and the number of

people in cluster k respectively.

In this particular context, the higher value of average variance within the clusters

mainly indicates that there are more clusters and that they are more numerous. This

observation comes from the fact that the number of people inside the clusters tends

to be low, and that most individuals are often found by themselves resulting in zero

variance.

4.3 Cluster Time Series Analysis

In this chapter, the focus will be exclusively on the time series analysis of the average

variance within metric. The analysis of the number of clusters can be found in the

Appendix. This decision was made based on two primary reasons:

• Since the number of clusters strongly depends on the number of people in the

photo, the series exhibit the same behaviour as those analysed in chapter 3 and

yield similar and comparable results.

• The average variance within gives a more interesting insight on how the clusters

evolved during the pandemic.

Furthermore, due to the redundancy between the plots and analysis, only the results

from the DLM will be presented in this chapter. The results from the Prophet model

can be found in the Appendix.

The time series are depicted in Figure 4.8 . It is important to note that these series

contain a significant number of zero values, indicating that all individuals in a picture
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are not clustered with others. In the case of the Morning time series, there are typical

fluctuations, but the overall level appears to remain consistent over the two-year period.

Figure 4.8: Time series of the average variance within in each photo.

Conversely, the other two time series exhibit an upward trend, indicating that the

clusters got bigger and more numerous as the restrictions eased. This can be attributed

to the fact that during the morning hours, the individuals present on the streets are

predominantly workers. Consequently, it is unlikely that people gather with others at

this time of the day.

To see if there actually is temporal correlation between the observations the correlo-

grams are plotted in Figure 4.9. In contrast to the time series related to the number of

people, the presence of autocorrelation is significantly lower in the current scenario. In

particular, the Morning series exhibits minimal signs of autocorrelation. On the other

hand, the other two series are comparable, displaying some level of autocorrelation and

a subtle weekly seasonality, although not strongly pronounced.
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Figure 4.9: Correlograms of the three time series.

4.3.1 Morning

As for the previous analysis, the DLM setup for the Morning time series is the same:

since the data do not show any particular pattern, the order of the polynomial com-

ponent was set to 1. A weekly seasonality component was added and the matrix of

regressors is composed by mean temperature, zona, rain and weekend festive variables.

The first thing to look at is the smoothed trend (Fig. 4.10).

Figure 4.10: Trend of the average variance within for the Morning Time Series.
The yellow background highlights the periods when Venice was in yellow zone or
worse.
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As anticipated, the model did not capture any specific pattern. The estimated trend

appears as a nearly horizontal line slightly above zero, suggesting that the fluctuations

observed are merely due to variability rather than a systematic pattern. Based on

the smoothed series, it is evident that the impact of seasonality and regressors is not

particularly significant. The estimated values do not deviate significantly from the

estimated trend, indicating that the seasonal patterns and the influence of regressors

have minimal effect on the overall trend.

Next, it is necessary to take a look at the one-step-ahead predictions in order to

assess how the model performs in the forecasting task. The predicted values are plotted

in Figure 4.11.

Figure 4.11: One-step-ahead predictions and intervals of the variance within for
the Morning time series.

Aside from the first period, when the lack of observed values makes the model predict

a constant increasing trend with huge variability, the predictions approximately follow

the fluctations of the data. The majority of the actual data points fall within the

confidence intervals, with only a few exceptions during the summer period when the

average variance within reaches unusually high levels.

Finally, Figure 4.12 shows the distribution of the standardized residuals, along with

the correlogram. The histogram exhibits a skewed distribution towards the right and

even though the majority of values are close to zero, the mode is slightly under zero. As

observed from the one-step-ahead predictions, the model tends to underestimate certain

values. However, considering the relatively low number of people in each photo, it is

expected to have a higher degree of variability. The correlogram does not show any

significant indications of autocorrelation. However, it is worth noting that the original

series did not display much autocorrelation either, making it difficult to assess the extent

of improvements in this regard.
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Figure 4.12: Residuals: histogram and ACF for the Morning Time Series.

4.3.2 Noon

Moving on with the Noon dataset, there are slight changes in the setup. While the

matrix of regressors and the seasonal component remain unchanged, it was found that

the polynomial component of order 2 provided the best results.

The trend plotted in Figure 4.13 demonstrates an overall increasing pattern in the

series values over time. However, after the initial year and a half of the COVID-19

pandemic, the values appear to stabilize at a constant level around July 2021. The

Figure 4.13: Trend of the average variance within for the Noon Time Series. The
yellow background highlights the periods when Venice was in yellow zone or worse.
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smoothed series reveals that occasional setbacks are captured by the seasonal and re-

gressive components. However, their impact on the overall series is relatively limited

since the values exhibit only minor deviations from the estimated trend. Furthermore,

while the final result does not capture all the variability of the series, it successfully

captures the general behavior of the data.

The forecasted values (Fig. 4.14) show a good fit, with most of the observed values

falling inside the confidence intervals. Like in the Morning series, some of the peaks of

the series are not well represented, however, considering the rarity of these values, they

can be attributed to variability and randomness. In the first six months, as usual, the

model predicts an increasing pattern in the series with large confidence intervals.

Figure 4.14: One-step-ahead predictions and intervals of the variance within for
the Noon time series.

Finally, from the plotted innovations (Fig. 4.15) we can see that the behaviour is

very similar to the previous series.

Figure 4.15: Residuals: histogram and ACF for the Noon Time Series.
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The histogram clearly exhibits a noticeable right asymmetry, which aligns with the

expectation after observing Figure 4.14 where certain values are significantly underesti-

mated. Additionally, it is worth noting that the mode deviates significantly from zero,

indicating that the model’s predictive capabilities may not be optimal. On the other

hand, the residuals exhibit a complete absence of correlation that was originally present

in the data. None of the values at any lag demonstrate significance, suggesting that the

model has effectively captured the underlying patterns within the data.

4.3.3 Evening

The final series to analyse is the one related to the pictures taken in the evening or a

little later. As already seen in the previous chapter, this series is probably the hardest

to model, given its high variability. The setup used for the Dynamic Linear Model is

identical to the one used for the Noon dataset: the order of the trend component was

set to two, the seasonality’s period was set to 7, and the matrix of regressors contains

the usual variables.

In this scenario, the results of the smoother differ significantly from the other two

time series (Fig. 4.16).

Figure 4.16: Trend of the average variance within for the Evening Time Series. The
yellow background highlights the periods when Venice was in yellow zone or worse.

The estimated trend no longer follows a simple linear pattern, but instead effectively

captures the diverse behavior and distinct patterns present in the observed data. In the

final months the trend becomes a logarithmic-shaped line, but this can be attributed
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to the low number of observed values. The seasonal and regressive components, on the

other hand, appear to have minimal impact on the smoothed series like in the previous

cases.

The one-step-ahead predictions, plotted in Figure 4.16, are comparable to those of

the Noon series. The majority of observed values are well within the confidence intervals,

indicating that the DLM captures the overall behavior quite accurately.

Figure 4.17: One-step-ahead predictions and intervals of the variance within for
the Evening time series.

Finally, the standardized residuals display the typical right asymmetry, and there is

no significant evidence of autocorrelation except for a lone value at lag five (Fig. 4.18).

Figure 4.18: Residuals: histogram and ACF for the Evening Time Series.
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4.4 Observations

Upon analyzing the three distinct series and achieving satisfactory outcomes, this section

aims to provide an interpretation of the results to better understand what happened to

the clusters of people at Campo San Felice in Venice during the COVID-19 pandemic.

First of all, it is important to notice that the three series show a high level of vari-

ability, this is clearly caused by the way the average variance within metric is built. In

many instances, due to the prevalence of individuals walking alone, the variance within

the computed clusters often results in a value of zero. Consequently, when these values

are aggregated and averaged with the values from other clusters, it can lead to a wide

range of outcomes. It is not uncommon, particularly in the Morning dataset, to en-

counter entire pictures whose metric is zero. Moreover, most of the clusters that are not

composed by a single individual contain only a few people, mainly two or three, with

only some unusual high values when lots of people gather on the bridge.

This is the main reason why the smoothed series, in all three cases, show a low impact

of the seasonal and the regressive components, which are not fully able to predict the

peaks and the setbacks of the observed data. It suggests that factors such as festive

days, rain, and temperature do have an impact on the series but may not be strongly

correlated with its sudden changes. As for the zona variable, its effect aligns with the

findings presented in chapter 3, where the trend component already accounts for most of

the variability. Nonetheless, the general behaviour of the three series is well captured by

the DLM and by taking a look at the smoothed series, some conclusions can be drawn.

Indeed, with the exception of the Morning series that exhibits a consistent trend with

only minimal variations in values at the beginning and at the end of the pandemic, an

upward trend in the average variance within can be observed over the years. For the

reasons stated above this means that, in general, when the restrictions eased, people

tendencies changed. Specifically, people went out more, formed more clusters and these

clusters were bigger than those formed in the first months. Additionally, in the latter

half of the considered period, there were no pictures in the Noon and Evening datasets

that solely depicted clusters formed by a single person. Conversely, the number of such

photos in the first and second halves are more comparable in the Morning dataset,

due to the low presence of people in the photos, likely attributed to individuals being

predominantly workers during those hours.

In terms of the forecasting ability of the Dynamic Linear Models, all three models

perform quite well. They effectively capture the general pattern of the series, and the

majority of observed values fall within the corresponding confidence intervals. However,
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it should be noted that the estimated values tend to underestimate the actual values of

the series, especially in cases where unusual high values occur. As already mentioned,

this is due to the high variability in the data which makes it hard to predict changes

that are so sudden. This is not necessarily a problem, in fact, while predicting the

number of people can be valuable, for example for mobility-related purposes, the value

of the average variance within is a more abstract number that tells about how the people

at Campo San Felice are distributed. Therefore, achieving a perfect prediction is not

necessarily crucial. However, it is still interesting to observe the evolution of the filter

and assess the goodness of fit of the model.

Connected to the predictions are the residuals. Due to the reasons explained above,

the residuals exhibit some positive high values, indicating an underestimation of certain

values by the model. However, apart from theMorning dataset where no autocorrelation

was present in the observed values, the DLM successfully eliminates any remaining

autocorrelation in the residuals. This suggests that the model adequately accounts for

the observed variation in the time series, leaving no unexplained patterns or information.

Consequently, all three models pass the Ljung-Box test, with only the evening series

getting a p-value of 0.02. Clearly, the Shapiro test for the normality is failed for the

three series.





Conclusion

This thesis explored the application of Dynamic Linear Models, for the modeling of time

series data. Particularly, this type of model was applied to data regarding the affluence of

people at Campo San Felice in Venice during the COVID-19 pandemic. In this context,

characterized by the presence of missing values and abrupt pattern changes in the series,

DLMs have demonstrated their effectiveness in capturing the underlying patterns and

dynamics of the various series. With their recursive nature, Dynamic Linear Models

offer an efficient and flexible approach for modeling such data, making them preferable

over other forecasting models like Prophet, as discussed in this study. Moreover, DLMs

offer an interpretive framework that allows for a better understanding of the impact

of various components on the observed values. Specifically, several Dynamic Linear

Models were employed. These models were fitted both with and without the inclusion

of various variables, and their Akaike Information Criterion was computed. The results

are summarised in Table 1.

. AIC improvements
Dataset mean temperature rain weekend festive zona

Morning −26.80 142.76 4248.01 15787.93

Noon 9.35 1061.99 6643.75 91285.26

Evening 1735.86 980.51 2266.89 61499.02

Table 1: Improvements in terms of AIC of the different regressors

Clearly, there are significant changes in the number of people gathering at Campo

San Felice over time, with factors such as weather conditions, weekdays, holidays, and

notably, the COVID-19-related restrictions imposed by the Italian government, all play-

ing a role. Specifically, temperature and rainfall have a minimal effect on the Morning

dataset since individuals are probably workers, and, as such, they are not affected by the

weather conditions. On the other hand, the weekend festive regressor demonstrates a

substantial impact on all datasets, indicating that weekends have a distinct distribution

of people compared to weekdays. The most significant difference, however, is observed
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when including the zona variable. This suggests that considering the government re-

strictions greatly enhances the model’s ability to explain the variation in the number of

people at Campo San Felice, providing further confirmation of the profound influence

that COVID-19 had on mobility and social gatherings. The same methodology was also

employed to examine the clusters formed by individuals, confirming the aforementioned

findings.

Further improvements in this field may regard the implementation of Generalized

Dynamic Linear Models (G-DLMs). Although the theoretical aspects of G-DLMs have

been discussed in the literature, there is a need for their intuitive implementation in

popular programming languages such as R and Python. This would enable researchers

and practitioners to apply G-DLMs more effectively and explore their potential in vari-

ous domains. While the models employed in this thesis demonstrated good performance,

it is important to note that they assume the response variable follows a Gaussian dis-

tribution. However, considering the context of this study, a Poisson distribution would

have been more suitable for modeling the data accurately.

The analysis conducted in this thesis could also be examined from a Bayesian perspec-

tive. While the current study employed a frequentist approach, adopting a Bayesian

framework offers an alternative viewpoint that may yield distinct insights into the data.

By employing Bayesian methods, one can incorporate prior knowledge or beliefs about

the data and model parameters. This prior information acts as an initial reference point

and can influence the posterior distribution, allowing for a more nuanced understanding

of the underlying patterns and uncertainties present in the data.

An alternative approach for improvement could involve employing multivariate analysis

techniques to study the interdependencies and dynamics among the Morning, Noon, and

Evening time series collectively. By considering these series as a multivariate dataset,

one can explore the relationships and interactions between the variables observed at

different times of the day.
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Appendix

Number of Clusters Analysis

Figure .1: Number of clusters time series

Figure .2: Correlograms for the number of clusters time series
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Prophet Results

Figure .3: Estimated trend for Morning time series.

Figure .4: Predictions for Morning time series.

Figure .5: Residuals for Noon time series.
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Figure .6: Estimated trend for Morning time series.

Figure .7: Predictions for Noon time series.

Figure .8: Residuals for Noon time series.
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Figure .9: Estimated trend for Evening time series.

Figure .10: Predictions for Evening time series.

Figure .11: Residuals for Evening time series.
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DLM results

Figure .12: Estimated trend for Morning time series.

Figure .13: Predictions for Morning time series.

Figure .14: Residuals for Noon time series.
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Figure .15: Estimated trend for Morning time series.

Figure .16: Predictions for Noon time series.

Figure .17: Residuals for Noon time series.
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Figure .18: Estimated trend for Evening time series.

Figure .19: Predictions for Evening time series.

Figure .20: Residuals for Evening time series.
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Prophet results for Average Variance Within series

Figure .21: Estimated trend for Morning time series.

Figure .22: Predictions for Morning time series.

Figure .23: Residuals for Morning time series.
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Figure .24: Estimated trend for Noon time series.

Figure .25: Predictions for Noon time series.

Figure .26: Residuals for Noon time series.
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Figure .27: Estimated trend for Evening time series.

Figure .28: Predictions for Evening time series.

Figure .29: Residuals for Evening time series.
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